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Resumo

Desde o início dos tempos que o Brent, mais conhecido por petróleo, tem sido uti-

lizado em diversas aplicações, devido à sua elevada densidade energética, facilidade de

transporte e relativa abundância. Nos últimos anos, o Brent tornou-se na fonte de

energia mais importante, desempenhando um papel preponderante na manutenção da

nossa actual sociedade. Neste contexto, o objectivo principal deste trabalho é mode-

lar e prever os preços mensais e diários do Brent, de forma a melhor compreender e

antever o seu comportamento. Na modelação e previsão dos preços utilizaram-se duas

abordagens diferentes.

A primeira baseia-se na análise de séries temporais com memória longa. A presença

de memória longa é veri�cada na média condicional e modelada a partir de modelos

ARFIMA. Esta característica é também analisada na volatilidade da série e mode-

lada através de modelos FIGARCH, FIAPARCH ou FIEGARCH. A outra abordagem

considera modelos estocásticos de mudança de regime, nomeadamente modelos STAR,

SETAR e MS-AR.

A modelação dos preços diários de Brent é feita com base em modelos de séries tem-

porais considerando memória longa, uma vez que esta característica foi identi�cada na

volatilidade da série. Modelos de mudança de regime foram também aplicados, no en-

tanto a hipótese de não linearidade foi rejeitada. Relativamente aos resultados obtidos

para a série mensal de preços, não foi detectada a presença de heteroscedasticidade

condicional nem de memória longa. Os modelos de mudança de regime foram também

considerados e, neste caso, foi identi�cado um modelo de dois estados, veri�cando-se

diferenças signi�cativas entre os regimes identi�cados.

Palavras-chave: Preço do Brent, Modelos de séries temporais com memória longa,

Modelos de mudança de regime, Previsões.

Classi�cação JEL: C23; Q43.



Abstract

Since early times, the Brent, usually know as crude oil or petroleum, has been used in

several �elds due to its high energy density, easy transportability, and relative abun-

dance. During the past years, it has become the most important source of energy in

the world, and it plays a prominent part in the maintenance of our modernised and

industrialised civilization. Therefore, the aim of this work is to analyse, understand

and forecast the Brent prices behaviour, on a daily and monthly basis.

To model and forecast Brent prices, two di�erent approaches have been considered.

In the �rst approach, the presence of long memory is tested in the conditional mean

and modelled by using long memory time series models, namely ARFIMA models. The

long memory characteristic is also checked in the volatility, and it is modelled with FI-

GARCH models, or some of their variants, namely FIAPARCH or FIEGARCH models.

The alternative approach considers stochastic regime-switching models, namely STAR,

SETAR and MS-AR models.

The results obtained from the daily Brent prices analysis suggest that the data under

investigation should be modelled with long memory time series, as there was evidence of

long-range dependence on the volatility of the Brent prices. Regime-switching models

were also applied to the daily data, but the hypothesis of non-linearity was rejected.

Regarding the monthly Brent prices, neither conditional heteroskedasticity nor long-

range dependence were identi�ed. Regime-switching models were also considered, and

in this case a two state model was identi�ed, showing clear di�erences between the

achieved regimes.

Keywords: Brent prices, Long memory time series models, Regime-switching models,

Forecasting.

JEL Classi�cation: C23; Q43.



Sumário Executivo

Nos últimos anos, o Brent assumiu um papel preponderante na nossa sociedade, tornan�

do-se na fonte de energia mais importante para a sobrevivência da nossa actual ci�

vilização. O seu forte impacto na sociedade contribui para a necessidade de melhor

compreender o comportamento dos seus preços, de forma a permitir, com maior exacti�

dão, antever a sua tendência futura. Assim, o objectivo desta análise é modelar e

prever os preços diários e mensais do Brent. Para o efeito, foram consideradas duas

metodologias distintas: modelos de séries temporais com memória longa e modelos de

mudança de regime.

A primeira metodologia consiste na veri�cação da presença de memória longa na

média condicional da série em análise, procedendo-se à sua modelação com base em

modelos ARFIMA (Autoregressive fractionally integrated moving average). Esta carac-

terística é também analisada na variância condicional dos dados, procedendo-se neste

caso à aplicação de modelos FIGARCH (Fractionally Integrated Generalized Autore-

gressive conditional heteroskedastic), FIAPARCH (Fractionally Integrated Asymmetric

Power ARCH ) ou FIEGARCH (Fractionally Integrated Exponential GARCH ). A outra

abordagem permite analisar se o comportamento dos preços do Brent pode ser descrito

por diferentes regimes, sendo considerados dois mecanismos de mudança de regime. O

primeiro assume que a transição entre regimes é determinada por uma variável obser�

vável e, neste caso, consideram-se modelos STAR (Smooth transition autoregressive)

ou SETAR (Self-exciting threshold autoregressive). Quanto ao segundo, em que a tran-

sição está dependente de uma variável não observável, aplicam-se os modelos MS-AR

(Markov-switching autoregressive).

Os resultados diários sugerem que a série de preços de Brent deve ser modelada

através de modelos de séries temporais com memória longa, uma vez que esta ca�

racterística foi identi�cada na variância condicional dos dados. Como modelo �nal

escolheu-se o FIGARCH(1,1) aplicado aos retornos da série diária de preços, dado ter

sido o modelo que apresentou maior capacidade preditiva quando aplicado o teste de

Diebold-Mariano. Os modelos de mudança de regime foram também aplicados à série.
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No entanto a rejeição da hipótese de não-linearidade permite concluir que os preços

diários do Brent devem ser analisados com base em modelos lineares.

As conclusões obtidas pela análise dos preços mensais de Brent são bastante dife�

rentes das alcançadas no caso da análise diária. A aplicação de modelos de séries

temporais permitiu a identi�cação de um modelo AR(6) para os retornos mensais,

não se veri�cando nem heteroscedasticidade condicional nos resíduos do modelo, nem

memória longa na média e variância condicional da série em análise. Os modelos de

mudança de regime foram também aplicados e optou-se pelo modelo SETAR(2) de

dois estados, uma vez que foi o que apresentou maior capacidade preditiva quando

aplicado o teste de Diebold-Mariano. Este modelo é bastante interessante pois permite

uma clara distinção entre os dois regimes identi�cados. Enquanto o primeiro regime,

constituído pela maioria das observações, apresenta preços mensais menos elevados e

com maior variação, o segundo regime é composto por preços mais elevados e com uma

variação menor. Veri�ca-se, também, que o primeiro regime tem uma duração de quase

dois anos e o segundo dura apenas poucos meses.

Nesta análise não foi possível identi�car uma relação entre as mudanças de regime

e presença de memória longa. No entanto, num estudo futuro, poderá ser bastante

inte�ressante estudar-se a aplicação de modelos de mudança de regime à variância

condicional dos preços diários do Brent.

Em seguida, apresentamos as contribuições desta tese para a literatura econométrica

e �nanceira no âmbito da análise e previsão de preços de Brent. O primeiro ponto a

referir é a análise e comparação das previsões obtidas pelos modelos de séries temporais

com memória longa e modelos de mudança de regime.

Relativamente aos modelos de séries temporais, foram utilizados diversos modelos

na modelação dos retornos dos preços do Brent, alguns dos quais (por exemplo, o

FIAPARCH e FIEGARCH) pouco usuais no âmbito da literatura econométrica. É de

referir, também, que a memória longa é testada simultaneamente na média e variância

condicional. Quanto aos modelos de mudança de regime, investigamos se os preços do

Brent são melhor caracterizados pelo seu comportamento passado ou por uma variável

desconhecida e não observável.

Outro aspecto interessante é a análise paralela efectuada para os dados diários

e mensais, que leva a conclusões bastante interessantes e distintas. Por �m, e de

forma a comparar a capacidade preditiva dos modelos, utiliza-se, como complemento

às tradicionais medidas de análise de previsão, o teste de Diebold-Mariano para testar

se as diferenças de previsão entre os vários modelos identi�cados são estatisticamente

signi�cativas.

v
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Chapter 1

Introduction

The Brent commodity, usually known as crude oil or petroleum, has been used since

ancient times, and due to its high energy density, easy transportability and relative

abundance, it has become the world's most important source of energy since the mid-

1950s. Nowadays, it plays an important part in our society, as it supports the main-

tenance of the industrialised civilization as we know it, being a major issue of concern

that has a very high impact on economy, politics, industry and technology.

The Brent1 blend is a light crude oil that contains approximately 0.37% of sulphur,

classifying it as sweet crude, and it is ideal for the production of gasoline and middle

distillates. It is typically re�ned in Northwest Europe, but it can also be re�ned in

East or Gulf coasts of the United States or in the Mediterranean region if the prices

are good enough to export.

During the past years, especially in the last two years, the behaviour of the Brent

prices has been characterised by high volatility. For example, in July 2008 it reached

the 145 USD/bbl and six months latter it fell to 38 USD/bbl. However, according to

the Organization of the Petroleum Exporting Countries (OPEC) the high Brent prices

in the 2008 year cannot be justi�ed by the fundamentals of physical and demand, which

make them even harder to model and predict.

In our study we try to analyse and understand the Brent prices by studying the

long memory characteristic or, in other words, the long-range dependence in the data

set. The presence of long memory is tested in the conditional mean and modelled by

using long memory time series models, namely autoregressive fractionally integrated

moving average (ARFIMA) models. The long memory characteristic is also tested in

the prices volatility, and in this case we model it with fractionally integrated general-

1The name �Brent� comes from the naming policy of Shell UK Exploration and Production, oper-
ating on behalf of Exxon and Shell, which originally named all of its �elds after birds (in this case the
Brent Goose).
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ized autoregressive conditional heteroskedastic (FIGARCH) models, or some of their

variants, namely fractionally integrated asymmetric power ARCH (FIAPARCH) or

fractionally integrated exponential GARCH (FIEGARCH) models.

Additionally, several authors have mentioned a strong relation between the long

memory characteristic and stochastic regime-switching models, considering very hard

and complex to distinguish between long-range dependence and structural breaks. So,

besides the long memory time series models, we also analyse regime-switching mod-

els. Regarding this class of models, we focus on the smooth transition autoregressive

(STAR), self-exciting threshold autoregressive (SETAR) and Markov-switching autore-

gressive (MS-AR) models.

We now summarise the content and organization of this dissertation.

In Chapter 2 we present a brief literature review of the modelling techniques we

follow in order to better understand, model and predict the Brent prices. We refer

to studies that apply the same methods, namely long memory time series models and

regime-switching models.

In Chapter 3 we give a brief description of the methods we use for modelling the

Brent prices data set. We consider long memory time series models, such as ARFIMA

models, for the conditional mean, and FIGARCH and its variants, namely FIAPARCH

and FIEGARCH, models for the conditional variance. We also introduce and describe

regime-switching models, like STAR, SETAR and MS-AR models. First, we present

a brief theoretical introduction of each modelling technique, and then we provide the

methodology we follow to analyse and understand the Brent prices behaviour.

In Chapter 4 we present the empirical results. We start by introducing our time

series, and two data sets are analysed: the daily and monthly Brent prices. We use

data from the beginning of January 2000 until the end of December 2009, and, in

order to better understand the behaviour of both data sets, a descriptive analysis

is performed and the presence of outliers is tested. Then we model the data sets

considering long memory time series models and regime-switching models following

closely the methodology described in Chapter 3. After identifying and validating several

models we proceed to the model forecasting, and we consider both in-sample and out-

of-sample prediction methods. At last, and having the forecasts of the di�erent models,

we are able to assess the prediction accuracy of all proposed models in order to choose

the best model. We apply the traditional criteria (MAPE, RMSE) but we also use the

Diebold-Mariano test to compare the predictive ability of the proposed models.

Finally, in Chapter 5 we draw some conclusions and present the main contributions

of this thesis.

2



Chapter 2

Literature Review

In this chapter we present a brief literature review of the methodologies we apply to

model and predict the Brent prices. In our analysis we focus on two main approaches:

long memory time series models and regime-switching models. Next, we brie�y review

some studies concerning these modelling techniques.

The long memory characteristic, also known as long-range dependence, translates

a high degree of persistence in the observed data, and the fact of time series exhibiting

long memory is becoming more common. In fact, in the recent past, long memory

has been found in time series from many �elds, such as hydrology, meteorology and

�nancial economics, among others.

The �rst study concerning this phenomenon was originally noticed by Hurst (1951).

