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Abstract

Since surface water ‡ows are often stochastic, there is a role for water
reservoirs in protecting users against uncertainty. We assume uncertainty
regarding the probability distribution for the stochastic variable. Thus
the decision allows for a range of approximate models that could be true,
and the problem can be solved using robust optimal control. This paper
analyses the implications of a robust framework on resource management
decisions, using the case of water as an illustration. Robust choices are
compared with those of a benchmark stochastic model and the emergence
of precautionary behaviour is discussed.

Keywords: Scienti…c Uncertainty, Maxmin Approach, Robust Control,
Water Use, Rainfall Variability, Precaution

JEL classi…cation: Q25, D81
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Introduction

In most water systems there are multiple sources of water, with
di¤erent availabilities and quality levels. A typical system will com-
bine whatever surface water supplies are available (rainfall, stream
‡ows, surface water reservoirs) between them and also with ground-
water resources. Economic models of conjunctive use consider at least
two sources of water, one of which is a ‡ow and one a stock. For in-
stance, the literature that analyses management of groundwater stocks
normally includes conjunctive use (see the review on the topic by
Provencher (1995)). Taking into account that surface water ‡ows are
often stochastic, there is a role to be played by groundwater or surface
reservoirs in protecting users against uncertainty. Tsur (1990) studies
the bu¤er role of groundwater in a static setting and shows that it is
positive under standard concavity assumptions of the bene…t function,
and Tsur and Graham-Tomasi (1991) provide a similar analysis for a
dynamic setting. Knapp and Olson (1995) also consider surface water
variability, as well as Provencher and Burt (1994), which identify the
risk externality associated with common property situations. Roseta-
Palma (2000) extends the analysis by incorporating water quality as
a relevant parameter. There is a paper on irreversibility (Tsur and
Zemel (1997)) where the size of stock below which groundwater use
becomes unfeasible is unknown, but conjunctive use is not considered.
Two other papers that consider uncertainty but not conjunctive use
are Fisher and Rubio (1997) and Rubio and Castro (1996).
In all the literature referred so far, the word "uncertainty" is taken

to describe the realization of an event for which the true probability
distribution is known. Thus the expected utility framework can be
used. However, this type of problem was traditionally considered one
of risk. Pure uncertainty, where the state space of outcomes is known
but the decision maker is unable to assign probabilities, has largely
been ignored in recent economic literature. Nonetheless, as stressed by
Woodward and Bishop (1997), in many cases pure uncertainty might
be closer to the truth, for instance when a panel of experts is consulted,
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since a group of people with divergent beliefs will normally not be able
to reach a consensus on probability distributions. Their paper analyses
circumstances under which rational choices are based on the most
extreme possible outcomes, rather than on midpoint values. It also
discusses the intermediate case, where some information on the set of
probability distributions is known. Gilboa and Schmeidler (1989) show
that introducing an axiom of uncertainty aversion as a property of the
preference relation is equivalent to solving a maxmin model under a set
of possible probability measures, where the decision maker maximizes
over the choice variables for the worst possible case. The construction
of the appropriate set of measures, however, is not discussed.
Chevé and Congar (2000) consider situations of model uncertainty

as well as risk (which they call imprecision and randomness, respec-
tively). There is a cumulative pollution threshold beyond which a
catastrophic event occurs, but knowledge of that threshold is mod-
elled as a closed random interval. There is a class of random variables
that are considered to be compatible with the available information,
so that the chosen pollution path will depend on the decision maker’s
"optimism index".
Along similar lines, a dynamic approach for problems of choice

under uncertainty is presented in Hansen and Sargent (2003) (dis-
crete time setting), and Hansen et al. (2002) (continuous time set-
ting). Again, the idea is that the decision maker is unsure about his
model, in the sense that there is a group of approximate models that
he also considers as possibly true. These are obtained by disturbing
a benchmark model, and the admissible disturbances will re‡ect the
set of possible probability measures that the decision maker is willing
to consider. The resulting problem is one of robust dynamic control,
where the objective is to choose a rule that will work under a range
of di¤erent model speci…cations. This methodology provides another
tractable way to incorporate uncertainty aversion.
The types of solutions obtained by models such as these …t quite

