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Abstract 

Clustering quality or validation indices allow the evaluation of the quality of clustering in order 

to support the selection of a specific partition or clustering structure in its natural unsupervised 

environment, where the real solution is unknown or not available. In this paper, we investigate 

the use of quality indices mostly based on the concepts of clusters’ compactness and separation, 

for the evaluation of clustering results (partitions in particular). This work intends to offer a 

general perspective regarding the appropriate use of quality indices for the purpose of clustering 

evaluation. After presenting some commonly used indices, as well as indices recently proposed in 

the literature, key issues regarding the practical use of quality indices are addressed. A general 

methodological approach is presented which considers the identification of appropriate indices 

thresholds. This general approach is compared with the simple use of quality indices for 

evaluating a clustering solution. 

Key words: cluster validation, validation indices, quality indices, clustering. 
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1 Introduction 

Cluster Analysis is a process designed to discover (or uncover) clusters of objects from a data set. 

Ideally, the objects in each cluster should share a significant number of characteristics with other 

objects in the same cluster and differ from objects belonging to other clusters. Partitions 

constitute the more popular clustering structure and are useful for several applications. Since 

Cluster analysis is a very practical subject (as stated by [24] in the first sentence of their book), 

the present work is focused on the practical evaluation of partitions. 

The main clustering evaluation criterion should concern the degree of fit between the partition 

obtained (derived through cluster analysis) and the real or true partition. However, since the real 

partition is unknown, the clustering evaluation surrogate’s issue is the identification of a good 

enough partition. 

Although several quality indices have been proposed and analyzed in the literature, and even 

some works have compared the advantages and disadvantages of several quality indices, this 

paper contributes to the advance of research in this area by highlighting some important issues 

regarding the use of these indices in practical problems. It also proposes a general methodology – 

the generalization of a Monte Carlo based approach for virtually all quality indices – to support 

the identification of homogeneity thresholds for quality indices, which is the main contribution.  

The following sections describe contributions from the literature dedicated to clustering 

evaluation (partitions, in particular) and the use of quality indices. The first section addresses 

homogeneity tests, which can be used to identify when there is no clustering structure. The 

second section covers a group of quality indices concerned with the measurement of clusters’ 

compactness and separation. The third section focuses on current work and addresses important 

issues related with the practical use of quality indices. It proposes a general methodological 

approach for clustering evaluation using quality indices. Section 4 presents experimental results 

obtained with the use of the proposed methodology.  In the end, some conclusions and 

perspectives are presented. 

In order to support the presentation of the main issues of this paper in the following sections, the 

basic notation is established in advance: 
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Π Partition 

ΠK
 Partition with K clusters 

C1,…CK Set of K clusters of a partition 

D = [d(xi,xj)] Matrix of (original) distances between objects 

)]x,x(d̂[  D̂ ji=  Matrix of estimated distances (derived from clustering results) between 

objects 

B Between clusters distance measure (it can refer to either a partition ΠK
 or 

to a specific pair of clusters) 

W Within clusters distance measure (it can refer to either a partition ΠK or 

to a specific cluster) 

K* The best number of clusters 

x1, …, xN Objects to be clustered 

2 Homogeneity tests 

Before performing the cluster analysis, it is important to decide if it is worthwhile, i.e. the data 

might be sampled from a homogeneous population without any clustering structure. That is the 

perspective underlying the homogeneity hypothesis testing approach. 

The null hypothesis, H0, usually employed in homogeneity tests, should translate the fact that the 

data originate from a population where no clustering structure exists. There are some null 

hypothesis which are commonly used to translate the absence of a structure  (see  [18] or [5]): 

- Uniform Model, which assumes that objects can be represented by points uniformly 

distributed in a region A from a J-dimensional space. 
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- Unimodal Model, where the joint distribution of the clustering base variables is supposed 

to have the same unimodal density (e.g. multivariate normal with unknown mean (µ) and 

covariance matrix σI) 

The Uniform Model is sensitive to the region A definition. This region A may be either the unit J-

dimensional hipercube or hipersphere (assuming that data are standardized) or may be specified 

taking the observed data values into consideration (e.g. A may be the convex hull of the points in 

the data set). This latter definition may allow the construction of tests which are less influenced 

by unimportant differences between the model and data, but it may imply heavy demands on 

computational resources (e.g. unless J is small, it is hard to determine the convex hull of the 

points in the data set) [5]. 

