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Resumo

A presente dissertação pretende efectuar uma avaliação da capacidade predictiva de vários

modelos GARCH, nomeadamente os modelos GARCH, EGARCH e GJR-GARCH, compara-

ndo as suas previsões com duas medidas para a volatilidade. Os resultados são obtidos após

um enquadramento teórico da volatilidade realizada e das propriedades das suas distribuições,

tanto condicionais como incondicionais, efectuando a mesma análise para os retornos. Em

linha com os resultados já existentes na literatura, as distribuições incondicionais são lep-

tocúrticas e positivamente enviesadas, sendo que a volatilidade realizada se afasta mais da

normalidade e exibe efeito assimétrico. Por outro lado, os retornos standardizados pelo

desvio-padrão realizado aparentam ser aproximadamente normais.

Palavras-Chave: Volatilidade Realizada (RV), Dados de Alta-frequência, Modelos GARCH,

Volatilidade Assimétrica.
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Abstract

The present dissertation intends to perform an evaluation of the predictive ability of several

models of the GARCH family, namely the GARCH, EGARCH and GJR-GARCH models,

by comparing their forecasts with two di�erent proxies for volatility. This result is achieved

after providing a brief theoretical framework for realized volatility and after assessing its

unconditional and conditional distributional properties. Consistently with the results found

in previous literature, unconditional distributions for returns and realized volatility are lep-

tokurtic and rightly skewed, with realized volatility departing more from normality. On the

other hand, the logarithm of realized volatility and returns standardized by the squared root

of realized volatility appear to be close to normal. Furthermore, the logarithm of realized

volatility exhibits the already documented asymmetric e�ect of volatility.

Keywords: Realized Volatility (RV), High Frequency Data, GARCH Models, Asymmet-

ric volatility.
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Part I

Introduction

With the continuous and growing evolution in �nancial markets and the development of more

complex �nancial products, which played a preponderant part in the ongoing economic crisis,

to understand, both empirically and theoretically, the volatility of returns seems to be a great

necessity. The predictability of daily returns is known to be very low, if not null, especially

when considering the asset class of stocks. On the other hand, the volatility of these returns

seems to be relatively easier to forecast.

The assessment of risk assumes a preponderant role in �nance. Therefore, volatility (which,

given the univariate dimension of the present work will be considered as standard deviation

or variance), being the common measure of risk, has been the subject of extensive and

thorough literature. These �ndings have a wide range of applications, that include derivative

pricing (such as options or products that have embedded options), capital allocation, risk

management, among many others. It is then understandable why the modeling, estimation

and prediction of volatility have been the subject of such detailed investigation.

Traditionally, the analysis of �nancial time series focused mainly on the conditional mean

of the process, disregarding volatility, that is, considering it constant throughout time, al-

though this is never found in empirical evidence. The modeling of the conditional mean was

then made using the widely known ARMA or ARIMA models.

Engle (1982) developed the Autoregressive Conditional Heteroskedasticity model, or ARCH,

to model the conditional variance directly, in addition to the conditional mean using the mod-

els previously mentioned. The estimation of the ARCH model introduced the possibility of

estimating volatility as a function of its past realizations. Later, derivations of ARCH ap-

peared, such as the Generalized Autoregressive Conditional Heteroskedasticity, or GARCH,

by Bollerslev (1986), where an ARMA model is used to model the conditional variance of

the error terms, the ARCH-M by Engle, Lilien and Robinson (1987), where a heteroskedas-

tic term is introduced in the mean equation in order to solve the traditional problem of
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considering the variance as constant throughout the time series.

On a slight di�erent category fall the EGARCH (Nelson, 1991) and the GJR-GARCH

(Glosten, Jagannathan and Runkle (1993)). These models introduced in the modeling of

volatility a stylized fact: markets react asymmetrically to good and bad news, where the bad

news have a greater impact on volatility. This is often referred to as the leverage e�ect and

is rooted on the notion of a News Impact Curve (NIC), motivated by the empirical work of

Black (1976), Christie (1982), Nelson (1991) or French et al. (1987). Su�ce it to say that

a large number of models were developed in addition to those referred, but their thorough

explanation falls out of the purpose of this work.

Another class of models that has been the object of study is that of Stochastic Volatility

(SV). These models de�ne the volatility not only as a function of its past but also of stochastic

�uctuations [see, for instance, the work of Andersen (1994)]. Also, the implied volatility of

derivatives (mainly of options) has been thoroughly documented.

In addition, a new procedure has been suggested to construct ex-post measures of volatility

and is referred to as Realized Volatility, which will be applied in the present work. Merton

(1980) concluded that the volatility over a �xed interval can be estimated by the sum of

squared observations, given that there is a su�ciently high sampling frequency. Provided

that, for stocks, the Trade and Quote database (TAQ) records every transaction that occurs,

the highest possible frequency (tick-by-tick) is now available to researchers, although this

brings up the problem of microstructure noise, which shall be explained in more detail later.

Measuring volatility in this way allows one to treat it as an observable variable, in contrast

to SV and GARCH-type models where it is considered latent and, therefore, gives us the

possibility of evaluating the predictive power of volatility models, which is the purpose of the

present work.

