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Resumo

As Gramáticas de Formas são sistemas baseados em regras para a geração de com-
posições espaciais, oferecendo uma abordagem formal e flexível para a criação de designs.
No entanto, as ferramentas existentes frequentemente exigem conhecimentos avançados
de sistemas formais e programação, o que limita a sua acessibilidade a um público mais
amplo.

Esta dissertação apresenta a SAGE (ShApe Grammar assisted Environment), uma
ferramenta visual desenvolvida com base na plataforma Alternative Shaper, concebida
para tornar as Gramáticas de Formas mais intuitivas e acessíveis a utilizadores de difer-
entes perfis. Enquanto o Alternative Shaper fornece o motor generativo subjacente, SAGE
centra-se no desenvolvimento de uma interface clara e orientada ao utilizador, que permite
criar formas, definir regras de transformação e compor gramáticas procedurais através de
um ambiente de programação visual integrado. Desenvolvido através de uma abordagem
de prototipagem iterativa, o SAGE procura aproximar os sistemas generativos formais de
modelos de interação mais intuitivos, promovendo a integração das Gramáticas de Formas
em fluxos de trabalho de design interativo.

Uma avaliação sumativa envolvendo 30 participantes revelou uma pontuação média
de 78.1 no System Usability Scale (SUS), correspondente à categoria “Bom–Excelente”,
indicando uma experiência de utilização positiva e confirmando que o SAGE reduz efi-
cazmente a barreira de entrada às Gramáticas de Formas. Estes resultados demonstram
o seu potencial como base para futuras aplicações educativas e profissionais no domínio
do design generativo.

Palavras Chave: Gramáticas de Formas; Design Generativo; Sistemas baseados em
Regras; Interação Humano-Computador
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Abstract

Shape Grammars are rule-based systems for generating spatial compositions, offering
a formal and flexible approach to design generation. However, existing tools often require
advanced knowledge of formal systems and programming, limiting their accessibility to a
broader audience.

This dissertation presents SAGE (ShApe Grammar assisted Environment), a visual
tool built upon the Alternative Shaper platform to make Shape Grammars more intuitive
and approachable to users of all backgrounds. While the Alternative Shaper provides the
underlying generative engine, SAGE focuses on developing a clear, user-centred interface
that allows users to create shapes, define transformation rules, and assemble procedural
grammars through an integrated visual programming environment. Developed through an
iterative prototyping approach, SAGE bridges the gap between formal generative systems
and user-friendly interaction models, bringing Shape Grammar functionality closer to
interactive design workflows.

A summative evaluation involving 30 participants yielded a mean System Usability
Scale (SUS) score of 78.1 (“Good–Excellent”), indicating a positive user experience and
confirming that SAGE effectively reduces the entry barrier to Shape Grammars. These
results highlight its potential as a foundation for future educational and professional
applications in generative design.

Keywords: Shape Grammars; Generative Design; Rule-Based Systems; Human-
Computer Interaction
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CHAPTER 1

Introduction

1.1. Context and Motivation

Generative design has become an increasingly important paradigm in fields such as ar-
chitecture, product design, and industrial design. By leveraging computational systems,
designers are no longer constrained to manually exploring single alternatives, but can
instead automate creative processes and efficiently generate, compare, and refine multi-
ple design variations. This paradigm shift is particularly valuable in early design stages,
where the exploration of a wide solution space can significantly influence the quality and
innovation of the final outcome.

Within this domain, Shape Grammars, first introduced by Stiny and Gips in 1972 [1],
stand out as a formalism capable of describing, analyzing, and generating designs through
the recursive application of transformation rules. The flexibility of Shape Grammars al-
lows them to represent both the syntactic and semantic aspects of a design, making them
a powerful tool for capturing stylistic features, enforcing design constraints, and systemat-
ically exploring variations. Over the past decades, Shape Grammars have been applied to
diverse areas, from architectural composition [2], [3], [4] to furniture and product design
[5], [6], [7], and even art and decorative forms [8], [9], demonstrating their versatility as a
generative system.

Despite their potential, Shape Grammars remain largely inaccessible to non-experts.
The formalisms involved are often mathematically and conceptually complex, requiring
significant prior knowledge to be applied effectively. Existing tools, such as DESIGNA
[10], IM-sgi [11], and QShaper [12], provide valuable implementations and confirm the
applicability of Shape Grammars in design practice. However, they also highlight an
important limitation: most of these tools assume that users already possess technical
knowledge of the underlying formalism, which restricts their use to a niche audience of
researchers or highly specialized designers.

To overcome these barriers, there is a clear need for tools that democratize the use of
Shape Grammars, translating their theoretical richness into designer-oriented workflows
that balance formal rigor with usability.

Recent Human–Computer Interaction (HCI) research offers new perspectives on this
challenge. For instance, Brickify [13] illustrates how direct manipulation of visual to-
kens can make generative systems more accessible and expressive. By allowing designers
to convey intent through graphical interactions rather than abstract parameters or tex-
tual prompts, such approaches reconcile human creativity with computational formalism.
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Inspired by these developments, this dissertation argues that Shape Grammars, when
coupled with visual interaction and rule-based control, can provide a natural framework
for guiding and constraining generative design.

Building upon this premise, the present work extends the Alternative Shaper [14],
a pre-existing Shape Grammar interpreter and design generation engine, by developing
SAGE (ShApe Grammar assisted Environment), a new user-centered interface layer de-
signed to make such capabilities more transparent, learnable, and visually accessible. By
integrating Blockly [15], a visual programming library, SAGE allows grammar compo-
sition through a drag-and-drop interface, thereby reducing the cognitive load typically
associated with textual or symbolic representations.

Developed through an iterative, User-Centered Design (UCD) process, the proposed
tool aims to support both novices, who may be encountering generative design concepts
for the first time, and experts seeking a more efficient and streamlined workflow.

1.2. Research Questions

In light of the motivations outlined above, this dissertation seeks to address the following
research questions:

• RQ1: Which graphical representations are most effective for supporting the
visual design of Shape Grammars, particularly for novice users?

• RQ2: Which interaction metaphors best facilitate the intuitive creation, ma-
nipulation, and understanding of shapes, rules, and grammars within a visual
environment?

• RQ3: How can iterative prototyping and user feedback inform and validate these
representations and interaction models to enhance the accessibility, clarity, and
usability of Shape Grammar-based design tools?

By addressing these questions, the dissertation contributes to bridging the gap be-
tween the formal expressiveness of Shape Grammars and their practical applicability in
design contexts, demonstrating how Human–Computer Interaction (HCI) methodologies
can enhance their adoption and usability.

1.3. Methodology

To address the research questions, this dissertation follows the Design Science Research
(DSR) methodology [16], which is widely used in information systems and software engi-
neering for the creation and evaluation of innovative artifacts. DSR is particularly suitable
for this work because it emphasizes both the practical utility of the developed solution
and its theoretical contribution.

The methodology unfolds through the following stages:

(1) Problem Identification — defining the challenges associated with existing
Shape Grammar tools and identifying the gap in accessibility and usability.
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(2) Design & Development — extending the Alternative Shaper platform by de-
veloping the SAGE interface, iteratively refining its visual components and in-
teraction model based on user needs.

(3) Demonstration — applying the tool in representative design scenarios to illus-
trate its capabilities and potential.

(4) Evaluation — assessing the effectiveness of the tool through usability testing,
comparing it to existing solutions, and analyzing user feedback.

(5) Communication — disseminating the results and discussing the implications of
the work for the fields of generative design, computational creativity, and HCI.

This structured approach ensures that the proposed solution is not only technically
sound but also aligned with the needs of its intended users, ultimately contributing to
both academic knowledge and practical design practice.

1.4. Objectives

Based on the DSR methodology described above, this dissertation defines a set of concrete
objectives that operationalize its research questions and guide the development of the pro-
posed artifact. These objectives ensure that the methodological framework is effectively
applied toward the creation, implementation, and validation of a usable and educational
Shape Grammar environment.

Specifically, the objectives are as follows:

(1) To analyze the limitations of existing Shape Grammar tools in terms of accessi-
bility, usability, and integration with contemporary design workflows;

(2) To build upon the Alternative Shaper platform by designing a new user inter-
face layer (SAGE) focused on clarity, interactivity, and user experience, while
maintaining compatibility with its generative engine;

(3) To prototype and implement the proposed tool through an iterative, user-centered
process integrating visual programming via Blockly;

(4) To evaluate the usability, clarity, and educational value of the developed proto-
type through user testing and feedback analysis;

(5) To identify potential directions for future development and refinement, bringing
the prototype closer to a deployable and extensible solution for design education
and practice.

Together, these objectives align the methodological process with the research goals,
ensuring that both theoretical and practical contributions support the broader aim of
making Shape Grammars more accessible and usable in creative design contexts.

1.5. Dissemination

The conceptualization and early-stage development of the visual Shape Grammar tool
were presented in a paper submitted to the International Conference on Graphics and
Interaction (ICGI 2025). The paper focused on the design rationale, interface conceptu-
alization, and low-fidelity prototype created in Figma, outlining the foundations of the
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project and its intended interaction model. The submission was accepted as a full paper
for oral presentation at the conference, which will take place on November 13–14, 2025.

While this publication disseminates the initial phase of the project, the present dis-
sertation extends the work by describing the implementation of the full application and
presenting the results of a summative evaluation, conducted to assess its usability and
effectiveness.

1.6. Document Structure

Following this introductory chapter, the dissertation is organized into more five main
chapters.

Chapter 2 reviews the theoretical and practical foundations underpinning this study.
It begins by outlining the adopted literature review methodology and explores key con-
cepts across the fields of Computer-Aided Design (CAD), Generative Systems, Generative
Design, and Shape Grammars, highlighting existing tools and identifying current gaps and
opportunities.

Chapter 3 presents the design and development of SAGE. It first introduces the overall
structure and core features of the final system, and then retraces the iterative prototyping
process through which the interface and interaction model evolved. This chapter estab-
lishes the design rationale that guided implementation, demonstrating how feedback from
successive evaluation rounds shaped the final tool.

Chapter 4 details the development phase, including the chosen environment, system
architecture, and technical integration of the Blockly framework. It demonstrates how
the conceptual ideas were translated into a functional application.

Chapter 5 reports on the summative evaluation conducted to assess the usability,
clarity, and effectiveness of the final system. It explains the evaluation goals, methodology,
and applied metrics, followed by both quantitative and qualitative analyses of participant
feedback.

Chapter 6 summarizes the main findings of the study, revisits the research questions,
and discusses future directions for improvement and further development.
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CHAPTER 2

Related Work

The development of a design generation tool based on Shape Grammars builds upon an
evolving interdisciplinary landscape that intersects computational design theory, gener-
ative systems, and HCI. From the early adoption of Computer-Aided Design (CAD) to
the rise of parametric and generative design paradigms, the trajectory of digital design
tools reflects a gradual shift from manual geometric control toward computationally as-
sisted creativity. As these tools became increasingly interactive and user-oriented [17],
[18], the relationship between designer and computer evolved from one of control to one
of collaboration.

Within this continuum, Shape Grammars represent a foundational formalism capable
of expressing design languages through transformation rules. Despite their theoretical
richness, however, the practical adoption of Shape Grammars in design practice remains
limited, largely due to usability challenges, a lack of intuitive visual environments, and
difficulties integrating grammar-based logic with interactive workflows.

This chapter reviews the evolution of digital design frameworks relevant to Shape
Grammars, from CAD and generative systems to contemporary HCI paradigms. The
review aims to identify conceptual and practical gaps that justify the development of an
interface designed to make Shape Grammar-based design more transparent and approach-
able. In particular, it positions the Alternative Shaper as the most comprehensive existing
interpreter of parametric Shape Grammars, whose procedural engine forms the compu-
tational foundation for the tool developed in this dissertation. The present work builds
upon that foundation to design a new interface layer focused on learnability, feedback,
and exploratory engagement.

2.1. Literature Review Methodology

A literature review was conducted with the aim of collecting academically relevant in-
formation regarding the foundations, applications, and evolution of Shape Grammars in
design contexts. Because Shape Grammars are a mature concept, with origins in the 1970s
[1], it was necessary to combine both classic works, which establish their theoretical and
formal basis, and more recent publications focusing on usability, parametric extensions,
and integration into generative design workflows.

