This is an Author's Accepted Manuscript of an article published as: FERREIRA, M.A.M. (2013) Some considerations about the $M|G|\infty$ queue approximation by a Markov renewal process. Information Sciences and Computing. 2013(1):Art.ID ISC040713, available online at: http://www.infoscicomp.com/
Research Article

Some Considerations about the $M|G|\infty$ Queue Approximation by a Markov Renewal Process

Manuel Alberto M. Ferreira

Instituto Universitário de Lisboa (ISCTE – IUL), BRU - IUL, Lisboa, Portugal

Corresponding author: Manuel Alberto M. Ferreira; E-mail: manuel.ferreira@iscte.pt

Received 04 June 2013; Accepted 11 July 2013

Abstract: Some $M|G|\infty$ queue systems interesting quantities values approximations, obtained through the consideration of an adequate Markov renewal process, are presented and studied.

Keywords: $M|G|\infty$; Markov renewal process; queue.

1. Introduction

In the $M|G|\infty$ queue system the customers arrive according to a Poisson process at rate λ, receive a service which time is a positive random variable with distribution function $G(.)$ and mean α and, when they arrive, find immediately an available server. Each customer service is independent from the other customers’ services and from the arrivals process. The traffic intensity is $\rho = \lambda\alpha$.

A suggestion to obtain approximate results for these systems, when the exact ones are still not known, is to use a Markov renewal process, see (1-2).

Along this work, some of the approximations so obtained are reviewed.

2. Sojourn Time Mean Value in State k

For the process referred above, the sojourn time mean value in state k, $k = 0,1, ...$ is given by

$$m_k = \int_0^{\infty} e^{-\lambda t} \left[\int_t^{\infty} \frac{[1 - G(x)]dx}{\alpha} \right]^k dt, k = 0,1, ...$$

(2.1)

1The state of the $M|G|\infty$ queue in instant t is the number of customers being served in the system at instant t.

\[\int_0^{\infty} e^{-\lambda t} \left[\int_t^{\infty} \frac{[1 - G(x)]dx}{\alpha} \right]^k dt, k = 0,1, ... \]
Proposition 2.1

\[m_0 = \frac{1}{\lambda} \quad (2.2). \] ■

Obs: The sojourn time mean value in state 0, does not depend neither on \(G(\cdot) \) nor on the arrivals process. It depends only on the arrivals process.

Proposition 2.2

\[m_k \leq \frac{1}{\lambda}, \quad k = 0, 1, \ldots \quad (2.3). \]

Dem: It is enough to note that \(\alpha^{-1} \int_0^\infty [1 - G(x)]dx \leq 1. \) ■

Obs: So, the sojourn time mean value in any state does not exceed the one of the state 0. Put

\[E_0 = \frac{1}{\lambda} (2.4). \]

Proposition 2.3

\[m_k \leq \alpha \sqrt{\frac{\gamma_s^2 + 1}{2\rho(2k + 1)}}, \quad k = 1, 2, \ldots (2.5) \]

being \(\gamma_s \) the service coefficient of variation.

Dem: Using the Schwartz’s inequality, \(m_k^2 \leq \int_0^\infty e^{-2\lambda t} dt \int_0^\infty \left[\frac{1 - G(x)}{\alpha} \right]^{2k} dx = \frac{1}{2\lambda^2 \alpha^2 k} \left(\gamma_s^2 + 1 \right) \frac{a^{2k-1} \rho_{2k-1}}{2k(2k+1)} \leq \alpha \frac{\gamma_s^2 + 1}{2\lambda(2k+1)} \) since, see (3),

\[\int_0^\infty \left[\int_t^\infty [1 - G(x)]dx \right]^n dt = \frac{n \alpha^2}{2} \left(\gamma_s^2 + 1 \right) \frac{\alpha^{n-1} \rho_{n-1}}{n(n+1)} \] with \(b_n \leq 2, \)

\[n = 0, 1, \ldots (2.6). \] ■

Obs: Define

\[E_1 = \alpha \sqrt{\frac{\gamma_s^2 + 1}{2\rho(2k + 1)}} (2.7). \]

