
Departament of Information Science and Technology

A Collaborative Framework for Browser Games
Development

Jorge Pena

A dissertation presented in partial fullfilment of the Requirements for the Degree of
Master in Open Source Software

Supervisor:
Dr. Carlos J. Costa, Ph.D., ISCTE-IUL

April, 2012

Collaborative Framework for Browser Games Development

2

Abstract

This dissertation describes a conceptual model and prototype for a collaborative frame-
work for browser games development using open source and open content. There is an
extensive literature review exploring several areas like game development, modding, open
source software development, open content and creative commons. The most relevant
ideas about game development and collaboration are then used in defining the conceptual
model of the framework with the objective of facilitating community creation and collab-
oration. Finally the implementation of prototype is explained in detail and the practical
difficulties in implementing the conceptual model are addressed. This research shows that
a collaboration framework for creating open source and open content browser games is
possible and paves way for future studies about the community creation in this type of
collaborative systems.

Keywords: Games, Browser Games, Open Source, Open Content, Creative Commons,
Collaboration

Resumo

Esta dissertação descreve um modelo conceptual e um protótipo de um sistema colab-
orativo para o desenvolvimento de jogos no browser utilizando código aberto e conteúdos
abertos. É feita uma revisão extensiva da literatura em várias áreas como desenvolvi-
mento de jogos, modding, desenvolvimento de software open source, conteúdos abertos
e Creative Commons. As ideias mais importantes acerca do desenvolvimento de jogos,
conteúdos e colaboração são usadas para definir um modelo conceptual do sistema com
o objectivo de facilitar a colaboração e criação de uma comunidade forte. Finalmente
a implementação de um protótipo do sistema é explicada em detalhe e são referidas as
principais dificuldades práticas na implementação do modelo conceptual. Esta pesquisa
mostra que é possível criar um sistema colaborativo para a criação de jogos como código
e conteúdos abertos e abre caminho para futuros estudos sobre a criação de comunidades
neste tipo de sistemas colaborativos.

Palavras-chave: Jogos, Jogos no Browser, Código Aberto, Conteúdo Aberto, Creative
Commons, Colaboração

Collaborative Framework for Browser Games Development

2

Collaborative Framework for Browser Games Development

Acknowledgments

First I would like to express my gratitude to my supervisor, Dr. Carlos J. Costa, for
his insights and constant help while doing this work. The topic of this dissertation came
about when we found we both had similar ideas and interests about the topic of games
and online collaboration. I am grateful for the long talks we had about the subject and
they helped some of the ideas contained here mature and grow.

To my wife Cláudia, and my daughters Matilde, Madalena and Mariana I would like
to thank them for the support they gave me and the absences they endured. They are my
inspiration in life. Also I would like to thank my parents and family for always teaching
me that education is important and encouraging me to always try to better myself.

Finally I would like to acknowledge the help of my classmates in the Masters in Open
Source Software for the encouragement, ideas and companionship.

3

Collaborative Framework for Browser Games Development

4

Collaborative Framework for Browser Games Development

Contents

1 Introduction 11
1.1 Motivation . 11
1.2 Research Question . 11
1.3 Methodology . 12
1.4 Document Structure . 12

2 Literature Review 13
2.1 Game development process . 13

2.1.1 Overview of the game development process 13
2.1.2 Frameworks and methodologies . 14

2.2 Game modding . 15
2.2.1 Types of mods . 16
2.2.2 Licenses . 17
2.2.3 Infrastructure and development tools 17
2.2.4 Community practices . 18

2.3 FOSS games development . 18
2.3.1 Requirements analysis and specification 18
2.3.2 Coordinated version control, system build, and staged incremental

release . 18
2.3.3 Maintenance as evolutionary redevelopment, reinvention, and redis-

tribution . 19
2.3.4 Project management and career development 19
2.3.5 Software technology transfer and licensing 20

2.4 Open Content and Creative Commons . 20
2.4.1 Motivations for Open Content collaboration 21
2.4.2 What is Creative Commons . 21
2.4.3 Commons based peer production 21
2.4.4 Community of practice . 22

3 Conceptual Model 23
3.1 Usage and roles . 23

5

Collaborative Framework for Browser Games Development

3.2 Generic framework concepts . 24
3.3 Media library . 25
3.4 Game engine . 26
3.5 Game creation tool . 26
3.6 Game portal interface . 28

4 Prototype Implementation 31
4.1 Overview . 31
4.2 Tools And Technologies . 32

4.2.1 Drupal . 32
4.2.2 HTML5 (Canvas) . 33
4.2.3 Javascript . 33

4.3 Games Portal Prototype . 34
4.3.1 Drupal content types . 34
4.3.2 Core modules . 34
4.3.3 Third party modules . 36
4.3.4 Forum . 38
4.3.5 Media Library . 38
4.3.6 Game content type . 39

4.4 Game engine . 40
4.4.1 Overview . 40
4.4.2 User Interface initialization . 40
4.4.3 Assets loading . 40
4.4.4 Viewport initialization . 42
4.4.5 Game loop . 43
4.4.6 Collision detection . 43

5 Results Analysis and Discussion 45
5.1 Conceptual Framework . 45
5.2 Open Source Browser Games . 45
5.3 Prototype Limitations . 46

5.3.1 Content Forking . 46
5.3.2 Awards and contests . 46
5.3.3 Sound content . 46

6 Conclusion 47

A Game Engine Source Code 51
A.1 game.js . 51
A.2 game.css . 56

6

Collaborative Framework for Browser Games Development

B Prototype usage & installation 59
B.1 Accessing and using the prototype . 59
B.2 Installing and running prototype . 59

B.2.1 Common requirements . 59
B.2.2 Snapshot installation . 60
B.2.3 Clean installation . 60

7

Collaborative Framework for Browser Games Development

8

Collaborative Framework for Browser Games Development

List of Figures

2.1 Game development activities . 14
2.2 Collaboration contributing factors . 16
2.3 Pyramid meritocracy (Scacchi, 2004) . 19

3.1 Framework basic components . 23
3.2 Framework main use cases . 24
3.3 Collaborative Features . 25
3.4 Media Library Use Cases . 26
3.5 Conceptual game engine . 27
3.6 Game Creation Use Cases . 27
3.7 Game Creation Process . 28
3.8 Portal Use Cases . 29

4.1 Prototype Portal Home . 31
4.2 Canvas Example . 33
4.3 Content type administration in Drupal . 34
4.4 Taxonomy organization interface . 36
4.5 Fivestar voting field configuration . 37
4.6 Basic forum organization . 38
4.7 Media library top content . 39
4.8 Game node view with play button . 41
4.9 Game playing interface . 41
4.10 Game engine activity diagram . 42
4.11 Game over . 43

9

Collaborative Framework for Browser Games Development

10

Collaborative Framework for Browser Games Development

Chapter 1

Introduction

1.1 Motivation

Computer games are an increasingly popular application of computer technology (Jones,
2000) , and a very important part of today’s entertainment culture.

Game development is a complex and demanding task that typically needs teams with
various skills and expertises to create an interesting and viable game(Bethke, 2003)(Costa
and Aparício, 2006b). In the context of Free and Open Source Software (FOSS) games,
the need to have programmers, designers, graphical artists, musicians and others on the
team make the barriers to entry somewhat high.

Various researchers have studied the software development process applied to games
development, and its particulars both in commercial and FOSS settings.

In a related movement to FOSS, Open Content and Creative Commons allows for
collaboration and sharing in various fields not related software development, like writing,
arts, music, and others.

1.2 Research Question

The main purpose of this work is to design and prototype an on-line collaborative frame-
work for browser games development. Users will be able to upload graphic and sound
content to the library, define game rules and objectives, and then to play their created
games and share them with other people. While there are other on-line game creation
frameworks, to my knowledge none combines both open source technologies and an open
content library.

Ultimately the purpose of this research is to access the feasibility of an open collabo-
rative development model in the specific area of browser games.

This is also related to work being developed by a team of researchers in ISCTE-IUL
(Costa and Aparício, 2006a,b).

11

Collaborative Framework for Browser Games Development

1.3 Methodology

The research methodology used in this work according to Järvinen (2004) taxonomy of
research methods fall into two different but complementary approaches.

The conceptual model of the framework presented is an example of a conceptual-
analytical approach because its concepts are derived from the review of the available
literature and studies in related topics.

The prototype framework developed falls in the category of artifact-building ap-
proaches. The prototype validates the feasibility of the conceptual model and of the
premise that a framework for open source collaborative browser games development can
be built.

The two approaches are complementary in this case because the design principles of
the prototype are guided by the conceptual framework devised by the analysis of various
bodies of research pertinent to the proposed problem.

1.4 Document Structure

This document is divided into three main topics: literature review (chapter 2), conceptual
model (chapter 3), and prototype implementation (chapter 4).

In chapter 2 (Literature Review) various research areas relevant to the objectives of
this research are reviewed. The development process of games is analyzed to find the
differences from software development in general and specific problems and processes
that may be relevant to the conceptual model. Next game modding and its community
approach to game content creation and modification is reviewed to gather data about
game specific communities and approaches to collaborative game development. Free and
Open Source development and games development is also reviewed to find how disperse
and diverse groups of developers collaborate in successful development projects. Finally
the Creative Commons and Open Content are analyzed to extract information about open
content licensing and open content creation communities.