In the Unimodal Model, the null hypothesis can also take the data into consideration, by 

specifying a data-influenced covariance matrix. 

In addition to defining the homogeneity H0 hypothesis, a suitable heterogeneity H1 hypothesis 

must be characterized. The most general H1 (referring to pure homogeneity tests) does not 

include any information concerning the clustering structure (not even the number of clusters). 

These homogeneity tests configure the first (preliminary) step in the clustering evaluation 

process. 

In order to test a specific null hypothesis H0 against an alternative hypothesis H1, an appropriate 

test statistic (TS) must be adopted and its distribution under H0 must be determined. Depending 

on the specified hypothesis, one can consider different alternatives for the TS. e.g. the largest 

nearest neighbour distance within the set of entities can be considered to test the Uniform Model 

[4]. 

In most cases, it is not possible to derive the homogeneity TS’s exact distribution. To overcome 

this limitation, one can, sometimes, recur to asymptotical distributions.  As an alternative 

approach, Monte Carlo simulation procedures can be used to generate samples under the 

homogeneity null hypothesis H0 (see Figure 1). This type of procedure enables the construction 

of a TS empirical distribution, its main drawback being the additional computational cost. 

(insert Figure 1 about here) 
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In addition to pure homogeneity tests, alternative formulations have been proposed.  One of 

them, the Random Label hypothesis [23], takes into account a specific partition to deal with and 

evaluate.  It assumes (null model) that all permutations of the entities’ labels (resulting from 

cluster assignments) are equally likely. 

Homogeneity tests are typically referred to quantitative clustering base variables randomly 

sampled from a population. This is not the case in many practical applications. (Everitt, 2001) 

makes the following comments on homogeneity tests for practical applications: such tests are not 

usually employed in practical applications of clustering. This may be because the available tests 

are of limited usefulness (p. 180). [27] also comment on the homogeneity tests’ drawbacks: the 

power of many such statistical tests decreases quickly with increasing data dimensionality. Also, 

a rejection of null hypothesis does not shed any light on which clustering algorithm to use (p. 2). 

Despite these drawbacks, homogeneity tests may have a role in the clustering evaluation process, 

which will be discussed in the paper. 

3 Quality indices 

Once having established that there is a real clustering structure (whether the conclusion relies on 

theoretical or empirical and practical grounds), one specific clustering solution may be derived 

and evaluated. 

A commonly used measure for evaluating the quality of a clustering solution is the Hubert’s Γ 

statistic (e.g. [23]), which measures the fit between the partition and the clustering base data: 

                                     ( )
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where n is the number of objects and ( ) 1x,xd̂ ji =  if the objects xi and xj belong to the same 

cluster or 0, otherwise. Hence, it can be thought as a point biserial correlation between the 

original distance matrix (e.g squared Euclidean distance) and the matrix of estimated distances 

(part of the clustering results). Alternatively, the estimated distance d̂  between two objects, 

which can be derived from the clustering solution, may be quantified as the distance between 

points (typically centroids) representing the clusters to which the two objects belong. 
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The Hubert’s Γ statistic can be normalized, yielding a correlation measure between the original 

and the estimated (through clustering) distances, its maximum and minimum value being 1 and 

−1, respectively:  
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Where sd and 
d̂

s  refer to the empirical standard deviation of d and d̂ , respectively. 

Larger Hubert’s Γ statistic values indicate good fitness between the data and the clusters. Larger 

values also denote compact clusters, meaning that the objects inside a cluster are close to its 

representative point. 

There are some desirable properties of clustering structures, related to distinguishing partitions’ 

qualities, which make them unusual or valid. One of them is compactness. In fact, many authors 

say that the compactness, and also separation properties, of a clustering structure define its 

quality. Several works try to measure these properties by the homogeneity-within and 

heterogeneity-between clusters (e.g. [10]). Thus, compactness measures the internal cohesion 

among objects within clusters and separation measures the isolation of clusters when compared to 

other clusters.   

While this general idea is frequently accepted, many definitions of compactness and separation 

have been proposed, originating different quality indices to measure the quality of a clustering 

structure. Several indices are described in [19], for example.  

Examples of indices are presented on Table 1. They are generally based on some compactness 

(within clusters) to separation (between clusters) measures’ ratio.  