well with the precautionary principle, which has emerged in interna-
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tional law as a conceptual guideline for environmental policy.1 In fact,
Woodward and Bishop (1997) mention it explicitly, whereas Hansen
and Sargent (2001a) state that “a preference for robustness induces
context-speci…c precaution”. More to the point, Chevé and Congar
(forthcoming) stress the importance of scienti…c uncertainty in the in-
terpretation and application of the precautionary principle. Consider-
ing the levels of uncertainty usually associated with climatic variables,
it seems natural to exploit the instruments provided by robust control
in the analysis of water storage and use decisions.
The purpose of our work is to show how a robust control framework

of model misspeci…cation doubts can be applied to resource manage-
ment decisions. Uncertainty about the occurrence of precipitation is
introduced, and the implications for quantitative water use are pre-
sented, in both a static and a dynamic setting. Robust choices are
compared with those of a benchmark stochastic model, using a linear
quadratic set up as a relevant representation of a system that com-
prises a surface storage water reservoir. Finally, the emergence of pre-
cautionary behavior is discussed and circumstances where robustness
induces water savings are illustrated.

1. A one period model of water management

Assume that there is a user of water, who maximizes his pro…t by
choosing the amount of water he wants. Precipitation (P ) is exoge-
nous, but there is an available source of surface water (for example, a
river), from which he can take as much water as he wants at a cost,
given by a cost function C(s), increasing and convex. There is a water
revenue function which depends on total water use and is increasing
and concave. Maximum pro…t, ¦, is

¦ = max
s
Y (w)¡ C(s) (1)

1See Gollier, Julien and Treich (2000) for a discussion of the precautionary
principle in an economy with a stock pollutant where there is learning about
damages. The authors consider risk but not uncertainty aversion.
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where w = P +s, i.e. the total water usage is the sum of precipitation
and pumping, making this model particularly suitable for irrigated
agriculture.
It will be assumed that when the decision on s is taken, the value

for precipitation is still uncertain. In a typical stochastic problem, the
agent would take P to be a random variable with

P = P + ε (2)

where ε has mean zero and variance σ2ε = 1. In this very simple set-
ting, the user maximizes the expected value of ¦, and the …rst order
condition will be EYw = Cs.

2 This is the usual condition that at the
optimal choice the expected marginal bene…t of an additional unit of
surface water is equal to its marginal cost.
However, it is possible that the agent views (2) as an approxima-

tion, in the sense that he is unsure about the process that governs the
behavior of precipitation.3 One way to represent the uncertainty is to
assume that he believes the process may be

P = P + ε+ h (3)

where h is an unknown distortion to the mean of the shock, represent-
ing a possible speci…cation error.
The only thing that is assumed about this distortion is that the

magnitude of the square of the speci…cation error is bounded:4

h2 · η2 (4)

Restriction (4), together with equation (3), de…ne a set of mod-
els which the agent considers as being possible outcomes. Along the

2In order to study interior solutions, it is assumed that the last received unit
of precipitation is still revenue increasing. Thus, ‡oods and similar situations are
ruled out.

