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ABSTRACT 
 
Jackson queuing networks have a lot of practical applications, 

mainly in human and technologic devices. For the first case, an 
example are the healthcare networks and, for the second, the com-
putation and telecommunications networks. Evidently the time that 
one customer - a person, a job, a message … – spends in this kind 
of systems, its sojourn time, is an important measure of its perfor-
mance, among others. In this work the practical known results about 
the sojourn time distribution are collected and presented. And an 
emphasis is put on the numerical methods applicable to compute 
the distribution function and the moments. 

 
Keywords: Jackson networks, sojourn time, network flow equ-

ations, randomisation procedure. 
                                                             
1 This work was financially supported by FCT through the Strategic Project PEst-
OE/EGE/UI0315/2011. 
2 The paper “Sojourn Times in Jackson Networks” related with this one was presented in the 
Conference Aplimat 2012 as a Plenary Lecture and selected to Aplimat-Journal of Applied 
Mathematics. 
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1. INTRODUCTION 
 
In this work it is intended to present some problems and re-

sults that arise in the study of the sojourn time in Jackson networks 
of queues. These networks have many applications, namely in the 
modelling of healthcare, computation and telecommunications net-
works. And a customer sojourn time, in this kind of system, is evi-
dently an important element to be considered in its performance 
evaluation. Maybe the most important. 

The model of network to be considered in this paper is briefly 
described in section 2. The main objective of section 3 is the presen-
tation of formula (10) that, in some situations allows the sojourn 
times moments exact computation. In section 4 it is given a nume-
rical method for the sojourn times distribution function and any order 
moments computation, adequate to any Jackson network.  

 
2. GENERAL RESULTS AND EXAMPLES 
  
Along this work, the sojourn times in a class of Markovian net-

works of queues, introduced initially by Jackson, see (1-2), will be 
studied. They are called Jackson networks and have only one class 
of customers. They are composed of J  nodes numbered J,...,2,1 . It 

is usual to put  JU ,...,2,1 . 
In each node there is only one server, a queue discipline “first-

come-first-served” (FCFS) and an infinite waiting capacity. 
They are open networks since any customer may enter or 

abandon it. 
The exogenous arrivals-that is: from the outside of the net-

work- process at node j  is a Poisson Process at rate Ujj , , in-
dependent of the exogenous arrivals processes to the other nodes. 

It is stated that
 





J

j
j

1

.  

The service times at node j  are independent and identically 
distributed, having exponential distribution with parameter Ujj , , 
and independent from the other nodes service times. 
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After the completion of a service at node j , a customer is 
immediately directed to node l  with probability jlp , or abandons the 

network with probability 



J

l
jlj Ujpq

1
,1 .  

These probabilities are not influenced by the movements of 
the other customers in the network. The jlp  matrix is called P . The 

matrix P is called the commutation matrix and the jlp  commutation 
probabilities. 

The total arrivals rate, exogenous and endogenous-that is: 
from the other nodes of the network- at node j , j  satisfies the net-
work traffic equations: 

 

  
Jjp

J

l
ljljj ,...,2,1,

1
 



    (1). 

 
The state of the network at instant t  is given by

      tNtNtN J,...,1 , where  tN j  is the number of customers at 
node j  in instant Jjt ,...,2,1,  . N is the population process. 

If the traffic intensity Jj
j

j
j ,...,2,1,1 




  the process 

  tNN   has stationary, or equilibrium, distribution, see for 
instance (3), 

 

    Jjnnnn
J

j
j

n
jjJ
j ,...,2,1,0, 1,...,,

1
21 



    (2). 

 
The distribution (2) is a product form distribution, see for 

instance (4-5). 
Calling jj WS ,  and jX  the sojourn, waiting and service, res-

pectively, times of a customer at node j  
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   jjj XWS      (3). 
 

The Jackson networks sojourn times considered in this paper 
are those of typical customers that, arriving at the network, find the 
population process in an equilibrium state. Call S  the sojourn time 
in the network, that is: the time that goes between the arrival at the 
network and the departure of one of those customers from it. If in its 
path it traverses the nodes l,...,2,1 lSSSS  ..., 21 . 