Proposition 2.4

If \(k \geq \frac{1}{4} \rho (\gamma_s^2 + 1) - \frac{1}{2}, E_1 \leq E_0. \)

Dem:

\[\alpha \sqrt{\frac{\gamma_s^2 + 1}{2\rho(2k + 1)}} \leq \frac{1}{\lambda} \Leftrightarrow \gamma_s^2 + 1 \leq \frac{1}{\rho^2} \Leftrightarrow \rho (\gamma_s^2 + 1) \leq 4k + 2 \Leftrightarrow k \]

\[\geq \frac{1}{4} \rho (\gamma_s^2 + 1) - \frac{1}{2}. \] ■
Proposition 2.5

\[m_k \leq \alpha \frac{\gamma_s^2 + 1}{k + 1}, k = 1, 2, \ldots \quad (2.8). \]

Dem:

\[m_k \leq \int_0^\infty \left[\int_t^\infty [1 - G(x)] \frac{dx}{\alpha} \right]^k dt \leq \frac{1}{\alpha^k} \frac{k \alpha^2}{2} (\gamma_s^2 + 1) \frac{2 \alpha^{k-1}}{k(k + 1)} = \alpha \frac{\gamma_s^2 + 1}{k + 1} \]

after (2.6). ■

Obs: Define

\[E_2 = \alpha \frac{\gamma_s^2 + 1}{k + 1} \quad (2.9). \]

Proposition 2.6

If \(k \geq \rho(\gamma_s^2 + 1) - 1, E_2 \leq E_0. \)

Dem:

\[\alpha \frac{\gamma_s^2 + 1}{k + 1} \leq \frac{1}{\lambda} \Leftrightarrow \rho(\gamma_s^2 + 1) \leq k + 1 \Leftrightarrow k \geq \rho(\gamma_s^2 + 1) - 1. \]

Proposition 2.7

If \(k \leq 2\rho(\gamma_s^2 + 1) - 1, E_1 \leq E_2. \)

Dem:

\[\frac{E_1}{E_2} = \alpha \frac{\sqrt{\gamma_s^2 + 1} \sqrt{2p(2k + 1)}}{\alpha \frac{\gamma_s^2 + 1}{k + 1}} = \frac{\sqrt{\gamma_s^2 + 1} (k + 1)}{(\gamma_s^2 + 1) \sqrt{2p(2k + 1)}} = \frac{k + 1}{\sqrt{\gamma_s^2 + 1} \sqrt{2p(2k + 1)}} \]

\[\leq \frac{k + 1}{\sqrt{2\rho(\gamma_s^2 + 1)}} \leq 1 \Leftrightarrow k + 1 \leq 2\rho(\gamma_s^2 + 1) \Leftrightarrow k \leq 2\rho(\gamma_s^2 + 1) - 1. \]

Proposition 2.8

If \(k \geq 4\rho(\gamma_s^2 + 1) - 1, E_2 \leq E_1. \)

Dem:

\[\frac{E_1}{E_2} = \frac{k + 1}{\sqrt{2\rho(\gamma_s^2 + 1) \sqrt{2k + 1}}} \geq \frac{k + 1}{\sqrt{4\rho(\gamma_s^2 + 1) \sqrt{k + 1}}} = \frac{k + 1}{\sqrt{4\rho(\gamma_s^2 + 1) \sqrt{k + 1}}} \]

The Propositions 2.4, 2.6, 2.7 and 2.8 lead to the following upper bounds choice for \(m_k, k = 1, 2, \ldots \):

\[\]
A) $\rho (y_s^2 + 1) > \frac{2}{3}$

\[
1 \leq k \leq \frac{1}{4} \rho (y_s^2 + 1) - \frac{1}{2} \quad m_k \leq \frac{1}{\lambda} \\
\frac{1}{4} \rho (y_s^2 + 1) - \frac{1}{2} \leq k \leq 2 \rho (y_s^2 + 1) - 1 \quad m_k \leq \alpha \frac{\sqrt{y_s^2 + 1}}{2\rho (2k + 1)} \\
2 \rho (y_s^2 + 1) - 1 < k < 4 \rho (y_s^2 + 1) - 1 \quad m_k \leq \min \left\{ \alpha \frac{\sqrt{y_s^2 + 1}}{2\rho (2k + 1)}, \frac{\sqrt{y_s^2 + 1}}{k + 1} \right\} \\
k \geq 4 \rho (y_s^2 + 1) - 1 \quad m_k \leq \alpha \frac{\sqrt{y_s^2 + 1}}{k + 1}
\]