Using data from Bloomberg for the EURUSD exchange rate, three di�erent volatily models

were estimated to produce predictions that were then compared to the realized volatility

measure and to daily squared returns by the Mean Squared Error criteria.

Although the term realized volatility actually refers to the realized standard deviation,
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in this text it will be used interchangeably when references to the variance are made. Clear

distinctions will be made when necessary.

The dissertation is organized as follows: in Part II we shall give a literature review,

overviewing the properties of volatility and where we explain in detail the GARCH-type

models to estimate in this study. Part III contains the empirical study, where we formulate

the research aims, describe the data and explain the methodology. Results, conclusions and

some limitations of this work, together with suggestions for further work are also included in

this part. Part IV is an appendix containing plotted series for residuals.
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Part II

Literature Review

1 Properties of volatility

Volatility seems to have several stylized facts that have been thoroughly documented in the

literature and over which volatility models are designed. One of these empirical regularities is

that standard latent volatility models fail to describe properly the low and slowly decreasing

autocorrelations in squared returns, which are associated with the high excess kurtosis of

returns, McAleer and Medeiros (2006).

Bollerslev et al (1994) documented several of these empirical regularities:

1. Asset returns are leptokurtic;

2. Returns are not independent and identically distributed, a fact that is often denominated

as clustering ;

3. Volatility and returns are negatively correlated. That is to say that for a given price

change, volatility will be a�ected di�erently according to the sign of that change. In

particular, negative price changes have greater impact on volatility than positive ones.

This e�ect was initially documented by Black (1976);

4. Information that is acknowledged when markets are close is re�ected in prices when

markets reopen;

5. Foreseeable releases of relevant market information are associated with high ex-ante

volatility;

6. Volatility and serial correlation are inversely correlated;

7. Measures of macroeconomic uncertainty help to explain changes in market volatility.

4



Accordingly, the idea that returns follow a normal distribution has been refuted in most

studies, although realized and logarithmic realized volatilies seem to be close to normal

distributed. Furthermore, the data seems to show that long-range dependence exists in the

volatility of �nancial time series.

In a review paper, McAleer and Medeiros (2006) list several stylized facts of realized

volatility. It exhibits a much higher kurtosis than that of a normal distribution at intraday

frequencies, which is the same as saying that distributions of realized volatility have fat tails.

The higher the sampling interval, the lower the kurtosis. Probability density functions are

thus leptokurtic and converge slowly to the normal distribution.

As mentioned in Section 2, the predictive ability of the models under analysis will be

assessed using two di�erent proxies of volatility, of which we provide a visual comparison:

Figure 1: Realized Volatility (solid) and Daily Squared returns (dotted)

By observing Figure 1 one can easily see that realized volatility is a less noisy proxy for

actual volatility to a great extent when compared to daily squared returns.

Another stylized fact is long memory. The autocorrelation of returns appears to be insignif-

icant at every scale, but it shows great persistence for a long time interval when the returns

are squared. This result holds true for volatilities aggregated at all frequencies (hourly, daily,

weekly and monthly).

Also the unconditional distributions of realized volatility are highly rightly skewed and
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leptokurtic. Realized standard deviation and logarithmic realized variance appear to be much

closer to normal distributions, where returns standardized by the realized standard deviation

are almost to normal. Furthermore, volatility does not seem to have a unit root, that is, it

seems to be stationary, but there is strong evidence of fractional integration. In the following

lines a theoretical formulation of realized volatility is given.

Suppose that at day t , the logarithmic prices of some asset follow a standard continuous

time process:

dp(t+ τ) + σ(t+ τ)dW (t+ τ), t = 1, 2, 3, ..., 0 ≤ τ ≤ 1 (1)

Barndor�-Nielsen and Shephard (2002) and Andersen et al (2003) proved that daily com-

pound returns, de�ned as rt = log(pt/pt−1) are normally distributed conditional on the

information set generated by the sample paths of p, such that

rt | =t ∼ N

(ˆ 1

0

µ(t− 1 + τ)dτ,

ˆ 1

0

σ2(t− e+ τ)dτ

)
(2)

The variance of the distribution, described by the term
´
σ2(t− 1+ τ)dτ is called Integrated

Variance, a measure of ex-post volatility and is the object of interest.

As mentioned above, realized variance is the sum of squared realizations over the period of

a trading day. That is, although in practice the data generating process is not continuous

(prices are recorded at discrete and irregular intervals), sampling is often made by setting

equidistant intervals. So, if a trading day had 8 hours that would, for instance, yield 96

�ve-minute intervals (8 ∗ 60/5), each one being represented by pi,t, the ith observation of day

t. The returns are thus ri,t = pt,i − pt,i−1. Realized variance is then de�ned as

RVt =

n∑
t=1

r2i,t (3)
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As mentioned before, one of the problems that arise when working with volatility is that,

contrary to �nancial asset returns, the actual values of variance of the time series are not

directly observable. This problem is usually solved by imposing parametric structures on

volatility or using stochastic models with data usually at daily frequency. Another alternative

commonly employed is the usage of the volatility implied in derivatives' prices for a future

horizon.