 
To study the sojourn time, the following is important: 
 

- A network has “feedback” if a customer may come back to 
the same node after the completion of its service, 
immediately or in a future instant, 

- A network without “feedback” is an “acyclic” one, 
- A network has “overtaking” if a customer can “overtake” 

another one taking an alternative path between two nodes.  
 
Then three examples of typical Jackson networks usually con-

sidered in the study of sojourn times are presented. It may be said 
that more complex Jackson networks are integrated by networks ful-
filling the properties of these examples, in a modular way. 

 
Simple Queues Series 
 
For this Jackson network 

 







 


otherwise   0

1,...,2,1,1 if   ,1 Jjjl
p jl  

 
JjJjj ,...,2,1, and  ,..,2,0   , j1   . Fig. 1 is 

a graphical representation of a simple queues series. 
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Fig. 1. Simple Queues Series 

 
Some important results are: 
 
- All customers’ flows, in this network, at stationary state, are 

Poisson Processes. It is a consequence of it, in stationary 
state, that the departure process from an M/M/1 queue is a 
Poisson Process, see for instance (6), 

- The sojourn times in the various nodes are independent 
random variables. In (6) it is presented a demonstration of 
this statement based on the reversibility concept, 

- The sojourn time at node j  is an exponential random 
variable with parameter Jjj ,...,2,1,  , 

- The waiting times are dependent random variables. See also 
(6). 

 
So the sojourn time study in these networks has no difficulty. 

The same is not true for the waiting time. 
 
M/M/1 Queue with Instantaneous Bernoulli Feedback 
 
It is a network with a single node. 1J , pp 11  pq 1, 1  

and
p


1
 , where 1   and 1  , see Fig. 2. 

 

 
Fig. 2. M/M/1 Queue with Instantaneous Bernoulli Feedback 
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Call mS  the thm  customer sojourn time in the network. So, if it 
is served k  times 

 

        i
mk

d
mk

i
mkmk

i
mm

a
mmm ttttttttS   1

0
12

0
21

0
1 ...   (4) 

 
where 
 
- i

mlml tt 0
 is the time that the customer spends passing by the 

service system in the thl  time, given by the difference 
between the thl  output (0) instant from the server and the 
one of the thl  junction (i-input) to the queue, 

- a
mm tt 1

0
1   is the time that the customer spends passing by the 

service system for the first time, given by the difference 
between the first output (0) instant from the server and the 
one of the arrival (a) to the queue, 

- i
mk

d
mk tt   is the time that the customer spends passing by the 

service system for the last time, given by the difference 
between the departure (d) instant from the network and the 
one of the thk  junction (i) to the queue. 

 
Note thatK , the number of times that the customer passes by 

the server, is a random variable and   1)1(  kppkKP ,...2,1, k . 
 
  ,...3,2:0  ltt i

mlml  is not a sequence of independent ran-
dom variables, see (3).  

So it is not possible to make use of the usual statement to sum 
independent random variables. But it is possible to get an expres-
sion to  tSP m   that requires the k  steps transition probabilities 
for the delayed Markovian renewal process

     ,...2,01,,0  ltttN i
l

o
l

i  conditioning to the number of times that 
the customer returns to the queue. 

Calling that transition probabilities matrix  tQ k
i , see still (3), 
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     VpptQtSP

k

k
im  





1
1
    (5) 

 
where   is the iN  (embedded version of N  in the input ins-

tants) stationary distribution, k  is the number of times the customer 
passes by the server and V  is a vector which entries are all 1. 

So, now, the situation is much more complicated than in the 
former case owing to the feedback. 

 
The Jackson Three Node Acyclic Network 
 
It is a network with three nodes, Fig. 3, where pp 12 , 

pp 113 , 123 p , 0jlp  in the other cases,  1 , 

3,2,0  jj ,  1 ,  p2  and  3 . 
In equilibrium, all customers’ flows are Poisson Process in this 

network. 

 
Fig. 3. Jackson Three Node Acyclic Network 

 
Consequently, 
 
- The sojourn time at node j  is a random variable exponen-

tially distributed with parameter 3,2,1,  jjj  . 1S  and 2S  

are independent random variables as well as 2S  and 3S . 
 
This result is valid for any Jackson acyclic network: 

 



Academic book 

12  

- Suppose that a customer follows a path r  in a Jackson 
acyclic network with only one server at each node. If node j  
belongs to path r , jS  is such that  

 

 
    0,1   terispathfollowedthetSP t

j
jj    (6) 

 
and, if node j  is the next to the customer after node l , jS  and 

lS  are independent random variables. 
 

