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Abstract 

 

After a short report of results on infinite servers queues systems, focusing on its busy 

period, using networks of queues with infinite servers nodes a model is constructed to study 

a two echelons repair system. These repair systems may be useful, for instance, in the 

operation of a fleet of aircraft, of shipping or of trucks. Additionally it is shown how this 

model may be used in the evaluation of differential costs. 
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1 Introduction 
 

In an ∞GM queue system 

   -The customers arrive according to a Poisson process at rate λ , 

   -Each of them receives a service which length is a positive random variable with 

distribution function ( ).G and mean valueα , 

   -There are infinite servers, that is:  when a customer arrives it always finds  
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an available server, 

   -The service of a customer is independent the other customers’ services and 

of the arrival process. 

   An important parameter is the traffic intensity, called ρ , being 

 

                                     λαρ =         (1.1). 

 

   The MG∞ queue has neither losses nor waiting. Note that there is no queue in 

the ordinary sense of the word. For these systems it is not so important to study the 

population process as for other ones with losses or waiting, being much more 

interesting to study other processes as, for instance, the busy period. The busy 

period of a queue system begins when a customer arrives there, finding it empty, 

and ends when a customer leaves the system letting it empty. During the busy 

period there is always at least one customer in the system. 

   A network of queues is a collection of nodes, arbitrarily connected by arcs, 

instantaneously traversed by costumers, where 

   -An arrival process is associated to each node, 

   -There is a commutation process that commands the different customers’ paths.  

   Call J the network number of nodes. If ∞<J , the nodes are numbered 

J,...,2,1 and { }JU ,...,2,1= .The arrival processes may be the result of exogenous 

arrivals- from the outside of the collection- and of endogenous arrivals- from the 

other collection nodes. A network is open if any customer can enter it or leave it.  

Along this work open networks, with infinite servers in each node, and Poisson 

exogenous arrival rate λ are considered. So 
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is the network exogenous arrivals rate vector. The rate jλ , is the exogenous arrival 

rate at node Jjj ,...,2,1, = and  
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is the commutation process matrix, being jlp  the probability of a customer, after 

ending its service at node j , go to node l , Jlj ,...,2,1, = . The probability 

∑
=

−=
J

l

jlj pq
1

1 is the probability that a customer leaves the network from node j , 
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Jj ,...,2,1= . It is supposed that P does not change with time and is independent of 

everything that is happening in the network. It is clear that a network of this kind is 

equivalent to a ∞GM system with Poisson process arrivals at rate λ , where each 

customer service time is its sojourn time in the network. This will be evidenced in 

this paper. But first some results about the ∞GM systems busy period, that are 

also useful for these networks of queues evidently, are presented. Then a model is 

built, using these networks with infinite servers in each node, to study a two 

echelons repair system of a fleet of aircraft, of shipping or of trucks. The customers 

are the failures. And its service time is the time that goes from the instant at which 

they occur till the one at which they are completely repaired. The results referred 

above, about the ∞GM  queue busy period, allow the determination of some 

system performance measures. The theory is illustrated with a very simple and 

short numerical example and finally a differential costs analysis is presented. Some 

of this work is presented in Ferreira et al�8,9�. 
 

 

2 Some Considerations On The MG∞ Queue Busy Period 
 

Be B  the ∞GM  queue system busy period length. The mean value of B is, see 

Takács	�3� , whatever is ( ).G , 

                [ ]
λ

ρ 1−
=

e
BE                      (2.1). 

 

   Calling ( )tR  the mean number of busy periods that begin in [ ]t,0 ( 0=t , the 

time origin, is the beginning of a busy period) see Ferreira�4� ,  

 

                 ( ) ( ) ttRte λλρ +≤≤+− 11         (2.2). 

 

    Let BN  be the mean number of the customers served during a busy period in 

the ∞GM  queue systems. According to Ferreira	�6�, 

    -If ( ).G  is exponential 

 

                    ρeN M
B =                      (2.3). 

 

  -For any other service distribution function 



5570                                                       M. A. M. Ferreira 

 

 

            

( ) ( )( ) ( )
( )12

1111
2

2212

+
−++++

≅
+

s

ss

B

se
N

γρ
γργργρ

         (2.4) 

 

where
sγ  is the ( ).G  variation coefficient. 