The review followed a snowballing approach, starting from foundational Shape Gram-
mar references and expanding to subsequent publications that cited or extended them.
This strategy was adopted because the field of Shape Grammars, while seminal, is rela-
tively niche compared to broader areas such as CAD or generative design, and therefore

5



lacks the extensive indexing and standardized taxonomies typically required for systematic
reviews.

Although not conducted under a formal PRISMA protocol, the review was guided by
its general principles of transparency and traceability. Searches were performed manually
using academic databases such as Google Scholar, Scopus, the ACM Digital Library, and
the Portuguese B-On (Biblioteca do Conhecimento Online), focusing on peer-reviewed
publications written in English. Foundational works by Stiny and Gips (1972) served as
the starting point, from which relevant citations were iteratively collected and analyzed.

Through this process, a broad set of publications related to Shape Grammars, com-
putational design, generative systems, and HCI was identified. To facilitate analysis, the
reviewed sources were first grouped into five thematic domains reflecting the conceptual
evolution of Shape Grammars within computational design:

(1) Computer-Aided Design (CAD): to contextualize how digital tools first entered
the design process and how they established the groundwork for rule-based sys-
tems.

(2) Generative Systems: to examine how concepts of rule-based generation (e.g.,
cellular automata, L-systems, agent-based models) and emergence (where unex-
pected patterns arise from simple rules) influenced design thinking and compu-
tational creativity.

(3) Generative Design: to trace the evolution towards goal-oriented, optimization-
driven systems where computation plays an active role in exploring solution
spaces.

(4) Shape Grammars: to focus on the specific formalism at the core of this research,
including its theoretical foundations, parametric extensions, and applied tools.

(5) Human-Computer Interaction: to examine how usability, interaction design, and
user experience considerations shape the accessibility and practical adoption of
Shape Grammar tools.

After this categorization, publications were filtered according to four general criteria:

• Relevance to Shape Grammars: Does the publication directly address Shape
Grammars or their applications in design?

• Generative Context: Does it relate to rule-based or computational generation
approaches that inform or parallel to Shape Grammars?

• Practical Application: Does it contribute to the understanding of usability, para-
metric control, or integration with design workflows and interaction design?

• Historical Importance: Is it a foundational work that defines or frames Shape
Grammar?

Following this filtering process, the final corpus combined foundational theoretical
works with more recent studies on usability, parametric extensions, and HCI integra-
tion. The snowballing approach was ultimately deemed appropriate given the historical
and exploratory nature of the topic, ensuring comprehensive coverage of both classical
6



and contemporary perspectives without imposing the rigid inclusion criteria typical of
systematic reviews.

2.2. Computer-Aided Design (CAD)

As defined by Zeid [19], Computer-Aided Design (CAD) refers to “the use of computer
systems to assist in the creation, modification, analysis, or optimization of a design”.
CAD systems primarily act as digital extensions of manual drafting, enhancing precision
and efficiency while preserving user control over the design process. Tools such as Au-
toCAD [20] have long served as the backbone of architectural and industrial workflows,
standardizing representation and supporting interoperability with downstream processes.

However, as Kalay [21] and Sass and Oxman [22] note, traditional CAD systems remain
fundamentally representational rather than generative, focusing on documentation rather
than exploration. Their core purpose is to depict geometry that already exists in the
designer’s mind, relying on explicit user commands to construct and modify every element.
As such, CAD environments describe and record design intent but do not autonomously
propose or derive new solutions.

From an HCI perspective, traditional CAD environments can be seen as early exam-
ples of direct manipulation interfaces, where control and precision are prioritized over ex-
ploratory or creative engagement. The introduction of Graphical User Interfaces (GUIs)
[23] made such systems more accessible, but their underlying interaction paradigm re-
mained task-oriented rather than exploratory. As interaction research emphasizes [18],
systems that rely solely on user-driven modeling tend to support efficiency but hinder
reflection, discovery, and reinterpretation: aspects that are central to creativity-oriented
design.

The evolution towards parametric and procedural modeling, as exemplified by Grasshop-
per 3D [24], marked a turning point where geometry is defined not directly but through
sets of rules and parameters [25]. This logic-based workflow introduced computational
design thinking, enabling designers to explore families of solutions by manipulating input
parameters and delegating part of the creative process to the computer.

Despite these advances, parametric CAD tools still rely heavily on explicit user input
and technical expertise, offering precision but limited support for emergent creativity.
As Shneiderman [17] argues, effective digital tools for design should not only optimize
performance but also support exploration and creativity. This limitation has motivated
the development of new forms of computational and generative systems that rethink the
interaction between designer and computer.

2.3. Generative Systems

Generative systems extend beyond parametric control by introducing autonomous or semi-
autonomous processes capable of producing complex results from relatively simple rule
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sets. Unlike CAD environments, where geometry is explicitly constructed and manipu-
lated by the user, generative systems leverage computation to reveal emergent patterns
and behaviors that may not be predictable from the initial conditions alone [26], [27].

Classical examples include cellular automata, such as Conway’s Game of Life [28],
where simple local rules lead to globally complex behavior, and L-systems [29], originally
developed by Lindenmayer to simulate plant growth. Agent-based models such as Boids
[30] further exemplify this principle, where individual entities following minimal behavioral
rules generate sophisticated group dynamics. These approaches demonstrate how rule-
based systems can produce rich visual and structural outcomes without explicit user
modeling.

Generative principles have also influenced digital media and entertainment, as seen
in Spore [31] and procedural city generation techniques [32], where computational rules
drive large-scale diversity and complexity. In design contexts, such systems introduce the
idea of emergence: the ability for unexpected configurations to arise from predefined logic,
which is central to computational creativity [26], [33].

By partially shifting creative agency to the computer, generative systems promote
a co-creative paradigm in which designers act as curators of process rather than direct
modelers of geometry. This dynamic redefines the designer–computer relationship as an
ongoing dialogue rather than a sequence of commands. As McCormack and d’Inverno
[34] argue, such interaction represents a partnership of creative exploration, where each
iteration reveals new possibilities within a defined rule space.

From an HCI standpoint, this transition reflects a shift from efficiency-centered de-
sign toward systems that prioritize interpretability, feedback, and cognitive engagement
[18], [35]. When users can understand and influence generative behavior through visual
interaction, computation becomes a medium for reflection and discovery rather than mere
automation. This perspective underscores the need for interfaces that make the under-
lying generative logic transparent, allowing users to comprehend, predict, and creatively
manipulate emergent outcomes: a principle that directly informs the rationale for Shape
Grammar-based tools.

2.4. Generative Design

Generative Design formalizes the co-creative paradigm introduced by generative systems,
shifting from open-ended emergence to goal-oriented exploration of design alternatives.
Rather than merely producing emergent forms, generative design integrates computational
algorithms, performance criteria, and user-defined constraints to guide the search for
solutions [25], [36], [37]. The designer specifies objectives, parameters, and evaluation
metrics, while the system autonomously generates and evaluates variations, simulating
aspects of creativity and supporting decision-making in complex problem spaces [38],
[39].

This paradigm has given rise to the notion of Computational Design Thinking, as
described by Oxman and Terzidis [37], [40]: a conceptual shift in which designers no longer
8



manipulate geometry directly but instead define the rules and logics through which form
emerges. The role of the designer becomes one of guiding and interpreting algorithmic
behavior, engaging in a dialogue with the computational process rather than exerting
total control over it. In this sense, generative design merges the rigor of computation
with the intuition of human judgment, allowing designers to explore wide design spaces
interactively and iteratively.

Notable tools in this domain include Houdini [41], widely used for procedural mod-
eling in digital media, and Autodesk’s Generative Design [42] platforms, which combine
optimization algorithms with performance-driven criteria. These systems exemplify how
computation can expand the design search space, but they also reveal important chal-
lenges: As Celani and Vaz [43] point out, generative systems often remain opaque and
technically complex, demanding specialized knowledge that limits accessibility for many
designers.

From a HCI perspective, this opacity represents a significant barrier to adoption. Sys-
tems that prioritize algorithmic power over interpretability tend to alienate users who
lack technical expertise, restricting creativity to those capable of coding or managing ab-
stract parameters. As Rogers [18] and Hassenzahl [35] emphasize, creative digital tools
must balance computational control with cognitive transparency, enabling users to under-
stand and manipulate generative processes through intuitive interaction. In other words,
usability becomes a creative enabler rather than a secondary concern.

Overall, Generative Design demonstrates how computational logic can extend human
creativity while also highlighting the need for accessible and interpretable design systems,
a concern that becomes central when considering Shape Grammars.

2.5. Shape Grammars

Within the generative design landscape, Shape Grammars occupy a distinctive and foun-
dational position. Originally conceived as a formal language for describing architectural
styles and design languages [1], [44], they provide an interpretable and structured way
of encoding design intent. While early Shape Grammar applications were primarily ex-
ploratory and descriptive, more recent implementations have integrated them into genera-
tive design workflows that incorporate parametric control, optimization, and user-defined
constraints [4], [45]. In this sense, Shape Grammars integrate the formal rigor of rule-
based systems with the goal-oriented, performative nature of modern generative design.

Shape Grammars are formal systems that generate visual compositions through the
recursive application of geometric transformation and substitution rules. They represent
to spatial design what linguistic grammars represent to written language: a means of
constructing structured, meaningful expressions from a basic alphabet. While linguistic
grammars operate on strings of symbols, Shape Grammars manipulate spatial configura-
tions of shapes directly. The formalism itself was inspired by linguistic generative gram-
mars proposed by Chomsky [46] and by the production systems of Post [47], translating
syntactic notions into spatial terms.
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Shape Grammars are defined by three core components [1]:

(1) an alphabet of shapes, which specifies the basic visual elements available for
composition;

(2) a set of rules, formulated as condition-action pairs, which describe how shapes
can be added, removed, or transformed based on spatial relationships;

(3) an initial shape, from which the design generation process begins.

In later formulations, Stiny [8] introduced a fourth component, labels, to encode se-
mantic or structural information, allowing more explicit control over the derivation pro-
cess. Rules are applied recursively: if the pre-condition of a rule matches part of the
current composition, the corresponding action is executed, modifying the design. Shapes
can be added, removed, substituted or transformed using geometric operations, often de-
fined algebraically. Because multiple rules may be applicable at any given time and can be
applied in different orders, Shape Grammars naturally support the generation of multiple,
stylistically consistent design alternatives.

Over time, extensions to the original formalism have addressed limitations in expres-
siveness and control. Among the most significant was the development of Parametric
Shape Grammars [45]. These introduced variable parameters and algebraic constraints
into rule definitions, enabling dynamic manipulation of dimensions, proportions, and re-
lationships among shapes. This broadens the design space and allows families of solutions
to be generated from a single grammar. This evolution not only increases the diversity
of possible designs, but also aligns Shape Grammars more closely with modern genera-
tive design practices, where user-defined goals and constraints play a central role. Such
advancements have been essential in bringing Shape Grammars closer to the needs of
architectural and industrial design, as demonstrated in Duarte’s Discursive Grammar for
mass housing [4], and in subsequent works by Stouffs and Krishnamurti [48]. One notable
implementation of Parametric Shape Grammars principles is the base of this dissertation,
Alternative Shaper, a model for automatic design generation that integrates rule-based
shape transformations with procedural execution, allowing algorithmic control over which
rules are applied, in what order, and with what parameters. Originally developed for the
automatic generation of architectural floor plans, the Alternative Shaper demonstrates
the practical feasibility of implementing fully procedural and parametric Shape Gram-
mars. Although focused on architectural floor plans, its architecture is domain-agnostic
and can be adapted to other design contexts. It provides features that make it an ideal
foundation for further development: an extensible grammar engine capable of managing
rule sequencing, conditional execution, and parameterized transformations. However, the
Alternative Shaper primarily focuses on the computational back-end rather than on user
interaction. Its powerful rule interpreter lacks an accessible interface that allows designers
to visually author, inspect, and manipulate grammars.