But, 
 

- 1S  and 3S  are dependent random variables: (7) showed that, 

in fact, 1S  and 3S  are positively correlated. In (8) It is stated 
that if  

 
   

(7)    1111112
2
1

2
3

2
131321

321 































  

 
and if 

 

       

       

























































































































p
2
1

2
3

2
131321

2
321321

2
1

2
3

2
131321

2
321321

2

1141141
2
1

2
11

1141141
2
1

2
1







 
 

       

        






















































































































2
1

2
3

2
131321

2
321321

2
1

2
3

2
131321

2
321321

2

1141141
2
1

2
11

1141141
2
1

2
1





       (8) 
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verify both simultaneously it is possible to guarantee that 1S  
and 3S  are positively correlated in equilibrium. 

Why this happen? One explanation may be the following: 
 
- There are two alternative paths for a customer to go from 

node 1 to node 3. And a customer that follows by node 2 
may be overtaken by another one that goes directly from 
node 1 to node 3. So, a customer, when arriving at node 3, 
may meet there another one that was behind it at node 1 or 
even that had not arrived when it was there. 

 
- These overtaking customers can delay a certain customer, 

when it arrives at node 3, for a longer time than that if they 
were not present. The number of these customers depends, 
partly, on the number of the customers that arrive while the 
customer that is being followed is in node 1, partly owing to 
the supposition of a FCFS discipline.  

 
- Consequently, the time that a customer waits at node 3 de-

pends on how much time it has waited at node 1. 
 
Now the complication is due to the overtaking. 
 
3. NETWORK FLOW EQUATIONS 
  
The objective of this section is to present the so called “net-

work flow equations” for the Jackson networks, that allow the deduc-
tion of formulae to the computation of sojourn times moments of any 
order, efficient in some situations. 

Following the work of (9) call ௝߬ an arrival instant, endogenous 
or exogenous, at node j and ௝߬ + ௝ܶ the departure instant from the 
network of the customer that arrived in ௝߬, ݆ = 1, 2, … ,  so ,ܬ

 
-  ௝ܶ is the remaining sojourn time, in the network, for the 

arrival at node j in the instant ௝߬ , ݆ = 1, 2, … ,  .ܬ
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Call ℎ௝ the Laplace Transform of the ௝ܶ , ݆ = 1, 2, … , -distribu ܬ
tion. As N is a strong Markov Process, and the network state pro-
cess “seen by the arrivals” is in equilibrium, the ௝ܶ , ݆ = 1, 2, … ,  and ܬ
its Laplace Transforms are uniquely determined.  

Dealing with the sojourn time as the life time of a Markov Pro-
cess ߴ it is possible to show that the Laplace Transforms ℎ௝, ݆ =
1, 2, … , -satisfy an equations system called the “network flow equa ܬ
tions”. That is, see (9),  

 
- Being ܪ௝ the probability distribution with Laplace Transform 

ℎ௝, there is a distribution probability with Laplace Transform 
  ௝ such asݍ

 
ℎ௝(ݏ) +

௦௚ೕ(௦)

ఓೕିఏೕ
= (ݏ)௝ݍ + ∑ ,(ݏ)௝௟ℎ௟݌ ݏ ≥ 0 and ݆ = 1, 2, … , ௃(9)              ܬ

௟ୀଵ . 
 

In Jackson networks without “overtaking” the Transforms ℎ௝ 
and ݃௝ are identical for each j. 

Given ℎ௝, ݆ = 1, 2, … , the Transforms ݃௝ ܬ , ݆ = 1, 2, … , -are uni ܬ
quely determined by (9). The converse is also true since I – P, being 
I the identity matrix, is invertible. 