(Insert table 1 about here) 

 The Dunn index [14] measures the between-within distances ratio. The best partitions should 

exhibit the largest index values corresponding to compact and well separated clusters: 
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The Calinski and Harabask index [10] is a pseudo-F-statistic, which also measures the between-

within distances ratio: 
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In experiments performed by [29], the CH index was the best among 30 alternative criteria 

evaluated to determine the best clustering structure (/best number of clusters). 

[11] rearranged the within-between distances in the following index, where the best values should 

be the lowest possible: 
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The Silhouette width measure was proposed by [38] as a graphical aid to the interpretation and 

validation of cluster analysis. It measures the difference between separation and compactness for 

each observation xi inside a cluster Ck: 
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The average Silhouette index aggregates Silhouette widths from all observations in the 

corresponding clusters. It can be used to help evaluating a clustering structure [24]: 
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where 
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A good partition should then exhibit a high average Silhouette index.  

Another (recent) example is the PBM index [34]: 
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more specifically, 
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where zik=1 if i ∈ Ck and 0, otherwise. 

The second factor of PBM increases as K increases (since the denominator’s within-clusters 

distance decreases as K increases). Therefore, it encourages the formation of more compact 

clusters. The third factor also increases with K.  It favours separation between pairs of clusters. 

The authors of PBM point out that the use of the maximum pairwise inter-cluster distances 

instead of using a minimum, a sum, or an average, presents some advantages related to the way 

this function behaves when K increases, the maximum PBM indicating the best partition (number 

of clusters). According to previous experimental results, this index presents a good performance 

when compared to the Dunn index or to the Davies-Bouldin index [34]. 
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Some indices were originally proposed as a stop criterion for a clustering procedure, indicating 

whether the number of clusters is adequate (e.g the Davies-Bouldin index, [11]). Nevertheless, 

they all measure the goodness of partitions and can be employed for the more general purpose of 

evaluating several candidate partitions. It is, however, possible to incorporate in an index’s 

formula the within-clusters and between-clusters distances for the comparison of different 

numbers of clusters. This is the case of the Hartigan index [20]. 

The Hartigan index explicitly compares within-clusters distances for partitions with K and K+1 

clusters, in order to decide whether to include (or not) a new cluster in a partition with K clusters: 
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It is worthwhile to note that the partition ∏K+1 is not necessarily obtained by splitting one of the 

clusters in ∏K+1 and, therefore, the Hartigan’s mean square ratio is conceivably negative. 

It should also be noted that each index looks for a different structure in the data and that the 

choice of a particular index is generally influenced by the user prior knowledge. 

The referred list of indices (Table 1) is not at all exhaustive. There are many quality indices and 

new indices are still being proposed. Nevertheless, this list includes some of the most popular 

indices (for crisp clustering evaluation), as well as some recent quality indices. More importantly, 

it enables the comprehension of general clustering evaluation quality indices relying on the 

properties of compactness and separation. In any case, the reader may always refer to other 

works, including additional index proposals (e.g. [29] and [33] more recent).  

Finally, it is worthwhile to note that some of the previously mentioned quality indices have been 

generalized to clustering structures other than partitions. For example, extended versions of the 

Dunn index or the PBM indices can be used to evaluate fuzzy clustering structures, as can be 

seen in ([3] and [34], respectively. In addition, there are also alternative indices that specifically 

address the quality of fuzzy partitions (e. g.  [25], [7] or [43]). 
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4 Practical issues when using quality indices 

4.1 Quality indices relative thresholds 

Understanding and put in practice the concept of good partition is not an easy task (e.g. [28]). As 

previously stated, several quality indices (QI) have been proposed to support the selection of a 

good partition among a set of candidate partitions (yielded by different numbers of clusters or 

alternative parameterizations of a clustering algorithm, for example). Although some indices have 

clearly defined maximum and minimum values, it is difficult to define which indices values 

indicate an adequate partition. In fact, it is easy to propose indices of cluster validity. It is very 

difficult to fix thresholds on such indices that define when the index is large or small enough to 

be “unusual” or valid [23] (p. 144).  

The most commonly used strategy to address this threshold problem is to provide comparisons 

between several indices values associated with different partitions in order to select the best index 

value (/partition). Therefore, on practical applications, typically, one can implement a (general) 

procedure, like the one presented in Figure 2, to support the selection of an appropriate partition 

among several candidates. These candidates may be originated by minor changes in the clustering 

procedure, which may range from alternative algorithm parameters to different sets of clustering 

base variables or numbers of clusters considered. 