Merton (1980) proved that, at a su�ciently high sampling frequency, true volatility �

Realized Volatility - could be measured by recording the prices of an asset and summing

its intraday squared returns. Given the increasing availability of high quality transaction

data, it is only natural that the literature turned to realized volatility for the construction of

ex-post measures.

Ideally, a continuous trading environment would yield the aforementioned true volatility

[Hansen and Lunde (2006)]. In practice, this ideal environment does not hold. Problems

related to bid-ask spreads, infrequent and non-synchronous trading create microstructure

noise, making realized volatility, at best, another estimator for the variance of time series,

but releases us from the lagging feature of GARCH-type models.

In order to evaluate the economic value of realised volatility, Fleming et al (2003) dis-

covered that an investor that uses a volatility-timing strategy would be willing to pay 50

to 100 basis points per year in order to use realized volatility estimators for the conditional

covariance matrix. Note that realized covariances can be constructed in a similar fashion to

that of realized variance, summing the cross-products of intraday asset returns. In another

study, Bandi et al (2008), found that conditional mean variance investors would pay around

80 basis points per year to switch to realized variance estimates.

Furthermore, working with realized volatility brings up, despite its advantages, the prob-

lem of how frequently one should sample the asset prices in order to obtain the most accurate

estimate for the variance. When large intervals are used, information about volatility is lost.

On the other hand, if short intervals are used (note that, for most stocks, data is now avail-

able at the highest possible frequency, i.e., tick-by-tick), the already mentioned microstruc-
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ture noise diminishes the quality of the estimate. In the present work, the approach followed

by Diebold et al (2003) of calculating returns every 5 minutes was used, which yields 288

intraday observations, in the case of the foreign exchange markets, which is open 24 hours

per day.

Merton (1980) proved that at a su�ciently high frequency, true volatility of an asset's

return can be measured by summing up all intraday squared returns. As we now have tick-

by-tick data available, the path to true measures of volatility would then be available. More

recently, however, the econometric literature discovered that in real life the situation is not

as simple as that, because of market frictions that make the price process a noisy signal.

Controlling for this noise that arises especially when sampling at very high frequencies has

become an object of thorough study. Initially, the literature adopted the approach of sampling

prices every 15 or 30 minutes, in order to eliminate the noise that higher frequencies would

contain. Nevertheless, this approach obviously leads to the loss of some information and,

until this is quanti�ed, the optimal sampling frequency cannot be obtained. There is then a

trade o� between the amount of information in the process and the cleanliness of the signal.

A more recent approach to true measures of volatility consisted of incorporating all the

data available (tick-by-tick) regardless of how much noise it contained and produce the vari-

ance estimates. Afterwards, these estimates are decomposed into components of fundamental

signal and microstructure noise, creating a noise-to-signal ratio that can then be an indicator

of goodness of the estimates.

In reality, this microstructure noise relates to a variety of frictions contained in the me-

chanics of the trading process: bid-ask bounces, which are related to the discreteness of price

changes, infrequency of trading, strategic component of the order �ow, trade size, etc. All

this factors make the price process a noisy signal.

Diebold et al (2003) concluded that using a 5-minute sampling scheme optimized the trade

o� between information and noise. Although this is not the most recent approach to treating

realized volatility, the method was applied in the present dissertation, as the decomposition

of the estimates into its components was not the main purpose of this work.
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1.1 Di�erent sampling schemes

In reality, the price process yields discrete and irregularly spaced observations. Therefore,

the sampling scheme that yields the best realized volatility estimates is not straightforward

to �nd. McAleer and Medeiros (2006) list several sampling schemes that can be applied:

1. Calendar time sampling, This is the most used sampling scheme in volatility litera-

ture. Here, the prices are sampled at �xed intervals, at 5 or 10 minutes, for example.

Due to the irregular feature of the price process, data has to be constructed arti�cially

(i.e. one may choose the last or the �rst observation of a 5 minute interval, a method

denominated previous tick);

2. Transaction time sampling, where prices are gathered prices every nth transaction;

3. Business time sampling, where the sampling frequency is chosen such that IVi,t =
IVt

nt
;

4. Tick time sampling, where prices are recorded as frequently as possible, that is, every

price change.

2 ARCH MODELS

Typical structural models for �nancial time series model the conditional mean by an

equation of the form

y = β1 + β2x2 + β3x3 + ...+ βnxn + u (4)

where u ∼ N(0, σ2)

The assumption is usually made that the variance of the error term, u, is constant, that is,

that the errors are homoscedastic. In most �nancial time series, this assumption is violated,

given that it is highly unlikely that the variance remains constant over the whole series, with
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the errors being heteroskedastic (that is, the variance of the errors is not constant).

When estimating a model for the conditional mean, if we assume that the errors are ho-

moscedastic despite them being heteroskedastic, an implication would be that the estimates

for the standard error could come out wrong. Therefore, considering a model that describes

the behavior of the variance over time of a �nancial series seems useful.

In this context, Engle (1982) started a class of models called ARCH: Autoregressive Condi-

tional Heteroscedasticity. These models not only �t the purpose of describing a time-varying

variance process but also model an important and extensively documented property of volatil-

ity clustering. Clustering is the aggregation of this volatility by periods, that is, large returns

in �nancial assets tend to be followed by large returns, with small returns being tipically fol-

lowed by small returns. A visual examinantion of the �gure below illustrates this �grouping�

of volatility within certain time periods.