In chapter 3 (Conceptual Model) the insights and concepts gathered in the previous
chapter are streamlined into a coherent conceptual guide for building an open source and
open content game creation framework. The main characteristics and parts of the frame-
work are described and the interaction between the various agents is also conceptualized.

Chapter 4 (Prototype Implementation) describes the implementation of the framework
prototype using a simple browser game engine. The tools and technologies used are also
described and the difficulties in implementing the conceptual framework in a real world
case are also addressed.

Chapters 5 and 6 (Results and Conclusion) describe the results of this research and
identify possible avenues for expanding and continuing it in the future.

12

Collaborative Framework for Browser Games Development

Chapter 2

Literature Review

I am interested in reviewing literature related to the study of the software development
process applied to games. I will look at commercial game development in one hand and
open source game development. There is also a field tangential to game development that
is game modding and mod development. The game modding communities are a lot like
FOSS communities and are an interesting research topic in this area.

Of interest to the problem is also the study of the processes used in the game modding
community. I also will look at some examples of collaborative content creation from others
fields to find out some practices that can be used to help answer the research question.

2.1 Game development process

Commercial game development is a multidisciplinary team effort, requiring specialized
knowledge and skills. The game development industry has been growing and is a very
important business today. Games marketing is in every medium and some games have
production values and revenues comparable to the movie industry.

2.1.1 Overview of the game development process

Having an idea for a game is not enough. It must be elaborated allowing for a team to
start working. These teams can include a lot of people with different roles (Costa and
Aparício, 2006a; Tran and Biddle, 2009):

• programmers

• graphical artists

• musicians and sound experts

• designers

• managers

13

Collaborative Framework for Browser Games Development

• producers

Costa and Aparício (2006a) propose a framework that divides game development in
several activities:

• Conception

• Game specification

• Storyboard production

• Analysis and Design

• Programming and production

• System Test

These activities can then be engaged by the team using various approaches and the
end result of this process a playable and fun game (hopefully) that can be played and
enjoyed.

Figure 2.1: Game development activities

2.1.2 Frameworks and methodologies

There are some research papers studying the game development process and proposing
frameworks and tools to improve the process. In this section I’ll make an overview of
these frameworks and tools.

In the process proposed by Costa and Aparício (2006a) they adopt an iterative wa-
terfall development model encompassing all the different activities that contribute to the
creation of a game. In the conception activity the team engages in brainstorming meet-
ings to generate ideas for the game. In the game specification phase the product manger
writes a document that describes the game from an end user point of view. The document

14

Collaborative Framework for Browser Games Development

specifies what the game is about, explains game play, can have concept art, and describes
the features and characteristics of the game. Next in the storyboard production phase
a series of sketches and mock-ups are created detailing the scenes and sequences of the
game and user interaction. Art style is also defined in this phase. In the analysis and
design phase software engineers create the technical architecture of the game using UML.
Also the tools and platform for the game are defined. In the implementation phase all the
documents generated previously are put to use by the various teams to create the game
art, and a functional program that compiled into a function game. In the testing phase
the game is tested and feedback is generated and sent back to the teams that will take
the appropriate measures to correct the problem. This process goes on until the game is
deemed ready to be sold to the public. In another case study by the same researchers
(Costa and Aparício, 2006b) they found that the application of this process in a real life
situation may be very chaotic.

Tran and Biddle (2009) did an ethnographic study of collaboration in a game devel-
opment team. In this study they collected data on a team developing two games for
business training. The team members had the following roles: game programmer, lead
graphic artist, graphic artist, graphical user interface designer, usability expert and a
manager. The researchers analyzed the type of work done, the collaboration in the de-
velopment process, the office space, social atmosphere, role differentiation, information
sharing, product goals and other variables. The authors identified three core factors that
contributed the most to a successful collaboration in the team: role respect, short iteration
cycles and shared vision. Role respect means that each member of the team has a clearly
defined understanding of what he contributes to the game. Team members acknowledge
the roles are complementary and everyone is important to the end goal. Short iteration
cycles means that the game is changed and tested almost daily leading to a continuous
evaluation and discussion of the product by all team members who keep ‘up-to-date’ with
the development process. Shared vision means that there is an understanding and agree-
ment about the end product. There are no conflicting views of how the game should be.
According to the authors this leads to a strong collaborative spirit in the team and means
the team works by default in collaborative mode.

2.2 Game modding

Modding is a slang expression derived from the term modify. It refers to the act of
modifying a piece of software or hardware to perform a function not intended or designed
by the original author. In the context of games it refers to the modification of game
software and hardware in order to extend or change the subject (Flew and Humphreys,
2005; Kücklich, 2005).

Game modding and its community have been an example of community driven inno-

15

Collaborative Framework for Browser Games Development

Figure 2.2: Collaboration contributing factors

vation and collaborative development (Scacchi, 2010). Game users acquire the games and
then go on to modify, create and remix the game content with or without the encour-
agement of the game developers themselves. Questions arise about content ownership
and the relationships between modders and game developers and companies. The author
argues that a web of affordances allows games to modified, and that these affordances
shape the very modding community governing who mods what, where, when, how and
why.

2.2.1 Types of mods

Game mods can mean different things to different people. So I will try to categorize the
various types of modding going on and their significance for this work (Table 2.1). All
kinds of modding are a kind of content remixing and the way this is done is important in
determining the best strategies to facilitate this. Scacchi (2010) identifies the following
relevant types: user interface customizations, game conversion, art mods and console
hacking.

• User interface customizations
In this type of modding the focus is on changing the visual interface of the game and
is the more widely supported by game studios as way of increasing user satisfaction
(Pine and Davis, 1993). The kind of changes allowed is different from game to
game and range from purely visual customization (textures, models) to game play
enhancing information displayed on the screen.

• Game conversion
This type of modding imply access to the game engine (normally with the blessing
of the creators) and to the tools necessary to change and tweak every aspect of the
games. Notorious games which support this are Half-Life, Neverwinter Nights. In

16

Collaborative Framework for Browser Games Development

this type of modifications modders can tweak and change game content, add new
content, and even create a completely new game using the provided tools.

• Machinima and Art Mods
Machinima is the creation of movies using in-game scenes and content. Some movies
just use the default game content and art but others can use the conversion tools to
adapt the game engine to their needs. In machinima game play experience is used
for the purpose of story telling and or gameplay demonstration.

• Game console hacking (home-brew apps)
This kind of modding is the usage of the consoles hardware for ends outside the
creators of the consoles intended usage. Usually this entails the exploitation of
some kind of software or hardware bug to run user created software on the console.
The usages range from installation of general purpose operating systems (Linux),
user created games (called home-brew), and other software intended to broaden the
utility of the hardware (media players, chat, etc.).

Table 2.1: Game Modding Types and Characteristics

Type Interface Graphics Game Rules Game Engine Hardware
Interface X
Game Conversion X X X X
Machinima X
Homebrew X

2.2.2 Licenses

In the modding scene the form of licensing used is very important. Some games only allow
user interface modding and no engine reverse engineering or customization. Others allow
the usage of the engine but not of the game content or artwork. Some games encourage
the free redistribution of modded content as a means of increasing the game popularity
and appeal for new new gamers.

It is no surprise that the most thriving modding communities exist where the game
studios have the more liberal licenses and even encourage the creation of mods.

2.2.3 Infrastructure and development tools

The quality and availability of the tools that enable game modification also plays a major
part in the success of the modding communities. Games that are built on modular engines
with good modification tools are more likely to be modded. Some studios release to the
public the same tools they used to create the game, allowing for mods that have the same

17

Collaborative Framework for Browser Games Development

technical quality as the main game. Clearly this is also an important enabler for the
creation of a strong community and quality mods.

2.2.4 Community practices

Unlike game programmers modders do not get paid to create mods for commercial games
(Kücklich, 2005). Sometimes cash prizes can be awarded at game modding competitions
(Sotamaa, 2007), but this an exception. The main incentive for game modders, aside
from the possibility to enhance their own game playing experience, is the ability to learn
about game development and maybe use those skills later to find a job in a game studio.
These skills and knowledge are complemented by gaining status among peers, community
recognition and reputation. It can be said the modders are exchanging their effort for
some kind of social capital that will benefit them later on (Portes, 1998).

2.3 FOSS games development

According to Scacchi (2004) FOSS development communities do not use traditional soft-
ware development methodologies and are contributing to a new view of how complex
software can be developed. Regarding FOSS games development Scacchi (2004) identifies
five software development processes being used across FOSS development communities:

2.3.1 Requirements analysis and specification

The author did not find evidence in any of the projects of formal requirements and spec-
ification documents as prescribed in software engineering methodologies. Apparently all
requirements and features are discussed at length by the community in threaded message
lists (mailing lists) and summarized in web pages after the implementation.