Another central theoretical concept that shapes both the expressive power and com-
putational complexity of Shape Grammars is emergence. Knight [49] formalized the idea
10



that new shapes may appear through perceptual inference rather than explicit rule defi-
nition. Emergent shapes embody the creative potential of Shape Grammars: they reflect
the designer’s ability to “see” new configurations and reinterpret the grammar dynami-
cally during the design process. However, this same flexibility introduces challenges for
computational interpretation and automation, as emergent perception often depends on
subjective human recognition rather than deterministic computation.

Alongside these theoretical developments, numerous applications have demonstrated
the potential of Shape Grammars in capturing architectural styles, generating design vari-
ations, and formalizing creative processes. Early examples include grammars describing
Palladian villas [2], Queen Anne houses [3], or Mughul gardens [8]. These case studies
validated Shape Grammars as analytical and generative frameworks, capable of encoding
stylistic languages and producing new yet coherent designs.

Later, computational implementations, such as Tapia’s GEdit [50] and Heisserman’s
Genesis [51], attempted to operationalize these principles into software interpreters, paving
the way for subsequent tools such as DESIGNA [10], which integrates Shape Grammar
derivation within modern CAD environments.

Despite their expressive potential, most Shape Grammar tools continue to face prac-
tical limitations. The manual definition of rules, lack of immediate visual feedback, and
absence of accessible interfaces make Shape Grammars difficult to use outside academic
or expert contexts. Users who are not already familiar with the theoretical foundations
of Shape Grammars often struggle to understand their underlying logic or to formulate
valid rules, which makes it challenging to engage with these systems meaningfully. This
steep learning curve, combined with the lack of intuitive, real-time interaction, discour-
ages the kind of exploratory experimentation that characterizes creative workflows. As
highlighted in HCI-driven approaches such as IM-sgi [11], effective Shape Grammar en-
vironments must prioritize usability, interactivity, and cognitive transparency. In this
context, being HCI-driven means that the design of the system is guided by user ex-
perience principles that align interaction, feedback, and learning processes with human
cognitive capabilities rather than with purely computational logic. These principles form
the foundation of the system developed in this research.

2.5.1. Gaps and Opportunities of Existing Tools

The evolution of Shape Grammar tools reflects a persistent tension between formal expres-
siveness, computational tractability, and practical usability in design workflows. Beyond
the foundational case studies in architecture, such as the previously mentioned Palla-
dian villas [2], Queen Anne houses [3], and Mughal gardens [8], the literature reports a
broad spectrum of applications that include product form languages (e.g., coffee makers
[6], automotive brand identity [7], [52], consumer packaging [9]), furniture and decorative
arts [5], and urban form generation (e.g., Marrakech Medina [53]). These cases confirm
the dual role of Shape Grammar as analytical (capturing existing styles) and generative
(generating novel designs) formalisms.
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From an implementation standpoint, early and influential interpreters illustrate com-
plementary strengths and recurring limitations. GEdit [50] provided an accessible 2D
environment with maximal lines and subshape detection (supporting emergence), while
Genesis [51] progressed 3D solid descriptions and sparked industrial interest, though many
technical details are not public. Subsequent systems explored different representational
choices (visual, symbolic, and set grammars) balancing subshape matching, parametric
control, and computational cost [54], [55], [56], [57], [58]. Later efforts integrated com-
puter vision techniques to improve subshape recognition and rule matching (Qi [59]), or
hybridized Shape Grammars with graph grammars (e.g., GRAPE [60]) to enhance spatial
recognition and parametric manipulation. However, these improvements often came at
the cost of increased system complexity and reduced computational performance.

Industry-facing tools, notably procedural city modeling (e.g., CityEngine [61]), demon-
strate scalability in rule-based pipelines for urban massing and facade generation; however,
their grammars are typically text-based, domain-specific, and tuned for production rather
than for didactic exploration of Shape Grammars concepts, leaving limited support for
visual rule authoring, stepwise derivation, or emergent-shape reasoning in early design.

In the broader landscape of Shape Grammar implementations, which spans both aca-
demic prototypes and industry-oriented systems, DESIGNA [10] advances a software ar-
chitecture that bridges an interpreter with standard CAD tools via Rosetta, enabling
labeled shapes, rule description as transition operators, and search strategies (depth-
/breadth-first) for rule application. This improves portability and output continuity with
AutoCAD/Rhino, but still assumes a technically proficient user and prioritizes the back-
end engine over visual, guided authoring and immediate feedback interfaces.

Complementary HCI-oriented proposals, such as IM-sgi [11], foreground usability
through Cognitive Walkthrough and differentiated user profiles (e.g., students, design-
ers, experts), articulating ergonomic criteria for Shape Grammar interfaces. Yet, these
contributions remain largely conceptual or disconnected from fully operational derivation
engines, limiting their validation in complex, dynamic design scenarios.

Finally, lightweight visual front-ends such as QShaper [12] illustrate the advantages of
explicitly organizing Shape Grammar components into three distinct sets (shapes, rules,
and resulting designs), allowing stepwise visualization of the derivation process. However,
these tools do not scale well to parametric grammars, constraint handling, or emergent-
shape recognition, nor have they been systematically evaluated with professional users.

Across these lines of work, four cross-cutting limitations persist:

(1) Rule authoring and learnability remain significant barriers. Most existing inter-
preters rely on text-based or code-centric definitions, offering limited syntactic
guidance, semantic validation, or visual feedback. This raises the entry thresh-
old for non-expert users and restricts Shape Grammars to technically proficient
audiences. Visual authoring environments, when they exist, tend to be partial or
experimental, limiting their pedagogical potential.
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(2) Emergence and subshape support remains computationally demanding. Conse-
quently, many tools either constrain the representation (e.g., rectilinear lines) or
sidestep emergence entirely, reducing exploratory power.

(3) Although parametric and procedural extensions broaden the generative scope of
Shape Grammars, existing tools rarely provide intuitive ways to express, visu-
alize, or debug procedural behaviors such as rule sequencing, search strategies,
or conditional execution. These aspects are typically confined to back-end inter-
preters rather than integrated into the design environment itself.

(4) Interaction and feedback remain limited. Most systems offer little visibility into
what rules matched, why they applied, or what alternatives were available. The
absence of such interpretability restricts co-creative exploration, comparison of
derivation paths, and learning through iteration, which are key qualities for both
educational and professional use.

Taken together, these limitations underline the opportunity for a new kind of Shape
Grammar environment that combines formal rigor with usability and pedagogy. Such a
tool would: emphasize 2D visual interaction, to keep recognition and authoring tractable
while supporting subshape reasoning; procedure-aware execution, making rule sequences
and derivations explicit within the interface; and a didactic interaction model grounded
in good HCI practices, designed for progressive disclosure of complexity, inline feedback,
and visual debugging of derivations.

This direction explicitly builds upon the Alternative Shaper, whose computational
core demonstrates the feasibility of fully parametric and procedurally controlled Shape
Grammar derivations. The present work extends this foundation by introducing SAGE,
a visual interface layer that exposes the Alternative Shaper’s capabilities through direct
manipulation, stepwise feedback, and intuitive interaction The goal is not to reinvent its
computational core, but to make it accessible: to transform a technically advanced inter-
preter into an exploratory and didactic environment that bridges formal Shape Grammar
theory and creative practice.
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CHAPTER 3

Tool Design and Development

This chapter presents the design and development of SAGE (ShApe Grammar assisted
Environment). It begins by outlining the structure and main features of the final system,
followed by an overview of the iterative prototyping process through which its design
evolved. The goal is to demonstrate how theoretical principles and iterative user feedback
were progressively translated into a coherent and usable Shape Grammar environment.

3.1. Overview of SAGE

SAGE integrates three main functionalities: the creation of shapes, the definition of rules
and procedural grammars, and the guided generation of designs. The system is organized
into three core screens:

(1) the Home screen;
(2) the Main workspace;
(3) and the Build screen.

Each screen supports a specific stage of the user workflow. Upon starting the appli-
cation, users begin at the Home screen, where they can initiate a new project or resume
work on an existing one (Fig. 3.1).

Figure 3.1. Snapshot of the Home screen in SAGE.

15



The Main workspace includes three core editors:

(1) the Shapes Editor (Fig. 3.2);
(2) the Rules Editor (Fig. 3.3);
(3) and the Grammar Editor (Fig. 3.4).

This workspace also provides project-level functionality, including saving, loading, and
accessing the design generation interface.

In the Shapes Editor (see Fig. 3.2), users can create and edit either Simple or Com-
position shapes on a grid-based canvas. When adding a new shape, the user must specify
whether it will be a Simple shape, representing a single editable entity, or a Composition
shape, which acts as a container for multiple shapes via pop-up.

For Simple shapes, only one element can exist on the canvas at a time, and it can
be selected and edited through the properties panel. In Composition shapes, multiple
elements can coexist, allowing users to add other shapes by dragging their thumbnails from
the shape list onto the canvas. Once added, each constituent shape can be selected and
edited individually. When no specific shape is selected, the tool assumes interaction with
the entire Composition, enabling global transformations such as scale (scaleX, scaleY)
and translation (translateX, translateY) that affect all constituent shapes. Additionally,
Composition shapes include a parameter list that can be used for further customization
or integration with procedural grammars. For Simple shapes, editable properties include
name, position (x, y), size (width, height), color, associated image, and parameter list.
The properties panel supports standard interactions, including undo, redo, and delete. A
thumbnail list at the top of the editor allows users to quickly view, select, and manage

Figure 3.2. Snapshot of the Main workspace with Shape Editor selected
in SAGE.
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Figure 3.3. Snapshot of the Main workspace with Rule Editor selected in
SAGE.

shapes for editing, including the option to delete them directly from the list, ensuring
flexibility and efficient workspace organization.

The Rules Editor (Fig. 3.3) provides an overview of all transformation rules defined by
the user. Each rule specifies an initial ("before") and resulting ("after") shape, selected via
drop-down menus listing all previously created shapes. The editor extends the traditional
Shape Grammar model by allowing the optional addition of conditions and procedures,
offering finer control over rule application. These are defined through dedicated buttons
that open Blockly-based visual editors, where users can create logic blocks representing
constraints or post-rule actions. This dynamic mirrors the logic of the Alternative Shaper
[14], where each rule can include associated conditions and procedural steps to define
its behavior more precisely. In SAGE, this hybrid approach maintains the simplicity of
rule-based transformations while enabling more expressive and modular design behaviors,
allowing users to embed local logic directly within individual rules when needed.

The Grammar Editor (Fig. 3.4) integrates a Blockly-based programming environment
where users can define high-level procedures that orchestrate the application of rules and
shapes. Within this environment, users may also create new shapes and rules as part of
procedural workflows, extending the expressive potential of the grammar. However, in
the current implementation, this functionality is not yet fully synchronized with the main
editors, meaning that elements created directly in Blockly are not automatically reflected
in the shape and rule lists of the visual workspace. Despite this limitation, the Grammar
Editor provides an accessible and powerful way to model generative logic without the
need for textual programming, bridging procedural reasoning and visual authoring.
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Figure 3.4. Snapshot of the Main workspace, with Grammar Editor se-
lected in SAGE.

Figure 3.5. Snapshot of the Build screen in SAGE, showing the design of
a complete home generated by Alternative Shaper.

When users are ready to generate designs, they move to the Build screen (Fig. 3.5),
where the process is presented as an interactive dialogue with a virtual builder mascot.
This mascot acts as a guide through the generation process, helping configure parameters
and presenting design alternatives in a conversational format. The underlying generation
logic is powered by the Alternative Shaper’s Prolog engine, which executes the grammar
rules and procedures defined in that model. To initiate a design, users must select a
18



Reference Feature Implementation in SAGE

Unity [62] Property inspector panels Adopted for the shape Properties
panel to ensure clarity and con-
sistency in parameter editing.

GameMaker [63] Thumbnail-based object se-
lection

Used in the shape list to allow
quick visual access and editing of
existing shapes.

Blender [64] Dynamic “+” and “–” pa-
rameter controls

Implemented for adding and re-
moving parameters within shapes
and rules.

Scratch[65]/
Blockly [15]

Block-based visual pro-
gramming

Used in the Grammar Editor to
enable logic definition without
textual coding.