 

 

3 The Sojourn Time of a Customer Laplace Transform in a 

Network Of Queues with Infinite Servers in Each Node And 

Poisson Exogenous Arrivals 
 

Note that for these queue networks 

    -The sojourn time of a costumer in each node is the service time, since there is 

not waiting, 

-The sojourn times of a customer in the various nodes are independent. 

    Using matrixes which form is suggested by (1.2) and (1.3) a simple formula is 

deduced to the sojourn time Laplace Transform, as a function of the service times in 

each node Laplace Transforms; see Ferreira�5� and Ferreira and Andrade �7�. Be 

T the network sojourn time of a costumer and jS  its service time at node j , 

Jj ,...2,1= . Be ( )tG and ( )tG j , Jj ,...,2,1= the T and jS , Jj ,...,2,1= , 

distribution functions respectively, being ( )sG and ( )sG j , Jj ,...,2,1=  theT and

jS , Jj ,...,2,1= , Laplace Transforms, respectively. 
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it results  that 

                ( ) ( ) ( )( )Α−Λ=∑
∞

=

− PIsPssG nT

n 0

1λ          (3.1) 

being A a column with sJ1̀ .The final formula is obtained noting that (3.3) may be 

put in the form  

 

                 ( ) ( ) ( )( ) ( )Α−−Λ= −− PIsPIssG T 11λ        (3.2) 
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supposing that ( ) 0≠− sPI . 

 

4 A Two Echelons Repair system  
 

Suppose a fleet of aircraft, of shipping or of trucks which failures repairs occur in a 

base or in a remote station. The whole failures detected in the base are repaired 

there. Some of the failures detected in the station are repaired in the base with 

probability p , being necessary to transport them to the base, and the others in the 

station. Here the service time is the time that goes from the instant at which the 

failure occur till the one at which it is completely repaired. When it is necessary to 

transport an item with a failure from the remote station to the base it is assumed that 

it is immediately possible, being the service time, now, the time that the transport 

lasts. It is also supposed that the failures occur according to a Poisson process at 

rate λ , being some detected in the remote station with probability q and the others 

in the base. This situation may be modeled as a network of queues with three nodes, 

see Fig.1, at which 1 is the base, 2 is the remote station and 3 considers the required 

transports from the remote station to the base. Representing the variables related 

with each node for the same letter, as in the former sections, but with an index  

 

related to the node, obviously,
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the system, globally, a ∞GM  queue and, after (3.2), 
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Fig. 1. The model network of queues in scheme 
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              ( ) ( ) ( ) ( ) ( ) ( )tpqGtqGptGqtG 1321 11 +−+−=        (4.1). 

 

13G  represents the distribution function of the convolution of the service time 

distributions in nodes 1 and 3 .Three ∞GM  queues can also be considered. One 

related with the repairs in the base, which failures were detected there:

( )λλ qb −= 1 , ( ) ( )tGtGb 1=   and ( ) 11 λαρ qb −= . Other related with the repairs 

in the remote station: ( ) λλ qpst −= 1 , ( ) ( )tGtGst 2=   and ( ) 21 λαρ qpst −= .And 

still other  related with the repairs in the base after transport from the remote 

station: λλ pqtr = , ( ) ( )tGtGtr 13=  and ( )31 ααλρ += pqtr . Concerning the 

application of (2.4), being 2
1σ , 2

2σ  and 
2
3σ  the variances corresponding to ( ).1G , 

( ).2G  and ( ).3G , respectively 1ssb γγ = , 2ssst γγ =   and                                                     
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=str . The coefficient of variation corresponding to the distribution 

function given for (4.1) is 
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5 Application Example  
 

 

Suppose that ( ).1G  and ( ).2G  are both exponential with mean 1 week and ( ).3G  

is constant with value 1 week, 3.0=q and 
weeks4

1
=λ  (1 per month). Now 

9.0=p  and considering 1 year (52 weeks) of operation is it  possible to conclude 

if decreasing p (that is: increasing the station capacity of repairs) there would be 

any advantage? 