 
After (9), by successive derivations,  
 
- Network Flow Equations  

 
For ݆ = 1, 2, … , ݎ and ܬ = 1, 2, …  

 

ൣܧ ௝ܶ
௥൧ = !ݎ ൫ߤ௝ − ௝൯ି௥ߠ

+ ෍ ]ܧ௝௟݌ ௟ܶ
௥]

௃

௟ୀଵ

+ ෍ ௝௟݌

௃

௟ୀଵ

෍
!ݎ

݊! ݎ) − ݊)! ௝ߤ
ି௡ܧ ൥ ௟ܶ

௥ି௡ ෑ൫ ௝ܰ( ௟ܶ
ି) + ݉൯

௡

௠ୀଵ

൩    (10).
௥ିଵ

௡ୀଵ

 

 
For r = 1, (10) assumes the matrix form 
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               ቂൣܧ ௝ܶ൧ቃ = ܫ) − ܲ)ିଵ ቂ൫ߤ௝ −  .௝൯ିଵቃ                                              (11)ߠ
 
For r = 2 (10) assumes the form 
 

ൣܧ ௝ܶ
ଶ൧ = 2൫ߤ௝ − ௝൯ିଶߠ + ෍ ]ܧ௝௟݌ ௟ܶ

ଶ] + ௝ߤ2
ିଵ ෍ ൣܧ௝௟݌ ௟ܶ൫ ௝ܰ ( ௟ܶ

ି) + 1൯൧, ݆ = 1, 2, … , ܬ
௃

௟ୀଵ

௃

௟ୀଵ

           (12). 

 
Equality (12) defines a system of J equations and ܬଶ +  ܬ

unknowns. In general, when ݎ ≥ 2, the product terms involving the 
variables ௟ܶ and ௝ܰ(߬௟

ି) prevent the exact computation of the sojourn 
times r order moments; there are too many unknowns and too few 
equations. In these cases other independent equations are needed 
to complement (12) in order to be possible to obtain exact solutions.  

When any pair of nodes in the network is connected by, in the 
maximum, one oriented path and ݌௝௝ = 0, ݆ = 1, 2, … , ௟ܶ ,ܬ  and ௝ܰ(߬௟

ି) 
are independent for ݆ ≠ ݈. The computation of ൣܧ ௝ܶ൫ ௝ܰ൫ ௝߬

ି൯ + 1൯൧ is 
irrelevant since ݌௝௝ = 0, ݆ = 1, 2, … ,  In this case (10) becomes a .ܬ
compact recursive formula that allows the computation of any order 
moments of the sojourn times, ௝ܶ , ݆ = 1, 2, … ,  For instance, as, in .ܬ
these conditions,  

 

ൣܧ ௝ܰ(߬௟
ି)൧ =

௝ߠ

௝ߤ − ௝ߠ
, ݆ = 1, 2, … ,  ,(13)                                     ܬ

 
(12) assumes the form 
 

ൣܧ ௝ܶ
ଶ൧ = 2൫ߤ௝ − ௝൯ିଶߠ + ෍ ]ܧ௝௟݌ ௟ܶ

ଶ] + 2൫ߤ௝ − ௝൯ିଵߠ ෍ ]ܧ௝௟݌ ௟ܶ], ݆ = 1, 2, … , ܬ
௃

௟ୀଵ

௃

௟ୀଵ

 (14). 

 
Applying (14) to the simple queues series  
 

ൣܧ ௝ܶ
ଶ൧ = 2൫ߤ௝ − ൯ିଶߥ + ]ܧ ௟ܶାଵ

ଶ ] + 2൫ߤ௝ − ]ܧ൯ିଵߥ ௟ܶାଵ], ݆ = 1, 2, … , ܬ − 1

ൣܧ ௃ܶ
ଶ൧ = 2൫ߤ௃ −  ൯ିଶߥ

 
 
 
 
(15) 

 



Academic book 

16  

that together with (11) gives 
 

ൣܴܣܸ ௝ܶ൧ = ෍(ߤ௟ − .ଶ                                               (16)ି(ߥ
௃

௟ୀ௝

 

 
If those conditions are not fulfilled, in (9) it is suggested to 

identify adequate Martingale families in N as a process to determine 
independent equations to complement (10). Applying this proce-
eding to the M/M/1 queue with instantaneous Bernoulli feedback it 
was obtained 

 

[ܶ]ܴܣܸ =
1

൫(1 − ߤ(݌ − ൯ଶߥ
(1 − ߤ(ଶ݌ + ݌ߥ
(1 − ߤ(ଶ݌ −  (17)                            ݌ߥ

  
and  

,(ି߬)ܰ]ܸܱܥ ܶ] =
1)ߥ − ߤ(݌

(1 − ߤ(ଶ݌ −  .(18)                                  ݌ߥ

 
4. SOJOURN TIMES DISTRIBUTIONS AND MOMENTS 
NUMERICAL COMPUTATIONS 
  
Now it is given a general method, which key is the proceeding 

called “randomisation procedure”, to approximate “first passage 
times” distributions in direct time Markov Processes, being the 
sojourn times in queue systems a particular case. 