Architectural
Blueprints

Visual metaphor/ aesthetic Inspired the blue-toned palette
and grid background, evoking the
look of a design workspace.

Table 3.1. Interface inspirations and their influence on SAGE’s design.

procedure, if multiple outcomes are possible, the interface allows them to be iterated
between them. This loop of procedure selection continues until the user is satisfied with
the result. The final design can then be exported for later use.

With all these concepts in place, SAGE is conceptually structured into two comple-
mentary environments, one dedicated to grammar creation, where users define shapes,
rules, and procedures, and another focused on design generation using that grammar.
This separation allows users to move from structural definition to creative exploration in
a clear and accessible way. Fig. 3.6 illustrates this workflow, highlighting the key user
interactions in each phase of the process.

From a visual and interaction design perspective, SAGE incorporates several interface
patterns and conceptual references drawn from both established design tools and broader
visual metaphors. This strategy aimed to leverage familiar paradigms (whether from
software environments or design practice) to improve usability, evoke domain familiarity,
and reduce cognitive load for first-time users. Table 3.1 summarizes the main references
and the specific interface aspects adapted from each.

3.2. Prototyping and Iterative Design Process

While the previous section presented the final structure and visual identity of SAGE, the
next sections retraces the iterative design process through which the tool’s interface and
functionality were refined. The prototyping phase played a central role in translating
theoretical concepts into practical interaction models, ensuring that the resulting system
aligned with both Shape Grammar principles and user experience requirements.
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Figure 3.6. User workflow across editing and build phases. Diamonds
represent user decisions and rectangles denote screen states.

In line with a User-Centred Design (UCD) approach, the design of SAGE progressed
through multiple stages of medium-fidelity prototyping. Each iteration aimed to test
specific interaction hypotheses, validate usability decisions, and progressively refine the
interface based on user feedback. Three main prototypes were developed using Figma [66],
each followed by evaluation sessions combining task-based observation and qualitative
feedback.
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Figure 3.7. Summary of the three Figma prototype iterations, showing
participant profiles, evaluation goals, and the progressive increase in usabil-
ity across the design refinement process.

Figure 3.7 provides an overview of the three iterations, summarizing their goals, partic-
ipant profiles, and the gradual improvements in usability and interaction design achieved
throughout the process.

The prototyping process followed early-stage evaluation methodologies [67], empha-
sizing lightweight and iterative testing to identify usability issues efficiently and with
minimal development overhead. Following principles of HCI [68], [69], each prototype
iteration sought to minimize the gap between users’ mental models and the intended
system logic. Think-aloud protocols [70] were employed during all sessions to capture
participants’ reasoning, difficulties, and interpretation of visual cues in real time.

Prototypes were tested through a predefined task set designed to simulate a complete
Shape Grammar workflow, from shape creation to design generation. The same task set
was reused across all iterations, with only minor adjustments, to ensure comparability of
results and to systematically assess the impact of each refinement:

(1) Create two simple shapes ("quarto" and "wc") and modify their size, name, and
color;

(2) Create a composition shape ("apartamento") using the previously created simple
shapes;

(3) Add and edit a parameter ("door") in a shape;
(4) Delete a shape;
(5) Define a basic substitution rule ("Random Rule");
(6) Delete an existing rule;
(7) Initiate a new design;
(8) Apply a procedure capable of generating multiple design solutions and review the

generated alternatives.
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Figure 3.8. Initial screen of the first SAGE prototype.

Because Figma prototypes cannot execute procedural logic, the Blockly-based pro-
gramming layer was not directly testable at this stage. Participants were therefore in-
structed to assume that the necessary procedures were already defined. This limitation
did not compromise the evaluation goals, which focused primarily on interface clarity,
interaction flow, and conceptual understanding of the workflow.

The following sections describe each prototype iteration in detail, outlining their main
design changes, evaluation procedures, and the insights that guided the progressive re-
finement of SAGE’s interface.

3.3. First Prototype

The first prototype1 aimed to validate the proposed workflow, from shape creation to
design generation, and to assess the clarity of navigation and visual hierarchy prior to
implementation. This evaluation round involved five participants with backgrounds in
computer science, whose familiarity with programming environments, game engines, and
platforms such as Scratch (conceptually similar to Blockly) ensured that the study could
focus primarily on interface design rather than functional comprehension. Although the
procedural layer was not directly testable in Figma, participants were able to infer how
Blockly’s logic would operate based on its visual organization and category structure.

This iteration marked the first definition and testing of SAGE’s conceptual workflow.
The interface was organized into sequential screens that reflected the intended design
logic: a New/Load Project screen (Fig. 3.8) for project management, a main workspace
divided into three editors (Shapes, Rules, and Grammar) and a final design generation
screen. At this stage, the prototype still displayed the placeholder title “Welcome to Alter-
native Shaper” on the home screen, as the project name had not yet been finalized. This
organization established the foundation for the navigation model adopted in subsequent
iterations.

Within the Shapes Editor, this prototype introduced the main interaction paradigms
that would later define SAGE’s visual and functional identity. Core principles such as

1Interactive Figma prototype of the first iteration.
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thumbnail-based shape organization, property-based parameter editing, and the use of
“+” and “–” buttons for parameter management were established here, drawing on con-
ventions from established design tools to promote familiarity and reduce cognitive load.
When a new shape was created, a default 1 × 1 placeholder was automatically instanti-
ated, as shown in Figure 3.9, requiring users to delete it before composing more complex
configurations. Deleting the placeholder required selecting the shape on the canvas, which
opened a contextual pop-up offering the option “Delete Shape” for confirmation.

In the Rules Editor, the same “+” and “–” buttons were used to manage rules, ensuring
consistency across the system. During this phase, its design focused solely on representing
a transformation between a “before” and an “after” shape, both selectable from dropdown
menus (Fig. 3.10). No guiding textual elements were yet included, as this explanatory
layer would only be introduced in later iterations.

Figure 3.9. Shapes editor
screen with a default shape
added in the first SAGE pro-
totype.

Figure 3.10. Rules editor
screen with a new Rule in the
first SAGE prototype.

Regarding the Grammar Editor, this prototype included a static image of the pre-
existing Blockly module from the Alternative Shaper project , used purely as a conceptual
placeholder (Fig. 3.11).

The conversational workflow between user and mascot to generate designs was first
established in this prototype. The dialogue began with a prompt to either start a new
design or load a previous one (Fig. 3.12). Once a new design was initiated, the system
entered the iterative loop of procedure selection (previously illustrated in Fig. 3.6), where
users selected both a shape and a procedure (Fig 3.13), a structure inspired by the Al-
ternative Shaper. In subsequent iterations, explicit shape selection was removed: the
“selected shape” is implicitly the current state of the design (i.e., the shape composed so
far in the Build workspace), and procedures operate relative to that evolving state.
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Figure 3.11. Grammar editor (Blockly) in the first SAGE prototype.

Figure 3.12. Initial screen
of the design generation
phase in the first SAGE pro-
totype.

Figure 3.13. Procedure
and Shape selection in the
first SAGE prototype.

After the first procedure was selected, the mascot prompted users to confirm or adjust
the origin point of the design, ensuring spatial coherence for subsequent transformations
(Fig. 3.14). Each time a procedure was executed, the mascot presented the resulting
solution on screen. When a procedure generated multiple outcomes, users could browse
through the alternatives until identifying a preferred one (Fig. 3.15) . Upon accepting a
result, or discarding the current procedure, the system asked whether to save the generated
outcome as a new shape. If confirmed, this resulting composition shape became available
in the Shape Editor for future use in rules or procedures (Fig. 3.16).

After each confirmation of solution, the dialogue returned to the main loop, prompting
the user to choose whether to apply another procedure, discard the last step, or save and
finish the design (Fig. 3.17). This cyclical process of shape and procedure selection con-
tinued until the user selected the "Save the build" option, which finalized the design and
triggered the mascot to confirm its storage. Navigation back to the editing environment
was available at any time through an “X” button located in the upper-right corner of the
canvas, a temporary mechanism later refined for greater clarity and consistency.
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Figure 3.14. Mascot
prompting origin point con-
firmation in the first SAGE
prototype.

Figure 3.15. Design alter-
native generated after exe-
cuting a procedure in the
first SAGE prototype.

Figure 3.16. Prompt ask-
ing the user whether to save
the accepted solution as a
new shape in the Shape Edi-
tor in the first SAGE proto-
type.

Figure 3.17. Dialogue
stage prompting the user to
choose the next action.

Additional snapshots from this prototype, including the shapes and rules created by
participants as well as interface states from the shape editing and design generation phases,
are provided in Appendix A.

Besides the tasks previously mentioned, participants were prompted to provide feed-
back on visual and interaction design elements.This included: the evaluation of different
icon options for the Let’s Build button; the use of color to indicate actions (e.g., accept,
discard, add, delete), with green and red tones discussed only if the participant considered
color appropriate in that context; and whether the origin indicator was sufficiently visible
or required additional cues such as axes or color differentiation. These alternative design
options are presented in Appendix B.
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3.3.1. Feedback and Insights

Participants provided feedback on various aspects of the interface, interaction, and visual
design. In the Shape Editor, participants suggested the addition of a full-screen mode to
focus solely on the grid. The Delete Shape action was also reported as insufficiently visi-
ble; users recommended integrating it directly into the shape properties panel for greater
accessibility. Adjustments to parameter controls were proposed as well, for instance, en-
abling parameter creation by clicking empty areas and enabling their removal through
direct interaction rather than relying on the “+” and “–” buttons. Some participants also
experienced difficulties when creating composition shapes, as they did not initially realize
that the default shape needed to be deleted before constructing the composition. Further-
more, resizing shapes by dragging was not immediately intuitive, prompting suggestions
to include visible handles or vertex indicators.

In the Rule Editor, participants similarly requested the addition of a dedicated Delete
Rule button within the editor itself. The existing mechanism, based on the “+” and “–”
buttons at the top of the rules list, was perceived as not intuitive and inconsistent with
standard interaction patterns.

Regarding the Blockly interface, several users expressed confusion about the organiza-
tion of blocks, category naming, and color coding. They suggested that shape availability
and labeling be made clearer to support easier navigation and block identification.

Finally, in the design generation stage, the Let’s Build button was frequently misin-
terpreted as a static logo. Participants recommended either changing the icon or adding
a visual outline to clarify that it functions as an interactive element. Among the pro-
posed alternatives, the most preferred was an icon resembling the application’s logo but
incorporating a play symbol, which participants considered both intuitive and visually
consistent with the system’s identity. Similarly, the “X” used to exit the Let’s Build
screen was often misunderstood; users proposed replacing it with a back arrow positioned
in the top-left corner to improve navigation clarity. The use of green and red tones to
represent confirmation and cancellation actions was positively received overall, although
some participants cautioned that color should only be used when semantically appropri-
ate. Additionally, the visibility of the origin indicator was questioned, with suggestions
to make it more prominent, possibly through axes or stronger color differentiation.

These observations provided essential guidance for the refinement of interaction pat-
terns and the restructuring of several interface components, which were addressed in the
development of the second prototype.
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3.4. Second Prototype

Based on the feedback gathered from the first iteration, several interface and interac-
tion improvements were implemented in the second prototype2.

In the Shape Editor, the Delete Shape action was made more prominent through the
addition of a dedicated button within the properties panel, improving both visibility and
accessibility. This design solution was well-received and was therefore retained in the final
version of SAGE.

Additional interface snapshots illustrating this new deletion flow and the shapes cre-
ated by participants during this iteration are presented in Appendix C.

Additionally, visual handles were added at each vertex of a shape, following the ap-
proach used in Microsoft Word [71], to indicate that the vertices can be dragged, making
the resizing functionality more intuitive and immediately discoverable. The visibility of
the origin was also enhanced by adding axes and clearer reference markers (Figure 3.18), a
feature that remained unchanged in the final application due to its effectiveness in spatial
orientation.

In the Rule Editor, the visibility and usability of the Add Condition and Add Proce-
dure buttons were enhanced, and a trash icon was added to allow rule deletion. This also
enabled observation of user preference between the new trash icon and the existing “–”
button for removing rules (Figure 3.19).