The author identi�ed the presence of long-range dependence in hydrology while exam-

ining yearly discharges of the Nile River and measuring the long-term storage capacity

of the reservoirs. Latter, many other authors, namely Mandelbrot and Wallis (1968)

studied this e�ect, providing several studies related with data persistence in many

natural science �elds, like hydrology, meteorology, etc.

However, this phenomenon is not exclusive of non-�nancial time series. Long mem-

ory has become another stylised fact of �nancial time series, especially in terms of

volatility. The growing necessity of analysing this kind of behaviour has lead to an in-

creasing number of studies on this topic in order to better understand this phenomenon.

Many authors, namely Baillie (1996), Beran (1994) and Robinson (2003), present an

introduction on this subject as well as a discussion on several ways on how to estimate

long-range dependence. Robinson (2003) edited a book with a collection of articles

regarding a variety of topics concerning long memory time series. Baillie (1996), refers

to applications in geophysical sciences, macroeconomics, assets pricing, stock returns,

and exchange and interest rates, discussing also the ARFIMA models introduced by
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Hosking (1981) that are used to describe the long memory in the conditional mean of

the processes. Modelling long-range dependence in volatility is also done, by proposing

extensions of the conditional heteroskedastic models to fractionally integrated models,

namely FIGARCH and FIEGARCH processes.

Concerning other �elds of natural sciences, Viswanathan et al. (1997) used long-

range correlation measures when analysing the DNA patchiness. A very detailed study

has been presented by Braun (2010) who developed a PhD. thesis on long memory

applied to psychological behaviour. Besides all these non-�nancial analysis, the fact

is that the long memory phenomenon is becoming a common issue when analysing

�nancial data. Baillie and Chung (1996) present a study where the in�ation for ten

countries is analysed considering fractionally integrated ARMA − GARCH models.

These models are also used by Korkmaz et al. (2009) to analyse Istanbul stock exchange

returns, and in this study, the author concludes that although long memory does not

exist in the equity return, it exists in the volatility. A variant of these models has

been proposed by Tse (1998), who examines the conditional heteroskedasticity of the

yen-dollar exchange rate by considering FIAPARCH models.

Although there are a wide range of studies in several �elds concerning the long

memory phenomenon, one topic underrepresented in the literature is the long-range

dependence applied to the Brent prices. However, Chaouachi (2005) developed a very

interesting study on this topic, by searching for long memory in the Brent time series.

The analysis suggests that long-range dependence is only present on the time series

volatility, and therefore the author proposes modelling the conditional mean of the

process with ARMA models, and its volatility with models that consider the long

memory phenomenon, namely FIAPARCH models.

Another interesting paper was proposed by Medeiros and Scharth (2009) who anal-

yse asymmetric e�ects and long memory in the volatility of Dow Jones stocks. This

analysis focuses our interest, not due to the subject, but because the authors concluded

that fractionally integrated models are an incomplete description of the volatility pro-

cess, and their empirical results showed that multiple regime-switching modelling could

be a promising alternative for these kind of applications. Like this author, many oth-

ers, namely Diebold and Inoue (2001), Granger and Hyung (2004), and Banerjee and

Urga (2005), consider a parallel analysis on long memory and structural breaks, and

the reasoning is quite interesting and simple. In fact, according to Granger and Hyung

(2004) theory and simulation results show that it is very complex to distinguish be-

tween the long memory characteristic and structural breaks on the data set, and that

neglecting breaks may generate a long memory e�ect in the autocorrelation function.
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The authors analyse the S&P 500 absolute stock returns by comparing the results from

the two di�erent methodologies, and they concluded that the performance of both kind

of models for the in-sample and out-of sample forecasts are quite similar, showing no

statistical di�erence.

Diebold and Inoue (2001) also argue that regime-switching is easily confused with

long memory, and present a theoretical and Monte Carlo study which corroborate the

idea that stochastic regime-switching and long memory are strongly related.

Considering this relation, in our study we will not only use long memory time series

models but also regime-switching models.

Regarding regime-switching models, di�erent approaches are being presented. En-

gle and Hamilton (1990), in order to analyse the behaviour of the dollar exchange

rate, consider a model which assumes the existence of an unobservable variable that

characterises the regime in which the process is at time t, and depending on the value

of this variable, the data assumes di�erent characteristics. As the evolution of the

unobservable variable is based on a Markov chain, this class of models is a particular

case of the regime-switching models, and is referred to as Markov-switching models.

A variant of this class of models is proposed by Caraiani (2010). The author, using a

two-state Markov-switching autoregressive (MS-AR) approach, analyses and predicts

the business cycle in the Romanian economy. The achieved results show that the

macroeconomic dynamics in the Romanian economy can be very well explained and

forecasted when using regime-switching models. Schindlmayr (2005) also proposes a

MS-AR model applied to the daily electricity spot prices from the European Energy

Exchange. The author identi�es two di�erent regimes, one characterised by the nor-

mal behaviour of the data, and the other by the price spikes with a high volatility

and strong mean-reversion. Another MS-AR model is presented by Hardy (2001), who

analyses the monthly data from the Standard and Poor's 500 and the Toronto Stock

exchange 300 indices.

A di�erent type of Markov-switching models has been proposed by Dafas (2004)

who tries to characterise the stochastic behaviour of crude oil prices. The author, using

market data of international crude oil spot prices for the last seventeen years, calibrates

a mean-reverting Markov regime-switching jump-di�usion model and estimates its pa-

rameters using the Hamilton �lter. A di�erent study, also considering commodities,

has been proposed by Chen and Forsyth (2010). The authors propose a one-factor

regime-switching model for natural gas spot prices and analyse the implication of the

model on the valuation and optimal operations of a natural gas storage facility. Each

model follows either a mean-reverting process or a Brownian motion, and the obtained
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results seemed to re�ect the gas prices dynamics in each regime.

A di�erent approach, considering regime-switching models, is proposed by Dijk

et al. (2002) and consists on the smooth transition autoregressive (STAR) time series

models, as well as some of their variants, namely the logistic STAR (LSTAR) and

the self-exciting threshold AR (SETAR) models. The authors, after providing a rich

introduction and discussion on these models, present an empirical example concerning

the US unemployment. The behaviour of the US unemployment rate series is modelled

and analysed, and several extensions of the STAR models are performed in order to

choose the best model. Another study concerning the SETAR models is proposed

by Boero and Marrocu (2004). The authors, using daily data of the Euro e�ective

exchange rate, evaluate the out-of-sample performance of SETAR models relative to

an AR-GARCH model. The results show that the SETAR models have signi�cantly

improved the forecasting performance when the forecast origin was conditioned on a

speci�c regime.

A very interesting analysis is presented by Ismail and Isa (2006), who model the

monthly returns of exchange rates of three Asian countries (Malaysia, Singapore, and

Thailand) against the British pound using two types of regime-switching models: MS-

AR and SETAR models. After comparing the results of the two classes of models,

the authors concluded that the �tting of the MS-AR model is better than the SETAR

model, and also that the regime-switching models outperform linear models in terms

of �tting returns. In our study, like in this previous one, we will also consider and

compare these two types of regime-switching models.
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Chapter 3

Description of Models

In this chapter we provide a brief description of the methodologies we follow when

analysing, modelling and forecasting Brent prices.

In the �rst section, Section 3.1, we introduce time series models that exhibit long

memory and in Section 3.2 we describe the regime-switching models. For each section

we present a brief theoretical introduction of each approach, as well as the methodology

we follow to analyse and understand the Brent prices behaviour. As we only give an

overview of the used techniques, along each section we provide references for a more

detailed analysis.

Finally, in Section 3.3 we present several procedures in order to evaluate the pre-

diction ability that will help us when selecting the �nal model.

3.1 Long Memory Time Series Models

As the main purpose of this study is to analyse and characterise the Brent prices

behaviour, we will consider long memory time series models by testing long-range

dependence not only on the �rst moment (mean), but also in terms of the variance

(that represents volatility).

Therefore in Subsection 3.1.1 we present a general introduction to long memory

time series models. We start by introducing the long memory concept, and next

we give a brief description on the models we use: the autoregressive fractionally in-

tegrated autoregressive moving average (ARFIMA) model for the conditional mean

analysis, and some variants of the autoregressive conditional heteroskedastic (ARCH)

model for the conditional variance modelling, namely the fractionally integrated gener-

alized ARCH (FIGARCH), asymmetric power ARCH (FIAPARCH), and fractionally

integrated exponential generalized ARCH (FIEGARCH) models. In the last section,

Subsection 3.1.2, we present the methodology followed in the Brent prices modelling
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considering long memory time series models.

3.1.1 Introduction

Long memory, also known as long-range dependence, is traditionally de�ned either in

the time domain or in the frequency domain. In terms of time domain it results on a

decaying rate of autocorrelation functions (with special interest on the long lags). As

described by Beran (1994), let X = {Xt; t ∈ Z} be a stationary process, then if there

exists a constant c > 0 and α ∈ (0, 1) such that

lim
k→∞

ρk
ck−α

= 1, (3.1)

then X is a stationary process with long memory, where ρk are the autocorrelation

coe�cients of order k. A more general de�nition has been proposed by McLeod and

Hipel (1978) and considers that

lim
n→∞

n∑
j=−n

|ρj| = ∞, (3.2)

where n corresponds to the number of observations and ρj to the autocorrelation coef-

�cients.

Other de�nition involving frequency domain considers the spectral density of the

process. Therefore, let X = {Xt; t ∈ Z} be a stationary process and f be the spectral

density. If there is a constant cf > 0 and β ∈ (0, 1) such that the condition

lim
λ→∞

fλ
cf |λ|−β

= 1 (3.3)

veri�es, then the process X exhibits long memory, or long-range dependence.

After de�ning the long memory concept, we present a class of models that are able

to capture long-range dependence in the conditional mean of a process: the ARFIMA

models. However, before referring these models, we present a brief introduction on

autoregressive moving average (ARMA) models. Following Box and Jenkins (1976)

and Wei (1990), a stationary process X = {Xt; t ∈ Z} is de�ned as an ARMA(p, q)

model if

ϕp(L)(Xt − µ) = θq(L)ϵt, (3.4)

where p, q ∈ N0, µ is the process mean, L is such that LjXt = Xt−j (commonly known as

8



Modelling and Forecasting Brent Prices

lag operator), and {ϵt; t ∈ Z} ∼ WN(0, σ2
ϵ ). The terms ϕp(L) and θq(L) are respectively

the autoregressive and moving average polynomials, given by ϕp(L) = 1 −
∑p

j=1 ϕjL
j

and θq(L) = 1−
∑q

j=1 θjL
j.

However in many situations instead of a stationary series, we deal with non-stationary

behaviour, and therefore we need to consider the ARFIMA models, discussed in Baillie

(1996), and given by

ϕp(L)(1− L)d(Xt − µ) = θq(L)ϵt, (3.5)

with d being the fractional di�erencing parameter, and where µ, ϕp(L), θq(L), and ϵ

are as previously de�ned. Note that the roots of ϕp(L) and θq(L) lie outside the unit

circle. For −0.5 < d < 0.5 the process is covariance stationary, for d < 1 is mean

reverting, and for 0 < d < 0.5 it is assumed to have long memory. The Equation (3.5)

can be reduced to a stable ARMA process when d = 0, and to an ARIMA model when

d = 1. So we can conclude, and as referred by Brunetti (1999), that the ARFIMA

models are, in fact, very �exible as they can capture both long memory (by estimating

the d parameter) and short term memory (considering the dynamics captured by the

autoregressive and moving average polynomials).

The relevant issues previously discussed when dealing with long-range dependence

in the �rst moment of a process, are also important and necessary when focusing on

the second moment, its volatility. As the assumption of homoskedastic errors is not

always valid, Engle (1982), in order to overcome this situation, proposed the autore-

gressive conditional heteroskedastic (ARCH) model. Latter a generalisation of this

class of models was proposed by Bollerslev (1986), introducing the generalized ARCH

(GARCH) model. A GARCH(p, q) process is de�ned as

ϵt = υt
√
ht

ht = α0 +

q∑
i=1

αiϵ
2
t−1 +

p∑
i=1

βiht−i (3.6)

= α0 + A(L)ϵ2t +B(L)ht

with {υt} ∼ iid(0, 1) and

p ≥ 0, q > 0,

α0 > 0, αi ≥ 0, i = 1, . . . , q (3.7)

βi ≥ 0, i = 1, . . . , p.