3The derivations in this section are similar to Hansen and Sargent (2003, chp.5).
4The size of the distortion must be bounded, as the agent has some information

on the process. For the restriction to be meaningful, η must be …nte. For a better
explanation of this bound and its relation to the degree of uncertainty, see section
2.
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lines of Gilboa and Schmeidler, the maximization will be undertaken
considering the whole set of approximating models. The agent wants
his decision to be robust, so that it will work well over the larger set,
because he has doubts about the accuracy of the simpler approxima-
tion o¤ered by equation 2. He wants to choose a value for s that will
give him a reasonable outcome even for the worst possible value of h.
Robust control provides a straightforward way to …nd optimal deci-
sions that is relatively simple to solve. The uncertain problem can be
thought of as a zero-sum game between two players, where the agent is
maximizing over s and nature is minimizing over h. Then the problem
can be written as

max
s
min
h
E(Y (s + P + ε+ h))¡ C(s) + θh2 (5)

where θ > 0 is a …xed penalty parameter, which can be interpreted as
a Lagrangian multiplier on constraint (4).5 First order conditions for
s and h, assuming an interior solution, are:

EYw = Cs (6)

EYw = ¡2θh (7)

Quadratic case

In order to understand how a preference for robustness in‡uences
optimal choices, this section presents the case where the objective
function is quadratic. Water costs are assumed to be linear rather
than strictly convex, because linearity is a more reasonable assumption
for many distribution systems where pumping costs do not vary much
and consequently unit costs are constant. With a quadratic production
function, a unit price and linear costs, Y = a+ bw ¡ cw2 and C = es

5The value for θ would be endogenous in the constrained Lagrangian, and
it would be associated to the speci…c η value used in the constraint. The way
the problem is written here, θ is chosen directly and the constraint is adapted
accordingly. Larger values of θ imply smaller sets of models.
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(where a, b, c and e are positive parameters) and the approximating
problem yields

s¤ =
b¡ 2cP ¡ e

2c
(8)

If the agent is unsure about the model in the way described above,
so that equation (2) is replaced with equation (3), then the corre-
sponding problem yields:

s¤¤ =
b¡ 2cP ¡ e+ ce

θ

2c

h¤¤ = ¡
e

2θ

A few points can be made about the properties of this solution:

h¤¤ is negative, i.e. the worst case distortion is a smaller mean
for rainfall, as expected

when θ ! 1, h¤¤ ! 0 and s¤¤ ! s¤, i.e. as the agent becomes
more sure about his model the solution tends to (8)6

s¤¤ > s¤, i.e. in a one period model, if the agent is unsure about
his model then his response will be to pump more. Precaution in
this case implies excessive pumping, in the sense that the chosen
level of surface water is optimal for the worst case h and larger
than would be optimal for all other values of h. This result is
compatible with the usual observation that farmers, for instance,
prefer to overirrigate if water is generally available (even though
it is costly) in climates with great rainfall variability.

6Notice that the model breaks down if uncertainty aversion is in…nitely large
(θ! 0).
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2. Dynamic water management under model misspeci…ca-

tion

We now turn to the dynamic problem of managing surface water
when the water manager is concerned about the robustness of his
decisions to misspeci…cation of the model, and there is accumulation
of surface water in a reservoir.
Let St denote the stock of surface water and let fBt : t ¸ 0g de-

note a standard Brownian motion on an underlying probability space
(- ,F , G) . The water manager seeks to determine the optimal use of
surface water. The manager’s model can be stated as:7

max
fs(t)g

E

Z 1

0

e¡δt [U (st + Pt)] dt (9)

subject to

dSt = (αPt ¡ st ¡ qSt)dt (10)

dPt = σdBt (11)

where U (st + Pt) = Y (st + Pt) ¡ C(s), δ is the discount rate, α is
percentage of precipitation that ends up as stream ‡ow, q denotes
losses from the surface water reservoir and σ re‡ects precipitation
variability.
Following Hansen and Sargent (2003), Hansen et al. (2002), (9)-

(11) is regarded as a benchmark model. If it was assumed that the
water manager was sure about the benchmark model then there would
be no concerns about robustness to model misspeci…cation. Otherwise,
concerns for robustness to model misspeci…cation can be re‡ected by a
family of stochastic perturbations to the Brownian motion, so that the
probabilities implied by (11) are distorted. The measure G is replaced
by another probability measure Q. The main idea is that stochastic
processes under Q will be di¢cult to distinguish from those under G
using a …nite amount of data. The perturbed model is constructed by

7The following analysis presents only interior solutions..
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replacing Bt in (11) with

Bt = B̂t +

Z t

0

hsds (12)

where
n
B̂t : t ¸ 0

o
is a Brownian motion and fht : t ¸ 0g is a mea-

surable drift distortion. Thus, changes in the distribution of Bt will be

parametrized as drift distortions to a …xed Brownianmotion
n
B̂t : t ¸ 0

o
.