2.3.2 Coordinated version control, system build, and staged in-

cremental release

FOSS projects rely heavily on version control tools like CVS, SVN and more recently Git,
Mercurial and Bazaar. These distributed version control tools allow the distributed and
collaborative development effort. Control over what features and patches are accepted
into the project is also enforced through these tools allowing for the core developer to
decide what is accepted. Some project have a more formal decision process using voting
while other use more informal and ad-hoc methods. These projects also rely on mail-
ing lists (threaded messages) to discuss and document the proposing and accepting of
contributions. The combination of version control and communication tools allows the
management of system builds and releases.

18

Collaborative Framework for Browser Games Development

2.3.3 Maintenance as evolutionary redevelopment, reinvention,

and redistribution

The maintenance of FOSS projects by the adding and or removing of features, debugging,
translation, optimization and multiple other tasks, is a widespread and recurring part of
FOSS software development. But is such a dynamic process that can be characterized
as reinvention. The projects are constantly evolving and changing to suit their users
and developers by accumulating lots of very small changes across very small life cycles.
Projects can have daily builds and alpha, beta and release candidate versions evolving to
a stable version that begins the process anew.

This culture of reinvention allows even communities to take over old and historical
closed source or proprietary projects and recreate them as FOSS projects that are sus-
tained by the motivation and interest of their members to keep alive and develop these
old systems. The author gives the example of the MAME (Multiple Arcade Machine
Emulator) project that has brought to life thousands of old almost lost arcade games.

It’s noteworthy that FOSS projects evolve along with their communities and after
acquiring a critical mass of 10-15 core developer they can grow almost exponentially
defying the old laws of software evolution.

2.3.4 Project management and career development

Typically a FOSS project is organized as a pyramid meritocracy (Scacchi, 2004). In this
form of organization authority, trust and respect are awarded to the most experienced
and influential contributors to the project who assume positions of more responsibility in
the project. Normally there are more than one person in this decision making position
and there is shared decision making.

Figure 2.3: Pyramid meritocracy (Scacchi, 2004)

These core teams seem to prefer incremental changes and innovations and if a developer
or group wants to push for a radical change this core team must be convinced or otherwise

19

Collaborative Framework for Browser Games Development

the proposers may fork the project. In the long run few forks are successful and so this
reinforces the incremental innovation mindset.

The structure of FOSS communities tends to be logically centralized and physically
distributed and supported by tools like CVS and discussion lists. This leads to a kind
o virtual project management where there is a process of community decision making
that is directed and controlled by the core team which encourages certain patterns of
development and social control.

As for the motivation of the developers: some just participate for the fun and a
personal sense of accomplishment, others use FOSS development to exercise and hone their
professional skills, and other still thrive on the social capital gained through networking
in the community and peer recognition. All of this motivations may be present in one
FOSS developer albeit in different degrees.

2.3.5 Software technology transfer and licensing

While software technology transfer is neglected in other areas, in FOSS the diffusion,
adoption and usage of other FOSS software systems is an widely adopted practice. This
practice is in the core of the rapid evolution of FOSS software systems. Tools like control
version systems, development tools (compilers, ides, debuggers), database management
servers, web servers, content management systems, operating systems, and communication
tools that are themselves FOSS projects are routinely used, adapted, and built upon by
other FOSS projects. This socio-technical process enables FOSS to exist with no centrally
planned and managed software development centers.

The one thing that facilitates the above process is the FOSS software licensing (Elliott
and Scacchi, 2004). The GPL and other similar licenses reinforce the beliefs and practice
of sharing, studying, modifying and redistributing software, and are a kind of glue that
maintains the FOSS community and fosters it’s growth and expansion.

2.4 Open Content and Creative Commons

Open content as defined by Cedergren (2003) is content created for others to use, im-
prove and redistribute, often in a collaborative environment. Also usually this content is
produced with no commercial gain in perspective. Open content products have an open
content license inspired by open source licenses. From a systems perspective open content
benefits from virtual communities connected to the internet, easily available production
tools, and easy content distribution.

There are lots of examples of collaborative content creation on the internet. Wikipedia
is the most visible example, but innumerable other wikis, portals, forums attests to the
widespread adoption of these ideas. Researchers are also begining to study these phe-

20

Collaborative Framework for Browser Games Development

nomenon. Portuguese researchers conducted an experiment in on-line brainstorming and
art creation to show the power of this kind of tools(Duarte, Costa, and Costa, 2008).
Other sources of of studies about collaborative content creation include the analysis of a
music creation community (Cheliotis, 2009).

2.4.1 Motivations for Open Content collaboration

According to Cedergren (2003) the main motivations for creating open content are the
following:

• People find stimulating working together for a common goal.

• Learning and developing new skills.

• Possibility of feedback.

• Intrinsic motivation (passion for doing something).

• Altruism (giving to the community).

• Publicity.

• Indirect revenue.

Many of this motivations are in accord with the motivations found in open-source pro-
grammers and companies (Bonaccorsi and Rossi, 2006). This also brings in to focus an
underlying motivation to be free and independent from the big corporations, that is
present in open-source and also in open content communities.

2.4.2 What is Creative Commons

Creative Commons is an non-profit organization that promotes free accessible creative
works for sharing and building upon. They created a series of licenses for creative works
commonly known as Creative Commons Licenses. These licenses enforce the attribution
of the works while enforcing also the ability to share them freely and allow for others
to use them and remix them into their own creations (Lessig, 2005). While open source
licenses apply to software, creative common licenses aim to be their equal for creative and
artistic works. The creative common licenses offer a legal and copyright support for the
open content creation and collaboration.

2.4.3 Commons based peer production

This term was coined by Benkler (2006) the describes a new mode of organizing produc-
tion. A loosely connected and highly distributed network of individuals cooperate without

21

Collaborative Framework for Browser Games Development

market signals or centralized management producing something by sharing resources and
outputs. This mode is radically decentralized, collaborative and non-proprietary.

Reuse and mixing of aesthetic/cultural products has limited capabilities to generate
new works, but according to Cheliotis and Yew (2009) can lead to doubling the output
of the community production. He also concludes that content and mixing contest can
be a form of attracting new authors to the community but in practice is more helpful to
generate publicity for the products of the community.

While these communities are loosely connected and widely distributed, they favor the
creation of strong bonds between a core of peers who steer the community and create
most of the products.

2.4.4 Community of practice

Communities of Practice is another concept that can be helpful to understand these on-
line communities. The term was coined in 1991 in a work by Lave and Wenger (1991)
about learning and participation. Since then various authors have used it in different
contexts and with different meanings (Cox, 2005).

For this analysis it is assumed that a Community of Practice is a group of people
brought together by common interests and shared goals and try to achieve those goals
by a process of social learning and community membership (Cheliotis and Yew, 2009).
This definition of the term puts a focus on the membership and learning aspect of the
community, and it seems to be a common thread both to open source communities and
open content production communities.

22

Collaborative Framework for Browser Games Development

Chapter 3

Conceptual Model

After studying the literature about game development, modding, open-source develop-
ment and open content, the ideas are in place to design the conceptual model of the
framework in a way that maximizes the appeal to the kind of person who would be a
member of a game creation community.

Figure 3.1: Framework basic components

3.1 Usage and roles

First the main roles needed for successful game development must be identified. The
framework will have graphics designers, sound designers, game designers and game players.
One member of the community can have one or more of this roles according to the kind
of content he contributes and uses. Figure 3.2 shows the main use cases and actors for
the framework.

Graphic designers authors of graphic content in the media library.

Game designer author and creator of games using the tools in the site and assets from
the media library.

23

Collaborative Framework for Browser Games Development

Sound designers authors of sound content in the media library.

Player players are community members who play and rate the games and assets in the
media library.

The framework will have 4 main areas: the media library, the game creation tool, and
the games portal interface (see Fig. 3.1).

Figure 3.2: Framework main roles and use cases

3.2 Generic framework concepts

All areas of the framework will share some concepts designed to improve the community
participation.

1. All pieces of content will have authorship attribution and all authors credited in a
piece of content will also be credited in derivative pieces of content.

2. All content will be rated by the members of the community.

3. There will be a comments system associated with every piece of content and mem-
bers will be able to comment and discuss content.

4. There will be rankings for content listing the highest rated pieces of content, the
most viewed, and the most used (played in the case of games).

5. There will also be a ranking for authors based on the ratings and number of their
creations.

24

Collaborative Framework for Browser Games Development

6. Whenever possible there will be previews of the content available for easy identifi-
cation.

7. There will be a system of awards for authors using the rankings, that will highlight
the winner for a period of time in the community. For example an Author of the
Month award every month.

8. All content in the framework will be licensed under a Creative Commons or Open
Source license (whichever is more appropriate).

9. Whenever someone intends to create an improved version of a piece of content they
should fork it and then make the changes to allow the original author to be credited.
There will be no way to enforce this automatically but we expect authors to respect
this and report any violations. There will have to be content managers that will
arbitrate and enforce these rules.

10. There will be a forum associated with the framework with topics like: technical
help, game discussion, framework discussion, etc.