The GARCH(p, q) model can also be expressed as an ARMA(m, q) process in ϵ2t ac-
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cording to

ϕ(L)ϵ2t = α0 + (1− β(L))υt, (3.8)

where υt = ϵ2t − σ2
t corresponds to the innovations in the conditional variance process,

m = max(p, q), and ϕ(L) = {1− α(L)− β(L)}.
Like in the analysis of the �rst moment of a process, long memory and persistence

can also be characteristics of the conditional variance of a process. Therefore, and

in order to capture the long-range dependence Baillie et al. (1996) proposed the frac-

tional integrated GARCH (FIGARCH) model. A FIGARCH(p, d, q) process can be

represented as

ϕ(L)(1− L)dϵ2t = α0 + (1− β(L))υt, (3.9)

where all roots of ϕ(L) and {1 − β(L)} lie outside the unit circle. When d = 0 the

Equation (3.9) of the FIGARCH process reduces to a GARCH model, while when

d = 1, we get an IGARCH process.

As, in �nancial markets, frequently occurs that positive and negative shocks have a

di�erent impact on the volatility, meaning that usually a negative event (bad news) con-

ducts to higher volatility than a positive one. This phenomenon is named as leverage ef-

fect, see Black (1976). Therefore, Tse (1998) proposed a model that are able to capture

both, the volatility asymmetric behaviour and the long memory presence: the fractional

integrated asymmetric power ARCH (FIAPARCH) model. A FIAPARCH(p, d, q) pro-

cess is, then, given by

(1− L)dϕ(L)g(ϵt)
δ = α0 + (1− β(L))ξt (3.10)

where ξt = g(ϵt)
δ − σδ

t , g(ϵt) = |ϵt| − γϵt, with α > 0, δ ≥ 0, |γ| < 1, and all the other

terms are as previously de�ned. If the asymmetry parameter, γ, is positive (negative)

then it indicates that negative (positive) shocks conducts to higher volatility than

positive (negative) ones.

Another model that can capture the non-symmetric behaviour, was proposed by

Bollerslev and Mikkelsen (1996) and represents an extension of the FIGARCH model

based on the exponential GARCH model previously introduced by Nelson (1991). The

developed model is a fractional integrated exponential GARCH (FIEGARCH) model,

and a FIEGARCH(p, d, q) process can be written as

log(σ2
t ) = α0 + ϕ(L)−1(1− L)−d[1− λ(L)]g(ξt−1), (3.11)

10
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with

g(ξt) = θξt + γ[|ξt| − E|ξt|]. (3.12)

We stress that all roots of ϕ(L) and λ(L) lie outside the unit circle, and if we

consider d = 0, the Equation (3.11) simpli�es to an EGARCH model.

For a more detailed explanation on these matters we refer to Baillie (1996), Brunetti

(1999), Diebold and Inoue (2001), Breidt et al. (1998), Robinson (1995) and Banerjee

and Urga (2005).

3.1.2 Modelling Methodology

In this subsection we present our methodology in the Brent prices modelling and fore-

casting, considering long memory time series models.

Many authors divide the time series modelling methodology in several steps (see, for

example, Wei (1990)), and in this thesis we follow the same procedure, but we introduce

some variants in order to better achieve our purpose. Therefore the following steps are

the ones considered in our analysis:

1. Stationarity and long memory testing;

2. Model identi�cation and validation; and

3. Forecasting and model selection.

Next we brie�y describe each of the points referred above.

1. Stationarity and long memory testing

Before testing for the presence of long memory in our time series, it is necessary to

check if the data has a stationary behaviour.

Although a process can be non-stationary in the mean, variance, or in other mo-

ments, in this study we only analyse and deal with mean and variance non-stationary

behaviour. Therefore, and since a process can be stationary in the mean but not

necessarily in the variance, it is a common practice to deal �rstly with the variance

non-stationary behaviour and only afterwards test if it is necessary to apply a mean

stabilising transformation.

There are several transformations that can be applied in order to stabilise and

homogenise the variance. The most common transformation is the Box-Cox's power
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transformation proposed by Box and Cox (1964), and that is given by

Tλ(Xt) =

{
Xλ

t −1

λ
, λ ̸= 0,

log(Xt), λ = 0
(3.13)

where {Xt} is the original data set, and λ ∈ [−1, 1] is the transformation parameter.

The best transformation corresponds to the value of λ that minimises the sample

variance of the transformed series. For more details on this procedure we refer to Pires

(2001). We recall that in �nancial markets, the logarithmic transformation is the most

commonly used.

The following step, after stabilising the variance, is to test if the mean non-stationarity

remains. This can be accomplished in several ways: by analysing the empirical autocor-

relation function (ACF) or partial autocorrelation function (PACF); or by computing

some tests (implemented in several softwares, namely R and Eviews). The tests used

in this study are the Kwiatkowski, Phillips, Schmidt and Shin (KPSS) test, the Aug-

mented Dickey-Fuller (ADF) unit root test, and the Phillips-Perron (PP) unit root

test. All tests are available in the R Software, as well as in Eviews, so for more details

on these tests we refer to Trapletti (2005) and Software (2009), respectively.

When the mean non-stationarity is con�rmed it is necessary to apply a di�erencing

operator ▽kXt = Xt −Xt−k, possibly more than once, or of k order, with the purpose

of removing, respectively, any trend or cyclic component (of k order).

Now that the series is stationary, it is possible to check for the presence of short or

long memory. There are several tests to check for the presence of long memory in a time

series, and one of the oldest methods is the rescaled-range, or simply R/S, statistic.

This measure was �rstly introduced by Hurst (1951) and then developed and re�ned by

Mandelbrot and Wallis (1968). The R/S statistic corresponds to the range of partial

sums of deviations of a time series from the mean, rescaled by its standard deviation.

Therefore, consider a time series X = {Xt, t = 1, . . . , T}, where T corresponds to the

number of observations. In order to evaluate the R/S statistic, after subdividing our

data set into υ partitions we de�ne, for each partition, its range (R) according to

RT =

{
max
1≤i≤T

i∑
t=1

(xt − x)− min
1≤i≤T

i∑
t=1

(xt − x)

}
, (3.14)

where x is the sample mean of the data set. The sample standard deviation is also

determined, and, for each partition, we obtain the R/S statistic. As referred in Man-
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delbrot and Wallis (1968) this statistic follows asymptotically

(R/S)s ∝ CsH . (3.15)

In order to estimate the parameter H, and according to Grau-Carles (2005), it is usual

to run a linear regression over the growing temporal horizons, s = t1, t2, . . . , T , each

referring to its respective partition,

ln(R/S)s = ln(C) +H ln(s). (3.16)

If the H estimated value is 0.5 we can conclude that the process has short memory,

if the estimate is within the (0.5, 1) interval then it is a stationary process with long

memory, and if the H parameter is between (0, 0.5), the process is anti-persistent1.

Many authors identify a relation between the H parameter and the di�erencing pa-

rameter d. In case of an in�nite variance process the relation is given by H = d + 1
α
,

but in the case of a �nite variance process, the relation is simply H = d + 1
2
. For a

more detailed analysis see Chaouachi (2005) and Grau-Carles (2005).

A methodology to estimate the H parameter was developed and implemented by

Wuertz (2009) and is available in the R Software. However many authors, namely

Lo (1991), point out the incapacity of this statistic to distinguish between long and

short memory. Therefore, and to overcome the lack of robustness of the R/S statistic,

di�erent statistics are also used.

A di�erent methodology has been proposed by Geweke and Porter-Hudak (1983)

and is based on the spectral density function. The idea behind this method is that,

for models applied to stationary time series, the spectral density function is bounded

at zero frequency, while for long memory models it becomes unbounded at frequency

λ = 0. Therefore Geweke and Porter-Hudak (1983) proposes to estimate d according

to

ln{I(λj,T )} = ln

{
σ2fu(0)

2π

}
− d ln

{
4 sin2

(
λj,T

2

)}
(3.17)

+ ln

{
fu(λj,T )

fu(0)

}
+ ln

{
I(λj,T )

fu(λj,T )

}
,

where I(λj,T ) and fu(λj,T ) are respectively the periodogram and the spectral den-

sity function of the time series at frequencies λj,T = (2πj)/T , with λ = 1, . . . , T ,

and T corresponds to the number of observations of the series. Considering that

1A anti-persistent time series reverses more often than a random series would be.
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ln{4 sin2(λj,T/2)} is the explanatory variable, ln{I(λj,T )/fu(λj,T )} is the disturbance

term, and the remaining two terms correspond to the intercept term, (3.17) can be

simply represented, as Grau-Carles (2005) proposed, by

ln{I(λj,T )} = β0 + β1 ln

{
4 sin2

(
λj,T

2

)}
+ uλj,T

. (3.18)

Therefore the proposed estimator for d, is the slope coe�cient obtained in the least

squares regression of ln{I(λj,T )} on ln{4 sin2(λj,T/2)}.
A very similar statistic, proposed by Robinson (1994), is also computed. It is

available in the TSM software and was implemented by Davidson (2010). This statistic

gives a semi-parametric estimate of the H parameter (which can be related to the d as

previously described) through

Ĥmq = 1− ln F̂ (qλm)/F̂ (λm)

2 ln q
(3.19)

where F is the average periodogram function, q must be restricted to the interval (0, 1)

and it is assumed to be 0.5, and λm = 2πT−0.35.

2. Model identi�cation and validation

After estimating the long memory parameter (d) we are able to proceed to the

model identi�cation. The initial step is to model the long-range dependence in the

�rst conditional moment of the process, meaning that an adequate ARFIMA model

shall be adjusted to the already stationary time series. The orders of the autoregressive

and moving average parameters can be identi�ed by analysing the autocorrelation and

partial autocorrelation functions.

Then a similar procedure is followed, but now considering the second conditional

moment of the process (the time series volatility), and in this case a range of models

can be selected to better adjust the data volatility, namely, FIGARCH, FIAPARCH

and FIEGARCH models.

To identify the models and estimate its parameters we use the TSM software (David-

son (2010)), as it allows for a very rich analysis on the long memory phenomenon.

After identifying the model and estimating its parameters (through the conditional

maximum likelihood estimation method), we need to evaluate its adequacy by testing

if its residuals can be considered as realisations of a white noise (WN) process. In

other words, we want to test if the residuals are uncorrelated random variables with

null mean and constant variance.
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We start by analysing the empirical autocorrelation functions of the residuals, and

both ACF and PACF must show no statistically signi�cant pattern. The hypothesis of

uncorrelated residuals can also be checked by computing the Ljung-Box and the Box-

Pierce tests, which are both implemented in R, Team (2004). To evaluate whether

the variance is constant, we may simply analyse the residuals plot in order to examine

if there is any change in the behaviour of the residuals in terms of their volatility.

Another way, is to apply the Box-Cox's power transformation (see (3.13)) for di�erent

values of λ.

The Lagrange Multiplier test (de�ned in Eviews, Software (2009)) is also computed

in order to check for the presence of conditional heteroskedasticity and for any evidence

of ARCH e�ects, when we are analysing the residuals of the identi�ed model for the

conditional mean.

Based on the test results, we may have to adjust other models, so that all assump-

tions are veri�ed.

3. Forecasting and model selection

After identifying and validating several models in the previous point we are now able

to proceed with the forecasting by taking into account two types of prediction methods.

The �rst one is an in-sample method which consists of one-step-ahead prediction and

its main purpose is to test the model stability. The second approach, from our point

of view much more interesting, consists on the prediction of k out-of-sample values.

Having the forecasts of the identi�ed models, the next step is to select the one that

better adjusts reality, and there are several criteria, described in Section 3.3, that can

help us to choose which is, in fact, the best model.

3.2 Regime-switching Models

In this section we present the alternative approach used to model and forecast the Brent

prices: regime-switching models. The idea is to analyse if the behaviour of the data

set can be described by di�erent states, or regimes. Therefore in Subsection 3.2.1 we

present a brief introduction to regime-switching models by considering the two types of

switching mechanisms used in this study, the smooth transition autoregressive (STAR)

models and the Markov-switching (MS) models.

In Subsection 3.2.2 we describe our methodology to understand and model the

Brent prices behaviour considering these state-dependent models.
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3.2.1 Introduction

The regime-switching models can be de�ned as non-linear models that allow for the

possibility that the dynamic behaviour of the time series depends on regimes that

occur at any given point in time. Therefore this class of models lets the series switch

stochastically between alternative cases of the conditional mean and variance equations.

In other words, it allows for certain properties of the time series, such as mean, variance

and/or autocorrelation to be di�erent across regimes.

The �rst class of these models to be introduced is the STAR models. Initially,

Tong (1983) proposed the threshold autoregressive (TAR) model, which assumes that

the regime in a given point in time, t, can be determined by an observable variable.