The distortions will be zero under the measure G, in which case Bt
and B̂t coincide.

8

Therefore, the water manager’s concerns about misspeci…cation of
the model describing the evolution of precipitation can be expressed
in the distorted model

dPt = σhtdt+ σdB̂t (13)

As shown in Hansen et al. (2002) the discrepancy between the
distributions G and Q is measured as the relative entropy

R (Q) =

Z 1

0

e¡δuEQ

Ã
jhuj

2

2

!
du (14)

If R (Q) is …nite then

Q

½Z t

0

jhuj
2
du <1

¾
= 1

and Q is locally absolutely continuous with respect to G. Local ab-
solute continuity means that for the water manager it is di¢cult to
distinguish between the probability distributions G and Q associated
with precipitation, even though the two probability distributions could
be distinguished with in…nite data. By restricting the size of relative
entropy (14), the decision maker establishes the set of distributions
that will be considered.

8For more general distortions, including changes in covariance, see Hansen and
Sargent (2003, chp.17).



Robust Control in Water Management 11

Under model misspeci…cation, equation (11) is replaced by (13).
Two robust control problems can be associated with the problem of
maximizing (9) subject to (10) and (13), a constraint robust control
problem, which explicitly de…nes a relative entropy constraint, and a
multiplier robust control problem. The multiplier robust problem in
this case is de…ned as

J (θ) = max
s
min
h

E

Z 1

0

e¡δtU (st + Pt) dt+ θR (Q) (15)

subject to (10) and (13)

whereas the more intuitive constraint robust problem is de…ned as

J (η) = max
s
min
h

E

Z 1

0

e¡δtU (st + Pt) dt (16)

subject to (10), (13) and R (Q) · η

In both models the process fht : t ¸ 0g belongs to a set H such that
the impliedQ has …nite entropy orR (Q) <1. In the constraint model
η is the maximum speci…cation error that the water manager is willing
to accept, while in the multiplier model the robustness parameter can
be interpreted as the Lagrangian multiplier associated with constraint
R (Q) · η. The robustness parameter takes non negative values, θ ¸ 0,
and will be zero if the constraint is inactive or in…nity if the constraint
is violated. A value θ = +1 signi…es no preference for robustness,
while lower values for θ indicate such a preference.
Combining (14) and (15) the multiplier robust control model can

be written as

max
s
min
h

E

Z 1

0

e¡δt
·
u (st + Pt) + θ

h2

2

¸
dt (17)

subject to (10) and (13)

As in section 1., in problem (17) the water manager is the maxi-
mizing agent that chooses surface water st to maximize utility, while
nature is the minimizing agent that chooses the worst case distortion
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to precipitation. Using Fleming and Souganidis (1989) on the exis-
tence of a recursive solution to the multiplier problem, Hansen et al.
(2002) show that problem (17) can be transformed into a stochastic
in…nite horizon two-player game where the Bellman-Isaacs conditions
imply that the value function W (S, P, θ) satis…es

δW (S, P ; θ) = max
s
min
h

( h
u (st + Pt) + θ

h2

2

i
+WS(αPt ¡ st ¡ qSt)

+WPσh+
1
2
σ2WPP

)
(18)

A solution for game (18) for any given value of the robustness
parameter θ will determine the optimal “robust” surface water man-
agement policy. Moreover, this policy will coincide with the solution
for the constraint problem (16) and it will not depend on the chosen
timing protocol. Thus, the solution is time consistent, in the sense that
the decision maker will stick to the original optimal plan whatever the
actual state of the world.9