Figure 2: Foreign Exchange Returns: Volatility Clustering

The ARCH class of models �ts the behavior described above. It assumes the form

σ2
t = α0 + α1u

2
t−1 + α2u

2
t−2 + ...+ αqu

2
t−q

where u2t−qis the qth-lagged squared return. This is to say that the ARCH model, in simple

terms, describes the variance of a �nancial time series as correlated with its previous realiza-

tions, in accordance with the observable fact that volatility is clustered.
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Despite its apparent usefulness, ARCH models present some limitations: there is no best ap-

proach to identify the order of the model, that is, the number of lagged squared residuals to

use. Even if there was a standardized procedure for deciding the order of the ARCH model,

this value could be very large and that would result in a model that was not parsimonious.

Also, the parameters of the model could return negative values, violating the non-negativity

constraint imposed by its structure.

In the following lines a description of the models that are evaluated in this work will be

given, along with their functional forms. All these models are derived from ARCH and treat

volatility as a latent variable, in opposition to an observable one.

2.1 GARCH(p,q)

GARCH stands for Generalised Autoregressive Heteroskedasticity and has the following

functional form:

σ2
t = α0 + α1u

2
t−1 + ...+ αqu

2
t−q + β1σ

2
t−1 + ...+ βpσ

2
t−p (5)

It was developed independentely by Bollerslev (1986) and Taylor (1986). As it is the case with

the ARCH model described above, the GARCH model describes the conditional variance to

depend on its previous own lags. Looking at the equation, it is straightforward to see that

under this model the conditional variance is a function of a long-term average, as described

by αo, the lagged squared errors, as described by α1u
2
t−1, ..., αqu

2
t−qand the lagged variance

from the model, βσ2
t−1, ..., βpσ

2
t−p. The values for p and q give the order of the model, that

is, the number of lags to be used both for the residuals (q) and for the conditonal variance

(p).

The estimation of GARCH models cannot be made with the common Ordinary Least Squares

procedure, given that its form is nonlinear. Instead, models of the GARCH family have to

be estimated by maximizing a log-likelihood function.
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2.2 GJR-GARCH(p,q)

One of the pitfalls of the standard GARCH models is that they impose a symmetric

response of volatility both to positive and negative shocks. It is so because the variance,

as speci�ed in these models, is a function of the size of past realizations of squared errors.

Therefore, the fact that a shock was negative is never taken into consideraton because the

sign is lost. Nevertheless, it has been widely documented in the literature that negative

shocks are likely to cause greater volatility than positive ones. This asymmetric e�ect is

often termed as leverage e�ect. That is because it is assumed that when the value of a

stock goes down, the �rm's debt-to-equity ratio rises, leading shareholders to perceive their

future cash�ow stream as being more risky. Although this is an e�ect applicable only to

equity markets, the term leverage is widely used even when dealing with volatility on other

asset classes. The GJR-GARCH model was developed by Glosten, Jagannathan and Runkle

(1993), and intended to be able to capture these asymmetries that standard GARCH models

fail to describe. It has the functional form:

σ2
t = α0 + α1u

2
t−1 + βσ2

t−1 + γut−1It−1 (6)

where It−1 = 1if ut−1 < 0 and 0 otherwise.

This variable It−1is a dummy variable that captures the described leverage e�ect , that is, it

assumes the value 1 when the previous error is negative. If γcomes out as being statistically

signi�cant, one can say that there is asymmetric response of volatility in that series.

2.3 EGARCH(p,q)

The EGARCH speci�cation, which stands for Exponential GARCH, was proposed by

Nelson (1991). Although there are many ways in which to express its functional form, one of

them is:

ln(σ2
t ) = ω + βln(σ2

t−1) + γ
ut−1√
σ2
t−1

+ α

 |ut−1|√
σ2
t−1

−
√
2

π

 (7)
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Note that with this speci�cation, the natural logarithm of the time series variance is the

object of study, instead of the variance itself, as it is modeled in the previous GARCH-

type models discussed above. This feature of the EGARCH gives it the advantage of not

needing arti�cially imposed non-negativity constraints. Also, it also accounts for the already

mentioned leverage e�ect , given that theγ parameter will be negative when yhe ratio between

the past return and the volatility is negative.

In its original speci�cation, the EGARCHmodel was designed to be used with the Generalised

Error Distribution (GED), although most of its applications are done with normal errors,

given their computational ease.
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Part III

Empirical Study

1 Research purpose and aims

In order to continue the ongoing work in volatility literature of perfecting its estimation, the

present dissertation intends to perform an evaluation of three di�erent parametric volatility

models, namely the GARCH, EGARCH and GJR-GARCH structures. We aim to evaluate

the predictive accuracy of di�erent parametric volatility models, using realized volatility and

squared returns as proxies for true volatility. Also, di�erent residual distributions will be

applied, namely the Gaussian, t-student and Generalized Error distributions. This assess-

ment is performed using the Mean Squared Error criteria and the Diebold-Mariano test for

predictive accuracy.

