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Abstract

Due to the coe�cient of variation's widespread use in empirical �nance, in this paper we

derive its asymptotic sampling distribution in case of non-iid random variables to deal with au-

tocorrelation and/or conditional heteroscedascity stylized facts of �nancial returns. We propose

also statistical tests for the comparison of two coe�cients of variation based on asymptotic nor-

mality and studentized time series bootstrap. In an illustrative example we analyze the monthly

returns' volatility of six stock markets indexes during the years 1990-2007.

Keywords: Coe�cient of variation, Autocorrelation, Conditional heteroscedasticity, Non-

iid random variables.

JEL: C1, C5
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1 Introduction

The variance and the standard deviation are the most commonly used dispersion measures in

statistics and other application �elds. When compared to the variance, the standard deviation

has an important advantage: it is expressed in the same units of the variable under study, while

the variance is measured in the square units of the respective variable. Thus, the standard

deviation is easier to interpret.

However, when the main purpose is to compare the dispersion of several variables' distri-

butions, the standard deviation is not the most appropriate indicator unless all the variables

are expressed in the same measurement units and have identical mean values. When these two

requirements do not hold, the coe�cient of variation (CV) is the relative dispersion measure

frequently used and it expresses the standard deviation as a proportion of the arithmetic mean:

CV =
σ

µ
, (1)

where µ and σ are the population mean and standard deviation of the variable distribution

whose dispersion is under scrutiny and the result is often reported as a percentage (see, for

example, Ahmed, 1994). The variable with the largest value for the coe�cient of variation is the

one with the highest relative dispersion around the mean. Note that the ratio makes no sense if

the expected value is zero or negative. Thus, the coe�cient of variation is useful for comparing

the relative variability of strictly positive random variables distributions.

When the distribution is unknown, the parameters µ and σ can be estimated based on sample

values and the estimator for the coe�cient of variation is:

ĈV =
σ̂

µ̂
, (2)
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where σ̂ and µ̂ are the sample estimates of the standard deviation and the arithmetic mean,

respectively.

As the coe�cient of variation is a unit-free measure of dispersion, it has been widely used

rather than the standard deviation in many scienti�c areas (see Nairy and Rao (2003) for a brief

survey of recent applications in business, engineering, climatology and other �elds). Despite its

widespread use, in this paper we concentrate mainly on the �nance �eld coe�cient of variation

applications.

In �nance the term �volatility� stands for risk and uncertainty and it is usually measured by

the standard deviation (or a similar measure of dispersion) of the observed (or expected) prices

and returns of �nancial assets. The greater is the variation in prices or returns the higher is the

standard deviation which in turn is linked to higher risk. As the CV is more appropriate when

the objective is to compare prices and returns volatility (risk) of alternative investments it has

also been applied in several studies and a lower CV ratio represents a lower risk. In the next

paragraph we present a few examples regarding the CV �nancial �eld applications.

Brief and Owen (1969) show how the CV can be considered in order to evaluate the projects

risks, assuming the rate of return as a random variable. The authors used the CV of the future

cash �ows distribution as a measure of earnings risk and developed a mechanism for relating the

CV to risk in a situation of uncertainty. Weinraub and Kuhlman (1994) tested the relationship

between the variability of individual stock betas and the variability of a small portfolio. In this

study they have used two measures of beta variability: the standard deviation and the coe�cient

of variation. In short, the coe�cient of variation revealed an inverse relationship between the

level of beta and the relative variability. According to this result, they argue that betas less than

1 are poor predictors of future returns. Boyle and Rao (2001) intended to clarify the conditions
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which justify the mean-generalized coe�cient of variation analysis on a utility-theoretic basis. In

this work the authors argue that in contrast to the standard deviation, this measure emphasizes

the intuitive notion of `downside' risk. Worthington and Higgs (2003) have used the CV to

measure the degree of risk in relation to the mean return to study the portfolio diversi�cation

among major painting and �nancial markets over the period 1976-2001.

In theoretical terms, recent investigation related with the coe�cient of variation (or its

inverse) is driven by two main issues: the sampling distribution of ĈV and hypotheses testing

for coe�cients of variation comparison (Argaç, 2005).