Figure 3.3: Collaborative Features

3.3 Media library

The media library will be primarily used by the graphics and sound designer to upload
their content and review (and possibly reuse) other authors content. Game designers will
also use the media library to browse the content and add it to their game.

All the content in the media library will be identified by type and tagged to allow for
easy navigation and search. Also there will be the possibility of creating content packs
grouping atomic pieces of content into sets related by any criteria defined by the authors.

The types of content available in the library will be:

Graphic files images suitable to the type of games allowed by the game engine (back-
grounds, sprites, and other).

25

Collaborative Framework for Browser Games Development

Sounds sound effects for game actions and background music.

Figure 3.4: Media Library Use Cases

3.4 Game engine

The game engine (or engines) used in the framework assumes that the games can be
created from a set of media objects (graphics, sounds), a set of rules and configuration
values. From these inputs the game engine can create the game and allow users to play it.
These generic characteristics of the game engine allow for a lot of diversity in the kinds
of games they can power. Regarding the rules and configuration, the engine can be more
generic allowing for greater configuration or more specialized embedding all the rules and
most of the configuration values.

Since the engine is a modular part of the framework there can be eventually more
than one. The only restriction is that not all types of media objects will be usable in all
the engines and maybe some categorization would have to be done in the media library.

3.5 Game creation tool

This area will allow the game designers to use the assets in the media library and the
HTML5/Javascript engine to create games that can be enjoyed by others members of the

26

Collaborative Framework for Browser Games Development

Figure 3.5: Conceptual game engine

community. The authors of all assets used on the game will be credited in the game in
their respective role.

The main tasks that can be performed in this area are the following:

• Select and or build the game graphical components using graphics from the library.

• Select and assign the sound components of the game from the library.

• Define the game rules like winning and losing conditions and other rules dependent
on the engine.

• Edit the engine configuration values for the specific game to be created.

• Edit game information like title, description, story, screen-shots and other informa-
tion that will be used to promote the game in the portal.

Figure 3.6: Game Creation Use Cases

Besides the standard game creating process described in Figure 3.7 authors will be
able to fork an existing game and edit all aspects of the game creating a new derivative
game (that will credit the original author also).

Games will also have a tagging system to allow game categorization and easier browsing
and search as discussed in section 3.2.

27

Collaborative Framework for Browser Games Development

Figure 3.7: Game Creation Process

3.6 Game portal interface

This will be the more publicly visible part of the framework. Members of the community
and anonymous users will be able to see and play the games. Here we’ll be able to browse
and search the games, play them and rate them (only for members).

The games will be displayed using the information provided by the author with focus
on visual information (screen-shots). Games with high play rates and or high ratings will
be highlighted in the front page were the game and authors rankings will also appear.

A comment system will be associated with the games allowing for users to give feedback
to the game creators.

The portal will also have a section for articles (tutorials, technical and others) written
by members of the community and other invited writers. This will reinforce the learning
focus of the community and allow more senior members to share their experiences with
newer ones.

28

Collaborative Framework for Browser Games Development

Figure 3.8: Portal Use Cases

29

Collaborative Framework for Browser Games Development

30

Collaborative Framework for Browser Games Development

Chapter 4

Prototype Implementation

4.1 Overview

The work included in this thesis is only the first step in the creation and testing of the
collaborative games creation framework. This is the groundwork needed to start with the
building of a prototype web application that will flesh out these ideas and give us some
metrics on the applicability of these ideas and their success in the field.

The prototype described here implements the conceptual model described previously
using a simple maze game engine integrated into a content management system configured
as a game playing and media library portal.

Figure 4.1: Prototype Portal Home

The games supported by the prototype have a graphical maze where the player char-
acter will have to move through the maze without touching any of the walls and find the
maze exit. The character will have a finite amount of life energy which will be depleted

31

Collaborative Framework for Browser Games Development

each time he touches a wall. If the energy reaches zero the game will be lost. The game
is controlled by the keyboard.

In this implementation there is no sound in the games and therefore no sound media
library.

4.2 Tools And Technologies

4.2.1 Drupal

Drupal is a free and open source content management system implemented in PHP and
MySQL, created by Dries Buytaert in 2001. The software is used in many sites around
the Internet and is mature and stable (Reid, Tomlinson, and VanDyk, 2010; Townsend,
2010). In the prototype version 7 of Drupal (7.12) was used.

Drupal was chosen because it has several features that simplify the creation of com-
munity and user oriented applications. Its core modules support user registration and
management, a role based permissions system, blogs and forums. Using standard core
tools the media library could also be created easily.

Because of its modularity Drupal has a very active set of third party modules ready
to integrate into the application and provide extended features. The rating system, pre-
sentation and linking of data needed for this project were all implemented using external
drupal modules.

The interface customization of Drupal projects via modular themes was also taken
advantage of allowing to integrate the HTML5/Javascript game engine in a simple and
clean way.

• Drush
Drush (Townsend, 2010, p. 263) is a tool implemented in PHP which allow the
management and configuration of Drupal installations via a command line inter-
face, streamlining the installation of modules, user management, database and site
backups, updates and other administrative tasks. This allows the installation and
configuration of Drupal to be scripted and replicated in different servers.

It was very useful in the implementation of the prototype allowing the synchroniza-
tion of different development versions and the deployment of new features on the
production prototype.

• GIT
Drupal development is managed with GIT (Swicegood, 2008) as a distributed version
control system. This allowed to track the changes and history of the development
and was taken advantage of in the multiple site development of the prototype,
allowing code updates to be propagated between different installations.

32

Collaborative Framework for Browser Games Development

4.2.2 HTML5 (Canvas)

For the browser game engine development the HTML5 canvas implementation was used for
graphics and animation rendering. The 2D API of the canvas element is powerful enough
in current generation browsers for game development (Hawkes, 2011). In the prototype
the simplified game engine used wasn’t difficult to implement.

Figure 4.2: Canvas Example

The canvas 2D API being similar to other raster based API’s allows the use of standard
game graphics algorithms, and mature and tested game engine approaches.

4.2.3 Javascript

For dynamic DOM manipulation in the game engine, and input processing in the browser
environment Javascript is the only option (Flanagan, 2006). As such the possible choice
was between using pure Javascript or one of the several libraries and frameworks available
for interacting with the browser and DOM API.

33

Collaborative Framework for Browser Games Development

JQuery was adopted because it is a mature, well documented and widely used frame-
work (Chaffer and Swedberg, 2009), and also because it is the default library in Drupal,
which allowed for easier integration into the prototype development.

4.3 Games Portal Prototype

4.3.1 Drupal content types

The ability to create and configure new content types in Drupal was used extensively to
create the main components of the media library and the games configuration interface.

Drupal allows the creation of new types of content by combining various predefined
field types (see Table 4.1). Additional field types can be added by third party modules.

In Drupal the display of the content type nodes can be managed by context. For
example it can display different fields when displaying the full node content in a page
and when displaying a list of nodes in a summary or search page. Drupal introduces the
concept of view modes to differentiate the contexts where the content will be shown.

Figure 4.3: Content type administration in Drupal

Furthermore it also attaches CSS classes to the HTML elements displayed on a page
to allow even more customization in the Drupal theme used.

4.3.2 Core modules

The standard profile installation of Drupal comes with some core modules already enabled
while others are left for the site creator to choose. These core modules are part of Drupal
and are maintained by the Drupal core team.

34

Collaborative Framework for Browser Games Development

Table 4.1: Drupal predefined field types

Field type Description
Boolean Boolean values
Integer Integer values
Decimal Decimal values
Float Float values
File Upload different file types
Image Upload images
List Present the user with a list of options
Text Text content
Long Text Longer text content
Term Reference Reference taxonomy terms

The core modules include the standard content types Article and Basic Page. Articles
can represent news and other time sensitive items, while Basic Pages can be used for
static and information content. The comment system for content nodes also is a part of
a default Drupal installation.

Other modules from core are not enabled by default but some of them provided needed
features for the collaborative games creation portal. The most revelant are the following:

• Forums
The Forums module enables a new content type called Forum Topic and a frame-
work for the organization of these nodes into a hierarchy that provides containers
and forums for topic organization. This module was enabled on the prototype be-
cause the discussion forum is a component of the framework.

This part of the prototype is self-contained and does not interact directly with
other modules and content types. Further on the forums configuration used on the
prototype will be explained in detail.

• Menu
This module allows the site administrators to create and change the navigation
menus. Menus can be created as hierarchies of links, and can be placed in various
places. Permissions can also be configured giving access to some menu items to
certain roles and excluding others. This provides a very flexible way to create the
site navigation and provides custom menus and links to specific user roles.

• Taxonomy
The taxonomy module in Drupal implements the categorization of content using
vocabularies and terms. Drupal can create vocabularies of terms and organize the
terms using relationships between them. Terms can be nested and this relationships
are used to find content. If there is a need to search content categorized with

35

Collaborative Framework for Browser Games Development

a specific term, then also content categorized with its children terms would be
returned. In the prototype this feature is used to assign tags to content and later
those tags (created freely by the users) can be organized and relationships created
to help in content organization.