Figure 3.18. Shape editor
showing the “quarto” shape
being resized in the second
SAGE prototype.

Figure 3.19. Rule editor
showing the “Random Rule”
selected in the second SAGE
prototype.

Furthermore, the Blockly interface underwent a structural revision in this iteration,
including clearer tab labels, improved legends, and revised block colors to facilitate block
identification and categorization (Fig. 3.20).

2Interactive Figma prototype of the second iteration.
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Figure 3.20. Grammar editor (Blockly) in the second SAGE prototype.

In the Design Generation screen, the Let’s Build icon was redesigned to clearly indicate
its function as a clickable button, following user feedback that suggested incorporating a
play symbol to enhance affordance and recognizability. Similarly, the previous “X” used
to exit the design generation phase was replaced with a back arrow, positioned in the
top-left corner, signaling a return to the editing environment more intuitively (Fig. 3.21).

At a broader interface level, color coding was also introduced (green for confirmation
and red for cancellation) to reinforce semantic meaning and maintain visual consistency
across the system. This color strategy was validated in this iteration and preserved in
the final implementation of SAGE. Furthermore, a dynamic feedback mechanism was
added to guide users whenever certain functionalities were temporarily unavailable. For
instance, when launching the application with an empty project, the Grammar tab re-
mained disabled until at least one shape had been created, ensuring that users could only
define procedures once the necessary elements were in place. Likewise, the Rules Editor
became active only after at least two shapes existed, reflecting the logical dependency of
rules on a “before” and “after” pair. The Let’s Build button was similarly disabled until

Figure 3.21. Screen showing the selection of a solution for the procedure
“placeVestibule” in the design generation phase of the second SAGE proto-
type.
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at least one procedure had been defined, reinforcing the sequential logic of the workflow.
This incremental activation of interface elements helped prevent errors and clarified the
expected workflow for first-time users.

This evaluation round involved participants without a computer science background
(e.g., from the social sciences and psychology), allowing assessment of whether non-expert
users could understand and interact with the tool without prior knowledge of Shape
Grammars or visual programming concepts. The same task set and testing conditions
as in the first iteration were maintained, enabling direct comparison of usability findings
between iterations.

3.4.1. Feedback and Insights

During the evaluation sessions, several participants experienced difficulties creating com-
position shapes correctly. Many attempted to do so through the Rules Editor, while
others failed to follow the required multi-step process of creating a new shape, deleting
the default one, and then dragging shapes together. Additionally, the buttons and visual
handles for resizing and moving shapes were not sufficiently prominent, causing some
participants to overlook these functionalities entirely.

The workflow for adding conditions and procedures to Rules was also unclear. Several
participants perceived the corresponding buttons as section headers rather than actionable
elements. Likewise, the “–” button used for deletions was frequently ignored, suggesting
that this approach was ineffective and that a dedicated trash icon was the more intuitive
option.

Some participants continued to misinterpret the Let’s Build entry point as either a logo
or a settings menu, further supporting the suggestion to remove the gear icon previously
associated with it.

In the Design Generation process, certain labels and prompts were also found to be
confusing. For example, participants found the phrasing “Start from scratch” and “Load”
ambiguous, suggesting that “New design” and “Load design” would be clearer alternatives.
Similarly, the question regarding the design’s origin caused misinterpretation: when asked
“Would you like to change it?”, participants associated “Yes” with maintaining the current
option and “No” with changing it. In the solution acceptance stage, the options “Continue
building,” “Discard,” and “Save the build” led to confusion. Participants assumed that
“Discard” would delete the entire design rather than just the previous step, suggesting
that a more explicit Undo option should be provided. Likewise, the label “Save the build”
was interpreted as saving the project within the application rather than exporting it as a
separate file.

Finally, issues also emerged in the last screen of the process, where the message “Your
design is now saved! Feel free to explore or start a new one whenever you’re ready.”
appeared alongside a button labeled “Start new one.” Because some participants tended
not to read the accompanying text, they misunderstood this option as restarting the entire
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project (including the definition of shapes, rules, and procedures) rather than simply
beginning a new design instance.

3.5. Third Prototype

The second iteration confirmed the need for continued testing, particularly due to
the persistent difficulties participants experienced when creating composition shapes and
understanding the rule creation process. A new prototype3 was therefore developed to
address these issues and refine the interaction flow across the main areas of the system.

In the Shape Editor, the process of creating composition shapes was redesigned to be
more explicit and guided. A dedicated pop-up dialog with the options of "Add Simple
Shape" or “Add Composition Shape” was introduced to structure this process, ensuring
that users could clearly distinguish between creating Simple and Composite entities. Ad-
ditionally, the parameters "x" and "y", which are essential for defining a shape’s position,
had been overlooked in previous iterations and were introduced in this version. Visual
feedback mechanisms were also improved: selected shapes were now highlighted in dark
blue, while vertex handles were enlarged and rendered in the same color to clearly indicate
that they could be dragged for resizing. Moreover, the parameter system for composition
shapes was refined to better reflect their collective nature. Rather than using the individ-
ual parameters "width", "height", "x", and "y" applied to Simple shapes, Composition
shapes now include "scaleX", "scaleY", "translateX", and "translateY", enabling trans-
formations that affect all constituent shapes simultaneously. Color and image options
were intentionally disabled for Composition shapes, as these attributes are not meaning-
ful at the composite level and would conflict with the visual properties of the individual
components. Figure 3.22 illustrates these refinements, showing the Shape Editor with a
composite shape "apartamento" selected.

All these changes proved effective during evaluation and were incorporated without
major alteration into the final version of SAGE, defining the interaction model currently
used in the implemented application.

In the Rules Editor, the interface was streamlined to reduce visual clutter and im-
prove clarity. The generic “+” button was replaced with a clearly labeled “Add Rule”
button, while the “–” button was substituted with a trash icon that also supported multi-
ple selection for bulk deletion. When hovering over a rule in the list, a checkbox appeared,
allowing users to select one or multiple rules before clicking the trash icon to remove them
simultaneously. This approach was retained in the final version of SAGE, as it offered a
clearer and more efficient interaction pattern for rule management. The Accept, Discard,
and Rule Name elements were retained, but the rest of the editor was restructured into
a guided, text-based format to help users understand the underlying logic. Up until that
point, the Rule Editor, as shown in Figure 3.10 or Figure 3.19, presented only two grids
representing the before and after states, with the condition and procedure fields placed
above each grid, respectively. The new format, as illustrated in Figure 3.23, presented
3Interactive Figma prototype of the third iteration.
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the structure “Substitute this shape with this shape if condition is true. Then, apply
this procedure.” Dropdown menus allowed users to select the before and after shapes,
while dedicated buttons provided access to Blockly for defining conditions and proce-
dures. Smaller reference grids remained visible below to support visual comprehension.
This textual, step-by-step structure effectively clarified the logic of rule creation and was
maintained, with only minor stylistic refinements, in the final implementation of SAGE.

Figure 3.22. Shape edi-
tor screen with the “aparta-
mento” shape selected in the
third SAGE prototype.

Figure 3.23. Rules editor
screen with a new Rule in the
third SAGE prototype.

In the Build area, terminology and feedback messages were revised to eliminate ambi-
guities identified in previous sessions. The options “Start from Scratch” and “Load Previ-
ous Design” were replaced by “New Design” and “Load Design,” respectively, making their
purpose clearer. Similarly, the Yes/No prompts used when changing a design’s origin were
rephrased as “Change” and “Don’t Change” to prevent misinterpretation. After accepting
a generated configuration, users were now presented with the options “Continue,” “Undo,”
and “Export Design,” replacing the previous “Discard” button and its trash icon with a
more intuitive "Undo" function, and substituting “Save Design” with “Export Design” for
greater conceptual accuracy.

A confirmation pop-up was also introduced to verify the user’s intention to discard
an entire design when opting to go back without saving. Instructional text was refined
to clarify the status of saved designs, now reading: “Your design is now saved! Feel free
to go back and create new rules, shapes, and procedures, or start a new design whenever
you’re ready.” This ensured that messages explicitly described the next available actions
and minimized confusion regarding the application state.

Further interface snapshots from this prototype, including the new Composition shape
dynamics and rule management interactions, are provided in Appendix D.

The same task set from the previous iteration was used to ensure comparability of
results, with one additional task introduced: “Select the apartment shape.” This task was
specifically designed to evaluate how participants would attempt to select a composition
shape in its entirety, revealing which interaction strategy felt most intuitive.
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3.5.1. Feedback and Insights

Feedback from this iteration was overwhelmingly positive, confirming the effectiveness of
the latest interface refinements and the overall clarity of the system’s workflow. Partici-
pants completed the tasks with minimal hesitation, demonstrating a clear understanding
of the concepts of composition shapes, rule creation, and design generation. Only a few
minor suggestions were raised, such as adding the instructional text “Drag shapes here”
within the composition workspace to further guide users, and introducing a confirmation
pop-up when deleting rules to prevent accidental removal.

Regarding the new task designed to assess the selection of a composition shape, par-
ticipants consistently attempted to select the entire composition by clicking outside the
currently selected shape (e.g., clicking outside the “bathroom” shape to select the overall
“apartment”). These small refinements were incorporated into the final implementation
of SAGE and later evaluated in the summative usability test.

With all major usability issues resolved, the prototyping phase was concluded, paving
the way for the implementation of SAGE.
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CHAPTER 4

Implementation Details

This chapter details the technical implementation of SAGE, describing how the concep-
tual framework and interface design presented in previous chapter were translated into
a functional system. It describes the development environment, and then analyses the
three core layers of the application, which aligns with the Model–View–Controller (MVC)
pattern, highlighting how each contributes to the overall interaction between the user, the
grammar logic, and the Prolog execution engine.

4.1. Development Environment

SAGE was implemented as a Java desktop application, extending the Alternative Shaper
codebase with a redesigned interaction layer and Blockly-driven procedural authoring.1

It was developed using JavaFX for the user interface, Maven for dependency manage-
ment, and integrates the SWI-Prolog inference engine via the JPL bridge. While SAGE
introduces a new visual and user-centered workflow, it directly employs the Alternative
Shaper’s Prolog engine for design generation, ensuring complete compatibility between
both systems.

The interface structure is defined through FXML layouts, with styles encapsulated
in CSS files, allowing a clear separation between presentation, logic, and behavior. The
FXML markup describes static interface components such as the navigation tabs and
grid canvases, while their dynamic interactions are implemented in dedicated controller
classes.

The project’s dependencies include:

• JavaFX (org.openjfx) – for UI rendering and WebView embedding;
• Jackson Databind – for JSON serialization and deserialization of grammar data;
• JUnit 5 – for local unit testing of logic and bindings;
• JPL (org.jpl7) – for the Java–Prolog interface enabling query execution and de-

sign generation.

SAGE follows a MVC pattern (Figure 4.1), ensuring modularity and clear separation of
concerns. The View defines the user interface and visual feedback, the Controller manages
user interaction and communication with the logic layer and the Model encapsulates the
data structures representing Shape Grammar concepts.

1The complete source code is available at https://github.com/marianaiscte/SAGE.
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Figure 4.1. Model–view–controller architecture.

4.2. View Layer

The View layer defines the graphical interface of SAGE, implemented in JavaFX through
FXML layouts and CSS stylesheets. It is composed of multiple scenes that guide the user
throughout the workflow:

• Launch Scene — managed by the LaunchController, it displays the welcome
screen, allows users to start new projects or load existing ones, and transitions
to the main workspace (Figure 3.1);

• Main Scene — managed by the MainController, containing the “Shapes,” “Rules,”
and “Grammar” tabs, where the user defines visual grammars (e.g. Figure 3.2);

• Design Generation Scene — managed by the DesignController, where the Prolog-
based generation process is executed and visualized (Figure 3.5).

The Blockly environment embedded in SAGE was originally developed under the re-
search project "Bolsa de Iniciação Científica" UIDP/04466/2020_04, within the broader
Alternative Shaper initiative at ISTAR. This module was designed to provide a vi-
sual programming interface for constructing logical and procedural expressions through
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block-based manipulation, simplifying the interaction with Prolog predicates such as
ruleProcedure/2 and shapeRule/2.