Therefore the regime is de�ned considering the value of the observable variable (also

named as threshold variable) relative to a de�ne threshold value, which we refer to as

c.

A general class of state-dependent models is the STAR model, which assumes that

the transition between regimes is gradual. A two-regime STAR(p) model is given by

yt = (ϕ1,0 + ϕ1,1 yt−1 + · · ·+ ϕ1,p yt−p) (1−G(st; γ, c))

+ (ϕ2,0 + ϕ2,1 yt−1 + · · ·+ ϕ2,p yt−p) G(st; γ, c) + ϵt, (3.20)

with t = 1, . . . , T . The st variable, as referred in Dijk et al. (2002), can assume several

forms. As discussed by Teräsvirta (1994), st is considered to be a lagged endogenous

variable, st = yt−δ (with δ de�ned as the delay parameter), while Frances and Dijk

(2000) assume st to be an exogenous variable (st = zt). The other term is the transition

function, G(st; γ, c), whose choice determines di�erent regime-switching behaviours.

A popular choice for this function is the logistic function,

G(st; γ, c) =
1

1 + exp(−γ(st − c))
, (3.21)

where γ is the smoothness parameter, c is the threshold value, and the STAR model

turns into a logistic STAR (LSTAR) model. When γ tends to zero the logistic function

approaches a constant value (equal to 0.5), and when γ = 0 the LSTAR model reduces

to a linear model. Another particular model occurs when γ becomes very large and

st = yt−δ, transforming the transition function into an indicator function I[st > c]

and leading the transition between di�erent regimes to be instantaneous. This class of

models is called a self-exciting TAR (SETAR) model, and a two-regime SETAR(p) is
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represented as

yt = (ϕ0,1 + ϕ1,1 yt−1 + · · ·+ ϕ1,p yt−p) (1− I[st > c])

+ (ϕ2,0 + ϕ2,1 yt−1 + · · ·+ ϕ2,p yt−p) I[st > c] + ϵt, (3.22)

where I[A] = 1 if the event A occurs, and I[A] = 0 otherwise. For a more detailed

description on these models we refer to Tong (1983), and Frances and Dijk (2000).

In some cases is interesting to allow for more than two regimes. Therefore a m-

regime SETARmodel can be obtained by assumingm+1 threshold values, c0, c1, . . . , cm−1, cm,

such that −∞ = c0 < c1 < · · · < cm−1 < cm = ∞, and the extension of (3.22) to a

m-regime of order p is given by

yt = ϕ0,j + ϕ1,jyt−1 + · · ·+ ϕp,jyt−p + ϵt if cj−1 < yt−1 ≤ cj, (3.23)

for j = 1, . . . ,m states.

A similar approach is done for the STAR model. Consider the same subset of

threshold values de�ned above, c1, . . . , cm−1, and an additional set of m−1 smoothness

parameters, γ1, . . . , γm−1, then a m-regime STAR model can be de�ned as

yt = ϕ′
1xt + (ϕ2 − ϕ1)

′xtG1(st) + · · ·+ (ϕm − ϕm−1)
′xtGm−1(st) + ϵt, (3.24)

where xt = (1, x̃′
t)

′ with x̃t = (yt−1, . . . , yt−p)
′, ϕi = (ϕi,0, . . . , ϕi,p)

′ with i = 1, . . . ,m,

and Gj(st) ≡ Gj(st; γj, cj) are the logistic functions de�ned in (3.21) for j = 1, . . . ,m−
1.

The other class of regime-switching models, contrary to the one previously de-

scribed, assumes that the regime that occurs at time t cannot be determined by an

observable variable. In fact, the switching between regimes depends on an unobservable

variable, which we denote as st, and that characterises the regime or state in which the

process is at a given time t.

Many authors, namely Hamilton (1989) and Teräsvirta (1994) among others, have

made many relevant contributions among non-linear models, especially regime-switching

models. In this analysis we focus on Markov-switching autoregressive (MS-AR) mod-

els, considering a �nite number of states. Additionally, MS-AR models can be seen as

an extension of autoregressive models to the non-linear case. A common representation
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(see, for example, Frances and Dijk (2000)) of a MS-AR(p) model is given by

A(n) =


ϕ0,1 +

∑p
i=1 ϕi,1 yt−i + ϵt, if st = 1

ϕ0,2 +
∑p

i=1 ϕi,2 yt−i + ϵt, if st = 2
...

ϕ0,m +
∑p

i=1 ϕi,m yt−i + ϵt, if st = m,

(3.25)

or, in a shorthand version by

yt = ϕ0,st +

p∑
i=1

ϕi,st yt−i + ϵt, st = j, (3.26)

where the parameters ϕ0, and ϕi, with i = 1, . . . , p are estimated for each state j, with

j = 1, . . . ,m regimes.

However, as the switching is under the control of a Markov-chain updating mech-

anism with �xed transition probabilities, the model is only completely characterised

after de�ning these probabilities, which are given by

pij = P (st = j|st−1 = i), i, j = 1, . . . ,m, (3.27)

with pij ≥ 0 and
∑m

j=1 pij = 1 for all i, j = 1, . . .m. Once again we refer to Engle and

Hamilton (1990), Frances and Dijk (2000) and Hamilton (1994) for a more detailed

analysis.

3.2.2 Modelling Methodology

In this section we present a brief description of the methodology we use in the modelling

and forecasting of the Brent prices when considering regime-switching models.

Like in the methodology regarding long memory time series models, previously

discussed in Subsection 3.1.2, we also consider some key steps, much in line with the

ones proposed by Frances and Dijk (2000). Therefore we assume the following steps

1. Model identi�cation and regime-switching testing;

2. Model validation; and

3. Forecasting and model selection.

Next we present a brief discussion on each of the above topics.

1. Model identi�cation and regime-switching testing
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We start by discussing the model identi�cation for the STAR models as well as for

a restriction of this class, the SETAR models. The �rst step consists on identifying

an appropriate order p for the autoregressive model, and the technique used for this

procedure has already been explained in Subsection 3.1.2.

We also need to choose the number of regimes, m, and consequently the number of

the threshold values ci, for i = 1, . . . ,m−1 states, as well as their estimates. The choice

of the threshold values is generally dependent on the number of observations in each

regime, so that each state contains a minimum number of observations to obtain reliable

estimates of the autoregressive parameters. Therefore the threshold values are usually

chosen so that each regime contains at least a speci�ed fraction of observations. There

is no clear choice for this fraction but the R software assumes that 15% is reasonable.

Another important aspect is to select the threshold variable, and in this case for the

STAR model, we also consider the data itself, lagged by some positive integer δ. The

estimate for the delay parameter, δ, is the value that minimises the residual variance.

Regarding the STAR model, it is also necessary to estimate the smoothness param-

eter, γ. According to Frances and Dijk (2000) the estimate of γ is usually imprecise

and, when its signi�cance is analysed, it is usually considered as statistically insignif-

icant. For more details on the identi�cation of SETAR and STAR models we refer to

Antonio (2008).

One important and relevant issue regarding regime-switching models, and in par-

ticular SETAR models, is to test if the time series really needs to be modelled by

non-linear processes. We follow closely the tests described by Hansen (1999) that, gen-

erally, considers an appropriate least squares test of the null hypothesis of SETAR(i)

against SETAR(k), with i < k. The test statistic is given by

Fik = n

(
Si − Sk

Sk

)
, (3.28)

and is rejected for large values of Fik. The parameter Si is the residual sum of squares

(RSS) of the SETAR(i) model, and Sk is the RSS of the SETAR(k) model. This ratio

is equivalent to the likelihood ratio test when the errors are independent and follow

a N(0, σ2) process, and is also equivalent to the Lagrange multiplier test. So this

test can be used for testing linearity (SETAR(1)) against the SETAR(2) alternative

(a non-linear model with two regimes). A large value of F12, as previously mentioned,

leads to the rejection of the null hypothesis, but in order to implement this test we

must know the distribution of F12 under the null hypothesis. In most testing contexts,

test statistics like Fik, or in particular F12, are expected to have an asymptotic χ2
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distribution. However, this is not the case, and an asymptotic distribution theory must

be developed. In e�ect, if F12 is not statistically signi�cant when compared to the χ2, it

will be certainly not signi�cant when compared to the correct asymptotic distribution.

For a more detailed description on this procedure we refer to Hansen (1999). This test is

implemented in R software and allows testing for a linear autoregressive model against

a SETAR(2) and against a SETAR(3) models, and it also tests the null hypothesis of

SETAR(2) against SETAR(3). For further discussion we refer to Antonio (2008) and

Hansen (1999).

For the Markov-switching models, we also start by specifying an appropriate order

p for the AR(p) model, and this procedure is described in Subsection 3.1.2. As for

this class of models, the regimes are determined by an unobservable variable (st), we

need to choose the number of states, or regimes, for the data under investigation. For

each state the autoregressive parameters are estimated using the maximum likelihood

techniques and the transition probability from one regime to another is also determined.

Additionally, the probability that a process is in a particular state st at time t, given

all information available at that time is also determined

p(st|y1, . . . , yt) (3.29)

and is de�ned as the �lter inference of the process to be at a certain regime in time t.

We also perform an inference about the historical state of the process at some date t,

but now based on all given observations,

p(st|y1, . . . , yT ) (3.30)

and is referred to as the smoothness inference about the regime at time t.

The Markov-switching model relevance is tested by computing a Likelihood Ratio

(LR) statistic, which assumes for H0 the hypothesis of linearity against the alternative

of a relevant MS model. In this case, the test statistic is

LRMS = LMS − LAR (3.31)

where LMS and LAR correspond, respectively, to the values of the likelihood functions

of Markov-switching and linear autoregressive models. As described by Frances and

Dijk (2000) this test statistic cannot be characterised analytically, so critical values

must be computed in terms of computational simulation.
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2. Model validation

After identifying and estimating the model we proceed with the model validation by

performing several diagnostic tests. Although the residuals can be subjected to the di-

agnostic tests proposed and described by Box and Jenkins (1976) (seeSubsection 3.1.2),

some test statistics are not suitable in the context of non-linear models.

Regarding the SETAR and STAR models we follow closely the methodology pro-

posed by Frances and Dijk (2000) and test mainly two aspects: serial correlation and

remaining non-linearity.

For testing the serial correlation, we need to assume a general non-linear AR(p)

model,

yt = F (xt; θ) + ϵt, (3.32)

where xt = (1, yt−1, . . . , yt−p), and F (xt; θ) corresponds to a general non-linear function

with parameters θ and twice continuously di�erentiable. The Lagrange Multiplier (LM)

approach is used and its test for the qth order serial dependence in ϵt is checked by

computing

F = nR2 ∼ χ2(q) (3.33)

where R2 is the coe�cient of determination of ϵ̂t on ∂F (xt; θ)/∂θ and q lagged residuals,

ϵ̂t−1, . . . , ϵ̂t−q.

When testing for remaining non-linearity in models such as STAR and SETAR

models, a very simple analysis can be done. It is possible to test if the time series

under investigation requires another regime, and the techniques for this evaluation

have been previously described when performing the regime-switching testing. For

example, if a two-regime model has been identi�ed, we may test the null hypothesis of

a two-regime model against the alternative that a third regime is required, and so on.

Considering Markov-switching models, Hamilton (1996) proposes a wide diagnostic

checking analysis by testing for residuals autocorrelation, heteroskedasticity, misspec-

i�cation of the Markov-process st, and omitted explanatory variables. The used tests

are LM-type tests and make heavy use of the score ht(θ) which is de�ned as

ht(θ) ≡
∂ ln f(yt|Ωt−1; θ)

∂θ
(3.34)

where f(yt|Ωt−1; θ) corresponds to the likelihood, or to the conditional density function.

For a detailed description on these tests we refer to Frances and Dijk (2000) and
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Hamilton (1996).

3. Forecasting and model selection

At last, after identifying and testing several models, we are able to proceed with the

forecasting. Analogous to what has been done for the long memory time series models,

discussed in Subsection 3.1.2, we consider two di�erent approaches: the in-sample

one-step-ahead and the out-of-sample forecasting.

Then the achieved results, obtained for each model, are evaluated considering the

methods introduced and discussed in Section 3.3, and the best model is, �nally, chosen.

3.3 Model Selection

Analogous to the previous sections, we also consider two subsections. In the �rst, Sub-

section 3.3.1, we introduce some concepts and techniques used for the model selection.

We refer to simple methods that allow for the evaluation of in-sample and out-of-sample

forecasts but we also discuss some formal tests that evaluate the prediction accuracy

of two competing forecasts.