B) $\frac{1}{2} < \rho (y_s^2 + 1) \leq \frac{2}{3}$

\[
k = 1 \quad m_1 \leq \min \left\{ \alpha \frac{\sqrt{y_s^2 + 1}}{6\rho}, \frac{\sqrt{y_s^2 + 1}}{2} \right\} \\
k = 2,3, \ldots \quad m_k \leq \alpha \frac{y_s^2 + 1}{k + 1}
\]

C) $\rho (y_s^2 + 1) \leq \frac{1}{2}$

\[
m_k \leq \alpha \frac{y_s^2 + 1}{k + 1}, k = 1,2, \ldots
\]

Proposition 2.9: If the service time distribution is *NBUE*

\[
m_k \leq \frac{\alpha}{k + \rho}, k = 1,2, \ldots (2.10)
\]

Dem: It is enough to note that if the service time is *NBUE* with mean α, $\int_b^\infty [1 - G(x)] dx \leq \int_b^\infty e^{-\frac{x}{\alpha}} dx$, for any $b \geq 0$. ■

Obs: If the service time is *NWUE* with mean α, $\int_b^\infty [1 - G(x)] dx \geq \int_b^\infty e^{-\frac{x}{\alpha}} dx$, for any $b \geq 0$ and

\[
m_k \geq \frac{\alpha}{k + \rho}, k = 1,2, \ldots (2.11).
\]

Proposition 2.10: If the service time distribution is *IMRL*
\[m_k \geq e^{k \left(\frac{1-2 \frac{\alpha}{\mu_2}}{3 \mu_2^2} \right)} \frac{\mu_2}{\mu_2 \lambda + 2k \alpha}, k = 1, 2, \ldots \quad (2.12) \]

Being \(\mu_2 \) and \(\mu_3 \) the 2nd and the 3rd \(\mu_2 \) moments around the origin

Dem: If the service time\(^2\) is \textit{IMRL}

\[1 - G^*(x) = 1 - \frac{1}{\alpha} \int_0^x [1 - G(y)] dy = \frac{1}{\alpha} \int_0^x [1 - G(y)] dy \geq e^{\frac{2 \alpha}{\mu_2} x - \frac{\alpha}{3 \mu_2^2} \mu_3 + 1}. \]

So, \[
\begin{align*}
\int_0^\infty e^{-\lambda t} \left(e^{\frac{2 \alpha}{\mu_2} t - \frac{\alpha}{3 \mu_2^2} \mu_3 + 1} \right) dt &= e^{k \left(\frac{1-2 \frac{\alpha}{\mu_2}}{3 \mu_2^2} \mu_3 \right)} \frac{\mu_2}{\mu_2 \lambda + 2k \alpha}.
\end{align*}
\]

Proposition 2.11: If the service time distribution is \textit{DFR}\(^3\)

\[
m_k \geq e^{k \left(\frac{1-\frac{\gamma_2}{\alpha}}{2} \right)} \frac{\alpha}{k + \rho}, k = 1, 2, \ldots \quad (2.13).
\]

Dem: If the service is \textit{DFR1} \(- G(x) \geq e^{-\frac{x}{\alpha} + \frac{\gamma_2}{2} + \frac{1}{2}}\).

