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Abstract. This study intends to present a representation of a pensions fund through a stochastic 
network with two infinite servers nodes. With this representation it is allowed to deduce an 
equilibrium condition of the system with basis on the identity of the random rates expected 
values, for which the contributions arrive to the fund and the pensions are paid by the fund. In 
our study a stochastic network is constructed where traffic is represented. This network allows 
to study the equilibrium in the system and it is admissible to get a balance to a pensions fund. 
A specific case is studied. When the arrivals from outside at nodes A and B are according to a 
Poisson process, with rates 𝜆! and 𝜆!, respectively, the system may be seen as a two nodes 
network where the first node is a 𝑀/𝐺/∞ queue and second a 𝑀!/𝐺/∞ queue. For this case in 
the long term the conditions of equilibrium are as follows: 𝑚!𝜆!𝛼! = 𝑚! 𝜌𝜆! + 𝜆! 𝛼!.  In 
this formula it is established a relationship among the two nodes. Several examples are given in 
the study. 

1.  Introduction 
Consider two nodes, service centres, A and B both with infinite servers. The traffic through arches a to 
e is as it is schematized in Figure 1. 
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Figure 1. Traffic in the stochastic network 
 
The users arrive to node A by arch a at rate 𝜆!. And the service time at this node is a positive 

random variable with distribution function (d.f.) 𝐺! and finite mean 𝛼!. After node A the users go to 
node B through b with probability p. Or just abandon the system through arch c with probability 1 – p.  

The users coming directly from outside through d at rate 𝜆! have also access to the service supplied 
at B, according to a positive random variable with density function 𝐺! and finite mean 𝛼!. The system 
is abandoned by these users through arch e.  

In [1] this system is suggested as a representation of a pensions fund. So at node A arrive 
individuals that pay, during the service time, their contributions to the fund. The pensioners are at 
node B, which service represents their pensions payment by the fund. This representation reflects also 
the functions of the common social security funds and that is why it accepts the access of pensioners 
that have not formerly participated, at node A, in the building of the fund. 
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The target of this study is, having this representation in mind, to obtain results about the transient 
behavior of the system from the point of view of its equilibrium and autonomy. 

2.  The Fund Equilibrium 
Let 𝑁! 𝑡  and 𝑁! 𝑡  be the random variables (r.v.) that represent the number of individuals by time t 
at nodes A and B, respectively. Consider also the sets of the independent and identically distributed 
random variables: 
 

𝑋!! 𝑡 ,𝑋!! 𝑡 ,𝑋!! 𝑡 ,… , 𝑋!! 𝑡 ,𝑋!! 𝑡 ,𝑋!! 𝑡 ,…  
 
which designate the unitary contributions, pensions by time t, with mean 𝑚! 𝑡  and 𝑚! 𝑡 . 

The system is in equilibrium when the expected values of the rates at which the contributions are 
being received and the pensions are being paid by the fund are identical:  

𝐸 𝑋!! 𝑡
!! !

!!!

= 𝐸 𝑋!! 𝑡
!! !

!!!

. 

That is, by Wald’s equation:  

𝑚! 𝑡 𝐸 𝑁! 𝑡 = 𝑚! 𝑡 𝐸 𝑁! 𝑡                                1 . 

Eq. (1) just stays that at each instant the mean value of the unitary pension should be proportional 
to the mean value of the unitary contribution, with the ratio between the averages of the numbers of 
contributors and pensioners as proportionality factor. Being t = 0 the origin time, its solution 
corresponds, for t > 0, to the following pairs:  

𝑚! 𝑡 ;𝑚! 𝑡 = 𝑚! 𝑡 ;
𝑚! 𝑡 𝐸 𝑁! 𝑡
𝐸 𝑁! 𝑡

, 

where 𝑚! 𝑡  is independent of the equilibrium. 
If the mean value of the unitary pension is initially 1, and grows continuously with an interest rate 

r,  

𝑚! 𝑡 = 𝑒!"

𝑚! 𝑡 = 𝑒!" 𝐸 𝑁! 𝑡 /𝐸 𝑁! 𝑡 .
 

It is elementary, after Eq. (1),  
 

𝐸 𝑁! 𝑡 < 𝐸 𝑁! 𝑡 ⇒ 𝑚! 𝑡 > 𝑚! 𝑡 . 
 
So, in equilibrium, the mean value of the unitary pension is smaller than the mean value of unitary 

contribution whenever the number of pensioners at B is bigger than the number of contributors at A. 