(insert figure 2 about here) 

Several variants of the soft procedure in Figure 2 can be adopted. When focusing, specifically on 

selection among partitions with alternative numbers of clusters, this procedure is usually repeated 

until reaching a maximum number of clusters (Kmax), which must be specified in advance. 

According to a commonly accepted empirical rule, Kmax should not exceed √n ( [35] cited in 

[34]). 

This soft procedure’s focus relies on the appropriate definition of argbest(QI). This definition is 

usually formulated by establishing empirical (soft) rules dealing with the trade-off between 

quality (expressed by the QI value) and complexity (number of clusters in particular). This trade-

off may be illustrated by an elbow in a curve picturing the increasing or decreasing index trend, 

which can be associated with the increasing number of clusters.  
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However, it is worthwhile to note that the indices values may vary with several other factors, 

such as, the number of observations, the number of clustering base variables and the separation 

between clusters. 

An alternative approach is to rely on previous indicators (derived from empirical studies), 

concerning specific thresholds’ values for specific indices. For example, [20] suggests a crude 

rule of thumb (p. 91) – hartigan(ΠK
) > 10 – that may justify increasing partition size (from K to 

K+1 clusters). [24] refer to experience with the Silhouette index which has led us to a rather 

subjective interpretation summarized in (p.88) (Table 2). 

(insert table 2 about here) 

 Additional clustering evaluation procedures may rely on results from several quality indices, 

trying to overcome the weaknesses of specific indices by combining their strengths. 

[6] point out the need for standardization when comparing indices values corresponding to 

alternative B and W distance measures, for K fixed. They suggest using standardized index 

versions, based on overall average index values and the corresponding standard deviations:  

( )
( )indexstdev

indexaverageindex
ind_Std

−
=                          (11) 

In particular, they use Dunn and Davies-Bouldin indices variants, which are built using several B 

and W measures.    

[6] also suggest converting the normalized indices values using weighted voting (minimum 

weight=1, 2, 3,…, maximum weight=Kmax-1): the advantage of a weighted voting approach lies 

in a robust aggregation of multiple validation methods in order to improve the estimation of the 

most adequate clustering partition (p. 832). 

4.2 Homogeneity based thresholds for quality indices 

Instead of using an empirical (soft) approach to address the threshold problem, an alternative 

(hard) approach can be considered, which relies on establishing the indices distributions under 

some null homogeneity hypothesis (H0). This procedure (see Figure 3) enables good choices 

concerning the observed quality index values, which can be established as significantly apart 
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from this hypothesis. Needless to say that that this approach should rely on random samples of 

observations, typically drawn from continuous clustering base variables. 

For example, when using the Hubert’s Γ statistic to evaluate the goodness of fit between data and 

the clustering structure, the analyst is confronted with the problem of determining Hubert’s Γ 

critical values for establishing a frontier between good enough partitions and unacceptable ones. 

The threshold problem related to the Hubert’s Γ statistic is addressed by [23], using the Random 

Label null model, H0. Under this H0, all permutations of the clustering labels are equally likely 

(meaning that clustering labels which yield ( )ji x,xd̂  are imputed at random). 

The distribution of the Hubert’s Γ statistic under this null hypothesis can be (exactly) calculated 

when n (the number of objects) is small (all permutations can be easily identified and used in the 

calculus). When n is large enough, a normal distribution can be considered as an approximation 

(although the asymptotic normality may not always be appropriate, as stated by [39]). For large 

(but not enough) n, an alternative approach is suggested by [23], which consider a subset of 

permutations to approximate the distribution of Γ under H0. 

Having derived the distribution of the Hubert’s Γ statistic under the Random Label hypothesis, a 

critical/ threshold value can be determined (for a specific level of significance) that decides upon 

rejection of H0 (when the observed Hubert’s Γ statistic indicates a good enough partition). 

Ideally, when using the hard approach to deal with the threshold problem, one should be able to 

establish one index exact distribution. Since this is most of the times an unattainable (too hard) 

objective, the more common approach (still hard) is to derive empirical distributions for the 

index, based on samples’ generation of clustering base variable values, under some specified null 

homogeneity hypothesis (see Figure 3). Key issues concerning this type of approach are: the 

definition of adequate null homogeneity hypothesis and the computational cost associated with 

implementing the Monte Carlo simulation process. 