So, \[
\begin{align*}
m_k &\geq \frac{1}{\alpha^k} \int_0^\infty e^{-\lambda t} \left[\int_t^\infty e^{-\frac{x}{\alpha} + \frac{\gamma_2}{2} + \frac{1}{2}} dx \right]^k dt = \frac{e^{k \left(\frac{1-\frac{\gamma_2}{\alpha}}{2} \right)}}{\alpha^k} \int_0^\infty e^{-\lambda t} \left[\int_t^\infty e^{-\frac{x}{\alpha} dx} \right]^k dt =
\end{align*}
\]

\[e^{k \left(\frac{1-\frac{\gamma_2}{\alpha}}{2} \right)} \frac{\alpha}{k + \rho}. \]

Note: It is not known an expression to the sojourn time value in state \(k \) for the \textit{M|G|\infty} queue systems, with the exception of

a) \(k = 0 \), for every \(G(.) \), being

\[m_0 = \frac{1}{\lambda} \quad (2.14) \]

\(^2\) \(G^*(x) = \frac{1}{\alpha} \int_0^x [1 - G(y)] dy \) is the service time equilibrium distribution.

\(^3\) For more details about \textit{NBUE} (New Better than Used in Expectation), \textit{NWUE} (New Worse than Used in Expectation), \textit{IMRL} (Increasing Mean Residual Life) and \textit{DFR} (Decreasing Failure Rate) distributions, important in reliability theory, see (4).
b) Every \(k \), for exponential service time, where

\[
m_k = \frac{\alpha}{k+\rho}, \quad k = 0, 1, \ldots (2.15).
\]

In the same circumstances, the Markov renewal process supplies the same results: in fact (2.14) is equal to (2.2) and if \(G(x) = 1 - e^{-\frac{x}{a}}, x \geq 0 \) in (2.1) it is obtained (2.15).

The bounds given by (2.10), (2.11), match the exact value given by (2.15). The expression (2.13) is coincident with (2.15) for \(\gamma = 1 \).

3. State 0 Recurrence Mean Time

For the Markov renewal process, the state 0 mean recurrence time is given by

\[
\mu_0 = \frac{1}{\lambda} \left[1 + \sum_{j=1}^{\infty} \prod_{k=1}^{j} \frac{\lambda m_k}{1-\lambda m_k} \right] (3.1).
\]

Proposition 3.1

If \(\rho \leq \frac{1}{\gamma_{s}^{2}+1} \), \(\mu_0 \leq \frac{e^{\rho(\gamma_{s}^{2}+1)}}{\lambda} \) (3.2)

Dem: To use an upper bound of \(m_k \) in (3.1) it is necessary to certify that it is less than \(\frac{1}{\lambda} \). The condition \(\rho(\gamma_{s}^{2}+1) \leq 1 \), due to Proposition 2.6, guaranties that \(E_2 \) fulfills that request for \(k \geq 1 \).

So

\[
\frac{1}{\lambda} \left[1 + \sum_{j=1}^{\infty} \left[\frac{\rho(\gamma_{s}^{2}+1)}{j!} \right]^j \right] = \frac{e^{\rho(\gamma_{s}^{2}+1)}}{\lambda}.
\]

Obs: For the \(M|G|\infty \) queue systems

\[
\mu_0 = \frac{e^\rho}{\lambda}(3.3).
\]

So, in these conditions, the relative error arising from considering (3.2) instead of (3.1) is

\[
\frac{e^{\rho(\gamma_{s}^{2}+1)}}{\lambda} - \frac{e^\rho}{\lambda} = e^{\rho\gamma_{s}^{2}} - 1 \leq e^{\gamma_{s}^{2}+1} - 1 < e - 1.
\]

But \(e^{\gamma_{s}^{2}+1} - 1 \leq r \iff \frac{\gamma_{s}^{2}}{\gamma_{s}^{2}+1} \leq \log(r + 1) \iff \gamma_{s}^{2} \leq \frac{\log(r+1)}{1-\log(r+1)} \).