3.  The Case of Poisson Arrivals 
If the arrivals from outside at nodes A and B are according to a Poisson process, with rates 𝜆! and 𝜆!, 
respectively, the system may be seen as a two nodes network where the first node is a 𝑀/𝐺/∞ queue 
and second a 𝑀!/𝐺/∞ queue, see for instance Ferreira and Andrade [2]. So, 𝑁! 𝑡  is Poisson 
distributed with parameter, see Ross [3] 
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𝜆! 1 − 𝐺! 𝑣
!

!
𝑑𝑣. 

 
The output of the first node is a non-homogeneous Poisson process with intensity function 𝜆!𝐺! 𝑡  

and, consequently, the global arrivals rate at node B is  𝑝𝜆!𝐺! 𝑡 + 𝜆!. Under this conditions 𝑁! 𝑡  is 
Poisson distributed with parameter, see Harrison and Lemoine [4]: 

 

𝑝𝜆!𝐺! 𝑣 + 𝜆! 1 − 𝐺! 𝑡 − 𝑣 𝑑𝑣.
!

!
 

 
And Eq. (1) is written like this 
 

𝑚! 𝑡 𝜆! 1 − 𝐺! 𝑣
!

!
𝑑𝑣 = 𝑚! 𝑡 𝑝𝜆!𝐺! 𝑣 + 𝜆! 1 − 𝐺! 𝑡 − 𝑣 𝑑𝑣  

!

!
2 . 

 
When 𝑡 → ∞ the equilibrium conditions assumes the following form where 

𝑚! = lim!→∞𝑚! 𝑡 , 𝑖 = 𝐴,𝐵: 
 

𝑚!𝜆!𝛼! = 𝑚! 𝜌𝜆! + 𝜆! 𝛼!                              3 . 
 
If the service times at nodes A and B have density functions concentrated in the intervals 0, 𝑎  and 

0, 𝑏 , 𝑚!𝜆!𝛼! = 𝑚! 𝜌𝜆! + 𝜆! 𝛼! for 𝑡 ≥ 𝑎 + 𝑏. 

4.  Example 
In this section some concrete examples of service times distributions will be considered. 

4.1.  Uniformly Distributed Service Times 
If the service times are uniformly distributed, supposing that 𝛼! < 𝛼!, it is obtained for Eq. (2) in 
0 ≤ 𝑡 < 2𝛼! + 2𝛼! , not to repeat what has just been mentioned: 
 
𝑖)      𝑚! 𝑡 𝜆! 𝑡 − !!

!!!
= 𝑚! 𝑡 𝜆! 𝑡 − !!

!!!
+                   𝑚! 𝑡 𝑝𝜆!

!!

!!!
− !!

!"!!!!
,      if 0 ≤ !

!
< 𝛼! 

 

𝑖𝑖)      𝑚! 𝑡 𝜆! 𝑡 − !!

!!!
= 𝑚! 𝑡 𝜆!𝛼! +     𝑚! 𝑡 𝑝𝜆! − !!

!

!!!
− !!!

!!!
,𝛼! ≤

!
!
< 𝛼!    

 
𝑖𝑖𝑖)    𝑚! 𝑡 𝜆!𝛼! =
                𝑚! 𝑡 𝜆!𝛼! +                    𝑚! 𝑡 𝑝𝜆! −𝛼! −

!!
!

!"!!
+ 𝑡 −                          !!!! !

!!!
+                  !!!!!

!

!"!!!!
,  if 𝛼! ≤

!
!
<

𝛼! + 𝛼! . 
 

4.2.  Exponentially Distributed Service Times 
If the service times are exponentially distributed the equilibrium distribution is given by: 

𝑖)      𝑚! 𝑡 𝜆!𝛼! 1 − 𝑒!
!
!! =   𝑚! 𝑡 𝑝𝜆! +               𝜆! 𝛼! 1 − 𝑒!

!
!! −   𝑚! 𝑡 !!!!!!!

!!!!!
𝑒!

!
!! −

              𝑒
! !
!𝑩 ,  if 𝛼! ≠ 𝛼! 
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𝑖𝑖)      𝑚! 𝑡 𝜆!𝛼! 1 − 𝑒!
!
!! = 𝑚! 𝑡    𝑝𝜆! +               𝜆! 𝛼! 1 − 𝑒!