 

(insert figure 3 about here) 
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An important contribution regarding QI’s construction explicitly dealing with the threshold 

problem is due to [42]. They propose the use of the Gap statistic for the evaluation of alternative 

partitions. They specifically use it to determine an appropriate number of clusters (model order 

selection). The Gap statistic is based on a measure of within-clusters distance 
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In order to determine how much within-clusters distance is too much, [42] use M samples 

generated under a null homogeneity hypothesis and perform cluster analysis in each. Next, they 

evaluate the difference (gap) between the obtained average (from M samples) within-clusters 

distance and the observed one: 
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The null distribution may be the uniform distribution on the smallest hyper-rectangle that 

contains the original data. Alternatively it can also be based on the principal components.  

The threshold value considered for each k is simply the average of the within-clusters distances 

corresponding to the M samples generated under the null hypothesis (in practice M=20 

experiments can be conducted). 

In order to select the best number of clusters, the procedure may be implemented for k = 1...Kmax  

(alternative numbers of clusters to consider in the partition). The larger the Gap value, the better 

the partition. Thus, the partition with the maximum Gap value is selected (corresponding to an 

adequate number of clusters K*). The authors point out the fact that the Gap statistic has the 

capacity to recognize the homogeneity situation (when K*=1), as opposed to most alternative 

indices.  

In fact, as illustrated in the next section, this (hard) approach (as used in the Gap statistic) can be 

virtually extended to all quality indices employed for evaluating a clustering structure. In the 

present paper, this approach is specifically focused on classification data with numerical 

attributes, which can be considered as normally, distributed (under the homogeneity hypothesis). 
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However, a similar approach can be considered using alternative distributions for the clustering 

base attributes (e.g. using a uniform distribution for qualitative attributes). 

5 Experimental results 

In order to illustrate the performance of the soft and hard approaches in the evaluation of 

clustering structures (see Figure 2 and Figure 3), six data sets are considered: Iris, Wine, 

Haberman, Diabetes, Breast Cancer and Glass [2]. 

The analysis resorts to a specific index – the Calinski and Harabask (CH) index – used as an 

example.  

( )
( )
( ) 1K

Kn

xx

xxn

CH
K

1k kCi

J

1j

2k

jij

2K

1k

J

1j

j

k

jk

K

−

−

−

−

=Π

∑∑∑

∑∑

= ∈ =

= =
   (14) 

Three clustering structures, derived by three alternative clustering methods – the estimation of a 

Mixture Model (MM) followed by modal allocation, the K-Means (KM) algorithm and the Ward 

(WA) hierarchical algorithm – are obtained and compared. 

Under the homogeneity hypothesis (H0), the clustering base variables are assumed to be drawn 

from Normal populations with parameters corresponding to the average and standard deviation 

observed in the original samples (see Table 3). For example, the Iris petal length is assumed to 

follow a N(3.76; 1.76) distribution for any random sample generated under the null homogeneity 

hypothesis. Twenty random samples are generated according to this procedure for each data set 

considered. 

(insert table 3 about here) 

Since the number of clusters is known in advance it is a priori specified. However, the MM 

approach could have provided means to decide upon this number for both data sets. The BIC–

Bayesian Information Criterion, [16], AIC–Akaike’s Information Criterion, [1],  or AIC3, [8] (for 

example) could have been used for this purpose. In the present work, the use of the CH index will 
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not support the selection of the number of clusters, but rather the selection of the best solution 

originated from one of the three clustering procedures. 

The CH index is first calculated for all the clustering structures derived for the data sets. The 

comparison of the obtained index values for the original sample (soft approach) indicates the best 

clustering structures as those with the highest CH values (see Table 4).  

(insert table 4 about here) 

Using the hard approach, clustering structures are derived for each random sample generated 

under the null hypothesis and the corresponding CH values are calculated.  The proposed hard 

procedure (time complexity O(N
3
)) has the following steps: 

 

Given a dataset D and an algorithm a (*a = MM, KM or WA*) 

Cluster original sample using algorithm a based on J clustering variables. 

Obtain QI (*CH*) value for clustering solution derived by a in the original sample: QI_0(a). 

For j=1...J  

Calculate the mean and standard deviation for Xj: M(Xj), Std(Xj)  

For s=1...S (*S=20, number of samples*) 

For j=1...J (*J=number of clustering base variables) 

  For n=1…N (* number of observations in D*) 

Randomly generate Xjn_s (* consider Xj ~ N(M(Xj), Std(Xj))*) 

Cluster sample s using algorithm a 

Obtain QI value for clustering solution derived by a in sample s: QI_s(a). 

