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ABSTRACT

This thesis deals with the design of a class of cyclic codes inspired by TCH codewords.
Since TCH codes are linked to finite fields the fundamental concepts and facts about abstract
algebra, namely group theory and number theory, constitute the first part of the thesis.

By exploring group geometric properties and identifying an equivalence between some op-
erations on codes and the symmetries of the dihedral group we were able to simplify the gen-
eration of codewords thus saving on the necessary number of computations. Moreover, we
also presented an algebraic method to obtain binary generalized TCH codewords of length
N = 2k,k = 1,2, . . . ,16. By exploring Zech logarithm’s properties as well as a group theo-
retic isomorphism we developed a method that is both faster and less complex than what was
proposed before. In addition, it is valid for all relevant cases relating the codeword length N
and not only those resulting from N = pi�1 for Fermat primes pi. The method also derives the
maximum set of all the codewords of a certain code bringing clear advantages in terms of code
size and minimum distance.

In a further investigation we proposed a new generating procedure focusing mostly on group
permutations as an efficient way to generate all codewords of a particular cyclic code. For bi-
nary sequences associated to sub-Pythagorean primes this method only requires the repeated
application of 3 permutations (two for the time domain and one extra for the frequency do-
main) and a DFT operation, thus saving memory space and processing time. For general M-ary
sequences the procedure may require, at most, M additional permutations.

The performance under a Rayleigh fading channel and the application of these sequences to
a variety of communications systems, namely Ultra-Wideband (UWB) and Direct Sequence -
Code Division Multi Access (DS-CDMA), were also presented.

As a consequence of our sequence design we can summarize some of the advantages ob-
tained: the sequence period or codeword length is not limited to a power of two (and not re-
stricted to a Fermat prime minus 1); using the same generating procedure we can produce (both
in time and frequency domains) a larger number of codewords resulting in better data rates
and/or better error correction; the mathematical knowledge of the code structure permits not
having a loose collection of codewords, but a codeword list with a cohesive structure opening
up a lot of improvements in terms of coding/decoding steps; the generation procedure is not
limited to binary but allows M-ary sequences as well.
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SUMÁRIO

Esta tese aborda o projeto de uma classe de códigos cíclicos inspirados nas palavras do
código TCH. Os conceitos fundamentais e fatos sobre álgebra abstrata, ou seja, teoria de grupos
e teoria dos números, constituem a primeira parte da tese.

Ao explorar as propriedades geométricas dos grupos e a identificação de uma equivalência
entre algumas operações sobre as palavras de código e as simetrias do grupo diedral simplificou-
se a geração de palavras de código, economizando no número de cálculos necessários. Além
disso, desenvolveu-se um método algébrico para obter palavras binárias generalizadas (do tipo
TCH) de comprimento N = 2k, k = 1,2, . . . ,16. Ao explorar as propriedades dos logaritmos de
Zech, bem como um determinado isomorfismo desenvolveu-se um método que é mais rápido e
menos complexo do que o que foi proposto anteriormente. Além disso, o método é válido para
todos os casos relevantes relativos à palavra de código de comprimento N e não só as resultantes
de N = pi�1 para primos de Fermat pi. O método também deriva o conjunto máximo de todas
as palavras de um determinado código trazendo vantagens claras em termos de tamanho do
código e distância mínima.

Numa investigação mais aprofundada propôs-se um novo procedimento de geração, focal-
izado principalmente em grupos de permutações, permitindo uma forma eficiente de gerar todas
as sequências de um código cíclico particular. Para sequências binárias associados a primos
sub-pitagóricos este método requer apenas a aplicação repetida de 3 permutações (duas para o
domínio do tempo e uma extra para o domínio da frequência) e uma operação de DFT, poupando
assim espaço de memória e tempo de processamento. Para sequências M-árias mais gerais o
procedimento pode exigir, no máximo, M permutações adicionais.

Nesta tese apresentaram-se também exemplos de aplicação destas sequências no contexto
de sistemas de comunicação, como por exemplo, UWB e DS-CDMA.

Pode-se resumir algumas das vantagens resultantes do trabalho apresentado:
• o período da sequência (ou comprimento da palavra de código) não é limitada a uma

potência de dois (e o seu valor não fica restrito a um primo de Fermat menos uma unidade),
• utilizando o mesmo procedimento de geração pode-se produzir um maior número de

palavras de código, resultando em melhores rácios de transmissão de dados e/ou melhorar a
capacidade de correcção de erros,

• o conhecimento matemático da estrutura do código permite passar de um conjunto disperso
de palavras de código para uma lista de palavras com uma estrutura coesa abrindo uma série de
melhorias em termos de codificação/decodificação,

• o procedimento de geração não é limitado às palavras binárias, mas permite sequências
M-árias também.
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NOMENCLATURE

(a1,a2, . . . ,ak) cycle of length k
[E : F ] dimension of a field extension of E over F
[G : H] index of a subgroup H in a group G
cisq cosq + j sinq

deg p(x) degree of p(x)
di j Kronecker delta
dimV dimension of a vector space V
/0 the empty set
gcd(m,n) greatest common divisor of m and n. Alternatively represented also as (m,n)

hai cyclic subgroup generated by a
A\B intersection of sets A and B
A[B union of sets A and B
a 2 A a is in the set A
a� b a preceeds b
A\B difference between sets A and B
A⇢ B A is a subset of B
A⇥B Cartesian product of sets A and B
a_b join of a and b
a^b meet of a and b
A0 complement of the set A
An A⇥ · · ·⇥A (n times)
An alternating group on n letters
ai j the (i,j) element of the matrix A
d(x,y) Hamming distance between x and y
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Dn dihedral group of order 2n
dmin minimum (Hamming) distance of a code
F⇤ multiplicative group of a field F
f�1 inverse of the function f
G⇠= H G is isomorphic to H
G(E/F) Galois group of E over F
G/N factor group of G mod N
ig ig(x) = gxg�1

id identity mapping
m | n m divides n
R[x] ring of polynomials over R
Sn symmetric group on n letters
U�V direct sum of vector spaces U and V
U(n) group of units in Zn

w(x) weight of x
Z(G) center of a group G
C the set of complex numbers
N the set of natural numbers
Q the set of rational numbers
R the set of real numbers
Z the set of integers
Zn the integers modulo n
Aut(G) automorphism group of G
GF(pn) Galois field of order pn

a a primitive element
Fp The finite field of order p
lcm(m,n) least common multiple of m and n
a⌘ b mod n a is congruent to b modulo n
Eb Bit Energy
N0 Spectral Noise Density
Rc Code Rate
Z(x) The Zech logarithm of x.
Acronyms
AWGN Additive White Gaussian Noise
BER Bit Error Rate
BPSK Binary Phase Shift Keying
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CDMA Code Division Multiple Access
CRC Cyclic Redundancy Check
DFT Discrete Fourier Transform
DS-SS Direct Sequence Spread Spectrum
ESD Energy Spectral Density
FDMA Frequency Division Multiple Access
FEC Forward Error Correction
FFT Fast Fourier Transform
FH Frequency Hopping
FH-CDMA Frequency Hopping Code Division Multiple Access
FH-SS Frequency Hopping Spread Spectrum
HD Hard Decision
IDFT Inverse Discrete Fourier Transform
IFF (or iff) If and only if
IFFT Inverse Fast Fourier Transform
LoS Line of Sight
LSE Least Square Error
MB-OFDM Multi Band Orthogonal Frequency Division Multiplexing
MC-CDMA Multi Carrier Code Division Multiple Access
MUI Multi User Interference
NLoS Non Line of Sight
OFDM Orthogonal Frequency Division Multiplexing
ORD (ord) Order of an element
PAM Pulse Amplitude Modulation
PDF Probability Density Function
PN Pseudo Noise
PPM Pulse Position Modulation
QAM Quadrature Amplitude Modulation
PSD Power Spectral Density
Rc The code rate, k/n
RS Reed-Solomon
QPSK Quadrature Phase Shift Keying
SD Soft Decision
SN Sidel’nikov
SNR Signal to Noise Ratio
TCH Tomlinson, Cercas, Hughes
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TH Time Hopping
UWB Ultra Wide Band
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CHAPTER 1

INTRODUCTION

1.1. Context

The basic model for communication has remained unchanged for several decades, with the
central role being played by the newspaper, the telephone and television. As a society, we are
shifting our usage of technology from the management and distribution of information towards
the creation of symbolic social linkages. Communication is becoming an end in itself, rather
than a means for handling information.

The planetary hypermedia available today offers a world each time more flexible and ac-
cessible to an individual taking advantage of the privilege of weight absence, ubiquity and
interactivity. Moreover the data transfer still uses text, sound and image, but now in a com-
plete imbricate manner. The new media is no longer the mass media. We have moved from the
broadcast to the point-cast and this brings the self-centered, portable or mobile context to most
communication devices. What was previously described as the information technology is now
better described as the information and communication technology.

The widespread introduction of the Internet in the 90’s has spawned many innovations and
services that stem from its interactive character. The process of adding mobility to interactivity
transformed the role of the Internet and other forms of communication and paved the way for
yet another set of innovations and services. The convergence of computing and communica-
tion is a process that has turned phones into smart mobile terminals with powerful multimedia
capabilities.

The Global System for Mobile communication (GSM) and its extended version, the Digital
Communication System (DCS), initially developed for Europe has been adopted in more than 80
countries worldwide. The requirements of multimedia applications drove the research for a 3rd
generation system, which started around 1990, the significant outcome being the development
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Chapter 1. Introduction

of the Universal Mobile Telecommunications System (UMTS). Currently, the evolution in terms
of increasing the capacity and speed using new modulation techniques was made in effect by
the 3GPP Long Term Evolution (LTE) that were deployed in the end of 2011. The future is
already under development and being marketed as 4G LTE-A (A for Advanced), a standard for
wireless communication of high-speed data for mobile smartphones and data terminals.

New generations of wireless mobile radio systems [2] aim to provide flexible data rates (in-
cluding high, medium, and low data rates) and a wide variety of applications (like video, data,
ranging, localization etc.) to the mobile users while serving as many users as possible. The
limited available resources like spectrum and power, however, constraint this goal. In fact, the
demand for higher data rate is leading to utilization of wider transmission bandwidth, BW. We
went from 200 kHz for GSM, 1.25 MHz for IS-95, and 5 MHz for UMTS to 20 MHz for LTE
and projected 100 MHz to LTE-A. As the transmission bandwidth gets wider more challenges
we need to face due the characteristics of the wireless channel. Among these challenges we
find a) diverse channel multipath (resulting from wave reflections and refraction), with impli-
cations in Inter-Symbol Interference (ISI) and fading in the time domain as well as frequency
selectivity in the frequency domain, b) time variability of the channel gain and Doppler shift in
the frequency domain as a direct result of user mobility, c) the need for resource management
to compensate for limitations in spectrum access and power availability. As more and more
devices go wireless, future technologies will face spectral crowding and coexistence of wire-
less devices will be a major issue. Therefore, considering the limited bandwidth availability,
accommodating the demand for higher capacity and data rates is a challenging task, requiring
innovative technologies that can coexist with devices operating at various frequency bands.

To address these issues Orthogonal Frequency Division Multiplexing (OFDM) has been
proposed as an enabling technology. In OFDM a frequency band is divided into overlapping
subcarriers that are orthogonal (when one is at its peak all the others cross zero). Since the
BW of each subcarrier is small (much less than the coherence bandwidth of the channel) each
subcarrier sees flat fading. This is one advantage of this system. OFDM is however not with-
out design issues. Due to the usage of multiple subcarriers it can suffer from high Peak-to-
Average Power Ratio (PAPR). Subcarrier orthogonality can be broken by carrier frequency
offsets. To overcome deep spectral valleys a strong channel coding is advised. Being similar
to OFDM, Single-Carrier with Frequency Domain Equalization (SC-FDE) gathered some in-
terest and eventually got extended to SC-FDMA to accommodate multi-user access. It uses SC
modulation (typically QPSK or 16QAM), Digital Fourier Transform or DFT-spread orthogonal
frequency multiplexing and frequency domain equalization. It is currently adopted for the up-
link in 3GPP LTE. To estimate the channel a reference signal composed of a symbol by symbol
product of an orthogonal sequence and a pseudo-random sequence is used.
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1.2. Motivation

1.2. Motivation

All these aspects involving frequency based equalization, Digital Fourier Transforms (DFT),
pseudo-random sequences provide us with the motivation to pursue an investigation into meth-
ods of either generalizing or optimizing previously known sequences. In our case we had been
using TCH sequences so those binary cyclic sequences were the starting point of the work
developed in this thesis.

1.2.1. Sequences and coding. In a communications system we are interested in a reliable
and at the same time cost effective way of transmitting data from a source to a receiver. The
branch of science dealing with these issues is referred to coding theory and it involves the
study of codes and their properties. According to the specific discipline (namely mathematics,
information theory, electrical engineering etc.) where codes are studied we find their use in
applications like network coding, cryptography, data compression and error correction. These
last two applications are perhaps the most known and are also referred as source coding, for
data compression, and channel coding, for error detection/correction.

Source encoding deals primarily with removing the redundancy of the data to transmit it
more efficiently. This happens, for example, in Zip data compression to make computer files
smaller or in facsimile transmission where the use of a run length code removes all superfluous
data (like sweeping empty lines) and this way decreasing the transmission bandwidth.

On the other hand, channel encoding tries to add redundancy in a way that makes the data
more robust against the channel disturbances. These obstacles to a clean transmission can
be dust or scratches in a typical music Compact Disk (CD) or fading and noise in a cellular
wireless network. In these instances codes like Reed-Solomon (RS) and Low Density Parity
Check (LDPC) are used to add extra bits to the source data in order for the receiver to have
more information to decode correctly. One objective of channel coding theory is to find codes
which a) transmit quickly, i.e. have a good code ratio, b) have a reasonable size, i.e. have
many valid codewords, and c) perform adequately at correcting or at least detecting errors. The
performance in these (not mutually exclusive) areas generally involves a trade off. Therefore
there are codes that are more appropriate, i.e. optimal, than others according to the specific
application to which they are targeted.

A sub-field of coding theory is algebraic coding theory dealing with the expression and re-
search in algebraic terms of the properties of the codes. Three common properties are codeword
length (or period for cyclic codes), code size (total number of valid codewords) and the mini-
mum distance between two valid codewords (e.g. Hamming distance for binary or Lee distance
for q-ary alphabet).

3



Chapter 1. Introduction

The two most researched types of codes are block codes and convolutional codes. In the first
type, the encoding of the source data is done in blocks. If the sum of any two codewords is also
a valid codeword the the block code is a linear one. Examples include, Reed-Solomon, Golay,
Hadamard or Hamming codes [3]. To study these codes in a unified way researchers have found
a way to relate parameters of different block codes in a form called code bounds. The lower or
upper bounds are the result of exploring the relationship between the code rate and distance. The
second type of code, i.e. convolutional, takes the fundamental ideal of representing a codeword
by the weighted sum of the source symbols. The output of the encoder uses the states of the
convolution encoder to convolve with each input bit. In terms of noise protection, in general, a
convolutional code does not perform better than an equivalent block code. What it does offer is
a greater simplicity of implementation. The encoding process is usually supported by a simple
circuit having state memory and feedback logic (normally XOR gates). The decoding process
can be implemented in firmware or software. The Viterbi algorithm [4] and related variants is
the most used algorithm in decoding convolutional codes.

Two other concerns of coding theory revolve around designing codes to achieve synchro-
nization or to better differentiate users in what is called a Code-Division Multiple Access
(CDMA) system. In these applications codewords are also referred as sequences. Codes for
synchronization purposes are developed so that a phase shift can be readably be detected or
corrected allowing multiple signals to be sent on the same channel using the same codeword.
In CDMA applications each user is associated with a different code sequence and by evaluating
the correlation between different sequences, as a way to differentiate them, several users can
share the same channel at the same time.

1.2.2. UWB applications. The convergence of data, entertainment, and mobile commu-
nications within the home has created the need for economical technologies and architectures
capable of integrating both legacy and new personal area networks. Ultra wideband (UWB)
technology is uniquely qualified to address that requirement and was designed specifically to
support high data-rate (hundreds of Mbit/s), short range (up to tens of meters), point-to-point
wireless communications. UWB, which is an underlay (or sometimes referred as shared unli-
censed) system, coexists with other licensed and unlicensed narrowband systems. The trans-
mitted power of UWB devices is controlled by the regulatory agencies, such as the Federal
Communications Commission (FCC) in the United States and by the European Conference of
Postal and Telecommunications Administrations (CEPT) in Europe, so that narrowband systems
are affected from UWB signals only at a negligible level. UWB systems, therefore, are allowed
to coexist with other technologies only under stringent power constraints. In spite of this, UWB
offers attractive solutions for many wireless communication areas, including wireless personal
area networks (WPANs), wireless telemetry and telemedicine, and wireless sensors networks.
4



1.2. Motivation

With its wide bandwidth, UWB has a potential to offer a capacity much higher than the current
narrowband systems for short-range applications.

UWB systems present numerous and unique advantages. First of all it introduces unlicensed
usage of an extremely wideband spectrum, as mentioned above. The underlay usage of spectrum
greatly increases spectrum efficiency and opens new doors for wireless applications. Excellent
time resolution is another key benefit of UWB signals for ranging applications. Due to the
extremely short duration of transmitted pulses, sub-decimeter ranging is possible. Robustness
against eavesdropping (since UWB signals look like noise) and low power transmission are
other benefits of UWB.

UWB has several applications all the way from wireless communications to radar imaging
and vehicular radar. The ultra wide bandwidth and hence the wide variety of material penetra-
tion capabilities allows UWB to be used for radar imaging systems, including ground penetra-
tion radars, wall radar imaging, through-wall radar imaging, surveillance systems, and medical
imaging. Images within or behind obstructed objects can be obtained with a high resolution
using UWB.

Similarly, the possibility of acute time resolution and associated accurate ranging capability
of UWB can be used for vehicular radar systems (including collision avoidance, guided parking,
etc.). Positioning location and relative positioning capabilities of UWB systems are other great
applications that have recently received significant attention.

Last but not least is the wireless communication application, which is arguably the rea-
son why UWB became part of the wireless world, including wireless home networking, high-
density use in office buildings and business cores, UWB wireless mouse, keyboard, wireless
speakers, wireless USB, high-speed Wireless Personal Area Networks (WPAN), wireless sen-
sors networks, wireless telemetry, and telemedicine.

1.2.3. State-of-the-Art relating TCH codes. TCH codes were first proposed in [5], and
further developed in [6]. The motivation behind the development of TCH codes was to obtain
a sort of pseudo-noise codewords with good correlation properties and length equal to a power
of two, i.e., 2m. The generation of these codes start with the generation of a single codeword,
named basic-TCH, through an algebric equation. From then on, the code is extended through
several ad-hoc methods (search and trial) in order to find other codewords with similar charac-
teristics (in terms of weight, minimum distance, correlation properties etc.). The performance
of these codes was evaluated under All-White Gaussian Noise channels, both alone as well as
concatenated with RS codes (with TCH serving as an inner code and a RS code as the outer
code).

There have been some investigation work involving TCH codes in the area of satellite com-
munications systems [7, 8], in Ultra-wideband systems [9], in optimization of the bit-mapping

5
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of codewords [10, 11], in synchronization [12, 13, 14], in spread-spectrum applications [15],
in turbo-codes schemes [16, 17, 18], and studying the performance in a land mobile satellite
channel [19], among others.

In view of the above we have tried to develop an efficient receiver that would address,
potentially simultaneously, the synchronization, data decoding and channel estimation using
fast algorithms and maintaining the same digital frequency processing structure as much as
possible.

1.3. Objectives

The main objectives of this thesis are:
To use and evaluate TCH family of codes for UWB, exploiting its circular nature and FFT

processing thus shifting signal processing from time to frequency domain.
To extend and generalize TCH codes in order to obtain codewords with length equal to a

power of two (besides 16, 256, and 65536 already obtained by a previous method).
To design a receiver, exploiting the algebraic structure of the sequences that correspond

to the generalized codewords, using multirate and joint channel decoding and acquisition. A
mechanism for data rate adaptation is a very important and desirable characteristic. A receiver
may use this mechanism to inform a transmitter of the optimal data rate to increase throughput
and/or reduce the frame error rate (FER).

1.4. Thesis overview

In chapter 2 we present and discuss some algebraic facts and core concepts necessary for
the theoretical work to be developed in chapters 4 and 5. This includes, sets, relations and
mappings, and group theory with emphasis in dihedral and cyclic groups. In chapter 3 we
present some background on codes and introduce number theory as a link to finite fields. We
then present the generation process behind the development of TCH codes that provided the
motivation to pursue further work. In chapter 4 we present a generalized construction of TCH
codewords using Zech logarithms. First we use the properties of a dihedral group to reduce by
6 the number of computations for each codeword. Then we generalize the construction of code-
words by applying the Zech logarithm to a list of odd integers chosen between 1 and p where p
belongs to a specific subclass of primes. For the same codeword length we develop algorithms
to obtain one codeword from a different one and for different codeword lengths we develop a
permutation matrix to obtain codes with all relevant codewords. In chapter 5 we proceed one
step further and generalize the construction of codewords through the use of a small number of
permutations. Not only we address the construction in the time domain but we also make it work
seamlessly in the frequency domain. This procedure allows for the development of an optimal
6
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frequency domain maximum likelihood receiver that links the theoretical work with practical
engineering applications. In addition we extend the construction to address finite fields of order
pm. In this way we extend the algebraic generation from binary to M-ary sequences. In the first
part of chapter 6, the applications chapter, we evaluate the performance of the generalized codes
presented earlier. We then address the transversal problem of frame synchronization in the con-
text of DS-CDMA systems using cyclic sequences and using signal processing methods in the
frequency domain. We also briefly address how those sequences are employed in frequency do-
main channel estimators. We finish the chapter with the evaluation of a UWB (correlation and
multi-rate) receiver proposing to use cyclic sequences for synchronization while also serving to
spread and code data.

1.5. Thesis contributions

The core work of this thesis corresponds to the theoretical design of TCH-type codewords
or sequences. We provide strong algebraic mechanisms to generate all codewords of a code
from a single initial codeword. The construction works both for the time domain as well as for
the frequency domain. Moreover we consider not only binary codewords but M-ary codewords
and we do not restrict the length of codewords to be p�1 with p a Fermat prime. We consider
p to belong in a specific class of primes opening a much greater range of codeword lengths as
well as allowing us to explore a specific code structure. A summary of results was published in
[20]. The work developed in chapter 4 is presented in [21] and that of chapter 5 in [22].

Another contribution uses an FFT signal processing block where the sequence length is
partioned into a product, N = L ·M, with N,L,M positive integers. In the process of obtaining a
N-point DFT we make use of M DFT’s with L points each. This signal processing core process
data in blocks of N samples rearranging them in such a way that an inherent matrix interleaver
is involved. These two features are exploited in CDMA systems for synchronism acquisition
(besides the usual data decoding), [12],[23],[24].

The application of TCH codewords in UWB systems was presented in [9].
Another contribution was made by modifying TCH codes in order to use them in frequency

domain channel estimators. The spectrum of a basic TCH polynomial was changed by sup-
pressing the two zero points at k = 0 and k = N/2. Although this has implications on the code
amplitude (for odd samples) it does not alter significantly the code correlation properties.

A brief performance study comparing TCH sequences with the generalized ones, under a
channel with Rayleigh fading, is presented in the applications chapter of the thesis.
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CHAPTER 2

ALGEBRAIC PRELIMINARIES

2.1. Introduction

In general, a telecommunications engineer does not have a strong background in abstract
algebra. It is the purpose of this chapter to introduce the reader to the core material necessary
for a deeper understanding of the theory presented in chapters 4 and 5 of this thesis thus making
it as much self contained as possible.

To find and study applications of abstract algebra a basic knowledge of set theory, equiva-
lence relations, and matrices is a must. Therefore we have organized this chapter as follows.
Sections 2.2 to 2.4 present introductory material including set theory, mappings and partitions.
Then in section 2.5 we begin the study of algebraic structures by investigating sets associated
with single operations that satisfy certain reasonable axioms. From here on we concentrate on
group theory. The material presented here is mostly based on [1] but we provide other references
for completion.

2.2. Preliminary definitions

In the study of abstract mathematics, we assume some rules about the structure of a collec-
tion of objects S . These rules are called axioms. Our objective is to obtain other information
about S , using logical arguments and the axioms for S .

DEFINITION 1. A statement in logic or mathematics is an assertion that is either true or
false.

That statement is called a proposition if we can prove it to be true.

DEFINITION 2. A proposition of major importance is called a theorem.
9
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Sometimes we break the proof a theorem into modules, i.e. into several supporting propo-
sitions, which are called lemmas, and refer back to these results to prove the main result. If we
can prove a proposition or a theorem, it is generally possible to derive other related propositions
called corollaries.

2.3. Sets and Equivalence Relations

2.3.1. Set Theory. A well-defined collection of objects is called a set. It’s definition im-
plies that we can determine for any given object x whether or not x belongs to the set. If x belong
to a set then it is called an element or member of the set. We will denote by capital letters, such
as A or X ; if a is an element of the set A, we write a 2 A.

Generally, there are two ways to specify a set: by listing all of its elements inside a pair of
braces or by stating the property that determines whether or not an object x belongs to the set.
Thus, we write

X = {x1,x2, . . . ,xn}

for a set containing elements x1,x2, . . . ,xn or alternatively

X = {x : x satisfies P},

X = {x | givenP}

if each x in X satisfies a certain property P .
Some of the more important sets that we will consider are the following:

N = {n : n is a natural number} = {1,2,3,4, . . .};

Z = {n : n is an integer} = {. . . ,�2,�1,0,1,2,3, . . .};

Q = {r : r is a rational number} = {p/q : p,q 2 Z where q 6= 0};

R = {x : x is a real number};

C = {z : z is a complex number}.

We find various relations between sets and can perform operations on sets. A set A is a
subset of B, written A⇢ B or B� A, if every element of A is also an element of B. For example,

{3,6,7}⇢ {2,3,4,5,6,7,8,9}

and
N⇢ Z⇢Q⇢ R⇢ C.

As expected, every set is a subset of itself. A set B is a proper subset of a set A if B⇢ A but
B 6= A. If A is not a subset of B, we write A 6⇢ B; for example, {2,3,7} 6⇢ {2,4,5,8,9}. Two
sets are equal, written A = B, if we can show that A⇢ B and B⇢ A.
10
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It is convenient to have a set with no elements in it. This set is called the empty set and is
denoted by /0. Note also that the empty set is a subset of every set.

To construct new sets out of old sets, we can perform certain operations: the union A[B of
two sets A and B is defined as

A[B = {x : x 2 Aor x 2 B};

the intersection of A and B is defined by

A\B = {x : x 2 Aand x 2 B}.

In the case of more than two sets, the union and the intersection, respectively, of the collection
of sets A1, . . .An are written

n
[

i=1
Ai = A1[ . . .[An

and
n
\

i=1
Ai = A1\ . . .\An

When two sets have no elements in common, they are said to be disjoint; for example, if E
is the set of even integers and O is the set of odd integers, then E and O are disjoint. Two sets A
and B are disjoint exactly when A\B = /0.

Sometimes we will work within one fixed set U , called the universal set. For any set A⇢U ,
we define the complement of A, denoted by A0, to be the set

A0 = {x : x 2Uand x /2 A}.

PROPOSITION 3. Let A, B, and C be sets. Then

(1) A[A = A, A\A = A, and A\A = /0;
(2) A[ /0 = A and A\ /0 = /0;
(3) A[ (B[C) = (A[B)[C and A\ (B\C) = (A\B)\C;
(4) A[B = B[A and A\B = B\A;
(5) A[ (B\C) = (A[B)\ (A[C);
(6) A\ (B[C) = (A\B)[ (A\C).

THEOREM 4. (De Morgan’s Laws) Let A and B be sets. Then

(1) (A[B)0 = A0 \B0;
(2) (A\B)0 = A0 [B0.

11
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2.3.2. Cartesian Products and Mappings.

DEFINITION 5. Given sets A and B, we can form a set of ordered pairs, i.e. the new set
A⇥B, called the Cartesian product of A and B. That is,

A⇥B = {(a,b) : a 2 Aand b 2 B}.

EXAMPLE. If A = {x,y}, B = {1,2,3}, and C = /0, then A⇥B is the set

{(x,1),(x,2),(x,3),(y,1),(y,2),(y,3)}

and
A⇥C = /0.

We define the Cartesian product of n sets to be

A1⇥ · · ·⇥An = {(a1, . . . ,an) : ai 2 Ai for i = 1, . . . ,n}.

If A = A1 = A2 = · · · = An, we often write An for A⇥ · · ·⇥A (where A would be written n
times). For example, the set N3 consists of all of 3-tuples of natural numbers. Subsets of A⇥B
are called relations.

DEFINITION 6. A mapping or function f ⇢ A⇥B from a set A to a set B. This is a special
type of relation (in which for each element a 2 A there is a unique element b 2 B such that
(a,b) 2 f ).

Another way of saying this is that for every element in A, f assigns a unique element in B. We
usually write f : A! B or A

f! B. Instead of writing down ordered pairs (a,b) 2 A⇥B, we
write f (a) = b or f : a 7! b. The set A is the domain of f and

f (A) = { f (a) : a 2 A}⇢ B

is the range or image of f . We can think of the elements in the function’s domain as input
values and the elements in the function’s range as output values.

EXAMPLE. Suppose A = {1,2,3} and B = {a,b,c,d}. In Figure 2.1 we define relations f
and g from A to B. The relation f is a mapping, but g is not because 1 2 A is not assigned to a
unique element in B; that is, g(1) = a and g(1) = b.
12
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1
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3
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 a

 b
d

 c

1
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d

 c

f:

g:

Figure 2.1. Mappings and relations

Given a function f : A! B, it is often possible to write a list describing what the function
does to each specific element in the domain. However, not all functions can be described in
this manner. For example, the function f : R! R that sends each real number to its cube is
a mapping that must be described by writing f (x) = x3 or f : x 7! x3. Consider the relation
f : Q!Z given by f (p/q) = p. We know that 1/2 = 2/4, but is f (1/2) = 1 or 2? This relation
cannot be a mapping because it is not well-defined. A relation is well-defined if each element
in the domain is assigned to a unique element in the range.

If f : A! B is a map and the image of f is B, i.e., f (A) = B, then f is said to be onto or
surjective. A map is one-to-one or injective if a1 6= a2 implies f (a1) 6= f (a2). Equivalently, a
function is one-to-one if f (a1) = f (a2) implies a1 = a2. A bijective map is both one-to-one and
onto.

Given two functions, we can construct a new function by using the range of the first function
as the domain of the second function. Let f : A! B and g : B!C be mappings. Define a new
map, composing f and g :

DEFINITION 7. The composition of f and g from A to C, is defined by (g� f )(x) = g( f (x)).

EXAMPLE. Consider the functions f : A! B and g : B!C that are defined in Figure 2.2(a).
The composition of these functions, g� f : A!C, is defined in Figure 2.2(b).

In general, order makes a difference; that is, in most cases f � g 6= g � f . One example where
f �g = g� f would be for f (x) = x3 and g(x) = 3

p
x.
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A B

CA

1

2

3

1

2

3

a

b

c

X

Y

Z

g
C

X

Y

Z

f

g o f

(a)

(b)

Figure 2.2. Composition of maps [1]

EXAMPLE. A matrix multiplication,
 

a b
c d

! 

x
y

!

=

 

ax+by
cx+dy

!

can be given a as map TA : R2!R2 by TA(x,y) = (ax+by,cx+dy) for (x,y) in R2 and using a
2⇥2 matrix

A =

 

a b
c d

!

.

DEFINITION 8. Maps from Rn to Rm given by matrices are called linear maps or linear
transformations.

EXAMPLE. Suppose that S = {1,2,3}. Define a map p : S! S by

p(1) = 2

p(2) = 1

p(3) = 3.

This is a bijective map. An alternative way to write p is
 

1 2 3
p(1) p(2) p(3)

!

=

 

1 2 3
2 1 3

!

.

DEFINITION 9. For any set S, a one-to-one and onto mapping p : S! S is called a permu-
tation of S.

THEOREM 10. Let f : A! B, g : B!C, and h : C! D. Then
14
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(1) The composition of mappings is associative; that is, (h�g)� f = h� (g� f );
(2) If f and g are both one-to-one, then the composition g� f (which is another mapping)

is one-to-one;
(3) If f and g are both onto, then the composition g� f is onto;
(4) If f and g are bijective, then so is the composition g� f .

If S is any set, we will use id to denote the identity mapping from S to itself. Define this
map by id(s) = s for all s 2 S.

A map g : B! A is an inverse mapping of f : A! B if g� f = idA and f �g = idB; in other
words, the inverse function of a function simply “undoes” the function. A map is said to be
invertible if it has an inverse. We usually write f�1 for the inverse of f .

EXAMPLE. The function f (x) = x3 has inverse f�1(x) = 3
p

x .

EXAMPLE. The natural logarithm and the exponential functions, f (x) = lnx and f�1(x) =

ex, are inverses of each other provided that we are careful about choosing domains. Observe
that

f ( f�1(x)) = f (ex) = lnex = x

and
f�1( f (x)) = f�1(lnx) = elnx = x

whenever composition makes sense.

EXAMPLE. Given the permutation

p =

 

1 2 3
2 3 1

!

on S = {1,2,3}, it is easy to see that the permutation defined by

p

�1 =

 

1 2 3
3 1 2

!

is the inverse of p . In fact, any bijective mapping possesses an inverse, as we will see in the
next theorem.

THEOREM 11. A mapping is invertible if and only if it is both one-to-one and onto.

15
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2.3.3. Equivalence Relations and Partitions. To generalize equality we must introduce
the concept of equivalence relations and equivalence classes. An equivalence relation (on a set
X) is a relation R⇢ X⇥X such that the following properties are obeyed,

• (x,x) 2 R for all x 2 X (reflexive);
• (x,y) 2 R implies (y,x) 2 R (symmetric);
• (x,y) and (y,z) 2 R imply (x,z) 2 R (transitive).

Given an equivalence relation R on a set X , we usually write x ⇠ y instead of (x,y) 2 R. If the
equivalence relation already has an associated notation such as =, ⌘, or ⇠=, we will use instead
that notation.

EXAMPLE. Let p, q, r, and s be integers, where q and s are nonzero. Define p/q ⇠ r/s if
ps = qr. Clearly ⇠ is reflexive and symmetric. To show that it is also transitive, suppose that
p/q⇠ r/s and r/s⇠ t/u, with q, s, and u all nonzero. Then ps = qr and ru = st. Therefore,

psu = qru = qst.

Since s 6= 0, pu = qt. Consequently, p/q⇠ t/u.

DEFINITION 12. A partition P of a set X is a collection of nonempty sets X1,X2, . . . such
that Xi\Xj = /0 for i 6= j and

S

k Xk = X .

Let x2X and let⇠ be an equivalence relation on a set X . Then [x] = {y2X : y⇠ x} is called
the equivalence class of x. We will see that an equivalence relation gives rise to a partition via
equivalence classes. Also, whenever a partition of a set exists, there is some natural underlying
equivalence relation:

THEOREM 13. Given an equivalence relation ⇠ on a set X, a partition of X is formed by
the equivalence classes of X. Conversely, if P = {Xi} is a partition of a set X, then there is an
equivalence relation on X with equivalence classes Xi.

COROLLARY 14. Two equivalence classes of an equivalence relation are either equal or
disjoint.

EXAMPLE. Let r and s be two integers and suppose that n 2 N. We say that r is congruent
to s modulo n, or r is congruent to s mod n, if r� s is evenly divisible by n; that is, r� s = nk
for some k 2 Z. In this case we write r ⌘ s (mod n). For example, 41⌘ 17 (mod 8) since
41� 17 = 24 is divisible by 8. We claim that congruence modulo n forms an equivalence
relation of Z. Certainly any integer r is equivalent to itself since r� r = 0 is divisible by n.
16
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We will now show that the relation is symmetric. If r ⌘ s (mod n), then r� s = �(s� r) is
divisible by n. So s� r is divisible by n and s ⌘ r (mod n). Now suppose that r ⌘ s (mod n)

and s ⌘ t (mod n). Then there exist integers k and l such that r� s = kn and s� t = ln. To
show transitivity, it is necessary to prove that r� t is divisible by n. However,

r� t = r� s+ s� t = kn+ ln = (k + l)n,

and so r� t is divisible by n. If we consider the equivalence relation established by the integers
modulo 3, then

[0] = {. . . ,�6,�3,0,3,6,9, . . .},

[1] = {. . . ,�5,�2,1,4,7,10, . . .},

[2] = {. . . ,�4,�1,2,5,8, . . .}.

Notice that [0][ [1][ [2] = Z and also that the sets are disjoint. We say that the sets [0], [1], and
[2] form a partition of the integers.

The integers modulo n are addressed in more detail in section 2.5 and will become quite useful
in discussing various algebraic structures such as groups and rings. For further information
about these topics the references [25, 26, 27, 28, 29] are appropriate.

2.4. Properties of integers

In this section we will state some fundamental properties of the integers, including mathe-
matical induction and the Fundamental Theorem of Arithmetic.

2.4.1. Mathematical Induction. If we are attempting to verify a statement about some
subset S of the positive integers N on a case-by-case basis, this is an impossible task if S is an
infinite set. Instead, we give a specific proof for the smallest integer being considered, followed
by a generic argument showing that if the statement holds for a given case, then it must also
hold for the next case in the sequence.