Within SAGE, Blockly is integrated as a local HTML resource displayed inside a
JavaFX WebView. It enables users to visually compose procedures and conditional logic
through predefined block structures that mirror the syntax of the Alternative Shaper’s
grammar engine. In the final version of SAGE, used for the final summative evaluation,
a simplified subset of Blockly blocks was employed, focusing on the essential procedural
logic rather than the full expressive range of the original module. This streamlined config-
uration was intended to make the environment more accessible to participants unfamiliar
with programming while still illustrating the connection between visual logic and Prolog
execution. Additionally, a new category of “Rule” blocks was introduced to visually repre-
sent grammar transformations, allowing users to reference or trigger rules directly within
the procedural flow, an extension not present in earlier prototype iterations.

However, since SAGE reuses the Alternative Shaper’s Prolog engine, Blockly in this
implementation operates as a design and learning interface rather than a persistent au-
thoring environment. The visual logic created by users is not stored or executed directly
as new procedures but instead reflects the structure of those already defined in the un-
derlying engine.

This integration transforms formal Prolog logic into an accessible visual language,
bridging textual programming and interactive design.

4.3. Controller Layer

Controllers coordinate user input, update the view, and synchronize data between the
user interface and the Model layer. Each functional area of SAGE is handled by a specific
controller or by a dedicated manager module associated with it, promoting modularity,
separation of concerns, and ease of maintenance.

• LaunchController — manages the application’s entry point, including the launch
screen, project initialization, and navigation to the main workspace. It handles
the creation of new projects and the loading of existing ones, establishing the
initial session context before the main interface is displayed.

• MainController — serves as the core controller of the application. It manages
global navigation within the Grammar composition workflow (creation of shapes,
rules, and procedures), project state, and UI updates across tabs. It also coordi-
nates several specialized managers responsible for visual editing and interaction
logic.

• DesignController — coordinates Prolog communication with the Alternative Shaper
engine during the design generation phase and visualizes the resulting compo-
sitions. Similar to the main workspace, this controller also integrates a grid
environment and therefore instantiates its own GridManager for rendering and
placement of generated shapes.
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• RulesManager — assists the MainController by handling the creation and edit-
ing of transformation rules, connecting “before” and “after” shapes within the
visual editor.

• GridManager — provides the logic for grid rendering, alignment, and shape place-
ment. It is used both in the MainController (for editing and composing shapes)
and in the DesignController (for displaying generated layouts).

• ThumbnailManager — manages the generation, display, and updating of shape
thumbnails used for visual browsing. In SAGE, a new functionality was intro-
duced allowing users to delete shapes directly from the thumbnail view via a small
“×” button positioned in the upper-right corner of each thumbnail, a feature not
present in earlier prototypes.

• ShapeBindingManager — synchronizes property bindings between the interface
and the underlying model, supporting undo and redo operations to facilitate
controlled editing.

These controllers and managers collectively implement SAGE’s interaction logic: user
actions in the interface trigger updates in the Shape Grammar Concept, which are then
serialized or converted into Prolog code via the PrologExporter. The controllers also
mediate communication with the Alternative Shaper engine, issuing Prolog queries for
design generation and retrieving the resulting compositions. This modular organization
ensures consistent synchronization between the user interface, the Java data structures,
and the underlying Prolog logic execution.

4.4. Model Layer

The Model layer in SAGE encompasses the internal data representation, persistence mech-
anisms, and the logical connection to the Alternative Shaper inference engine. It defines
not only the grammar entities that structure visual compositions, but also the processes
through which these entities are stored, translated into Prolog predicates, and executed
to generate new designs.

At the core of this layer, all grammar components inherit from the abstract class
ShapeGrammarConcept, which provides universal identifiers and names to ensure consis-
tency and traceability across the system.

The abstract class Shape defines the geometric foundation of all visual elements, with
properties such as x, y, width, and height. Two concrete subclasses extend this base:

• SimpleShape — represents a single geometric object with visual attributes such
as color and thumbnail image;

• CompositionShape — aggregates multiple shapes, allowing hierarchical grouping
and composite design structures.

In a composition, the coordinates (x, y) correspond to the bottom-left position of the
entire structure, while the width and height describe the bounding box of the overall
layout.
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Figure 4.2. Shape Grammar core model hierarchy implemented in SAGE.

Rules are represented by the Rule class, which defines a transformation between two
shape configurations: a “before” and an “after” state. Each rule can also include an
optional condition or procedure, represented as a LogicExpression. In the current im-
plementation, this class stores a String intended to hold the Prolog code generated from
Blockly. Although the class structure is in place, it is important to remind that logic com-
posed in Blockly does not currently propagate into SAGE. As such, the LogicExpression
currently serves as a conceptual placeholder: it captures the intended Prolog output for-
mat, but no automatic transfer, storage, or execution of user-defined logic from the Blockly
editor is performed.

Beyond defining the grammar structure, the Model layer also manages data persis-
tence and logic translation. Two complementary mechanisms ensure the integrity and
interoperability of SAGE projects:

• JSON serialization — for saving and reloading local projects, including shapes,
rules, and procedures;

• Prolog export — for external interpretation and execution of grammars using the
Alternative Shaper engine.

The PrologExporter component automatically generates Prolog predicates that de-
scribe the current grammar state, using the same lexical and structural conventions de-
fined in the Alternative Shaper system. For instance, suppose the user creates three
shapes: two Simple ones, named "one" and "two", each with dimensions of 1×1 and
distinct colors; and a Composition shape "three" composed of the two previous shapes
("one" positioned at 0,0 and "two" at 0,1). Additionally, the user defines a rule named
"Rule Name" that transforms shape "one" into shape "two". When the project is saved,
SAGE automatically generates the following Prolog file:
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scale_unit(40).

shape(one,’0x00ff00ff’).

shape(two,’0x994d66ff’).

basicShapeDimention(one,1,1).

basicShapeDimention(two,1,1).

shapeComposition(three, [

s(one, [1,0,0,0,1,0,0,0,1]),

s(two, [1,0,0,0,1,0,0,1,1])

]).

shapeRule(’Rule Name’, sr(one, two)).

This file defines all entities in the grammar using the Alternative Shaper-compatible
syntax, ensuring that the shapes and rules created in SAGE can be directly interpreted by
the same logical engine. In parallel, the system also produces a corresponding shapes.json
and rules.json representation, which preserve the internal data structure of each entity, as
shown below.

[ {

"id" : "aa56d5c2-e3f5-4287-a826-0724297013ce",

"type" : "simple",

"name" : "one",

"width" : 1.0,

"height" : 1.0,

"x" : 0.0,

"y" : 0.0,

"color" : "#00FF00",

"imageFilename" : null,

"children" : null

}, {

"id" : "d8dec135-1dd4-4bbc-959a-da665532fe0b",

"type" : "simple",

"name" : "two",

"width" : 1.0,

"height" : 1.0,

"x" : 0.0,

"y" : 0.0,

"color" : "#994D66",

"imageFilename" : null,

"children" : null

}, {

"id" : "6e70558a-756e-44a6-b77a-7fe94aa18a35",

"type" : "composition",

"name" : "three",

"width" : 1.0,

"height" : 1.0,
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"x" : 0.0,

"y" : 0.0,

"color" : null,

"imageFilename" : null,

"children" : [ {

"id" : "e1768201-d379-42b8-9f84-ee2a1c668bcf",

"type" : "simple",

"name" : "one",

"width" : 1.0,

"height" : 1.0,

"x" : 0.0,

"y" : 0.0,

"color" : "#00FF00",

"imageFilename" : null,

"children" : null

}, {

"id" : "722e8931-3a43-40e2-a966-1afbbbf1b0e1",

"type" : "simple",

"name" : "two",

"width" : 1.0,

"height" : 1.0,

"x" : 1.0,

"y" : 0.0,

"color" : "#994D66",

"imageFilename" : null,

"children" : null

} ]

} ]

}

[ {

"ruleId" : "59922afb-f96e-41e2-8cc4-21cad85bbb0c",

"name" : "Rule Name",

"shapeBeforeId" : "aa56d5c2-e3f5-4287-a826-0724297013ce",

"shapeAfterId" : "d8dec135-1dd4-4bbc-959a-da665532fe0b"

} ]

However, the Prolog exporter operates independently from the Alternative Shaper
engine: its role is limited to translating and saving the internal model into a compatible
Prolog format, without initiating any inference or communication with the execution
module. During the design generation phase, the controllers establish this connection
instead, issuing Prolog queries through the Java–Prolog bridge (JPL). The Alternative
Shaper engine processes these queries and returns the corresponding results as logical
descriptions of generated designs.

For example, suppose the user selects the first procedure in the design to be “place-
Basement”, which is responsible for assembling the base layout of a design within the
Alternative Shaper engine. In this case, the query invoked by SAGE to the engine would
be:
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shapeComposition(initialcell, IS), memory(global, M),

applyRuleProcedure(placeBasement, IS, FS, M, _).

This query instructs the engine to apply the placeBasement procedure to the default
initial shape composition defined in the Alternative Shaper environment, producing a
resulting set of shapes represented by the variable FS. The returned solution includes the
following structure:

FS = [s(cell, [1.0, 0.0, 0, 0.0, 1.0, 0, -9.6, -4.5, 1]),

s(cell, [1.0, 0.0, 0.0, 0.0, 1.0, 0.0, -9.6, -3.9, 1.0]),

s(cell, [1.0, 0.0, 0.0, 0.0, 1.0, 0.0, -9.6, -3.3, 1.0]),

s(cell, [1.0, 0.0, 0.0, 0.0, 1.0, 0.0, -9.6, -2.7, 1.0]),

s(cell, [1.0, 0.0, 0.0, 0.0, 1.0, 0.0, -9.6, -2.1, 1.0]),

...]

In the user interface, this output is rendered as the generated design, as illustrated in
Figure 4.3.

Figure 4.3. Layout generated by the "placeBasement" procedure within
SAGE.

If the user chooses to keep this generated layout, it can be saved as a new Composi-
tionShape, following SAGE’s internal representation for composite design structures.
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4.5. System Interaction Flow

This section summarizes how the different architectural layers interact throughout the
SAGE workflow, from user interaction to design generation. It describes the bidirectional
data flow between the user interface, the grammar model, and the Prolog-based execution
engine, illustrating how user actions are translated into formal logic operations and visual
feedback (Figure 4.4).

Figure 4.4. System interaction flow across SAGE’s MVC layers and the
Alternative Shaper engine.

When the user interacts with the interface, for example, by creating a new shape or
defining a rule during the grammar composition phase, the Controller layer captures the
event and updates the Model layer accordingly. The model then stores the correspond-
ing grammar structures (e.g., Shape, Rule, or LogicExpression) and, when requested,
serializes them into JSON and compiles them into Prolog predicates.

These JSON files preserve SAGE’s internal object structure for local persistence and
project reloading, while the Prolog file serves as the executable representation of the
grammar, ready for interpretation by the Alternative Shaper engine.

During the Design Generation phase, the DesignController issues queries to the SWI-
Prolog engine through the JPL bridge, invoking predicates defined in the Alternative
Shaper logic (e.g., applyRuleProcedure(Procedure, InitialShapeComposition, FinalShapeCom-
position, InitialMemory, FinalMemory)). The resulting Prolog solutions are parsed and
reinterpreted as composition layouts within the JavaFX environment, enabling the user
to visualize and interact with generated designs in real time.

The process is cyclical and user-driven: feedback from the View layer (e.g., visual
confirmation, shape placement, or rule animation) informs further actions, while updates
propagate seamlessly through the MVC pipeline, maintaining system coherence.
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CHAPTER 5

Evaluation

Following the completion of the application’s functional development, a summative evalu-
ation was conducted to assess its overall usability, clarity, and effectiveness. While earlier
formative tests with medium-fidelity prototypes had already guided design improvements,
this final evaluation aimed to measure the system’s performance in its finished state and
to gather evidence for discussion and future development.

The evaluation focused on understanding how users interacted with the final version
of the application, particularly whether participants could intuitively perform the main
design tasks, how they perceived the interface and interaction flow, and how effectively
they understood and manipulated procedures using the Blockly integration.