That is: if \(\rho(\gamma_{s}^{2}+1) \leq 1 \), the relative error arising from taking the bound given by (3.2) instead of the true value given by (3.3) for \(\mu_0 \) is such that:

\[\text{It is in fact the } M|G|\infty \text{ queue busy cycle mean time, see (5).}\]
a) $\varepsilon \leq e^{\frac{\gamma_y^2}{2}} - 1,$

b) $\varepsilon = 0$ if $\gamma_y^2 = 0,$

c) $\varepsilon < e - 1,$

d) $\varepsilon \leq r(r < e - 1) \text{since} \gamma_y^2 \leq \frac{\log(r+1)}{1 - \log(r+1)}.$

So, requesting that ε is lesser than a given $r,$ it results a criterion to measure the goodness of the m_k approximation by E_2 for a certain $\gamma_y^2,$ since $\rho(\gamma_y^2 + 1) \leq 1.$

For the Markov renewal process, since $\rho(\gamma_y^2 + 1) \leq 1,$

$$E[B] = \frac{e^\rho - 1}{\lambda} \quad (3.4).$$

Now, the relative error own to take (3.5) instead (3.4), is

$$\frac{e^\rho(\gamma_y^2+1) - 1}{e^\rho - 1} = \frac{e^\rho(\gamma_y^2+1) - e^\rho}{e^\rho - 1} = \frac{e^\rho_1 - 1}{1 - e^{-\rho}} \leq \frac{\gamma_y^2}{1 - e^{-\rho}} < \frac{e - 1}{1 - e^{-\rho}}. \text{ So}

a) $\delta \leq \frac{\gamma_y^2}{1 - e^{-\rho}},$

b) $\varepsilon = 0$ if $\gamma_y^2 = 0,$

c) $\delta < \frac{e - 1}{1 - e^{-\rho}},$

d) $\delta \leq r(r < \frac{e - 1}{1 - e^{-\rho}}) \text{ since} \gamma_y^2 \leq \frac{\log(r(1 - e^{-\rho} + 1) + 1)}{1 - \log(r(1 - e^{-\rho} + 1)).$

So, the bounds for δ are greater than the obtained to $\varepsilon.$ Then it is preferable to use a criterion based on ε than on $\delta,$ to measure the goodness of the approximation of m_k by $E_2.$

4. Mean Number of Entries in State k between Two Entries in State 0

For the Markov renewal process, the mean number of entries in state k between two entries in state 0 is

$$v_k = \lambda^{-1} \frac{m_1 \ldots m_k}{(1-m_1) \ldots (1-m_k)}, k = 1, 2, \ldots \quad (4.1).$$
Proposition 4.1

If \(\rho \leq \frac{1}{\gamma_s^2 + 1} \)

\[v_k \leq (k + 1) \frac{\rho^{k-1}(\gamma_s^2 + 1)^{k-1}}{k!}, k = 1, 2, ... \] (4.2) \(\blacksquare \)

Obs.: Values for \(v_k, k = 1, 2, ... \) for the \(M|G|\infty \) queue system are not known.

From (2.2), (2.9) and (4.2) it follows that

\[m_k v_k \leq \frac{\alpha \rho^{k-1}(\gamma_s^2 + 1)^{k}}{k!}, k = 0, 1, ... \] (4.3)

Since \(\rho (\gamma_s^2 + 1) \leq 1 \).

For the \(M|G|\infty \) queue system

\[m_k v_k = \frac{\alpha \rho^{k-1}}{k!}, k = 0, 1, ... \] (4.4).

But

\[\frac{\alpha \rho^{k-1}(\gamma_s^2 + 1)^{k}}{k!} \frac{\alpha \rho^{k-1}}{k!} = (\gamma_s^2 + 1)^k - 1, \] that is null for \(\gamma_s = 0 \) or \(k = 0 \) and increases with \(k \) if \(\gamma_s^2 > 0 \).