Call ℵ = :(ݐ)ܺ} ݐ ≥ 0} a regular Markov Process, in continuous 
time with a countable states space E and a bounded matrix infini-
tesimal generator Q. 

The elements of Q are designated by ܳ(ݔ, ,(ݕ ,ݔ ݕ ∈
(ݔ)ܳ and ܧ = ∑ ,ݔ)ܳ ௬∈ாି{௫}.(ݕ -state pro (ݐ)ܺ designates the (ݐ)߰ 
bability vector: 

 
߰௧(ݔ) = (ݐ)ܺ}ܲ = ,{ݔ ݔ ∈  .(19)                                     ܧ

 
X models the evolution of a queue system during the sojourn 

of a given, “marked”, customer in it. 
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The states of E have two main components: i) The queue 
system state and ii) The “marked” customer position. 

Be 
 
- A the states subset that describes the system till the 

departure of the “marked” customer, and 
 
- B the states subset that describes the system after the de-

parture of that customer. 
 
Evidently 
 
,ܣ} -   ,is a partition of E {ܤ
 
- If T is the time that the process ℵ spends in A till attaining B, 

for the first time, T is precisely the sojourn time of the 
“marked” customer in the network. 

 
It is supposed that ℵ will remain in B, with probability 1 after 

having attained it for the first time. In fact, as the evolution of the 
system after the departure of the “marked” customer is irrelevant, it 
may be supposed that B is a closed set. That is, the process ℵ can-
not come back to A after reaching B. The quantity of interest is the T 
distribution function, ߬(ݐ). Note that 

 
(ݐ)߬ = ܲ{ܶ ≤ {ݐ = (ݐ)ܺ}ܲ ∈ {ܤ = 1 − (ݐ)ܺ}ܲ ∈ ,{ܣ ݐ ≥ 0              (20) 

 
since the presented hypotheses guarantee that {ܶ ≤ {ݐ =

(ݐ)ܺ} ∈  .{ܤ
 
After (20) it is concluded that 
 
- The problem of computing ߬(ݐ) is equivalent to the one of the 

computation of the transient distribution of ܺ(ݐ) in A. 
 
So it is necessary to compute the vector ߰௧ , ݐ ≥ 0. Being 

௧ܲ , ݐ ≥ 0, the ℵ n transition matrix,  
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߰௧ = ߰଴ ௧ܲ , ݐ ≥ 0                                                             (21) 
 
and 

௧ܲ = (ݐܳ)݌ݔ݁ = ෍
௜ݐ

݅! ܳ௜
∞

௜ୀ଴

, ݐ ≥ 0                                         (22). 

 
The “randomisation procedure” consists in using in (22) an 

equivalent representation; see (10): 
 

௧ܲ = ݌ݔ݁(ݐߙ−)݌ݔ݁ ቆݐߙ ൬ܫ +
1
ߙ ܳ൰ቇ = (ݐߙ−)݌ݔ݁ ෍

௜ݐ௜ߙ

݅! ܴ௜            (23)
∞

௜ୀ଴

 

 
where  

    ܴ = ܫ + ଵ
ఈ

ܳ                                                        (24) 
 
is called the “randomised matrix”. I is the identity matrix, and ߙ 

is a positive upper bound for the whole ܳ(ݔ), ݔ ∈  .ܧ
 

Note that, see (11-12),  
 
- Although the equation (23) seems more complex than (22), it 

fulfils in fact more favourable computational properties. The 
most important is that R is a stochastic matrix while Q is not. 
Consequently, the computation using (23) is stable and using 
(22) is not, 

 
- The “randomisation procedure” has an interesting 

probabilistic meaning, useful to determine bounds for ߬(ݐ). In 
fact, being R a stochastic matrix, it defines a discrete time 
Markov Process 

 
ℑ = { ௡ܻ: ݊ = 0, 1, … }                                                         (25) 

 
if it is assumed ଴ܻ = ܺ(0). With this procedure, the relation 

between the processes ℵ and ℑ is quite simple as it will be seen 
next. 
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Extend the discrete time process ℑ to a continuous time 
Markov Process such that 

 
i) The time intervals between jumps are exponential random 
variables i.i.d. with mean 1 ⁄ߙ  
 
ii) The jumps are commanded by R.  
 