5.1. Evaluation Goals and Methodology

5.1.1. Evaluation Setup

The evaluation combined quantitative metrics with qualitative observation, structured
into two complementary parts. One part, conducted through the Maze usability testing
platform, used an interactive Figma prototype 1 that replicated the final SAGE appli-
cation, with the exception of an introductory tutorial. The other part took place di-
rectly within the SAGE desktop application, focusing on the procedure creation stage
implemented with Blockly. This step was designed to assess how effectively users could
understand, build, and apply procedural logic through visual programming. To ensure
continuity, the application included the same shapes and rules created by each partici-
pant in the Maze test, allowing them to proceed seamlessly to the procedure definition
and design exploration phases.

Maze is an online platform for remote usability testing that records behavioural metrics
such as task completion rate, time per task, navigation paths, and misclick frequency. Its
integration with Figma allows interactive prototypes to be tested as if they were real
applications, while automatically collecting detailed analytics. Maze was chosen both
for its analytic capabilities and for practical reasons: having only one evaluator, this
setup enabled simultaneous observation and note-taking while participants completed
tasks autonomously.

The short tutorial added to the Maze prototype provided essential theoretical context
on Shape Grammars, an unfamiliar concept for most users, since a basic understanding
of shapes, rules, and procedures was required to complete the tasks. Unlike conventional
application tutorials, however, it did not include step-by-step instructions on how to

1Link to final Figma Prototype
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operate the interface. This deliberate omission ensured that the evaluation would measure
the system’s intuitiveness and the participants’ ability to learn through exploration, rather
than their memory of procedural instructions.

To keep sessions concise and accessible, the task set was simplified compared with the
full workflow available in the Alternative Shaper, which was originally designed to generate
complete single-family house layouts through an extensive set of shapes, rules, and pro-
cedures. While the Alternative Shaper’s design process involves multiple functional areas
(entrance, semi-public, and private) and numerous room types (e.g., vestibule, kitchen,
dining room, bedrooms, and bathrooms), the evaluation proposed a simplified scenario
focusing on the creation of an apartment floor plan. This adaptation preserved the con-
ceptual structure of the original workflow, progressing from shape and rule creation to
design generation,but reduced its scale to ensure that participants could complete all tasks
within a single session.

Each session lasted on average 35:03 minutes (Standard Deviation (STD) = 6:13, MIN
= 23:27, MAX = 50:01), as indicated by the recorded session durations (see Figure 5.1).
Tests were conducted individually with 30 participants affiliated with ISCTE – Instituto
Universitário de Lisboa, primarily undergraduate students from diverse academic back-
grounds.

Figure 5.1. Time per session (in minutes)
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5.1.2. Tasks

Participants were instructed to complete a predefined set of 16 tasks designed to simulate
the complete workflow within SAGE. These tasks progressed from basic shape creation
to rule definition, procedural programming, and design generation, replicating a realistic
use of the system.

The full sequence was as follows:

(1) Complete the tutorial;
(2) Create the Simple Shape "bedroom";
(3) Create the Simple Shape "bathroom";
(4) Create the Composition Shape "suite" (composed of "bedroom" and "bath-

room") and select it as a whole;
(5) Create the Simple Shape "corridor";
(6) Create the Simple Shape "living room";
(7) Create the Simple Shape "kitchen";
(8) Create the Simple Shape "pantry";
(9) Create the Composition Shape "kitchen + pantry" (composed of "kitchen" and

"pantry", with "pantry" positioned at coordinates (1,1));
(10) Create the Simple Shape "apartment size";
(11) Create the Rule "Suite";
(12) Create the Rule "Kitchen with pantry" and delete it;
(13) Create two procedures (one applying a sequence of two rules: "Suite" and "Kitchen

with pantry"; and other with logic: apply the Rule "Suite" only if the Shape
"bedroom" exists);

(14) Enter the Design Generation Phase and choose the first procedure ("placeApart-
ment");

(15) Apply the second procedure ("placeCorridor") and choose the first solution;
(16) Apply the remaining procedures ("placeLivingRoom", "placeKitchen", "place-

Suite") to achieve a floor plan design for an apartment and save the final design.

In this simplified grammar, the procedure "placeApartment" positioned the shape
"apartment size" at the origin of the grid, defining the spatial limits of the design. The
procedure "placeCorridor" places the shape "corridor" along the "apartment size" base-
line: its bottom edge shares the same y-coordinate as the bottom edge of "apartment
size". The corridor must fit entirely within the apartment’s width while leaving at least
two grid units of free space on both the left and right sides. Given an apartment width
of 7 units, this constraint yields exactly three valid horizontal placements. Subsequent
procedures, "placeLivingRoom", "placeKitchen", and "placeSuite", each positioned their
respective shapes in adjacency to the "corridor", guaranteeing continuous spatial contact
and preventing overlap.

Tasks 1–12 (tutorial, Shape, and Rule creation) were conducted using the Maze proto-
type. Task 13 (procedure creation and logic definition) was performed directly within the
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SAGE desktop application using Blockly. Finally, tasks 14–16 (Design exploration and
saving) returned to the Maze prototype to evaluate interface clarity and comprehension
of the generative process.

Upon completion of all tasks, participants obtained a final apartment layout. The
specific outcome could vary depending on procedural choices, a total of 82 distinct valid
designs were possible within the test scenario. Figure 5.2 illustrates one of these possible
results, representing a complete apartment layout composed of the shapes defined earlier
("apartment size" for the grey outline and the shapes “suite,” “corridor,” “living room,”
and “kitchen + pantry” representing the divisions).

Additional interface snapshots from the final SAGE prototype, including the tutorial
sequence, the shapes and rules created, the intended procedures, and examples of design
generation steps, are presented in Appendix E.

Figure 5.2. Example of a final apartment layout generated during the
evaluation test.

In addition to these main tasks, participants were asked to identify the function of
several interface buttons not directly tested (e.g., saving and open buttons) and to express
their preference between two icons for exiting the design phase: an arrow-shaped button
(prototype version) or a home-shaped icon (final application version).
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5.1.3. Data Collected

Three main data categories were collected:

• Behavioral metrics — automatically captured through Maze, including task com-
pletion rates, time spent per task, and misclick frequency;

• Perceived Usability metrics — gathered through questionnaires and rating scales
assessing usability and satisfaction;

• Qualitative feedback — obtained from open-ended questions and direct observa-
tion, providing insight into user perceptions, challenges, and suggestions.

At the start of each session, participants also provided demographic information, in-
cluding age, field of study, experience with digital design tools (None, Basic, Intermediate,
Advanced), and familiarity with Shape Grammars (None, Heard of them, Some experi-
ence, Advanced experience). This information allowed for contextual interpretation of the
results in relation to participants’ prior knowledge and digital literacy.

5.1.4. Perceived Usability Metrics

Participants were asked to provide perceptual feedback on their experience with the sys-
tem to complement the behavioural metrics. This assessment combined standardized
questionnaires and open-ended questions to capture both quantitative and qualitative
insights. Table 5.1 presents the complete questionnaire, comprising the ten System Us-
ability Scale (SUS) items, three additional Likert-scale items on satisfaction and perceived
learning, and three open-ended questions. All Likert items were rated on a five-point scale
(1 = Strongly disagree, 5 = Strongly agree).
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# Type Question

1 SUS I think that I would like to use this system frequently.
2 SUS I found the system unnecessarily complex.
3 SUS I thought the system was easy to use.
4 SUS I think that I would need the support of a technical person to

be able to use this system.
5 SUS I found the various functions in this system were well inte-

grated.
6 SUS I thought there was too much inconsistency in this system.
7 SUS I would imagine that most people would learn to use this

system very quickly.
8 SUS I found the system very cumbersome to use.
9 SUS I felt very confident using the system.
10 SUS I needed to learn a lot of things before I could get going with

this system.
11 Likert-scale I enjoyed using the application.
12 Likert-scale The interface was visually pleasant.
13 Likert-scale The application helped me understand Shape Grammars.
14 Open-ended

question
What did you like the most about the application?

15 Open-ended
question

What did you find difficult to understand?

16 Open-ended
question

What improvements would you suggest?

Table 5.1. Complete post-test questionnaire, including SUS, Likert-scale,
and open-ended items.

5.2. Results and Analysis

5.2.1. Participant Profile

Like previously mentioned a total of 30 participants took part in the summative evaluation.
All were affiliated with ISCTE – Instituto Universitário de Lisboa, mostly undergraduate
students from a range of study programmes. The participants’ ages ranged from 18 to
28 years (Mean (M) = 20.67, Median (MD) = 20.5, STD = 2.48), indicating a young
sample (see Figure 5.3a).The gender distribution was balanced, with 16 female and 14
male participants (Figure 5.3b).
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(a) Age distribution of participants. (b) Gender distribution of partici-
pants.

Figure 5.3. Demographic distribution of participants by age and gender.

In terms of academic background, the most represented programme was Computer
Engineering (6 participants), followed by Economics, Management, and Psychology (3
participants each). Other areas included Architecture, Data Science, Political Science,
Telecommunications and Computer Engineering, and Informatics and Business Manage-
ment (2 participants each), with isolated cases from Finance and Accounting, Marketing
Management,Industrial and Logistics Management, Social Work and Sociology (1 par-
ticipant each). This variety ensured a balanced representation of both technical and
non-technical profiles (see Figure 5.4).

Figure 5.4. Distribution of participants by study area.
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Regarding experience with digital design tools, most participants reported little or no
prior experience: 20 had no experience, 6 had basic experience, and 4 had intermediate
experience; none identified as advanced users (Figure 5.5a). Similarly, familiarity with
Shape Grammars was very limited, with 28 participants indicating no prior knowledge
and only 2 reporting that they had heard of the concept (Figure 5.5b).

This profile suggests that the participant group consisted primarily of novice users
with minimal exposure to design or generative systems. Consequently, their performance
and perceptions are particularly relevant for assessing the learnability, intuitiveness, and
educational potential of the SAGE application when introduced to first-time users.

(a) Participants’ experience with digital de-
sign tools.

(b) Participants’ familiarity with Shape
Grammars.

Figure 5.5. Participants’ background regarding digital design tools and
Shape Grammars.

5.2.2. Quantitative Results from Questionnaires

5.2.2.1. System Usability Scale (SUS)
The SUS was employed to obtain a standardized measure of perceived usability. The

SUS provides a reliable benchmark for assessing the overall quality of user experience,
with scores above 68 typically regarded as acceptable and those exceeding 80 considered
excellent [72].

The individual SUS scores are summarized in Table 5.2 and are available in Appen-
dix F. The overall mean score was 78.08 (MD = 77.5, STD = 13.3), which places the
application in the “Good to Excellent” usability range.

Statistic Value
Mean 78.08
Median 77.5
Standard Deviation 13.3
Minimum 45.0
Maximum 95.0
95% Confidence Interval [73.1, 83.0]

Table 5.2. Descriptive statistics of SUS scores (N=30).
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A 95% confidence interval was calculated to estimate the precision of the sample
mean and the expected range of usability perceptions within the broader user population.
The relatively narrow interval (73.1–83.0) indicates a stable and reliable mean estimate,
suggesting that the observed usability level would likely generalize to similar user groups.
Even at the lower bound, perceived usability remained above the standard threshold of
68, confirming a consistently positive user experience across participants.

The standard deviation (13.3) denotes moderate variability in responses, suggesting
that while perceptions of usability were generally positive, a few participants experienced
minor differences in ease of use or familiarity. Nonetheless, the relatively narrow confi-
dence interval reinforces the consistency of positive evaluations. The distribution of scores
(Figure 5.6) further supports this observation, showing that most participants rated us-
ability highly, with only one outlier below 50.

Figure 5.6. Distribution of individual SUS scores with overall mean line
and 95% confidence interval.

To examine whether prior experience influenced perceived usability, a Pearson cor-
relation was computed between participants’ self-reported experience with digital design
tools and their SUS scores. The Pearson correlation coefficient (r) measures the strength
and direction of a linear relationship between two continuous variables, ranging from -1
(perfect negative correlation) to +1 (perfect positive correlation).