Calculate the mean - QIav (a) - and 95 percentile for QI – QI95(a) - based in the S samples. 

Use QI95(a) to discard clustering solutions with no structure. 

Determine Maxa[QI_0 (a)-QIav(a)] and use it to evaluate the partitions provided by the algorithm 

a in data set D. 

First, the hard approach enables a preliminary step in clustering evaluation by determining 

whether the clustering structure should be considered, based on the empirical distribution of CH 

on the generated (under H0) random samples. In the present data sets, it is easy to conclude that 

there are clusters in data, since the CH values on the original sample are much higher than the 95 

percentile values derived from the randomly generated samples.   

The final selection of clustering results, according to the hard approach, relies on the differences 

between the CH corresponding to original sample and the average CH associated with the 20 

randomly generated samples under H0. This approach agrees with the soft approach in all data 

sets except for the Iris data set.  
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Finally, it is worthwhile to note that not all conclusions are in accordance with the a priori 

knowledge, according to the Rand index values obtained [36], which are good surrogates of the 

cluster-operators errors [9]:  
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In fact, the best matches with the real structures (highest Rand index values) are not necessarily 

the clustering evidencing the best separation-compactness relationship [9].  

These examples illustrate common situations in practice aiming to highlight the differences 

between the soft and hard approaches for evaluating clustering solutions, using the properties of 

separation and compactness. Some conclusions regarding the results obtained are presented in the 

next chapter. 

6 Conclusions 

6.1 General approach for evaluating a clustering structure 

The first step in a clustering process should be the evaluation of whether clustering is worthwhile 

to perform, since it is possible that no clustering structure exists at all in a data set. Despite their 

referred limitations, homogeneity tests may (sometimes) be helpful in this context. As to quality 

indices, they are mostly incapable of (directly) differentiating this no-clustering situation: most of 

them are simply not defined for K=1, an exception being the Gap statistic whose construction 

relies on a homogeneity model [42]. However, as pointed out in the present work, virtually all 

quality indices can recur to the “Gap approach” and present an alternative – hard approach- to 

deal with the selection of a clustering solution. Despite this, the analyst frequently has to rely on 

(additional) empirical and domain knowledge in order to decide whether it is worthwhile to 

perform clustering analysis or not. 

After having decided to perform clustering analysis, the adoption of an appropriate clustering 

process is essential, since it makes no sense to evaluate an a priori known to be inappropriate 

solution. Considerations regarding the selection of clustering base variables, of specific clustering 
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algorithms and of the corresponding objective functions, or of alternative algorithm 

parameterizations should, thus, be made in advance.  

Quality indices may help to evaluate a (crisp) clustering structure resulting from clustering 

analysis. There are several quality indices reported in the literature. Most of them appear to be 

born as simple alternatives for working with compactness and separation, which are desirable 

properties of partitions. Most of the quality indices proponents provide empirical comparisons 

(using either real or simulated datasets) between the new index and some already known indices. 

They also tend to derive conclusions concerning the new index performance, such as: the results 

have shown significant advantage of the new index over the other indices, especially in the 

cases…[40] (p. 1856). In fact, most indices can be referred to as better than others in specific 

contexts and situations. However, there is no such index as the best quality index, which is a fact 

the analyst is confronted with when dealing with practical applications. Therefore the analyst 

should follow reliable procedures for clustering evaluation using quality indices. Alternative 

procedures may rely on: 

- the use of several indices values, which may allow voting for the best solution at hand (a 

similar approach to the one suggested by [6]); 

- the use of a specific index, either using empirical thresholds or using homogeneity based 

thresholds which enable the identification of good enough partitions.  

In what concerns the derivation of empirical (soft) thresholds, difficulties may be related with the 

visual identification of an elbow which refers to the argbest(QI). Some authors criticize this 

approach: Statistical folklore has it that the location of such an elbow indicated the appropriate 

number of clusters, [41] (p. 2)  

6.2 The hard vs. soft approaches 

As opposed to the referred soft approach, the homogeneity based (hard) approach deals explicitly 

with the threshold problem. 