Figure 4.4: Taxonomy organization interface

4.3.3 Third party modules

• Display Suite
The Display Suite module provides the means to control how content is displayed
in a Drupal site. The standard Drupal content type display configuration does not
give access to all content fields and only allows to hide or show the fields and change
their order.

Drupal allows the site administrator to define how content should be displayed
in different contexts (view modes): full page, teaser, rss feeds, etc. The Display
Suite modules adds a layer on top of this feature greatly enhancing the standard
functionality.

With this module, the display of a node content can be configured in a drag and
drop interface and allow much more flexibility in the choice of fields and layouts.
Besides the standard layouts included it allows to easily create new layouts if you
are using a custom theme. This facility was taken advantage of while creating the
game nodes display.

• Entity Reference
The Entity Reference module allows fields to reference content nodes in a Dru-
pal installation. It implements the generic node reference field and the widgets to
choose the nodes in the content editing. It also provides formatters for showing the
referenced content in nodes, as a label or a “rendered entity”.

36

Collaborative Framework for Browser Games Development

This functionality was very useful because it allowed to reference the graphics objects
needed for a game in the game content editing interface in a natural way. It also
allowed to easily show the graphics content when displaying the game content and
to pass the information to the javascript game engine.

• Fivestar
The Fivestar module uses a voting API module and a special field to allow the
adding of a rating system to content. The module is based on the concept of user
rating made popular by Amazon and other online shops using a five star rating
system. The field can be configured to specify if anonymous users can vote, if the
same user can vote more than once, and other characteristics. The displaying of the
rating can also be controlled and can show the current rating based on the sum of
all the individual ratings and relevant info like the number of votes.

Figure 4.5: Fivestar voting field configuration

• Views
The Views module provides functionality to create and show customized lists and
tables of content and other data, and control how it is presented. It allows the
creation of queries over content and site data and display the results in a flexible way.
It can list the results in blocks and pages. Views can generate reports, summaries
and display sets of images and other content.

In the prototype implementation it is used to provide ordered lists of relevant content
like games, graphics, users, etc. It allows great flexibility in the query definitions
and in formatting the display of the results.

37

Collaborative Framework for Browser Games Development

4.3.4 Forum

Drupal comes with a forum module in its core modules so this feature was somewhat easy
to implement. The forum was configured to have different areas for games, technical and
general discussions. Eventually more areas and divisions can be created.

The forum module in Drupal allow the organization of content into forums which con-
tain discussion topics (the actual messages), and the grouping of the forums in containers.
Both forums and containers can be organized in a tree like structure where a forum can
have child forums and containers.

Figure 4.6: Basic forum organization

4.3.5 Media Library

The media library in the prototype only has two types of media: Mazes and Player
Characters. These are the graphical components needed for the game engine being used.
To build the media library two new Drupal content types were created matching the two
types of graphics needed.

• Maze content type
The maze content type contains three fields: Title, Description and Maze. The Title
contains a name to identify the maze (given by its author), the Description contains
information deemed important for the maze and the Maze field contains the image
file of the actual maze.

The maze has a maximum size limit of 640x480 pixels and a minimum size of 320x200
pixels. The image must be in png format with the walkable area of the maze as the
transparent color.

• Player Character content type
This content type is very similar to the above but has a smaller image field (named

38

Collaborative Framework for Browser Games Development

Figure 4.7: Media library top content

PC) with a maximum size of 128x128 pixels and a minimum size of 32x32 pixels. The
type of the image must also be png and the player character can have complex forms
because the transparent areas of the image are ignored in the collision detection
algorithm.

4.3.6 Game content type

For describing the game rules and components a new content type named Game was
created. The fields in this content type (Table 4.2) define the name of the game and
describe the game parameters and the graphical components used.

The game content type also ties in with the custom theme using the Display Suite
module discussed above to include custom HTML, CSS and the game engine Javascript
when the game node is displayed. Using this technique it is possible to completely control
the display of the fields in this content type and add a button (link) to play the game.

When the play game link is followed the game configuration is passed to the game
engine that controls fully the display and playing of the game. The game playing interface
creates an overlay over the current page and creates manipulates the DOM adding and
removing dynamically the HTML elements needed for the game interface.

The separation between the game configuration and editing and the game engine
provides us with the flexibility to use this same framework to play different kinds of
games by creating different engines and linking them to different games content types.

39

Collaborative Framework for Browser Games Development

Table 4.2: Game content type fields

Field Type Notes
Title Text Name of the game
Screenshot Image Game screenshot
Description Long Text Description of the game
Maze Entity Reference Maze graphics to use
PC Entity Reference PC graphics to use
Max Life Integer PC energy at start of game
Life Loss Integer Amount of energy lost on collision with maze walls
Start Pos (x) Integer PC starting x position in the maze
Start Pos (y) Integer PC starting y position in the maze
Goal Pos (x) Integer PC goal x position
Goal Pos (y) Integer PC goal y position
Rating Fivestar Rating Game rating
Tags Term Reference Content tagging

4.4 Game engine

4.4.1 Overview

The game engine was created using Javascript for DOM manipulation (via JQuery) and
the HTML canvas element for the actual game graphics rendering.

The game interface is implemented as a JQuery plugin called modalPanel. It creates
a layer above the current page (hidding the page content) and adds the HTML <canvas>

element needed for the game rendering.
The game engine is implemented as a Javascript object prototype with the game

methods and data. After the modalPanel plugin is initialized it calls the game object
method run. The game engine can be broken in to several main components described
bellow.

4.4.2 User Interface initialization

This component of the game engine is very simple and just adds to the DOM the dynamic
user interface elements needed to display game information. In this simple maze game
there is only need to display the life energy of the character and optionally the current
position in the maze.

4.4.3 Assets loading

This part of the engine deals with the loading of the maze and player character (PC)
images from the web server. In this case and because of the way the browsers implement

40

Collaborative Framework for Browser Games Development

Figure 4.8: Game node view with play button

image caching the code must assure the images are loaded to be possible to render them
into the canvas element.

Some browsers implementations don’t fire the onLoad event for images if they already
are on the cache in certain conditions making difficult to access if they are loaded or not.
The technique used only adds the image URL to the image object after the attaching of
the event assuring the event is triggered in all situations.

Before the assets can be used (images in this case) they must all be loaded, so a
scheme was devised to decrement a counter for each of the needed assets and only calling
the viewport initialization method when the counter reaches zero.

Figure 4.9: Game playing interface

41

Collaborative Framework for Browser Games Development

Figure 4.10: Game engine activity diagram

4.4.4 Viewport initialization

In the initVP method of the game engine the assets (graphics) loaded before are prepared
and rendered into the HTML canvas element.

The player character object (pc) is initialized with its graphic image and all the needed
variables.

The drawpc method is attached to the viewport object and will be called when neces-
sary in the main game loop. This method redraws the maze and the PC every time there
is movement.

42

Collaborative Framework for Browser Games Development

Figure 4.11: Game over

4.4.5 Game loop

The loop method is scheduled to run every 1/60th of a second and implements the main
game logic. It checks for PC movement, redraws the canvas if necessary and also checks for
the winning and losing conditions of the game. If the game ended it stops the scheduling
and adds an interface element to allow the restart of the game. The game is won if the
PC is over the goal position and lost if the life energy reaches zero (see Listing 1).

The movement detection method (movepc) checks if there are any keys pressed and
moves the PC accordingly. It calls the collision detection method (described bellow) and
moves the PC back to the original position if the movement resulted in collision. In the
case of collision this method also decreases the life energy of the PC. When a collision
happens the buffer holding the keys pressed is cleared to stop the movement even if the
player does note release the keys immediately.

4.4.6 Collision detection

The collision detection method (Listing 2)uses the pixel image data from both the
maze and the PC to detect if there is a non transparent pixel from both images in the
same canvas position. This method implies the scanning of a whole rectangle of both
images, and as such the rectangle searched is limited to the size of the PC which is
smaller than the maze. The algorithm could be optimized by selecting a smaller rectangle
depending on the shape of the PC and the movement direction, but the scanning of the
whole PC image is fast enough for an accurate collision detection in the engine.

43

Collaborative Framework for Browser Games Development

game.loop = function() {
game.movepc();
if (game.redraw) {

// losing condition
if (game.pc.life <= 0) {

game.pc.life = 0;
game.lost = true;

}

// winning condition:
if ((game.goal_pos_x >= game.pc.x && game.goal_pos_x <= (game.pc.x + game.pc.w)) &&

(game.goal_pos_y >= game.pc.y && game.goal_pos_y <= (game.pc.y + game.pc.h))) {
game.won = true;

}

game.viewport.drawpc(game.pc);
game.display(’life’,’Life: ’+game.pc.life);
game.redraw = false;

}
if (game.lost) {

clearInterval(game.int);
$("#modal-overlay").append("<h1 class=’bigmessage’>GAME OVER</h1>");

}
if (game.won) {

clearInterval(game.int);
$("#modal-overlay").append("<h1 class=’bigmessage’>YOU WON!!!</h1>");

}

if (game.won || game.lost) {
$("#modal-overlay")

.append("Play again!")