In Subsection 3.3.2 we present the key steps followed in the model selection.

3.3.1 Introduction

There are two di�erent approaches that help us to select the best model. The �rst is

based on an in-sample �t evaluation, and the second considers an out-of-sample per-

forming analysis. Regarding the in-sample approach the most appropriate method is

based on the information criteria, namely the Akaike's information criterion (AIC),

the Bayesian information criterion (BIC), or the Schwartz information criterion (SIC).

These model selection criteria are goodness-of-�t measures which compare the in-

sample �t, by measuring the residual variance, against the number of estimated pa-

rameters.

The other approach is to evaluate the prediction accuracy of the proposed models

by considering out-of-sample forecasting. Once again, there are several procedures to

check on the quality of the forecasts. The most simple one can be obtained by simply

calculating the percentage of the m observations which are within the 95 percent con-

�dence interval (CI). Others commonly used are the root mean square error (RMSE),

and the mean absolute percentage error (MAPE) that gives a relative error measure.

These last two statistics compare prediction errors from di�erent models. However a

very important issue is being neglected, i.e., testing if there is any qualitative di�erence
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between the forecasts of the evaluated models. The original tests of forecasting accuracy

imposed certain conditions to the loss function and to the forecast errors that are very

di�cult to achieve. The loss function has to be quadratic and the forecast errors have

to be Gaussian, with null mean, and serially and contemporaneously uncorrelated. To

overcome these restrictive limitations, Diebold and Mariano (1995) proposed several

tests which test the null hypothesis of no di�erence in the accuracy of two competing

forecasts, but allow a certain �exibility in the loss function, as well as in the forecast

errors.

That is, assume two forecasts {ŷit}Tt=1 and {ŷjt}Tt=1 of the time series {yt}Tt=1 and

their respective forecast errors, {eit}Tt=1 and {ejt}Tt=1 with T being the number of pre-

dicted values. The idea is to assess the expected loss function (de�ned as g(.)) associ-

ated to each of the forecasts. As in many applications the loss function is assumed to

be a direct function of the forecast errors, what we want to test for the null hypothesis

is if E[g(eit)] = E[g(ejt)], or simply E[dt] = 0 with dt = g(eit)− g(ejt). In other words,

we want to test the null hypothesis that the population mean of the loss di�erential

series is zero.

In order to test the null hypothesis of a zero mean of the loss di�erential, Diebold

and Mariano (1995) assume {dt}Tt=1 as the sample path of a loss di�erential series. The

asymptotic distribution of the sample mean loss di�erential can be de�ned as

√
T (d̄− µ) → N(0, 2πfd(0)) (3.35)

where d̄ = 1
T

∑T
t=1 dt , and fd(0) is the spectral density of the loss di�erential at

frequency zero. Thus, considering large samples, d̄ is approximately distributed as

N(µ, 2πfd(0)), and for testing the null hypothesis of equal forecast accuracy the test

statistic is given by

DM =
d̄√

2πf̂d(0)
T

∼ N(0, 1) (3.36)

where f̂d(0) is a consistent estimator of fd(0). For more details on this test we refer to

Diebold and Mariano (1995).

3.3.2 Model Selection Methodology

In this subsection we present the methodology we use for selecting the model that

better describes the behaviour of the Brent prices.

As previously mentioned, there are two di�erent approaches to verify the adequacy
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of the model in terms of forecasting. For the in-sample approach, we compute the

information criteria, such as AIC, BIC, and SIC.

For the out-of-sample approach, we consider not only forecast accuracy measures,

but we also compare the forecast accuracy of two di�erent models. In order to assess

the prediction accuracy we compute the usual accuracy measures, namely the root

mean square error (RMSE),

RMSE =

√√√√ 1

T

T∑
t=1

(pt − p̂t)2, (3.37)

and the mean absolute percentage error (MAPE),

MAPE =
1

T

T∑
t=1

|pt − p̂t|
pt

× 100%, (3.38)

where T is the number of the predicted observations, and pt and p̂t are the actual and

the forecasted price, respectively.

Finally, the Diebold-Mariano (DM) test is also computed to compare the forecast

accuracy of the di�erent identi�ed models.
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Chapter 4

Empirical Results

In this chapter we present all empirical results. In Section 4.1 we start by introducing

the Brent prices data set. We analyse its empirical distribution by performing a graph-

ical analysis, and by computing some descriptive statistics, in order to evaluate some

location and dispersion measures, as well as its symmetry and kurtosis. The presence

of outliers is also tested.

Next we proceed with the data modelling. In Section 4.2 we analyse and forecast

the Brent prices using long memory time series models. During the model identi�cation

process, we evaluate the long memory phenomena not only in the conditional mean

but also in the conditional variance, and we model the data with ARFIMA-FIGARCH

models, and some of their variants. In Section 4.3 we characterise and predict the

Brent prices behaviour considering regime-switching models, and in this methodology

we consider two di�erent approaches. The �rst considers that the changes in regime

occur due to an observable and known variable, and the data is modelled with STAR

and SETAR models. The other, assuming that the switching between regimes results

from an unobservable variable, considers the application of MS-AR models.

Finally, in Section 4.4 we analyse the forecasting values of the previous identi�ed

models, and by performing a prediction accuracy assessment we select the model that

better describes and adjusts our Brent prices behaviour. We start with a in-sample �t

evaluation by comparing the information criteria of the di�erent identi�ed models, as

well as some forecast accuracy measures, namely the RMSE and the MAPE. Then we

proceed with an out-of-sample prediction accuracy evaluation, and besides the RMSE

and MAPE measures, the Diebold-Mariano test is also computed in order to compare

the forecast accuracy of the di�erent models.

We refer that in all sections the study is divided according to the data granularity,

meaning that there is a subsection for the daily analysis and another for the monthly

Brent prices study.



Modelling and Forecasting Brent Prices

4.1 Data Analysis

In this section we introduce our time series: the Brent prices data set. First we evaluate

its behaviour by presenting its chronogram and by performing a descriptive analysis.

The data consists of the Bloomberg European Dated Forties Oseberg Ero�sk Price and

was obtained through a Bloomberg1 terminal.

As our main purpose is to analyse and understand the Brent prices behaviour, we

have used both daily and monthly prices data sets. For the daily data set we consider

historical data (on a daily basis and only trading days) from the fourth of January

2000 until the 31st of December 2009, for a total of n = 2560 observations. The

monthly data, considering the same historical period, is achieved by computing the

monthly average of the daily prices, for a total of n = 120 observations. However,

in the modelling and for estimation purposes, we consider historical data only until

September 2009 (for a total of 117 observations) in order to keep an out-of-sample of

a year period. Next we present an introduction to each data set. In Subsection 4.1.1

we present the daily Brent prices while in Subsection 4.1.2 we give an overview of the

monthly data behaviour.

4.1.1 Daily Brent Prices

First, we start by introducing the daily Brent prices (in USD/Barrel, or $/bbl) by

showing its behaviour in Figure 4.1. From its graphical analysis it is possible to identify

Figure 4.1: Daily Brent prices chronogram (in USD/barrel), from January 4, 2000,
until December 31, 2009 (2560 observations).

an increasing trend from January 2000 to July 2006, that leads the Brent prices to reach

the value of 76.29$/bbl. Then a slightly decrease can be observed until January 2007,

preceding the most expressive raise that lasts for one year and an half, and that guides

1Service that provides �nancial news and data to some companies and organisations.
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the Brent prices to touch its maximum value of 145$/bbl on the third of July 2008.

Afterwards, its price falls again to 34.04$/bbl at the 24th December 2008, and latter

it inverts its trend, starting an increase that remains until the end of December 2009.

To complement the graphical analysis, some descriptive statistics are also provided

in Table 4.1. Based on the ratio between the standard deviation and the mean, we

evaluated the coe�cient of variation which is, approximately, 52%, meaning that the

price variation represents about 52% of the mean. Regarding the measures of loca-

tion, we can verify that the series has a wide range of variation from a minimum of

16.62$/bbl to a maximum of 145.66$/bbl, and that 5% of the observations are higher

than 101.61$/bbl. The asymmetry measure (skewness) of 1.10 suggests that the mass

of the distribution is concentrated on the left side of the curve, but there are a set of

high values that lead to a long right tail. Finally, we have analysed the kurtosis mea-

sure which represents the �peakedness� of the distribution. It is a leptokurtic function,

as its value is 3.94, indicating that the probability of occurring extreme variations is

higher than in a normal distribution (kurtosis is 3).

Brent prices
Mean 49.83

Std. Deviation 26.06
Skewness 1.10
Kurtosis 3.94

Minimum 16.62
Percentile 0.05 22.55

Median 43.90
Percentile 0.95 101.61

Maximum 145.66

Table 4.1: Descriptive statistics of the daily Brent prices in USD/Barrel, from January
4, 2000, until December 31, 2009.

We follow with a brief analysis on the presence of outliers. Regarding this point,

our main goal is simply to identify if there are any severe outliers. The methodology

used is based on the interquartile range and assume that an observation is considered

outlier if it lays outside the interval [Q1 − k(Q3 − Q1), Q3 + k(Q3 − Q1)], for some

constant k. Assuming k = 3, and since our series has Q1 = 28 and Q3 = 66.23, we

checked all observations and concluded that there is no severe outliers. The presence

of outliers is also checked by computing the Grubbs' test described in Komsta (2005),

and implemented in the R software, Team (2004). Its null hypothesis assumes that

there is no outlier in the data set against an alternative hypothesis that there is at

least one observation statistically di�erent from all the others. This test consists of

calculating the test statistic G and comparing it to an appropriate critical value, where
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G =
maxi=1,...,N |Yi−Ȳ |

s
, with Ȳ and s denoting the mean and the standard deviation,

respectively, and N being the number of observations. Although this test is based on

the assumption of normality, and the performed normality tests (see Table A.1) rejected

this hypothesis we decided to compute it anyway. The observation in evaluation is the

maximum value of the series, 145.66$/bbl, and as the p-value of the Grubbs' test is

0.30, we do no reject the null hypothesis, and, consequently, the highest value is not

considered an outlier, corroborating with the previous result.

4.1.2 Monthly Brent Prices

The behaviour of the monthly Brent prices data set is presented in Figure 4.2. The

Figure 4.2: Monthly Brent prices chronogram (in USD/barrel), from January 2000
until December 2009 (120 observations).

conclusions from the graphical analysis are, as expected, very similar to the ones ob-

tained for the daily data. We stress that the monthly prices are obtained by computing

the monthly average of the daily prices. Therefore, an increasing trend is also exhibited

from January 2000 to July 2006 followed by a decline for six months. The Brent prices

touch its maximum of 134 $/bbl in July 2008, then decreases, and after December 2008

it increases again till the end of the 2009 year.

Analogous to the analysis implemented for the daily data, we also computed some

descriptive statistics. The results, presented in Table 4.2, are practically the same as

the ones from the daily data set. The coe�cient of variation is still 52%, the leptokurtic

characteristic remains, and the mass of the distribution is concentrated on the left side

of the curve exhibiting a long right tail.

Regarding the presence of outliers, we have applied the methodology based on the

interquartile range, and assuming k = 3 no severe outliers were identi�ed. The Grubb's

test was also computed, though the hypothesis of normality had been rejected (see
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Brent prices
Mean 49.86

Std. Deviation 25.97
Skewness 1.07
Kurtosis 3.85

Minimum 18.61
Percentile 0.05 23.17

Median 43.38
Percentile 0.95 100.94

Maximum 133.90

Table 4.2: Descriptive statistics of the monthly Brent prices in USD/Barrel, from
January 2000 until December 2009.

Table A.2), and as its p-value is 0.06, for a signi�cance level of 5%, the maximum value

is not considered as an outlier, supporting the result achieved from the interquartile

range methodology.

Next we model the Brent prices data sets considering long memory time series

models and regime-switching models.

4.2 Long Memory Time Series Models

In this section we model the Brent prices data, on a daily and monthly basis, using

long memory time series models.

Analogous to what has been done for the data analysis, we also consider two dis-

tinct subsections. We start by analysing the daily data in Subsection 4.2.1 and in

Subsection 4.2.2 we characterise the monthly data set.

4.2.1 Daily Brent Prices

Following closely the methodology described in Subsection 3.1.2 we start with the

analysis of the daily Brent prices data set.