First, the �nite sample and the asymptotic sampling distributions of ĈV are needed for the

statistical inference about the population CV. Under iid and normality assumptions, Iglewicz

(1967) derived the expected value and the variance of ĈV as well as the exact distribution of

the sample coe�cient of variation:
√

T 1

ĈV
has a non-central Student's t distribution with T − 1

degrees of freedom and non-centrality parameter
√

T 1
CV , where T is the number of observations.

Sharma and Krishna (1994) developed (under iid assumption) the asymptotic distribution of

the inverse of the coe�cient of variation discarding the normality assumption of the population

distribution. They show that 1/ĈV is an asymptotically unbiased and s−consistent estimator

of 1/CV and
√

T
(
1/ĈV − 1/CV

)
is asymptotically standard s-normal in distribution.

Second, when the objective is to compare the distributions dispersion around the mean, as

the observed di�erences in the estimated CVs resulting from di�erent samples can be due to

sampling error, it becomes necessary to test if that di�erences are statistically signi�cant and

several tests have been proposed in the literature to compare the CVs of k normal populations.

Nairy and Rao (2003) divide these tests in three main categories: likelihood ratio tests (Miller

and Karson, 1977; Bennett, 1977; Doornbos and Dijkstra, 1983; Gupta and Ma, 1996), Wald
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tests (Rao and Vidya, 1992; Gupta and Ma, 1996) and score tests (Gupta and Ma, 1996). Other

relevant contributions for this subject are due to Miller (1991) and Miller and Feltz (1997).

In all these statistical tests it is assumed that random variables X1, X2, . . . , XT are indepen-

dently and identically distributed. However, when the application �eld is �nance, the depen-

dence of high frequency data (daily or monthly returns, for example) under di�erent ways: au-

tocorrelation and/or conditional heteroscedasticity, becomes the traditional inference approach

inappropriate.

Due to this �nancial data characteristics, in this paper we derive the asymptotic sampling

distribution of the coe�cient of variation in case of non-iid random variables and we derive

statistical tests for the comparison of two coe�cients of variation. In the next two sections

we provide the procedure's description, then we make and empirical application and the �nal

section summarizes our concluding remarks.

2 The asymptotic distribution of the CV estimator

In this section we derive explicit expressions for the statistical distribution of the coe�cient of

variation using standard asymptotic theory under iid and non-iid assumptions. This distribution

completely characterizes the statistical behavior of ĈV in large samples and allows us to quan-

tify the ĈV precision to estimate CV . First we discuss the asymptotic distribution under the

standard assumption that X1, X2, . . . , XT are iid random variables. Next, as the iid condition

is extremely restrictive and empirically implausible in �nancial data (see, for example, Curto et

al., 2007) a more general distribution is derived under the non-iid assumption.
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2.1 IID assumption

If X1, X2, . . . , XT are iid random variables with �nite mean µ and variance σ2 the estimators µ̂

and σ̂2 have the following normal distribution in large samples due to the Central Limit Theorem

(White, 2001):

√
T (µ̂− µ) a∼ N(0, σ2),

√
T

(
σ̂2 − σ2

) a∼ N(0, 2σ4), (3)

where µ̂ = 1
T

∑T
t=1 Xt, σ̂2 = 1

T

∑T
t=1 (Xt − µ̂) and a∼ denotes asymptotically, i.e., as T increases

without bound, the probability distributions of
√

T (µ̂− µ) and
√

T
(
σ̂2 − σ2

)
approach the

normal distribution.

To derive the asymptotic distribution of ĈV we follow Lo (2002)1 and the �rst step is to

obtain the asymptotic joint distribution of µ̂ and σ̂2. Denote by θ̂ the column vector
(
µ̂ σ̂2

)′

and by θ the corresponding column vector of population values
(
µ σ2

)′. An additional property

of µ̂ and σ̂ under the iid assumption is that they are statistically independent in large samples.

Thus,

√
T

(
θ̂ − θ

)
a∼ N (0, Vθ) , Vθ ≡




σ2 0

0 2σ4


 . (4)

Because the coe�cient of variation estimator ĈV can be written as a function f(θ̂) of θ̂ it

can be directly applied the delta method (White, 2001) to derive its asymptotic distribution.