All in all, we pose the question of which of these three models yields the least noisy

estimates of volatility, by comparing it to two measures of realized volatility.

It is expected that the EGARCH and GJR-GARCH speci�cations perform better at fore-

casting volatility, given that it is also expected that asymmetric responses of volatility to

shocks of the same magnitude are present in the price process of the EURUSD exchange rate.

This means lower values for the Mean Squared Error criteria when compared to the original

GARCH speci�cation and the rejection of the null hypothesis of the Diebold-Mariano test

when testing EGARCH and GJR-GARCH against GARCH. No hypothesis is formulated

a priori for the predictive accuracy of EGARCH relative to GJR-GARCH, since the two

speci�cations were both designed to capture the asymmetric e�ect.
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2 Data and Methodology

The data used for computing both Realized Volatility and for estimating the GARCH-type

models in the previous section was obtained from a Bloomberg terminal. In the case of

the former, 5-minute prices were gathered for the EURUSD exchange rate, representing the

number of US dollars per Euro. The same procedure was adopted for the latter, only now

daily prices were retrieved.

The sample involved data from January 3rd 2005 to December 31st, 2010. GARCH-type

models estimation was achieved using data from January 3rd, 2005 to June 8th, 2010. The

remaining days were used as an out-of-sample period, for which 9 series were forecasted,

given that we are testing 3 models under 3 di�erent residual distributions.

The out-of-sample period, for which 5-minute prices (and therefore returns) were retrieved,

despite spanning through 934 days (including non-trading days), the period was substantially

reduced to 523 days: for some days data was not fully available (aggregating a di�erent

number of returns would not be consistent) and on Fridays and Sundays the exchange rates

do not trade for the whole 24-hour period (note that the Foreign Exchange market trades 24

hours per day from Monday to Thursday. On Fridays it closes at GMT 10pm, reopening on

Sundays at the same time.). Non-trading days besides weekends, like target holidays, were

also excluded.

The sample was adjusted as follows: non-trading days are automatically excluded by

Bloomberg by selecting that option. Days that did not have 288 5-minute periods recorded

were sorted out by using a PivotTable with ExcelTMsoftware.

The �gure below shows the arithmetic returns of the original series and the squared returns,

as they are the measure of volatility used in GARCH-type models.
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Figure 3: Returns from original series

Estimation of the GARCH, EGARCH and GJR-GARCH volatility models involved mod-

eling the conditional mean in the �rst place. In order to accomplish this, the correlogram

for returns was examined and the appropriate functional form was selected. Given that the

series of returns appeared to follow a white noise process, there was no need to enforce an

ARMA structure.

In order to evaluate the predictive ability of the models, the 5 minute realized volatility

estimator was computed (summing 288 intraday squared returns), as well as the daily squared

returns. This evaluation is performed by calculating the forecasted series for the out-of-

sample period and then calculating their di�erences to the realized volatility estimator and

daily squared returns.

Then, a straightforward Mean Squared Error is computed and the model/distribution

yielding the lowest value comes out as the best forecasting form. Using the error vectors

used to calculate the Mean Squared Error, we perform the Diebold-Mariano test as to assess

if the di�erences between the models' predictive accuracies are statistically signi�cant.
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2.1 The Diebold-Mariano test

The test was developed by Diebold and Mariano (1995) and tests for the null hypothe-

sis of equal predictive accuracy between the models, which are compared two at a time.

Given that we are analyzing three di�erent models, this will yield three Diebold-Mariano

tests: GARCH(1,1) against EGARCH(1,1), GARCH(1,1) against GJR-GARCH(1,1) and

EGARCH(1,1) against GJR-GARCH(1,1). This analysis will be performed using realized

volatility and daily squared returns as proxies.

In this particular case, provided that we have an �observable� measure of volatility, each

of these series will produce a vector of errors for each proxy. The vectors consist of the

di�erences between each model's forecasts and the �actual� volatility, here measured by the

aforementioned proxies.

The predictive ability of each model is evaluated by a loss function that can take several

forms. Here, the loss function to be considered is the MSE, which consists of calculating the

average of the square of the vectors εimentioned above. In notation,

MSEi =
1

N

T∑
t=0

(yi − proxyk) (8)

where yi is the forecasted series, proxyk the proxy for realized volatility with an index k = 1,

2 for realized volatility and daily squared returns respectively.N is the number days between

t and T , which represent the beginning and the end of the sample period. To calculate the

test statistic N consisted only on the number of observations of the adjusted sample.

The test is then based on the di�erence between the loss function for each model, conven-

tionally denoted dt.
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The hypothesis to be tested are

H0 : E[dt] = 0

H1 : E[dt] 6= 0

and the test statistic, which Diebold and Mariano (1995) proved to follow a Gaussian distri-

bution is

S =
d√
ˆLRV d/T

where

d =
1

N

T∑
t=0

dt

LRVd = γ0 + 2
∞∑
j=1

γj, γj = cov(dt, dt−j)

In case of rejection of the null hypothesis, if the test value is positive that means that the

loss function associated with the �rst model under comparison is greater, making the second

model a better predictor. If the test value is negative, the �rst model under comparison

yields better forecasts.