.click(function (ev) {
$(".bigmessage").remove();
$("a.again").remove();
ev.preventDefault();
game.pc.life = game.max_life;
game.run();

})
}

}

Listing 1: Game loop method.

game.testCollision = function(x,y) {
// this.pc.w, this.pc.h, this.pc.image
var xMin = x, yMin = y
, xMax = x+this.pc.w, yMax = y+this.pc.h
, w = this.mapW, w2 = this.pc.w
, pixels1 = this.mapData
, pixels2 = this.pc.imgData;

// loop
for (var pixelX = xMin; pixelX < xMax; pixelX++)

for (var pixelY = yMin; pixelY < yMax; pixelY++) {
var px1 = ((pixelX) + (pixelY) * w)*4 + 3;
// pixel in maze relative to x,y
var px2 = ((pixelX-x) + (pixelY-y) * w2)*4 + 3;
// pixel in PC relative to 0,0
if (pixels1[px1] !== 0 && pixels2[px2] !== 0) {

return true;
}

}

return false;
}

Listing 2: Collision Detection Method.

44

Collaborative Framework for Browser Games Development

Chapter 5

Results Analysis and Discussion

5.1 Conceptual Framework

The main goal of this work was to create a conceptual framework for the collaborative
creation of browser games using only Open Source technologies. The conceptual frame-
work devised is based on a solid foundation of concepts taken from successful collaborative
work in several areas.

The first positive result of this research is that the conceptual framework can be
implemented in the real world using Open Source tools and technologies. The prototype
developed does not implement fully all the framework concepts but it can assumed that
with sufficient time and effort those concepts could be implemented in the prototype.

5.2 Open Source Browser Games

The creation of browser games using only Open Source technologies is a reality and even
though the prototype created in this research is a very simple, it allows the creation of
games in a collaborative environment. There can be different people contributing to the
creation of the games in a completely open environment.

Other aspect relevant to this research was the concept of collaborative game design
and creation for artists and non programmers. The prototype developed shows that this
is possible for a simple game engine, but it can be safely assumed that it will work for
more complex games and that with sufficient time and effort the technical barriers can be
removed and more complex and interesting games implemented.

Even in the context of the maze game engine, the creation of the mazes could be
enhanced with tile based mazes, the addition of NPC’s (Non Player Characters), sound
effects, background music, among other ideas.

45

Collaborative Framework for Browser Games Development

5.3 Prototype Limitations

The prototype developed in the context of this dissertation has a few limitations regarding
the features discussed in the conceptual framework. Some things were left out because
they would take more time to implement, and others could not be easily implemented
using the chosen technologies.

5.3.1 Content Forking

In the conceptual framework description one of the features mentioned is the ability to
reuse content from other author by making a copy and from there making changes and
adding or removing something to create a new version. To implement this kind of tracking
of changes and trace a piece of content back to the original author, the Drupal content
management back-end would have to be substantially changed and it would be big effort.
This feature was found to be most technically challenging to implement in a real work
content management system.

5.3.2 Awards and contests

This feature can be easily implemented but needs a minimal community already in place.
Then it would require more of a community management process than a technological
approach. This could be easily implemented using the current prototype implementation.

5.3.3 Sound content

The addition of sound content to the media library and the game engine is feasible and
can be implemented in time. This feature was left out by lack of time and the necessity
to have a working prototype to deliver with the dissertation.

46

Collaborative Framework for Browser Games Development

Chapter 6

Conclusion

Browser games use mostly closed technologies. It is possible to create good quality games
using Open Source tools and open collaborative frameworks. Using open licenses both for
code and art resources on games allows the creation of a pool of resources that enriches
all futures games based on this technology. This approach also allows creators with good
game ideas but poor artistic skills to engage in game creation. The opposite is also true,
because an artist can take a good game with poor graphics and make a version with better
ones.

The ability to remix content to make new things allowed recent revolutions in areas
like music, video and software development. Games make use of these things but not in
an integrated manner, and tools to allow this can be very useful to make it accessible to
more people.

The reviewed literature allowed the creation of a conceptual model of the framework
that incorporated the most important ideas of how on-line collaborative efforts work and
create successful communities. Also the study of the methodologies for software and
game development guided the division of roles and tasks between the various parts of the
framework.

Finally the framework was implemented in a prototype on-line game creation portal,
showing that the approach proposed is not only feasible but also shows promise for future
developments. The most important features of the framework were implemented and the
prototype will be open to external users to access if the conceptual framework ideas for
community enabling are also sound.

47

Collaborative Framework for Browser Games Development

48

Collaborative Framework for Browser Games Development

Bibliography

Benkler, Y. (2006). The wealth of networks: How social production transforms markets
and freedom. Yale Univ Pr.

Bethke, E. (2003). Game development and production. Wordware Publishing. isbn:
1556229518.

Bonaccorsi, A. and C. Rossi (2006). “Comparing motivations of individual programmers
and firms to take part in the open source movement: From community to business”.
In: Knowledge, Technology & Policy 18.4, pp. 40–64.

Cedergren, Magnus (Aug. 2003). “Open Content and Value Creation”. In: First Monday
Volume 8.Number 8. url: http://firstmonday.org/htbin/cgiwrap/bin/ojs/
index.php/fm/article/viewArticle/1071/991.

Chaffer, J. and K. Swedberg (2009). Learning jQuery. Packt Publ.
Cheliotis, G. (2009). “From open source to open content: Organization, licensing and

decision processes in open cultural production”. In: Decision Support Systems 47.3,
229–244. issn: 0167-9236.

Cheliotis, G. and J. Yew (2009). “An analysis of the social structure of remix culture”. In:
Proceedings of the fourth international conference on Communities and technologies,
165–174.

Costa, C.J. and M. Aparício (2006a). “Computer Game–Discussing Development Process”.
In: Proceedings of IRIS. Vol. 29. Citeseer.

— (2006b). “Computer Games Development Process–Producing an Education Games
for The Web IADIS conference WWW/Internet 2006 Múrcia, Espanha”. In: Outubro,
pp. 5–8.

Cox, A. (2005). “What are communities of practice? A comparative review of four seminal
works”. In: Journal of Information Science 31.6, p. 527.

Duarte, P., C. J Costa, and P. Costa (2008). “Webstorm: mixing brainstorming in the
web to produce art”. In: Proceedings of the 26th annual ACM international conference
on Design of communication, 267–268.

Elliott, M. and W. Scacchi (2004). “Mobilization of software developers: The free software
movement”. In: Information, Technology and People.

Flanagan, D. (2006). JavaScript: the definitive guide. O’Reilly Media.
Flew, T. and S. Humphreys (2005). “Games: technology, industry, culture”. In:

49

http://firstmonday.org/htbin/cgiwrap/bin/ojs/index.php/fm/article/viewArticle/1071/991
http://firstmonday.org/htbin/cgiwrap/bin/ojs/index.php/fm/article/viewArticle/1071/991

Collaborative Framework for Browser Games Development

Hawkes, R. (2011). Foundation HTML5 Canvas: For Games and Entertainment. friends
of ED.

Järvinen, P. (2004). “Research Questions Guiding Selection of an Appropriate Research
Method”. In: Department of Computer Science, University of Tampere, Finland 9.

Jones, R.M. (2000). “Design and implementation of computer games: a capstone course for
undergraduate computer science education”. In: ACM SIGCSE Bulletin 32.1, p. 264.
issn: 0097-8418.

Kücklich, J. (2005). “Precarious playbour: Modders and the digital games industry”. In:
Fibreculture 5.

Lave, J. and E. Wenger (1991). Situated learning: Legitimate peripheral participation.
Cambridge university press.

Lessig, L. (2005). Free culture: The nature and future of creativity. Penguin Group USA.
isbn: 0143034650.

Pine, B.J. and S. Davis (1993). Mass customization. Harvard Business School Press.
Portes, Alejandro (1998). “Social capital: Its origins and application in modern sociology”.

In: Annual Review of Sociology 24, 1–24.
Reid, D., T. Tomlinson, and J. VanDyk (2010). Pro Drupal 7 Development. Springer.
Scacchi, W. (2004). “Free and open source development practices in the game community”.

In: Software, IEEE 21.1, pp. 59–66. issn: 0740-7459. doi: 10.1109/MS.2004.1259221.
Scacchi, Walt (May 2010). “Computer game mods, modders, modding, and the mod

scene”. In: First Monday 15.5. url: http://firstmonday.org/htbin/cgiwrap/
bin/ojs/index.php/fm/article/viewArticle/2965/2526.

Sotamaa, O. (2007). “On modder labour, commodification of play, and mod competitions”.
In: First Monday 12.9.

Swicegood, T. (2008). Pragmatic version control using Git. Pragmatic Bookshelf.
Townsend, R.J. (2010). Foundation Drupal 7: Learn how to Use the Drupal Framework to

Quickly Build Feature-rich Web Sites. friends of ED.
Tran, M. Q and R. Biddle (2009). “An ethnographic study of collaboration in a game

development team”. In: Loading... 3.5. issn: 1923-2691.