If
√

T
(
θ̂ − θ

)
a∼ N (0, Vθ), then a nonlinear function f(θ̂) has the following asymptotic

1Lo derives several statistics of Sharpe ratio, one of the most important �nancial measures of portfolio performance

based on risk-adjusted excess returns. The Sharpe ratio is de�ned as the expected excess return divided by the return

standard deviation. Thus, it is the inverse of the Coe�cient of Variation in the particular case of �nancial returns.
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distribution:

√
T

[
f(θ̂)− f (θ)

]
a∼ N (0, Vf ) , where Vf ≡ ∂f (θ)

∂θ
Vθ

∂f (θ)
∂θ′

. (5)

In case of the coe�cient of variation,

Vθ ≡




σ2 0

0 2σ4


 , f (θ) =

σ

µ
,

∂f (θ)
∂θ′

=



−σ/µ2

1/2σµ


 (6)

and it follows that the asymptotic distribution of ĈV is:

√
T

(
ĈV − CV

)
a∼ N (0, VIID) , VIID = CV 4 +

1
2
CV 2. (7)

where the asymptotic variance is given by the weighted average of the asymptotic variances of

µ̂ and σ̂2:

VIID =
(

∂f

∂µ

)2

σ2 +
(

∂f

∂σ2

)2

2σ4 =
(
− σ

µ2

)2

σ2 +
(

1
2σµ

)2

2σ4 = CV 4 +
1
2
CV 2. (8)

The weights are the squared sensitivities of f with respect to µ and σ2 and the more sensitive f

is to a particular parameter, the more in�uential its asymptotic variance will be in the asymptotic

variance of the coe�cient of variation.

Therefore, standard errors for the coe�cient of variation estimator ĈV can be computed as:

SE(ĈV) a=

√(
CV 4 +

1
2
CV 2

)
/T , (9)

and this quantity can be estimated by replacing ĈV for CV . For any given sample size T ,

larger coe�cients of variation imply larger standard errors. Con�dence intervals can also be

constructed for CV around the estimator ĈV:
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ĈV ± z(1−α
2
)

√(
CV 4 +

1
2
CV 2

)
/T , (10)

where z(1−α
2
) is the (1− α

2 ) quantile of the standard normal distribution.

2.2 Non-IID assumption

When the X1, X2, . . . , XT iid assumption does not hold, the results of the previous section may

be of limited practical value and the asymptotic distribution can be derived by using a �robust�

estimator for the coe�cient of variation.

Following Lo (2002) we apply the generalized method of moments (GMM) to estimate µ and

σ2 and the results of Hansen (1982) can be used to derive the asymptotic distribution of the

coe�cient of variation. Hansen shows that:

√
T

(
θ̂ − θ

)
a∼ N (0, Vθ) , where Vθ ≡ H−1Σ

(
H−1

)′
, (11)

H ≡ lim
T→∞

E

[
1
T

T∑

t=1

ϕθ (Xt, θ)

]
, Σ ≡ lim

T→∞
E

[
1
T

T∑

t=1

T∑

s=1

ϕ (Xt, θ) ϕ (Xs, θ)
′
]

, (12)

and ϕθ (Xt, θ) represents de derivative of ϕ (Xt, θ) with respect to θ. Let ϕ (Xt, θ) denotes the

vector function with the following moment conditions:

ϕ (Xt, θ) =




Xt − µ

(Xt − µ)2 − σ2


 . (13)

The GMM estimator of θ is given by the solution to:

1
T

T∑

i=1

ϕ (Xt, θ) = 0, (14)
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yielding the standard estimators µ̂ and σ̂2 de�ned before.

For the moments conditions in (13), the corresponding matrix with the derivatives is:

H ≡ lim
T→∞

E





1
T

T∑

t=1




−1 0

2 (µ−Xt) −1








= −I. (15)

Therefore, Vθ ≡ Σ and the asymptotic distribution of the coe�cient of variation estimator

follows from the delta method as shown in the previous section:

√
T

(
ĈV − CV

)
a∼ N (0, VGMM ) , where VGMM =

∂f (θ)
∂θ

Σ
∂f (θ)
∂θ′

. (16)

In order to estimate the asymptotic variance, an estimator for ∂f(θ)
∂θ may be obtained by

substituting θ̂ into equation (6) and an heteroscedasticity and autocorrelation2 consistent (HAC)

estimator Σ̂ may be obtained by using the Newey and West's (1987) procedure:

Σ̂ = Ω̂0 +
m∑

j=1

ω(j, m)
(
Ω̂j + Ω̂′j

)
,m ¿ T, (17)

Ω̂j ≡ 1
T

T∑

t=j+1

ϕ
(
Xt, θ̂

)
ϕ

(
Xt, θ̂

)′
,

ω(j, m) = 1− j

m + 1
,

where m is the truncated lag that must satisfy the condition m/T →∞ as T increases without

bound to ensure consistency.