Note: For \(\rho \leq 1 \) and \(\gamma_s^2 = 0 \) the Markov renewal process supplies the following results:

a) \(m_0 = \frac{1}{\lambda} \),

b) \(m_k \leq \frac{\alpha}{k+1}, k = 1, 2, ... \)

c) \(\mu_0 \leq \frac{e^\rho}{\lambda} \),

d) \(E[B] \leq \frac{e^{\rho-1}}{\lambda} \),

e) \(v_k \leq (k + 1) \frac{\rho^{k-1}}{k!}, k = 1, 2, ... \)

f) \(m_k v_k = \frac{\alpha \rho^{k-1}}{k!}, k = 0, 1, ... \)

So the value obtained for \(m_0 \) coincides with the \(M|G|\infty \) one. And the bounds obtained for \(\mu_0, E[B] \) and \(m_k v_k \) coincide with the true values for the same \(M|G|\infty \) quantities. But the bounds obtained for \(m_k \) and \(v_k \) coincide with the true value obtained when the
service time distribution is exponential and the traffic intensity is 1. In opposition, the bound got for m_k cannot coincide with the one given by (2.15) for $\rho < 1$. So it is excluded the hypothesis of having an expression for m_k independent from the service time distribution and equal to the one given by (2.15). Then, only rarely the Markov renewal process gives values for m_k, $E[B]$ and m_kv_k identical to the $M|G|\infty$ ones.

If $\rho(y_s^2 + 1) \leq 1$ it is possible, after the Markov renewal process, to get upper bounds for the $M|G|\infty$ system quantities m_k, $E[B]$ and m_kv_k. So it is admissible to consider that at least for $y_s^2 = 0$, for the Markov renewal process

$$m_k = \int_0^\alpha e^{-\lambda t} \left[1 - \frac{t}{\alpha} \right]^k dt, \ k = 0, 1 \ldots$$

(4.5).

So, for $k \geq 1$, $m_k \leq \int_0^\alpha \left(1 - \frac{t}{\alpha} \right)^k dt = \frac{-\alpha}{k+1} \left(1 - \frac{t}{\alpha} \right)^{k+1} \frac{\alpha}{k+1}$.

That is $m_k \leq \frac{\alpha}{k+1}, k = 1, 2, \ldots$

But, requesting that $\frac{\alpha}{k+1} \leq \frac{1}{\lambda} \iff k \geq \rho - 1$ that leads to $\rho - 1 \leq 0 \iff \rho \leq 1$.

$$-m_1 = \int_0^\alpha e^{-\lambda t} \left(1 - \frac{t}{\alpha} \right) dt = \frac{1 - \frac{t}{\alpha}}{-\lambda} \left(1 - \frac{t}{\alpha} \right)^\alpha - \frac{1}{\rho} \int_0^\alpha e^{-\lambda t} dt = \frac{1}{\rho} \left[\frac{e^{-\lambda t}}{-\lambda} \right]_0^\alpha = \frac{1}{\rho} \frac{e^{-\rho} + \frac{1}{\lambda}}{\lambda}.$$ So,

$$m_1 = \frac{\rho e^{\rho - 1}}{\rho^2}$$

(4.6).

And, integrating by parts,

$$m_{k+1} = \frac{1}{\lambda} - \frac{k+1}{\rho} m_k, k = 1, 2, \ldots$$

(4.7).

With (4.6) and (4.7) it is possible to obtain m_k, $k = 1, 2, \ldots$ for $y_s^2 = 0$ and it is possible to conclude that, in this case, (2.15) does not hold.

Proposition 4.2: If the service time distribution is NBUE

a) $\mu_0 \leq \frac{e^\rho}{\lambda}$,

b) $E[B] \leq \frac{e^{\rho-1}}{\lambda}$,

c) $v_k \leq (k + 1) \frac{e^{k-1}}{k!}, k = 1, 2, \ldots$
d) \(m_k v_k \leq \frac{\alpha \rho^{k-1}}{k!}, k = 0, 1, ... \)

Obs: The bounds obtained for \(\mu_0, E[B] \) and \(m_k v_k \) coincide with the true value of these quantities for the \(M[G]_\infty \) queue.

If the service time distribution is \(NWUE \)

a) \(\mu_0 \geq \frac{e^\rho}{\lambda}, \)

b) \(E[B] \geq \frac{e^{\rho-1}}{\lambda}, \)

c) \(\mu_k \geq (k + 1) \frac{\rho^{k-1}}{k!}, k = 1, 2, ... \)

d) \(m_k v_k \geq \frac{\alpha \rho^{k-1}}{k!}, k = 0, 1, ... \)

with a comment identical to the one in the case \(NBUE \).