Quadratic case

Adopting a quadratic bene…t function for net pro…ts from water
use, U (st + Pt) is speci…ed as

U (st + Pt) = a+ b (st + Pt)¡ c (st + Pt)
2 ¡ est (19)

The …rst order conditions that determine the optimal feedback rules
for s and h are:

s¤t =
b¡ 2cPt ¡ e¡WS (St, Pt; θ)

2c
(20)

h¤t = ¡
σWP (St, Pt; θ)

θ
(21)

From (21) it is clear that if θ ! 1 then h¤t ! 0 indicating that the
manager acts as if he knows the model with certainty and there are
no robustness concerns.

9For more on time consistency, see Hansen and Sargent (2001b).
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Substituting (20) and (21) into (18) we obtain the partial di¤er-
ential equation for the value function. Because of the linear quadratic
structure of the problem we restrict our attention to the class of
quadratic value functions, or

W (S, P ) = γ0 + γ1S + γ2S
2 + γ3P + γ4P

2 + γ5SP (22)

Substituting (22), (20) and (21) into (18) we obtain the parameters
of the value function, which can be solved for to yield a stable solution
(see derivations in the Appendix):10

γ1 =
(2q + δ) (θδq (e¡ b) + 2(1 + α)eσ2c)

(K ¡ θq2) δ

γ2 = ¡ (2q + δ) cq
2 θ

K ¡ θq2

γ3 =
θq3e+ (e¡ b)θδq(1 + α)(2q + δ) +Be(q + δ)

¡q (K ¡ θq2) δ
(23)

γ4 = ¡(2q + δ)(1 + α)
2c

θ

K ¡ θq2

γ5 = 2qc(2q + δ)(1 + α)
θ

K ¡ θq2

where K = 2cσ2(α + 1)2 > 0. For stability, γ2 < 0, which in turn
implies γ4 < 0 and γ5 > 0. The policy function can then be analyzed:

s¤ =
1

2c
(b¡ γ1(θ)¡ e¡ (γ5(θ) + 2c)P ¡ 2γ2(θ)S) (24)

Thus, in the robust problem, optimal water withdrawals depend
positively on existing stock and negatively on precipitation, as ex-
pected. Moreover, increasing robustness (decreasing θ) will make s
depend less on rainfall and more on stock (as ∂γ5

∂θ
> 0 and ∂γ2

∂θ
< 0).

However, the full impact of increasing robustness on surface water ap-
plications will depend on the behaviour of the constant term, since

10The constant term is not presented as it has no impact on policy.
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∂γ1
∂θ
? 0 depending on the sign of (e¡ b). In a dynamic context where

the accumulation of water is taken into consideration, a search for
robustness can induce water savings. The water manager might de-
cide to use less water as a precaution, since in a dynamic setting the
worst case scenario would be to excessively deplete the stored water
reserves. It should be noted, however, that the type of precautionary
motive that was present in the static case, leading to an increase in
water use, is still present here. Numerical simulations indicate that
at higher levels of precipitation robustness results in more water ap-
plication, whereas for lower levels of precipitation, the scarcity e¤ect
appears and robust decisions imply water savings.
The case that was just presented is particular in that stock only

enters the problem as a restriction, not a¤ecting the objective function
directly. In a non-robust framework of optimization, this would imply
that interior solutions are not a¤ected by stock at all, and decisions
for surface water applications would only depend on P (so that all γ
coe¢cients are zero except the constant and γ3, see Appendix).
A more general model, which would be adequate for groundwa-

ter reservoirs as well, would speci…cally include stock e¤ects into wa-
ter costs. The simplest possible type of stock e¤ect, which is com-
monly used in models of reservoir management, is for unit pumping
costs to decrease linearly with stock, so that C(s, S) = C(S)s with
C(S) = C0 ¡C1S. The …rst order conditions that determine the opti-
mal feedback rules for s and h are:

s¤t =
b¡ 2cPt ¡ C(S)¡WS (St, Pt; θ)