Therefore, for non-iid random variables, the standard error of the coe�cient of variation can

be estimated by SE
(
ĈV

)
a=

√
VGMM

T and con�dence intervals for CV can be constructed in a

similar fashion to equation (10):

ĈV ± z(1−α
2
)SE

(
ĈV

)
.

2Heteroscedasticity and/or autocorrelation of unknown form are often important speci�cation issues, specially in

macroeconomics and �nancial applications.
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3 Tests for the coe�cients of variation comparison

As we referred before, the hypotheses testing for coe�cients of variation comparison is also an

important statistical issue. In order to test the di�erence between two coe�cients of variation,

consider the bidimensional variable (X1t, X2t), for t = 1, 2, . . . , T , whose distribution has mean

vector µ and covariance matrix Ψ given by:

µ =




µ1

µ2


 and Ψ =




σ2
1 σ12

σ12 σ2
2


 . (18)

The di�erence between the two coe�cients of variation is given by

∆ = CV1 − CV2 =
σ1

µ1
− σ2

µ2
(19)

and its estimator is

∆̂ = ĈV 1 − ĈV 2 =
σ̂1

µ̂1
− σ̂2

µ̂2
. (20)

Furthermore, let θ =
(
µ1, µ2, σ

2
1, σ

2
2

)′, θ̂ =
(
µ̂1, µ̂2, σ̂

2
1, σ̂

2
2

)′ and

∂∆
∂θ′

=
(
−σ1

µ2
1

,
σ2

µ2
2

,
1

2σ1µ1
, − 1

2σ2µ2

)′
. (21)

3.1 IID assumption

If Xj1, Xj2, . . . , XjT , j = 1, 2, are iid random variables and (X1t, X2t) has a bivariate normal

distribution, Jobson and Korkie (1981) and Memmel (2003) shows that

√
T

(
θ̂ − θ

)
a∼ N (0, Vθ) , Vθ ≡




σ2
1 σ12 0 0

σ12 σ2
2 0 0

0 0 2σ4
1 2σ2

12

0 0 2σ2
12 2σ4

2




. (22)
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Applying the delta method,

√
T

(
∆̂−∆

)
a∼ N (0, V∆IID) , (23)

where

V∆IID = CV 4
1 + CV 4

2 +
1
2
CV 2

1 +
1
2
CV 2

2 − 2
σ1σ2σ12

µ2
1µ

2
2

− σ2
12

µ1µ2σ1σ2
.

Replacing the parameters by their estimators it is also possible to construct con�dence in-

tervals for ∆:

∆̂± z(1−α
2
)

√(
ĈV

4

1 + ĈV
4

2 +
1
2
ĈV

2

1 +
1
2
ĈV

2

2 − 2
σ̂1σ̂2σ̂12

µ̂2
1µ̂

2
2

− σ̂2
12

µ̂1µ̂2σ̂1σ̂2

)
/T , (24)

where z(1−α
2
) is the (1− α

2 ) quantile of the standard normal distribution.

If zero is not contained in the resulting interval we conclude that the di�erence between the

coe�cients of variation is statistically signi�cant.

3.2 Non-IID assumption

As the formula in (22) is no longer valid if the bivariate distribution is not normal or if the

observations are correlated, in this section we derive the asymptotic distribution of ∆̂ considering

an heteroskedasticity and autocorrelation consistent (HAC) estimator for Σ and we apply the

Wolf (2007) studentized bootstrap method to test the nullity of ∆.

Let ϕ (X, θ) denotes the vector function with the following moment conditions:

ϕ (X, θ) =




X1t − µ1

X2t − µ2

(X1t − µ1)
2 − σ2

1

(X2t − µ2)
2 − σ2

2




. (25)
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For the moments conditions in (25), the corresponding matrix with the derivatives is:

H ≡ lim
T→∞

E





1
T

T∑

t=1




−1 0 0 0

0 −1 0 0

2 (µ1 −X1t) 0 −1 0

0 2 (µ2 −X2t) 0 −1








= −I. (26)

Therefore, Vθ ≡ Σ and the asymptotic distribution of ∆̂ follows from the delta method:

√
T

(
∆̂−∆

)
a∼ N (0, V∆GMM ) , where V∆GMM =

∂∆
∂θ

Σ
∂∆
∂θ′

. (27)

In order to estimate the asymptotic variance, an estimator for ∂∆
∂θ may be obtained by

substituting θ̂ into equation (21) and an heteroscedasticity and autocorrelation consistent (HAC)

estimator Σ̂ may be obtained by using the Newey and West's (1987) procedure.