 

   Making 1.0;...8.0;9.0=p  

   -For the global system 
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                        Table 1. Global system 

 

p  
λ

ρ 1−e
 ( )521 λρ +−e  ( )521 λ+  BN  

0.9 1.51 10 14 2.04 

0.8 1.45 10 14 2.03 

0.7 1.40 10 14 2.02 

0.6 1.40 10 14 2.03 

0.5 1.35 10 14 2.02 

0.4 1.29 11 14 2.01 

0.3 1.24 11 14 1.99 

0.2 1.24 11 14 2.00 

0.1 1.19 11 14 1.99 

 

 

 

 -For the remote station 

 

                          Table 2. Remote station 

 

p  
st

ste

λ

ρ
1−

 ( )521 st
ste λρ +−

 ( )521 stλ+  
BN  

0.9 1.00 1.38 1.39 1.01 

0.8 1.01 1.75 1.78 1.02 

0.7 1.01 2.12 2.17 1.02 

0.6 1.02 2.48 2.56 1.03 

0.5 1.02 2.84 2.95 1.04 

0.4 1.02 3.19 3.34 1.05 

0.3 1.03 3.54 3.73 1.05 

0.2 1.03 3.88 4.12 1.06 

0.1 1.03 4.22 4.51 1.07 
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• For the repairs in the base after transport 

 

 

                        Table 3. Repairs in the base after transport 

p  
tr

tre

λ

ρ
1−

 ( )521 tr
tre λρ +  ( )521 trλ+  BN  

0.9 2.14 3.94 4.51 3.49 

0.8 2.12 3.65 4.12 3.13 

0.7 2.11 3.36 3.73 2.81 

0.6 2.09 3.05 3.34 2.54 

0.5 2.08 2.74 2.95 2.30 

0.4 2.06 2.41 2.56 2.10 

0.3 2.05 2.07 2.17 1.91 

0.2 2.03 1.73 1.78 1.76 

0.1 2.02 1.37 1.39 1.62 

 

• For the base 

 

09.1
1

=
−

b

be

λ

ρ

, ( ) 48.8521 =+−
b

be λρ
, 1.10521 =+ bλ and 19.1≅M

BN , whatever is 

p . 

   Of course, in the operation of a fleet, it interests big idle periods and little busy 

periods. And if these occur it is good that they are as rare as possible, with a short 

number of failures. So it is possible to conclude that the global system improves its 

performance as p decreases but very lightly. The remote station grows worse has it 

was expected and the repairs in the base after transport improve its performance. 
 

6 Differential Costs Evaluation  
 

Note, for instance, that to guarantee less than two busy periods for the repairs in the 

base after transport, in the former example, it is essential that 2.0≤p . But, for this, 

it is necessary to spend money in staff and material in the remote station. It is 

necessary to balance these expenses with the savings in transports. So, admitting 

that the transports costs are proportional to the probability	�, call ��  the cost 

associated to a certain initial value of	�,	��. If �� is decreased in a quantity	Δ��, the 

final cost ��  associated to the new probability �� � 	Δ��  is related with ��  as 

�� � ��
���	���

��
  being the differential cost	Δ�� � �� � ��

���	���

��
� ���1 �

���	���

��
)  
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that is  

                             Δ�� � ��
���

��
								�6.1�. 

   The expression (6.1) gives the savings in transports. So, calling � the 

investment in the remote station needed to decrease	�, it is natural to request 

that	� � 	Δ��, that is   

                         � � ��
���

��
												�6.2� 

in order to have no increase of financial problems. Note that all these costs must be 

considered as reported to a unit of time: 1 year, for example as it is usual.   

  

7 Concluding Remarks 
  

To apply this model it is necessary to check if the failures occur according to a 

Poisson process. This hypothesis has to be tested. After this it is very simple and 

correct to apply the other results. Carrillo�11� studied a model looking like the one 

presented here. But he did not consider either the possibility of transport from the 

station to the base or the busy period. So these conceptions allow, in a very simple 

way, to evaluate the performance of this type of repair system as the example 

presented has shown. And permit also to evaluate, in a simple way, the financial 

viability of some type of modifications in the repair system. 
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