1. Stationarity and long memory testing

As previously referred, before testing the long memory presence in our data set,

we need to check if the time series has a stationary behaviour. We started to test the

variance stationarity by computing the Box-Cox's power transformation. Instead of

choosing a grid of values for the λ, we decided only to test the logarithmic hypothesis

(as it is the most commonly used in �nancial markets) against the data set with no

transformation. So, for the transformation parameter λ ∈ {0, 1}, the minimum of the

sample variance of the transformed series is obtained for λ = 0 (the results are shown
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in Table A.3).

After applying the logarithm to our data set in order to stabilise the variance, we

tested if the series has a mean non-stationary behaviour. We computed some tests,

such as KPSS, ADF and PP tests, and all results suggest that, for a signi�cance level

of α = 5%, the logarithmic transformation is not enough to stabilise the mean of the

series. Additionally, we need to apply to it the �rst order di�erences. The results,

presented in Table A.4, show that after di�erentiating the data set the time series is

�nally stationary.

We stress that the presence of any seasonal or cyclic component was also tested

by examining the periodogram of the data set and by computing the Fisher test, see

Fisher (1929), and no signi�cant component has been identi�ed.

At this moment, we are able to check for the presence of short or long memory on the

mean and volatility of our data set. We remark that we have assumed the Brent prices

squared returns as a proxy for the Brent prices volatility. An alternative approach

might have been the use of the realised volatility, however we leave this analysis for

further investigation. In Table 4.3 we present the results obtained when estimating

the R/S, GPH and Robinson's d statistics. Although each gives a di�erent estimate

value for the long memory parameter, the estimates of the Robinson's d and the GPH

(considering a bandwidth of 0.7) tests are very similar for the Brent prices squared

returns. However, a very important step is to evaluate if the estimates are statistically

signi�cant. Since the GPH test provides not only the estimate but also its standard

deviation (contrary to the Robinson's d), we computed the t-test and concluded that,

for a signi�cance level of α = 5%, the d estimate for the mean is not statistically

signi�cant, while for the volatility it is, and for the further analysis we have considered

the value of 0.3152 for the long memory parameter in the volatility of the data set.

Brent prices Brent prices
returns squared returns

R/S statistic 0.0376 0.1186
Bw=0.6 0.0281 0.4922

GPH Bw=0.7 0.0053 0.3152
Bw=0.8 0.0343 0.1741

Robinson's d 0.0920 0.3159

Table 4.3: Estimates of the long memory parameter, d, for the daily Brent prices.

2. Model identi�cation and validation

After estimating the long memory parameters for the mean and volatility of our

data set, we began the model identi�cation. First, and as there is no evidence of
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long memory in the conditional mean, we computed the empirical autocorrelation and

partial autocorrelation functions of our stationary time series, and represented them

in Figure 4.3.
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Figure 4.3: Empirical ACF (a) and empirical PACF (b) of daily Brent prices returns.

From the analysis of both functions we conclude that there is no ARMA structure

on the mean of the series, so we modelled it with as a WN process with null mean. How-

ever, when evaluating the adequacy of the residuals, we concluded that although the

residuals are uncorrelated as the Box-Pierce and Ljung-Box tests have con�rmed, there

is structure in the squared residuals (see Figure A.1). The hypothesis of homokedastic

errors was also rejected when we computed the ARCH test. The results of the residuals

analysis are shown in Table A.5.

Therefore, as the residuals of the model have a non constant conditional variance

and exhibit long memory, we have considered the FIGARCH and some of its variants,

namely FIAPARCH and FIEGARCH models, due to the asymmetry of the volatil-

ity. We have also modelled the data set without the long memory characteristic for

comparison purposes. We remark that in the model estimation we have considered

the conditional maximum likelihood estimation method, and as the series of returns

rejects the hypothesis of normality we have also assumed a Student's t distribution

(see Table A.1). We refer that the estimation of these models, especially the ones

considering the long memory characteristic is complex, and sometimes the algorithm

failed to converge.

Several models were tested and we present the results of the best model, in terms

of the residual analysis, within each class of models. The information regarding the

proposed models is presented in Table A.6, and the diagnostic checking for each model

is summarised and shown in Table 4.4.

The BP and LB tests correspond to the Box-Pierce and Ljung-Box tests, respec-

tively. The column named as �Var. homog.�, refers to the variance homogeneity check-

ing that is done by applying the Box-Cox's power transformation, and in case no trans-
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Model validation
Param. Residuals Squared residuals

Model Signif. BP test LB test Var. homog. BP test LB test
GARCH(1,1) X 0.861 0.860 X 0.718 0.717
APARCH(2,2) X 0.712 0.711 X 0.912 0.912
EGARCH(1,1) X 0.725 0.725 X 0.575 0.575
FIGARCH(1,1) X 0.794 0.794 X 0.717 0.717
FIAPARCH(3,3) X 0.841 0.841 X 0.889 0.889
FIEGARCH(2,2) X 0.340 0.340 X 0.048 0.048

Table 4.4: Summary results of the proposed models for the daily Brent prices.

formation is needed (and consequently the variance is stabilised), we simply represent

it using a check mark.

From the model validation analysis, we verify that modelling the daily Brent prices

with time series models without the long memory characteristic seems to be enough

to describe the returns behaviour, at least in terms of validation. In e�ect, all models

passed the diagnostic checking, except the FIEGARCH(2,2) model that was not able

to remove the autocorrelation among the squared residuals for the lower lags. An

additional examination regarding the models validation is shown from Figure A.2 to

Figure A.7. Next we followed to the forecasting and model selection, and we considered

all identi�ed models except the FIEGARCH(2,2) model.

3. Forecasting and model selection

As we have several identi�ed and validated models, we followed with the mod-

els forecasting. Although we have computed the predicted values, we decided only

to present the results in Subsection 4.4.1, where a prediction accuracy assessment is

performed by comparing the results of all identi�ed daily models.

4.2.2 Monthly Brent Prices

Analogous to the procedure followed for the daily data set, in the modelling of the

monthly Brent prices we also consider the modelling methodology described in Sub-

section 3.1.2. We start by evaluating the stationary behaviour and the long memory

in our data set.

1. Stationarity and long memory testing

The �rst step to follow is to verify the variance homogeneity, and we considered the

same two values for the transformation parameter, λ ∈ {0, 1}. The results, presented
in Table A.7, are very similar to the ones obtained for the daily data set, as they also

suggest a logarithmic transformation.
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Analogous to the daily results, and since no periodic or seasonal component were

identi�ed, we have computed the KPSS, PP and ADF tests to check for the series sta-

tionarity and concluded that we needed to apply to the series the �rst order di�erences,

see Table A.8.

As our data set is now stationary, we are able to proceed with the short and long

memory testing. The R/S, GPH and Robinson's d statistics were computed and the

estimates of the d parameter are given in Table 4.5. In this case, the results are quite

Brent prices Brent prices
returns squared returns

R/S statistic 0.0736 -0.2528
Bw=0.6 -0.0610 0.1208

GPH Bw=0.7 0.1037 0.2044
Bw=0.8 0.1221 0.4249

Robinson's d 0.1605 0.0689

Table 4.5: Estimates of the long memory parameter, d, for the monthly Brent prices.

di�erent from the ones obtained for the daily data, as we are not able to identify

similar values for two di�erent statistics, which makes it harder to choose the right

estimate. Additionally, the analysis of the di�erent d estimates for the mean and

volatility show simultaneously negative and positive values depending on the performed

statistic, which may lead to contradictory conclusions.

The estimate signi�cance was also tested, and for the conditional mean none of the

estimates was statistically signi�cant. Regarding the conditional variance, both results

for the 0.7 and 0.8 bandwidths (in the GPH test) revealed to be statistically signi�cant,

but as they are quite di�erent and there is no obvious reason to choose one against the

other, the choice of the d parameter will be done during the model identi�cation.

2. Model identi�cation and validation

We are now able to proceed to the model identi�cation. As there is no evidence of

long memory in the conditional mean, we computed the empirical ACF and PACF of

the stationary series in Figure 4.4, in order to identify the order of the autoregressive

and moving average parameters. From the analysis of both empirical autocorrelation

functions, we verify that both exhibit a higher value for the sixth lag, so we adjusted

an AR(6) to our stationary time series. We stress that, in the monthly modelling we

have considered historical data only until the end of September 2009, for a total of 117

observations, in order to keep an out-of-sample of twelve points, meaning that a year

will be forecasted.

The identi�ed model, an AR(6), passed all diagnostic tests. The ACF and PACF of

its residuals were computed and shown in Figure A.8, and they illustrate the behaviour
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Figure 4.4: Empirical ACF (a) and empirical PACF (b) of the monthly Brent prices
returns.

of a WN process. This behaviour is also con�rmed by the results of some diagnostic

tests, namely the Box-Pierce and Ljung-Box tests and the ARCH LM test, that suggest

no correlation among the residuals and no conditional heteroskedasticity, respectively

(see Table A.9). Although the results suggest no ARCH e�ect, we tried to force a

conditional heteroskedastic model to the volatility in order to include the long memory

characteristic (using the previous estimates, as well as allowing the model to estimate

itself the d parameter). However, and as expected, none of the tried models was

statistically signi�cant, meaning that the monthly Brent prices data set has no long-

range dependence, neither in the conditional mean, nor in the variance. So, the only

proposed model for the monthly Brent prices returns is the AR(6) model (described in

Table A.10), and its results are summarised in Table 4.6

Model validation
Param. Residuals Squared residuals

Model Signif. BP test LB test Var. homog. BP test LB test
AR(6) X 0.952 0.951 X 0.176 0.170

Table 4.6: Summary results of the proposed model for the monthly Brent prices returns.

3. Forecasting and model selection

Now, given the identi�ed model we proceeded with the models forecasting. Al-

though we have computed the predicted values, we decided, like in the daily case, only

to present the results in Subsection 4.4.2, where a prediction accuracy assessment of

all identi�ed monthly models is done.
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4.3 Regime-switching Models

In this section we present the Brent prices modelling by considering the regime-switching

models. Similar to the previous sections, we have also divided the analysis and mod-

elling of the Brent prices in two di�erent subsections, according to the data granularity.

Thus, in Subsection 4.3.1 we perform the daily analysis, and in Subsection 4.3.2 we

characterise the Brent prices behaviour considering monthly data.

4.3.1 Daily Brent Prices

Considering the steps previously described in Subsection 3.2.2, we started with the

model identi�cation.

1. Model identi�cation and regime-switching testing

As previously referred, �rst we need to identify an appropriate order for the autore-

gressive parameter. So we started by running several autoregressive models, and the

choice of the p parameter corresponds to the model for which the information criterion

AIC is minimum, and in this case we identi�ed an AR(1) model. Before we passed on

to the other parameters estimation, we have con�rmed that modelling the data with

an AR(1) model was enough to remove all data autocorrelation.

As the threshold variable is assumed to be the data itself, as previously mentioned,

we followed with the estimation of the delay parameter, δ. We considered a grid of

values for this parameter, δ ∈ {1, 2, . . . , 9}, and the �rst models we tried to adjust

to the daily Brent prices were the LSTAR models, but as the estimated values for

the smoothness parameter were too high (see Table A.11) we decided to discard these

models. We stress that for high values of the smoothness parameter (γ), the transition

between regimes is practically instantaneous, and as our threshold variable is the data

itself, these models are in e�ect SETAR models. Therefore, we continued this analysis

considering only this last class of models.

Once again, we assumed the same grid of values for the delay parameter and esti-

mated the corresponding SETAR(1) models. The results are shown in Table 4.7, and

the minimum residual variance is achieved for δ = 7 and δ = 8. We decided to consider

δ = 7.

We proceeded with the regime-switching testing, and the results illustrated in Ta-

ble A.12 show that the hypothesis of linearity is not rejected, meaning that there is no

need to model the daily data with regime-switching models. Even though the achieved

conclusion for the SETAR models, we have continued the analysis and tried to adjust

a MS-AR(1) model to the daily Brent prices. The model was estimated in the TSM
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Residual Threshold % Low % High
δ variance value regime (observations)
1 1.678 35.02 43% 57%
2 1.677 35.97 44% 56%
3 1.677 34.83 43% 57%
4 1.678 33.30 41% 59%
5 1.677 36.16 44% 56%
6 1.676 36.16 44% 56%
7 1.675 38.19 45% 55%
8 1.675 37.95 45% 55%
9 1.676 39.40 46% 54%

Table 4.7: Summary results of the two-regime SETAR models for the daily Brent
prices.

software, considering the conditional maximum likelihood estimation method and using

the Student's t distribution (as the normality hypothesis is rejected for the daily data,

see Table A.1). The results were very interesting, though not surprising, as they cor-

roborate with the SETAR model conclusions: the identi�ed model has also rejected the

need for modelling the daily data with regime-switching models. Instead of computing

the LR test, we checked if the estimated values for the parameters of the second regime

were statistically di�erent from the ones of the regime one. However, since the results

showed that they were not statistically di�erent, we could not reject the hypothesis of

linearity.