Thus, the standard error s
(
∆̂

)
a=

√
V∆GMM

T combined with the asymptotic normality in (27)

allows the HAC inference as follows. A two-sided p-value for the null hypothesis H0 : ∆ = 0 is

given by

p̂ = 2Φ


− |∆̂|

s
(
∆̂

)



where Φ(·) denotes the c.d.f. of the standard normal distribution. Alternatively, it is possible

to compute a 1− α con�dence interval for ∆:

∆̂± z(1−α
2
) × s

(
∆̂

)
.

However, when data is heavy-tailed (non-normal) or of time series nature, HAC inference is

often liberal when samples sizes are small to moderate. This means that hypothesis tests tend
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to reject a true null hypothesis too often; see, for example, Andrews (1991), Andrews (1992)

and Romano and Wolf (2006). Thus, included in the extensive literature that demonstrates

the improved inference accuracy of the studentized bootstrap over standard inference based on

asymptotic normality, Wolf (2007) propose to test the equality of two Sharpe ratios by inverting

a bootstrap con�dence interval. If this interval does not contain zero, then H0 is rejected at the

nominal signi�cance level α.

In this paper we also apply the Wolf (2007) studentized time series bootstrap (BOOT-ST)

method to test the coe�cients of variation equality by constructing a symmetric studentized

bootstrap con�dence interval. Let the two-sided distribution function of the studentized statistic

be approximated via the bootstrap as follows:

F


 |∆̂−∆|

s
(
∆̂

)

 ≈ F


 |∆̂∗ − ∆̂|

s
(
∆̂∗

)

 , (28)

where ∆ is the true di�erence between the coe�cients of variation, ∆̂ is the estimated di�erence

computed from original data, s
(
∆̂

)
is a standard error for ∆̂ (also computed from the origi-

nal data), ∆̂∗ and s
(
∆̂∗

)
are the estimated di�erence and the standard error computed from

bootstrap data and F(X) denotes the distribution function of the random variable X.

Letting z∗|·|,λ be a λ quantile of F
(
|∆̂∗ −∆|/s

(
∆̂∗

))
, a bootstrap 1− α con�dence interval

for ∆ is then given by

∆̂± z∗|·|,1−α × s
(
∆̂

)
. (29)

In case of heavy-tailed or time series data, z∗|·|,1−α will be typically larger than z(1−α
2
) for small

to moderate samples, resulting in more conservative inference compared to the HAC methods.

Since the con�dence interval is constructed, the hypothesis H0 : ∆ = 0 is rejected if the value
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zero is not in the interval. However, it might be more desirable to obtain a p-value and Wolf

(2007) proposes a simple method to compute it. Let d denotes the studentized test statistic

based on original data:

d =
|∆̂|

s
(
∆̂

)

and represent the centered studentized statistic computed from the mth bootstrap sample by

d̃∗,m,m = 1, 2, . . . , M

d̃∗,m =
|∆̂∗,m − ∆̂|
s
(
∆̂∗,m

) ,

where M is the number of bootstrap resamples. Then the p-value is given by:

p̂ =
#

{
d̃∗,m ≥ d

}
+ 1

M + 1
. (30)

4 Empirical application

4.1 Statistical properties of returns

The data consists of monthly closing prices of the S&P, DJIA, NASDAQ, CAC40, DAX30 and

FTSE100 (source: Yahoo! Finance), which are main indexes for the US (S&P500, DJIA, and