As an example suppose we wish to show that

1+2+ · · ·+n =
n(n+1)

2
for any natural number n.

The formula is true for n = 1 since

1 =
1(1+1)

2
,

17
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but it is impossible to verify for all natural numbers on a case-by-case basis. To prove the
formula true in general, a more generic method is required.

Suppose we have verified the equation for the first n cases, say n = 1, 2, 3, or 4. We can
generate the formula for the (n + 1)th case from this knowledge. If we have verified the first n
cases, then

1+2+ · · ·+n+(n+1) =
n(n+1)

2
+n+1

=
n2 +3n+2

2

=
(n+1)[(n+1)+1]

2
.

This is exactly the formula for the (n+1)th case. This method of proof is known as mathemat-
ical induction and we summarize it in the following axiom.

2.4.2. First Principle of Mathematical Induction. Let S(n) be a statement about integers
for n 2 N and suppose S(n0) is true for some integer n0. If for all integers k with k � n0 S(k)
implies that S(k +1) is true, then S(n) is true for all integers n greater than n0.

We have an equivalent statement of the Principle of Mathematical Induction that is often
very useful:

2.4.3. Second Principle of Mathematical Induction. Let S(n) be a statement about inte-
gers for n 2N and suppose S(n0) is true for some integer n0. If S(n0),S(n0 +1), . . . ,S(k) imply
that S(k +1) for k � n0, then the statement S(n) is true for all integers n greater than n0.

A nonempty subset S of Z is well-ordered if S contains a least element. Notice that the set Z
is not well-ordered since it does not contain a smallest element. However, the natural numbers
are well-ordered.

2.4.4. Principle of Well-Ordering. Every nonempty subset of the natural numbers is well-
ordered.
Note that the Principle of Well-Ordering given above is equivalent to the Principle of Mathe-

matical Induction.

LEMMA 15. The Principle of Mathematical Induction implies that 1 is the least positive
natural number.

PROOF. Let S = {n 2 N : n� 1}. Then 1 2 S. Now assume that n 2 S; that is, n� 1. Since
n+1� 1, n+12 S; hence, by induction, every natural number is greater than or equal to 1. ⇤
18
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THEOREM 16. The Principle of Mathematical Induction implies that the natural numbers
are well-ordered.

Induction can also be very useful in formulating definitions. For instance, there are two
ways to define n!, the factorial of a positive integer n.

• The explicit definition: n! = 1 ·2 ·3 · · ·(n�1) ·n.
• The inductive or recursive definition: 1! = 1 and n! = n(n�1)! for n > 1.

2.5. The Integers mod n and Symmetries

We want to define an operation on a set in a way that will generalize such familiar structures
as the integers Z together with the single operation of addition, or invertible 2⇥ 2 matrices
together with the single operation of matrix multiplication. The integers and the 2⇥2 matrices,
together with their respective single operations, are examples of algebraic structures known as
groups.

Modern group theory1 arose from an attempt to find the roots of a polynomial (namely in
terms of its coefficients). Groups nowadays play an important role in areas such as coding
theory, statistics, and the study of symmetries (with examples in areas of biology, physics and
chemistry).

We will address groups in section 2.6 but for now let us introduce some mathematical struc-
tures that can be viewed as sets with single operations.

2.5.1. The Integers mod n. In the theory and applications of algebra, the integers mod n
have become indispensable. They are used in cryptography, coding theory, and the detection of
errors in identification codes. We have already seen that two integers a and b are equivalent mod
n if n divides a�b. The integers mod n also partition Z into n different equivalence classes; we
will denote the set of these equivalence classes by Zn. Consider the integers modulo 12 and the
corresponding partition of the integers:

[0] = {. . . ,�12,0,12,24, . . .},

[1] = {. . . ,�11,1,13,25, . . .},
...

[11] = {. . . ,�13,�1,11,23,35, . . .}.

When no confusion can arise, we will use 0,1, . . . ,11 to indicate the equivalence classes [0], [1], . . . , [11]

respectively. We can do arithmetic on Zn. For two integers a and b, define addition modulo n to

1William Burnside’s [30], first published in 1897 one of the first modern treatments of group theory.
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be (a+b) (mod n); that is, the remainder when a+b is divided by n. Similarly, multiplication
modulo n is defined as (ab) (mod n), the remainder when ab is divided by n.

EXAMPLE. The following examples illustrate integer arithmetic modulo n:

7+4 ⌘ 1 (mod 5) 7 ·3 ⌘ 1 (mod 5)

3+5 ⌘ 0 (mod 8) 3 ·5 ⌘ 7 (mod 8)

3+4 ⌘ 7 (mod 12) 3 ·4 ⌘ 0 (mod 12).

In particular, notice that it is possible that the product of two nonzero numbers modulo n can be
equivalent to 0 modulo n.

Table 2.1. Multiplication table for Z8

· 0 1 2 3 4 5 6 7
0 0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6 7
2 0 2 4 6 0 2 4 6
3 0 3 6 1 4 7 2 5
4 0 4 0 4 0 4 0 4
5 0 5 2 7 4 1 6 3
6 0 6 4 2 0 6 4 2
7 0 7 6 5 4 3 2 1

EXAMPLE. Most, but not all, of the usual laws of arithmetic hold for addition and mul-
tiplication in Zn. For instance, it is not necessarily true that there is a multiplicative inverse.
Consider the multiplication table for Z8 in Table 2.1. Notice that 2, 4, and 6 do not have multi-
plicative inverses; that is, for n = 2, 4, or 6, there is no integer k such that kn⌘ 1 (mod 8).

PROPOSITION 17. Let Zn be the set of equivalence classes of the integers mod n and a,b,c2
Zn.

(1) Addition and multiplication are commutative:

a+b ⌘ b+a (mod n)

ab ⌘ ba (mod n).

(2) Addition and multiplication are associative:

(a+b)+ c ⌘ a+(b+ c) (mod n)

(ab)c ⌘ a(bc) (mod n).
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(3) There are both an additive and a multiplicative identity:

a+0 ⌘ a (mod n)

a ·1 ⌘ a (mod n).

(4) Multiplication distributes over addition:

a(b+ c)⌘ ab+ac (mod n).

(5) For every integer a there is an additive inverse �a:

a+(�a)⌘ 0 (mod n).

(6) Let a be a nonzero integer. Then gcd(a,n) = 1 if and only if there exists a multiplicative
inverse b for a (mod n); that is, a nonzero integer b such that

ab⌘ 1 (mod n).

2.5.2. The Method of Repeated Squares. If we want to compute powers modulo n quickly
and efficiently the first thing to notice is that any number a can be written as the sum of distinct
powers of 2; that is, we can write

a = 2k1 +2k2 + · · ·+2kn ,

where k1 < k2 < · · · < kn. This is just the binary representation of a. For example, the binary
representation of 57 is 111001, since we can write 57 = 20 +23 +24 +25. The laws of exponents
still work in Zn; that is, if b ⌘ ax (mod n) and c ⌘ ay (mod n), then bc ⌘ ax+y (mod n). We
can compute a2k

(mod n) in k multiplications by computing

a20
(mod n)

a21
(mod n)
...

a2k
(mod n).

Each step involves squaring the answer obtained in the previous step, dividing by n, and taking
the remainder.

The method of repeated squares is a very useful tool for RSA cryptography [31]. To encode and
decode messages in a reasonable manner under this scheme, it is necessary to be able to quickly
compute large powers of integers mod n.

2.5.3. Symmetries. A symmetry of a geometric figure is a rearrangement of the figure pre-
serving the arrangement of its sides and vertices as well as its distances and angles. A map from
the plane to itself preserving the symmetry of an object is called a rigid motion. For example,
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if we look at the rectangle in Figure 2.3, it is easy to see that a rotation of 180� or 360� returns
a rectangle in the plane with the same orientation as the original rectangle and the same rela-
tionship among the vertices. A reflection of the rectangle across either the vertical axis or the
horizontal axis can also be seen to be a symmetry. However, a 90� rotation in either direction
cannot be a symmetry unless the rectangle is a square.

A B

id

D C

A B

D C

A B

180º
D C

C D

B A

rotation

A B

D C

B A

C D

reflection

A B

D C

D C

A B

reflection

Figure 2.3. Rigid motions of a rectangle

Let us find the symmetries of the equilateral triangle4ABC. To find a symmetry of4ABC,
we must first examine the permutations of the vertices A, B, and C and then ask if a permutation
extends to a symmetry of the triangle. Recall that a permutation of a set S is a one-to-one and
onto map i.e. p : S! S. The three vertices have 3! = 6 permutations, so the triangle has at
most six symmetries. To see that there are six permutations, observe there are three different
possibilities for the first vertex, and two for the second, and the remaining vertex is determined
by the placement of the first two. So we have 3 ·2 ·1 = 3! = 6 different arrangements. To denote
the permutation of the vertices of an equilateral triangle that sends A to B, B to C, and C to A,
we write the array

 

A B C
B C A

!

.

Notice that this particular permutation corresponds to the rigid motion of rotating the triangle
by 120� in a clockwise direction. In fact, every permutation gives rise to a symmetry of the
triangle. All of these symmetries are shown in Figure 2.4.
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✓

A B C
B A C

◆

µ2 =

✓

A B C
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◆

µ1 =

✓

A B C
A C B

◆

r2 =

✓

A B C
C A B

◆

r1 =

✓

A B C
B C A

◆

id =

✓

A B C
A B C

◆

Figure 2.4. Symmetries of a triangle

A natural question to ask is what happens if one motion of the triangle 4ABC is followed
by another. Which symmetry is µ1r1; that is, what happens when we do the permutation r1 and
then the permutation µ1?2 We have

(µ1r1)(A) = µ1(r1(A)) = µ1(B) = C

(µ1r1)(B) = µ1(r1(B)) = µ1(C) = B

(µ1r1)(C) = µ1(r1(C)) = µ1(A) = A.

This is the same symmetry as µ2. Suppose we do these motions in the opposite order, r1 then
µ1. It is easy to determine that this is the same as the symmetry µ3; hence, r1µ1 6= µ1r1. A
multiplication table for the symmetries of an equilateral triangle 4ABC is given in Table 2.2.
We will refer to this table in chapter 4.

Notice that in the multiplication table for the symmetries of an equilateral triangle, for every
motion of the triangle a there is another motion a

0 such that aa

0 = id; that is, for every motion
there is another motion that takes the triangle back to its original orientation.

2Remember that we are composing functions here. Although we usually multiply left to right, we compose func-
tions right to left.
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Table 2.2. Symmetries of an equilateral triangle

� id r1 r2 µ1 µ2 µ3
id id r1 r2 µ1 µ2 µ3
r1 r1 r2 id µ3 µ1 µ2
r2 r2 id r1 µ2 µ3 µ1
µ1 µ1 µ2 µ3 id r1 r2
µ2 µ2 µ3 µ1 r2 id r1
µ3 µ3 µ1 µ2 r1 r2 id

2.6. Groups

The integers mod n and the symmetries of a triangle or a rectangle are both examples of
groups. A binary operation or law of composition on a set G is a function G⇥G! G that
assigns to each pair (a,b) 2 G a unique element a � b, or ab in G, called the composition of a
and b. A group (G,�) is a set G together with a law of composition (a,b) 7! a�b that satisfies
the following axioms.

• The law of composition is associative. That is,

(a�b)� c = a� (b� c)

for a,b,c 2 G.
• There exists an element e2G, i.e. the identity element, such that for any element a2G

e�a = a� e = a.

• For each element a 2 G, there exists an inverse element a�1 in G, such that

a�a�1 = a�1 �a = e.

A group G with the property that a�b = b�a for all a,b 2 G is called abelian or commutative.
Groups not satisfying this property are said to be nonabelian or noncommutative.

EXAMPLE. The integers Z = {. . . ,�1,0,1,2, . . .} form a group under the operation of ad-
dition. The binary operation on two integers m,n 2 Z is just their sum. Since the integers under
addition already have a well-established notation, we will use the operator + instead of �; that
is, we shall write m + n instead of m � n. The identity is 0, and the inverse of n 2 Z is written
as �n instead of n�1. Notice that the integers under addition have the additional property that
m+n = n+m and are therefore an abelian group.

Most of the time we will write ab instead of a�b; however, if the group already has a natural
operation such as addition in the integers, we will use that operation. That is, if we are adding
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two integers, we still write m + n, �n for the inverse, and 0 for the identity as usual. We also
write m�n instead of m+(�n).

Table 2.3. Cayley table for (Z5,+)

+ 0 1 2 3 4
0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1
3 3 4 0 1 2
4 4 0 1 2 3

It is often convenient to describe a group in terms of an addition or multiplication table.
Such a table is called a Cayley table.

EXAMPLE. The integers mod n form a group under addition modulo n. Consider Z5, con-
sisting of the equivalence classes of the integers 0, 1, 2, 3, and 4. We define the group operation
on Z5 by modular addition. We write the binary operation on the group additively; that is,
we write m + n. The element 0 is the identity of the group and each element in Z5 has an in-
verse. For instance, 2 + 3 = 3 + 2 = 0. Table 2.3 is a Cayley table for Z5. By Proposition 17,
Zn = {0,1, . . . ,n�1} is a group under the binary operation of addition mod n.

EXAMPLE. Not every set with a binary operation is a group. For example, if we let modular
multiplication be the binary operation on Zn, then Zn fails to be a group. The element 1 acts
as a group identity since 1 · k = k ·1 = k for any k 2 Zn; however, a multiplicative inverse for 0
does not exist since 0 · k = k ·0 = 0 for every k in Zn. Even if we consider the set Zn \{0}, we
still may not have a group. For instance, let 2 2 Z6. Then 2 has no multiplicative inverse since

0 ·2 = 0 1 ·2 = 2
2 ·2 = 4 3 ·2 = 0
4 ·2 = 2 5 ·2 = 4.

By Proposition 17, every nonzero k does have an inverse in Zn if k is relatively prime to n.
Denote the set of all such nonzero elements in Zn by Mn(sometimes also written U(n)). Then
Mn is a group called the group of units of Zn. Table 2.4 is a Cayley table for the group M8. We
will discuss this subject further in section 2.7.
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Table 2.4. Multiplication table for M8

· 1 3 5 7
1 1 3 5 7
3 3 1 7 5
5 5 7 1 3
7 7 5 3 1

EXAMPLE. The symmetries of an equilateral triangle described in Section 2.5.3 form a
nonabelian group. As we observed, it is not necessarily true that ab = ba for two symmetries
a and b . Using Table 2.2, which is a Cayley table for this group, we can easily check that the
symmetries of an equilateral triangle are indeed a group. We will denote this group by either S3

or D3, for reasons that will be explained later (section A.2).

EXAMPLE. Let C⇤ be the set of nonzero complex numbers. This set C⇤, under the operation
of multiplication, forms a group. The identity is 1. If z = a+bi is a nonzero complex number,
then

z�1 =
a�bi

a2 +b2

is the inverse of z. It is easy to see that the remaining group axioms hold.

If a group contains a finite number of elements it is finite, or has finite order; otherwise, the
group is said to be infinite or to have infinite order. The order of a finite group is the number of
elements that it contains. If G is a group containing n elements, we write |G| = n. The group
Z5 is a finite group of order 5; the integers Z form an infinite group under addition, and we
sometimes write |Z| = •.

2.6.1. Basic Properties of Groups.

PROPOSITION 18. The identity element in a group G is unique; that is, there exists only one
element e 2 G such that eg = ge = g for all g 2 G.

Inverses in a group are also unique. If there were two different inverses g0 and g00 of an element

g in a group G, then gg0 = g0g = e and gg00 = g00g = e.

PROPOSITION 19. If g is any element in a group G, then the inverse of g, g�1, is unique.

PROPOSITION 20. Let G be a group. If a,b 2 G, then (ab)�1 = b�1a�1.
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PROPOSITION 21. Let G be a group. For any a 2 G, (a�1)�1 = a.

PROPOSITION 22. If G is a group and a,b,c 2 G, then ba = ca implies b = c and ab = ac
implies b = c.

This proposition tells us that the right and left cancellation laws are true in groups. We can
use exponential notation for groups just as we do in ordinary algebra. If G is a group and g 2G,
then we define g0 = e. For n 2 N, we define

gn = g ·g · · ·g
| {z }

n times

and
g�n = g�1 ·g�1 · · ·g�1

| {z }

n times

.

THEOREM 23. In a group, the usual laws of exponents hold; that is, for all g,h 2 G,

(1) gmgn = gm+n for all m,n 2 Z;
(2) (gm)n = gmn for all m,n 2 Z;
(3) (gh)n = (h�1g�1)�n for all n 2 Z. Furthermore, if G is abelian, then (gh)n = gnhn.

Notice that (gh)n 6= gnhn in general, since the group may not be abelian. If the group is Z or
Zn, we write the group operation additively and the exponential operation multiplicatively; that
is, we write ng instead of gn. The laws of exponents now become

(1) mg+ng = (m+n)g for all m,n 2 Z;
(2) m(ng) = (mn)g for all m,n 2 Z;
(3) m(g+h) = mg+mh for all n 2 Z.

It is important to realize that the last statement can be made only because Z and Zn are commu-
tative groups.

2.6.2. Subgroups. Sometimes we wish to investigate smaller groups sitting inside a larger
group. The set of even integers 2Z = {. . . ,�2,0,2,4, . . .} is a group under the operation of
addition. This smaller group sits naturally inside of the group of integers under addition. We
define a subgroup H of a group G to be a subset H of G such that when the group operation
of G is restricted to H, H is a group in its own right. Observe that every group G with at least
two elements will always have at least two subgroups, the subgroup consisting of the identity
element alone and the entire group itself. The subgroup H = {e} of a group G is called the
trivial subgroup. A subgroup that is a proper subset of G is called a proper subgroup.
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EXAMPLE. Consider the set of nonzero real numbers, R⇤, with the group operation of
multiplication. The identity of this group is 1 and the inverse of any element a 2R⇤ is just 1/a.
Note that

Q⇤ = {p/q : pandqarenonzero integers}

is a subgroup of R⇤. The identity of R⇤ is 1; however, 1 = 1/1 is the quotient of two nonzero
integers. Hence, the identity of R⇤ is in Q⇤. Given two elements in Q⇤, say p/q and r/s,
their product pr/qs is also in Q⇤. The inverse of any element p/q 2 Q⇤ is again in Q⇤ since
(p/q)�1 = q/p. Since multiplication in R⇤ is associative, multiplication in Q⇤ is associative.

EXAMPLE. Recall that C⇤ is the multiplicative group of nonzero complex numbers. Let
H = {1,�1, i,�i}. Then H is a subgroup of C⇤. It is quite easy to verify that H is a group
under multiplication and that H ⇢ C⇤.

EXAMPLE. One way of telling whether or not two groups are the same is by examining
their subgroups. Other than the trivial subgroup and the group itself, the group Z4 has a single
subgroup consisting of the elements 0 and 2. From the group Z2, we can form another group
of four elements as follows. As a set this group is Z2⇥Z2. We perform the group operation
coordinate-wise; that is, (a,b)+ (c,d) = (a + c,b + d). Table 2.5 is an addition table for Z2⇥
Z2. Since there are three nontrivial proper subgroups of Z2⇥Z2, H1 = {(0,0),(0,1)}, H2 =

{(0,0),(1,0)}, and H3 = {(0,0),(1,1)}, Z4 and Z2⇥Z2 must be different groups.

Table 2.5. Addition table for Z2⇥Z2

+ (0,0) (0,1) (1,0) (1,1)
(0,0) (0,0) (0,1) (1,0) (1,1)
(0,1) (0,1) (0,0) (1,1) (1,0)
(1,0) (1,0) (1,1) (0,0) (0,1)
(1,1) (1,1) (1,0) (0,1) (0,0)

Let us examine some criteria for determining exactly when a subset of a group is a subgroup.

PROPOSITION 24. A subset H of G is a subgroup if and only if it satisfies the following
conditions.

(1) The identity e of G is in H.
(2) If h1,h2 2 H, then h1h2 2 H.
(3) If h 2 H, then h�1 2 H.
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PROPOSITION 25. Let H be a subset of a group G. Then H is a subgroup of G if and only
if H 6= /0, and whenever g,h 2 H then gh�1 is in H.

For more advanced topics in group theory see [32, 33, 34, 35, 36]. Reference [27], in particular,
show how group theory can be used in error detection schemes.

2.7. Prime residue groups

This section presents some facts about the structure of the prime residue group denoted by
Mm, that is, the multiplicative group of integers coprime to m.

2.7.1. Definitions.
(1) If (a, m) = 1 and a is of order e modulo m, the e residue classes a1, a2, · · · , ae, are

called the cycle of a modulo m. The number of residue classes in Mn is given by the
totient function f (m) (see definition on page 51).

(2) If a set S of elements in a group G is closed under the group operation and contains
the identity and the inverse of each of its elements, it is called a subgroup of G .

2.7.2. Cycle graphs. It is clear that each cycle of Mm is a cyclic subgroup of Mm. A
diagram of a group, which shows every cycle in the group, and the connectivity among these
cycles, is called a cycle graph of the group. First consider the cycle graph of M15 = {1, 2, 4,
7, 8, 11, 13, 14} illustrated in Figure 2.5. The powers of 2 (mod 15), namely 2, 4, 8, 16⌘1,
etc., constitute the cycle of 2 modulo 15. This cyclic subgroup of M15 has order 4. The element
13⌘ �2 (mod 15) is not in this subgroup. Therefore the cycle of 13, which is also of order 4,
is connected to the cycle of 2 only at their even powers, that is, it is connected at the quadratic
residues. Two other cycles, those of 11 and 14, of order 2 complete the f (15) = 8 residue
classes in M15. No residue class is of order 8 (mod 15) and therefore M15 is not cyclic.

Here we are concerned only with the ordering in, and topology of, the cycles. Their actual
size, shape and location does not matter. From the graph we can easily read off the powers,
order and inverse of every residue class.

2.7.3. Collected knowledge. In the context of cyclic groups it is important to know for
which values of m are the Mm cyclic.

THEOREM 26. (Gauss) Mm is cyclic, that is, m has a primitive root, if and only if m is one
of the following:

m = 2, 4, , pn, 2pn

where p is an odd prime and n� 1.
For different m there are groups with the same order and therefore another important ques-

tion is which Mm are isomorphic?
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Figure 2.5. Cycle graph of M15

THEOREM 27. (Shanks factorization fm) Mm0 ' Mm00 if and only if the factorizations fm0

and fm00 are identical.

The factorization fm starts with the standard factorization m = ’ pai
i . The order of Mm is

f (m) = ’ pai�1
i (pi�1) .

Next, assume that pi�1 = ’ j qbi j
i j where qi j, j = 1,2, . . ., are distinct primes. Then, f (m)

takes the form
f (m) = ’

i, j
pai�1

i qbi j
i j .

fm takes the above representation with a minor modification (giving rise to the prime power
orders of the abelian groups in the direct product decomposition of Mm). The modification is
that if 2a | m for a � 3, then a factor 2 has to be separated from f (2a) and thus f (2a) = 2a�1

has to be written 2 ·2a�2 in such a case.

m = 15 = 3 ·5, f15 = 2 ·4
m = 16 = 24, f16 = 2 ·4

Since f15 and f16 are identical, M15 'M16 as illustrated in Figure 2.6. We can also check
that M15 'M16 'M20 'M30.

Note that for m = 2n, n > 3, there are two classes of numbers 8k + 1 and 8k� 1 that play
special roles in the structure of M2n . But the other two classes 8k + 3 and 8k� 3 play similar
roles. For n� 3, r is a quadratic residue if and only if r = 8k +1.

It would be interesting if we could characterize the structure of Mm by a formula. That is
the subject of the following theorem.
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Figure 2.6. Isomorphic cycle graphs, M15 'M16

THEOREM 28. (Shanks factorization Fm) If Fm is the product of s characteristic factors ci,
for each ci there is a residue class gi, of order ci (mod m), such that every residue class a j in
Mm can be expressed as

a j = gu1, j
1 gu2, j

2 · · · gus, j
s

with 0  ui, j < ci in one and only one way. We say that Mm is the direct product of the s
cycles of the gi.

It is well known that every finite abelian group can be written as a direct product of cyclic
groups of prime power orders. Moreover, the direct product of two cyclic groups of orders m0

and m00, if (m0,m00) = 1, is itself a cyclic group. Therefore, in general, there is no need to reduce
an abelian group into group factors of prime power orders in expressing that group as a product
of cyclic groups. The decomposition can be effected with certain suitably chosen larger cyclic
group factors. This is the idea behind the alternative factorization Fm.

As just explained we can multiply occurring powers of different primes, and thus (some-
times) find several different representations of Mm. Among all possibilities, Fm is the one that
gives the least number of group factors. This is accomplished by first multiplying all the highest
prime powers of each individual prime in the representation fm. The procedure is then repeated
on the prime powers remaining after the first round, and so on.

m = 65 = 5 ·13, f65 = 4 ·4 ·3, F65 = 12 ·4
m = 104 = 23 ·13, f104 = 2 ·2 ·4 ·3, F65 = 12 ·2 ·2

The technique described leads to a result in which the first factor found is an integer multiple
of all factors subsequently discovered. Those cyclic groups Cci , the direct product of which give
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Mm, thus have orders ci which all divide the largest of these orders, called Carmichael’s function
l (m).

If Mm is not cyclic, a
1
2 f(m) ⌘ 1 (mod m) for every a prime to m. Further, the product R of all

residue classes is given by R = (g1g2 · · ·gs)
1
2 f(m) (mod m) and thus R⌘�1 or R⌘ 1 according

as Mm is cyclic or not.
It is clear that if Mm is cyclic there is an element a of order f (m) (mod m). On the other

hand if Mm is not cyclic we can ask what is the largest order possible within the group? The
answer results from a consequence of theorem 28.

THEOREM 29. (Largest ci) If ci are characteristic factors of Mm, then ci | c j if i  j. It
follows that if cs is the largest characteristic factor of Mm, acs ⌘ 1 (mod m) for every residue
class a in Mm. The largest factor cs corresponds to the Carmichael function l (m).

If Mm is cyclic there are 1
2f (m) quadratic residues.

THEOREM 30. (Number of quadratic residues) If m > 2, and Mm has s characteristic fac-
tors, m has f (m) ·2�s quadratic residues, and each of these has 2s square roots.

Another useful theorem is this:

THEOREM 31. In every finite Abelian group, if x2 = a possesses n solutions x, then every
square, y2 = b, possesses n solutions. In particular, in Mm, every quadratic residue has an equal
number of square roots modulo m.

Now, we’d like to ask, is every finite Abelian group isomorphic to a subgroup of an Mm?

THEOREM 32. Every finite Abelian group is isomorphic to a subgroup of Mm for infinitely
many different values of m.

Assume, from group theory, that every finite abelian group A can be written as a direct
product of cyclic subgroups, that is,

ai = ga1,i
1 ga2,i

2 · · ·gas,i
s

for every ai in A . The generator g j is of order m j and | A |= m1m2 · · ·ms. This implies
that the cycles of any two generators g j and gk have no element in common except the identity
g0

j = g0
k .

The representation ai above may be decomposed into cycles of prime power order. Assume
this done, and that m j is now equal to pa j

j for p j prime and a j � 1.
Now let

N = q1q2 · · ·qs
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where q j is a prime of the form kpa j
j +1. Then MN will contain a cycle of order q j�1 = kpa j

j

generated by a residue class r j. Further t j ⌘ rk
j (mod N) has a cycle of order pa j

j and the
subgroup of MN generated by

ta1,i
1 ta2,i

2 · · · tas,i
s

is isomorphic to A .

EXAMPLE. Let A be an abelian group of order 9 represented by a = xayb where x and y
are elements of A both being of order 3. For the prime 3, the first primes of the form k · 3 + 1
are 7 and 13 for k = 2,4 respectively. Now N = 91 = 7 · 13, ( f91 = 2 · 3 · 4 · 3, F91 = 6 · 12 ).
Therefore A is isomorphic to a subgroup of M91. A representation of M91 is g = 66a15b (mod
91) with 66 of order 6, and 15 of order 12. Then 662 ⌘ 79, and 154 ⌘ 29, are both of order 3
and A is isomorphic to the subgroup of M91 given by a = 79a29b (mod 91).

2.7.4. Isomorphism with cyclic groups. The group Mn of residue classes (or congruence
classes) prime to n under multiplication modulo n is the group of units (elements with a multi-
plicative inverse) of the ring of integers modulo n, i.e. Mn ⇠= Z⇥n . It is straightforward to show
that this group is abelian. Modulo multiplication groups such as Mn are isomorphic to cyclic
groups Cn. The structure of Mn depends on n. Assume first that n is a power of two. For n = 2,
there is only one relatively prime congruence class, 1, so Z⇥2 ⇠= {1} is trivial. For n = 4, there are
two relatively prime congruence classes, 1 and 3, so Z⇥4 ⇠= C2, the cyclic group with 2 elements.
Modulo 8 there are four relatively prime congruence classes, 1, 3, 5 and 7. The square of each
of these is 1 so Z⇥8 ⇠= C2⇥C2, also known as the Klein four-group. Modulo 16 there are eight
relatively prime residue classes, 1, 3, 5, 7, 9, 11, 13, and 15. Note that {±1, ±7} ⇠= C2⇥C2 is
the 2-torsion subgroup (i.e. the square of each element is 1). The powers of 3, {1, 3, 9, 11} are
a subgroup of order 4, as are the powers of 5, {1, 5, 9, 13}. Thus, Z⇥16

⇠= C2⇥C4. The pattern
occurring for n = 8 and n = 16 holds for higher powers 2k, k > 2: {±1, 2k�1±1} ⇠= C2⇥C2 is
the 2-torsion subgroup (so Z⇥2k is not cyclic). Since the powers of 3 are a subgroup of order 2k�2,
it follows Z⇥2k

⇠=C2⇥C2k�2 . Next we consider n as a power of an odd prime. Then, Z⇥pk
⇠=C

f(pk)
. Lastly, for the composite case, n = pk1

1 pk2
2 · · · , the group of units is the direct product of the

groups corresponding to each of the prime power factors, i.e. Z⇥n ⇠= Z⇥
pk1

1
⇥Z⇥

pk2
2
⇥ · · · . In gen-

eral, the abstract group corresponding to a given Mn can be determined explicitly in terms of
a group direct product of cyclic groups of the so called characteristic factors, whose product is
denoted by F(n), [37]. Note that the group order | Mn |= f (n) is the product of the orders of the
cyclic groups in the direct product. Note also that the least common multiple of the orders of the
cyclic groups is given by the Carmichael function l (n), meaning that if g and n are relatively
prime, gl (n) ⌘ 1 (mod n).
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2.8. Cyclic Groups

The groups Z and Zn, are both examples of what are called cyclic groups. In this section we
will study the properties of cyclic groups and cyclic subgroups, which play a fundamental part
in the classification of all abelian groups.

Often a subgroup will depend entirely on a single element of the group; that is, knowing
that particular element will allow us to compute any other element in the subgroup.

EXAMPLE. Suppose that we consider 3 2 Z and look at all multiples (both positive and
negative) of 3. As a set, this is

3Z = {. . . ,�3,0,3,6, . . .}.

It is easy to see that 3Z is a subgroup of the integers. This subgroup is completely determined
by the element 3 since we can obtain all of the other elements of the group by taking multiples
of 3. Every element in the subgroup is “generated” by 3.

EXAMPLE. If H = {2n : n2Z}, then H is a subgroup of the multiplicative group of nonzero
rational numbers, Q⇤. If a = 2m and b = 2n are in H, then ab�1 = 2m2�n = 2m�n is also in H.
By proposition 25, H is a subgroup of Q⇤ determined by the element 2.

THEOREM 33. Let G be a group and a be any element in G. Then the set

hai= {ak : k 2 Z}

is a subgroup of G. Furthermore, hai is the smallest subgroup of G that contains a.

REMARK. If we are using the “+” notation, as in the case of the integers under addition, we
write hai= {na : n 2 Z}.

For a 2 G, we call hai the cyclic subgroup generated by a. If G contains some element a
such that G = hai, then G is a cyclic group. In this case a is a generator of G. If a is an element
of a group G, we define the order of a to be the smallest positive integer n such that an = e, and
we write |a| = n. If there is no such integer n, we say that the order of a is infinite and write
|a| = • to denote the order of a.

EXAMPLE. Notice that a cyclic group can have more than a single generator. Additively,
both 1 and 5 generate Z6; hence, Z6 is a cyclic group. Not every element in a cyclic group is
necessarily a generator of the group. The order of 2 2 Z6 is 3. The cyclic subgroup generated
by 2 is h2i= {0,2,4}.
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The groups Z and Zn are cyclic groups. The elements 1 and �1 are generators for Z. We
can certainly generate Zn with 1 although there may be other generators of Zn, as in the case of
Z6.

EXAMPLE. The group of units, M9, in Z9 is a cyclic group. As a set, M9 is {1,2,4,5,7,8}.
The element 2 is a generator for M9 since

21 = 2 22 = 4
23 = 8 24 = 7
25 = 5 26 = 1.

Not every group is a cyclic group. Consider the symmetry group of an equilateral triangle
S3. The multiplication table for this group is Table 2.2. The subgroups of S3 are shown in
Figure 2.7. Note that every subgroup is cyclic but no single element generates the entire group.

S3

{id}

{id,r1,r2} {id,µ1} {id,µ2} {id,µ3}
!!!!!!!!

aaaaaaaa

◆
◆
◆

S
S
S

S
S

S

◆
◆

◆

aaaaaaaa

!!!!!!!!

Figure 2.7. Subgroups of S3

THEOREM 34. Every cyclic group is abelian.

We can ask some interesting questions about cyclic subgroups of a group and subgroups of a
cyclic group. If G is a group, which subgroups of G are cyclic? If G is a cyclic group, what
type of subgroups does G possess?

THEOREM 35. Every subgroup of a cyclic group is cyclic.

PROPOSITION 36. Let G be a cyclic group of order n and suppose that a is a generator for
G. Then ak = e if and only if n divides k.

THEOREM 37. Let G be a cyclic group of order n and suppose that a 2 G is a generator of
the group. If b = ak, then the order of b is n/d, where d = gcd(k,n).
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COROLLARY 38. The generators of Zn are the integers r such that 1 r < n and gcd(r,n) =

1.

EXAMPLE. Let us examine the group Z16. The numbers 1, 3, 5, 7, 9, 11, 13, and 15 are
the elements of Z16 that are relatively prime to 16. Each of these elements generates Z16. For
example,

1 ·9 = 9 2 ·9 = 2 3 ·9 = 11
4 ·9 = 4 5 ·9 = 13 6 ·9 = 6
7 ·9 = 15 8 ·9 = 8 9 ·9 = 1

10 ·9 = 10 11 ·9 = 3 12 ·9 = 12
13 ·9 = 5 14 ·9 = 14 15 ·9 = 7.

2.9. The multiplicative group of complex numbers

The complex numbers are defined as C = {a+b j : a,b 2R}, where j2 =�1. If z = a+b j,
then a is the real part of z and b is the imaginary part of z. Every nonzero complex number
z = a+b j has a multiplicative inverse; that is, there exists a z�1 2C⇤ such that zz�1 = z�1z = 1.
The complex conjugate of a complex number z = a + b j is defined to be z⇤ = a� b j. The
absolute value or modulus of z = a+b j is |z| =

p
a2 +b2.

We can represent a complex number z = a + b j as an ordered pair on the xy plane where a is
the x (or real) coordinate and b is the y (or imaginary) coordinate. This is called the rectangular
or Cartesian representation. Nonzero complex numbers can also be represented using polar
coordinates. To specify any nonzero point on the plane, it suffices to give an angle q from the
positive x axis in the counterclockwise direction and a distance r from the origin. We can see
that

z = a+b j = r(cosq + j sinq).

Hence,
r = |z| =

p

a2 +b2

and

a = r cosq

b = r sinq .

We sometimes abbreviate r(cosq + j sinq) as r cisq . To assure that the representation of z
is well-defined, we also require that 0�  q < 360�. If the measurement is in radians, then
0 q < 2p .
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The polar representation of a complex number makes it easy to find products and powers of
complex numbers.

PROPOSITION 39. Let z = r cisq and w = scisf be two nonzero complex numbers. Then

zw = rscis(q +f).

THEOREM 40. (DeMoivre) Let z = r cisq be a nonzero complex number. Then

[r cisq ]n = rn cis(nq)

for n = 1,2, . . ..

The Circle Group and the Roots of Unity. The multiplicative group of the complex num-
bers, C⇤, possesses some interesting subgroups. Whereas Q⇤ and R⇤ have no interesting sub-
groups of finite order, C⇤ has many. We first consider the circle group,

T = {z 2 C : |z| = 1}.

PROPOSITION 41. The circle group is a subgroup of C⇤.

Although the circle group has infinite order, it has many interesting finite subgroups. Sup-
pose that H = {1,�1, i,�i}. Then H is a subgroup of the circle group. Also, 1, �1, i, and
�i are exactly those complex numbers that satisfy the equation z4 = 1. The complex numbers
satisfying the equation zn = 1 are called the nth roots of unity.

THEOREM 42. If zn = 1, then the nth roots of unity are

z = cis
✓

2kp

n

◆

,

where k = 0,1, . . . ,n�1. The nth roots of unity form a cyclic subgroup of T and its order is n.