50

http://dx.doi.org/10.1109/MS.2004.1259221
http://firstmonday.org/htbin/cgiwrap/bin/ojs/index.php/fm/article/viewArticle/2965/2526
http://firstmonday.org/htbin/cgiwrap/bin/ojs/index.php/fm/article/viewArticle/2965/2526

Collaborative Framework for Browser Games Development

Appendix A

Game Engine Source Code

Here the most relevant source files to understand the game engine will be presented.

A.1 game.js

1 // by Jorge Pena <jorge@jmgpena.net>
2

3 (function($) {
4 // fix warnings in webkit browsers (chrome)
5 $.event.props = $.event.props.join(’|’)
6 .replace(’layerX|layerY|’, ’’).split(’|’);
7

8 // game object definition
9 var game = new Object();

10

11 game.keysDown = {};
12

13 $(document).keydown(function(event) {
14 game.keysDown[event.keyCode] = true;
15 //event.preventDefault();
16 });
17 $(document).keyup(function(event) {
18 delete game.keysDown[event.keyCode]
19 //event.preventDefault();
20 });
21

22 game.loadAssets = function() {
23 var that = this;
24

25 this.assets = new Object();
26 this.assets.countLoaded = function() {
27 this.count--;
28 if (this.count == 0) { game.initVP(); };
29 }
30 this.assets.count = 2;
31 this.assets.pc = new Image();
32 //$(this.assets.pc).one(’load’,this.assets.countLoaded());
33 $(this.assets.pc).one(’load’, function() {
34 game.assets.pc = this;
35 game.assets.countLoaded();

51

Collaborative Framework for Browser Games Development

36 })
37 this.assets.pc.src = this.pc_url;
38 this.assets.maze = new Image();
39 $(this.assets.maze).one(’load’, function() {
40 game.assets.maze = this;
41 game.assets.countLoaded();
42 })
43 this.assets.maze.src = this.maze_url;
44 }
45

46 game.initUI = function() {
47 $(’#game-ui’).append(’<h2 class="display" id="pc-pos"></h2>’);
48 $(’#game-ui’).append(’<h2 class="display" id="life"></h2>’);
49 $(’#game-ui’).append(’<h2 class="display" id="goal"></h2>’);
50 }
51

52 game.display = function(id,value) {
53 $(’#’+id).text(value);
54 }
55

56 // game viewport (screen)
57 game.initVP = function() {
58 // pc object
59 this.pc = new Object();
60 this.pc.x = parseInt(this.start_pos_x);
61 this.pc.y = parseInt(this.start_pos_y);
62 this.pc.vel = 2;
63 this.pc.image = this.assets.pc;
64 this.pc.w = this.pc.image.width;
65 this.pc.h = this.pc.image.height;
66 this.pc.life = parseInt(this.max_life);
67 game.display(’life’,’Life: ’+game.pc.life);
68 game.display(’goal’,’Goal: ’+this.goal_pos_x+’,’+this.goal_pos_y);
69

70 this.mapW = 640;
71 this.mapH = 480;
72

73 this.viewport = new Object();
74 this.viewport.width = 640;
75 this.viewport.height = 480;
76 this.viewport.canvas = document.getElementById(’game-window’).getContext("2d");
77

78 game.viewport.drawpc = function(pc) {
79 this.canvas.clearRect(0,0,640,480);
80 this.canvas.drawImage(game.assets.maze,0,0);
81 game.mapData = this.canvas.getImageData(0,0,game.mapW,game.mapH).data;
82 this.canvas.drawImage(pc.image, pc.x, pc.y);
83 game.pc.imgData = this.canvas.getImageData(pc.x, pc.y, pc.w, pc.h).data;
84 }
85 this.viewport.drawpc(this.pc);
86 this.int = setInterval(game.loop, 16);
87 }
88

89 game.testCollision = function(x,y) {
90 // this.pc.w, this.pc.h, this.pc.image
91 var xMin = x, yMin = y
92 , xMax = x+this.pc.w, yMax = y+this.pc.h
93 , w = this.mapW, w2 = this.pc.w
94 , pixels1 = this.mapData

52

Collaborative Framework for Browser Games Development

95 , pixels2 = this.pc.imgData;
96

97 // loop
98 for (var pixelX = xMin; pixelX < xMax; pixelX++)
99 for (var pixelY = yMin; pixelY < yMax; pixelY++) {

100 var px1 = ((pixelX) + (pixelY) * w)*4 + 3; // pixel in maze relative to x,y
101 var px2 = ((pixelX-x) + (pixelY-y) * w2)*4 + 3; // pixel in PC relative to 0,0
102 if (pixels1[px1] !== 0 && pixels2[px2] !== 0) {
103 return true;
104 }
105 }
106

107 return false;
108 }
109

110 game.movepc = function () {
111

112 var getColor = function(x,y) {
113 return game.viewport.canvas.getImageData(newX,newY,1,1).data;
114 }
115

116 var oldX = this.pc.x, oldY = this.pc.y;
117 var dx = 0, dy = 0;
118

119 if (38 in game.keysDown) dy = -this.pc.vel // cima
120 if (40 in game.keysDown) dy = this.pc.vel // baixo
121 if (37 in game.keysDown) dx = -this.pc.vel // esquerda
122 if (39 in game.keysDown) dx = this.pc.vel // direita
123

124 if (dx != 0 || dy != 0) {
125 var newX = this.pc.x + dx;
126 var newY = this.pc.y + dy;
127

128

129 if ((newX > 0) && ((newX + this.pc.w) < this.mapW)) {
130 this.pc.x = newX;
131 game.redraw = true;
132 }
133

134 if ((newY > 0) && ((newY + this.pc.h) < this.mapH)) {
135 this.pc.y = newY;
136 game.redraw = true;
137 }
138

139 if (game.redraw == true) {
140 if (game.testCollision(newX,newY)) {
141 game.pc.x = oldX - dx;
142 game.pc.y = oldY - dy;
143 game.pc.life -= (game.life_loss/2);
144 game.keysDown.length = 0; // clear the keys buffer to avoid continuous energy loss
145 }
146 }
147 }
148

149 this.display(’pc-pos’,"Pos: "+this.pc.x+","+this.pc.y);
150 }
151

152 game.run = function() {
153 this.won = false;

53

Collaborative Framework for Browser Games Development

154 this.lost = false;
155 this.initUI();
156 this.loadAssets();
157 }
158

159 game.loop = function() {
160 game.movepc();
161 if (game.redraw) {
162

163 // losing condition
164 if (game.pc.life <= 0) {
165 game.pc.life = 0;
166 game.lost = true;
167 }
168

169 // winning condition:
170 if ((game.goal_pos_x >= game.pc.x && game.goal_pos_x <= (game.pc.x + game.pc.w)) &&
171 (game.goal_pos_y >= game.pc.y && game.goal_pos_y <= (game.pc.y + game.pc.h))) {
172 game.won = true;
173 }
174

175 game.viewport.drawpc(game.pc);
176 game.display(’life’,’Life: ’+game.pc.life);
177 game.redraw = false;
178 }
179 if (game.lost) {
180 clearInterval(game.int);
181 $("#game-ui").append("<h1 class=’bigmessage’>GAME OVER</h1>");
182 }
183 if (game.won) {
184 clearInterval(game.int);
185 $("#game-ui").append("<h1 class=’bigmessage’>YOU WON!!!</h1>");
186 }
187

188 if (game.won || game.lost) {
189 $("#modal-overlay")
190 .append("Play again!")
191 .click(function (ev) {
192 $(".bigmessage").remove();
193 $("a.again").remove();
194 ev.preventDefault();
195 game.pc.life = game.max_life;
196 game.run();
197 })
198 }
199 }
200

201 // modal panel
202 $.fn.extend({
203 modalPanel: function() {
204

205 //Create our overlay object
206 var overlay = $("<div id=’modal-overlay’></div>");
207 var gameWindow = $("<div id=’game-ui’>Quit"+
208 "<canvas id=’game-window’ class =’comedic’"+
209 " height=’480’ width=’640’></canvas></div>");
210

211 return this.each(function() {
212

54

Collaborative Framework for Browser Games Development

213 //Listen for clicks on objects passed to the plugin
214 $(this).click(function(e) {
215

216 //Append the overlay to the document body
217 $("body").append(overlay);
218 //Set the css and fade in our overlay
219 overlay.css("opacity", 1.0);
220 overlay.fadeIn(150);
221

222 overlay.append(gameWindow);
223 gameWindow.fadeIn();
224 $("#quit").click(function() {
225 modalHide();
226 return false;
227 });
228

229 //Prevent the anchor link from loading
230 e.preventDefault();
231

232 //Activate a listener
233 $(document).keydown(handleEscape);
234

235 game.maze_url = $(this).attr(’maze’);
236 game.pc_url = $(this).attr(’pc’);
237

238 game.max_life = parseInt($(this).attr(’max_life’));
239 game.life_loss= parseInt($(this).attr(’life_loss’));
240 game.start_pos_x = parseInt($(this).attr(’start_pos_x’));
241 game.start_pos_y = parseInt($(this).attr(’start_pos_y’));
242 game.goal_pos_x = parseInt($(this).attr(’goal_pos_x’));
243 game.goal_pos_y = parseInt($(this).attr(’goal_pos_y’));
244