3 Distributional properties of returns and realized volatility

In this section, descriptive statistics of returns and volatility of the series under study will

be presented. In particular, the analysis will focus on raw returns, returns standardized by

realized standard deviation (the square root of realized volatility), realized volatility itself and

the natural logarithm of realized volatility. For each of these series, a table with the mean,

the sample standard deviation, skewness, kurtosis, range and the p-value for the Jarque-Bera

normality test. Other tests could be performed to test normality. The Jarque-Bera test was

chosen on the basis of standardness. Also, Eviews histogram plots will be presented.
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3.1 Unconditional distributions

3.1.1 Return and standardized return

In Table 1 below are summarized the descriptive statistics mentioned above for returns and

returns standardized by the squared root of realized volatility.

Mean Sample STD Kurtosis Skewness Minimum Maximum p-value JB

rt −0.2E − 3 0.008 4.156 0.270 −0.024 0.035 0.000
rt/σt −0.039 1.078 3.576 0.202 −4.165 3.834 0.0045

Table 1: Unconditional distribution of return and standardized return

From the results above, conclusions can be drawn regarding the unconditional distributions

of the considered series. For rt, the empirical distribution is leptokurtic and positively skewed ,

since kurtosis is above 3 (kurtosis value for the normal distribution), meaning that tails are

fatter. Skewness is above 0 (skewness value for the normal distribution), meaning that the

right tail is longer. Fatter tails, or leptokurtosis , imply that extreme observations that would

occur with a certain probability under the normal distribution, now occur with a higher

one. In other words, one could say that, empirically, the market attributes probabilities to

extreme events higher than one would expect under a normal distribution. Positive skewness

indicates that the occurrence of observations to the right of the mean was higher than to the

left. Since the mean is close to 0, it is straightforward to infere that, for the sample under

consideration, great positive returns occured more frequentely than negative ones. The p-

value for the Jarque-Bera test is 0 to the third decimal place, a value that indicates that the

empirical distribution of returns is clearly non-normal.
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Figure 4: Histogram and summary of statistics for rt

For rt/σt, the series of standardized returns, fatter tails (leptokurtosis) and positive skew-

ness are maintined, indicating results similar to those of raw returns, although it appears

that after standardization, returns are less deviated from normality. Nevertheless, the p-

value for the Jarque-Bera normality test still indicates that the series is not normal, even

for low signi�cance levels (that is, normality would still be rejected at 10%, for example).

This result is consistent with the ones obtained by Andersen et al (2001) and Andersen et

al (2003). The distributions of returns standardized by the realized standard deviation have

been documented to be often less leptokurtic than those of returns standardized by the ARCH

estimate [see, for example, Bollerslev et al, (1994) and Andersen and Bollerslev (1998)].
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3.1.2 Realized volatility and logarithmic realized volatility

Table 2 presents the same descriptive statistics as Table 1, only now for realized volatility

and its natural logarithm.

Mean Sample STD Kurtosis Skewness Minimum Maximum p-value JB
RVt 7.07E − 5 6.22E − 5 14.507 2.804 9.53E − 6 0.56E − 3 0.000

ln(RVt) −9.813 0.676 3.028 0.593 −11.561 −7.494 0.000

Table 2: Unconditional distribution of realized volatility and its natural logarithm

For RVt, the series is highly leptokurtic and rightly (positively) skewed. The values for

kurtosis and skewness [(14.507) and (2.804)] are strongly deviated from those of the normal

distribution. The p-value for the Jarque-Bera test clearly indicates the rejection of normality.
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Figure 6: Histogram and summary of statistics for the logarithm ofσ2
t

For ln(RVt), the values for kurtosis and skewness are substantially lower and much closer

to those of the normal distribution. It is noteworthy that these are much inferior than those of

the RVt series. Notwithstanding, the p-value for the Jarque-Bera also indicates the rejection

of normality. This result is consistent with those obtained in volatility literature.
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3.2 Conditional distributions

The conditional distribution of volatility in �nancial assets has been object of extensive

investigation in the last decades. In this section, an analysis on the ln(σ2
t ) will be performed,

regarding the properties of long memory, temporal dependence and asymmetric e�ect.

3.2.1 Temporal dependence and long memory

One of the stylized facts of returns is the temporal dependence of volatility. The literature

on volatility has extensively documented that this dependence is highly persistent, as it can

be seen in the �gures below. The �rst �gure illustrates the series of the logarithm of realized

volatility. Its visualization leads us to con�rm that it is clustered. The second �gure is the

correlogram for the series until the 25th lag. From the correlogram we can conclude that

autocorrelation is statistically signi�cant for these lags and presents a hiperbolic decay to 0.
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These charecteristics are coherent with the features of long memory processes.

Figure 8: Logarithm of Realized Volatility

Figure 9: Correlogram of ln(σ2
t )

To further analyze the series, the Augmented Dickey Fuller test for 18 lags and an intercept

was applied, in order to assess the stationarity of the series. The results are shown below.
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Figure 10: ADF test for ln(σ2
t )

The test rejects the existence of a unit root in the series for a 5% signi�cance level [(-3.138)

(0,0245)]. We can thus conclude that the series is stationary.