DEFINITION 43. A generator for the group of the nth roots of unity is called a primitive nth
root of unity.
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EXAMPLE. The 8th roots of unity can be represented as eight equally spaced points on the
unit circle (Figure 2.8). The primitive 8th roots of unity are

w =
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p
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2
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2
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2
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3

Figure 2.8. 8th roots of unity

2.10. Conclusion

In this chapter we provided important definitions and outlined, in theorem form, some re-
sults of algebraic structures, namely groups. We left the proofs outside the main text since these
can be readily found in standard algebra books like those that were listed throughout. However,
we used some examples to clarify the concepts.

After an introduction to basic material like set theory, mappings and partitions we con-
centrated on group theory. In chapter 4 we use group geometric properties and relate some
operations on codes as equivalent to the symmetries of the dihedral group. In chapter 5, we fo-
cus mostly on group permutations as an efficient way to generate all codewords of a particular
cyclic code. Both in chapter 4 and 5 we will provide links to the appropriate sections in this
chapter to make the reading as straightforward as possible.
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CHAPTER 3

FUNDAMENTALS OF CODING AND NUMBER THEORY

3.1. Introduction

Coding theory is an application of algebra that has become increasingly important over the
last several decades. When we transmit data, we are concerned about sending a message over a
channel that could be affected by “noise.” We wish to be able to encode and decode the infor-
mation in a manner that will allow the detection, and possibly the correction, of errors caused by
noise. This situation arises in many areas of communications, including radio, telephone, tele-
vision, computer communications, and even satellite technology. Probability, combinatorics,
group theory, linear algebra, and polynomial rings over finite fields all play important roles in
coding theory. However in this chapter we concentrate on the fundamentals, first giving an in-
troduction to algebraic coding theory and then presenting some fundamental results of number
theory. Both are important in providing the context for the presentation of TCH codes that were
the starting point for the further developments presented in this thesis. Since TCH codewords
were represented via a connection with primitive elements of a finite field we also make a bridge
between the group theory presented in the previous chapter and the essentials of finite fields.

3.2. Error-Detecting and Correcting Codes

The material presented on the next two sections is mostly based on [1] but we provide other
references for completion. Let us examine a simple model of a communications system for
transmitting and receiving coded messages (Figure 3.1).

Uncoded messages may be composed of letters or characters, but typically they consist of
binary m-tuples. These messages are encoded into codewords, consisting of binary n-tuples, by
a device called an encoder. The message is transmitted and then decoded. We will consider
the occurrence of errors during transmission. An error occurs if there is a change in one or
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m-digit received message or error

n-digit received word

Noise

n-digit codeword

m-digit message

Decoder

Receiver

Transmitter

Encoder

?

?

?

?

?

Figure 3.1. Encoding and decoding messages

more bits in the codeword. A decoding scheme is a method that either converts an arbitrarily
received n-tuple into a meaningful decoded message or gives an error message for that n-tuple.
If the received message is a codeword (one of the special n-tuples allowed to be transmitted),
then the decoded message must be the unique message that was encoded into the codeword. For
received noncodewords, the decoding scheme will give an error indication, or, if we are more
clever, will actually try to correct the error and reconstruct the original message. Our goal is to
transmit error-free messages as cheaply and quickly as possible.

EXAMPLE. One possible coding scheme would be to send a message several times and
to compare the received copies with one another. Suppose that the message to be encoded
is a binary n-tuple (x1,x2, . . . ,xn). The message is encoded into a binary 3n-tuple by simply
repeating the message three times:

(x1,x2, . . . ,xn) 7! (x1,x2, . . . ,xn,x1,x2, . . . ,xn,x1,x2, . . . ,xn).

To decode the message, we choose as the ith digit the one that appears in the ith place in
at least two of the three transmissions. For example, if the original message is (0110), then
the transmitted message will be (0110 0110 0110). If there is a transmission error in the fifth
digit, then the received codeword will be (0110 1110 0110), which will be correctly decoded as
(0110).1 This triple-repetition method will automatically detect and correct all single errors, but
it is slow and inefficient: to send a message consisting of n bits, 2n extra bits are required, and

1In this chapter we will adopt the convention that bits are numbered left to right in binary n-tuples, therefore bit 1
is the most significant bit and bit n the least significant one.
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we can only detect and correct single errors. We will see that it is possible to find an encoding
scheme that will encode a message of n bits into m bits with m much smaller than 3n.

EXAMPLE. Even parity, a commonly used coding scheme, is much more efficient than the
simple repetition scheme. The ASCII (American Standard Code for Information Interchange)
coding system uses binary 8-tuples, yielding 28 = 256 possible 8-tuples. However, only seven
bits are needed since there are only 27 = 128 ASCII characters. What can or should be done
with the extra bit? Using the full eight bits, we can detect single transmission errors. For
example, the ASCII codes for A, B, and C are

A = 6510 = 010000012,

B = 6610 = 010000102,

C = 6710 = 010000112.

Notice that the leftmost bit is always set to 0; that is, the 128 ASCII characters have codes

000000002 = 010,
...

011111112 = 12710.

The bit can be used for error checking on the other seven bits. It is set to either 0 or 1 so that the
total number of 1 bits in the representation of a character is even. Using even parity, the codes
for A, B, and C now become

A = 010000012,

B = 010000102,

C = 110000112.

Suppose an A is sent and a transmission error in the sixth bit is caused by noise over the com-
munication channel so that (01000101) is received. We know an error has occurred since the
received word has an odd number of 1’s, and we can now request that the codeword be trans-
mitted again. When used for error checking, the leftmost bit is called a parity check bit. By far
the most common error-detecting codes used in computers are based on the addition of a parity
bit. Typically, a computer stores information in m-tuples called words. Common word lengths
are 8, 16, and 32 bits. One bit in the word is set aside as the parity check bit, and is not used to
store information. This bit is set to either 0 or 1, depending on the number of 1’s in the word.
Adding a parity check bit allows the detection of all single errors because changing a single bit
either increases or decreases the number of 1’s by one, and in either case the parity has been
changed from even to odd, so the new word is not a codeword. (We could also construct an
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error detection scheme based on odd parity; that is, we could set the parity check bit so that a
codeword always has an odd number of 1’s.)

The even parity system is easy to implement, but has two drawbacks. First, multiple errors
are not detectable. Suppose an A is sent and the first and seventh bits are changed from 0 to
1. The received word is a codeword, but will be decoded into a C instead of an A. Second, we
do not have the ability to correct errors. If the 8-tuple (10011000) is received, we know that an
error has occurred, but we have no idea which bit has been changed. We will now investigate a
coding scheme that will not only allow us to detect transmission errors but will actually correct
the errors.

Table 3.1. A repetition code

Received Word
000 001 010 011 100 101 110 111

Transmitted 000 0 1 1 2 1 2 2 3
Codeword 111 3 2 2 1 2 1 1 0

EXAMPLE. Suppose that our original message is either a 0 or a 1, and that 0 encodes to
(000) and 1 encodes to (111). If only a single error occurs during transmission, we can detect
and correct the error. For example, if a 101 is received, then the second bit must have been
changed from a 1 to a 0. The originally transmitted codeword must have been (111). This
method will detect and correct all single errors. In Table 3.1, we present all possible words
that might be received for the transmitted codewords (000) and (111). Table 3.1 also shows the
number of bits by which each received 3-tuple differs from each original codeword.

Maximum-Likelihood Decoding2. The coding scheme presented in the last example is not
a complete solution to the problem because it does not account for the possibility of multiple
errors. For example, either a (000) or a (111) could be sent and a (001) received. We have no
means of deciding from the received word whether there was a single error in the third bit or
two errors, one in the first bit and one in the second. No matter what coding scheme is used,
an incorrect message could be received: we could transmit a (000), have errors in all three
bits, and receive the codeword (111). It is important to make explicit assumptions about the
likelihood and distribution of transmission errors so that, in a particular application, it will be
known whether a given error detection scheme is appropriate. We will assume that transmission
errors are rare, and, that when they do occur, they occur independently in each bit; that is, if
p is the probability of an error in one bit and q is the probability of an error in a different bit,
2This section requires a knowledge of probability, but can be skipped without loss of continuity.
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3.2. Error-Detecting and Correcting Codes

then the probability of errors occurring in both of these bits at the same time is pq. We will
also assume that a received n-tuple is decoded into a codeword that is closest to it; that is, we
assume that the receiver uses maximum-likelihood decoding.

-

-

��������*HHHHHHHHj
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0

1
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q

q

Figure 3.2. Binary symmetric channel

A binary symmetric channel is a model that consists of a transmitter capable of sending
a binary signal, either a 0 or a 1, together with a receiver. Let p be the probability that the
signal is correctly received. Then q = 1� p is the probability of an incorrect reception. If a 1
is sent, then the probability that a 1 is received is p and the probability that a 0 is received is q
(Figure 3.2). The probability that no errors occur during the transmission of a binary codeword
of length n is pn. For example, if p = 0.999 and a message consisting of 10,000 bits is sent,
then the probability of a perfect transmission is

(0.999)10,000 ⇡ 0.00005.

THEOREM 44. If a binary n-tuple (x1, . . . ,xn) is transmitted across a binary symmetric
channel with probability p that no error will occur in each coordinate, then the probability that
there are errors in exactly k coordinates is

 

n
k

!

qk pn�k.

PROOF. Fix k different coordinates. We first compute the probability that an error has oc-
curred in this fixed set of coordinates. The probability of an error occurring in a particular one
of these k coordinates is q; the probability that an error will not occur in any of the remaining
n� k coordinates is p. The probability of each of these n independent events is qk pn�k. The
number of possible error patterns with exactly k errors occurring is equal to

 

n
k

!

=
n!

k!(n� k)!
,

the number of combinations of n things taken k at a time. Each of these error patterns has
probability qk pn�k of occurring; hence, the probability of all of these error patterns is

 

n
k

!

qk pn�k.
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⇤

EXAMPLE. Suppose that p = 0.995 and a 500-bit message is sent. The probability that the
message was sent error-free is

pn = (0.995)500 ⇡ 0.082.

The probability of exactly one error occurring is
 

n
1

!

qpn�1 = 500(0.005)(0.995)499 ⇡ 0.204.

The probability of exactly two errors is
 

n
2

!

q2 pn�2 =
500 ·499

2
(0.005)2(0.995)498 ⇡ 0.257.

The probability of more than two errors is approximately

1�0.082�0.204�0.257 = 0.457.

Block Codes. If we are to develop efficient error-detecting and error-correcting codes, we
will need more sophisticated mathematical tools. Group theory will allow faster methods of
encoding and decoding messages. A code is an (n,m)-block code if the information that is to be
coded can be divided into blocks of m binary digits, each of which can be encoded into n binary
digits. More specifically,

DEFINITION 45. A (n,m)-block binary code consists of an encoding function

E : Zm
2 ! Zn

2

and a decoding function
D : Zn

2! Zm
2 .

A codeword is any element in the image of E. We also require that E be one-to-one so that
two information blocks will not be encoded into the same codeword. If our code is to be error-
correcting, then D must be onto.

EXAMPLE. The even-parity coding system developed to detect single errors in ASCII char-
acters is an (8,7)-block code. The encoding function is

E(x7,x6, . . . ,x1) = (x8,x7, . . . ,x1),

where x8 = x7 + x6 + · · ·+ x1 with addition in Z2.
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Let x = (x1, . . . ,xn) and y = (y1, . . . ,yn) be binary n-tuples.

DEFINITION 46. The Hamming distance or distance, d(x,y), between x and y is the number
of bits in which x and y differ.

The distance between two codewords is the minimum number of transmission errors required
to change one codeword into the other.

DEFINITION 47. The minimum distance for a code, dmin, is the minimum of all distances
d(x,y), where x and y are distinct codewords.

Another important concept is that of codeword weight:

DEFINITION 48. The weight, w(x), of a binary codeword x is the number of 1’s in x. Clearly,
w(x) = d(x,0), where 0 = (00 · · ·0).

The above definitions are made clear with the following example.

EXAMPLE. Let x = (10101), y = (11010), and z = (00011) be all of the codewords in some
code C. Then we have the following Hamming distances:

d(x,y) = 4,

d(x,z) = 3,

d(y,z) = 3.

The minimum distance for this code is 3. We also have the following weights:

w(x) = 3,

w(y) = 3,

w(z) = 2.

The following proposition lists some basic properties about the weight of a codeword and the

distance between two codewords.

PROPOSITION 49. Let x, y, and z be binary n-tuples. Then w(x) = d(x,0) and

• d(x,y)� 0;
• d(x,y) = 0 exactly when x = y;
• d(x,y) = d(y,x);
• d(x,y) d(x,z)+d(z,y).
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The weights in a particular code are usually much easier to compute than the Hamming dis-
tances between all codewords in the code. If a code is set up carefully, we can use this fact to
our advantage. Suppose that x = (1101) and y = (1100) are codewords in some code. If we
transmit (1101) and an error occurs in the rightmost bit, then (1100) will be received. Since
(1100) is a codeword, the decoder will decode (1100) as the transmitted message. This code is
clearly not very appropriate for error detection. The problem is that d(x,y) = 1. If x = (1100)

and y = (1010) are codewords, then d(x,y) = 2. If x is transmitted and a single error occurs,
then y can never be received. Table 3.2 gives the distances between all 4-bit codewords in which
the first three bits carry information and the fourth is an even parity check bit. We can see that
the minimum distance here is 2; hence, the code is suitable as a single error-correcting code.

Table 3.2. Distances between 4-bit codewords

0000 0011 0101 0110 1001 1010 1100 1111
0000 0 2 2 2 2 2 2 4
0011 2 0 2 2 2 2 4 2
0101 2 2 0 2 2 4 2 2
0110 2 2 2 0 4 2 2 2
1001 2 2 2 4 0 2 2 2
1010 2 2 4 2 2 0 2 2
1100 2 4 2 2 2 2 0 2
1111 4 2 2 2 2 2 2 0

To determine exactly what the error-detecting and error-correcting capabilities for a code
are, we need to analyze the minimum distance for the code. Let x and y be codewords. If
d(x,y) = 1 and an error occurs where x and y differ, then x is changed to y. The received
codeword is y and no error message is given. Now suppose d(x,y) = 2. Then a single error
cannot change x to y. Therefore, if dmin = 2, we have the ability to detect single errors. However,
suppose that d(x,y) = 2, y is sent, and a noncodeword z is received such that

d(x,z) = d(y,z) = 1.

Then the decoder cannot decide between x and y. Even though we are aware that an error
has occurred, we do not know what the error is. Suppose dmin � 3. Then the maximum-
likelihood decoding scheme corrects all single errors. Starting with a codeword x, an error in
the transmission of a single bit gives y with d(x,y) = 1, but d(z,y)� 2 for any other codeword
z 6= x. If we do not require the correction of errors, then we can detect multiple errors when a
code has a minimum distance that is greater than 3.
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THEOREM 50. Let C be a code with dmin = 2n + 1. Then C can correct any n or fewer
errors. Furthermore, any 2n or fewer errors can be detected in C.

EXAMPLE. In Table 3.3, the codewords c1 = (00000), c2 = (00111), c3 = (11100), and
c4 = (11011) determine a single error-correcting code.

Table 3.3. Hamming distances for an error-correcting code

00000 00111 11100 11011
00000 0 3 3 4
00111 3 0 4 3
11100 3 4 0 3
11011 4 3 3 0

Modern coding theory began in 1948 with C. Shannon’s paper [38]. This paper offered an example of
an algebraic code, and Shannon’s Theorem proclaimed exactly how good codes could be expected to
be. Coding theory has grown tremendously in the past several years. The Theory of Error-Correcting
Codes, by MacWilliams and Sloane [39], already contained over 1500 references. Currently, very active
research is being done with Goppa codes, which are heavily dependent on algebraic geometry.

For a more in depth treatment of the subject the references [40, 41, 42, 43] are appropriate.

3.3. Fundamentals of Number Theory

In this section we present some results from elementary Number Theory that will be useful
from here on. For more in depth information on this subject the reader is referred to the references
[44, 45, 46].

The Division Algorithm. An application of the Principle of Well-Ordering (discussed in
subsection 2.4.4) that we will use often is the division algorithm.

THEOREM 51. (Division Algorithm) Let a and b be integers, restricting b > 0. Then, there
exist unique integers q and r such that

a = bq+ r

where 0 r < b.

Let a and b be integers. If b = ak for some integer k, we write a | b(a divides b). An integer d
is called a common divisor of a and b if d | a and d | b. The greatest common divisor of integers
a and b is a positive integer d such that d is a common divisor of a and b and if d0 is any other
common divisor of a and b, then d0 | d. We write d = gcd(a,b); for example, gcd(24,36) = 12
and gcd(120,102) = 6. We say that two integers a and b are relatively prime if gcd(a,b) = 1.
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THEOREM 52. Let a and b be nonzero integers. Then there exist integers r and s such that

gcd(a,b) = ar +bs.

Furthermore, the greatest common divisor of a and b is unique.

COROLLARY 53. Let a and b be two integers that are relatively prime. Then there exist
integers r and s such that ar +bs = 1.

The Euclidean Algorithm. Among other things, Theorem 52 allows us to compute the
greatest common divisor of two integers.

EXAMPLE. Let us compute the greatest common divisor of 945 and 2415. First observe
that

2415 = 945 ·2+525

945 = 525 ·1+420

525 = 420 ·1+105

420 = 105 ·4+0.

Reversing our steps, 105 divides 420, 105 divides 525, 105 divides 945, and 105 divides 2415.
Hence, 105 divides both 945 and 2415. If d were another common divisor of 945 and 2415,
then d would also have to divide 105. Therefore, gcd(945,2415) = 105.

If we work backward through the above sequence of equations, we can also obtain numbers
r and s such that 945r +2415s = 105. Observe that

105 = 525+(�1) ·420

= 525+(�1) · [945+(�1) ·525]

= 2 ·525+(�1) ·945

= 2 · [2415+(�2) ·945]+ (�1) ·945

= 2 ·2415+(�5) ·945.

So r =�5 and s = 2. Notice that r and s are not unique, since r = 41 and s =�16 would also
work.
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To compute gcd(a,b) = d, we are using repeated divisions to obtain a decreasing sequence
of positive integers r1 > r2 > · · · > rn = d; that is,

b = aq1 + r1

a = r1q2 + r2

r1 = r2q3 + r3
...

rn�2 = rn�1qn + rn

rn�1 = rnqn+1.

To find r and s such that ar + bs = d, we begin with this last equation and substitute results
obtained from the previous equations:

d = rn

= rn�2� rn�1qn

= rn�2�qn(rn�3�qn�1rn�2)

= �qnrn�3 +(1+qnqn�1)rn�2
...

= ra+ sb.

This algorithm that we used to find the greatest common divisor d of two integers a and b (also
to write d as the linear combination of a and b) is known as the Euclidean algorithm.

Prime Numbers. Let p be an integer such that p > 1. We say that p is a prime number, or
simply p is prime, if the only positive numbers that divide p are 1 and p itself. An integer n > 1
that is not prime is said to be composite.

LEMMA 54. (Euclid) Let a and b be integers and p be a prime number. If p | ab, then either
p | a or p | b.

THEOREM 55. Let n be an integer such that n > 1. Then

n = p1 p2 · · · pk,

where p1, . . . , pk are primes (not necessarily distinct). Furthermore, this factorization is unique;
that is, if

n = q1q2 · · ·ql,

then k = l and the qi’s are just the pi’s rearranged.

49



Chapter 3. Fundamentals of Coding and Number Theory

Definition of gcd and lcm. An important relation between two integers is their greatest
common divisor and their least common multiple. We already mentioned that,

DEFINITION 56. the greatest common divisor of two integers m and n, not both equal to
zero, denoted by gcd(m, n), is the largest positive integer that divides both of them.

As an example gcd(12, 15) = 3.

DEFINITION 57. The least common multiple of two nonzero integers m and n, denoted by
lcm(m, n), is the smallest positive integer that is divisible by both of them.

As an example e.g. lcm(6, 4) = 12.
The symbol m | n means that a natural number divides an integer with zero remainder, e.g.

3 | (�6) or 5 | 5, otherwise we write m - n. If m | n and m < n, then m is called a proper divisor
of n. If 1 < m < n, then m is said to be a nontrivial divisor of n. We say that m j exactly divides
n, and write m j k n, if m j | n, but m j+1 - n.

Notion of congruence.

DEFINITION 58. Let a, b, m be given integers and m � 1. If m | (a�b), i.e. (a�b) is
divisible by m, we write a⌘ b (mod m) and say that a is congruent to b modulo m; b is called a
residue of a modulo m.

It is clear that there are exactly m distinct in-congruent residues modulo m. The relation
· ⌘ · (mod m) is transitive, reflexive and symmetric and therefore it is an equivalence relation
over the set of integers.

Chinese Remainder Theorem.

THEOREM 59. Let m1, m2, . . . , mk be pairwise coprime natural numbers. Then for the sys-
tem of simultaneous congruences x ⌘ ri (mod mi), with i = 1, 2, . . . k, and integers ri, there
exists one and only one solution x modulo M, where M = m1m2 · · ·mk.

Fermat’s Little Theorem.

THEOREM 60. Fermat’s Little Theorem. If a is a natural number and p a prime number,
then p | ap�a.

Another way of formulating this is by means of the congruence notation: If p is a prime and
a is a natural number coprime to p, then ap�1 ⌘ 1 (mod p).
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Fermat Primes. A natural number p is said to be a prime if p > 1 and p is divisible only
be p and 1. The numbers Fm = 22m

+ 1 for m = 0, 1, . . . are called Fermat numbers3 and the
first five members (F0 to F4) of the sequence are primes. Notice that each Fermat number Fm

for m > 0 is of the form
⇣

22m�1
⌘2

+12.
Fermat numbers have some interesting properties. The formula Fm = 6n�1 and the recurrence
formulas Fm+1 = Fm + 22m

F0F1 · · ·Fm�1, Fm = F0F1 · · ·Fm�1 + 2, Fm = (Fm�1�1)2 + 1, hold
for all m � 1. The formula Fm = F2

m�1� 2(Fm�2�1)2 holds for all m � 2. This is a special
case of the following proposition. Each Fermat number Fm, where m � 2, has infinitely many
representations of the form x2� 2y2, with x and y positive integers. Every Fermat number Fm

in the binary system has the form 100 . . .001 with 2m� 1 zeros inside. For more information
check [47].

THEOREM 61. For m � 1 the Fermat number Fm is prime if and only if 3(Fm�1)/2 ⌘ �1
(mod Fm).

Euler totient function.

DEFINITION 62. For every n 2 N the value f (n) is defined as the number of all natural
numbers not greater than n that are coprime to n, i.e.,

f (n) = |{m 2 N : 1 m n, gcd(m, n) = 1}|

where | · | denotes the number of elements. If p is prime then f (p) = p� 1 and therefore
f (Fm) = 22m

.
Another interesting property of the Euler totient function f (n) can be expressed as follows:

gcd(m, n) = 1) f (mn) = f (m)f (n)

We also recall Gauss’s well-known formula

Â
d|N

f (d) = N

This next theorem by Euler is a direct generalization of Fermat’s Little Theorem.

THEOREM 63. Let a, n 2 N. Then af(n) ⌘ 1 (mod n) if and only if gcd(a, n) = 1.

Primitive roots.

3Pierre Fermat (1601?–1665) conjectured that 22n
+ 1 was prime for all n. However, it was shown by

Leonhard Euler (1707–1783) that 225
+1 = 4,294,967,297 is a composite number.
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DEFINITION 64. Let p be a prime. By theorem 60, the maximum order modulo p of any
integer a coprime to p is p� 1. We call the integer g 6⌘ 0 (mod p) a primitive root modulo p
if ordpg = p� 1. Alternatively, if gcd(a,n) = 1 and a is of order f (n) modulo n, then a is a
primitive root of the integer n.

For example, 3 is a primitive root modulo 17, since 316 ⌘ 1 (mod 17) and 3k 6⌘ 1 (mod 17)
for all k = 1, . . . ,15. In this case the multiplicative order of 3 modulo 17 is 16, i.e., ord173 = 16.

Multiplicative order.

DEFINITION 65. Let n and a be positive integers such that gcd(n, a) = 1. The smallest
positive exponent e for which n | ae�1, i.e., ae ⌘ 1 (mod n), is called the multiplicative order4

of the number a modulo n, which we shall write as e = ordna.

Note that ordFm2 = 2m+1. A lemma of theorem 60 states that if e = ordna, then n | ak·e�1
for k 2 {1, 2, . . .}.

THEOREM 66. If the integer a has order e modulo n and k > 0, then ak has order k/gcd(k,e)
modulo n.

As a corollary of the previous theorem we can write:

COROLLARY 67. Let a have order e modulo n. Then ak also has order e if and only if
gcd(k,e) = 1.

DEFINITION 68. The modular (multiplicative) inverse of an integer b(mod n) is the integer
b�1 such that b ·b�1 ⌘ 1(mod n).

Every nonzero integer b has an inverse (modulo p) for p a prime and b not a multiple of p.
If n is not a prime then a nonzero integer b has an inverse iff b and n are relatively prime, i.e. iff
gcd(b,n) = 1.

If b and n are relatively prime, then theorem 63 states that bf(n) ⌘ 1(mod n), where f (n) is
the totient function. Hence,

b�1 ⌘ bf(n)�1 (mod n) (3.1)

The next theorem determines all integers n� 2 that have primitive roots.

THEOREM 69. Let n � 2. As referred in Theorem 26 there exists a primitive root modulo
n if and only if n 2

�

2, 4, pk, 2pk , where p is an odd prime and k � 1. Moreover, if n has a
primitive root, then n has exactly f(f(n)) in-congruent primitive roots. Note that if p is prime
, then p has exactly f(p�1) in-congruent primitive roots.
4in older terminology: the exponent to which a belongs modulo n.
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Table 3.4. Residues modulo 17

p = F2 = 17
a 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

ordpa = p�1
⇣

a
p

⌘

0 1 1 -1 1 -1 -1 -1 1 1 -1 -1 -1 1 -1 1 1

Legendre symbol. Let n � 2 and a be integers such that gcd(a, n) = 1. If the quadratic
congruence x2 ⌘ a (mod n) has a solution x, then a is called a quadratic residue modulo n.
Otherwise, a is called a non-quadratic residue modulo n.

Let p be an odd prime. Then the Legendre symbol
⇣

a
p

⌘

is defined to be 1 if a is a quadratic
residue modulo p, �1 if a is a non-quadratic residue modulo p, and 0 if p | a. If p is an odd
prime, then the number of quadratic residues is equal to the number of non-quadratic residues,
which is equal to (p�1)/2. In the case of Fermat primes the values a for which the Legendre
symbol is

⇣

a
p

⌘

=�1 are exactly the primitive roots modulo p. This is illustrated Table 3.4 for
p = 17.

We note that if g is a primitive root modulo p, where p is prime, then g is a generator of
the set of all nonzero residues modulo p, that is,

�

g, g2, g3, · · · ,gp�1 consists of all the p�1
nonzero residues modulo p. Hence, for any integer a 6⌘ 0 (mod p), there exists an exponent
n 2 {1, . . . , p�1} such that gn ⌘ a (mod p).

Let the set QR be the set of quadratic residues. The set QR is a subgroup of Z⇤p of index 2.
Let h be a non-quadratic residue. The coset NQR = hQR = {h j; j 2 QR} collects all the non-
quadratic residues. It is not restrictive to assume that h is the smallest non-quadratic residue
modulo p that generates the multiplicative group Z⇤p.

The following criterion, due to Euler, gives a method for evaluating the Legendre symbol
⇣

a
p

⌘

.

THEOREM 70. Let p be an odd prime. Then a(p�1)/2 ⌘ ( a
p) (mod p).

One particular property of the Legendre symbol is
⇣

2
p

⌘

= (�1)(p2�1)/8. Restricting p to
be a Fermat prime we can say that 2 is a primitive root only for p = 3 and p = 5. The Jacobi
symbol

�a
n
�

= ’r
i=1

⇣

a
pi

⌘

where n = p1 p2 · · · pr (for odd primes pi’s not necessarily distinct) is

a generalization of the Legendre symbol. Note that
⇣

3
Fm

⌘

= �1, therefore 3 is a primitive root
for all known Fermat primes Fm, m� 1, i.e. for p 2 {5,17,257,65537}.

THEOREM 71. The set of all non-quadratic residues of a Fermat prime is equal to the set of
all its primitive roots.
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PROOF. Let n be a non-quadratic residue of the Fermat prime Fm. Then, by Euler’s Crite-
rion,

n(Fm�1)/2 = n22m�1 ⌘�1 (modFm)

However, according to Fermat’s Little Theorem,

ordFmn | Fm�1 = 22m

Suppose that

ordFmn = 2k, 0 k  2m

Then,

ordFmn | (Fm�1)/2

Hence,

n(Fm�1)/2 ⌘ 1 (mod Fm)

contradicting our initial congruence n(Fm�1)/2 ⌘�1. Therefore, ordFmn = Fm�1, and n is a
primitive root modulo Fm. Conversely, again by Euler’s criterion, a quadratic residue r modulo
a prime p cannot be a primitive root modulo p, since r(p�1)/2 ⌘ 1 (mod p). ⇤

Regular polygons. Carl Friedrich Gauss (1777-1855) quite unexpectedly found through in-
vestigation of the roots of the equation zn = 1 a theorem that expresses an interesting connection
between the Euclidean construction of regular polygons and the Fermat primes. He showed that
the regular polygon can be constructed by ruler (straightedge) and compass if the number of its
sides is equal to 3, 4, 5, 6, 8, 10, 12, 15, 16, 17, etc. More precisely: There exists a construction
of the regular polygon with n sides by ruler and compass if and only if n = 2iFm1Fm2 · · ·Fm j ,
where n� 3, i� 0, j � 0, and Fm1 , Fm2 , · · · Fm j are distinct Fermat primes.

Fermat Number Transform. With Fm prime, let a 2 {2,3, . . . ,Fm�1} be given and N be
chosen such that N | ordFma . The number N is called a transformation length, and ordFma

the maximum transformation length. For instance, if m � 1 and a = 3, then the maximum
transformation length is 22m

due to Pepin’s test (theorem 61). If a = 2, then clearly ordFma =

2m+1 for m = 0,1, . . ..
Given the vector x = (x [0] ,x [1] , · · · ,x [N�1])T of integers such that x [k]2 {0,1, . . . ,Fm�1}

for k = 0,1, . . . ,N� 1, the one-dimensional Fermat Number Transform (FNT) and its inverse
are defined by
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X [ j]⌘
N�1

Â
k=0

x [k]a jk (modFm), j = 0,1, . . . ,N�1

x [k]⌘ N�1
N�1

Â
j=0

X [ j]a� jk (modFm), k = 0,1, . . . ,N�1

respectively, where X [ j] 2 {0,1, . . . ,Fm�1} for all j 2 {0,1, . . . ,N�1} and N�1 denotes
the integer such that NN�1 ⌘ 1 (mod Fm).

Discrete convolution. Define the finite discrete convolution

y = h⇤ x

of two vectors h = (h [0] ,h [1] , . . . ,h [N�1])T and x = (x [0] ,x [1] , . . . ,x [N�1])T by the
relation

y [k] =
N�1

Â
j=0

h [k� j]x [ j] , k = 0,1, . . . ,N�1

where h [k� j] = h [k� j +N] if k < j (i.e. the argument is evaluated modulo N). We could
also assume that the sequences are periodically extended with the period N, and then we speak
about cyclic convolutions.

In general we assume the complex valued functions f [n] and g [n] to be defined for n =

0,1, . . . ,N� 1, i.e. the argument n is computed (mod N). Then, the convolution, correlation
and the Discrete Fourier Transform (DFT) are defined as:

Convolution: ( f ⇤g) [n]
.
=

N�1

Â
m=0

f [m]g [n�m] (3.2)

Correlation: ( f ?g) [n]
.
=

N�1

Â
m=0

f [m]g [m+n] (3.3)

DFT: F [k] .
=

1
N

N�1

Â
n=0

f [n]e�2pikn/N (3.4)

with i =
p
�1, and k = 0,1, . . . ,N�1. Table 3.5 lists some common transform rules.

The FNT shares many properties with the DFT, in particular, the following convolution
identity

y = h⇤ x = FNT�1 {FNT{h} ·FNT{x}}

where (·) denotes the pointwise product
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Table 3.5. DFT transform rules

Reflection f [�n]
F! F [�k]

Conjugation f [n]
F! F [�k]

Translation f [n�n0]
F! e�2pikn0/NF [k]

Modulation e2pik0n/N f [n]
F! F [k� k0]

Convolution ( f1 ⇤ f2) [n]
F! NF1 [k]F2 [k]

Correlation ( f1 ? f2) [n]
F! NF1 [k]F2 [k]

Inversion F [n]
F! 1

N f [�k]

Dilation f [mn]
F!

8

>

<

>

:

F [m0k] , mm0 ⌘ 1 (mod N) if (m,N) = 1
(

Âm�1
`=0 F [k/m� `N/m] if m | k

0 otherwise
if m | N

H ·X = (H [0]X [0] ,H [1]X [1] , . . . ,H [N�1]X [N�1])T

and where capital letters denote the transformed sequences. Therefore, the convolution ⇤
of two periodic signals of length N can be performed by taking the inverse transform of the
pointwise product of the transformed signals.

Sometimes, it is advantageous to adopt the following balanced representation of the signal
x,

x [k] 2
⇢

�Fm�1
2

, . . . ,�2,�1,0,1,2, . . . ,
Fm�1

2

�

With Fm prime, let a 2 {2,3, . . . ,Fm�1} be given and N be chosen such that N | ordFma . If
T ⌘

�

a

jk�N�1
j,k=0 (mod Fm) and T�1 ⌘N�1 �

a

� jk�N�1
j,k=0 (mod Fm) are the matrices corresponding

to the transformations FNT and FNT�1, then T T�1 ⌘ T�1T ⌘ I (mod Fm), where I is the
identity matrix.

3.4. Some common sequences

3.4.1. Preliminaries. Let ZM be the ring of integers modulo M and w = e j2p/M where j =p
�1. A sequence {s(t)} is called a M-ary sequence if s(t) 2 ZM 8t, and the sequence

n

w

s(t)
o

is referred to as a polyphase sequence corresponding to {s(t)}. Let F = {s0,s1, . . . ,sL�1} be a
set of L cyclically distinct M-ary sequences with period N, where sl = {sl (t)}, 0 l < L.
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Multiplicative characters. For a primitive element a of Fq with q = pm, let y (x) be a
multiplicative character of Fq such that

y

�

a

t�= exp
✓

j
2pl

q�1
t
◆

, 0 t  q�2 (3.5)

for an integer l and y (0) = 0. When l = 0, the multiplicative character y (x) is called trivial
since y (x) = 1 for any x 2 F⇤q. For a divisor M of q�1 and any integer l with gcd(l,q�1) =

(q�1)/M, y (x) is called a multiplicative character of Fq of order M.

Cyclotomic numbers. Let q = M f +1. For a primitive element a of Fq, the set of nonzero
elements in Fq is F⇤q which can be decomposed into M disjoint subsets

Dk =
n

a

Ml+k | 0 l  f �1
o

, k = 0,1, . . . ,M�1 (3.6)

which are called the cyclotomic classes of Fq of order M. For 0  i, j  M� 1, the number
defined by

(i, j)M
.
=| (Di +1)\D j | (3.7)

is called the cyclotomic number of Fq of order M.
An integer R is said to belong to the cyclotomic class (or index class) Dk with respect to a

if there exists an integer l such that R ⌘ a

Ml+k (mod q). Thus the index class k consists of f
distinct numbers a

k, a

M+k, . . . , a

M( f�1)+k modulo q. The cyclotomic number (i, j)M counts
the number of times R+1 belongs to the cyclotomic class j when R belongs to the cyclotomic
class i. That is, (i, j)M is the number of solutions x, y of the congruence a

Mx+i + 1 ⌘ a

My+ j

(mod q), where the integers x, y are chosen from 0, 1, · · · , f � 1. This congruence shows that
there are at most M2 distinct cyclotomic numbers of order M and that these numbers depend
not only on q, M, i, j but also on which of the f (q�1) primitive roots a of q is chosen.

Cyclotomic numbers have some properties:

(i, j)M =
�

i0, j0
�

M , i⌘ i0, j ⌘ j0 (mod M) (3.8)

(i, j)M = (M� i, j� i)M =

8

<

:

(i, j)M f even
�

i+ M
2 , j + M

2
�

f odd
(3.9)

M�1

Â
j=0

(i, j)M = f �

8

>

>

<

>

>

:

1 i⌘ 0 (mod M) , f even

1 i⌘ M
2 (mod M) , f odd

0 otherwise

(3.10)

(i, j)M0 = (si,s j)M , a

0 = a

s (3.11)
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For (i, j)M0 based on the primitive root a

0 = a

s (mod q) we have (i, j)M0 = (si,s j)M neces-
sarily with s prime to q�1.

The sum (3.10) is simply the number of successors of members of cyclotomic class Dk

which belong to any cyclotomic class at all.