245 // run the game code
246 game.run();
247 });
248 });
249

250 //Our function for hiding the modalbox
251 function modalHide() {
252

253 $(document).unbind("keydown", handleEscape)
254 var remove = function() {
255 clearInterval(game.int);
256 $(this).empty().remove();
257 }
258 //gameWindow.fadeOut(remove);
259

260 overlay.fadeOut(remove);
261 }
262

263 //Our function that listens for escape key.
264 function handleEscape(e) {
265

266 if (e.keyCode == 27) {
267 modalHide();
268 }
269 }
270 }
271 }); // END modal window functions

55

Collaborative Framework for Browser Games Development

272

273

274 // call the modal pane
275 Drupal.behaviors.playgame = {
276 attach: function (context) {
277 $(’#playgame’, context).modalPanel();
278 }
279 };
280

281 })(jQuery);

A.2 game.css

1 .ds-center {
2 }
3

4 #game-window {
5 position: absolute;
6 left: 0;
7 top: 60px;
8 border: 2px solid white
9 }

10

11 #game-ui {
12 width: 640px;
13 height: 540px;
14 position: absolute;
15 z-index: 110;
16 left: 50%;
17 top: 50%;
18 margin-left: -320px;
19 margin-top: -270px;
20 }
21

22 #modal-overlay {
23 position: fixed;
24 z-index: 100;
25 top: 0px;
26 left: 0px;
27 height: 100%;
28 width: 100%;
29 background: #000;
30 display: none;
31 }
32

33 .display {
34 color: white;
35 }
36

37 #life {
38 display: block;
39 position: absolute;
40 top: 25px;
41 left: 0;
42 }
43

56

Collaborative Framework for Browser Games Development

44 #pc-pos {
45 display: block;
46 position: absolute;
47 top: 25px;
48 left: 200px;
49 }
50

51 #goal {
52 display: block;
53 position: absolute;
54 top: 25px;
55 left: 400px;
56 }
57

58

59 #quit {
60 color: #ff9800;
61 display: block;
62 position: absolute;
63 top: 30px;
64 right: 0px;
65 font-weight: bold;
66 }
67

68 .bigmessage {
69 display: block;
70 font-size: 7em;
71 color: #ff9800;
72 position: absolute;
73 z-index: 200;
74 top: 50%;
75 left: 50%;
76 margin-top: -68px;
77 margin-left: -301px;
78 }
79

80 a.again {
81 display: block;
82 font-size: 2em;
83 color: #ff9800;
84 position: absolute;
85 z-index: 200;
86 top: 50%;
87 left: 50%;
88 margin-top: 100px;
89 margin-left: -72px;
90 }
91

92 #playgame {
93 position: absolute;
94 top: 125px;
95 left: 85px;
96 color: black;
97 font-weight: bold;
98 font-size: large;
99 background-color: #ff9800;

100 text-shadow: 0 -1px 0 rgba(0, 0, 0, 0.25);
101 display: inline-block;
102 padding: 4px 10px 4px;

57

Collaborative Framework for Browser Games Development

103 text-align: center;
104 vertical-align: middle;
105 cursor: pointer;
106 border: 1px solid #CCC;
107 -webkit-border-radius: 4px;
108 border-radius: 4px;
109 -moz-border-radius: 4px;
110 -webkit-box-shadow: inset 0 1px 0 rgba(255, 255, 255, 0.2), 0 1px 2px rgba(0, 0, 0, 0.05);
111 box-shadow: inset 0 1px 0 rgba(255, 255, 255, 0.2), 0 1px 2px rgba(0, 0, 0, 0.05);
112 }
113

114 .field-name-field-screenshot .field-items {
115 float: left;
116 margin-right: 10px;
117 }
118

119 .field-name-author {
120 clear: both;
121 }

58

Collaborative Framework for Browser Games Development

Appendix B

Prototype usage & installation

B.1 Accessing and using the prototype

There is an on-line available installation of the prototype which is ready for use and
testing. The link is the following:

http://games.jmgpena.net
The portal is fully functional and users can submit a new registration (which will have

to be approved by an administrator). Any questions, or bug reports should be forwarded
to ‘jorge@jmgpena.net’.

B.2 Installing and running prototype

If one wants to install a local version of the prototype for testing there are two ways. The
first is to use a snapshot of the code and the database provided in the CD, and the second
is to install a clean copy of Drupal and add the theme and modules necessary for a brand
new install of the games creation portal.

B.2.1 Common requirements

To install and test the prototype the following software should be installed and running
beforehand:

• Apache HTTP server (http://apache.org).

• PHP integrated with apache (module or CGI) (http://www.php.net).

• MySQL database server (http://www.mysql.com).

For an easy way to install all these servers on Windows, Linux or Mac OSX checkout
XAMPP at http://www.apachefriends.org/en/index.html.

59

http://games.jmgpena.net
http://apache.org
http://www.php.net
http://www.mysql.com
http://www.apachefriends.org/en/index.html

Collaborative Framework for Browser Games Development

B.2.2 Snapshot installation

For this type of install you will need to decompress the Drupal installation files in the CD
(collabgamedev-files.tar.gz) with the command:

$ tar xzvf collabgamedev-files.tar.gz

The files should be unpacked into a directory that can be served by the Apache web
server. After this you must unpack the database dump file (collabgamedev-db.sql.gz)

$ gunzip collabgamedev-db.sql.gz

Then you must import this file into MySQL. Next you should create user in MySQL
with permission to create and use tables in the database. Finally you should check the
file in ‘sites/default/settings.php’ in the Drupal installation and update the user and
password for database access.

If every thing went well if you point your browser to your Apache server you should
experience the prototype as it was when the snapshots were made. The administrator
user and password are: admin/admin.

After successful login you should flush all the caches to get rid clear the database of
cached content pertinent to the original installation.

B.2.3 Clean installation

ATTENTION This installation is complex and requires considerable technical skills and
familiarization Drupal installation and administration.

These are the necessary steps to finish the install:

1. For this installation I recommend the use of Drush (the Drupal command-line shell).
Drush can be found at http://www.drush.org/.

2. For this install first you should start by downloading and installing a fresh copy of
Drupal from (http://drupal.org). The instructions for this can be found at the same
location.

3. After Drupal is installed and running you must install the following modules and
their dependencies:

• Views (http://drupal.org/project/views)

• Display Suite (http://drupal.org/project/ds)

• Features (http://drupal.org/project/features)

• Entity Reference (http://drupal.org/project/entityreference)

60

http://www.drush.org/
http://drupal.org
http://drupal.org/project/views
http://drupal.org/project/ds
http://drupal.org/project/features
http://drupal.org/project/entityreference

Collaborative Framework for Browser Games Development

• Fivestar (http://drupal.org/project/fivestar)

• AdaptiveTheme (http://drupal.org/project/adaptivetheme)

4. Check your Drupal installation to see if everything is ok and the modules are enabled.

5. Add the ‘media-library-7.x-1.0.tar’ module to the ‘sites/default/modules/’ folder
of your installation (or use Drush). This module was exported using the features
module and contains all the content types, views, and configurations needed to run
the game creation portal.

6. Finally install and enable the custom theme provided in the file ‘h5games-
theme.tar.gz’ (to the folder ‘sites/default/themes/’).

7. Test your installation by uploading content, creating a game and then playing it.

8. Congratulations.

61

http://drupal.org/project/fivestar
http://drupal.org/project/adaptivetheme

	Introduction
	Motivation
	Research Question
	Methodology
	Document Structure

	Literature Review
	Game development process
	Overview of the game development process
	Frameworks and methodologies

	Game modding
	Types of mods
	Licenses
	Infrastructure and development tools
	Community practices

	FOSS games development
	Requirements analysis and specification
	Coordinated version control, system build, and staged incremental release
	Maintenance as evolutionary redevelopment, reinvention, and redistribution
	Project management and career development
	Software technology transfer and licensing

	Open Content and Creative Commons
	Motivations for Open Content collaboration
	What is Creative Commons
	Commons based peer production
	Community of practice

	Conceptual Model
	Usage and roles
	Generic framework concepts
	Media library
	Game engine
	Game creation tool
	Game portal interface

	Prototype Implementation
	Overview
	Tools And Technologies
	Drupal
	HTML5 (Canvas)
	Javascript

	Games Portal Prototype
	Drupal content types
	Core modules
	Third party modules
	Forum
	Media Library
	Game content type

	Game engine
	Overview
	User Interface initialization
	Assets loading
	Viewport initialization
	Game loop
	Collision detection

	Results Analysis and Discussion
	Conceptual Framework
	Open Source Browser Games
	Prototype Limitations
	Content Forking
	Awards and contests
	Sound content

	Conclusion
	Game Engine Source Code
	game.js
	game.css

	Prototype usage & installation
	Accessing and using the prototype
	Installing and running prototype
	Common requirements
	Snapshot installation
	Clean installation