In (11) it is shown that the resulting process is precisely the 

original process ℵ; but when there is a sequence of jumps in ℑ from 
the state ݔ ∈  to itself, this will be noticed in ℵ as a long sojourn in ܧ
state x.  

So, the “randomisation procedure” may be interpreted as a 
sowing in the process ℵ with “fake” random jumps between the true 
jumps. The resulting process, designated by ℵഥ, at which the “fake” 
jumps are visible, has the same probabilistic structure than ℵ but 
with an advantage: 

 
- The sequence of the jump instants inℵഥ, “fake” and “true”, is 

now a Poisson Process. This is not, in general, the case of ℵ. 
 
Note that ௡ܻ is the state of ℵഥ in the instant of the nth jump, 

“fake” or “true”.  
Suppose that ℵഥ reaches the set B in its nth jump. Consequently 

the ℵഥ sojourn time, and so also the ℵ, in A is the sum of n exponen-
tial independent random variables with mean 1 ⁄ߙ . That is, the 
sojourn time has a n order Erlang distribution with parameter ߙ. Its 
distribution function will be designated ܧ௡,ఈ(ݐ).  

Be ℎ(݊) the probability that ℵഥ reaches B in its nth jump. Call ߶௡ 
the state probability vector of ௡ܻ:  

 
߶௡ = ߰଴ܴ௡                                                           (26). 

 
The quantities ℎ(݊) are given by the equivalent formulae: 
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ℎ(݊) =

⎩
⎪
⎨

⎪
⎧෍ ߶଴(ݔ), ݊ = 0

௫∈஻

                                                                       

෍ ෍ ߶௡ିଵ(ݔ)ܴ(ݔ, ,(ݕ ݊ > 0                                     (27)
௬∈஻௫∈஺

� 

or 
 

ℎ(݊) =

⎩
⎪
⎨

⎪
⎧1 − ෍ ߶଴(ݔ), ݊ = 0                                        

௫∈஺

                                   

෍ ߶௡ିଵ(ݔ) − ෍ ߶௡(ݔ), ݊ > 0                                          (28).
௫∈஺௫∈஺

� 

 
Given the probabilities ℎ(݊) and, noting that ∑ ℎ(݊)∞

௡ୀ଴ = 1, it is 
obtained 

 

(ݐ)߬ = ෍ ℎ(݊)ܧ௡,ఈ(ݐ), ݐ ≥ 0                                           (29),
∞

௡ୀ଴

 

 

[௠ܶ]ܧ =
1

௠ߙ ෍ ݊(݊ + 1) … (݊ + ݉ − 1)ℎ(݊), ݉ = 1, 2, …          (30).
∞

௡ୀ଴

 

 
The formula (30) for m = 1 is 
 

[ܶ]ܧ =
1
ߙ  (31)                                                      [ܪ]ܧ

 
being H the number of ℵ jumps till reaching B. Expression (31) 

is the Little’s Formula in this queues context. 
Equation (29) allows obtaining simple bounds for ߬(ݐ) that 

may, in principle, to become arbitrarily close. Equation (30) allows 
obtaining a lower bound for ܧ[ܶ௞], in principle, so close of ܧ[ܶ௞] as 
wished. So, given any integer ݇ ≥ 0 

 
(ݐ)௞ܮ ≤ (ݐ)߬ ≤ ௞ܷ(ݐ)                                                (32) 

 
where  
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(ݐ)௞ܮ = ෍ ℎ(݊)ܧ௡,ఈ(ݐ), ݐ ≥ 0                                         (33)
௞

௡ୀ଴

, 

 

௞ܷ(ݐ) = 1 − ෍ ℎ(݊)ܧത௡,ఈ(ݐ), ݐ ≥ 0                                    (34)
௞

௡ୀ଴

 

 
and  
 

௅,௞[௠ܶ]ܧ ≤ ,[௠ܶ]ܧ ݉ = 1, 2, ….                                       (35) 
 
where  
 

௅,௞[௠ܶ]ܧ =
1

௠ߙ ෍ ݊(݊ + 1) … (݊ + ݉ − 1)ℎ(݊), ݉ = 1, 2, …          (36).
௞

௡ୀ଴

 