Given the previous results, we conclude that there is no improvement in modelling

the daily Brent prices with regime-switching models, as both regimes are statistically

identical, and consequently the data should be modelled with linear models.

4.3.2 Monthly Brent Prices

Analogous to the procedure followed for the daily data, we started with the model

identi�cation and the regime-switching testing.

1. Model identi�cation and regime-switching testing

We started by computing several models to identify the order of the AR(p) model,

and the model that presented the lowest AIC was an AR(2) model. After con�rming

that the correlation among the residuals has been removed, we continued with the

other parameters estimation.

Since we are considering as threshold variable the data itself, we only need to

estimate the delay parameter δ. First, we tried to apply LSTAR models, but as the

achieved values for the smoothness parameter γ were too high (see Table A.13), and

consequently the regime transition was practically instantaneous, we decided to use
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only SETAR models. The results for the SETAR models are shown in Table 4.8.

For each model, we have assumed an AR(2) model and for the following grid of delay

Residual Threshold % Low % Medium % High
δ variance value(s) regime (observations)
1 20.79 71.32 84% - 16%

2 2 18.75 71.32 85% - 15%
Regimes 3 18.02 70.19 82% - 18%

4 18.44 70.80 84% - 16%
1 22.63 43.03 58.48 49% 19% 32%

3 2 17.49 33.36 71.32 44% 41% 15%
Regimes 3 16.69 48.67 70.19 58% 25% 17%

4 16.92 43.03 70.80 51% 33% 16%

Table 4.8: Summary results of the SETAR models for the monthly Brent prices.

values, δ ∈ {1, 2, 3, 4}, we computed the residual variance, the threshold value or values

(depending if we are considering a two or a three-regime model), and the percentage of

observations in each regime. As the residual variance is minimum for δ = 3, we have

considered a three month delay in the SETAR modelling.

Next, in Table A.14 we present all tests regarding the number of regimes in the

SETAR models. We started by testing the hypothesis of linearity against the alter-

natives SETAR(2) or SETAR(3), and the null hypothesis is clearly rejected meaning

that the monthly data should be modelled with regime-switching models. The hypoth-

esis of a two-regime model (SETAR(2)) against a three-regime model (SETAR(3)) was

also tested, and in this case we do not reject the null hypothesis, and consequently, a

two-regime model must be considered.

We embarked on the modelling of the MS-AR model. We started to consider an

AR(2) model for each regime, and then using the TSM software, we adjusted a MS-

AR(2) model to the monthly Brent prices. In the model estimation, we have considered

the conditional maximum likelihood estimation method and a Student's t distribution,

as the monthly data rejects the normality hypothesis (see Table A.2). Thus, for each

state the TSM program estimated the parameters and the transition probability was

also calculated.

Regarding the Markov-switching testing, and in order to test the hypothesis of

linearity against a two-regime model, we considered the same procedure used for the

daily data. Instead of computing the LR statistic, we computed the test that allowed

to verify if the parameters of higher order regimes were di�erent from the linear (one-

regime) model, and as they revealed to be statistically di�erent, we concluded that the

data should be modelled with a two-regime model. The hypothesis of another state was

also tried, however, due to estimation problems as the algorithm failed to converge, we
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were not able to estimate a three-regime model. Therefore, we assume that our �nal

model is a two-regime MS-AR(2) model, in line with the two-regime SETAR(2) model

previously identi�ed.

So, to summarise we identi�ed two di�erent models: one assuming that the monthly

Brent prices data set depends on itself with a three month lag, and the other considering

that it depends on an external and unknown variable. Both models, described in

Table A.16 follow an AR(2) process and are a two-regime models.

2. Model validation

We proceeded with the model validation by testing the serial correlation, and if

there is any remaining non-linearity.

First we analysed the serial correlation of the two-regime SETAR(2) model. How-

ever, as pointed by Frances and Dijk (2000), the SETAR models do not satisfy the

requirement of the linear function F (xt; θ) being twice continuously di�erentiable, and

the LM statistic cannot be applied to the residuals from SETAR models. As a solution,

we considered testing the correlation among the residuals in each regime by computing

the Box-Pierce and Ljung-Box tests, and the results suggest no correlation. The test

for remaining non-linearity has already been done. In the previous point, when we were

estimating the number of regimes, we tested the null hypothesis of a two-regime model

against the alternative that a third regime is required. In e�ect, we were testing if with

a two regime model there was any remaining non-linearity, and as the null hypothesis

is not rejected we can conclude that there is no remaining non-linearity.

The model validation for the MS-AR(2) model is similar to the one followed by the

SETAR models. The Box-Pierce and Ljung-Box tests were computed and their results

indicate that there is no serial correlation when testing the MS-AR(2) model residuals.

The analysis of remaining non-linearity, as previously mentioned, could not be done

due to estimation problems. We refer to the di�culty in estimating non-linear models,

as their estimating process involves complex mathematical calculations and requires

advanced mathematical techniques. Nonetheless we assumed the MS-AR(2) model as

our �nal model.

We stress that all results regarding the model validation for both models are shown

in Table A.15.

At last, and after having the two proposed models validated we present their char-

acteristics in Table A.16. Additionally, we have computed some statistics in order to

compare the results of both modelling approaches. The comparison, illustrated in Ta-

ble 4.9, is quite interesting as it indicates a great similarity between the results of the
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two models. Both models show a clear di�erence between the two identi�ed regimes.

While the �rst regime, represented by the majority of observations, presents the lowest

Brent prices and the highest variation, the other regime has the opposite character-

istics, i.e., it exhibits the highest Brent prices and the lowest variation. Regarding

each state duration, regime one lasts for more than one year (almost two years in the

SETAR(2) model case), and the second state has a duration of only a few months.

SETAR(2) model MS-AR(2) model
Regime 1 Regime 2 Regime 1 Regime 2

Mean [$/bbl] 41.55 87.56 47.26 60.61
Std. Deviation [$/bbl] 17.21 27.70 26.30 23.33
Coef. variation [%] 41% 32% 55% 38%
% Observations 82% 18% 88% 13%
Average duration [months] 23.5 6.7 12.3 2.0

Table 4.9: Statistics for the monthly regime-switching models.

The analysis and comparison of the regime transition is also done by comparing

the smoothed probabilities of the MS-AR(2) model with the regime of the SETAR(2)

model in which the time series is at a certain point in time, see Figure 4.5. The

(a) (b)

Figure 4.5: Regime of the SETAR(2) model (a) and smoothed transition probability
of the MS-AR(2) model (b) for the monthly Brent prices.

SETAR(2) model seems to capture quite well the highest peaks of the monthly Brent

prices, identifying them as part of the second regime and maintaining the remaining

observations in regime one. The smoothed probabilities estimated by the MS-AR(2)

model are also able to identify the Brent prices peaks, however with a lag di�erence. For

example, when analysing the maximum of the Brent prices we verify that the smoothed

probability reaches the value one only after the maximum occurs. The results of these

two models in terms of �tting are compared in the next section.

3. Forecasting and model selection
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Analogous to the procedure followed for all previous models, the assessment of the

prediction accuracy of the proposed regime-switching models is presented in Subsec-

tion 4.4.2.

4.4 Model Selection

In this section we select the �nal models for the daily and monthly Brent prices.

We start by performing an in-sample analysis, comparing the information criteria of

the di�erent models, and some forecast accuracy measures, namely the RMSE and

the MAPE. Then we follow with an out-of-sample prediction accuracy evaluation by

computing the RMSE and MAPE measures, and by performing the Diebold-Mariano

test in order to compare the forecast accuracy of the di�erent models. In terms of

organisation, the daily results are presented in Subsection 4.4.1, and in Subsection 4.4.2

we select the �nal model for the monthly Brent prices.

4.4.1 Daily Brent Prices

Considering the methodology previously described, we start by presenting some results

regarding the in-sample analysis. We recall that we have only analysed the time se-

ries models, as we were not able to identify any regime-switching model for the daily

Brent prices. Therefore, in Table 4.10, we compare the results of the proposed models

for the daily Brent prices, presenting the information criteria, and some measures of

prediction accuracy. From the information criteria analysis, we verify that the intro-

Inf. criteria For. measures
Model AIC SIC RMSE MAPE

GARCH(1,1) 6043 6028 1.002 27.32%
APARCH(2,2) 6039 6013 1.001 25.01%
EGARCH(1,1) 6037 6019 1.003 29.07%
FIGARCH(1,1) 6037 6023 0.997 30.02%
FIAPARCH(3,3) 6032 5999 0.996 30.39%

Table 4.10: In-sample evaluation for the daily models.

duction of the long memory characteristic has a positive impact on both GARCH(1,1)

and APARCH(2,2), as the AIC and SIC measures decreases. This idea is corrobo-

rated with the RMSE values, though the conclusions when checking the MAPE are

contradictory.

So, we continued the forecasting and model selection analysis, but now we evaluated

the out-of-sample forecasts. The results, illustrated in Table 4.11 show that the RSME

and MAPE values for the proposed models are very similar.
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GARCH(1,1) APARCH(2,2) EGARCH(1,1) FIGARCH(1,1) FIAPARCH(3,3)
RMSE 5.699 5.432 5.494 5.795 5.773
MAPE 6.79% 6.46% 6.54% 6.90% 6.88%

Table 4.11: Out-of-sample forecast accuracy evaluation for the daily models.

Moreover, we computed the Diebold-Mariano (DM) test, in order to compare the

forecast accuracy of the di�erent prediction samples. This test, implemented in the

R software by Hyndman (2010), was computed for the proposed di�erent models, and

the results are shown in Table A.17. We can conclude that although the models have

very similar prediction error values, their forecasting samples are statistically di�erent.

When we compare the values of the DM test statistic for the proposed models we

verify that the models that incorporate the long memory characteristic show a better

predictive ability. Therefore, and to conclude, we decided to select the FIGARCH(1,1)

model as our �nal daily model, since it is the one that presents the highest predictive

accuracy, according to the results of the Diebold-Mariano test.

4.4.2 Monthly Brent Prices

We now present the results for the monthly Brent prices. Analogous to the procedure

for the daily data, we started with the in-sample analysis and in Table 4.12 we illustrate

the obtained results. The information criteria measures, unlike the daily case, are not

Inf. criteria For. measures
Model AIC SIC RMSE MAPE
AR(6) 95 83 5.298 7.92%

SETAR(2) 369 - 4.301 7.01%
MS-AR(2) -344 -358 3.104 5.71%

Table 4.12: In-sample evaluation for the monthly models.

very useful in this context, as we are comparing models of di�erent classes. Regarding

the forecast accuracy measures and though the results are very similar, we verify that

the MS-AR(2) model is the one that presents the best in-sample �tting.

Next, we followed with the out-of-sample analysis, whose results are shown in Ta-

ble 4.13. We have compared the predicted values from the three models with the real

monthly prices of Brent for October 2009 until October 2010, for a one year and a

month period. Once again, the results are very similar. Finally, and in order to check

AR(6) SETAR(2) MS-AR(2)
RMSE 13.390 19.578 13.172
MAPE 16.49% 19.78% 16.36%

Table 4.13: Out-of-sample forecast accuracy evaluation for the monthly models.
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if the di�erences from the three forecasting samples are statistically signi�cant, we

computed the Diebold-Mariano (DM) test. We applied the DM test implemented in R

(see Hyndman (2010)) and the results, presented in Table A.18, indicate that the null

hypothesis is always rejected, meaning that there is a di�erence statistically signi�cant

among the three forecasting samples.

Therefore, we chose the SETAR(2) model as our monthly �nal model since it is

the one that, according to the results from the Diebold-Mariano test, has the highest

predictive accuracy. We also remark that this model is very interesting as it considers

two di�erent regimes depending on the Brent prices characteristics.
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Chapter 5

Conclusion

During the past years, the Brent commodity has become the most important source

of energy in the world, and due to its impact on society it has turned into an issue of

major concern. Therefore, the aim of this work is to analyse, understand and forecast

the Brent prices behaviour. To model and predict the Brent prices we considered

data on a daily and monthly basis, and we used long memory time series models and

regime-switching models.

For the daily Brent prices analysis we considered historical data from the fourth

of January 2000 until the 31st of December 2009, for a total of 2560 observations.