So it is admissible that \(\frac{\alpha}{k+\rho}, k = 0, 1, ... \) is an upper bound(lower bound) for the true value of \(m_k \) in the \(M[G]_\infty \) queue systems in the case of \(NBUE \) (\(NWUE \)) service time distributions.

After (2.1) and integrating by parts

\[
m_{k+1} = \int_0^\infty e^{-\lambda t} \left[\frac{\int_t^\infty [1 - G(x)] dx}{\alpha} \right]^{k+1} dt = \left[-e^{-\lambda t} \left(\frac{\int_t^\infty [1 - G(x)] dx}{\alpha} \right)^{k+1} \right]_0^\infty - \int_0^\infty e^{-\lambda t} \left(k + \frac{1}{\rho} m_k \right) dt \geq \frac{1}{\lambda} - \frac{k + 1}{\rho} m_k, \quad k = 1, 2, ... (4.8).
\]

Note: According to (4.7), when the service time is constant, the equality holds in (4.8).

5. **Sojourn Time in State k Distribution**

The sojourn time in state \(k \) distribution function for the Markov renewal process is

\[
C_k(t) = 1 - e^{-\lambda t} \left[\int_t^\infty [1 - G(x)] dx \right]^k, t \geq 0, k = 0, 1, ... (5.1).
\]

Evidently,
Proposition 5.1

\[C_k(t) \geq 1 - e^{-\lambda t}, t \geq 0, k = 0, 1, \ldots, (5.2). \]

Proposition 5.2: If the service time distribution is exponential

\[C_k(t) = 1 - e^{-\frac{1}{\alpha(k+p)}t}, t \geq 0, k = 0, 1, \ldots, (5.3). \]

Obs.: This result is coincident with the one known for the \(M|G|\infty \) queue.

Proposition 5.3

\[C_0(t) = 1 - e^{-\lambda t}, t \geq 0, \quad (5.4). \]

Obs.: Result obvious for any \(M|G|\infty \) queue and for any queue with Poisson arrivals process.

Proposition 5.4: If the service time distribution is NBUE

\[C_k(t) \geq 1 - e^{-\frac{1}{\alpha(k+p)}t}, t \geq 0, k = 0, 1, \ldots, (5.5). \]

Obs.: As emphasized before, (5.5), beyond supplying a lower bound for \(C_k(t) \) in the Markov renewal process, also gives a lower bound for that quantity in the \(M|G|\infty \) system for the case of NBUE service time.

If the service time distribution is NWUE

\[C_k(t) \leq 1 - e^{-\frac{1}{\alpha(k+p)}t}, t \geq 0, k = 0, 1, \ldots, (5.6) \]

And it is pertinent a comment analogous to the former one with the change of lower bound by upper bound.

Proposition 5.5: If the service time distribution is IMRL

\[C_k(t) \leq 1 - e^{-\lambda t + k \left(-\frac{2\alpha}{\mu^2} t - \frac{2\alpha}{3\mu^2} \right) + 1}, t \geq 0, k = 0, 1, \ldots, (5.7) \]

Proposition 5.6: If the service time distribution is DFR

\[C_k(t) \leq 1 - e^{-\frac{2}{\alpha(k+p)}t + k\frac{1-r_2}{2}}, t \geq 0, k = 0, 1, \ldots, (5.8) \]

Conclusions

When analytical exact results are not available, numerical methods are used to try to find approximations for the interesting quantities under study. It is what is done in this work for the \(M|G|\infty \) queue, trying to approximate it for a Markov renewal process. An alternative is using simulation methods. For this approach see, for instance, (6, 7).
Still another is to determine service time distributions for which it is possible to determine the most of the interesting quantities for the $M|G|\infty$ queue. This is made solving differential equations induced for the study of the transient behaviour, see (8-10).

References