3.4.2. Sidel’nikov sequences. Let p be a prime, n a positive integer and a a primitive
element in the finite field Fpn with pn elements. Let M | pn�1. Let Sk, k=0,1,. . ., M�1, be the
disjoint subsets of Fpn defined as

Sk =

⇢

a

Mi+k�1 | 0 i <
pn�1

M

�

(3.12)

The M-ary Sidel’nikov sequence s(t) of period pn�1 is defined as

s(t) =

8

<

:

k, if a

t 2 Sk, 0 k M�1

k0, if t = pn�1
2

(3.13)

where k0 is some integer modulo M. Note that a

pn�1
2 = �1, [M�1

k=0 Sk = Fpn \ {�1}, and
0 2 S0.

3.4.3. M-ary Power Residue sequences. Let p be an odd prime and M a divisor of p�1,
i.e. M | p�1. Let µ be a primitive root modulo p. The M-ary power residue sequence of period
p is defined as

r (t) =

8

<

:

0, if t ⌘ 0 (mod p)

k, if t 2 Dk
(3.14)

where Dk, 0 k M�1, is the cyclotomic class of Fp of order M defined as

Dk =

⇢

µ

Ml+k | 0 l  p�1
M
�1

�

(3.15)

Using a multiplicative character y of of Fp of order M, the polyphase sequence correspond-
ing to r can be expressed as

w

r(t) = y (t)+ I (t) (3.16)

where I is the indicator function such that I (0) = 1 and I (t) = 0, for t 6= 0.

3.4.4. Lempel/Cohn/Eastman sequences. Let G denote the multiplicative group of Fpn .
Since a is a primitive element of Fpn it is also a generator of the cyclic group G. Consider the
subset S of G defined by

S =
�

a

2i+1�1 | 0 i K�1
 

(3.17)

where
K =

1
2

(pn�1) (3.18)
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Note that S contains exactly one half of the elements of G and that every element of S is
equal to some power of a . Let f denote the function from G onto {1,�1} defined by

f
�

a

t�=

8

<

:

1, if a

t 2 S

�1, if a

t /2 S
0 t < 2K (3.19)

3.4.5. TCH sequences. In section 3.6 we will present the original generation method for
obtaining TCH sequences. However to complete the current section we give the formulation in
the same context as the other sequences.

Let p be restricted to a Fermat prime. Consider the subset S of G defined by

S =

⇢

1+a

2i+1 | 0 i <
p�1

2

�

(3.20)

The binary TCH sequence f (t) of period p�1 is defined as

f (t) =

8

<

:

1, if a

t 2 S

0, if a

t /2 S
0 t < p�1 (3.21)

3.5. Rings and Fields

In the previous chapter we discussed sets with a single binary operation satisfying certain
axioms, but often we are more interested in working with sets that have two binary opera-
tions. For example, one of the most natural algebraic structures to study is the integers with
the operations of addition and multiplication. These operations are related to one another by
the distributive property. If we consider a set with two such related binary operations satisfying
certain axioms, we have an algebraic structure called a ring. In a ring we add and multiply such
elements as real numbers, complex numbers, matrices, and functions.

DEFINITION 72. A nonempty set R is a ring if it has two closed binary operations, addition
and multiplication, satisfying the following conditions.

(1) a+b = b+a for a,b 2 R.
(2) (a+b)+ c = a+(b+ c) for a,b,c 2 R.
(3) There is an element 0 in R such that a+0 = a for all a 2 R.
(4) For every element a 2 R, there exists an element �a in R such that a+(�a) = 0.
(5) (ab)c = a(bc) for a,b,c 2 R.
(6) For a,b,c 2 R,

a(b+ c) = ab+ac

(a+b)c = ac+bc.
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Chapter 3. Fundamentals of Coding and Number Theory

This last condition, the distributive axiom, relates the binary operations of addition and multi-
plication. Notice that the first four axioms simply require that a ring be an abelian group under
addition, so we could also have defined a ring to be an abelian group (R,+) together with a
second binary operation satisfying the fifth and sixth conditions given above.

If there is an element 1 2 R such that 1 6= 0 and 1a = a1 = a for each element a 2 R, we say
that R is a ring with unity or identity. A ring R for which ab = ba for all a,b in R is called a
commutative ring. A commutative ring R with identity is called an integral domain if, for every
a,b 2 R such that ab = 0, either a = 0 or b = 0, i.e. if it has no zero divisors, a commutative
ring with identity is an integral domain. A division ring is a ring R, with an identity, in which
every nonzero element in R is a unit; that is, for each a 2 R with a 6= 0, there exists a unique
element a�1 such that a�1a = aa�1 = 1.

DEFINITION 73. A commutative division ring is called a field.

The relationship among rings, integral domains, division rings, and fields is shown in Fig-
ure 3.3.

Rings

Commutative
Rings

Rings with
Identity

Integral
Domains

Division
Rings

Fields

"
"
""

""

bb

bb

""

Figure 3.3. Types of rings

If R is a ring and r is a nonzero element in R, then r is said to be a zero divisor if there is
some nonzero element s 2 R such that rs = 0. If an element a in a ring R with identity has a
multiplicative inverse, we say that a is a unit. If every nonzero element in a ring R is a unit, then
R is called a division ring. Again, a commutative division ring is called a field.

PROPOSITION 74. Let R be a ring and S a subset of R. Then S is a subring of R if and only
if the following conditions are satisfied.

(1) S 6= /0.
(2) rs 2 S for all r,s 2 S.
(3) r� s 2 S for all r,s 2 S.
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In the study of groups, a homomorphism is a map that preserves the operation of the group.
Similarly, a homomorphism between rings preserves the operations of addition and multiplica-
tion in the ring. More specifically, if R and S are rings, then a ring homomorphism is a map
j : R! S satisfying

j(a+b) = j(a)+j(b)

j(ab) = j(a)j(b)

for all a,b 2 R. If j : R! S is a one-to-one and onto homomorphism, then j is called an
isomorphism of rings.

The set of elements that a ring homomorphism maps to 0 plays a fundamental role in the
theory of rings. For any ring homomorphism j : R! S, we define the kernel of a ring homo-
morphism to be the set

kerj = {r 2 R : j(r) = 0}.

In ring theory there are a special class of subrings called ideals.

DEFINITION 75. An ideal in a ring R is a subring I of R such that if a is in I and r is in R,
then both ar and ra are in I; that is, rI ⇢ I and Ir ⇢ I for all r 2 R.

Let [a] (alternatively a +(n)) denote the coset or residue class of the integer a modulo the
positive integer n, where (n) denotes the principal ideal generated by n. The elements of the
residue class ring Z/(n) are

[0] = 0+(n) , [1] = 1+(n) , . . . , [n�1] = n�1+(n)

Let Z/(p) be the ring of residue classes of the integers modulo the principal ideal generated
by a prime p. Let Fp be the set {0,1, . . . , p�1} of integers and let j : Z/(p)! Fp be the
mapping defined by j ([a]) = a for a 2 Fp. Then, Fp endowed with the field structure induced
by j , is a finite field, called the Galois field of order p and represented by GF(p).

3.6. Introduction to TCH sequences

With a few corrections this subsection summary closely follows the work presented in [6].
The motivation behind the development of TCH sequences was to obtain a sort of pseudo-noise
sequences with good correlation properties and length equal to a power of two, i.e., 2m.

Codewords can be represented by elements of a finite (Galois) field. One way of represent-
ing elements of GF(qn) is by using a prime polynomial of degree n over GF(q). The elements
of this field can be given by integers, by n-tuples, by polynomials of degree (n� 1) or by an
exponential representation.
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Chapter 3. Fundamentals of Coding and Number Theory

For TCH cyclic codes we want to exclude the 0 element represented by a n-tuple with all
zeros since any cyclic shift yields the same codeword. Since the all-zero codeword is excluded
TCH are non-linear codes.

With q = pm there exists a field GF(p) with p elements. These elements are represented
with polynomials of degree N�1 with N = 2m being the codeword length. If, on the other hand,
we also exclude the 0 element, the number of elements in GF(p) is N = p� 1 and these two
conditions imply,

p = N +1 = 2m +1 (3.22)

resulting in the candidate primes p being Fermat primes, i.e. Fi = 22i
+ 1 for which there

are 5 known thus far, F0 = 3, F1 = 5,F2 = 17,F3 = 257, and F4 = 65537.
For binary codewords we have to consider GF(2m) with characteristic 2. A TCH sequence

or codeword can thus be described by

p(x) =
N�1

Â
i=0

ai · xKi (3.23)

where ai is either 0 or 1 and the placement of those zeros and ones in the codeword are given
by the exponents Ki. Since we have N exponents we can associate them with the N elements of
GF(p)\{0}.

Now we impose two restrictions. The first regards the balance of the codeword. A codeword
with the same number of zeros and ones has better spectra from a transmission point of view.
Moreover, if for any time shift the weight is N

2 the correlation between two of those balanced
codewords is 0. With this restriction in place we can write,

p(x) =

p�1
2 �1

Â
i=0

xKi (3.24)

Now we must select N
2 elements from the N elements of GF(p) \ {0}. If we start with

a primitive element a then all the elements can be described as a

i with i = 0,1, . . . , p� 2.
Splitting this list in half by considering even or odd powers of a we obtain two lists: a

2i and
a

2i+1 with i = 0,1, . . . , p�3
2 . We will return later to the question as to which of these two lists is

more appropriate.
The second restriction is a property similar to the shift-and-add properties of maximum

length sequences (m-sequences), stating that the modulo-2 sum of a m-sequence and any phase
shift of the same sequence is another phase of the same sequence. We use instead a different
version of this property stating that the modulo-2 sum of a m-sequence and any phase shift of
the same sequence is another sequence which can exhibit a vary low cross-correlation with the
original one.
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Table 3.6. Verifying a = 3 as a primitive element of GF(17).

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
3i 1 3 9 10 13 5 15 11 16 14 8 7 4 12 2 6

The sequence resulting from the shift-and-add process must have weight close or equal to
N
2 . Therefore we consider a cyclic shift of k positions of p(x) as

p0 (x) = xk · p(x) (3.25)

and adding this shifted version with itself results in

p00 (x) = p(x)+ p0 (x) = p(x)
⇣

1+ xk
⌘

(3.26)

Now, p00 (x) cannot be a shifted version of p(x) so we must write

p00 (x) = xK · p(x) (3.27)

where capital K is a variable and xK represents a vector with N
2 different elements previously

designated as Ki. Thus,
a

Ki = 1+a

j (3.28)

and now we return to the question of which list a

2i or a

2i+1 is more useful in representing
the N

2 elements a

j.
Since a

j 2 [1,2, · · · , p�1], adding 1 results in 1+a

j 2 [2,3, · · · , p�1][{0}. We observe
that the addition of the element 1 caused the cancellation of that element and the appearance
of the element 0 which is undesirable. Computing modulo p, the element 0 is obtained by
1+a

j = 1+(p�1) and since p is odd a

j must come from the list of even powers, i.e., a

2i. In
consequence, we must choose the other list, i.e. that of odd powers, resulting in

a

Ki = 1+a

2i+1, i = 0,1, . . . ,
p�1

2
�1 (3.29)

This equation is responsible for the generation of the so called basic TCH polynomial or
codeword. Following the workflow proposed in [6] we present an example of the generation of
a basic polynomial.

We will consider the case p = 17, for generating a basic polynomial of length 16. The first
thing to do is to find among the values of the set [2, . . . ,16] a primitive element a of GF(17).
Starting with a = 2 and computing its powers a

i we find that 28 = 256 ⌘ 1 (mod 17) and
therefore 2 is not a primitive element. Then, we select a = 3 and table 3.6 presents its powers
verifying that it generates all 16 elements without repetition.

The next step is using (3.29) to determine the values of Ki. This is presented in table 3.7.
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Table 3.7. Determination of Ki for (p = 17,a = 3).

i 2i+1 1+32i+1 Ki

0 1 4 12
1 3 11 7
2 5 6 15
3 7 12 13
4 9 15 6
5 11 8 10
6 13 13 4
7 15 7 11

Using (3.24) the polynomial representation of the basic codeword associated with the prim-
itive element a = 3 is,

p3 (x) = x4 + x6 + x7 + x10 + x11 + x12 + x13 + x15 (3.30)

that can also be written as a binary word 1011 1100 1101 0000 or alternatively as BCD0 in
hexadecimal format. To determine the other basic polynomials of length 16 we would repeat
this process by first finding the primitive element and then solving the congruence (3.29).

Having presented the generation of a basic polynomial we now address the search for other
polynomials either with equal length or with length different from the restricted set given by
p� 1 where p is a Fermat prime. To that end there are a number of ad-hoc methods proposed
in [6]. The first and most straightforward one is the method called Shift-and-Add. As the name
implies this method consists of circular shifting the codeword (i.e. rotating it) and then adding
it with the original one. Assume that we rotate p3(x) one bit to the left. Then we obtain,

p
0
3 (x) = 1+ x5 + x7 + x8 + x11 + x12 + x13 + x14 (3.31)

and adding p3(x) with p
0
3 (x) results in,

p
00
3 (x) = 1+ x4 + x5 + x6 + x8 + x10 + x14 + x15 (3.32)

or C571 in hexadecimal format. Note that this new codeword has the same weight of the
original one. This procedure can be repeated for all the other bit shifts and the resulting code-
words are then evaluated in terms of the their auto-correlation and their cross-correlation with
different codewords. By specifying a target in terms of minimum distance it is possible to de-
termine a code with a larger number of codewords. Instead of using just the original codeword
BCD0 we can determine, from the process above, 3 other codewords (4F92, 26C7, D48E) with
weight equal to 8 and minimum distance equal to 4 forming a code (16,7).

Several other methods have been proposed to obtain codewords with lengths equal to a
power of two but not in the set [16,256,65536]. The methods are named random search, FFT,
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Square-Wave, Decimation, etc. In general, the methods take one basic polynomial or a set of
polynomials and algorithmically manipulate some properties to obtain new codewords using
constraints like the codeword weight, cross-correlation values, or minimum distance. In any
case, these methods follow a search and test procedure that is somewhat ad-hoc and, as also
happens with the generating equation 3.29, only address binary codewords. For the interested
reader, section 4.2.9 of [6] presents a comparative evaluation of these methods.

3.7. Conclusion

In this chapter we first provided the context and introduced some definitions of coding
theory. Then we addressed some core results from number theory since they are essential for
understanding the theoretical basis of certain codes. We also discussed codes as sequences
since sometimes we are not interested in the error-correcting capability of the codewords but
are more focused on their random-like nature when they are used in spreading applications. We
presented some time-domain signal-processing operations on sequences and their relation with
the frequency-domain. Finally we introduced a class of cyclic codes, named TCH, that provided
the motivation for the work presented in this thesis.
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CHAPTER 4

GENERALIZED TCH VIA ZECH LOGS

4.1. Introduction

In the previous chapter we saw that the generation of TCH basic codewords is associated to
the primitive elements (see section 3.3) of the Galois field GF(p), p being a Fermat prime. This
implies that the length N (or period) of these codewords is limited to the set [4,16,256,65536].
In this chapter, based on the properties of Zech logarithms we develop an alternative generation
procedure that is valid for all values of N = 2k, k being a positive integer. We call generalized
TCH to the generated codewords. This chapter begins with an introduction to discrete loga-
rithms and their application to finite fields in a form known as Jacobi or Zech logarithm. We
then present several common properties and for a certain class of primes we derive an alterna-
tive method of computing the logarithm that explores the algebraic properties of the dihedral
group D3. We then show how the application of the Zech logarithm to a list of odd integers
generates not only the basic TCH codewords but also all the others. Examples of computation
are provided and a comparison between the best known TCH codes and the generalized ones
obtained here is discussed in terms of correlation signatures and minimum distance.

4.2. Discrete logarithms

In abstract algebra and its applications, discrete logarithms are group-theoretic analogues of
ordinary logarithms. In particular, an ordinary logarithm loga (b) is a solution of the equation
ax = b over the real or complex numbers. Similarly, if g and h are elements of a finite cyclic
group G then a solution x of the equation gx = h is called a discrete logarithm (to the base g) of
h in the group G.

In general, let G be a finite cyclic group with n elements. We assume that the group is
written multiplicatively. Let b be a generator of G; then every element g of G can be written in
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the form g = bk for some integer k. We know that any two such integers k1 and k2 representing
g will be congruent modulo n. Thus we define a function logb : G! Zn (where Zn denotes the
ring of integers modulo n) by assigning to each g the congruence class of k modulo n. This
function is a group isomorphism, called the discrete logarithm to base b. The familiar base
change formula for ordinary logarithms remains valid: If c is another generator of G, then we
have logc (g) = logc (b) · logb (g).

DEFINITION 76. Let g be an arbitrary integer relatively prime to n. There exists among the
numbers 0,1,2, · · · ,f (n)�1 exactly one number k such that g⌘ bk (mod n). The number k is
called the generalized multiplicative order (or discrete logarithm) of g with respect to base b
modulo n.

4.3. Zech logarithm

Another form of logarithm, called Zech logarithm, have advantages when computing in a
finite field GF (q), of order q = pm, with p a prime number and m a positive integer.

DEFINITION 77. Let a be a primitive element of a finite field GF (q). Then, Z (x), the Zech
logarithm of an integer x is defined such that

a

Z(x) ⌘ 1+a

x (mod q) (4.1)

Note that if a

x is the minus one element of the field, then Z (x) is undefined. It is therefore
useful to define the set of possible exponents Nq = {0,1, · · · ,q�2}[ {�•} so that Z (x) is a
mapping Z : Nq! Nq. Any field element b is assumed to be given in its polar representation
i.e. as a power of the primitive element a : b = a

k and we define a

�• = 0 using the formal
symbol �• to represent the element 0.

When finite field elements are in polar representation, the multiplication operation is straight-
forward, i.e., involves adding the exponents modulo q�1. The addition operation is performed
by,

a

n +a

m = a

n ·
�

1+a

m�n�= a

n+Z(m�n) (4.2)

Zech logarithms are also called Jacobi logarithms after Jacobi who used them for number
theoretic investigations [48]. For the case of GF (pm) with field characteristic p and degree
m� 2 the computation of Zech’s logarithms was addressed in [49] and [50]. A logic architecture
(considering the restriction p = 2) was presented in [51]. The case for p > 2 is briefly discussed
in [52].
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4.3. Zech logarithm

4.3.1. Properties. This subsection uses results from the theory of congruences as described
in Chapter 4 of [53]. From [49] it is easy to write the following properties of Zech’s logarithm.

Z (q�1� x) = Z (x)� x (mod q�1) ,x 6=�• (4.3)

Z (0) =�•, p = 2 (4.4)

Z
✓

q�1
2

◆

=�•, p 6= 2 (4.5)

Z (�•) = 0 (4.6)

Z�1 (x) =

8

<

:

Z (x) , p = 2

r +Z (Z (x)� r) , p 6= 2,ar = p�2
(4.7)

We now focus our attention towards computing Zech’s logarithms with a restricted set of
elements that we call key elements. We therefore define the mapping I : Nq! Nq with,

I (x) = q�1� x (4.8)

Note that I (x) corresponds to the additive inverse modulo q�1. Hence,

Z (I (x)) = Z (x)� x (mod q�1) (4.9)

and
Z�1 (Z (x)� x) = I (x) . (4.10)

We notes from a previous chapter (see theorem 70) that�1⌘a

(q�1)/2. Therefore�a

�x+Z�1(x)

= �a

�x (�1+a

x) = a

Z�1(�x). Then,

Z�1 (I (x)) =
q�1

2
+Z�1 (x)� x, (mod q�1) (4.11)

We also define
a

Z{i}(x) = i+a

x (4.12)

Then in a similar manner we get

Z (xi� x) = Z{i} (x)� x, a

xi = i (4.13)

Using (4.9) and (4.11) if we alternate between Z and Z�1 we get a cycle x0
Z! x1

I$ x2
Z 

x3
I$ x4

Z! x5
I$ x0. Since this involves 6 elements the maximal length of this coset is twelve.

Therefore, if we know a (x,Z (x)) pair it is easy to determine the corresponding coset.

EXAMPLE. Let Z(a) = b and c (for center) is c = q�1
2 , i.e. c =�c (mod q�1). Then,
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x0 = a,

x1 = Z(a) = b,

x2 = �x1 =�b,

x3 = Z�1 (x2) = c+a�b,

x4 = �x3 = c+b�a,

x5 = Z (x4) = c�a,

x6 = �x5 = c+a,
...

...
x11 = Z�1 (x10) =�a,

x12 = �x11 = a.

4.3.2. Alternative computation of Zech logarithms. The direct form of computing Zech
logarithms involves a discrete exponentiation, an addition modulo q and a discrete logarithm.
In Mathematica® language, since there is no internal function, we have to create one resulting
in

Zech[n_,a_,q_]:=MultiplicativeOrder[a,q,Mod[1+Power[a,n],q]]

To derive an alternative and less complex way of computing Zech’s logarithm we present the
following two theorems.

THEOREM 78. For a non-zero field element in polar representation (exponent x) the follow-
ing congruences (mod q�1) hold,

Z (�x)⌘ Z (x)� x (4.14)

Z
✓

Z (x)+
q�1

2

◆

⌘ x+
q�1

2
(4.15)

Z
✓

�Z (x)+
q�1

2

◆

⌘ x�Z (x) (4.16)

Z
✓

�Z (x)+
q�1

2
+ x

◆

⌘�Z (x) (4.17)

Z
✓

Z (x)+
q�1

2
� x

◆

⌘ q�1
2
� x (4.18)

PROOF. With respect to (4.14) taking the discrete logarithm of the congruence a

Z(�x) ⌘
1+a

�x ⌘ (1+a

x)a

�x ⌘ a

Z(x)�x yields Z (�x)⌘ Z (x)� x.

With respect to (4.15) we have a

Z
⇣

Z(x)+ q�1
2

⌘

⌘ 1� a

Z(x) ⌘ 1� (1+a

x) ⌘ a

x+ q�1
2 and

therefore Z
⇣

Z (x)+ q�1
2

⌘

⌘ x+ q�1
2 .
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With respect to (4.16) we use (4.14) to write Z
⇣

�Z (x)+ q�1
2

⌘

⌘ Z
⇣

�
⇣

Z (x)+ q�1
2

⌘⌘

⌘

Z
⇣

Z (x)+ q�1
2

⌘

�Z (x)+ q�1
2 . Using (4.15) we get Z

⇣

�Z (x)+ q�1
2

⌘

⌘ x+ q�1
2 �Z (x)+ q�1

2 ⌘
x�Z (x).

The other congruences follow similarly1. ⇤

Exploring these symmetries allows us to say that the set of all polar integers x can be par-
tioned into subsets such that the Zech logarithm of all integers in each subset can be computed
using the knowledge of only one logarithm in the subset. In a formal way we use the next
theorem.

THEOREM 79. Let the exponent x 2 Zq�1 \
n

q�1
2

o

and let the key elements fi (x) be map-
pings fi : Zq�1! Zq�1, given by

i fi (x)
1 �x
2 Z (x)+ q�1

2
3 �Z (x)+ q�1

2
4 �Z (x)+ q�1

2 + x
5 Z (x)+ q�1

2 � x

(4.19)

Let also F (x) be a set such that F (x) .
= {x, f1 (x) , f2 (x) , f3 (x) , f4 (x) , f5 (x)}. Then, we

have F (x) = F ( f1 (x)) = F ( f2 (x)) = · · · = F ( f5 (x)).

PROOF. Let i 2 {1,2,3,4,5} . We consider fi ( f1) as follows,

f1 ( f1 (x))⌘� f1 (x)⌘ x

f2 ( f1 (x))⌘ Z ( f1 (x))+
q�1

2
⌘ Z (x)� x+

q�1
2
⌘ f5 (x)

f3 ( f1 (x))⌘ q�1
2
�Z ( f1 (x))⌘ q�1

2
� (Z (x)� x)⌘ f4 (x)

f4 ( f1 (x))⌘ q�1
2

+ f1 (x)�Z ( f1 (x))⌘ q�1
2
� x� (Z (x� x))⌘ f3 (x)

f5 ( f1 (x))⌘ q�1
2
� f1 (x)+Z ( f1 (x))⌘ q�1

2
+ x+Z (x)� x⌘ f2 (x)

and thus F ( f1 (x)) = { f1 (x) ,x, f5 (x) , f4 (x) , f3 (x) , f2 (x)} = F (x). All elements fi
�

f j (x)
�

,
for j = 2,3,4,5 can be obtained in a similar way. ⇤

All elements fi
�

f j (x)
�

are shown in Table 4.1. By row re-ordering it is clear that this
table is the same as the Cayley table for the dihedral group D3, the group of symmetries of an

1Note that computations involving field elements are modulo q (e.g. a

q�1
2 ⌘ �1) while those involving Zech

values are modulo q�1.
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Table 4.1. Composition of maps corresponding to fi ( f j (x))

� j 1 2 3 4 5
i x f1 f2 f3 f4 f5
1 f1 x f3 f2 f5 f4
2 f2 f5 x f4 f3 f1
3 f3 f4 f1 f5 f2 x
4 f4 f3 f5 f1 x f2
5 f5 f2 f4 x f1 f3

f1

f2

f3

f4

f5

f1

f5

f4

f3

f2

f2

f3

f1
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f4

f5
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x

f1!x"

f2!x"

f3!x"

f4!x"

f5!x"

Figure 4.1. Relations between polar integers, i.e. x and the mappings fi (x)

equilateral triangle (see section 2.8). We can consider D3 as the semi-direct product of cyclic
groups Z3 and Z2 , with Z2 acting on Z3 by inversion. Therefore we have 2 pairs of triplets as
illustrated in Figure 4.1. Note that the 3 top left elements form the triplet {x, f3(x), f5 (x)} and
then by inversion we have {�x,� f3(x),� f5 (x)} = { f1 (x) , f2 (x) , f4 (x)}.

Note also that x
f3! f3 (x)

f3! f5 (x)
f3! x so f3 (x) acts like a 120º rotation. For reference,

Table 4.2 condenses the information of this subsection.
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4.3. Zech logarithm

Table 4.2. Relationship with the dihedral group D3 of order 6

i fi (x) Z ( fi (x)) Action
1 �x Z (x)� x Reflection
2 Z (x)+ q�1

2 x+ q�1
2 –

3 �Z (x)+ q�1
2 �Z (x)+ x 120° Rotation

4 �Z (x)+ q�1
2 + x �Z (x) –

5 Z (x)+ q�1
2 � x q�1

2 � x –

Table 4.3. All the values of fi (x) and Z ( fi (x)) for p = 17, x = 0,1, · · · , p�2.

x 0 1 2 3 4 5 6 7 9 10 11 12 13 14 15
f1(x) 0 15 14 13 12 11 10 9 7 6 5 4 3 2 1
f2(x) 6 4 11 15 1 7 0 5 14 10 2 13 12 9 3
f3(x) 10 12 5 1 15 9 0 11 2 6 14 3 4 7 13
f4(x) 10 13 7 4 3 14 6 2 11 0 9 15 1 5 12
f5(x) 6 3 9 12 13 2 10 14 5 0 7 1 15 11 4
Z(x) 14 12 3 7 9 15 8 13 6 2 10 5 4 1 11

Z ( f1(x)) 14 11 1 4 5 10 2 6 13 8 15 9 7 3 12
Z ( f2(x)) 8 9 10 11 12 13 14 15 1 2 3 4 5 6 7
Z ( f3(x)) 2 5 15 12 11 6 14 10 3 8 1 7 9 13 4
Z ( f4(x)) 2 4 13 9 7 1 8 3 10 14 6 11 12 15 5
Z ( f5(x)) 8 7 6 5 4 3 2 1 15 14 13 12 11 10 9

The set of all integers x 2 Zq�1 \
n

q�1
2

o

can be partioned into disjoint subsets of size six.
For q = p = 17, the complete subset list is presented in Table 4.3. However, one of the subsets
only comprises three integers since f1 (0) = 0, f3 (0) = f4 (0), f2 (0) = f5 (0) and therefore the
set F (0) = {0, f3 (0) , f5 (0)} =

n

0, q�1
2 �Z (0) , q�1

2 +Z (0)
o

which has size three.
Suppose the Zech logarithm of one integer, say y, from each of the above subsets of size six

is stored in a table. Then the Zech logarithm Z (x) of an arbitrary integer x can be computed as
follows,

(1) Find the unique integer y contained in F (x).
(2) Read Z (y) from the table.
(3) Use the congruences of the above two theorems to compute Z (x) from x, y and Z (y).

4.3.3. Subsets of size six. In the partition of Zq�1 \
n

q�1
2

o

there are q�5
6 sets of size six.

The algorithm to obtain S with all subsets of size six plus the size three subset is as follows2:

Require: q⌘ 5 (mod 12)

S {}
2MemberQ[list, form] returns True if an element of list matches form, and False otherwise.
Flatten[list] flattens out nested lists.

73



Chapter 4. Generalized TCH via Zech logs

a = PrimitiveRoot [q]

NS = 1+(q�5)/6
i =�1; k = NS

while k > 0 do
while MemberQ [Flatten [S] ,++i] do

{Empty while}
end while
S Append

⇥

S, f j (i)
⇤

f or j = 0,1, . . . ,5 {Note: f0 = i}
k k�1

end while
return S

EXAMPLE. The application of this algorithm for q = 17 results in 2 subsets of six elements
and 1 subset of three elements (2 ·6+1 ·3 = 15),

S = {{0,0,6,10,10,6}, {1,15,4,12,13,3}, {2,14,11,5,7,9}}.

4.4. Equivalent form of standard TCH

From the introduction to TCH codes we know that each codeword is associated with a
primitive element a of GF(p), p being a Fermat prime. Another way of looking at the standard
TCH generating equation a

Ki ⌘ 1 + a

2i+1 (mod p) is to say that the p�1
2 exponents Ki are the

Zech logarithms, taken with respect to base a , of all the odd integers up to (p�2), i.e. the
integers 1,3,5, · · · , p� 2. Instead of computing all the Zech logarithms of this set, we can
use the information from the previous section to construct a look-up table with just 3 pairs
(xi,Z (xi)),i = 1,2,3, from which we compute all remaining values. We give an example.

EXAMPLE. Assume for p = 17 that we already have the set S (resulting from Theorem 79)
and for the second subset we used the pair (x2,Z (x2)) = (12,Z (12)). Suppose that we want to
compute Z(3). Then we must find the subset where 3 belongs. This is the second subset and
from our table we read Z(12) = 5. Now, using (4.16) we can compute Z (8�5) = 12� 5 ⌘ 7
(mod 16).

Imagine that instead of x2 = 12 we had selected x2 = 15. Now we would read from our
table Z (15) = 11. Using (4.15) we would compute Z (11+8) = 15 + 8 ⌘ 7 (mod 16) arriving
at the same value. This is the implication of using arbitrarily one of the six key elements in each
subset. Moreover if we are only interested in the Zech logarithm of odd integers then only 4
values of those 6 are relevant.
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Table 4.4. Zech values, Z (x) for odd x up to p� 2 using the smallest correspondent
primitive element a

(p, a)\ x 1 3 5 7 9 11 13 15 17 19 21 23 25 27
(17,3) 12 7 15 13 6 10 4 11
(19,2) 13 8 7 11 �• 4 2 5 12
(23,5) 18 9 13 12 20 �• 11 5 8 6 17
(29,2) 5 10 2 18 24 9 27 14 26 15 11 25 7 4

4.5. Generalized TCH codewords

We now lift the restriction of p being a Fermat prime and proceed by searching an appro-
priate finite field for which p�1 is closer to the desired value of N. Then to generate a single
codeword we use (arbitrarily) the smaller of GF (p) primitive elements.

4.5.1. Single codeword. In order to generalize the generation of TCH codewords we com-
pute the Zech logarithms for all the odd integers up to p�2 for other values of p, i.e. for primes
not restricted to Fermat primes. In Table 4.4 we present such values for the first three primes
after p = 17. Since we want balanced codewords, i.e. binary codewords with weight equal
to 0, we must disregard the cases for p = 19 and p = 23 and consider as good cases those of
p = 17 and p = 29. Note also that the bad cases, where Z (x) = �•, correspond to odd values
x = (p�1)/2.

We are working odd primes p. Modulo an odd prime p there are (p+1)/2 quadratic residues
(including 0) and (p−1)/2 nonresidues. As we know an integer g is a quadratic residue mod-
ulo p if it is congruent to a perfect square modulo p and is a quadratic nonresidue modulo p
otherwise. We introduced the Legendre symbol earlier as a function of g and p and defined as
follows

✓

g
p

◆

⌘ g
p�1

2 (mod p) (4.20)

giving the value 1 if g is a quadratic residue and �1 if g is a quadratic nonresidue.
The first supplement to the law of quadratic reciprocity (see theorem 70) tell us that

✓

�1
p

◆

= (�1)
p�1

2 =

8

<

:

1 if p⌘ 1 (mod 4)

�1 if p⌘ 3 (mod 4)
(4.21)

Now �1 (mod p) i.e. p� 1 (mod p) cannot be a primitive root because (p� 1)2 = p2�
2p+1⌘ 1 (mod p), i.e. the multiplicative order of p�1 is 2 while that of a generator is p�1.
Therefore we conclude that the class of good primes is the class corresponding to Pythagorean
primes, i.e. primes p⌘ 1 (mod 4). For this class, p is of the form 4k +1 and thus (p�1)/2 =

4k/2 is always even.
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Chapter 4. Generalized TCH via Zech logs

We are interested in obtaining codewords with length N equal to a power of two. We also
know that this can only be obtained exactly for Fermat primes so for the other cases, i.e. N 2
{32,64,128,512,1024} we need to select the closest possible adequate prime.

DEFINITION 80. The discrete autocorrelation Rxx at lag j for a discrete periodic sequence
{xn}N�1

n=0 is

Rxx ( j) =
N�1

Â
n=0

xnxn+ j (4.22)

where x denotes the complex conjugate of x.

EXAMPLE. Let N = 32. The closest prime congruent to 1 modulo 4 is is p = 29 which will
generate codewords of length p�1 = 28. The smallest primitive root modulo 29 is 2. Applying
the Zech logarithm to the list of odd integers gives us the codeword F04CEB416 in hexadecimal
format. We can check the ’ON’ bits by looking at the position given by the Zech values on the
last line of Table 4.4. For instance, the bits at positions 24 to 27 are all set translating into the
most significant F16 in the codeword.

However the length (or period) of this codeword is 28. In order to get a codeword with
N = 32 we will prepend a 4 bit code from the Fermat case p = 5, i.e. either C16 or 616. The best
alternative is the one that maximizes the minimum distance of the codeword which for this ex-
ample corresponds to the prefix 616 giving the generalized 32-bit TCH codeword 6F04CEB416.
This codeword has a weight of 16 and a minimum distance of 12. Its autocorrelation signature
is depicted in Figure 4.2. The peak at lag 0 corresponds to the length of the codeword, i.e. 32,
and the other correlation values fall between [�8,8] instead of [�4,0] as was the case for the
standard TCH codewords. Note, however that the correlation value ci for odd lag i is always 0
and Â31

i=0 ci = 0.

In Figure 4.3 we present the autocorrelation signature of a previously obtained 32-bit code-
word, from TCH(32,7,5). In the notation TCH(n,k, t), t is the error correcting capability such
that dmin� 2t +1. Even though the values for lag j 6= 0 are between�8 and 8 the odd lag values
are not 0 as in our generalized example.

4.5.2. The set of generalized codewords. Each codeword is associated with a primitive
element of GF (p). We can calculate all the primitive elements using the Legendre sym-
bol to obtain all the quadratic nonresidues (Table 4.5) which for p = 29 results in, 2, then
3,8,10,11, · · · ,21,26 and 27. Then we check the multiplicative order of each nonresidue. Those
who have order p� 1 are primitive elements. In this case we have to remove the elements 12
and 17, giving a total of 12 primitive elements.

Applying the same procedure described for the single codeword we now generate all 12
codewords for p = 29 and determine the best prefix for each one by evaluating the minimum
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Figure 4.2. The autocorrelation of generalized codeword 6F04CEB416 resulting from
(p = 29,a = 2).
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Figure 4.3. The autocorrelation of a codeword from TCH(32,7,5)

Table 4.5. All primitive elements of GF (29) are a subset of the nonresidues given by
the Legendre symbol.

i 1 2 3 4 5 6 7 8 9 10 11 · · · 24 25 26 27 28
� i

29
�

1 �1 �1 1 1 1 1 �1 1 �1 �1 · · · 1 1 �1 �1 1
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Chapter 4. Generalized TCH via Zech logs

Table 4.6. The best generalized 32-bit TCH codewords via Zech logarithms in GF (29).

a Codeword 0 C 6
2 F04CEB4 12 8 12
8 8746F68 14 14 10
3 44978EE 14 14 14

19 4C17ACE 12 14 14
18 74CF6A 14 14 12
14 D06C6BC 12 14 10
27 7AC6C16 12 10 14
21 ADE65C0 14 14 14
26 E6BD064 12 14 14
10 EE3D244 14 14 14
11 2DEC5C2 14 10 14
15 5AE641E 12 12 8

distance. The list is presented in Table 4.6. The first column has the primitive element used.
The second column contains the 28-bit codeword in hexadecimal format. The values in the last
three columns correspond to the minimum distance of the prefixed code (4+28=32 bit) and the
4-bit prefix is the hexadecimal label of each column. Take the second line as an example. The
value 14 under the heading “C” means that the codeword 8746F68 when prefixed with C, i.e.
the codeword C8746F68, has a minimum distance of 14.

DEFINITION 81. The discrete cross-correlation Rxy at lag j between the discrete signals xn

and yn is
Rxy ( j) = Â

n
xnyn+ j (4.23)

where x denotes the complex conjugate of x.