The results show that the daily data set should be modelled with long memory time

series models, as there is evidence of long-range dependence on the conditional variance

of the Brent prices. The selected model is the FIGARCH(1,1) applied to the Brent

prices returns since it is the one, according to the Diebold-Mariano test, that presents

the highest predictive accuracy. To the daily data we also applied regime-switching

models, but the results suggest that the data should be modelled by linear models, as

the hypothesis of non-linearity is rejected.

The monthly Brent prices analysis was done considering the monthly average of the

daily prices from January 2000 until September 2009, for a total of 117 observations.

The reason why we did not use the data until the end of the year, as we have done for

the daily case, was to guarantee an out-of-sample period of one year. The conclusions

for the monthly Brent prices analysis are quite di�erent from the ones obtained for

the daily data. Regarding time series models, we identi�ed an AR(6) model for the

monthly returns, and neither conditional heterokedasticity nor long-range dependence

were identi�ed. The regime-switching models were also applied and we chose the

two-regime SETAR(2) model as, according to the DM test, it is the one with the

highest predictive accuracy. This model is very interesting as it shows clear di�erences

between the two identi�ed regimes. While the �rst regime, represented by the majority
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of observations, exhibits the lowest Brent prices and the highest variation, the other

regime has the opposite characteristics, i.e., the highest Brent prices and the lowest

variation. Besides, regime one lasts for almost two years while the second state has a

duration of only a few months.

In this analysis we were not able to identify a strong relation between stochastic

regime-switching and long memory. Nonetheless, we think that for a future investiga-

tion a very interesting topic to analyse is the application of regime-switching models

to the conditional variance of the daily Brent prices.

Finally, we present the main contributions of this thesis for the econometric and

�nancial literature concerning the Brent prices modelling and forecasting.

First, to model and predict the Brent prices we consider long memory time series

models and regime-switching models and compare their predictive accuracy. Concern-

ing time series models, several models are used to capture the long memory in the

Brent prices returns and some of them, namely FIAPARCH and FIEGARCH mod-

els are not so commonly used in the econometric literature. We note that the long

memory characteristic is tested simultaneously in the conditional mean and variance.

For regime-switching models we analyse and compare if the Brent prices are better

described by its past behaviour or by an unobservable and unknown variable.

Another interesting issue is the parallel analysis made for both daily and monthly

Brent prices that leads to very di�erent and interesting conclusions. At last, and in

order to capture the models prediction accuracy we do not use just the traditional

criteria, such as MAPE and RMSE measures, but we also apply the Diebold-Mariano

test to check if the di�erences in the forecast accuracy are statistically signi�cant.
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Appendix A

Empirical Results

A.1 Data Analysis

p-value
Test Brent Brent returns

Jarque-Bera 0.00 0.00
Anderson-Darling 0.00 0.00

Lilliefors (Kolmogorov-Smirnov) 0.00 0.00
Pearson chi-square 0.00 0.00

Shapiro-Francia 0.00 0.00

Table A.1: Normality tests for the daily data.

p-value
Test Brent Brent returns

Jarque-Bera 0.00 0.00
Anderson-Darling 0.00 0.00

Lilliefors (Kolmogorov-Smirnov) 0.00 0.00
Pearson chi-square 0.00 0.00

Shapiro-Francia 0.00 0.00

Table A.2: Normality tests for the monthly data.

A.2 Long Memory Time Series Models

λ Sample variance
0 634
1 1737980

Table A.3: Sample variance in the Box-Cox's power transformation for the daily data.
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p-value
Test H0 Brent ln(Brent) Returns
KPSS Stat. 0.01 0.01 0.10
ADF Non-Stat. 0.62 0.29 0.01
PP Non-Stat. 0.40 0.42 0.01

Table A.4: Stationarity testing of the daily Brent prices.
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Figure A.1: Empirical ACF (a) and empirical PACF (b) of the squared residuals of the
WN model applied to the daily Brent prices returns.

Test p-value
Box-Pierce 0.440

Residuals Ljung-Box 0.441
ARCH 0.000

Squared Box-Pierce 0.000
residuals Ljung-Box 0.000

Table A.5: Dignostic testing of the residuals of the WN model applied to the daily
Brent prices returns.
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Estimate Std. Err. t Ratio p-value
const 0.0012 0.0004 2.804 0.005

GARCH(1,1) α0 0.0122 0.0012
α1 0.0495 0.0114 4.349 0
β1 0.9329 0.0158 58.969 0

const 0.0010 0.0004 2.351 0.019
α0 0.0175 0.0138

Asymmetry 1.0065 0.5899 1.706 0.088
APARCH(2,2) Power 1.7970 0.4233

α1 0.0337 0.0163 2.063 0.039
α2 0.0273 0.0128 2.142 0.032
β2 0.8695 0.0677 12.842 0

const 0.0011 0.0005 2.298 0.022
α0 10.6974 1.9017

EGARCH(1,1) Asymmetry -0.3786 0.1770 -2.139 0.033
α1 0.1297 0.0451 2.874 0.004
β1 0.9683 0.0114 84.645 0

const 0.0013 0.0004 2.966 0.003
α0 0.0092 0.0008

FIGARCH(1,1) d 0.3152 Fixed
α1 -0.2589 0.0238 -10.867 0
β1 0.5442 0.0495 10.996 0

const 0.0013 0.0004 2.93 0.003
α0 0.0141 0.0059
d 0.3152 Fixed

Asymmetry 0.2875 0.1710 1.681 0.093
Power 1.7219 0.1908

FIAPARCH(3,3) α1 -0.2567 0.0222 -11.555 0
α3 -0.1853 0.0293 -6.331 0
β1 0.3737 0.0703 5.32 0
β2 -0.5077 0.0484 -10.499 0
β3 0.2874 0.0417 6.901 0

const 0.0008 0.0004 1.851 0.064
α0 8.1815 0.0585
d 0.3152 Fixed

Asymmetry -1.6233 0.3502 -4.635 0
FIEGARCH(2,2) α1 -0.2308 0.0209 -11.071 0

α2 -0.2276 0.0211 -10.784 0
β1 -0.4153 0.0689 -6.028 0
β2 0.5761 0.0686 8.396 0

Table A.6: Identi�ed models for the daily Brent prices returns.
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Figure A.2: For the GARCH(1,1) identi�ed model: Empirical ACF (a) and empirical PACF

(b) of the residuals; Empirical ACF (c) and empirical PACF (d) of the squared residuals.
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Figure A.3: For the APARCH(2,2) identi�ed model: Empirical ACF (a) and empirical PACF

(b) of the residuals; Empirical ACF (c) and empirical PACF (d) of the squared residuals.
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Figure A.4: For the EGARCH(1,1) identi�ed model: Empirical ACF (a) and empirical PACF

(b) of the residuals; Empirical ACF (c) and empirical PACF (d) of the squared residuals.
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Figure A.5: For the FIGARCH(1,1) identi�ed model: Empirical ACF (a) and empirical

PACF (b) of the residuals; Empirical ACF (c) and empirical PACF (d) of the squared residuals.
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Figure A.6: For the FIAPARCH(3,3) identi�ed model: Empirical ACF (a) and empirical

PACF (b) of the residuals; Empirical ACF (c) and empirical PACF (d) of the squared residuals.

(a)

0 5 10 15 20 25 30 35

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

AC
F

FIEGARCH22_residuals

(b)

0 5 10 15 20 25 30 35

−0
.0

6
−0

.0
4

−0
.0

2
0.

00
0.

02
0.

04

Lag

Pa
rti

al 
AC

F

Series  FIEGARCH22_residuals

(c)

0 5 10 15 20 25 30 35

0.0
0.2

0.4
0.6

0.8
1.0

Lag

AC
F

FIEGARCH22_squared_residuals

(d)

0 5 10 15 20 25 30 35

0.0
0

0.0
5

0.1
0

Lag

Pa
rti

al 
AC

F

Series  FIEGARCH22_squared_residuals

Figure A.7: For the FIEGARCH(2,2) identi�ed model: Empirical ACF (a) and empirical

PACF (b) of the residuals; Empirical ACF (c) and empirical PACF (d) of the squared residuals.
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λ Sample variance
0 29
1 80516

Table A.7: Sample variance in the Box-Cox's power transformation for the monthly
data.

p-value
Test H0 Brent ln(Brent) returns
KPSS Stat. 0.01 0.01 0.10
ADF Non-Stat. 0.05 0.18 0.01
PP Non-Stat. 0.17 0.32 0.01

Table A.8: Stationarity testing of the monthly Brent prices.

Test p-value
Box-Pierce 0.952

Residuals Ljung-Box 0.951
ARCH 0.092

Squared Box-Pierce 0.176
residuals Ljung-Box 0.170

Table A.9: Diagnostic testing of the residuals of the AR(6) model applied to the
monthly Brent prices returns.
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Estimate Std. Err. t Ratio p-value
AR(6) ϕ6 -0.226 0.082 -2.767 0.007

Table A.10: Identi�ed model for the monthly Brent prices returns using time series
models.
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Figure A.8: For the AR(6) identi�ed model: Empirical ACF (a) and empirical PACF (b) of

the residuals; Empirical ACF (c) and empirical PACF (d) of the squared residuals.

A.3 Regime-switching Models

Delay Smoothness
parameter (δ) parameter (γ) Threshold

1 40.00 80.29
2 40.00 36.01
3 40.00 34.87
4 40.00 33.36
5 40.00 35.28
6 40.00 36.27
7 26.00 38.19
8 17.00 38.19
9 40.00 39.46

Table A.11: LTAR models for the daily data, considering a two-regime model.
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Test p-value
SETAR(1) against SETAR(2) 0.4
SETAR(1) against SETAR(2) 0.3

Table A.12: SETAR tests for the daily data.

Delay Smoothness
parameter (δ) parameter (γ) Threshold

1 13.39 72.76
2 40.00 72.17
3 63.13 77.21
4 40.00 77.16

Table A.13: LTAR models for the monthly data, considering a two-regime model.

Test p-value
SETAR(1) against SETAR(2) 0
SETAR(1) against SETAR(2) 0
SETAR(2) against SETAR(3) 0.8

Table A.14: SETAR tests for the monthly data.

p-values
Test Regime 1 Regime 2

SETAR(2) Box-Pierce 0.831 0.121
Model Ljung-Box 0.828 0.095

MS-AR(2) Box-Pierce 0.777 0.324
Model Ljung-Box 0.774 0.277

Table A.15: Correlation testing for the regime-switching models applied to the monthly
data.

Regime 1 Regime 2
Estimate Std. Err. p-value Estimate Std. Err. p-value

SETAR(2) θ0 0.554 1.227 0.653 21.581 4.135 0.000
Model ϕ1 0.886 0.128 0.000 1.721 0.088 0.000

ϕ2 0.121 0.136 0.375 -0.951 0.101 0.000
Threshold value: 70.19
Lagged value: 3 (months)
MS-AR(2) θ0 27.623 4.437 0.000 16.400 9.282 0.080
Model ϕ1 1.143 0.084 0.000 0.981 0.148 0.000

ϕ2 -0.320 0.095 0.001 0.091 0.154 0.557
Transition probability: P(.|1) P(.|2)

P(1.|) 0.463 0.192
P(2.|) 0.537 0.808

Table A.16: Identi�ed models for the monthly Brent prices using regime-switching
models.
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A.4 Model Selection

DM p-value
GARCH(1,1) vs APARCH(2,2) 290.09 0.00
GARCH(1,1) vs EGARCH(1,1) 220.97 0.00
GARCH(1,1) vs FIGARCH(1,1) -103.91 0.00
GARCH(1,1) vs FIAPARCH(3,3) -80.58 0.00
APARCH(2,2) vs EGARCH(1,1) -69.12 0.00
APARCH(2,2) vs FIGARCH(1,1) -394.00 0.00
APARCH(2,2) vs FIAPARCH(3,3) -370.67 0.00
EGARCH(1,1) vs FIGARCH(1,1) -324.88 0.00
EGARCH(1,1) vs FIAPARCH(1,1) -301.55 0.00
FIGARCH(1,1) vs FIAPARCH(3,3) 23.33 0.00

Table A.17: Diebold-Mariano test applied to the daily forecasted samples.

DM p-value
AR(6) vs SETAR(2) -10.93 0.00
AR(6) vs MS-AR(2) -5.35 0.00
SETAR(2) vs MS-AR(2) 8.99 0.00

Table A.18: Diebold-Mariano test applied to the monthly forecasted samples.
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