There are, however, a priori, two main drawbacks of using homogeneity-based thresholds: the 

identification of appropriate homogeneity models is not consensual and the associated Monte 

Carlo procedures require a significant computational effort (e.g. [31]). 
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Taking into account the increasing availability of computational resources, the second drawback 

is loosing relevance. As to the identification of the appropriate homogeneity hypothesis, it can 

still be regarded as a problem. However, having recognized that the homogeneity hypothesis 

(absence of structure situation) refers to a specific model, one can explicitly deal with the 

threshold problem when using quality indices. In addition, the analyst can discard clustering 

solutions whose quality index values are not significantly apart from the (specific) homogeneity 

situation considered in the null hypothesis.  

In the present paper, we compare the performance of the soft and the hard approaches when using 

quality indices to evaluate clustering solutions in (practical) real examples. A posteriori, based on 

the results obtained, one can sustain the hypothesis that the hard approach, although theoretically 

more appropriate, yields conclusions that are similar to those based in the soft approach, which 

clearly eases the analyst’s task. Of course, further research is needed in this context, namely 

recurring to artificial randomly generated data sets (with clusters), since it is possible that, in the 

real data sets used, the clustering base variables are not the real (complete) cause of clusters. In 

fact, simulated data will enable a more systematic approach for the comparison of indices’ 

performance (see also [7]). In addition, the correlation between the Rand index and the quality 

indices should be considered for the selection of the best practices (see also [9]). 

A similar trend – attempting to derive validation indices thresholds - seems to be occurring in the 

use of indices of agreement (Rand index, [36], for example) for evaluating the robustness of 

clustering solutions (e.g. [12] ). This issue should be the focus of the authors’ future work. 

Another interesting perspective regarding the use of quality indices is the one adopted by [21]. 

They consider a specific quality index (the silhouette index) as an objective function when 

clustering. This alternative role for quality indices also deserves future attention. 

Finally, it is worthwhile to note that a clustering evaluation process could not be completed 

without mentioning the unbridgeable issue of interpretability and domain utility of a specific 

clustering solution: Although validation and interpretation are not coincident there are many 

common features to allow thinking of them as quite intermixed: for instance finding a good 

interpretation is a part of validation; conversely, if the clusters are invalid, the interpretation 

seems unnecessary (p. 160, [30]). 
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Table 1– Some quality indices  

Quality index Reference Comments 

Hubert’s Γ statistic 

(normalized) 

[22] Hubert’s Γ statistic was originally 

devised to compare two different 

clustering structures (in time and 

space), [26]. 

Dunn [13] High time complexity and sensitive to 

noise in data, [19] 

Calinski and 

Harabasz 

[10] The best index among 30 

alternative criteria [29] 

Hartigan [20] Hartigan´s method requires a 

threshold that is not trivial to 

determine, [37] 

Davies and Bouldin [11] The Davies-Bouldin index is suitable 

for evaluation of k-means 

partitioning, because it gives low 

values indicating good clustering 

results for hyper-spherical clusters 

[17]. 

Silhouette [38] 

[24] 

The sillhouette measure considers a 

cluster as a good cluster if it is 

compact and separated from other 

clusters [15]. 

PBM [34] The index is a product of three factors 

and its maximization ensures the 

formation of a small number of 

compact clusters with large separation 

between at least two clusters [32]. 
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Table 2– Empirical Silhouette thresholds (from: [24]) 

Silhouette  Proposed interpretation 

≤ 0.25 No substantial structure has been found 

0.26-0.50 The structure is weak and could be artificial; please try additional methods on this data set 

0.51-0.70 A reasonable structure has been found 

0.71-1 A strong structure has been found 
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Table 3 – Data sets variables:  parameters under H0 

Iris 

sepal     

length sepal width petal length 

petal 

width       

average 5.84 3.05 3.76 1.2    

st.dev. 0.83 0.43 1.76 0.76       

Wine  Alcohol Malic acid Ash 

Alcalinity 

of Ash Magnesium 

Total 

phenols Flavanoids 

average 13 2.34 2.37 19.49 99.74 2.3 2.03 

st.dev. 0.81 1.12 0.27 3.34 14.28 0.63 1.00 

  

Nonflavanoid 

phenols Proanthocyanins 

Color 

intensity Hue  

OD280/OD315 

of diluted 

wines Proline   

average 0.36 1.59 5.06 0.96 2.61 746.89  

st.dev. 0.12 0.57 2.32 0.23 0.71 314.91   

Haberman 

Age of 

patient at 

time of 

operation  

Patient's year of 

operation (year - 

1900) 

Number of 

positive 

axillary 

nodes 

detected 
        

average 52.46 62.85 4.03         

st.dev. 10.8 3.25 7.19         

Diabetes 

Number of 

times 

pregnant 

Diastolic blood 

pressure (mm 

Hg) 