 
It is easy to prove that  
 
Proposition 
 
If, for any ߝ > 0, k is chosen in accordance with the rule 
 

݇ = ݉݅݊ ൝݊ ≥ 0: ෍ ℎ(݅) ≥ 1 − ߝ
௡

௜ୀ଴

ൡ =  (37)                              ,(ߝ)݇

 
or equivalently  
 

ܬ = ݉݅݊ ൝݊ ≥ 0: ෍ ߶௡(ݔ) ≤ ߝ
௫∈஺

ൡ =  (38)                            ,(ߝ)ܬ

 
ห߬(ݐ) − ௃(ఌ)หܮ ≤ (ݐ)and ห߬ ߝ − ௃ܷ(ఌ)ห ≤ ,ߝ uniformely in ݐ ≥ 0. ∎ 

 
The main problem in the application of the method presented, 

stays in the difficulty of the ℎ(݊) computation. In fact, for it, it is 
necessary to compute the vectors ߶௡ but only in the subset A of the 
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state’s space. When states space E is finite, as it happens in the 
case of closed networks, both ℎ(݊) and ߶௡ can, at first glance, be 
computed exactly, apart the mistakes brought by the approxima-
tions.  

In practice the states space is often infinite or, although finite, 
prohibitively great. In this situations it is mandatory to truncate E. So, 
it must be considered a new level of approximation since the ℎ(݊), 
߶௡, etc. must also be approximated now. 

In fact, what are viable to obtain is ℎ(݊) lower bounds because 
the E truncation is translated in probability loss (12). So, with these 
ℎ(݊) approximate values, (32) and (35) go on being valid but 

 
- The uniform convergence property seen above is lost, 
 
- The rules analogous to (37) and (38) are not equivalent. The 

one generated by (37) may be even unviable and in practice 
it is used only the one generated by (38) see (12). 

 
Using this method (13) achieved to show that, in a Jackson 

three node acyclic network, the total sojourn time distribution func-
tion for a customer that follows the path integrated by the nodes 1, 
2, and 3 is not the same obtained considering that ଵܵ, ܵଶ and ܵଷ are 
independent although this one, designated by (ݐ)ܨ, is a “good” 
approximation of that one. They show that in some particular cases 
it was not true that 

 
(ݐ)௅ܨ ≤ (ݐ)ܨ ≤ ,(ݐ)௎ܨ ݐ ≥ 0                                        (39) 

 
being ܨ௅(ݐ) and ܨ௎(ݐ) the lower bound and the upper bound, 

respectively, of that customer sojourn time distribution function, 
obtained through the described method. 

This conclusion is important because, in spite of the depen-
dence between ଵܵ and ܵଷ, (ݐ)ܨ could be the S distribution function. In 
fact, (14) presents an example of dependent random variables 
which sum has the same distribution as if the random variables were 
independent.  
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Finally note that the formula (30), apparently new, see (15), 
seems to be more efficient than (10), although only allows to obtain 
moments lower bounds, because its field of application is much 
greater.  

 
5. CONCLUSIONS 
  
The sojourn time has an evident practice interest. And is and 

has been intensively studied. Evidently the problem of the compu-
tation of the sojourn times in networks of queues is one of the most 
difficult in these networks study. In fact, analytic solutions are the 
exception and not the rule. And, when existing, are quite rough.  

The most of the known works only present results on sojourn 
time distributions for only one customer in paths without overtaking 
with FCFS disciplines in the nodes. It seems that still there are not 
results for simultaneous distributions of various customers sojourn 
times. 

It follows, from the examples seen in section 2, that the 
sojourn times, at Jackson networks computations, difficulties occur 
when there are feedback and overtaking. In the first case the input 
server process is not a Poisson Process, becoming everything more 
complex. In the second case dependencies exist among a customer 
sojourn times in the various nodes, simultaneously complicated and 
subtle, that make the total sojourn time computation difficult even if 
the sojourn times in each node are easy to compute. 

From all this it results the interest of the methods presented in 
sections 3 and 4 to compute exactly and approximately the quanti-
ties related with the Jackson networks sojourn times. 
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