2c
(25)

h¤t = ¡
σWP (St, Pt; θ)

θ
(26)

As unit pumping cost is linear in stock, the problem remains linear
quadratic, so we can again use value function (22). However, the
implied system of value function coe¢cients no longer has an analytical
solution. To provide insight into the e¤ects of robustness, a numerical
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solution is presented, using the following set of parameter values:11

α = 0.4, b = 6.316347, c = 0.000348993, C0 = 1, C1 = 0.01

σ = 90, δ = 0.05, a = 16342.668, q = 0.1

Considering these values, some implied feedback rules for the optimal
allocation of surface water are:12

s¤t (St, Pt jθ = 100) = 7115.9¡ 2.269 8Pt + 1. 801 1St
s¤t (St, Pt jθ = 500) = 7321.8¡ 2.471 2Pt + 1.779 6St
s¤t (St, Pt jθ !1) = 7616.7¡ 2.691 5Pt + 1.771 7St
Again, surface water decreases with precipitation and increases

with the amount of stored water. Furthermore, as Pt increases, total
water use (st + Pt) decreases, more so for lower levels of uncertainty,
as the P coe¢cient is, in absolute value, larger than one and smaller
for lower values of θ. The optimal policy for two di¤erent stock levels
is shown in …gures 1 and 2.

[Figure 1]
[Figure 2]

These …gures show exactly the same result that was discussed ear-
lier in the context of the model without stock e¤ects, namely that
robustness means saving water for low values of precipitation but us-
ing relatively more for high levels of precipitation.

3. Conclusion

In this paper we use robust control theory to explore the implica-
tions of uncertainty aversion for natural resource management, con-

11The production function parameters are for tomato production in Portugal in
kg/ha (Oliveira et al. (1996) ) Total water application in the experimental studies
varies between 4000 and 12000 m3/ha.All water units in the simulation are in
m3/ha, so that S should be interpreted as the number of m3 available to each
ha of irrigated land. Hydrological parameters are averages for southern Portugal,
monetary values are in euro/m3, and price is again assumed to be 1 euro/kg to
simplify. The simulations were run for one ha using Mathematica.
12Simulations were run for additional values of θ, with similar results.
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sidering speci…cally the case of water. The assumption that natural
resources can follow stochastic processes which are not perfectly known
to decision makers seems a better …t to what is observed in reality than
the usual model of risk where all stochastic processes are known and
agents take them as given in expected utility maximization.
Previous authors have pointed to the emergence of precautionary

behavior when robust models are used. In the one period illustration
for water management, precaution implies excessive use of surface wa-
ter, as there are no future penalties for the use of such a source. When
a dynamic setting is considered, the water manager incorporates the
possible depletion of water reserves under worst case rainfall short-
comings, and precautionary behavior may then imply lower surface
water applications if precipitation is low. It should also be noted that
the usual certainty equivalence property of linear quadratic stochastic
models no longer holds in robust optimal control.
In this paper, results for water use were derived with and without

stock e¤ects on cost, and presented for varying levels of model uncer-
tainty, as expressed by levels of the penalty parameter θ, to explore
and illustrate the implications of this particular type of methodology.
However, in general θ can be chosen according to di¤erent criteria. For
instance, a level of acceptable detection error probability for distin-
guishing between the approximating model and the worst case model
can be selected. More speci…cally, for each θ the associated detection
error probability can be calculated for a given sample using the like-
lihood ratios when the approximating model generates the data and
when the worst case model is true (see Hansen and Sargent (2003,
chp. 13)). Nonetheless, the purpose of this paper was to identify the
possibilities of the robust control methodology and its links to un-
certainty aversion and the precautionary principle. Further research
should be dedicated to analyzing detection error probabilities using
real data samples and considering alternative criteria for choosing θ,
such as system stability.
Robust control methods are especially useful for dynamic systems

that are highly unstable and where catastrophic events, once set in mo-
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tion, are di¢cult to revert. We believe that stochastic models in many
areas of economics, and in environmental and resource economics in
particular, should make more use of this methodology. Water manage-
ment, especially under climate change uncertainty, is only one of the
…elds where the application of such methods could yield new insights.