NASDAQ), France, German and UK equity markets, respectively. These series cover the period

from December 1, 1989 to December 31, 2007 yielding 205 monthly observations. We analyze the

continuously compounded percentage rates of return (adjusted for dividends) that are calculated

by taking the �rst di�erences of the logarithm of series (Pt is the closing value for each stock

index at month t):

rt = 100× [ln (Pt)− ln (Pt−1)] . (31)
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Due to this di�erencing process, the number of observations reduces to 204. Table 1 sum-

marizes the basic statistical properties of the data. The mean returns are all positive but less

than 1%. The monthly returns appear to be somewhat asymmetric and leptokurtic as re�ected

by negative skewness and excess of kurtosis estimates (skewness and kurtosis coe�cients are all

statistically di�erent from those of the standard Normal distribution which are 0 and 3, respec-

tively). The Jarque-Bera test also rejects the null hypothesis of normality. It is also interesting

to observe that di�erent conclusions about the returns' dispersion would be taken if di�erent

measures are considered. In fact, using the standard deviation, the FTSE100 seems to present

the smaller variability. However, when the coe�cient of variation is considered, the smaller

variability is associated to DJIA. It is also interesting to notice that apparently the standard

deviation points to a smaller returns' variability when compared to the coe�cient of variation.

Obviously, this happens because all the mean returns are less than 1%, an empirical result that

is common in monthly data. As CV is the ratio between the standard deviation and the mean,

it re�ects better the returns' variability as we have explained before.

According to the Ljung-Box statistic for returns, there is no relevant autocorrelation for all

the stock indexes. Even though the series of returns seems to be serially uncorrelated over time,

the Ljung-Box statistic for up to twelve order serial correlation of squared returns is highly

signi�cant at any level for the six stock indexes, suggesting the presence of strong nonlinear

dependence in the data. As non-linear dependence and heavy-tailed unconditional distributions

are characteristic of conditionally heteroskedastic data, the Lagrange Multiplier test (Engle,

1982) can be used to formally test the presence of conditional heteroscedasticity. The LM test

for a twelve-order (in the last row of table 1) suggests that all stock indexes' returns exhibit

conditional heteroscedasticity, implying that nonlinearities must enter through the variance of
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Table 1: Summary statistics of returns
Statistics S&P500 DJIA NASDAQ CAC40 DAX30 FTSE100
Mean 0.731 0.793 0.961 0.644 0.859 0.541
Median 1.115 1.107 1.740 1.312 1.496 0.850
Maximum 10.579 10.079 19.865 12.588 19.374 9.890
Minimum -15.759 -16.407 -26.009 -19.225 -29.333 -12.736
Std. Dev. 3.875 3.949 6.947 5.367 6.112 3.871
Coef. of Var. 5.297 4.983 7.232 8.333 7.114 7.162
Skewness -0.659 -0.686 -0.761 -0.521 -0.918 -0.587
Kurtosis 4.441 4.899 5.086 3.746 6.374 3.835
Jarque-Bera 32.437 46.647 56.670 13.947 125.454 17.625
Probability 0.000 0.000 0.000 0.001 0.000 0.000
LB Q(12)a 9.379 9.351 13.05 13.035 12.665 6.026
Probability 0.670 0.673 0.365 0.367 0.394 0.915
LB Q2(12)b 32.767 25.695 179.040 40.736 44.642 31.496
Probability 0.001 0.012 0.000 0.000 0.000 0.002
ARCH(12) LMc 22.229 21.730 51.424 35.115 30.167 26.995
Probability 0.035 0.041 0.000 0.000 0.003 0.008
aLB Q(10) is the Ljung-Box test for returns,
bLB Q2(10) is the Ljung-Box test for squared returns,
cLM is the Engle's Lagrange Multiplier test for heteroscedasticity.

the processes.

As there is no evidence of autocorrelation in returns, we also use the White (1980) het-

eroscedasticity consistent (HC) estimator in (16) to derive the asymptotic variance of ĈV and

thus, Σ̂ = Ω̂0.

4.2 Robust standard errors for the CV estimator

Table 2 shows the estimates for VIID, VGMM , ĈV standard errors under iid and non-iid assump-

tions as well as con�dence intervals for the monthly returns coe�cients of variation for each
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one of the six stock indexes3. As one can see, the magnitudes of the standard errors under iid

assumption yield 95% con�dence intervals for coe�cients of variation that do not contain 0 for

�ve stock indexes (the exception is CAC40). These results indicate coe�cients of variation for

the monthly returns that are statistically di�erent from 0 at the 95% con�dence level. However,

when the heteroscedasticity robust standard errors are considered, the CV estimates for NAS-

DAQ, DAX30 and FTSE100 become statistically insigni�cant. These are the stock indexes where

the conditional heteroscedasticity is more pronounced as we can see in table 1. Thus, when the

heteroscedasticity is not accounted for, the iid standard errors leads to misleading conclusions

in terms of the signi�cance of the CVs estimates. After heteroscedasticity correction, just two of

the coe�cients of variation (SP&500 and DJIA) remain statistically signi�cant. These are also

the stock indexes with smaller CV estimates and higher con�dence intervals precision.