!
!𝑨 −𝑚! 𝑡 𝑝𝜆!𝑡𝑒

! !
!! ,    

      if  𝛼! = 𝛼! 
 

4.3.  Service Times with a Particular Distribution Function 
Solving Eq. (2) in the way presented above becomes quite difficult with other standard distributions 
for the service times. So now it will be considered a collection of density functions, see Ferreira and 
Andrade [5] and Ferreira and Andrade [6], for the service times given by 
 

𝐺! 𝑣 = 1 −
1 − 𝑒!!! 𝛾! + 𝛽!

𝛾!𝑒!!! 𝑒 !!!!! ! − 1 + 𝛾!
, 𝑣 ≥ 0, 𝛾! > 0, 𝜌! > 0,−𝛾! ≤ 𝛽! ≤

𝛾!
𝑒!!! − 1

, 𝑖 = 𝐴,𝐵. 

 
The mean distribution is 𝛼! = 𝜌! 𝛾!. In this case Eq. (2) becomes 
 

𝑚! 𝑡
𝜆!
𝛾!
𝑙𝑛

𝑒 !!!!! !

𝑒!!! 𝑒 !!!!! ! − 1 + 1
            

= 𝑚! 𝑡
𝑝𝜆! + 𝜆!

𝛾!
𝑙𝑛

𝑒 !!!!! !

𝑒!!! 𝑒 !!!!! ! − 1 + 1
−𝑚! 𝑡 𝑝𝜆!𝐼 𝑡  

 
where 

  

𝐼 𝑡 =
1 − 𝑒!!! 𝛾! + 𝛽!

𝛾!𝑒!!! 𝑒 !!!!! ! − 1 + 𝛾!

!

!
× 

1 − 𝑒!!! 𝛾! + 𝛽!
𝛾!𝑒!!! 𝑒 !!!!! !!! − 1 + 𝛾!

𝑑𝑣. 

 
 
𝐼 𝑡  is non-negative and not bigger than 

𝛾! + 𝛽! 𝛾! + 𝛽! !

𝛾! + 𝛾!
. 

 

4.4.  Approximations 
The Eq. (2) solution seems to be significantly more complex in circumstances different from those that 
have been mentioned. For instance, if the service times follow a LogNornal, Gamma or Weibull 
distributions. In some cases, only the numerical solution can eventually be stained.  

For appropriate values of t, the following approximations concerning the equilibrium conditions are 
suggested:  

𝑚! 𝑡
𝑚! 𝑡

≅
𝜆!𝛼!

𝑝𝜆! + 𝜆! 𝛼!
                     4 ; 

 
𝑚! 𝑡
𝑚! 𝑡

≅
𝜆!
𝜆!
                                                               5 . 

Eq. (4) seems reasonable for values of t big enough and Eq. (5) is preferred for t close to zero. For 
details see Figueira and Ferreira [7]. 
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5.  Observations 
Some values of the parameters 𝑝 and 𝜆! have a special influence in the system behaviour. One may 
consider the suppression of the arch b when 𝑝 = 0, of the arch c when 𝑝 = 1 or of the arch d for  
𝜆! = 0. Under those circumstances the traffic in those arches can be neglected. 

It may be admitted that the ratio 𝑚! 𝑡 𝑚! 𝑡  remains constant. This corresponds to the 
assumption that all the users of the system face identical conditions of effort and benefit, 
independently of the moment they join the system. Eq. (3) supplies a natural candidate for the value of 
that constant: 𝜆!𝛼! 𝑝𝜆! + 𝜆! 𝛼!. In such situation Eq. (2) should include an “excess” functions 
ℎ 𝑡 : 

 
ℎ 𝑡 = 𝑚! 𝑡 !!!!

!!!!!! !!
𝑝𝜆!𝐺! 𝑣 + 𝜆! 1 − 𝐺! 𝑡 − 𝑣!

! 𝑑𝑣 −𝑚! 𝑡 𝜆! 1 −!
!

𝐺! 𝑣 𝑑𝑣. 

The function ℎ 𝑡  is also interpreted in the sense of the expected value of a random variable 
depending on t. This approach can be generalized in a natural way to some other predefined function 
𝑚! 𝑡 𝑚! 𝑡 .  

Assuming that the system is initially empty appears to be a strong restriction of the analysis 
performed. When someone meets the system already in operation and does not known when it did 
start, the results that have been mentioned seem to have a lesser utility. In such case, there re-
evaluation or finding a estimation procedure for the initial time are determinant for practical purposes. 
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