A Calculating value function coe¢cients

A1. Without stock e¤ects

In the linear quadratic case, the value function is given by

W (S, P ) = γ0 + γ1S + γ2S
2 + γ3P + γ4P

2 + γ5SP (27)

Value function coe¢cients come from the following system of equa-
tions

δγ0 = a+
b2

4c
+
γ21
4c
+
E2

4c
¡
Eb

2c
¡
bγ1

2c
+
Eγ1

2c
¡
1

2

γ23σ
2

θ
+ σ2γ4

δγ1 =
(E ¡ b+ γ1) γ2

c
¡
σ2

θ
γ3γ5 ¡ γ1q

δγ2 =
γ22
c
¡
1

2

σ2

θ
(γ5)

2 ¡ 2γ2q (28)

δγ3 =
γ1γ5 ¡ bγ5 + Eγ5

2c
+ E + (1 + α)γ1 ¡ 2

σ2

θ
γ3γ4

δγ4 =
γ25
4c
+ (1 + α)γ5 ¡ 2

σ2

θ
γ24

δγ5 =
γ2γ5

c
+ (1 + α)2γ2 ¡ 2

σ2

θ
γ4γ5 ¡ γ5q

which can be solved beginning with the equations for γ2, γ4 and γ5.
Although there is more than one solution, we want a real solution that
satis…es stability condition

d _S

dS
=
γ2 (θ)

c
¡ q < 0.
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It can be shown that for this condition to be satis…ed, in both real
solutions of (28), γ2 would need to actually be negative. Moreover, we
can rule out the solution which corresponds to the positive root of the
γ2 equation as it is more likely to be unstable and/or to yield solutions
which are not admissible (negative s and/or positive h) Given the
chosen expression for γ2 (which is presented in the complete solution
(23), in the paper), it should also be noted that there are implications
on the acceptable values of θ, since γ2 < 0 i¤ 2cσ

2(α+1)2¡θq2 > 0. For
σ very small, θ has to be either small or in…nity (non-robust solution).
The non-robust solution in this case has γ1 = 0, γ2 = 0, γ5 = 0, γ4 = 0,

and γ3 =
e
δ
, γ0 =

1
4
4ac+(e¡b)2

δc
, corresponding to a policy function.s¤t =

1
2c
(b¡ 2cP ¡ e) which is exactly the same as in the static case.

A2. With stock e¤ects

The system of value function coe¢cients for this case, assuming
that C(S) is linear, is given by (28) in the paper. For a given set of
parameter values, the solution can be attained using numerical sim-
ulation. Although for each value of θ several di¤erent solutions can
appear in Mathematica, depending on the initial guesses for the γ co-
e¢cients, the solution we show in the paper is the one that correctly
approaches the θ ! 1 solution, which corresponds to the negative
root of the γ2 equation of the following simpler system:
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δγ1 = ¡
1

2

µ
(C1 ¡ 2γ2) (C0 ¡ 1 + γ1)

c

¶
¡ γ1q

δγ2 =
1

4c
C21 ¡

µ
C1

2c
+ q

¶
2γ2 +

γ22
c

δγ3 =
¡b+ C0 + γ1

2c
γ5 + C0 + γ1(1 + α) (29)

δγ4 =
γ25
4c
+ γ5 (α+ 1)

δγ5 = ¡

µ
C1

2c
+ q

¶
γ5 ¡ C1 +

γ5γ2

c
+ 2γ2 (α+ 1)
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