3.2.2 Asymmetric e�ect

An asymmetric response of volatility to shocks is often observed in �nancial markets. Usually,

volatility tends to show higher increases when reacting to bad news (negative shocks) than

to good news. Regular GARCH models enforce symmetric responses of volatility to positive

and negative shocks, as it is a function of lagged observations but not their signs. A more

thorough explanation of how this asymmetries are incorporated into functional forms in order

to account for this empirical regularity of volatility shall be given later.

A visual examination of the �gure below illustrates this e�ect. Negative observations would

�t a steeper line than positive ones, which means that for returns of the same magnitude but

of di�erent signs, volatility is greater when observations are negative. This e�ect was �rstly

documented by Black (1976), under the name of News Impact Curve. Clearly, asymmetry

can be tested for with tests. Engle and Ng (1993) proposed a set of tests to infere if the

symmetric GARCH model adequately �ts the data to be modeled or if an asymmetric form

shall be used. For the purpose of the present work, a visual examination of the data su�ces,

since the objective here is to assess the predictive power of GARCH-type models.
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Figure 11: Asymmetry in EURUSD volatility

4 Results

In this section, we present the results for accuracy and comparisons between models. We

evaluate the Mean Squared Error for each model, error distribution and volatility proxy.

Also, Table 4 lists the Diebold-Mariano test values and p-values for the aforementioned

comparisons. Here we will confront the results with the hypothesis in Section 2 of the

present work, where we stated that it would be expected that models aiming at capturing

asymmetric responses of volatility yield a better performance at forecasting. Also, we stated

that applying heavier tailed distributions would allow us to account for the leptokurtosis

usually present in �nancial assets' returns and therefore gain in predicting volatility.
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DISTRIBUTION/PROXY MODEL MSE
Gaussian/RV GARCH(1,1) 1,15E-09
Gaussian/RV EGARCH(1,1) 5,50E-10
Gaussian/RV GJR-GARCH(1,1) 1,18E-09
t-student/RV GARCH(1,1) 2,20E-09
t-student/RV EGARCH(1,1) 2,90E-09
t-student/RV GJR-GARCH(1,1) 2,22E-09
GED/RV GARCH(1,1) 2,21E-09
GED/RV EGARCH(1,1) 2,91E-09
GED/RV GJR-GARCH(1,1) 2,22E-09

Gaussian/RET SQ GARCH(1,1) 1,40E-08
Gaussian/RET SQ EGARCH(1,1) 1,44E-08
Gaussian/RET SQ GJR-GARCH(1,1) 1,41E-08
t-student/RET SQ GARCH(1,1) 1,41E-08
t-student/RET SQ EGARCH(1,1) 1,45E-08
t-student/RET SQ GJR-GARCH(1,1) 1,41E-08
GED/RET SQ GARCH(1,1) 1,41E-08
GED/RET SQ EGARCH(1,1) 1,45E-08
GED/RET SQ GJR-GARCH(1,1) 1,41E-08

Table 3: Mean Squared Error

Contrary to the intuition stated in Section 2, it is not clear that models designed to

capture the asymmetric e�ect that is usually present in �nancial assets' returns. Looking

at Table 3, the conclusion is that, according to the Mean Squared Error criteria, the simple

GARCH(1,1) speci�cation dominates all other speci�cations regarding predictive ability, even

when considering di�erent distributions (Gaussian, t-student and GED) for residuals and the

two proxies (realized volatility and daily squared returns) for volatility. An exception is made

when using the t-student and the GED distributions and squared returns as a proxy, where

GARCH and GJR-GARCH have the same value for the loss function

This result is in line with the work of Hansen and Lunde (2005), where the authors

perform a comparison between 330 ARCH-type models and conclude that, for exchange rates,

a GARCH(1,1) speci�cation overperforms all the other ones. The only exception seems to be

when models are evaluated under a Gaussian error distribution and using realized volatility

as the proxy for actual volatility. Here, the EGARCH speci�cation seems to perform better

when predicting future volatility.

Note that we are analyzing data for the EURUSD exchange rate and, although Figure 8
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suggests asymmetric volatility in this exchange rate, it is obvious that this asymmetry cannot

be attributed to the leverage e�ect that relates sotck prices' responses to �rms debt-to-equity

ratios. So, even though we have some evidence of unequal responses for the variance of the

exchange rate, these do not seem to be signi�cant enough to justify switching to a more

sophisticated GARCH speci�cation, disregarding the already mentioned exception.

It is also noteworthy that Mean Squared Error values are much more divergent when

switching from gaussian error distributions to one of the remaining two (t-student or GED)

than between t-student and GED themselves. This result seems natural, given that these two

distributions allow for heavier tails than normal. Nevertheless, although one would expect

that residual distributions that account for fatter tails would ultimately result in better

forecasting structures, using Mean Squared Error as the loss function leads us to conclude

that Gaussian errors yield better forecasts.

The table below summarizes the results for the Diebold-Mariano tests. In total, 18 tests

were performed in order to account for all possible combinations between parametric models,

error distributions and volatility proxies.