For comparison we present in Figure 4.4 the cross-correlation between the prefixed code-
words C8746F6816 and C44978EE16. Note that all cross-correlation values are contained in
the interval [�8,12] staying well below the peak value (in this case below half the peak), i.e.
|ci| < 32

2 = 16.
For comparison we also present in Figure 4.5the cross-correlation between codewords from

a previously obtained TCH(32,7,5).
From the list of Table 4.6 it is possible to select 8 codewords with minimum distance of

dmin = 14 to define a code TCH(32,9).
The best 32-bit codewords presented in [6] correspond to a code TCH(32,6) with dmin =

14. We have therefore gained 3 information bits by our approach. To explore the relationship
between rate and distance, a set of lower and upper bounds of block codes are known. In Figure
4.6 we used as upper bound the maximum of Plotkin and Hamming and as a lower bound the
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Figure 4.4. The cross-correlation between the (prefixed by C16) generalized codewords
C8746F6816 from (p = 29,a = 8) and C44978EE16 from (p = 29,a = 3).
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Figure 4.5. Cross-correlation between codewords from TCH(32,7,5)

minimum of Gilbert and TCH (the latter being k = 1+ log2 N). We also plotted the best standard
TCH and the best generalized TCH developed in this chapter.

Before we present the results for codewords of length 64,128 we end this section with an
outlier set of codewords. By outlier we mean the following. If we disregard the restriction
p⌘ 1 (mod 4) we can use p = 31 which will produce 30-bit codewords listed in Table 4.7. The
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Figure 4.6. Comparison between the best 32-bit codes. The smaller points are for the
standard TCH and larger points are for the generalized TCH via Zech logarithms.

Table 4.7. The best generalized 32-bit TCH codewords via Zech logarithms in GF (31).

a Codeword 0 C 6
3 1C4FAC48 12 12 12

17 11AD8F90 14 10 12
13 2C9581CE 14 14 14
24 2063B656 12 14 12
22 3536E302 12 12 12
12 39C0D49A 14 14 14
11 4F8DAC4 14 10 12
21 91AF91C 12 8 8

first column has the primitive element used. The second column contains the 30-bit codeword in
hexadecimal format. The values in the last three columns correspond to the minimum distance
of the prefixed code. The most significant 4 bits of the original codeword are bit OR-ed with
the 4 bits of the prefix (the hexadecimal label of each column).

In order to get 32 bits we need an additional prefix of two bits but the prefixes we have been
using have 4 bits. Thus in this case the prefix operation involves the OR operation between the
4 bits of the prefix and the most significant bits of the original codeword. As an example the
first codeword 1C4FAC4816 when prefixed by 616 will turn into 7C4FAC4816. On the other
hand, the last codeword 91AF91C16 has only 7 hexadecimal characters so it will turn into the
usual 691AF91C16 when prefixed by 616.
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Table 4.8. The best generalized 64-bit TCH codewords via Zech logarithms in GF (53)
with codeword prefixes from GF (13).

a Codeword 000 978 1DA B70 3D2
2 E01B79D971AA4 26 24 24 24 24
8 9F12417AE3B58 26 28 26 28 26

32 3BED29D83C512 26 20 20 24 24
22 3872BDDD03692 26 26 22 26 26
35 5DA9306B381DE 24 18 26 18 26
34 B9536C73F90A 26 24 26 24 28
14 A315BC6D1FB20 26 26 22 26 26
3 570B986990B7E 26 26 26 26 26

12 9AF21F75A3418 26 24 26 24 24
48 9B4FAB7014F18 26 28 24 24 26
33 153069D86B3FA 26 28 28 28 28
26 CA3953D3F920C 26 28 24 28 20
51 6093F979538A6 26 20 28 24 28
45 BF9AC372C1950 26 28 28 28 28
21 31E501DABE5B2 26 26 24 24 28
31 3058B5DF09EB2 26 24 24 26 24
18 FDA132C33A1D4 26 26 26 26 26
19 9BF16C7B518A 26 26 24 26 26
39 A13F9C6D953A0 26 24 22 28 26
50 F7039AC192B74 24 26 18 26 18
41 92D81777A9C38 26 26 26 22 26
5 9147837296FB8 26 24 24 20 20

20 35B8EBD0491F2 26 26 28 26 28
27 4AB1D373DB00E 26 24 24 24 24

4.6. Codewords for other lengths

For the case of 64-bit codewords we use the prime p = 53 giving codewords of period 52.
In order to obtain the extra 12 bits we prepend codewords from using p = 13 as given in table
4.8. For each prefix used we list the minimum distance obtained. Thus, by selectively gathering
codewords we can construct a code GTCH(64,10) with dmin = 28 which is much better than the
same size code TCH(64,10) of minimum distance 24.

Alternatively we can use the prime p = 61 to obtain 60-bit codewords which are then pre-
fixed with 4-bit codewords. Figure 4.7 illustrates the autocorrelation of one example, given by
the codeword from (p = 61,a = 10) prefixed with C16.

For the case of 128-bit codewords we use p = 113 generating 48 codewords of 112 bits
each. To obtain the full length codewords we prepend with codewords from the case p =
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Figure 4.7. The autocorrelation of the 64-bit generalized codeword resulting from
(p = 61,a = 10) using a C prefix.
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Figure 4.8. The autocorrelation of a 128-bit generalized codeword. The values for a lag
6= 0 are within [�16,24].

17, since 112+16=128. In figures 4.8 and 4.9 we plot samples of the autocorrelation and the
crosscorrelation.

4.6.1. Zech relation between codewords. Since a primitive element, say b , can be com-
puted as a power of another primitive element, say a , we can relate two different codewords
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Figure 4.9. The crosscorrelation of two 128-bit generalized codewords. All values are
within [�24,32].

using Zech’s log properties. Using the definition (Eq. 4.1) of Zech’s logarithm and assuming
b = a

u, we have 1 + a

ux ⌘ a

uZ
b

(x) but we also have 1 + a

ux ⌘ a

Z
a

(ux) where the subscript of
Z indicates the primitive element used. Then the following relations are easily derived:

Z
a

(ux)⌘ uZ
b

(x) mod (p�1)

Z
b

(x)⌘ uf(p�1)�1Z
a

(ux) mod (p�1)

with uf(p�1)�1 being the multiplicative inverse of u and f(· · ·) the Euler phi-function.

EXAMPLE. Let us consider the codeword BCD016 from (p = 17,a = 3) given by the
list of Zech values {12,7,15,13,6,10,4,11}. Now we want to determine the codeword from
(p = 17,b = 10). Since 10 ⌘ a

3 we first find the multiplicative inverse of 3 which is 11
(since 3 · 11 = 33 = 1 modulo 16). Then we multiply the list of Zech values by 11 giving
{4,13,5,15,2,14,12,9} resulting in the codeword F23416. Note that we have substituted a
complete computation of Zech values by a much simpler multiplication modulo p�1.

4.6.2. Iterative construction of the permutations matrix. We are working with code-
words generated by 1+a

2 j+1. As we saw in the previous example any primitive element b can
be expressed as an odd power of a , i.e. b = a

2k+1. Therefore the odd powers of b are b

2 j+1 ⌘
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a

(2k+1)(2 j+1). We then have, (2k +1)(2 j +1) = 4k j+2k+2 j+1 = 2 [2k j +(k + j)]+1 result-
ing in,

j ⌘ 2k j + j + k
✓

mod
N
2

◆

(4.24)

that we tabulate (for the case p = 17) in the following permutation matrix,

X =
⇥

xk j
⇤

=

2

6

6

6

6

6

6

6

6

6

6

6

6

6

4

0 1 2 3 4 5 6 7
1 4 7 2 5 0 3 6
2 7 4 1 6 3 0 5
3 2 1 0 7 6 5 4
4 5 6 7 0 1 2 3
5 0 3 6 1 4 7 2
6 3 0 5 2 7 4 1
7 6 5 4 3 2 1 0

3

7

7

7

7

7

7

7

7

7

7

7

7

7

5

(4.25)

where xk j = 2k j + j + k modulo N
2 . The application of the Zech logarithm to each row k

results in the codeword associated with the primitive element a

2k+1 (we assume a reference
primitive element, a , which most often is the smallest of all the primitive elements). For each
codeword, half of the bits of the codeword, i.e. those at position Z

b

�

xk j
�

have the value 1 while
the remaining half have the value 0. Note also that (in this case) since N = p� 1 = 16, the
congruence of Eq. (4.24) is taken modulo 8.

To generalize this formulation we obtain i from the equation N = 4 ·2i where N is the desired
codeword length. So for N = 32, i would be i = 3. Then we construct the matrix

xk j = 2k j + j + k
�

mod 2i+1� , (4.26)

for row k = 0,1, . . . ,2i+1�1 and column j = 0,1, . . . ,2i+1�1. Then for each row we apply
the Zech log taken to base a

2k+1 with an arbitrarily chosen primitive element a .

The matrix (4.25) is of the form

"

A A+4
A+4 A

#

(mod 8) and we also note that A (mod

4) =

"

B B+2
B+2 B

#

with B =

"

0 1
1 0

#

. In addition we have A =

"

B B+2
B+2 B

#

+

2

6

6

6

4

0 0 0 0
0 4 4 0
0 4 4 0
0 0 0 0

3

7

7

7

5

. This gave us the motivation to pursue an iterated construction of the matrix

of permutations. Before we present the resulting algorithm we need to define the Kronecker
product.
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DEFINITION 82. If A is an m-by-n matrix and B is a s-by-t matrix, then the Kronecker
product A⌦B is the ms-by-nt block matrix,

A⌦B =

2

6

4

a11B · · · a1nB
... . . . ...

am1B · · · amnB

3

7

5

(4.27)

Let us work out an example for the iterated construction of the matrix of permutations X .
We start with X0 = [0], the scalar value 0.

At step i = 0 we construct

X1 =

"

X0 X0 +1
X0 +1 X0

#

�

mod 2i+1�=

"

0 1
1 0

#

(mod 2)

We then add a ring matrix R0 which in this step is a 2⇥2 matrix with zeros. So, X1 = X1 +R0

remains unaltered.
At step i = 1, we repeat

X2 =

"

X1 X1 +2
X1 +2 X1

#

�

mod 2i+1�=

2

6

6

6

4

0 1 2 3
1 0 3 2
2 3 0 1
3 2 1 0

3

7

7

7

5

(mod 4)

We then add a ring matrix R1 which in this step is

Ri=1 =

2

6

6

6

4

0 0 0 0
0 2i+1 2i+1 0
0 2i+1 2i+1 0
0 0 0 0

3

7

7

7

5

=

2

6

6

6

4

0 0 0 0
0 4 4 0
0 4 4 0
0 0 0 0

3

7

7

7

5

generating, X2 = X2 +R1 =

2

6

6

6

4

0 1 2 3
1 4 7 2
2 7 4 1
3 2 1 0

3

7

7

7

5

.
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Chapter 4. Generalized TCH via Zech logs

At step i = 2, we have

X3 =

"

X2 X2 +4
X2 +4 X2

#

�

mod 2i+1�=

2

6

6

6

6

6

6

6

6

6

6

6

6

6

4

0 1 2 3 4 5 6 7
1 4 7 2 5 0 3 6
2 7 4 1 6 3 0 5
3 2 1 0 7 6 5 4
4 5 6 7 0 1 2 3
5 0 3 6 1 4 7 2
6 3 0 5 2 7 4 1
7 6 5 4 3 2 1 0

3

7

7

7

7

7

7

7

7

7

7

7

7

7

5

(mod 8)

which is the matrix (4.25) obtained above. The number of steps depends on the codeword
length N.

The complete generalization is given by the following algorithm.

Let Ik be the k⇥k identity matrix, so that I2 =

"

1 0
0 1

#

. Let Jk be the k⇥k exchange matrix

(with ones on the counter diagonal), so that J2 =

"

0 1
1 0

#

. Let also Bk be the k⇥ k box matrix

(filled with 1’s), so that B2 =

"

1 1
1 1

#

.

Require: N = 2v,v� 2
i = 0; X = [0]; R =

⇥

rk j
⇤

repeat
X  B2⌦X + J2⌦2iB2i

rk j =

8

<

:

2i+1 if Mod
⇥

2k j + j + k, 2i+1⇤>
�

2i+1�1
�

0 Otherwise
{k, j = 0,1, . . . ,2i+1�1}

X  X +R
i i+1

until 4 ·2i > N
return X�R

4.7. Conclusion

In this chapter we have presented an algebraic method to obtain binary generalized TCH
codewords of length N = 2k,k = 1,2, . . . ,16. By exploring Zech logarithm’s properties as well
as a group theoretic isomorphism this method is both faster and less complex than what was
proposed before. In addition, it is valid for all relevant cases relating the codeword length N
and not only those resulting from N = pi�1 for Fermat primes pi. The method also derives the
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4.7. Conclusion

maximum set of all the codewords of a certain code bringing clear advantages in terms of code
size and minimum distance. This work was accepted for publication in [21].
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CHAPTER 5

PERMUTATIONS OF SIDEL’NIKOV SEQUENCES

5.1. Introduction

In high-speed data communications, M-ary modulation schemes are commonly used. Sev-
eral classes of M-ary codes with good error-correction capabilities as well as M-ary sequences
with good correlation properties have been employed. Auto-correlation properties are important
for synchronization purposes and cross-correlation properties are useful for multi-access tech-
niques. In this scenario, a large number of distinct sequences is necessary to support as many
distinct users or channels as possible. From the implementation point of view it is important
to generate such large sequence sets as efficiently as possible, i.e. reducing the computational
resources (i.e., time and memory) employed in sequence set generation and its subsequent use.

This chapter is organized as follows. Section 5.2 identifies permutations between TCH
codewords. Using the notion of quadratic residues we partition the codeword in half and use
appropriate permutations of the set Zp�1 in section 5.3. Section 5.4 discusses some relevant
facts from group theory in order to extend the results to the generalized TCH codewords. Re-
stricting the primes to the class of Pythagorean primes reveals a very interesting isomorphism
that is presented in section 5.5. Armed with the previous results we propose, in Section 5.6,
an efficient method to generate, in time and frequency domains, certain sequences associated
to the primitive elements of the Galois field GF(p). In Section 5.7 we recall the definition of
Sidel’nikov sequences and we apply the results of Section 5.6 to generate all Sidel’nikov se-
quences of period p�1. We then link TCH codewords with Sidel’nikov sequences and prove, in
section 5.8, that TCH codewords are a subset of those sequences. Some examples are included
in Section 5.9. Finally, in section 5.10, the permutation-based generation procedure is extended
to Sidel’nikov sequences of period pn�1 allowing the construction of M-ary sequences.
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Chapter 5. Permutations of Sidel’nikov sequences

Table 5.1. Two solutions of equation (5.1) for a = 3 and b = 5.

i a = 3 b = 5
1+a

2i+1 Ki 1+b

2i+1 Ki
0 4 12 6 3
1 11 7 7 15
2 6 15 15 14
3 12 13 11 11
4 15 6 13 4
5 8 10 12 9
6 13 4 4 12
7 7 11 8 2

5.2. Permutations among TCH codewords

In this chapter we use standard results and nomenclature from finite field theory [54]. How-
ever the essential theory is presented in Chapters 2 and 3. Let a be a primitive element of
GF(p). Then a generates the group < a >=

�

a

0,a1,a2, · · · ,a p�2 . We recall the generating
equation for TCH basic polynomials:

a

Ki ⌘ 1+a

2i+1, i = 0,1, · · · , p�1
2
�1 (5.1)

where p is an odd prime of the form p = Fn = 22n
+1, i.e. p is a Fermat prime.

The exponents Ki 2 {1,2, · · · ,2n�1} specify the powers of x in the polynomial h
a

(x),

h
a

(x) =

p�1
2 �1

Â
i=0

xKi (5.2)

In table 5.1 we give two solutions of (5.1) for two different primitive elements a = 3 and
b = 5.

It is clear that the set 1 + b

2i+1 is a permutation 1 + a

2i+1 which provided the motivation
for studying permutations among TCH codewords.

Consider F⇤p = GF(p)\{0} the multiplicative group of units (invertible elements) of GF(p),
a cyclic group of order p�1. Let QR be the set of quadratic residues, i.e. QR =

�

a

k | gcd(k, p�1) 6= 1
 

(mod p).
This set is a multiplicative subgroup of F⇤p of index 2. Let h be a non-quadratic residue. The
coset QR = hQR = {h j; j 2 QR} consists of the non-quadratic residues. We may assume that
h is the smallest non-quadratic residue modulo p that generates the multiplicative group, i.e.,
F⇤p = QR [ QR.

The set {a

Ki , i = 0,1, · · · , p�1
2 �1} in (5.1) is 1+QR that we partition into,

1+QR = S[S (5.3)
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5.3. Permutations of Zp�1

with
S = (1+QR) \ QR (5.4)

and
S = (1+QR) \ QR (5.5)

Denoting,
Q(a) =

n

j 2 Z p�1
2

: a

2 j+1 2 S
o

(5.6)

Q(a) =
n

j 2 Z p�1
2

: a

2 j 2 S
o

(5.7)

the polynomial (5.2) can be alternatively defined as

h
a

(x) = Â
j2Q(a)

x2 j+1 + Â
j2Q(a)

x2 j. (5.8)

We denote by H
a

=(a p�1
2 �1, · · · ,a1,a1̄,a0,a0̄), ai 2 Z2 , the binary representation (code-

word) of h
a

(x) = Âp�2
k=0 bkxk where bk = 1 if the monomial xk exists in (5.8) and bk = 0 other-

wise. To complete the definition,
8

<

:

ak̄ = b2k

ak = b2k+1 k = 0,1, . . . , p�1
2 �1

(5.9)

5.3. Permutations of Zp�1

Permutations are discussed in section A.1. Given primitive elements a and b , there is a
permutation p

a!b

of the set {0,1,2, · · · , p�2} such that

p (q (a)) = q (b ) p

�

q̄ (a)
�

= q̄ (b ) . (5.10)

Since p is a Fermat prime we have,

QR =

⇢

podd
a

[k] : k = 0,1,2, . . . ,
p�1

2
�1

�

(5.11)

QR =

⇢

pev
a

[k] : k = 0,1,2, . . . ,
p�1

2
�1

�

(5.12)

where,
podd

a

[k] .
= a

2k+1, k 2 Z p�1
2

(5.13)

and
pev

a

[k] .
= a

2k, k 2 Z p�1
2

. (5.14)

LEMMA 83. If b = podd
a

[k] = a

2k+1 then
91



Chapter 5. Permutations of Sidel’nikov sequences

a) podd
b

[ j] = podd
a

[k +(2k +1) j]
b) pev

b

[ j] = pev
a

[(2k +1) j]

PROOF. By variable substitution and working out the product the proof follows trivially
from the definition (5.13), (5.14) and we omit it. ⇤

The map j 7! k +(2k +1) j, j 2 Z p�1
2

, defines a permutation,

sk =

 

0 1 · · · j · · · p�1
2 �1

k +(2k +1)0 k +(2k +1)1 · · · k +(2k +1) j · · · k +(2k +1)( p�1
2 �1)

!

(5.15)
Analogously the map j̄ 7! (2k +1) j, j̄ 2 Z p�1

2
, defines a permutation,

s̄k =

 

0 1 · · · j · · · p�1
2 �1

(2k +1)0 (2k +1)1 · · · (2k +1) j · · · (2k +1)( p�1
2 �1)

!

. (5.16)

The permutation relating the binary representations H
a

and H
b

, of the polynomials h
a

(x)
and h

b

(x), associated with a and b = a

2k+1 respectively, is the “intertwined” application of sk

and s̄k, i.e. H
a

pk! H
b

:

pk =

 

p�1
2 �1 · · · 1 0 0

k +(2k +1)( p�1
2 �1) · · · (2k +1)1 k +(2k +1)0 (2k +1)0

!

(5.17)

LEMMA 84. The permutation pk has k-dependent order L = ordp�1 (1+2k).

PROOF. After L iterations of the map j 7! k +(2k +1) j, we get

j 7!
L�1

Â
i=0

k (2k +1)i + j
L�1

’
i=0

(2k +1) (5.18)

and since ÂL�1
i=0 Ai = 1�AL

1�A , A 6= 1,

j 7! 1
2

h

�1+(2k +1)L
i

+ j (2k +1)L (5.19)

Likewise, after L iterations of the map j̄ 7! (2k +1) j, we get

j̄ 7! j
L�1

’
i=0

(2k +1) (5.20)

j̄ 7! j (1+2k)L (5.21)
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3!p
3

odd
!0"

10!p
3

odd
!1"5!p

3

odd
!2"

11!p
3

odd
!3"

14!p
3

odd
!4"

7!p
3

odd
!5" 12!p

3

odd
!6"

6!p
3

odd
!7"

Figure 5.1. The circular structure relating all the odd powers of a primitive element a .
In this case p = 17 and a = 3.

To complete a cycle we want the coefficient of j to be congruent to 1 and the other term in
(5.18) to be congruent to 0. The satisfaction condition is therefore (1+2k)L ⌘ 1 giving the
order L | f (p�1). ⇤

By the previous lemma and since f (p�1) is even, there are permutations r and r

0 with
orders p�1

4 and 2, respectively. Therefore the successive application of the permutation r to
h

a

(x) and r

0(h
a

(x)) generates the set of all basic TCH codewords.

Example: Consider the case for p = 17. There are f (f (p)) primitive elements of F⇤p,
where f (·) is the Euler-Phi or totient function. Take a = 3 as a primitive element. The set of
non quadratic residues (in this case also the set of primitive elements since p is a Fermat prime)
is, QR = {31, 33, 35, 37, 39, 311, 313, 315} = {3,10,5,11,14,7,12,6} as illustrated in Figure 5.1.
The set of quadratic residues is QR = {30, 32, 34, 36, 38, 310, 312, 314} = {1,9,13,15,16,8,4,2}.

The remaining sets are S = {11,6,12,7}, S = {4,15,8,13}, Q(3) = {3,5,6,7} and Q(3) =

{2,3,5,6}. Therefore, h3 (x) = x7 + x11 + x13 + x15 + x4 + x6 + x10 + x12 represented in binary
by the codeword H3 = 1011110011010000 (where the least significant bit is at the rightmost
position) or in hexadecimal format by BCD0. The divisors of f (17�1) = 8 are 1, 2 and 4.
These are the possible orders for the permutations p . We select k = 1 since ord16 (1+2 ·1) = 4.

The new primitive element is b = a

3 = 10. With k = 1 the permutations s and s are:

s =

 

0 1 2 3 4 5 6 7
0 3 6 1 4 7 2 5

!

s =

 

0 1 2 3 4 5 6 7
1 4 7 2 5 0 3 6

!
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Π1

Π7

Π1

Π1Π1Π1Π1

Π1 Π1

3

BCD0

10

F234

14

94F8

7

70B6

6

167A

12

589E

11

3E52

5

DA1C

Figure 5.2. Digraph of all TCH basic codewords for p = 17. Each vertex contains
the primitive element ai and the hexadecimal representation of its associated 16 bit
codeword H

ai (x). Using just two permutations, p1 with order 4, p7 with order 2, all
f (17�1) = 8 codewords are generated from a single one.

Thus the intertwined permutation p1 is
 

7 7 6 6 5 5 4 4 3 3 2 2 1 1 0 0
6 5 3 2 0 7 5 4 2 1 7 6 4 3 1 0

!

which applied to H3 gives the new codeword H10, F234

7 7 6 6 5 5 4 4 3 3 2 2 1 1 0 0
BCD0 1 0 1 1 1 1 0 0 1 1 0 1 0 0 0 0
F234 1 1 1 1 0 0 1 0 0 0 1 1 0 1 0 0

6 5 3 2 0 7 5 4 2 1 7 6 4 3 1 0

Now consider the power recursion sequence, 33,
�

33�3,· · · , giving 10,14,7,3. Note that at
each step k is fixed at k = K = 1 and therefore the successive application of the above permuta-
tion generate half of all codewords as depicted in the rightmost circle of figure 5.2. To get the
other half we need to consider another primitive element for the recursion sequence, e.g. 63,
�

63�3,· · · , giving 12,11,5,6. Since 6 = 315 we have k = 7 and the permutation p7 to use to get
H6 from H3 is

 

7 7 6 6 5 5 4 4 3 3 2 2 1 1 0 0
0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 0

!

Note that this permutation corresponds to a composition of two bit-wise operations, a re-
flection around the middle axis and then a single bit rotation to the left. The complete solution,
with permutations p1 and p7 is depicted in Figure 5.2.
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5.4. Extension to generalized TCH codes

The original generating equation (5.1) allows the determination of TCH codewords of length
16, 256 and 65536. For most applications codewords of intermediate length, i.e. 32, 64, 128,
512, 1024 etc., are also necessary and useful. In this section we lift the restriction on p being a
Fermat prime.

Instead of considering primitive elements we only look at the exponents g of a certain prim-
itive element power a

g. Let G={g : gcd(g, p�1) = 1} be a multiplicative subgroup of F⇤p. We
write G as the disjoint union of H and gH,

G = H [̇gH (5.22)

where H =
�

g 2 G : g2 ⌘ 1 (mod p�1)
 

is a subgroup of G with a set of elements of order
2. Note that the order of g is the order |<g>| of this cyclic subgroup. It follows that gH is
a left coset of H for g 2 G/H collecting elements of higher order. The number of cosets is
[G : H] and when G = H the group is simple with all elements having order 2. The structure
of G is therefore isomorphic to C2⇥C |G|

2
. Therefore to select the best permutation we choose a

primitive element with the highest order. These insights from group theory are exploited in the
next section.

Another way to look at G is to consider a subset of all odd integers as follows. The number of
all odd integers between 1 and p�1 is equal to Nodd = p�1

2 . For primes of the form p = 4k +1
and excluding the Fermat primes (p = 22m

+ 1) the set G can be partioned into a set with 4
blocks of elements, each block with b elements, where b = Nodd�2

4 = p�5
8 . Starting from a full

set of odd integers, constructing G is as easy as taking the first b odd integers, skipping one
integer, taking the next 2b odd integers, skipping one integer and taking the remaining b odd
integers. As an example, for p = 13, the starting full set of odd integers is {1,3,5,7,9,11}.
Now b = (13� 5)/8 = 1 and the set G is obtained by taking one integer, skipping one, taking
the next two, skipping one and taking the last one, resulting in {1, 6 3,5,7, 6 9,11}. For p a Fermat
prime, b = p�1

8 and there is no skipping, i.e. G is the full set of odd integers.

5.5. Useful isomorphisms

The set of primitive elements of Fp is constituted by all the elements of the form a

k with
a a fixed primitive element and k 2 Mp�1, where Mp�1 denotes the set of positive integers
inferior to p�1 that are co-prime to p�1. The set Mp�1 with multiplication modulo p�1 is a
multiplicative group called the prime residue group associated to p�1. The order of this group
is given by the Euler function f(p�1) and its exponent, i.e., the smallest positive integer ` such
that k` ⌘ 1 (mod (p�1)) for every k 2Mp�1, is given by the Carmichael function l (p�1).

95



Chapter 5. Permutations of Sidel’nikov sequences

Table 5.2. Isomorphisms between prime residue groups and the direct product of cyclic
subgroups, for the first few primes.

p p mod 4 p�1 'Mp�1 f (p�1) l (p�1)

5 1 22 C2 2 2

7 3 21 ·31 C2 2 2

11 3 21 ·51 C4 4 4

13 1 22 ·31 C2⇥C2 4 2

17 1 24 C2⇥C4 8 4

19 3 21 ·32 C6 6 6

23 3 21 ·111 C10 10 10

29 1 22 ·71 C2⇥C6 12 6

31 3 21 ·31 ·51 C2⇥C4 8 4

37 1 22 ·32 C2⇥C6 12 6

41 1 23 ·51 C2⇥C2⇥C4 16 4

Since Mp�1 is a finite abelian group, Mp�1 is isomorphic to a direct product of s cyclic
subgroups, Cm1 , Cm2 , . . . Cms of orders m1,m2, . . . ,ms, respectively. We may assume m1 
m2  · · · ms = l (p�1). These isomorphisms and the values of the Carmichael function are
gathered in Table 5.2 for the first few primes. In this table the class residues of p (mod 4) are
also indicated. When p⌘ 1(mod4), p is called a Pythagorean prime. If in addition, p = 4st +1
for some positive integer t and prime number s, p is called a sub-Pythagorean prime. In this
later case, the above isomorphism reduces to Mp�1 'C2⇥C

l (p�1).
We refer to [54, 55] for further details.

5.6. Sequences associated to partitions of F⇤p

In this section we introduce a class of sequences associated to balanced partitions of F⇤p, and
we derive a simple way to obtain these sequences, in time and frequency domains.

An ordered set partition P = (P0, . . . ,PM�1) of F⇤p into M sets with the same cardinality is
called a balanced partition of F⇤p. Let a be a fixed primitive element of Fp. For each k co-prime
to p�1 we define an M-ary sequence of length p�1, f

a

k , which we call a (P,a)-sequence by

f
a

k(t) = ` if a

kt 2 Pk`, (5.23)

where the exponent product is computed (mod (p�1)) and the subscript product is computed
(mod M). The sequence f

a

k is well defined since M divides p� 1 and k is co-prime to p� 1.
We denote by SP,a the set { f

a

k : k 2Mp�1} and we call it a complete set of (P,a)-sequences.
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For each k co-prime to p�1, let pk (respectively sk) be the permutation of {0, . . . , p� 2}
(respectively {0, . . . ,M�1}) obtained by multiplication by k (mod (p�1)) (respectively (mod
M).

PROPOSITION 85. For M-ary (P,a)-sequences of period p�1 and k 2Mp�1, we have

f
a

k = sk�1 � f
a

�pk.

In particular, SP,a = {sk�1 � f
a

�pk : k 2Mp�1}.

PROOF. For every k 2Mp�1 and ` 2 {0, . . .M�1}, we have

f
a

k(t) = ` , a

kt 2 Pk`

, f
a

(kt) = k` (modM)

, k�1 f
a

(kt) = ` (modM)

and thus f
a

k = sk�1 � f
a

�pk. ⇤

For each k 2 Mp�1 we shall denote by Tk : SP,a ! SP,a the map defined by Tk( f ) =

sk�1 � f �pk.
Note that Tk �Tj = Tj �Tk for every j,k 2Mp�1.
By the isomorphism Mp�1 'Cm1⇥Cm2⇥ · · ·⇥Cms (referred in Section 5.5), Mp�1 is gen-

erated by elements a1, . . . ,as 2 Mp�1, of orders ordp�1 (ai) = mi, i = 1, . . . ,s. The generators
a1, . . . ,as can be obtained using one of various standard computer algebra systems, e.g. GAP
[56]. This isomorphism along with Proposition 85 yields the following result.

COROLLARY 86. Every sequence in SP,a can be obtained from the “initial sequence” f
a

by applying the maps Tai , i = 1, . . . ,s, a suitable number of times.

In communication applications, correlating sequences of length above a certain threshold
(typically 100) takes less time if the operation is performed in the frequency domain rather than
in the time domain. In the time domain, the cross-correlation between two (p� 1)-periodic
sequences f [n] and g [n] is given by ( f ? g) [n]

.
= Âp�2

m=0 f ⇤ [m]g [n+m] where f ⇤ [m] denotes
the complex conjugation of f [m]. In the frequency domain, the cross-correlation satisfies
F{ f ?g} = (F{ f })⇤F{g}, where F{ f } denotes the Discrete Fourier Transform (DFT) of a
sequence f of period p�1, which is defined by

F{ f }(t) .
=

1
p�1

p�2

Â
n=0

f [n]e
�2p j
p�1 tn, t = 0, . . . , p�2,

with j =
p
�1.
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Chapter 5. Permutations of Sidel’nikov sequences

For the DFT of a (P,a)-sequence the following proposition is the analogous to Proposition
85.

PROPOSITION 87. For M-ary (P,a)-sequences of length p�1 and k 2Mp�1, we have

F{ f
a

k} = F{sk�1 � f
a

}�pk�1 .

In particular, the DFT of the set SP,a is equal to

{F{sk�1 � f
a

}�pk�1 : k 2Mp�1}.

PROOF. Using Proposition 85 and taking into account that the product by k of the subscripts
0, . . . , p�2 induces a permutation on this set of subscripts, we get

F{ f
a

k}(t) =
1

p�1

p�2

Â
n=0

f
a

k [n]e
�2p j
p�1 tn

=
1

p�1

p�2

Â
n=0

(k�1 f
a

[kn])e
�2p j
p�1 (k�1t)(kn)

=
1

p�1

p�2

Â
r=0

(sk�1 � f
a

) [r]e
�2p j
p�1 (k�1t)r

= F{sk�1 � f
a

}(k�1t).

⇤

Remark that if M = 2 and k 2 Mp�1, we get the identity permutation sk = id, since the
elements of Mp�1 are odd integers and thus congruent to 1 modulo 2. This fact along with
Proposition 85 and Proposition 87 implies immediately the following result.

COROLLARY 88. For M = 2, a complete set of (P,a)-sequences can be generated, in
the time domain, from the initial sequence f

a

by suitable compositions of the permutations
pa1 , . . . ,pas . In the frequency domain, the spectra of this set can be generated from F{ f

a

} by
suitable compositions of the permutations pa�1

1
, . . . ,pa�1

s
.

In the next subsection we explain in detail how to apply Corollary 88 to compute the com-
plete set of (P,a)-sequences, when p is a sub-Pythagorean prime.

5.6.1. The case of sub-Pythagorean primes. When p is a sub-Pythagorean prime, Mp�1'
C2⇥C

l (p�1) with l (p�1) = f(p�1)
2 and there are elements a1,a2 2Mp�1 such that ordp�1a1 =
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5.6. Sequences associated to partitions of F⇤p

Table 5.3. Generators a1 and a2 for permutations of order 2 and l (p�1), respectively.
The value a�1

i corresponds to the modular multiplicative inverse of ai.

p = 4k +1 a 'Mp�1 f (p�1) a1 = a�1
1 a2, a�1

2

5 2 C2 2 � 3, 3

13 2 C2⇥C2 4 5 11, 11

17 3 C2⇥C4 8 15 5, 13

29 2 C2⇥C6 12 13 3, 19

37 2 C2⇥C6 12 17 11, 23

53 2 C2⇥C12 24 51 15, 7

101 2 C2⇥C20 40 99 27, 63

109 6 C2⇥C18 36 53 83, 95

149 2 C2⇥C36 72 147 39, 19

197 2 C2⇥C42 84 97 3, 131

257 3 C2⇥C64 128 255 5, 205

317 2 C2⇥C78 156 157 3, 211

509 2 C2⇥C126 252 253 3, 339

557 2 C2⇥C138 276 277 419, 487

797 2 C2⇥C198 396 397 3, 531

1109 2 C2⇥C276 552 1107 559, 111

65537 3 C2⇥C16384 32768 65535 5, 52429

2, ordp�1a2 = l (p�1) with (a1)\ (a2) = (1). Moreover, since ordp�1a1 = 2, a�1
1 = a1. Thus

we get immediately the following consequence of Corollary 88.

COROLLARY 89. For p a sub-Pythagorean number and M = 2 the set of (P,a)-sequences
corresponds to the set of sequences

f
a

�pai
2
, f

a

�pa1 �pai
2
,

and its spectra to the set of sequences

F{ f
a

}�pa�i
2

, F{ f
a

}�pa1 �pa�i
2

,

where i ranges through the set of integers 0, . . . ,l (p�1)�1.

The generators a1,a2 are presented in Table 5.3 for some chosen sub-Pythagorean primes.
Note that when p is a Fermat prime greater than 5, l (p�1) = p�1

2 = 2t with t � 3 and we can
choose a1 = p� 2 and a2 = 5. Actually (p� 2)2 = (�1)2 = 1 (mod (p� 1)) and it is a well
known result that ordp�15 = ord2t 5 = f (2t)/2.
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Chapter 5. Permutations of Sidel’nikov sequences

5.7. Application to Sidel’nikov sequences

For M dividing pn� 1, where p is a prime number and n is a positive integer, Sidel’nikov
[57] introduced a class of M-ary sequences (called Sidel’nikov sequences or SN-sequences) of
period pn�1, for which the out-of-phase auto-correlation magnitude is upper-bounded by 4. A
recent example of a low complexity implementation of M-ary SN-sequences of period p2n�1
is presented in [58]. In this section we address the fast generation of SN-sequences of period
p�1.

Later, Lempel, Cohn and Eastman [59] rediscovered the binary Sidel’nikov sequences of
period pn�1. Lempel/Cohn/Eastman construction results in the Boolean-wise negation of the
corresponding Sidel’nikov sequence [60]. More recently, Tomlinson, Cercas, and Hughes [5],
presented a class of binary sequences (called TCH sequences) of period p�1 with p a Fermat
prime. We show in a following section that TCH sequences are a small subset of binary SN-
sequences.

We keep the notations of the previous section.
Let M � 2 be an integer which divides q�1 with q = pn. For each primitive element a of

Fq, consider the partition of F⇤q, S (a) =
⇣

S(a)
`

⌘

, defined by

S(a)
` =

⇢

a

Mi+`�1 | 0 i <
q�1

M

�

, 1 `M�1,

S(a)
0 =

⇢

a

Mi�1 | 0 < i <
q�1

M

�

[
n

a

q�1
2

o

.