Triceps 

skin fold 

thickness 

(mm) 

2-Hour 

serum 

insulin 

(mu U/ml) 

Plasma glucose 

concentration a 2 hours in 

an oral glucose tolerance 

test   

average 3.85 69.11 20.54 79.80 120.89   

st.dev. 3.37 19.36 15.95 115.24 31.97     

 

Body mass 

index (weight 

in kg/(height 

in m)^2) 

Diabetes 

pedigree 

function Age (years)         

average 31.99 0.45 33.24     

st.dev. 7.88 0.28 11.76         

Breast 

Cancer 

Clump 

Thickness 

Uniformity of 

Cell Size 

Uniformity 

of Cell 

Shape 

Marginal 

Adhesion 

Single 

Epithelial Cell 

Size 

Bare 

Nuclei 

Bland 

Chromatin 

average 4.42 3.13 3.21 2.81 3.22 3.46 3.44 

st.dev. 2.82 3.05 2.97 2.86 2.21 3.64 2.44 

 

Normal 

Nucleoli Mitoses           

average 2.87 1.59      

st.dev. 3.05 1.72           

Glass 

refractive 

index 

Sodium (unit 

measure+E11me Magnesium Aluminum Silicon Potassium Calcium 

average 1.52 13.41 2.68 1.44 72.65 0.50 8.96 

st.dev. 0.00 0.82 1.44 0.50 0.77 0.65 1.42 

 Iron             

average 0.18       

st.dev. 0.50             
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Table 4– Results from clustering evaluation 

    Iris Wine 

    

Mixture 

Model K-Means Ward 

Mixture 

Model K-Means Ward 

Rand 

values original sample 0.886 0.874 0.88 0.962 0.947 0.906 

original sample 554.63 560.37 556.84 217.33 212.7 155.91 

95 percentile for 20 

samples, under H0  115.43 121.03 109.66 22.46 56.36 44.96 

average for 20 

samples under H0  30.928 91.0535 82.0225 

7.285 15.291 11.876 

CH 

values difference 523.7 469.32 474.82 210.05 197.41 144.03 

    Haberman Diabetes 

    

Mixture 

Model K-Means Ward 

Mixture 

Model K-Means Ward 

Rand 

values original sample 0.578 0.619 0.613 0.514 0.559 0.516 

original sample 48.16 76.34 69.99 510.01 363.82 301.3 

95 percentile for 20 

samples, under H0  

2.17 8.323 3.045 

8.286 7.0295 3.892 

average for 20 

samples under H0  

0.757 1.627 1.03 

1.847 1.2665 0.782 CH 

values difference 47.403 74.714 68.96 508.164 362.554 300.518 

    Breast cancer Glass 

    

Mixture 

Model K-Means Ward 

Mixture 

Model K-Means Ward 

Rand 

values original sample 0.872 0.923 0.934 0.695 0.593 0.657 

original sample 738.93 1039.01 927.03 49.72 69.39 53.56 

95 percentile for 20 

samples, under H0  5.477 2.998 2.9845 1.864 1.8225 1.832 

average for 20 

samples under H0  1.149 0.8285 1.0985 0.925 1.055 1.069 CH 

values difference 737.78 1038.18 925.93 48.796 68.335 52.491 
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Figure 1 - Monte Carlo procedure in homogeneity tests  

Figure 2 - General (soft) procedure for clustering evaluation using quality indices 

Figure 3 - General (hard, Monte Carlo) procedure for clustering evaluation using quality 

indices 
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Figure 1  

The observed value for 

the Test Statistic (TS) is 

determined

H0 is defined *

The TS empirical 

distribution is 

determined

Decision relies on the  

empirical p-value related 

to the observed TS

A sample is generated 

under H0

The corresponding value 

for the TS is determined

 

* indicates repetition 
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Figure 2 

* Select argbest (QI)

Run the clustering 

algorithm

Consider the obtained 

(candidate) partition

Compute the Quality 

index (QI)
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Figure 3 

The QI value for the 

proposed clustering 

solution is calculated

H0 definition *

The QI empirical 

distribution (under H0) 

is derived and threshold  

value is obtained

 Decision is based on 

comparison between 

threshold and the QI  

observed

A sample is generated 

under H0

Sample based clustering 

is conducted

The corresponding 

sample based QI value is 

obtained

 

 

 

 

 