DISTRIBUTION/PROXY TEST TEST VALUE P-VALUE
Gaussian/RV GARCH vs. EGARCH 9,961 0,000
Gaussian/RV GARCH vs. GJR -3,288 0,001
Gaussian/RV EGARCH vs. GJR -9,773 1,47E-22
t-student/RV GARCH vs. EGARCH -6,126 9,02E-10
t-student/RV GARCH vs. GJR -1,987 0,047
t-student/RV EGARCH vs. GJR 6,018 1,77E-09
GED/RV GARCH vs. EGARCH -6,125 9,08E-10
GED/RV GARCH vs. GJR -2,038 0,042
GED/RV EGARCH vs. GJR 6,02 1,75E-09

Gaussian/SQ RET GARCH vs. EGARCH -1,984 0,047
Gaussian/SQ RET GARCH vs. GJR -1,238 0,216
Gaussian/SQ RET EGARCH vs. GJR 1,694 0,090
t-student/SQ RET GARCH vs. EGARCH -2,129 0,033
t-student/SQ RET GARCH vs. GJR -0,8671 0,385
t-student/SQ RET EGARCH vs. GJR 2,074 0,038
GED/SQ RET GARCH vs. EGARCH -2,143 0,032
GED/SQ RET GARCH vs. GJR -0,8887 0,374
GED/SQ RET EGARCH vs. GJR 2,089 0,036

Table 4: Diebold-Mariano test results

Here, test results corroborate those stated before (see Appendix for plotted series). Group-
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ing the models by distribution and volatility proxy and, considering only the cases where the

null hypothesis is rejected under the 5% signi�cance level, we conclude that the GARCH

speci�cation dominates all the other ones, followed by GJR-GARCH, with the EGARCH

structure yielding the worst forecasts. The only exception seems to be when considering

a Gaussian error distribution and realized volatility as a proxy, where the EGARCH per-

forms better than all the other ones, followed by the GARCH speci�cation and leaving

GJR-GARCH as the noisiest model.

Regarding the cases where the null hypothesis is not rejected, that is, where the Diebold-

Mariano test suggests that both models have the same predictive capacity, this seems to

happen only when comparing GARCH with GJR and using daily squared returns as a proxy

for volatility, regardless of the distribution.

For all other speci�cations, the results dictate which model performs better under di�erent

conditions.
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5 Conclusions

The present dissertation aimed to perform an evaluation of three di�erent parametric struc-

tures of volatility by adopting the relatively recent non-parametric approach of treating

volatility as an observable variable, obtained by the sum of high frequency intraday �nancial

returns.

After an introduction to provide context, realized volatility is explained in more detail

and its conditional and unconditional distributional properties are documented, as well as

for returns. The empirical distribution of realized volatility is clearly non-normal, given

its high kurtosis and positive skewness. Notwithstanding, the distributions for logarithmic

realized volatility and returns standardized by realized standard deviation seem to be close

to normal. Raw returns are also clearly non-normal. Furthermore, realized volatility seems

to have an asymmetric behavior. These results are consistent with the ones found in the

literature.

As for the predictive ability of the GARCH, EGARCH and GJR-GARCH models, the

GARCH speci�cation seems to dominate the others for the majority of the cases . Although

the asymmetric e�ect of volatility is visible in Figure 11, the only speci�cation that was

not designed to capture this leverage speci�cally seems to perform better than the others.

This could mean that the leverage e�ect, traditionally attributed to the debt-to-equity ratio

of �rms, is not as meaningful when considering exchange rates. Furthermore, between the

EGARCH and GJR-GARCH models, the latter appears to be a better predictor of volatility

except for the case where we use a Gaussian error distribution and 5 minute return aggrega-

tion as a proxy for volatility.

Further work can be done by extending this analysis to other exchange rates, either one

at a time or simultaneously, performing a multivariate analysis. An analysis considering

di�erent sampling schemes and intervals would also be of interest, as well as using di�erent

distributions in the estimation of the GARCH models.

29



6 Limitations and further work

The present dissertation tries to assess the predictive accuracy of three models of the GARCH

family by using di�erent proxies for realized volatility. Although realized volatility (computed

as the sum of 5 minute intraday squared returns) would ideally yield the true value of volatil-

ity, due to market frictions that arise from its structure it is only another estimator for

volatility. Nevertheless, results in the literature suggest that it seems to deliver more reliable

estimates than the traditional parametric volatility models.

We compare the forecasts from parametric models to an approximation of what would be

the actual volatility, following the apporach of Diebold et al (2003). These authors suggest

that extracting 5 minute prices yield the best trade o� between noise and information in the

series. This could be seen as a limitation of the present study, since other conclusions could

be drawn about optimal sampling schemes. In fact, there are several authors who developed

these alternative sampling techniques that necessarily yield di�erent estimates for realized

volatility. For instance, Hansen and Lunde (2006b) proved that the previous tick method,

which involves selecting the price for the �rst transaction in a given interval, is an adequate

approach to sample prices.

Although some adjustments could be made to the methodology, the main results of this

study are not expected to be substantially di�erent, as results in previous literature already

document that the GARCH speci�cation seems to perform better than other models when

considering exchange rate volatility.

For further work, this assessment could be extended to other exchange rates or even other

asset classes as stocks or bonds, as it would be interesting to evaluate the predictive ability

of parametric models for interest rate volatility.
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