The M-ary Sidel’nikov (SN) sequence of period q�1 associated to the primitive element a , is
the sequence g

a

= (g
a

(t)), t 2 {0, . . . ,q�2}, defined by

g
a

(t) = ` if a

t 2 S(a)
` .

In the sequel we assume q = p and we consider a fixed primitive element a of Fp. Let
P = (P̀ ) be the ordered set partition of F⇤p given by P̀ = S(a)

` , ` 2 {0, . . .M�1}.

PROPOSITION 90. For each k 2 Mp�1, the SN-sequence g
a

k , associated to the primitive
element a

k is a (P,a)-sequence.

PROOF. By definition g
a

k(t) = ` if a

kt 2 S(ak)
` . It remains to be proved that for every

k 2Mp�1 and ` 2 {0, . . .M�1},

S(ak)
` = Pk`. (5.24)

Assume in the first place that ` 6= 0. Since k and M are co-prime integers, the multiplication
by k (mod (p�1)) gives rise to a permutation of the set {Mi : i = 0, . . . , p�1

M �1} and thus we
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5.8. TCH codewords are a subset of SN sequences

obtain

S(a

k)
` +1 =

⇢

a

(Mi+`)k | i = 0, . . . ,
p�1

M
�1

�

=

⇢

a

Mik ·a

`k | i = 0, . . . ,
p�1

M
�1

�

=

⇢

a

Mik | i = 0, . . . ,
p�1

M
�1

�

·a

`k

=

⇢

a

Mi | i = 0, . . . ,
p�1

M
�1

�

·a

`k

=

⇢

a

Mi+k` | i = 0, . . . ,
p�1

M
�1

�

= S(a)
k` +1.

If ` vanishes, reminding that the multiplication by k (mod (p� 1)) gives rise to a permutation
of the set {Mi : i = 1, . . . , p�1

M �1} and a

p�1
2 is congruent to �1 (mod p), we have

S(a

k)
0 +1 =

⇢

a

Mik | i = 1, . . . ,
p�1

M
�1

�

[{0}

=

⇢

a

Mi | i = 1, . . . ,
p�1

M
�1

�

[{0}

= S(a)
0 +1.

Hence S(ak)
` = S(a)

k` = Pk` for every ` = 0, . . . ,M�1 and k 2Mp�1.

⇤

5.8. TCH codewords are a subset of SN sequences

TCH sequences are balanced binary sequences of period p�1, with p a Fermat prime. This
class of sequences was introduced in [5]. For each primitive element a of Fp, the TCH sequence
associated to a was defined, in polynomial form, by

h
a

(x) =

p�3
2

Â
i=0

xKi 2 Z2[x], (5.25)

where the exponents Ki satisfy the generating equation,

a

Ki ⌘ 1+a

2i+1(mod p) i = 0,1, . . . ,
p�1

2
�1.

PROPOSITION 91. The TCH sequence associated to a primitive element of Fp is a half-
period rotation of the binary SN-sequence associated to the same primitive element.
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Chapter 5. Permutations of Sidel’nikov sequences

PROOF. Let QR be the set of quadratic residues of Fp and NQR = F⇤p \ QR the set of
quadratic non-residues. It is well known that

QR = {a

0,a2, . . . ,a p�3},

and
NQR = {a

1,a3, . . .a p�2}.

Remarking that the TCH sequence (5.25) can also be defined, in the binary form, as

h
a

(t) =

8

<

:

1, if a

t 2 1+NQR

0, if a

t /2 1+NQR
0 t  p�2,

and reminding that a

p�1
2 ⌘�1 (mod p) with p�1

2 an even integer, we obtain

h
a

(t) = 1 , 9i, a

t = a

2i+1 +1

, 9i, a

t = a

2i+1 +a

p�1

, 9i, a

t = a

p�1
2 (a2i+1� p�1

2 �1)

, 9 j, a

t+ 1�p
2 = a

2 j+1�1

, a

t+ 1�p
2 2 S(a)

1 .

⇤

5.9. Demonstration examples

In this section we apply the results of the previous sections to generate the SN-sequences
associated to some sub-Pythagorean primes. The examples considered in this section may
nonetheless be easily extended to generate the SN-sequences associated to an arbitrary sub-
Pythagorean prime.

By Proposition 90 the set of SN-sequences is a complete set of (P,a)-sequences for a
fixed, but arbitrary, primitive element a 2 Fp. By taking a as the smallest primitive element we
consider a = 3 if p is equal to 17, 257 or 65537, a = 6 if p = 109 and a = 2 for the remaining
sub-Pythagorean primes p listed in Table 5.3.

5.9.1. Binary SN-sequences associated to the Fermat primes 17, 257 and 65537. For
coding applications the best code rates (proportional to f (p�1)/(p� 1)) are obtained when
p = 22m

+1, that is, when p is a Fermat prime. The list of known Fermat primes is 3,5,17,257,65537.
This class of sequences was independently presented in [5, 6] as TCH-sequences.
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5.9. Demonstration examples

2!2
1 2

3

6!2
5

11!2
7

2
9

7!2
11

3!3
1

10!3
35!3

5

11!3
7

14!3
9

7!3
11

12!3
13

6!3
15

Figure 5.3. The circular structure relating the kth powers of a primitive element a0 with
a = 2, p = 13 (left) and a = 3, p = 17 (right). Note that in the figure on the left
3,9 62M12 while in the figure on the right (corresponding to a Fermat prime case) all odd
powers of a are primitive elements.

We start with p = 17 and a = 3. Since p is a Fermat prime each odd power of a gives
rise to a primitive element of Fp (See Figure 5.3). Moreover, the set of all such primitive ele-
ments correspond to the set of quadratic non-residues, NQR = {31,33,35,37,39,311,313,315}
= {3,10,5,11,14,7,12,6} .

The initial primitive element a0 = a = 3 gives rise to the binary sequence f3 = 1101000010111100
(with the least significant bit at the rightmost position). In hexadecimal notation we shall write
0xD0BC. The permutation p5( j) = 5 j (mod 16) has order 4 since ord16 (5) = 4. As illus-
trated in Figure 5.4, by successive application of the permutation p5, we obtain from f3 the
sequences associated to the primitive elements a1 = a

5
0 , a2 = a

5
1 , and a3 = a

5
2 , i.e., the se-

quences f5 = 0x1CDA, f14 = 0xF894 and f12 = 0x9E58, respectively. To obtain the remaining
4 sequences we apply the permutation p15 to the sequence f3, which yields f6 = 0x7A16, fol-
lowed by the permutations p

i
5, i = 1,2,3, which yield the sequences f7 = 0xB670, f11 = 0x523E

and f10 = 0x34F2.
To get the spectra of this set we proceed as above with the sequence F{ f3} in the place of

f3 and we use the permutation p13 = p5�1 instead of the permutation p5.
For the remaining cases p = 257 and p = 65537 we can also choose a = 3, a1 = p�1 and

a2 = 5 and proceed as above. Note that the structure of the prime residue group Mp�1 for these
two primes is similar to the structure depicted in Figure 5.4, corresponding to C2⇥C64 in the
former case and to C2⇥C16384 in the later case.
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Π11
Π5

Π11Π11

Π11
2

E25

7

48F

6

687

11

C2D

Π5

Π15

Π5

Π5Π5Π5Π5

Π5 Π5

3

D0BC

5

1CDA

14

F894

12

9E58

6

7A16

7

B670

11

523E

10

34F2

Figure 5.4. Digraph of all binary SN-sequences for the sub-Pythagorean primes 13 and
17. Each node contains a primitive element a

k and the corresponding SN-sequence
f
a

k (t) (written in hexadecimal base). The edge labels indicate the permutations used to
transform one sequence into another. In the top figure we have the C2⇥C2 structure for
p = 13, while in the bottom figure we have the C2⇥C4 structure for p = 17. We consider
the initial sequences to be associated with the lowest primitive elements ( f2 = 0xE25 in
the top case and f3 = 0xD0BC in the bottom case).

5.9.2. Binary SN-sequences for the sub-Pythagorean prime 13. For p = 13 and a = 2
we obtain the binary sequences, written in the hexadecimal base,

f2 = 0xE25,

f7 = f2 �p11 = 0x48F,

f6 = f2 �p5 = 0x687,

f11 = f2 �p5 �p11 = 0xC2D.

(See figures 5.3 and 5.4).

5.9.3. M-ary SN-sequences for the sub-Pythagorean prime 13. For a general prime p let

D(a)
` =

⇢

a

Mi+` | 0 i p�1
M
�1

�

, 0 `M�1,

be the cyclotomic classes of Fp of order M. It is easy to prove that D(ak)
` = a

k` D(a)
0 holds for

every k 2Mp�1. Therefore, once D(a)
0 is determined, all the remaining cyclotomic classes are

easily computed. In terms of the SN-partition S (a), since S(a)
0 corresponds to the set D(a)

0 �1
with the element 0 replaced by �1 and S(a)

` = D(a)
` � 1 if ` 6= 0, we conclude that S (a) is

essentially determined by the set S(a)
0 .

Applying these considerations when p = 13, M = 3 and a = 2, we get D(2)
0 = {1,8,12,5},

D(2)
1 = 2D(2)

0 and D2 = 22D(2)
0 , which yields S(2)

0 = {12,7,11,4}, S(2)
1 = {1,2,10,9} and S(2)

2 =

{3,5,8,6}. This partition gives rise to the ternary sequence f2 = 012100222011.
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5.10. Extension to q = pn

Applying Proposition 85 to the initial sequence f2 and taking into account that 5�1 and 11�1

are both congruent to 2 modulo 3, we obtain the remaining ternary sequences (here represented
in base 27 for convenience),

f2 = 59Q427,

f6 = 5�1 f2 �p5 = 2 f2 �p5 = 19PN27,

f7 = 11�1 f2 �p11 = 2 f2 �p11 = JC7427,

f11 = 11�1 f6 �p11 = f2 �p5 �p11 = NC8127.

5.9.4. Composite sequences for non sub-Pythagorean primes. The construction of SN-
sequences generates words of period n = p�1 with p a prime. However, for several applications
sequences whose period is equal to 32, 64, 128, 512, 1024, (which are a power of two but their
sum with 1 is not a prime number), are also of interest. In order to obtain sequences of such
periods, one can use sequences of a larger period and delete the excess coordinates a posteriori,
or one can compose two sequences, say C1 of period n1 = p1�1 and C2 of period n2 = p2�1
to obtain a sequence of length n = n1 +n2. Two standard constructions [61] are often used: the
direct sum construction,

C1�C2 = {xy | x 2 C1,y 2 C2} ,n1 6= n2

and the (u,u+ v)-construction,

{x(x+y) | x 2 C1,y 2 C2} ,n1 = n2.

We depict in the graph of Figure 5.5 all pairs (p1, p2) of sub-Pythagorean primes pi, i = 1,2,
for which n = p1 + p2� 2 is a power of two not greater than 512. There are a lot more prime
pairs involved if the desired value of n is 1024.

5.10. Extension to q = pn

The results presented in section 5.7 can be extended to more general primes. From here on,
p is an odd prime number, n is a positive integer, q = pn, N = q� 1, M is a positive divisor
of N and Fq = GF(q) denotes the Galois field of order q. A primitive (field) element of Fq is
a generator of the cyclic group F⇤q. It is well known that the set of primitive elements of Fq

consists of the elements of the form a

k, where a is a fixed primitive element of Fq and k runs
through the prime residue group MN associated to N.

Let S0 be the set of M-th power residues modulo q. The Sidel’nikov (SN) sequence of length
N associated to a primitive element a , called Sidel’nikov sequence of type 2 in [62], is defined
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32

5

13 29 509

53

3216

8

512

37 101

64 12864

109 197

149 317

17 257

256 512

512

Figure 5.5. Undirected weighted graph where each vertex represents a sub-Pythagorean
prime. A vertex p1 is connected to a vertex p2 by an edge of weight n = p1 + p2� 2
such that the composite sequence length n is a power of 2 not exceeding 512. Note that
in this setting the Fermat primes correspond to the vertices with self-loop edges.

as

g
a

(t) =

(

0 if t = N
2 ,

` if a

t +1 2 a

`S0,
t = 0, . . .N�1.

The SN sequences are related with each other via permutations by

g
a

k = s

M
k�1 �g

a

�s

N
k , k 2MN (5.26)

where s

r
k denotes the permutation of the set {0, . . . ,r�1} given by multiplication by k modulo

r assuming r and k coprime integers. Actually we have for every k 2MN and t 6= N
2 ,

g
a

k(t) = ` if (ak)t +1 2 (ak)`S0 , g
a

(kt) = k` if a

kt +1 2 a

k`S0.

Moreover, since MN is a finite abelian group, MN is isomorphic to a direct product of finite
cyclic groups and we can find a minimal set of pairwise commuting elements a1, . . . ,as 2MN ,
which generate the group MN . From this fact along with (5.26) and taking into account that
s

r
k s

r
s = s

r
s s

r
k for all k,s coprime to r we obtain the complete set of M-ary Sidel’nikov sequences

from the seed sequence g
a

by considering the compositions,

s

M
a�is

s
� · · ·�s

M
a�i1

1
�g

a

�s

N
ai1

1
� · · ·�s

N
ais

s
, ik = 0, . . . ,mk�1, k = 1, . . . ,s, (5.27)

where mk denotes the order of the element ak in MN and � the usual composition of maps.
In particular, for the case of binary sequences (M = 2), s

2
k�1 = id for every k 2 MN , and the

complete set of binary Sidel’nikov sequences is given by

g
a

�s

N
ai1

1
� · · ·�s

N
ais

s
, ik = 0, . . . ,mk�1, k = 1, . . . ,s. (5.28)
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5.11. Sequence detector

Let F{g} denote the DFT of the sequence g. Using (5.26) and taking into account that the
multiplication by k modulo N induces a permutation on the set {0, . . . ,N�1}, we get

F{g
a

k}(t) =
1
N

N�1

Â
n=0

g
a

k(n)e
�2p j

N tn

=
1
N

N�1

Â
n=0

(k�1g
a

(kn))e
�2p j

N (k�1t)(kn)

=
1
N

N�1

Â
r=0

(sM
k�1 �g

a

)(r)e
�2p j

N (k�1t)r

= F{s

M
k�1 �g

a

}�s

N
k�1(t).

The analogue of (5.26) in frequency domain is therefore given by

F{g
a

k} = F{s

M
k�1 �g

a

}�s

N
k�1 , k 2MN (5.29)

and obvious analogues of (5.27) and (5.28) also hold in the frequency domain.

The sequences spectra is particularly useful for the implementation of a maximum likeli-
hood sequence detector exploiting cyclic correlations computed in the frequency domain. The
time-domain cross-correlation between two sequences u and v, i.e., (u? v), can be computed
by complex vector multiplication in the frequency domain, i.e., NF{u}F{v}, followed by an
inverse DFT (here the bar denotes complex conjugation). Assuming the input sequence u to be
a noisy and circular shifted version of g

a

and v to be an instance of g
a

k , all the necessary corre-
lations for estimating u can be obtained via the computation NF{u}(F{s

M
k�1 �g

a

}�s

N
k�1) for

appropriate values of k.

5.11. Sequence detector

In some of the examples given previously, we worked with a subset of binary SN-sequences
for which q is a Pythagorean prime of the form 4st + 1 for some positive integer t and prime
number s. In this case, the group MN is isomorphic to the direct product of cyclic groups
C2⇥C

l (N) where l (·) is the Carmichael function [37].
This structure is used advantageously in the implementation of a maximum likelihood se-

quence detector as illustrated in Figure 5.6. A N-point complex FFT is used to obtain the
spectra of two real N-point sequences, the seed sequence g

a

which resides in memory and the
input sequence u which we want to estimate. As previously described, the complete spectra
set is obtained via permutations, iterating r = 0, . . . , N

4 � 1. The real part of the IFFT block
output contains the correlation of u with an instance of g

a

k and the imaginary part contains the
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Figure 5.6. Optimized frequency-based maximum likelihood sequence detector.

correlation of u with the reflected instance, i.e. with g
a

k �s

N
N�1. The Sign & Peak block then

determines which correlation produces the maximum peak value (the winning correlation) and
the sign of the correlation peak indicates if a sequence or its logical complement was used, thus
producing the estimate û. A further decoding step can be done with the knowledge of the peak
position in the winning correlation. With regard to the detector presented in [7] our proposal
uses 3 times less FFT’s and needs significantly less memory since only one seed sequence is
required. This work was published in [20].

5.12. Conclusion

Pseudo-random sequences are important in synchronization applications and in multi-access
techniques either to differentiate users or communication channels. One of the best classes
of pseudo-random sequences is known as the class of Sidel’nikov sequences (over time also
published under different names). When the generation of a large number of sequences is
involved, an efficient way to obtain these sequences is important from an implementation point
of view. In addition, the computation of the correlation between sequences is also necessary.
However, if the length of these sequences is large this correlation is computationally more
efficient if performed in the frequency domain rather than in the time domain, stressing the
importance in obtaining also the spectra of the sequences. In this chapter we presented a fast
and efficient method, based on group theory, to compute the set of all sequences and their spectra
from a single sequence. For binary sequences associated to sub-Pythagorean primes the method
only requires the repeated application of 3 permutations (two for the time domain and one extra
for the frequency domain) and a DFT operation, thus saving memory space and processing time.
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5.12. Conclusion

For general M-ary sequences the procedure may require, at most, M additional permutations. A
set of demonstration examples and an engineering application are also included. The work of
this chapter was published in [20] and accepted for publication in [22].
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CHAPTER 6

APPLICATION OF SEQUENCES TO COMMUNICATIONS

In this chapter we describe three engineering applications where the TCH-type sequences
are employed. In section 6.1 we simulate the bit error rate performance of some codes using
both AWGN and Rayleigh channel models. In section 6.2 we proceed with a common problem
of wireless communication systems: that of frame synchronization. We present the important
variables in the context of CDMA systems, discuss the signal model and receptor types and
then introduce the proposed frequency domain correlation technique as well the corresponding
simulation results. A second application involves a spectra modified version of a TCH sequence
exploited for channel estimation which we present in section 6.3. In this case the context is
that of OFDM systems with frequency domain channel estimators. Finally, in section 6.4, we
address the use of TCH sequences in Ultra Wide Band (UWB) systems. TCH codes are used as
time-hopping codes in TH-PPM systems and as spreading codes in DS-PAM systems.

6.1. Code performance results

In this section the performance results are obtained for codes generated by the method ex-
plained in chapter 4. As an example it was considered codes with Rc = 8/32 , Rc = 10/64 and
Rc = 9/128 .

On the other hand, it was assessed the performance of codes with Rc = 7/64 , obtained by
the method explained in chapter 5 comparing these results with the same code rate generated
by [6].

The performance of these codes was obtained by simulation taking into consideration an
AWGN channel [63] and a more realistic channel using the Rayleigh probability density func-
tions (PDF) to model the occurrence of fading [63]. The rural and urban environments were used
with the average depth fading, E[a] = 0 dB and E[a] = �20 dB , respectively. The Rayleigh
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pdf is used in multipath environments. Some authors use this distribution to model the propa-
gation channel, e.g., [64, 65, 66, 67, 68, 69].

For the simulation, the binary phase shift keying (BPSK) was adopted in the AWGN and
Rayleigh channels where the error probability of channel, Pe is given by [63]:

Pe =
1
2

erfc
✓

r

Eb

No

◆

(6.1)

and

Pe =
1
2

 

1�

s

gb

1+ gb

!

(6.2)

respectively. The erfc(·) is the complementary error function [70] and Eb and No is the energy
of bit and the spectral density of noise, respectively, and

gb =
Eb

No
E
⇥

a

2⇤ (6.3)

The random variable a

2 has the chi-squared PDF and its average is given by E
⇥

a

2⇤ .
The soft decision (SD) decoding was used to obtain the simulation results of bit error ra-

tio (BER). Concerning to hard decision (HD) we only present some BER upper bound results
obtained by [63]:

BER
M

Â
m=2

(4Pe · (1�Pe))
wm/2 (6.4)

where M = 2k is the total number of code words with weigh wm and k is the number of infor-
mation bits in each information word.

Concerning the precision of results, in all simulations the number of information bits, NIB
, was simulated considering a given confidence level, Cl [71]:

NIB� 2
✓

1�BER
BER

◆

⇥

erf�1 (Cl)
⇤2 (6.5)

where erf�1 (·) is the inverse error function. As an example we considered Cl = 99.9%. The
performance results are depicted in figures 6.1, 6.2 and 6.3 for AWGN, and for fading with an
average depth fading of 0dB and -20dB, respectively.

The Figure 6.4 illustrates the performance of TCH codes (64,7,13) obtained by [6] and the
method explained in chapter 5 (using the codeword CCE03C51DBED2A4C). As it can be ob-
served, once Eb/N0 approaches the average fading level, the results present a small improvement
for codes generated by the method of chapter 5. This advantage is more evident for lower BER.
Due to the greater minimum distance of the SN code (resulting in a number of information
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Figure 6.1. BER performance of three different codes for an AWGN channel
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Figure 6.3. BER performance of three different codes for a Rayleigh channel with -20
dB fading

bits of 7.5) there is a better error correction ability. In addition, as observed from the graph at
BER = 1E�6 the advantage of the SN code vs the TCH code is approximately 3

10 dB.

6.2. Synchronization

6.2.1. Spread spectrum systems and code acquisition. Synchronization involves the gen-
eration of a concurrent system of reference such that signal alignment in some particular domain
is attained. Typically but not exclusively, synchronization takes place in the temporal and/or fre-
quency domains. Synchronization can also be seen as an estimation problem where one or more
parameters have to be determined from a given signal. Different levels of synchronization can
be defined, like carrier, code, bit, symbol, frame and network synchronization.

Coherent reception assumes that the receiver knows (or by some means estimates) the car-
rier phase and frequency. It is important to understand that a receiver must also detect the
incoming carrier signal by replicating the carrier frequency plus Doppler. Thus it can be stated
that signal acquisition and tracking process is a two dimensional (pseudo-noise (PN) sequence
phase and carrier frequency) signal replication process. The time/frequency uncertainty region
composed by unitary search cells (Fig. 6.5) is defined by system and receiver characteristics.
To represent the time-frequency uncertainty range a two-dimensional state matrix is used. The
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Figure 6.5. Time/frequency uncertainty region

matrix represents the quantization of the uncertainty range, in the PN code-phase axis and in
the PN frequency-offset axis (due to oscillator drifts and Doppler effects). The region to search
is given by m code phase hypotheses and n carrier frequency offset hypotheses. Therefore there
are m by n cells to be tested by the acquisition part of the receiver.
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Carrier synchronization is the procedure by which the receiver replicates the local carrier
with the same frequency and phase than that found in the received carrier. Only after that, is
coherent operation (i.e., detection) possible. In Spread-Spectrum (SS) systems the transmitted
signal is spread by a spreading code according to Direct-Sequence (DS) or Frequency Hopping
(FH) modulation schemes. In both cases the receiver has to align its locally generated spreading
sequence to the corresponding received one to allow signal de-spreading and further detection.
This operation is known as code synchronization. In order to make a decision about a received
symbol the epochs in which the symbol starts and ends has to be available to the receiver. The
estimation of these time instants is referred to as symbol synchronization. At a higher level,
when signaling is highly structured, periodical timing is required to indicate the starting of a
certain frame containing a number of separable signals. Frame synchronization procedures are
typical in multiple-access systems based on Time Division Multiple Access (TDMA), where
the periodical signaling scheme is repeated after an initial reference frame. At the top of the
synchronization hierarchy is network synchronization, which encompasses methods and tech-
niques for creating and distributing a common timing reference to a number of nodes defining
a network.

An initial coarse synchronization process known as a code acquisition is followed by a fine
synchronization process known as code tracking [72].

The most commonly employed modulation techniques in spread spectrum communications
are direct-sequence and frequency-hopping spread spectrum. Time Hopping (TH) systems and
hybrid combinations of the mentioned approaches are also possible. In general the spectrum
occupied by the transmitted signal largely exceeds the corresponding bandwidth of the original
signal to be transmitted. In DS-SS the spectral expansion is achieved by modulating each unit
of information to be transmitted onto a random-like code sequence of pulses (e.g., signature
sequence), where each pulse is denominated as a chip. In FH-SS the carrier frequency of the
transmitted signal is changed on a regular interval basis following a predetermined hopping
pattern. In the receiver DS signals are demodulated by multiplying the received signal by an
aligned replica of the signature used in the transmitter. The alignment condition is essential for
a successful demodulation since only when the codes are perfectly synchronized the received
signal is reverted to its original format. Equally, in FH systems the receiver has to use the
same hopping pattern, properly aligned, in order to demodulate. It is obvious that a mechanism
for establishing a temporal synchronization between receiver and transmitter is fundamental to
exploit the FH principle. In the synchronization process the receiver accommodates its own
timing according to the timing of the received signal to attain a common temporal reference.

In DS-SS systems the signature sequence used for spreading and de-spreading the signals is
commonly referred to as the spreading code and the process of sequence alignment is known as
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code synchronization, as was stated previously. Typically, code synchronization in DS systems
is carried out in two phases, an initial code acquisition followed by code tracking. Code ac-
quisition is a coarse synchronization process by which the received and locally generated codes
are brought into phase with a residual error of a fractional part of a chip. Once the codes are
roughly aligned the remaining phase difference is reduced and kept to zero by a code tracking
procedure. Spread-spectrum systems are characterized by a processing gain (PG), a parameter
measuring the bandwidth expansion achieved by the modulation. It is easy to show that the
effect of the interference on the desired signal is attenuated also by a factor equal to PG. In gen-
eral the performance of an SS system can be related to the PG of the system. Thus, noise plus
interference rejection, low probability of detection capabilities, link performance and system
capacity in CDMA networks, among others performance figures of merit, are very dependent
on the PG. However, during the code acquisition process of any SS system, the received signal
remains basically as a wideband signal detrimentally combined with interference and noise. In
particular, since PG cannot be exploited at this initial stage the effects of interference and noise
cannot be precluded. Signal (or user) separation obtained by mutually orthogonal spreading
sequences in CDMA networks is not available during code acquisition, a target signal can only
be separated from the composite CDMA sum signal after the synchronization and de-spreading
process takes place. Here lies a major difficulty during the initial synchronization phase.

Model for code acquisition. We consider a general direct sequence spread spectrum (DS-
SS) modulation system described as follows: The data waveform is given by

d (t) = dn, nTS  t  (n+1)TS (6.6)

where {dn} is the binary data symbol with values in {�1,1} and n an integer.
The spreading sequence is

c(t) = ck, kTC  t  (k +1)TC (6.7)

where{ck} is the code chip with values in {�1,1} and k an integer. The spreading factor L
is given by L = TS/TC with TS the symbol time and TC the chip time duration. The chip function
shaping is p(t) and the spread signal (for a single user) is

s(t) = Â
k

dnck p(t� kTC) , n = bk/Lc (6.8)

The formulation of the code acquisition problem can be stated by first defining the DS
received signal of the form

r (t) = s(t� t)+n(t) (6.9)

where the transmitted signal s(t) is spread by a code sequence c(t), t is the delay associated
with the transmission and n(t) represents additive noise plus interference. The code sequence
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(or spreading code) consists of a pseudorandom succession of m pulses. Each pulse is de-
nominated by a chip with length TC. Due to the unknown delay imposed by the radio channel
the correct temporal position of the code sequence is not known to the receiver, resulting in
the received code sequence c(t� t). The receiver generates a replica of the spreading code
sequence with a controllable delay tlocal, such that this local sequence results in c(t� tlocal),
0 tlocal  B ·TC with Bm. The task of code synchronization is to align these two sequences
in the time domain, or in other words to provide an estimate t̂ of the delay t such that the
local delay is set according to tlocal = t̂ . The synchronization evaluation can then be stated as:
Let t be the time delay in the received sequence and the locally generated reference sequence.
If TC is the chip duration and L the sequence length, then t 2 [0,L ·TC] and t̂ is its estimate.
Synchronism is acquired if the following condition is satisfied:

0 |t� t̂| d ·TC _ (L�d ) ·TC  |t� t̂| L ·TC (6.10)

Usually d = 1
2 , i.e. the acceptable timing error is half a chip. Though t is a continuous

variable, practical implementation requires the discretization of estimate values range. In this
work the evaluation of the receiver architecture is based on the first attempt acquisition success
probability, pD (or alternatively on the acquisition error probability, 1� pD) in a finite time in-
stead of the traditional mean acquisition time. Here pD is the probability of estimating correctly
the code phase of the incoming sequence (the first time it is tested).

Approach. The essential operative constituents of code acquisition are a plan of action to
achieve the acquisition state and a function to identify the presence or not of alignment. The
former is known as the search strategy while the latter corresponds to the detector structure
employed by the receiver. These are the most important functions of the acquisition process.

6.2.2. Search strategies. Given the received signal r(t) and the locally generated code
replica c(t) the receiver will apply a given procedure to determine the position in which code
alignment occurs. Each relative position between the codes is called a cell, or strictly speaking a
delay cell, to differentiate it from frequency and angular cells. The uncertainty region is defined
as the total number of cells to be searched. In practice the length of the uncertainty region is
kept to a manageable (low) number by dividing (i.e., quantizing) the uncertainty region into a
finite number of cells. The procedure followed to explore the uncertainty region is referred to as
a search strategy. Cells are tested by correlating the received and locally generated codes over a
dwell time td . A detector is employed to carry out the testing operation. The position in which
code sequences are in-phase, henceforth leading then to the acquisition state (ACQ), is referred
to as a synch cell. Note that there could be as many synch cells as the number of signal replicas
resolved by the receiver. The remaining out-of-phase positions between codes correspond to
nonsynch cells. The evaluation of each cell is modeled by the conventional hypothesis testing
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tool Hi, with i = 1 for synch cells (sync hypothesis H1) and i = 0 for nonsynch cells (out-of-sync
hypothesis H0). Typically, it is accepted that the acquisition process comes to its end when one
synch cell has been detected. However, the definition can be extended as to consider that the
acquisition process is finished upon detection of Lacq = L paths.

Maximum likelihood. The maximum likelihood (ML) approach to code acquisition can be
seen as a method in which the timing information is obtained from the received signal by a con-
current testing of all possible cell positions. This requires a massive use of parallel detectors to
simultaneously examine all the cells defining the uncertainty region. A detector performs simul-
taneous correlation between the received signal and each of the locally generated realizations of
the code sequence. Upon a single observation of the received signal r(t) the ML estimate of the
delay associated with the ith component (e.g., the ith synch cell) is given by t̂i = arg max(r|ti)

, or, in other words, the ML estimates t̂i corresponds to the detector yielding the maximum
output ti.

Serial search. The most common approach to code acquisition is to progressively shift the
phase (delay) of the local code sequence in a serial fashion by steps, starting from an arbitrary
initial cell. At each shift position the relative phases of the codes are compared and the process
is serially repeated until a correct phase alignment is detected. This simple procedure, known
as straight-line serial-search code acquisition, is used when no a priori information about the
most likely alignment positions is available. In that case the probability density function (pdf)
of the synch cell is assumed to be uniformly distributed within the uncertainty region. In order
to align the codes the local sequence is shifted in fixed steps of length dTC where typically
d

�1 = 1,2,4. The uncertainty region can be seen as the combined result of range ambiguity
and relative movement between the kth user and receiver, as well as due to clock instabilities,
lack of synchronization between transmitting and receiving clock frequencies, clock drifts, etc.
In practice the length of the uncertainty region ranges from a few cells to the total number of
available cells m/d . In many applications range ambiguity can be considered as the principal
contributor to delay domain uncertainty. The serial-search approach assumes that the channel
remains unchanged during the whole examination period. A structured classification of serial-
search strategies and their analysis, including z-search and expanding window approaches, were
studied by [73, 74, 75].

Parallel search. In the search techniques described in the previous section only one cor-
relating element or detector was used, hence the serial nature of the search. Parallel search
makes use of a larger number of correlating elements. In one extreme the receiver could use
m correlating elements to simultaneously search the m cells composing the uncertainty region.
This will largely reduce the acquisition time, but on the other hand, implementation complexity
of such a receiver will increase with m, being unpractical for long spreading codes. If n < m
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detectors are available, each detector could search in an uncertainty region of reduced length,
that is m/n cells.

6.2.3. Detector structures. In order to determine whether a cell corresponds to the syn-
chronized position or not, the received signal r(t) containing the spreading code is correlated
with the locally generated delay-controllable version of the same code. The operation is denoted
as ˆ

td

0
r (t)c(t� t)dt (6.11)

An energy detector is the structure used to carry out the correlating operation defined in
Eq.6.11. The detector plays a fundamental role in the performance of the acquisition process
and its task is to detect with a high degree of reliability the presence of synchronized or non-
synchronized cells. The signal correlation is computed over a finite period of time td, known
as the integration time, dwell time or observation time. In principle, two basic approaches are
possible here, namely coherent or non-coherent detection. In general coherent detection is not
used in the context of code acquisition due to the requirement of carrier phase information for
the operation of coherent correlation. Indeed, code acquisition takes place before the carrier
phase tracking loop is activated due to the fact that estimation of carrier phase from a wide-
band, low-spectral-density signal (e.g., previous to de-spreading) is difficult, if not impossible,
particularly in scenarios with low SNR.

At a given cell the detector output (or decision variable) y is compared to a threshold Th

to make a decision about that cell. When the codes are actually in phase (hypothesis H1) the
synchronized cell position will be detected with a probability of detection pD and missed with
pM = 1� pD. When the local code sequence is shifted in steps smaller that the chip duration
as well as in cases of resolvable multipath propagation, more than one synchronized position
can be found in the uncertainty region. Thus, at the synchronized cell position the detector will
declare that the code sequences are in phase whenever the detector output exceeds the threshold
reference value.

In any of the out-of-phase positions (hypothesis H0) a synchronized cell could be wrongly
declared, with a probability of false alarm pFA or the non-synchronized cell could be correctly
detected with a probability 1� pFA. The probabilities pD and pFA are very much dependent
on the SNR prevailing during the code correlating operation as well as on some detector pa-
rameters, and thus, they have a major impact on acquisition performance. In general a false
alarm leads the acquisition process to a time-consuming state. In fact, the tracking operation
will be activated but, since the signal is out of the pull-in range of the tracking loop, the system
will return to the acquisition process to resume the search. The time required by the system to
detect the false alarm state and return to the acquisition task (known also as the penalty time) is
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a random variable but in most theoretical approaches it is modeled as fixed (e.g., a multiple k of
the dwell time td).

The correlation between received and local codes can be performed sequentially or concur-
rently. In the first case an active correlator computes the correlation on a chip-by-chip basis
(i.e., serially) while in the second case a passive code-matched filter correlates a number of
chips in parallel. Though both active and passive correlating units materialize the correlation
operation of Eq.6.11, some practical differences between the two methods can be pointed out.
These approaches can be classified according to the speed required to form the decision variable
y. Active correlation of N spreading code chips requires N ·TC seconds while the same operation
with a MF based passive correlator of length N (i.e., acquisition window length N) is carried out
in TC seconds. In terms of speed, the superiority of the MF scheme is clear for large values of N,
but on the other hand, its inherent complexity makes its implementation feasible only for low
to moderate values of N. The active correlator can be seen as a minimum-complexity approach
where only a single and simple correlating unit is employed. The basic active correlator and
passive MF approaches are studied in detail by [74].

As an example application of an MF in practical synchronization systems, the problem of
initial synchronization in Wideband CDMA (WCDMA) systems is considered. In this system
the acquisition problem consists in determining the timing and identity of the received pseudo-
noise (PN) sequence. A multistage procedure is applied, where the initial timing is obtained
from the Primary Synchronization Code (PSC) contained in a Synchronization Channel (SCH),
available during one tenth of the time slot. An MF matched to the PSC is employed to acquire
the slot timing of the strongest cell. A Secondary Synchronization Code (SSC), orthogonal to
the PSC, conveys 16 short codes used for frame synchronization. An equal number of MFs,
each matched to a particular short code, can be used for that purpose in a maximum-likelihood
approach. Initial synchronization for WCDMA has been studied by [76, 77, 78].

Single and multiple-dwell detectors. The above-described simple correlating approach is
not effective in terms of the time required to reach a synch cell. In a typical system there
are far more nonsynch cells than synch cells. Thus, most of the time is spent in testing cells
corresponding to nonsynch positions. In addition, since a false alarm state is associated with
every nonsynch cell, the time to acquire could be excessively long. Different approaches based
on repeated observation of the cells have been developed to reduce the acquisition time. The
methods considered so far make a cell decision based on a single-dwell or integration. A second
dwell, usually characterized by longer integration time, could be used upon synch cell detection
by the first dwell, to verify the correctness of the first (or tentative) decision, thus avoiding
occurrences of false alarms. Generalization to multiple-dwell detectors, that is, consecutive
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Figure 6.6. Classical correlation technique

tests to the same cell with successively increased dwell times, is straightforward. The synch
cell is declared only after all the stages result in synch cell detection.

Another characterization of a detector can be done according to the nature of the dwell
time. In fixed-dwell time detectors the integration time remains constant regardless of the cell
being visited. The counterparts are detectors based on variable-dwell time or also known as
sequential detectors. The argument favoring the latter approach is the fact that with fixed dwell-
time schemes the detector spends the same time rejecting nonsynch cells than accepting synch
cells.