Table 2: Robust standard errors and con�dence intervals
Statistics S&P500 DJIA NASDAQ CAC40 DAX30 FTSE100
Mean 0.731 0.793 0.961 0.644 0.859 0.541
Variance 15.013 15.594 48.256 28.804 37.353 14.988
Coe�cient of variation 5.297 4.983 7.232 8.333 7.114 7.162
VIID 801.435 628.844 2761.931 4857.171 2586.261 2656.765
VGMMHC 909.5571 725.5039 3077.079 5171.362 2959.522 2882.979
VGMMHAC (m = 6) 940.939 599.439 3840.324 6018.830 3823.106 3012.294
Con�dence intervals IID

Lower 1.412 1.542 0.020 -1.230 0.135 0.089
Upper 9.182 8.424 14.444 17.897 14.092 14.235

Con�dence intervals HC
Lower 1.159 1.287 -0.380 -1.535 -0.351 -0.206
Upper 9.436 8.679 14.844 18.201 14.579 14.530

Con�dence intervals HAC
Lower 1.088 1.623 -1.272 -2.313 -1.371 -0.369
Upper 9.507 8.343 15.736 18.979 15.599 14.694

3All the results are obtained using EVIEWS-based custom software.
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4.3 Pairwise comparison tests

We performed next the CV pairwise comparison tests between the S&P500 (SP) and the re-

maining �ve stock indexes. The p-values associated with the test values are presented in table

3.

Table 3: p-values for various methods (H0 : ∆ = 0)
Methods SP-DJIA SP-NASDAQ SP-CAC40 SP-DAX30 SP-FTSE100
IID 0.678 0.419 0.428 0.484 0.462
GMMHC 0.691 0.432 0.435 0.494 0.466
GMMHAC 0.739 0.492 0.444 0.536 0.474
BOOT-TS 0.858 0.534 0.462 0.571 0.501

The equality assumption is always accepted despite the standard errors (under iid and non-

iid assumptions, including Boot-TS) that we are considering (similar results were obtained when

comparisons involved other indexes). These results can be explained by the extreme values

of the asymptotic variances for the CV estimators that make the observed di�erences in the

CVs estimates statistically insigni�cant. The high returns' variances must be due to the strong

variability that characterizes the equity markets, special in �bear� times, and similar results are

expected in terms of returns' volatility (measured by the CVs) due to the high integration of

world equity markets. So, these results are not surprising. As the BOOT-TS p-values are higher

when compared to those resulting from HAC methods, we con�rm that in case of heavy-tailed

data the inference based on BOOT-TS is more conservative.
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5 Concluding remarks

The coe�cient of variation is the ratio of standard deviation to the arithmetic mean and provides

an important and widely used unit-free measure of dispersion, which can be used in comparing

two distributions of di�erent types with respect to their variability. As the iid assumption

is extremely restrictive and often violated by �nancial data, in this paper we derive a more

general distribution in case of non-iid random variables and we propose statistical tests for two

coe�cients of variation comparison.

In an illustrative example we compare the monthly returns volatility of six stock markets in-

dexes during the years 1990-2007 and we show that when the heteroscedasticity is not accounting

for, this can leads to misleading results in terms of the signi�cance of the CVs estimates.

From the six stock indexes that we have considered, the CVs estimates are statistically

signi�cant in cases of SP&500 and DJIA. These are the stock indexes with the smallest values

for the CVs estimates but they are also the stock indexes with the smallest asymptotic variances

leading to more precise con�dence intervals.

On the other hand, the CVs estimates (and the corresponding volatility) is higher in NAS-

DAQ, CAC40, DAX30 and FTSE100 stock indexes but, due to the wider con�dence intervals,

the estimated values are not statistically signi�cant.

When we compare the CVs estimated values of di�erent stock indexes, the null equality

assumption is always accepted and this result can be theoretically explained by the strong

integration of world equity markets leading to similar results in terms of returns' volatility.
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