Another classification of detectors accounts for the span of the correlation period consid-
ered, leading to full-period correlation when the spreading codes are correlated over the com-
plete extension of the sequence, or partial-period correlation otherwise. When considerably
long codes are used the detector makes a decision out of a partial correlation outcome, comput-
ing full-period correlations is practical in cases of short codes.

6.2.4. Other approaches to code acquisition. As referred previously code acquisition can
be addressed in the frequency domain as opposed to time-domain. The conventional serial
search scheme is normally simple in hardware, but the acquisition time is very long for long-
duration PN sequences because its mean acquisition time is directly proportional to the period
of the PN sequence employed, since several correlations must be performed [6] (one for each
code phase tested). An alternative is to trade the time needed for performing correlations in the
time domain with the slighter more complex algorithm (but taking a lesser processing time) of
doing the same operation in the frequency domain.

Classical vs proposed synchronization. There are several well documented acquisition tech-
niques in literature [77, 79]. The classical sliding window correlation method (Figure 6.6) is
based on the comparison between the received PN sequence and a locally generated replica.

If the correlation level doesn’t exceed a certain threshold, the receiver will increment the
offset between the two sequences by half a chip and repeats the correlation procedure. When
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Figure 6.7. Frequency domain correlation technique

the given threshold is exceeded the signal acquisition is completed. Complexity reduction ac-
complished by using this method is set back by a considerable increase of the acquisition period.
It can be easily seen that in a worse case scenario, the receiver will need to perform the corre-
lation procedure 2L�1 times until it reaches signal acquisition (L being the sequence period).
Ideally, the minimum acquisition time of any sequence is proportional to the sequence period.
One possible implementation strategy is to use 2L parallel correlation circuits (considering half
chip offsets). Although with optimal performance, it is not feasible or practical when dealing
with long period sequences.

Recent technological breakthrough has made possible the development of digital signal pro-
cessing (DSP) with high performance and low costs. The use of DSP technology offers the
possibility of producing optimal acquisition circuit as an alternative to classical techniques.

One example is illustrated in Figure 6.7 where data processing is done in the frequency
domain rather than in the time domain where q

�

bk,c j
�

represents the resulting correlation
values between input sequence bk and the local stored sequence c j.

The frequency domain technique is described in [8], where the equivalence between time
domain techniques and the frequency domain technique is exploited [80].

For two time domain sequences r and s the correlation is given by
L�1

Â
i=0

r(i+l)s
⇤
i  ! R [m]S⇤ [m] (6.12)

where R and S are the discrete Fourier transforms of r and s given respectively by

R [m] =
L�1

Â
w=0

rwe� j 2pm
L w (6.13)
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S⇤ [m] =
L�1

Â
w=0

s⇤we� j 2pm
L w (6.14)

This is equivalent to say that the circular convolution of L-length sequences rn and sn can
be computed through the multiplication of their corresponding DFT’s, R [m] and S [m]. The
cross-correlation between yn and xn can be calculated by the convolution of yn with x�n. The
correlation coefficients can be obtained by applying inverse discrete Fourier transform:

qr,s (l) =
L�1

Â
i=0

r(i+l)s
⇤
i =

1
L

L�1

Â
m=0

R [m]S⇤ [m]e j 2pl
L m (6.15)

This method has also the advantage of being able to test simultaneously two independent
local sequences (c j and c j+1 in Figure 6.7).

The calculus of a FFT or IFFT with L samples requires L · Log2L complex multiplications
and L ·Log2L complex additions.

Considering that the resulting FFTs of the local replica signals can be held in memory
blocks, the number of basic operations is:

8

<

:

L(2log2L+1) Complex multiplications

2Llog2L Complex additions
(6.16)

The number of operations needed to calculate a single correlation point using the classical
technique (with an offset of half a chip) is 2L algebraic multiplications and 2L� 1 algebraic
additions. Knowing that the mean offset value between the incoming signal and the local replica
is L/2, it can be concluded that the average equivalent number of basic operations regarding the
classical method is given by:

8

<

:

2L ·L Complex multiplications

(2L�1)L Complex additions
(6.17)

Based on the evidence that a complex multiplication equals four algebraic multiplications
and two algebraic additions and that the additions can be ignored in terms of calculus require-
ments, it can be defined a calculus reduction ratio (CRR) as the quotient of the basic operations
between the two considered techniques:

CRR =
L

2(2log2L+1)
(6.18)

This gain factor is 4 for 16 chip sequences and over 20 for 256 chip sequences. The CRR
should not be interpreted nor be a reference to infer on the relation between acquisition time
which depends on the electronic implementation of both techniques. The undeniable advantage
of the FFT based technique rest in the possibility of acquire a certain received SS signal with
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6.2. Synchronization

only a single sequence period sample. This equals the improbable best case scenario with time
domain techniques. The expected (mean) acquisition time value for time domain techniques
equals L sequence periods (for half chip offset resolution).

6.2.5. Multi-rate receiver using cyclic sequences. We consider a general direct sequence
spread spectrum (DS-SS) modulation system described as follows:

The data waveform is given by d(t) = dn, nTs  t < (n+1)Ts where {dn} is the binary data
symbol with values in {-1,1} and n an integer. The spreading sequence is c(t) = ck, kTc  t <

(k + 1)Tc where {ck} is the code chip with values in {-1,1} and k an integer. The spreading
factor S is given by S = Ts/Tc with Ts the symbol time and Tc the chip time interval. The chip
shaping is p(t) and the spread signal (for a single user) is

s(t) = Â
k

dnck p(t� kTc), n = bk/Sc (6.19)

Root raised cosine filters split between the transmitting and receiving sections are used for p(t).
The multi-user case is implemented with code-division multiple access (CDMA) where each
user is assigned a different spreading code.

In the frequency based decoder we use an N-point DFT for each N-chip length code. It turns
out that an N-point DFT can be partitioned into M smaller L-point DFT’s where N = LM.

Assume a divide and combine approach where for a sequence x[n] of length N we divide the
sequence into M smaller sub-sequences of length L. Using iterators l and m,

n = Ml +m, 0 l  L�1, 0 mM�1 (6.20)

Similarly,
k = p+Lq, 0 p L�1, 0 qM�1 (6.21)

and therefore we can write sequences x[n] and X(k), the DFT (Discrete Fourier Transform) of
x[n], as arrays x[l,m] and X(p,q) each with L rows and M columns. Then, the DFT of x[n],

X(k) =
N�1

Â
n=0

x [n] ·W nk
N , 0 k  N�1 (6.22)

can be written as,

X(p,q) =
M�1

Â
m=0

L�1

Â
l=0

x [l,m] ·W (Ml+m)(p+Lq)
N

=
M�1

Â
m=0

(

W mp
N

L�1

Â
l=0

x [l,m] ·W Ml p
N

)

·W Lmq
N

=
M�1

Â
m=0

(

W mp
N

L�1

Â
l=0

x [l,m] ·W l p
L

)

·W mq
M

(6.23)
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Figure 6.8. Sequence re-ordering when stored on array x [l,m]

where we used the periodicity property of the twiddle factor WN = e� j2p/N . From this result
we can see that a N-point DFT can be computed by taking M smaller L-point DFT’s and then
combining these into a larger DFT using L smaller M-point DFT’s. From the computation point
of view this result can be implemented in a three-step procedure:

For each of the columns m = 0, ...,M� 1, compute an L-point DFT and store the result in
array F(p,m).

F(p,m) =
L�1

Â
l=0

x [l,m] ·W l p
L , 0 p L�1 (6.24)

Note that this corresponds to the inner sum of (6.23). Moreover, note that the DFT are computed
for sequences stored in the columns of x[l,m] but due to partition of (6.20) these sequences were
stored in a special order, i.e., not on a column basis but on a row first basis (see Fig. ). Note that
this sequence re-ordering is in fact a matrix interleaver.

Modify F(p,m) to obtain another array G(p,m) using the twiddle factor W pm
N ,

G(p,m) = W pm
N ·F (p,m) ,

n

0 p L�1 (6.25)

For each of the rows p = 0, ...,L� 1 of G(p,m) compute the M-point DFT. The N-point
DFT will be present in X(p,q) reading on a row wise basis.

X(p,q) =
M�1

Â
m=0

G(p,m) ·W mq
M , 0 qM�1 (6.26)

Consider the case where in the process of calculating a 256-point DFT we also compute
16 DFT’s of 16 points. This is an elegant result where the same algorithm is used to process a
256-chip code or 16 times 16-chip codes.

Matrix interleaver. A block interleaver formats the encoded data into a rectangular array of
NR rows and NC columns, interleaving NCNR bits (or chips) at a time as indicated in Table 6.1.
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Table 6.1. Sample re-arrangement of a matrix interleaver (of depth NR)

1 NR +1 "
NR Rows
#

2 NR +2
...

...
NR 2NR · · · NCNR

 NC Cols!

Figure 6.9. Initial time instant possibilities for synchronization search

Usually, each row contains a word of source data having NC bits. An interleaver of degree NR

(or depth NR) consists of NR rows.
The structure of a block interleaver is such that source bits are placed into the interleaver

by sequentially increasing the row number for each successive bit, and filling the columns.
The interleaved source data is then read out row-wise and transmitted over the channel. This
has the effect of separating the original source bits by NR bit periods. At the receiver, the de-
interleaver stores the received data by sequentially increasing the row number of each successive
bit, and then clocks out the data row-wise, one word (row) at a time. There is an inherent delay
associated with an interleaver since the received message block cannot be fully decoded until
all of the NRNC bits arrive at the receiver and are de-interleaved.

6.2.6. Performance results. Let’s assume that a receiver is turned on. Although there is a
frame format predefined for the data communication the receiver doesn’t know where one frame
starts or ends. Therefore, one possible solution is to force a transmitter to periodically broadcast
a certain fixed code that the receiver searches and try to lock on. If this code is identified, the
rest of the data can be understood correctly. In Figure 6.9 we assume a radio frame of TF
seconds with 16 slots in each frame. For a SS-CDMA system TF is usually around 10 ms.
We also assume that each slot is used to transmit 1024 chips. The first slot in each frame is
used to transmit a synchronizing code. This is different from the usual approach of repeatedly
transmitting a synchronizing code with a period of one slot.

In the context of synchronization we can anticipate several possible time instants for the
receiver initial search:
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Chapter 6. Application of sequences to communications

Figure 6.10. Example of a 32 bit sequence partitioned into two 16 bit sub-sequences

a) the receiver starts to load a sequence in the slot reserved for synchronization. At
least one full sync code will be loaded and processed,

b) the receiver starts to load at the end of the sync slot such that it will not catch one
full sync code but only a portion of it,

c) the receiver starts to load a sequence in the middle of the frame and therefore must
wait until the next sync slot is transmitted.

The decoding/de-spreading operation which is also used for synchronization acquisition was
simulated in Matlab. We start by defining an input sequence r which is then cut (stripping bits)
at the head or tail to simulate the three possible initial time instants of Figure 6.9. Afterwards,
sequence r is reordered due to the DFT partition. This is illustrated in Figure 6.10 for a smaller
length sequence. Then the three step procedure for de-spreading is applied and then we analyze
the correlation peaks to check for sync codes existence. To start the synchronization procedure
the receiver loads a sequence of 512 bits into a FIFO memory (First-in first-out). This sequence
is partitioned into 2 sub-sequences of 256 bits each (Figure 6.11). This example corresponds to
case (a) of Figure 6.9. By changing offset other time instants can be simulated.

Each sub-sequence will have to be correlated with the known code words used for synchro-
nization purposes. If a match is found the position of the correlation peak can report an offset
128



6.2. Synchronization

Figure 6.11. Example of a 512 bit data sequence including the sync codes

Figure 6.12. Probability of making an error in the estimation of the code delay for a
misalignment between the local and received code sequence.

as to where the code starts. If a match is not found a new group of 512 bits is loaded and the
correlation process starts over.

Frame synchronization. For a simple frame synchronization simulation we used a Monte
Carlo analysis with better than 100 iterations depending on simulation time. The noise was
specified by values of Eb/N0 ranging from -15 dB to 0 dB in steps of 3 dB. We used one sample
per chip, and rectangular pulses and the probability of wrong code delay estimation is given in
Figure 6.12. In this case a delay between -32 and 32 chips is depicted.

Multi-user case. For simulation of the multi-user case we used a Monte Carlo analysis with
1000 iterations. For each point we estimate the chip phase delay for misalignments between
the received and local sequences of -8, 0 and 8 chips and average the probability of incorrect
estimation over all iterations. The channel noise was specified by values of signal to noise ratio,
SNR/chip and then converted to the metric Eb/No ranging from -12 dB to +12 dB as appro-
priate. Two cases were considered. The first case considers one single user. The probability
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Figure 6.13. Probability of making an incorrect estimation of the code delay for a mis-
alignment between the local and received code sequence for a single user.

(considering only the first attempt) of estimating correctly the code phase delay is illustrated in
Figure 6.13. Both ideal and non-ideal sampling were simulated. The ideal instant corresponds
to sampling the chip waveform when it reaches the peak. The non-ideal sampling corresponds
to sampling the chip waveform one sample after the ideal instant case (four samples per chip
were considered). In this case each point represents the average for delays between -8 and 8
chips. Degradation from non-ideal sampling as illustrated is only significant for low values of
Eb/N0.

The second case considers 2 and 4 simultaneous (asynchronous) users and results are pre-
sented in Figure 6.14.

For both cases we used Root Raised Cosine filters, half in the transmit section, half in the
receiver section with a roll-off factor of 0.22. The TCH code used for synchronization has a
period length of 256 chips.

Variable rate code synchronization. In order to validate the possibility of using synchro-
nization codes of different lengths we simulated the synchronization process for codes of 16
and 256 chips. The conclusion is that although it is possible to achieve synchronization with
16-chip typical Eb/No requires codes of much larger cardinality.

The work presented in this section was published in [12, 23, 24].
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6.3. Channel estimation

Figure 6.14. Probability of making an incorrect estimation of the code delay for a mis-
alignment between the local and received code sequence considering 2 and 4 simultane-
ous (asynchronous) users.

Figure 6.15. Probability of acquisition failure for 16 and 256 chip codes

6.3. Channel estimation

One of the most challenging problems in high data rate wireless transmission is to overcome
the time dispersion caused by multipath propagation. High data rate mobile radio channels in
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indoor or micro cellular environment can exhibit large relative time dispersions. The char-
acteristics of this time-varying multipath propagation channel can be estimated using channel
estimation methods with the help of pilot symbols and equalized using a suitable equalization
scheme in the receiver.

6.3.1. Block Transmission Techniques. In block transmission techniques the data stream
to be transmitted is split into several blocks. Each block has a preamble or cyclic extension (also
called cyclic prefix) that makes the block appear periodic. The length of the cyclic extension
is at least as long as the channel impulse response. This way the linear convolution becomes
equivalent to the circular convolution and the latter can be computed in the frequency domain
using the Discrete Fourier Transform. This type of signal processing is exploited in modulations
like Orthogonal Frequency Division Modulation (OFDM) [81] and Single-Carrier (SC) com-
bined with equalization in the frequency domain [82]. These two classes of modulation have
been proposed as effective anti-multipath techniques since multipath is the dominant propaga-
tion impairment in broadband wireless channels. In these very dispersive channels Inter-Symbol
Interference (ISI) is very significant and an equalizer is needed at the receiver for correct op-
eration. To be as effective as possible the equalizer needs to know the channel, i.e. it needs
to estimate the channel frequency response. Typically, these channel estimates are obtained
with the help of pilots [83] or training sequences [84] that are multiplexed with data symbols.
Typically, pilots and data symbols do not overlap so there is a rate loss. A promising technique
to overcome this estimation overhead is to use implicit training or implicit pilots, where the
training block overlap the data block instead of being multiplexed with it [85].

The training sequences used for channel estimation should, in principle, have ideal char-
acteristics: they should be easy to generate, have a constant time envelope in order to allow
efficient power amplification, have a signal spectrum with constant absolute value in order to
prevent the noise enhancement effect. QPSK type sequences in the time domain are simple,
have a constant envelope but generate deep fades in the frequency domain. On the other hand,
QPSK type sequences in the frequency domain are also simple, have a signal in frequency with
constant absolute value but the time envelope has many fluctuations (Gaussian-like as OFDM
signals). An alternative is to use Chu sequences [86], which have constant envelope time sam-
ples and constant absolute value in the frequency domain. All of these sequences have an
analog signal envelope with some fluctuations with zero crossings. A technique to reduce the
fluctuations in both time and frequency was presented in [87] but the procedure is somewhat
complex.

In this section we proposed to use modified TCH (Tomlinson, Cercas, Hughes) sequences
to estimate the channel in block transmission schemes (either OFDM or SC-FDE). Recall that
TCH codes are binary, nonlinear, non-systematic cyclic codes of length N = 2m, m being any
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Figure 6.16. Block transmission frame format

positive integer. Since the length of TCH codes is a power of 2, correlations in the time domain
can be done easily in the frequency domain with very fast FFT radix 2 operations. This is
also useful since both OFDM and SC-FDE use FFT processing blocks thus sharing signal-
processing resources. The best TCH codes known are derived from polynomials known as
Basic TCH or B-TCH Polynomials. The first polynomial in a TCH code is generated by an
analytical method and is then extended to increase the code set. A general and very important
property of B-TCH polynomials is that their auto-correlation is always three-valued with the
following non-normalized distribution: -4 for N/4 even shifts, 0 for N/4�1 even shifts and all
odd shifts and finally N for no shift. As we discussed in the previous section TCH sequences
have already been used in synchronization applications [24] due to their circular structure and
correlation properties.

System Characterization. Block transmission systems typically employ the frame format
depicted in Figure 6.16. The frame consists of NT blocks each with duration TB. In each block
data is preceded with a cyclic prefix CP. The data payload part (also called useful block) has N
samples. The last NG samples of the block are copied to the beginning of the block. Since T is
the duration of the FFT block, TS = T/N is the duration of a data symbol. The guard fraction
G, is given by G = TG/T = NG/N and therefore TB = T (N +NG)/N.

Transmitted signals for OFDM or SC-FDE. The transmitted signal associated with a frame
is

xT x (t) =
NT

Â
m=1

xm (t�mTB) (6.27)

where TB is the duration of each block. The mth block has the form

xm (t) =
N�1

Â
n=�NG

xn,mhT (t�nTS) (6.28)

with xn,m referring to the nth symbol of the mth block, NG denoting the number of samples
of the cyclic prefix, hT (t) the adopted pulse shaping filter and TS the symbol duration.

In the following we will consider each block individually and as such we will drop the m
subscript without loss of generality. Therefore xn refers to the nth data symbol selected from
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Figure 6.17. Signal notation for a) OFDM and b) SC-FDE

a given constellation (e.g. M-PSK) under an appropriate mapping rule (e.g. Gray coding). To
refer a sequence, i.e. x[n] we will use the more concise notation xn, and for all data symbols
forming a block we will use {xn}, n = 0,1, . . . ,N � 1. It is assumed that x�n = xN�n, n =

�NG,�NG +1, . . . ,�1.
The signal xn depends on the considered system, OFDM or SC-DFE, as illustrated in Figure

6.17.
Note that Sk is the frequency domain symbol to be transmitted on the kth carrier of a block

and sn is the nth time domain symbol in a transmitted block. The conversion between time and
frequency domains is given by Sk = DFT(sn) and conversely, sn = DFT�1 (Sk).

The signal is transmitted over a time-dispersive channel and at the receiver side it is sampled
and purged from the cyclic prefix leading to the signal yn. The received signal is the result of
the linear convolution between the channel response hn and xn. Due to the cyclic prefix, xn

appears periodic and therefore a circular convolution takes the place of the linear one. Circular
convolutions in the time domain can be computed through DFT’s in the frequency domain.
Assuming that the cyclic prefix is longer than the channel impulse response the corresponding
frequency domain block Yk is obtained after a length-N DFT operation and given by

Yk = XkHk +Nk (6.29)

where Hk denotes the overall channel frequency response of the block in question and Nk

denotes the corresponding channel noise. In general, the length of the channel impulse response
hn is less than N samples and therefore it is necessary to zero pad before applying the DFT in
order to maintain the block length. We assume that the channel is almost invariant over the time
frame, i.e. the product T · NT must be less than the coherence time of the channel. Under this
assumption it remains valid the drop of the subscript m referring to the mth block of a frame.
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Channel Estimation. An equalizer can compensate the dispersive influence of the channel.
This compensation requires an estimate of the channel. There are several alternatives for identi-
fication of the channel response in the form of training sequences or pilot symbols although it is
also possible to use non-aided approaches called blind algorithms. In general, either the training
sequences or pilots are isolated from the data but this reduces the throughput. Alternatively we
can use implicit or superimposed pilots [88, 89]. Superimposed pilot sequences means that the
known pilot sequence is overlaid on the data sequence and transmitted in the same frequency
band and/or at the same time as the data sequence. In that case the transmitted signal contains
both a known pilot part and an unknown data part.

In the conventional scheme, where there is no data overlapping the training or pilot block,
an estimate of the channel can be obtained as follows,

H̃k =
Yk

Xk
= Hk +

Nk

Xk
= Hk + e

H
k (6.30)

where Xk is either SP
k or ST S

k depending on the system used, P for pilots and TS for training
symbols.

The channel estimation e

H
k error is Gaussian-distributed, with zero-mean and

E
⇥

|eH
k |2 | Xk

⇤

= E
⇥

|Nk|2
⇤

·E


1
|Xk|2

�

(6.31)

The power assigned to the known symbols is proportional to E
⇥

|Xk|2
⇤

and E
h

1
|Xk|2

i

� 1
E[|Xk|2]

with equality for |Xk| constant.
To minimize the envelope fluctuations of the transmitted signal |xk| should also be constant.

This can be achieved with Chu sequences [86], which have both |sT S
n | and |ST S

k | constant. In the
next section we propose to use instead modified TCH sequences.

6.3.2. Channel Estimation using modified TCH sequences.
Modified TCH sequences. Let c [n], n = 0,1, ...,N�1, be a TCH codeword of length N. The

DFT of c [n] is C [k] given by

C [k] =
N�1

Â
n=0

c [n]e� j2pk n
N , k = 0,1, . . . ,N�1 (6.32)

It follows that C [0] = Âc [n] is the code weight and C
⇥N

2
⇤

= ÂN�1
n=0 c [n]e� jpn. Since e� jpn

is (�1)n we can divide the range [0,N�1] into even and odd n subranges and write

C


N
2

�

=
N/2�1

Â
n=0

c [2n]�
N/2�1

Â
n=0

c [2n+1] (6.33)
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the difference between the sum for even samples and the sum for odd samples. If we use
sequences with polar values, i.e., a binary pair (0,1) is coded as (-1, 1), then C [0] = C

⇥N
2
⇤

= 0.
This is not attractive for channel estimation purposes because 1/C [0] and 1/C

⇥N
2
⇤

would be
infinity.

Let us define a new sequence s [n] by copying first the spectrum of c [n], i.e. S[k] = C[k] and
then modifying S[k] such that S [0] =

p
N and S

⇥N
2
⇤

=�
p

N. Then, s[n] is given by the inverse
DFT of S[k]. This spectrum modification causes a magnitude deviation of the odd samples of
c [n] by

s [2n+1] = c [2n+1]+D, D =
2
p

N
N

(6.34)

If we had chosen to modify the spectrum by setting S [0] = �
p

N and S
⇥N

2
⇤

=
p

N then
the magnitude change would be in the opposite direction, i.e., s [2n+1] = c [2n+1]�D. In
the left column of Figure 6.18 we illustrate the first 32 samples of a TCH sequence length
N=256 represented by c[n] , it’s absolute value spectrum |C [k] | with 2 zero points at k = 0 and
k = N/2 = 128 and the IQ diagram for C [k]. In the right column of Figure 6.18 we illustrate
the same results for the modified TCH sequence s[n]. Only the first 32 samples are shown in the
time-domain sequence. The right column is for the modified TCH code. Note that |s[n]| is still
almost constant and that the absolute value of the spectrum S [k] is also almost constant with
an average value of

p
N. This modified sequence is thus appropriate for channel estimation

purposes.
Assume that the first block of a frame consists of a spectra modified TCH code length 256.

Due to the autocorrelation characteristics of this code it is also possible to use this block as a
frame synchronization aid. In this section however we are concerned with its use in estimation.
The procedure is as follows:

(1) Obtain a first estimate of the channel, eHk = Yk/Xk where Xk is the frequency spectrum
of the code.

(2) The estimate is then enhanced by truncating the channel impulse response h̃n in order
to limit its duration to NG samples, thus obtaining ĥk = h̃nwn where wn is a window
defined as wn = 1 if the nth sample is inside the cyclic prefix and wn = 0 otherwise.

The sequence of operations is thus,

eHk! h̃n! ĥn! Ĥk

using the N-point DFT to go from the time domain to the frequency domain and the N-point
inverse DFT vice-versa.

The performance of the estimation procedure can be computed using the mean square error
(MSE), | eHk�Hk|2 and |Ĥk�Hk|2 .
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Figure 6.18. Time-domain sequence, absolute value spectrum and scatterplot of a
length-256 TCH code (left column).

6.3.3. Simulation results. We start by evaluating the effect of applying the spectra modi-
fied TCH sequence in estimating a communication channel. In this case the standard parameters
for a Hiperlan C channel were used. Figure 6.19 compares channel frequency responses. Using
256 samples of a modified TCH codeword we first compute its spectrum Xk and then obtain the
channel estimate H̃k. By round tripping to the time domain an enhanced estimate is obtained,
Ĥk, which follows closely the real channel response.

Then, in Figure 6.20 we compare the time domain channel impulse responses. After esti-
mation the noisy h̃ needs to be resampled: the 32 samples of ĥn correspond to the cyclic prefix
length NG.

The improvement on the mean square error on the estimates of Hk are presented in Figure
6.21. The dashed line corresponds to the error between the real channel and its estimate, | eHk�
Hk|2 . The solid line corresponds to the error between the real channel and its enhanced estimate,
|Ĥk�Hk|2 .

6.4. Joint coding and spreading in UWB

Impulse radio (IR) techniques [90][91] are the most popular in implementing Ultra-Wideband
(UWB) transmission systems due to the reduced implementation complexity of impulse radio
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Figure 6.19. A snapshot of the channel frequency response Hk, its estimate eHk using a
modified TCH length-256 code and the corresponding enhanced estimate Ĥk.

when compared with continuous-wave UWB options. Impulse radio is a baseband signal ap-
proach and refers to the generation of very short duration (less than 1 ns) pulses. For UWB
systems, in particular, each pulse has very low energy to adhere to spectral mask requirements.
Typically, a series of pulses are combined to transmit a single bit. Continuous pulse transmis-
sion introduces strong spectral lines in the spectrum of the transmitted signal. Randomization
of the pulse train is therefore necessary to minimize these spectral lines. Time-hopping (TH)
combined with Pulse Position Modulation (PPM) [92] and Spread Spectrum (SS) are among
the methods used for randomization of the pulse train.

Since the spectral efficiency achievable with IR techniques is generally low, there is an
increased interest on UWB systems employing continuous-wave techniques such as OFDM
(Orthogonal Frequency Division Multiplexing), DS-CDMA (Direct Sequence Code Division
Multiple Access) and MC-CDMA (Multi-Carrier CDMA). Here we consider transmission tech-
niques for UWB-based ad-hoc networks. In particular, we will address DS (Direct Sequence)
spreading and focus on CS (Code Spread) schemes.

Two different coding stages exist in DS-CDMA. The first coding stage is typically an error-
correcting turbo code with a relatively high coding rate (R=1/3). The second coding stage,
known as spreading, is obtained by using a low rate repetition code followed by randomization.
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Figure 6.20. A snapshot of the channel impulse response hn, its estimate h̃n using a
spectra modified TCH length-256 code and the corresponding enhanced estimate ĥn.

Figure 6.21. Mean square error of modified-TCH code estimates.
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Note that in this direct sequence mode the symbol duration TS=NTC. The pulse 

duration TP is assumed to be equal to the slot interval TC. Since the equivalent TF is 

also equal to TC the symbol rate is given by Rd=1/NTC. 

 

If we wish to compare both modes, that is DS and TH, then we have to use pulses 

with the same duration TP and keep the symbol rate Rd equal, but due to duty cycle 

differences there are implications on the signal power and therefore the pulse 

amplitude must be scaled accordingly.  

 

The timing definition for both transmission schemes is illustrated in the following 

figure. 

 

 

Figure 3-13: Timing definition for TH and DS transmission modes. 

 

3.4. Generalized model and modulation 

The next set of equations is an attempt to generalize the signal model taking also 

into account the modulation used. Therefore, we can use 

 

Figure 6.22. Timing definition for DS and TH transmission schemes.

By contrast, in CS-CDMA schemes only one stage is used and the bandwidth expansion is
obtained through the use of a single low rate error detecting code. We propose to use TCH
(Tomlinson, Cercas, Hughes) codes [6], in particular for CS-CDMA schemes.

6.4.1. System Characterization. Conceptually, data modulation occurs in three stages.
First, a pulse train is generated. Second, a randomizing technique is applied to reduce the
corresponding spectral spikes. Third, a data modulation is applied to carry the information. The
two main approaches for randomizing the pulse train are time hopping (TH) and direct sequence
(DS) techniques. Figure 6.22 illustrates the timing definition for both randomization schemes.
In the DS scheme a symbol sk is transmitted in a frame divided into N slots of duration TC

(chip time), therefore there are N pulses transmitted per symbol (the reason why this scheme is
addressed as a high duty-cycle one). In the TH scheme, the same symbol sk is used repeatedly
in N sub-frames (of duration TF each), i.e. the symbol rate is 1/NTF . Each sub-frame is further
divided into NC slots (usually the length of the TH code). According to the code sequence only
one slot in each sub-frame is occupied by a pulse and since the average pulse repetition period
TF is much larger than the pulse width this is the reason why this scheme is also tagged as a low
duty-cycle one.

TH-PPM Signal Model. In a typical TH-PPM system the transmitted signal from user k is
modeled as

s(k)
T H (t) = Â

j

r

ES

NS
pT x

⇣

t� jTF � c(k)
j TC�da

(k)
b j/NSc

⌘

(6.35)

where ES is the energy per symbol and NS is the number of consecutive pulses for trans-
mitting a single symbol, leading to a (NS,1) repetition code. The transmitter signal pulse is
normalized so that its energy is 1, i.e.

´
p2

T x (t)dt = 1 and its idealized form is that of a Gauss-
ian monocycle (the second derivative of a Gaussian function) given by
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with tp denoting a time normalization factor. The pulse width is Tp ' 2tp. The duration
of a frame is TF and therefore the symbol duration is NSTF . The pseudo-random time-hopping
code for user k is represented by

n

c(k)
j

o

, 0  c(k)
j  Nh, 8k and we assume NC = Nh, i.e. the

number of slots (or hops) is equal to the code length. The binary information stream from
user k is represented by

n

a

(k)
b j/NSc

o

. The notation bxc denotes the integer part of x, therefore
the modulating data symbol changes only every NS hops. The time shift d is associated with
the PPM modulation is such that no additional time shift is modulated on the monocycle when
the data symbol is 0, but a time shift of d is added to the monocycle time reference when the
symbol is 1. The optimal value of d is given by dopt = arg max [R(0)�R(d )] where R(⇧) is the
cross-correlation between a received monocycle and the receiver assumed template. To avoid
successive pulse overlap (inter-chip interference) it is necessary that Tp + d  TC. Commonly,
for binary PPM, a value around 1

4Tp is used for the index modulation d [93].
In a system with more than one active user different pseudo-random TH codes separate

each user. In a frame there are NC possible transmission intervals, so under ideal conditions a
maximum of NC users can be allocated into the system without creating interference.

Direct Sequence Signal Model. In this transmission scheme, DS-PAM or DS-BPSK, the
signal from user k is modeled as

s(k)
DS (t) = Â

j

r

ES

NS
a

(k)
j

Nh�1

Â
i=0

c(k)
i pT x (t� jTF � iTC) (6.37)

The pseudo-random spread-spectrum code assigned to user k is represented by
n

c(k)
i

o

2

{�1, 1} and the data information stream is represented by
n

a

(k)
j

o

2 {�1, 1}.
Received Signal. Assuming there are Nu active users the received signal is

r (t) =
Nu

Â
k=1

p

Aks(k) (t)?h(k) (t)+n(t) (6.38)

where Ak represents the attenuation due to the path loss and n(t) is a AWGN process with
two-sided power spectral density No/2. The impulse response h(t) of the channel depends on
the channel model used. The most common model is that proposed by the IEEE 802.15.3a
working group [94] which is a modification of the Saleh-Valenzuela model [95].

6.4.2. TH/CS System with TCH Codes.
TH with TCH Sequences. A TCH code was used as the pseudo-random TH code in 6.35.

We considered TCH codes of length 4 and 16 dividing a frame into 4 and 16 slots (hops),
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Figure 6.23. PSD comparison of a TH-PPM system.

respectively. A simulation of the transmitter system for a single user was made to generate
the Power Spectrum Density (PSD) of the transmitted signal. Figure 6.23compares both cases.
In the top graph the TH code hops 4 times in a frame while in the bottom graph the frame is
divided into 16 slots (TH code with 16 hops). In the 4 hops/frame case (top graph) the PSD
has strong peaks due to the weaker dithering effect of the short code while in the 16 hops/frame
case (bottom graph) there is a spectral line reduction and more compact spectrum. The PSD
amplitude in both graphs was normalized to the maximum PSD peak value of the 16 hops case.

A Welch spectrum estimate was further produced applying a Hamming window and com-
puting a subsequent periodogram and the result is presented in Figure 6.24. The top curve
corresponds to the 4 hops case while the smoother bottom curve corresponds to the 16 hops
alternative illustrating the more effective dithering of the longer length code. In fact we are
making the transmitted signal more random by using a 16-length code instead of the shorter
one. The 6 dB difference matches well to the relative values of maximum amplitude depicted
in Figure 6.23.

Assuming ideal free-space propagation, AWGN channel and perfect power control (the
same amplitude for the users signals at the receiver), the received signal in the presence of
NU active users is

r (t) =
NU

Â
k=1

s(k)
T H (t� tk)+n(t) = (6.39)

= s(1)
T H (t� t1)+

NU

Â
k=2

s(k)
T H (t� tk)+n(t) (6.40)
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Figure 6.24. Walsh PSD of the TH-PPM system with TCH codes as hopping codes.

where tk, for k = 1, . . . ,NU , is the delay associated to each user in an asynchronous mul-
tiple access system and n(t) is a white Gaussian noise process as usual (assuming the noise
from multi-user interference, MUI, is Gaussian). Considering user 1 as the receiver we are
interested in we further assume t1 = 0 and that we have perfect knowledge of its time hop-
ping pattern

n

c(1)
j

o

. The receiver is a single-user optimum correlator that employs v(t) =

pT x (t)� pT x (t�d ) as the correlation mask. To be really accurate we should employ the re-
ceived pulse pRx (t) since the propagation and antenna effects can alter the transmitted pulse
shape. However, as long as the pulse shape is reflected in the correlation mask we can consider
the simplification pRx (t) = pT x (t). In the presence of multiple pulses per symbol, two possible
strategies can be adopted at the receiver: soft decision detection and hard decision detection.

In soft decision detection, the signal formed by NS pulses is considered by the receiver as a
single multi-pulse signal. The received signal is cross-correlated with a correlation mask, which
is matched to the train of pulses representing the entire symbol. The decision statistic computes

NS�1

Â
m=0

ˆ (m+1)TF

mTF

r (t)v
⇣

t�mTF � c(1)
m TC

⌘

dt (6.41)

and decides upon the symbol transmitted comparing the result with the zero threshold.
In hard decision detection, the receiver implements NS independent decisions over NS pulses

that represent one bit. The final decision is obtained by applying a simple majority criterion.
Given the number of pulses falling over a threshold and comparing this number with the number
of pulses falling below the same threshold, the estimated bit corresponds to the highest of these
two numbers. An error occurs if more than half of the pulses are misinterpreted.
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CS with TCH Sequences. IR-UWB systems can be characterized as an extension of tradi-
tional spread spectrum systems. One major difference resides in the radio channel which in
the UWB case is extremely multipath rich. At the receiver the multipath components that are
combined increase the total signal energy while those that are not contribute to inter-symbol
interference (ISI). Among diversity techniques used to increase the received signal energy we
find the rake receiver (exploiting time diversity) ideally with a number of fingers equal to the
number of multipath components. Due to the high number of multipath contributions involved
this ideal receiver is not feasible [96]. In practical implementations a reduced number of fingers
is considered taking the Lr strongest propagation paths in the so called selective rake (Srake)
or considering a further simplified approximation by taking the Lr first propagation paths, an
alternative called partial rake (Prake). To obtain this a-priori information about the channel
impulse response (CIR) channel estimation algorithms must be used. Here we do not consider
estimation neither synchronization issues which are assumed perfectly acquired. The received
signal for a single data bit may be defined as

r(t) =
Lr

Â
n=1

ans(t� tn)+n(t) (6.42)

where Lr is the number of recovered paths (rake fingers), s(t) the transmitted signal, n(t)
the Gaussian noise and an = |an|e jqn , tn, the gain and delay of the nth multipath, respectively.
Coherently combining the Lr components results in the decision variable

Ui =
Lr

Â
n=1

a⇤n

ˆ NhTC

0
r (t� tn)wi (t)dt (6.43)

known as maximal ratio combining (MRC) scheme, where NhTC is the data bit length and
wi(t) the waveform, i.e. the train of pulses representing the data bit i at the receiver. If we
restrict qn to have values in the set {0, p} then equal gain combining (EGC) results.

6.4.3. Performance Results.
AWGN Channel. We performed a Monte Carlo simulation with the following parameters:

the number of frames per symbol is NS = 2 with each frame divided into NC = 16 slots; the chip
interval TC = 1.2 ns and the pulse width Tp = 1 ns using an index of modulation d = 1

5Tp = 0.2
ns; the bit rate is therefore Rd ' 26 Mbit/s. The results for the multi-user scenario, under chip
synchronous multiple access[97],i.e. the random delays tk between users are integer multiples
of the chip interval TC, are presented in Figure 6.25. We started with a single user and evaluated
both hard and soft decision detection. As expected, in the presence of Gaussian noise, soft
decision outperforms hard decision. The theoretical BER for binary orthogonal PPM is also
included. Note that there is a performance gain relative to the orthogonal case due to d being
close to the optimum value (the value that minimizes the cross-correlation R(⇧) as discussed
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Figure 6.25. BER results for TH-PPM with TCH codes under a AWGN channel.

previously. We also plotted the BER curves for a varying number of active users, i.e., NU =

2,4,8 and only for the soft decision detection. For NU � 4 the MUI-error floor is reached for bit
to noise ratio around 15 dB. It is clear that even for a small number of interferers this repetition
coded TH-PPM system is limited.

In Figure 6.26 we increased the number of frames (NS = 4) reducing the bit rate in half
and compared the performance of the system in the multi-user case. For comparison the BER
for (NS = 2; NU = 4) is also shown. The redundancy introduced by NS permits more user
simultaneous users. In fact, by decreasing the bit rate in half the system now allows two-times
as much active users than the previous case.

The same type of simulations were executed for the DS-PAM (or equivalently DS-BPSK)
system. In Figure 6.27 we evaluated the effect of increasing the number of code repetitions for
each symbol. The case for NS = 1 is not plotted because it matches with the theoretical BER
curve for 2-PAM (solid line without markers). For the other cases, both hard and soft decision
results are presented with a clear indication to favor the soft decision. The data bit rate Rd is
decreased as NS increases.

The multi-user case for the DS-PAM system with codes of 16 chips is presented in Figure
6.28. MUI error floors are reached for NU � 4 and Eb

No
> 20 dB. Theoretical symbol error rate

for the multi-user scenario are generally based on the standard Gaussian approximation (GA)
hypothesis, where the cumulative effect of all interfering contributions at the receiver is treated
as an additive Gaussian noise with uniform PSD over the range of frequencies of interest. It
seems that the GA hypothesis cease having validity when the number of pulses in the air is not
sufficiently high to fill up the time dimension (associated with a low density of users), when the
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Figure 6.26. TH-PPM with increased number of frames per symbol.
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Figure 6.27. BER results for single-user DS-PAM with TCH codes under a AWGN channel.

transmitters are characterized by a low data rate, when the number of pulses per bit is low, there
are dominant interferers, or combinations of the above conditions. Alternatives to the GA for
computing the probability of bit error have been published (see [98][99] and references therein).

IEEE 802.15.3a channel. The UWB radio channel is similar to a wideband channel as may
be experienced in spread spectrum or CDMA systems. The main distinct feature of the ’ul-
tra’ wideband channel model is the extremely multipath-rich channel profile. The reference
model that we used in the following performance results is that adopted by the IEEE 802.15.3a
study group [100]. In particular we will consider a Line-of-Sight (LOS) scenario, referenced
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Figure 6.28. Multi-user DS-PAM with TCH 16-chip codes under a AWGN channel.

as CM1, with an average mean excess delay of 5 ns and a Non-Line-of-Sight (NLOS) scenario,
referenced as CM2, with a mean excess delay of 10 ns.

For the TH-PPM system we performed a Monte Carlo simulation generating 100 channel
realizations for each scenario and for each Eb/N0 value with the following parameters: the
number of frames per symbol is NS = 1 with each frame divided into NC = 16 slots; the chip
interval TC = 3.2 ns (the previous 1.2 ns value plus a guard space of 2 ns to help with ISI
due to multipath delay spread) and the pulse width Tp = 1 ns using an index of modulation
d = 1

5Tp = 0.2 ns; the bit rate is therefore Rd ' 20 Mbit/s. In 6.29 (top set of curves) we present
the simulation results. Srake means selective Rake where the 8 strongest power multipaths are
used in the receiver mask whereas Prake means partial Rake, i.e., the first 8 multipaths are
considered regardless of their power values. Note that either the selective Rake and partial
Rake have similar performances (floor of around 1% error rate). This is due to the insufficient
guard space as confirmed in the bottom set of curves. Here we increased the guard space, i.e.
we increased the interval between pulses and therefore decreased the bit rate Rd to a value
of approximately one third of that used in the top set of curves. Only the partial Rake was
simulated to alleviate the receiver complexity. As expected the results for the NLOS case are
worse than the LOS case due to the increased number of multipaths necessary to collect the
same amount of energy.

For the DS-PAM system we performed a Monte Carlo simulation generating 100 channel
realizations for each scenario and for each Eb/N0 value with the following parameters: the chip
interval TC = 3 ns (the pulse width Tp = 1 ns plus a guard space of 2 ns to help with ISI due to
multipath delay spread) and a 16 chip TCH code as spread-spectrum code. An 8 finger partial
rake with MRC was used in the receiver. Figure 6.30 presents the results for one LOS and two
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Figure 6.30. DS-PAM with 16 chip TCH spreading code using a partial rake receiver
with 8 fingers and considering both LOS and NLOS UWB channel models.

NLOS channel scenarios. For the same data rate Rd there is approximately a 5 dB performance
advantage of DS over TH (BER=10�2). Comparing these results with those for the TH system
we see that the DS system is much better. For approximately the same BER values the TH
system needs to use a third of the data rate employed in the DS system.

TCH codes were also used in a combined spreading and coding operation. The results
presented in Figure 6.31 used a TCH(16,4) code boosting the data rate to 80 Mb/s. The 16
chip TCH code used was a TCH(16,4) code. The error floors are reached for a Eb/N0 value
that correspond to SNR (per sample) close to 0. To improve the error correcting capability a
Reed-Solomon code was also used in one of the simulations (for this case the combined code
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Figure 6.31. CS-TCH for UWB channels using a joint spreading and coding operation.

rate is 4
16

7
15 ⇡ 0.12). For channel compensation the same channel estimate used for the previous

DS system was employed.
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CHAPTER 7

CONCLUSION

We focused the work of this thesis into the design of a class of cyclic codes inspired by TCH
codewords. In order to accomplish such task we needed a deeper understanding of its algebraic
structure. Thus we had to study abstract algebra and number theory. Only with this set of tools
it was possible to pursue further developments not purely from a mathematical perspective but
always with engineering applications in mind.

During our previous work with TCH codewords we began to note some relationships be-
tween codewords. For example, if we take a binary TCH codeword we can obtain another
codeword if we first flip it around a middle word axis and then rotate it once to the left. Using
other axes and similar flipping operations other codewords could be produced. We tested this
method on several different codeword lengths and it still held. It was clear then that there was
some kind of mathematical structure present but not completely understood from a formal and
rigorous point of view.

Some initial questions were formulated to guide the investigation work that followed. Since
the codewords from the TCH(16,5) code could be obtained from a single codeword through
bit operations (although in an ad-hoc manner) could there be a structured and unified way to
obtain such codewords from a seed codeword? Once the structure was known could we obtain
a more efficient way to generate all the codewords in the time domain? Using the properties of
the DFT could we extrapolate the results to the frequency domain? Although we started with
binary sequences could we devise a method to include M-ary sequences as well? What about
trying the generalize TCH to obtain the other power of two lengths not covered by the original
TCH generating equation (section 3.6)? The quest for answering these questions drove the core
work presented in this thesis, in particular in chapters 4 and 5. These sequences can be applied
in several communication applications like DS-CDMA and UWB as discussed in chapter 6.
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7.1. Synopsis

The fundamental concepts and facts about abstract algebra and number theory constitute
the first part of the thesis. In chapter 2, after an introduction to basic material like set theory,
mappings and partitions we focused on group theory. In chapter 3, we provided the context
and introduced some definitions of coding theory. Then we addressed some core results from
number theory since they are essential for understanding the theoretical basis of certain existent
codes. We also discussed codes as sequences since sometimes we are not interested in the
error-correcting capability of the codewords but are more focused on their random-like nature
when they are used in spreading applications. We concluded chapter 3 by referring a class of
cyclic codes, named TCH, that provided the motivation for the subsequent work presented in
this thesis.

In chapter 4 we used group geometric properties and related some operations on codes
as equivalent to the symmetries of the dihedral group. Exploring these properties allowed us
to simplify the generation of codewords by saving on the necessary number of computations
required. Moreover, we also presented an algebraic method to obtain binary generalized TCH
codewords of length N = 2k, k = 1,2, . . . ,16. By exploring Zech logarithm’s properties as well
as a group theoretic isomorphism this method is both faster and less complex than what was
proposed before. In addition, it is valid for all relevant cases relating the codeword length N
and not only those resulting from N = pi�1 for Fermat primes pi. The method also derives the
maximum set of all the codewords of a certain code bringing clear advantages in terms of code
size and minimum distance.

In chapter 5, we focused mostly on group permutations as an efficient way to generate all
codewords of a particular cyclic code. For binary sequences associated to sub-Pythagorean
primes the method only requires the repeated application of 3 permutations (two for the time
domain and one extra for the frequency domain) and a DFT operation, thus saving memory
space and processing time. For general M-ary sequences the procedure may require, at most, M
additional permutations.

After our sequence design efforts we can summarize some of the advantages obtained:

• the sequence period or codeword length is not limited to a power of two (and not equal
to a Fermat prime minus 1),

• by construction, all codewords have a weight equal to half the length of the codeword,
• using the same algebraic generating procedure we can produce a larger number of

codewords (better data rate, better error correction),
• the mathematical knowledge of the code structure permits not having a loose collection

of codewords, but a codeword list with a cohesive structure, i.e. where one codeword is
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D0BC

1CDA

F894
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7A16

B670
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34F2

π15

Figure 7.1. All the Sidel’nikov codewords from GF(17).

linked by appropriate permutations to another codeword, and this is of huge importance
in terms of optimizing the coding/decoding operations,

• the algebraic generation procedure is not limited to binary but allows M-ary sequences
as well,

• the link through permutations of time-domain codewords is nicely extended to their
representation in the frequency-domain.

7.2. Future work

In Figure 7.1 we represent all the 8 Sidel’nikov codewords from GF(17). As previously de-
scribed all these codewords can be obtained from the seed codeword “D0BC” (associated with
the primitive element 3) by the application of two permutations, p5 and p15. The permutation
p5 with order 4 generate in sequence a group of 4 codewords, while the permutation p15 with
order 2 transfers from one group to another.

Due to the rich structure involving these codewords we can identify a couple of patterns.
First, note that in each column either all even or all odd decimal values (from the corresponding
hexadecimal characters) are present. For example, in the most significant hexadecimal column
we see all odd values, i.e., D, 1, F, 9, 7, B, 5, 3 from top to bottom. The next column, going
from left to right, presents all the even values. The last two columns repeat this pattern, first
the odd values then the even values. Secondly, a more relevant pattern is the appearance of
the codewords “9” and “3” resulting from GF(5), implying that these two 4-bit codewords
are present in the eight 16-bit codewords1. This motivated us to investigate the embedding of
smaller codewords into larger length codewords. This type of embedding has great application

1Note that the boolean negation of these codewords, i.e. “C” and “6”, are also present
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Table 7.1. Cycle period for each bit on a 16-bit word upon application of permutation p5.

Bit: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
#Cyc: 4 2 4 0 4 2 4 0 4 2 4 0 4 2 4 0
Bit: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0

Table 7.2. Cycle period patterns (at level 0) for each bit on a 256-bit word upon appli-
cation of permutation p5.

Bit: 255 254 253 252 251 250 249 248 247 246 245 244 243 242 241 240 · · ·
#Cyc: 64 32 64 16 64 32 64 8 64 32 64 16 64 32 64 4
Bit: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Table 7.3. Cycle period patterns for 256-bit words (at level 1).

Bit: 252 248 244 240 236 232 228 224 220 216 212 208 204 200 196 192 · · ·
#Cyc: 16 8 16 4 16 8 16 2 16 8 16 4 16 8 16 0
Bit: 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

Table 7.4. Cycle period patterns for 256-bit words (at level 2).

Bit: 240 224 208 192 176 160 144 128 112 96 80 64 48 32 16 0
#Cyc: 4 2 4 0 4 2 4 0 4 2 4 0 4 2 4 0
Bit: 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 0

significance since one can transmit data with a larger codeword while at the same time searching
for smaller codewords to track synchronism (assumed previously acquired).

The permutation p5 applied to a 16-bit word involves 2 cycles of length 4 and 2 cycles of
length 2:

(1,13,9,5)(2,10)(3,7,11,15)(6,14) (7.1)

The length or period of the cycles associated to each of the 16 bits are presented in Table
7.1.

Note that the reflected codeword (third line of table 7.1) has the same cycle pattern as the
original codeword. Note also that we have 4 fixed points at bit positions 0, 4, 8 and 12.

The same permutation applied to a 256-bit word is presented similarly in Table 7.2. Since
there is symmetry the most significant bits are on the top row and the least significant bits are
in the bottom row.

We now make groups of 4 bits since the pattern “64, 32, 64, x” is recurring and keep only
one, i.e. the “x”, of those 4 bits. This is illustrated in Table 7.3.

Since there is another recurring pattern we now make groups of 16 bits and keep only one
bit for each group as indicated in Table 7.4.
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Table 7.5. Cycle periods (multiplied by 16) of 16-bit words

Bit: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
16 #: 64 32 64 0⌘ 16 64 32 64 0 64 32 64 0⌘ 16 64 32 64 0

Table 7.6. Alignment of cycle periods between the 16-bit word and the 256-bit word.

256: 255 254 253 252 ... 131 130 129 128 127 126 125 124 ... 3 2 1 0
#Cyc: 64 32 64 16 ... 64 32 64 0 64 32 64 16 ... 64 32 64 0

16: 15 14 13 12 ... 11 10 9 8 7 6 5 4 ... 3 2 1 0

How does a 16-bit word embed in a 256-bit word? What is a good mask? We want to find 8
16-bit words in a set of 128 256-bit words. Since dividing the entire code of 128 codewords into
blocks of, say 16 codewords, we have 128/16=8 meaning that we should apply p5 consecutively
16 times. If a cycle has length 64 then we need 4 turns of 16 consecutive applications of p5.
If we multiply by 16 the cycles presented in Table 7.1 we have for the 16-bit words the cycle
structure of Table 7.5.

As indicated in Table 7.6 we can align the 16-bit codeword with the 256-bit codeword using
the fixed points as anchors.

This reveals the good mask composed of 4 hexadecimal characters in the format x — xx —
x, as illustrated in Table 7.7. Only the first codewords are presented but the complete listing can
be easily obtained by applying the appropriate permutations.

Having identified this embedding nature we now need to study how to formally describe it.
We envision an application where simultaneous data transmission and synchronization tracking
is possible. While data is encoded and transmitted with a larger length codeword a smaller
length embedded codeword is searched during reception to keep track of synchronism.

Another envisioned evolution of this work is the construction of new sequences via the
kronecker product. As such, using sequences of length 16 and 256 it is possible to generate
easily sequences of length 4096 = 16 x 256. Other combinations are also possible.
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Appendix . Conclusion

Table 7.7. The first 256-bit codewords from GF(257) illustrating the embedding of the
16-bit codewords from GF(17).

dc0bec19f9735494195aea73c648a2d0bc208e6d36041f9af8ff37959ac50adc
a350e20f1ab9d2d4e0bed5d5ccdb1268863b1ccdfdfc50a4fc3d901b4a24bf20
44fa48b5de9282b83cafdc5993634d523fcf27399edd40d29028385df08e14ee
6c37d127c898687ab1551c013cdc1ca4e0dadcd3aadbffb01686988d63bd72c6

b 4d99c5df80365525288eb291e48f41 67 af48e5b8304883e3fe72a95ded99cf 0
5650927d073dd8c400d2e4a1da997bacc117981da0e43caaec9dd36bd638be7e
55c01bd95aeef0b868e98edb1437ca72360d72fb1c49848690b4441f9d1aadfe
58d3f423cc5cf9eac8757015ad32089a188a33c1fab7f68c0594decd22f53c9e

f0cb0081bd63ba5ad7105e9d5c4ce610ba64cedfd85ebb7c1e1127d1a8ab0cb4
6b3c962df43b98081cfaf7b5ae8ff0ccccb54841f17414da8a9912f5c278d306
96860ed158ba24d8fecfd4b357af9b288319417f30fd4c549ce2109fbc4a6878
289d3db3441cdc54f9a97c01e0325c6a06de32a5aad78194fedcdaef31d3d882
98db80b3eee1af5c92440d7b7a94da567e1cf81717caee38df41a44530a91c98
ea38fc796103986c4274baed189fd5f895fd589bc410f62ec6992ba796d49204
9302dd9114ac02ca5cdfa2f356d1c69e586dbc7f34215cde0c2ac0fbb9dc2b38
38a578cf1cd89100e873f08bc1567e7cd6567fad08b53684abb89cdb4c97e092
9c8b26f79f953e98f97c8e3daa4402d67c2aee01d248d7949853f959746308d8
ad3a844d5c57da34c636911968bd94a0a0f9d0879bb8726cf21d7edfcee813c0
a47e0c1996fe40da328b3af5db8585de5de9e91df41308321cae54799aca56e0
60d1ddc920d844b03d179007fa9e7a6cc61658156ab97bd2b0ee9ca38dddbca6

5 ad53ef19a8da996b6ec8b0fde40147 23 6faae5d4b08c4707981c819b453fc1 e
d89eb03d835dbe284416c0497439bde665d192f78eac7aee8251df29d2b0589c

...
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APPENDIX A

GROUPS CHARACTERIZING GEOMETRIC SYMMETRIES

A.1. Permutation Groups

Permutation groups are central to the study of geometric symmetries and to Galois theory,
the study of finding solutions of polynomial equations. They also provide abundant examples of
nonabelian groups. Let us recall for a moment the symmetries of the equilateral triangle4ABC
from section 2.5. The symmetries actually consist of permutations of the three vertices, where a
permutation of the set S = {A,B,C} is a one-to-one and onto map p : S! S. The three vertices
have the following six permutations.

 

A B C
A B C

! 

A B C
C A B

! 

A B C
B C A

!

 

A B C
A C B

! 

A B C
C B A

! 

A B C
B A C

!

We have used the array
 

A B C
B C A

!

to denote the permutation that sends A to B, B to C, and C to A. That is,

A 7! B

B 7! C

C 7! A.

The symmetries of a triangle form a group. In this section we will study groups of this type.
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Appendix A. Groups characterizing geometric symmetries

A.1.1. Definitions and Notation. In general, the permutations of a set X form a group SX .
If X is a finite set, we can assume X = {1,2, . . . ,n}. In this case we write Sn instead of SX . The
following theorem says that Sn is a group. We call this group the symmetric group on n letters.

THEOREM 92. The symmetric group on n letters, Sn, is a group with n! elements, where the
binary operation is the composition of maps.

A subgroup of Sn is called a permutation group.

EXAMPLE. Consider the subgroup G of S5 consisting of the identity permutation id and the
permutations

s =

 

1 2 3 4 5
1 2 3 5 4

!

t =

 

1 2 3 4 5
3 2 1 4 5

!

µ =

 

1 2 3 4 5
3 2 1 5 4

!

.

The following table tells us how to multiply elements in the permutation group G.

� id s t µ

id id s t µ

s s id µ t

t t µ id s

µ µ t s id

REMARK. Though it is natural to multiply elements in a group from left to right, functions
are composed from right to left. Let s and t be permutations on a set X . To compose s

and t as functions, we calculate (s � t)(x) = s(t(x)). That is, we do t first, then s . There
are several ways to approach this inconsistency. We will adopt the convention of multiplying
permutations right to left. To compute st , do t first and then s . That is, by st(x) we mean
s(t(x)). (Another way of solving this problem would be to write functions on the right; that is,
instead of writing s(x), we could write (x)s . We could also multiply permutations left to right
to agree with the usual way of multiplying elements in a group. Certainly all of these methods
have been used.

160



A.1. Permutation Groups

EXAMPLE. Permutation multiplication is not usually commutative. Let

s =

 

1 2 3 4
4 1 2 3

!

t =

 

1 2 3 4
2 1 4 3

!

.

Then

st =

 

1 2 3 4
1 4 3 2

!

,

but

ts =

 

1 2 3 4
3 2 1 4

!

.

Cycle Notation. The notation that we have used to represent permutations up to this point
is cumbersome, to say the least. To work effectively with permutation groups, we need a more
streamlined method of writing down and manipulating permutations. A permutation s 2 SX is
a cycle of length k if there exist elements a1,a2, . . . ,ak 2 X such that

s(a1) = a2

s(a2) = a3
...

s(ak) = a1

and s(x) = x for all other elements x 2 X . We will write (a1,a2, . . . ,ak) to denote the cycle s .
Cycles1 are the building blocks of all permutations.

EXAMPLE. The permutation

s =

 

1 2 3 4 5 6 7
6 3 5 1 4 2 7

!

= (162354)

is a cycle of length 6, whereas

t =

 

1 2 3 4 5 6
1 4 2 3 5 6

!

= (243)

1Lagrange first thought of permutations as functions from a set to itself, but it was Cauchy who developed
the basic theorems and notation for permutations. He was the first to use cycle notation.
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is a cycle of length 3. Not every permutation is a cycle. Consider the permutation
 

1 2 3 4 5 6
2 4 1 3 6 5

!

= (1243)(56).

This permutation actually contains a cycle of length 2 and a cycle of length 4.

EXAMPLE. It is very easy to compute products of cycles. Suppose that

s = (1352)

t = (256).

We can think of s as

1 7! 3

3 7! 5

5 7! 2

2 7! 1

and t as

2 7! 5

5 7! 6

6 7! 2

Hence, st = (1356). If µ = (1634), then s µ = (1652)(34).

Two cycles in SX , s = (a1,a2, . . . ,ak) and t = (b1,b2, . . . ,bl), are disjoint if ai 6= b j for all i

and j.

EXAMPLE. The cycles (135) and (27) are disjoint; however, the cycles (135) and (347) are
not. Calculating their products, we find that

(135)(27) = (135)(27)

(135)(347) = (13475).

The product of two cycles that are not disjoint may reduce to something less complicated; the
product of disjoint cycles cannot be simplified.

PROPOSITION 93. Let s and t be two disjoint cycles in SX . Then st = ts .
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PROOF. Let s = (a1,a2, . . . ,ak) and t = (b1,b2, . . . ,bl). We must show that st(x) = ts(x)
for all x 2 X . If x is neither {a1,a2, . . . ,ak} nor {b1,b2, . . . ,bl}, then both s and t fix x. That is,
s(x) = x and t(x) = x. Hence,

st(x) = s(t(x)) = s(x) = x = t(x) = t(s(x)) = ts(x).

Do not forget that we are multiplying permutations right to left, which is the opposite of the
order in which we usually multiply group elements. Now suppose that x 2 {a1,a2, . . . ,ak}.
Then s(ai) = a(i mod k)+1; that is,

a1 7! a2

a2 7! a3
...

ak�1 7! ak

ak 7! a1.

However, t(ai) = ai since s and t are disjoint. Therefore,

st(ai) = s(t(ai)) = s(ai) = a(i mod k)+1 = t(a(i mod k)+1) = t(s(ai)) = ts(ai).

Similarly, if x 2 {b1,b2, . . . ,bl}, then s and t also commute. ⇤

THEOREM 94. Every permutation in Sn can be written as the product of disjoint cycles.

EXAMPLE. Let

s =

 

1 2 3 4 5 6
6 4 3 1 5 2

!

t =

 

1 2 3 4 5 6
3 2 1 5 6 4

!

.

Using cycle notation, we can write

s = (1624)

t = (13)(456)

st = (136)(245)

ts = (143)(256).
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REMARK. From this point forward we will find it convenient to use cycle notation to rep-
resent permutations. When using cycle notation, we often denote the identity permutation by
(1).

A.1.2. Transpositions.

DEFINITION 95. A transposition is the simplest permutation i.e. a cycle of length 2.

Since
(a1,a2, . . . ,an) = (a1an)(a1an�1) · · ·(a1a3)(a1a2),

any cycle can be written as the product of transpositions, leading to the following proposition.

PROPOSITION 96. Any permutation of a finite set containing at least two elements can be
written as the product of transpositions.

EXAMPLE. Consider the permutation

(16)(253) = (16)(23)(25) = (16)(45)(23)(45)(25).

As we can see, there is no unique way to represent permutation as the product of transpositions.
For instance, we can write the identity permutation as (12)(12), as (13)(24)(13)(24), and in
many other ways. However, as it turns out, no permutation can be written as the product of both
an even number of transpositions and an odd number of transpositions. For instance, we could
represent the permutation (16) by

(23)(16)(23)

or by
(35)(16)(13)(16)(13)(35)(56),

but (16) will always be the product of an odd number of transpositions.

LEMMA 97. If the identity is written as the product of r transpositions,

id = t1t2 · · ·tr,

then r is an even number.

THEOREM 98. If a permutation s can be expressed as the product of an even number of
transpositions, then any other product of transpositions equaling s must also contain an even
number of transpositions. Similarly, if s can be expressed as the product of an odd number of
transpositions, then any other product of transpositions equaling s must also contain an odd
number of transpositions.

In light of Theorem 98, we define a permutation to be even if it can be expressed as an even
number of transpositions and odd if it can be expressed as an odd number of transpositions.
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A.2. Dihedral Groups

Another special type of permutation group is the dihedral group.

n-1

n

1

2

3

4

Figure A.1. A regular n-gon

Recall the symmetry group of an equilateral triangle in section 2.5. Such groups consist of the
rigid motions of a regular n-sided polygon or n-gon. For n = 3,4, . . ., we define the nth dihedral
group to be the group of rigid motions of a regular n-gon. We will denote this group by Dn.
We can number the vertices of a regular n-gon by 1,2, . . . ,n (Figure A.1). Notice that there are
exactly n choices to replace the first vertex. If we replace the first vertex by k, then the second
vertex must be replaced either by vertex k + 1 or by vertex k� 1; hence, there are 2n possible
rigid motions of the n-gon. We summarize these results in the following theorem.

THEOREM 99. The dihedral group, Dn, is a subgroup of Sn of order 2n.

1
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rotation

reflection

Figure A.2. Rotations and reflections of a regular n-gon
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3

1

6

5

4

2

5

1

2

3

4

6

1

2

34

5

1
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43

2

Figure A.3. Types of reflections of a regular n-gon

THEOREM 100. The group Dn, n � 3, consists of all products of the two elements r and s,
satisfying the relations

rn = id

s2 = id

srs = r�1.
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LINEAR CODES

B.1. Codes as Groups

To gain more knowledge of a particular code and develop more efficient techniques of encoding,
decoding, and error detection, we need to add additional structure to our codes. One way to
accomplish this is to require that the code also be a group. A group code is a code that is also
a subgroup of Zn

2. To check that a code is a group code, we need only verify one thing. If we
add any two elements in the code, the result must be an n-tuple that is again in the code. It is
not necessary to check that the inverse of the n-tuple is in the code, since every codeword is its
own inverse, nor is it necessary to check that 0 is a codeword. For instance,

(11000101)+(11000101) = (00000000).

EXAMPLE. Suppose that we have a code that consists of the following 7-tuples:

(0000000) (0001111) (0010101) (0011010)

(0100110) (0101001) (0110011) (0111100)

(1000011) (1001100) (1010110) (1011001)

(1100101) (1101010) (1110000) (1111111).

It is a straightforward though tedious task to verify that this code is also a subgroup of Z7
2 and,

therefore, a group code. This code is a single error-detecting and single error-correcting code,
but it is a long and tedious process to compute all of the distances between pairs of codewords
to determine that dmin = 3. It is much easier to see that the minimum weight of all the nonzero
codewords is 3. As we will soon see, this is no coincidence. However, the relationship between
weights and distances in a particular code is heavily dependent on the fact that the code is a
group.
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LEMMA 101. Let x and y be binary n-tuples. Then w(x+y) = d(x,y).

THEOREM 102. Let dmin be the minimum distance for a group code C. Then dmin is the
minimum of all the nonzero weights of the nonzero codewords in C. That is,

dmin = min{w(x) : x 6= 0}.

PROOF. Observe that

dmin = min{d(x,y) : x 6= y}

= min{d(x,y) : x+y 6= 0}

= min{w(x+y) : x+y 6= 0}

= min{w(z) : z 6= 0}.

⇤

From the last example, it is now easy to check that the minimum nonzero weight is 3; hence,
the code does indeed detect and correct all single errors. We have now reduced the problem of
finding “good” codes to that of generating group codes. One easy way to generate group codes
is to employ a bit of matrix theory. Define the inner product of two binary n-tuples to be

x ·y = x1y1 + · · ·+ xnyn,

where x = (x1,x2, . . . ,xn)T and y = (y1,y2, . . . ,yn)T are column vectors.1 For example, if x =

(011001)T and y = (110101)T, then x · y = 0. We can also look at an inner product as the
product of a row matrix with a column matrix; that is,

x ·y = xTy

=
⇣

x1 x2 · · · xn

⌘

0

B

B

B

B

@

y1

y2
...

yn

1

C

C

C

C

A

= x1y1 + x2y2 + · · ·+ xnyn.

EXAMPLE. Suppose that the words to be encoded consist of all binary 3-tuples and that our
encoding scheme is even-parity. To encode an arbitrary 3-tuple, we add a fourth bit to obtain an
even number of 1’s. Notice that an arbitrary n-tuple x = (x1,x2, . . . ,xn)T has an even number of
1’s exactly when x1 +x2 + · · ·+xn = 0; hence, a 4-tuple x = (x1,x2,x3,x4)T has an even number

1Since we will be working with matrices, we will write binary n-tuples as column vectors for the remainder of this
section.
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of 1’s if x1 + x2 + x3 + x4 = 0, or

x ·1 = xT1 =
⇣

x1 x2 x3 x4

⌘

0

B

B

B

@

1
1
1
1

1

C

C

C

A

= 0.

This example leads us to hope that there is a connection between matrices and coding theory.

Let Mm⇥n(Z2) denote the set of all m⇥n matrices with entries in Z2. We do matrix operations

as usual except that all our addition and multiplication operations occur in Z2. Define the null
spaceof a matrix H 2Mm⇥n(Z2) to be the set of all binary n-tuples x such that Hx = 0. We
denote the null space of a matrix H by Null(H).

EXAMPLE. Suppose that

H =

0

B

@

0 1 0 1 0
1 1 1 1 0
0 0 1 1 1

1

C

A

.

For a 5-tuple x = (x1,x2,x3,x4,x5)
T to be in the null space of H, Hx = 0. Equivalently, the

following system of equations must be satisfied:

x2 + x4 = 0

x1 + x2 + x3 + x4 = 0

x3 + x4 + x5 = 0.

The set of binary 5-tuples satisfying these equations is

(00000) (11110) (10101) (01011).

This code is easily determined to be a group code.

B.2. Efficient Decoding

We are now at the stage where we are able to generate linear codes that detect and correct
errors fairly easily, but it is still a time-consuming process to decode a received n-tuple and
determine which is the closest codeword, because the received n-tuple must be compared to
each possible codeword to determine the proper decoding. This can be a serious impediment if
the code is very large.
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EXAMPLE. Given the binary matrix

H =

0

B

@

1 1 1 0 0
0 1 0 1 0
1 0 0 0 1

1

C

A

and the 5-tuples x = (11011)T and y = (01011)T, we can compute

Hx =

0

B

@

0
0
0

1

C

A

and

Hy =

0

B

@

1
0
1

1

C

A

.

Hence, x is a codeword and y is not, since x is in the null space and y is not. Notice that Hx is
identical to the first column of H. In fact, this is where the error occurred. If we flip the first bit
in y from 0 to 1, then we obtain x.

If H is an m⇥n matrix and x 2 Zn
2, then we say that the syndrome of x is Hx. The following

proposition allows the quick detection and correction of errors.

PROPOSITION 103. Let the m⇥ n binary matrix H determine a linear code and let x be
the received n-tuple. Write x as x = c + e, where c is the transmitted codeword and e is the
transmission error. Then the syndrome Hx of the received codeword x is also the syndrome of
the error e.

PROOF. Hx = H(c+ e) = Hc+He = 0+He = He. ⇤

This proposition tells us that the syndrome of a received word depends solely on the error and

not on the transmitted codeword. The proof of the following theorem follows immediately from
Proposition 103 and from the fact that He is the ith column of the matrix H.

THEOREM 104. Let H 2Mm⇥n(Z2) and suppose that the linear code corresponding to H is
single error-correcting. Let r be a received n-tuple that was transmitted with at most one error.
If the syndrome of r is 0, then no error has occurred; otherwise, if the syndrome of r is equal to
some column of H, say the ith column, then the error has occurred in the ith bit.
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EXAMPLE. Consider the matrix

H =

0

B

@

1 0 1 1 0 0
0 1 1 0 1 0
1 1 1 0 0 1

1

C

A

and suppose that the 6-tuples x = (111110)t, y = (111111)t, and z = (010111)t have been
received. Then

Hx =

0

B

@

1
1
1

1

C

A

,Hy =

0

B

@

1
1
0

1

C

A

,Hz =

0

B

@

1
0
0

1

C

A

.

Hence, x has an error in the third bit and z has an error in the fourth bit. The transmitted
codewords for x and z must have been (110110) and (010011), respectively. The syndrome of
y does not occur in any of the columns of the matrix H, so multiple errors must have occurred
to produce y.

Coset Decoding. We can use group theory to obtain another way of decoding messages. A
linear code C is a subgroup of Zn

2. Coset or standard decoding uses the cosets of C in Zn
2 to

implement maximum-likelihood decoding. Suppose that C is an (n,m)-linear code. A coset of
C in Zn

2 is written in the form x +C, where x 2 Zn
2. By Lagrange’s Theorem, there are 2n�m

distinct cosets of C in Zn
2.

EXAMPLE. Let C be the (5,3)-linear code given by the parity-check matrix

H =

0

B

@

0 1 1 0 0
1 0 0 1 0
1 1 0 0 1

1

C

A

.

The code consists of the codewords

(00000) (01101) (10011) (11110).

There are 25�2 = 23 cosets of C in Z5
2, each with order 22 = 4. These cosets are listed in

Table B.1.

Our task is to find out how knowing the cosets might help us to decode a message. Suppose

that x was the original codeword sent and that r is the n-tuple received. If e is the transmission
error, then r = e + x or, equivalently, x = e + r. However, this is exactly the statement that r
is an element in the coset e +C. In maximum-likelihood decoding we expect the error e to be
as small as possible; that is, e will have the least weight. An n-tuple of least weight in a coset
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Table B.1. Cosets of C

Cosets
C (00000) (01101) (10011) (11110)

(10000) + C (10000) (11101) (00011) (01110)
(01000) + C (01000) (00101) (11011) (10110)
(00100) + C (00100) (01001) (10111) (11010)
(00010) + C (00010) (01111) (10001) (11100)
(00001) + C (00001) (01100) (10010) (11111)
(10100) + C (00111) (01010) (10100) (11001)
(00110) + C (00110) (01011) (10101) (11000)

is called a coset leader. Once we have determined a coset leader for each coset, the decoding
process becomes a task of calculating r+ e to obtain x.

EXAMPLE. In Table B.1, notice that we have chosen a representative of the least possible
weight for each coset. These representatives are coset leaders. Now suppose that r = (01111) is
the received word. To decode r, we find that it is in the coset (00010)+C; hence, the originally
transmitted codeword must have been (01101) = (01111)+(00010).

A potential problem with this method of decoding is that we might have to examine every coset
for the received codeword. The following proposition gives a method of implementing coset
decoding. It states that we can associate a syndrome with each coset; hence, we can make a
table that designates a coset leader corresponding to each syndrome. Such a list is called a
decoding table.

PROPOSITION 105. Let C be an (n,k)-linear code given by the matrix H and suppose that
x and y are in Zn

2. Then x and y are in the same coset of C if and only if Hx = Hy. That is, two
n-tuples are in the same coset if and only if their syndromes are the same.

PROOF. Two n-tuples x and y are in the same coset of C exactly when x�y 2C; however,
this is equivalent to H(x�y) = 0 or Hx = Hy. ⇤

EXAMPLE. Table B.2 is a decoding table for the code C given in Example 18. If x = (01111)

is received, then its syndrome can be computed to be

Hx =

0

B

@

0
1
1

1

C

A

.
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Examining the decoding table, we determine that the coset leader is (00010). It is now easy to
decode the received codeword.

Given an (n,k)-block code, the question arises of whether or not coset decoding is a manageable
scheme. A decoding table requires a list of cosets and syndromes, one for each of the 2n�k cosets
of C. Suppose that we have a (32,24)-block code. We have a huge number of codewords, 224,
yet there are only 232�24 = 28 = 256 cosets.

Table B.2. Syndromes for each coset

Syndrome Coset Leader
(000) (00000)
(001) (00001)
(010) (00010)
(011) (10000)
(100) (00100)
(101) (01000)
(110) (00110)
(111) (10100)
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