The result indicated a weak and non-significant correlation (r = 0.14, p = 0.462),
suggesting that usability perceptions were largely independent of prior technical experi-
ence. Both novice and more experienced users rated the system positively, suggesting that
its intuitiveness and clarity mitigated any potential disadvantage associated with limited
familiarity with design software.
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5.2.2.2. Additional Likert Questions
Participants also answered three additional Likert-scale questions (1 = Strongly Disagree,

5 = Strongly Agree). Table 5.3 summarizes the responses.

Question Mean STD Response Distribution (1–5)
I enjoyed using the application 4.30 0.70 (1:0, 2:0, 3:4, 4:13, 5:13)
The interface was visually pleas-
ant

4.53 0.57 (1:0, 2:0, 3:1, 4:12, 5:17)

The application helped me under-
stand Shape Grammars

4.20 0.85 (1:0, 2:1, 3:5, 4:11, 5:13)

Table 5.3. Summary of responses to additional Likert questions (N=30).

Across all three statements, mean ratings ranged between 4.2 and 4.5, indicating con-
sistently positive perceptions across enjoyment, aesthetics, and learning outcomes. This
convergence suggests that participants not only appreciated the interface but also per-
ceived it as both engaging and educational. Participants demonstrated more agreement on
the interface’s visual appeal (STD = 0.57), while responses regarding the learning dimen-
sion (“The application helped me understand Shape Grammars”) showed slightly greater
variability (STD = 0.85), indicating differing levels of self-perceived understanding.

A Pearson correlation analysis between enjoyment (“I enjoyed using the application”)
and perceived understanding (“The application helped me understand Shape Grammars”)
revealed a strong positive relationship (r = 0.65, p < 0.001), suggesting that users who
found SAGE more enjoyable also reported a clearer grasp of Shape Grammar concepts.
This reinforces the link between positive affect and cognitive engagement in interactive
learning systems.

To further explore these relationships, correlations were computed between the overall
SUS scores and the three Likert-scale items. Results showed a strong positive association
between usability (SUS) and enjoyment (r = 0.60, p < 0.001), and a moderate, significant
correlation with perceived understanding of Shape Grammars (r = 0.55, p = 0.0017). No
significant relationship was found with visual appeal (r = 0.17, p = 0.3622).

Overall, these findings indicate that higher usability perceptions were closely aligned
with greater enjoyment and learning outcomes, underscoring the role of intuitive inter-
action design in promoting both engagement and conceptual understanding. The lack of
association with visual appeal suggests that aesthetic quality, while appreciated, was not
a primary determinant of perceived usability.

5.2.3. Behavioral metrics

The Maze platform provided detailed information on participants’ temporal and behav-
ioral performance across 15 of the 16 tasks (excluding the Blockly task, which was per-
formed directly within the SAGE application). In addition to numerical metrics, Maze
generated heatmaps displaying participants’ click distributions for each screen, enabling
a more detailed inspection of interaction behavior and error patterns.
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From these tests, it was possible to collect three main quantitative metrics: time per
task, success rate and misclick rate.

Since Maze imposes a limit on the number of tasks per questionnaire, the full workflow
was divided into three sequential surveys. Consequently, tasks were grouped into four
phases reflecting the logical progression of the workflow:

• Tasks 1–5, covering the tutorial and initial shape creation;
• Tasks 6–12, involving the creation of remaining shapes and rules;
• Task 13, performed directly in SAGE for procedural and logical creation;
• Tasks 14–16, focused on design generation and saving.

It is important to note that Maze automatically marks a task as "successful" once
a participant reaches the intended final screen, without accounting for errors, retries, or
evaluator assistance. To obtain a more accurate representation of actual performance, all
heatmaps and observation notes from the sessions were manually reviewed and, based on
this qualitative assessment, three levels of success were defined for each task:

• Full success (1.0) — the participant completed the task correctly and indepen-
dently;

• Partial success (0.5) — the participant initially tried incorrect actions or com-
pleted the task only partially, but reached the correct outcome;

• Failure (0.0) — the task required evaluator intervention, was abandoned, or in-
volved repeated unsuccessful attempts.

This adjusted approach ensures a more faithful reflection of participants’ actual perfor-
mance, complementing the automatically collected data with a qualitative understanding
of user behavior.

For the Blockly task, which was executed outside the Maze environment, the time
spent on this component was estimated by subtracting the timestamp marking the start of
the Design generation from the end of the Tasks 6–12 group. The same success evaluation
strategy described above was applied to this task to ensure consistent assessment across
all stages of the workflow.

5.2.3.1. Time per Task
Regarding time spent completing each phase, Figure 5.7 presents the average duration

(Mean) and standard deviation (STD) per phase, alongside the mean completion time for
each individual task within the corresponding stages. Additionally, Figure 5.8 provides
an overview of the overall temporal trend across all tasks, allowing a clearer observation
of how completion times and variability evolved throughout the workflow.
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(a) Average completion time per phase. (b) Average completion time per task – Tasks
1–5.

(c) Average completion time per task – Tasks
6–12.

(d) Average completion time per task – Tasks
13-16.

Figure 5.7. Average completion times per phase and per task.

It is important to note that the cumulative duration of all tasks within a phase does
not necessarily match the total session time recorded for that same phase. This discrep-
ancy occurs because Maze tracks both the overall session duration and the active time
spent on each individual task separately. The difference between these two measures
corresponds to unrecorded intervals between tasks, moments often used by participants
to reflect on previous actions, plan their next step, or provide feedback to the evalua-
tor. Although these pauses were not captured by Maze’s automated task timing, they
nonetheless contributed to the total session duration.

As shown in Figure 5.7a, the average completion time for the initial tasks (1–5) was
approximately 6:35 minutes (STD = 2:17 minutes), reflecting participants’ adaptation
to the interface and the time required to complete the tutorial. The following phase
(Tasks 6–12) presented a reduced mean of 5:27 minutes (STD = 1:43 minutes), indicating
greater familiarity and efficiency once users had internalized the basic interaction model.
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The most time-consuming activity occurred in Task 13 (M = 11:07 minutes, STD =
2:58 minutes), corresponding to the Blockly procedure creation step, which demanded
higher cognitive effort and logical reasoning. The final phase (Tasks 14–16) maintained
a similarly high duration (M = 11:52 minutes, STD = 3:13 minutes), reflecting the
progressive complexity of the design generation process.

During the first five tasks, most of the time was spent completing the tutorial, which
had an average duration of 1:44 minutes (STD = 44 seconds). This result was expected,
as participants were not only learning how to navigate the interface but also absorbing
the theoretical concepts introduced in the tutorial.

Regarding shape creation, it is notable that the average time required to create Simple
shapes decreased over time, with tasks such as creating the Simple Shape Bathroom
(21 s ± 18 s), Corridor (27 s ± 27 s), Living Room (18 s ± 5 s), Kitchen (14 s ± 12 s),
Pantry (8 s ± 3 s), and Apartment Size (19 s ± 25 s) showing faster completion rates than
the first one created, Bedroom (40 s ± 37 s). However, these tasks also presented high
variability; in some cases, the standard deviation approached or even matched the mean,
indicating that some participants completed them almost instantly, while others took
considerably longer. This dispersion suggests heterogeneous exploration strategies, typical
of early interaction phases when users are still familiarizing themselves with available
controls. The higher variability observed in Bathroom, for instance, is explained by the
fact that some participants attempted to modify the previously created Bedroom shape
instead of generating a new one, resulting in longer completion times. The creation of
the Composition Shapes Suite (59 s ± 37 s) and Kitchen + Pantry (27 s ± 11 s) followed
a similar trend to that observed in Simple shape creation, with shorter times reflecting
increased familiarity and confidence.

Rule creation tasks took longer on average, particularly the Rule Suite (1:06 min-
utes ± 33 s) compared to the following rule, Kitchen + Pantry (40 s ± 13 s). The peak
observed during rule creation aligns with session notes, indicating that even though the
requested rules were relatively simple substitution rules (placing one shape in the “before”
and another in the “after” state), participants took time to understand the broader pos-
sibilities of rule definition, particularly due to the presence of conditions and procedures.

Finally, the design generation tasks (Tasks 14–16) showed a gradual increase in comple-
tion time, consistent with the growing complexity of each step: the first required applying
a single procedure (1:47 minutes ± 55 s), the second selecting another with several pos-
sible outcomes (2:01 minutes ± 47 s), and the third combining multiple procedures to
obtain the desired result (2:29 minutes ± 1:12).
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Figure 5.8. Overall trend of average completion time across the entire
task sequence.

5.2.3.2. Success Rate
Figure 5.9 summarizes the average success rate across the four evaluation phases, reveal-

ing consistently high task completion levels, with values above 80% in all stages except
for the Blockly phase.

Figure 5.9. Average success rate across all four evaluation phases.

The Tasks 1–5 reached an average success rate of 84% (STD = 29.7%), which aligns
with the expected learning curve during the tutorial and initial shape creation. The rela-
tively high variability indicates that while most participants completed the introductory
steps successfully, some experienced initial hesitation or minor errors. This dispersion
reflects different learning paces as users familiarized themselves with the interface and the
underlying shape grammar concepts.
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Performance improved significantly in the group of Tasks 6–12, achieving a mean
success rate of 94% (STD = 19.4%). The lower variability compared to the previous phase
suggests that participants became more consistent and confident in their interactions.
At this stage, they had already internalized the workflow for creating and managing
shapes but were still consolidating their understanding of rule creation, introduced for
the first time in this phase. The high accuracy nonetheless indicates that the interface
effectively supported the acquisition of these more abstract concepts, even if the related
tasks required slightly longer completion times.

The Blockly phase (Task 13), with an average success rate of 70% (STD = 34%), pre-
sented the most challenges and the highest dispersion of results. Observations revealed
that some participants completed the task successfully on the first attempt, while others
required multiple retries or evaluator guidance. This high standard deviation highlights
the heterogeneity in participants’ prior familiarity with logic-based problem solving. Tasks
completed only after multiple attempts or contextual hints were classified as partial suc-
cesses (0.5), whereas repeated failures or direct intervention by the evaluator were marked
as unsuccessful. Given the conceptual shift toward visual programming and logical rea-
soning, this variability was anticipated.

Finally, performance peaked in Tasks 14–16 (Design generation), with an average
success rate of 97% (STD = 15%). Despite the small variability, the overall consistency
across participants was remarkable. An almost perfect score was expected, as this stage
was primarily exploratory and guided through the mascot’s prompts during the design
creation process. Because the outcomes depended on following predefined instructions, the
likelihood of major errors was minimal. The few partial results occurred when participants
did not immediately locate the “Build” icon, but once identified, the task was completed
successfully, confirming both the intuitiveness of the generative component and the clarity
of the final workflow.

To further illustrate these trends, Figure 5.10 details the average success rate for
each individual task. The pattern mirrors the overall progression discussed above: high
consistency across most tasks, with temporary declines in those introducing new or more
complex interactions, namely the creation of the Suite (65%), Kitchen + Pantry (72%),
and Blockly procedures (70%). These minor decreases align with the expected learning
curve and do not necessarily indicate usability issues, as participants quickly adapted and
recovered in the subsequent steps.
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Figure 5.10. Average success rate per task across the full workflow se-
quence.

To examine whether longer task durations were associated with lower performance,
a correlation analysis was conducted between completion time and success rate (Fig-
ure 5.11). Although a weak negative correlation (r = −0.21) was observed between
completion time and success rate, this relationship is not strong enough to draw defin-
itive conclusions. Longer task durations occasionally reflected moments of exploration
or reflection rather than genuine difficulty, suggesting that time alone is not a reliable
indicator of performance quality.

Figure 5.11. Relationship between completion time and task success
across all participants
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While overall task success was high, the analysis of misclicks provides further insight
into how users interacted with the interface and where exploratory errors tended to occur.

5.2.3.3. Misclick Rate
Figure 5.12 illustrates the distribution of misclick rates across all tasks. The results show

that errors were most frequent during the creation of composite shapes (Suite with 43.5%
and Kitchen + Pantry with 39.8%) where users often attempted to manipulate elements
directly on the canvas or misinterpreted the required sequence of actions. Similarly, early
tasks such as the Bedroom and Bathroom shapes also registered moderate error rates
(25–33%), consistent with the initial exploration period.

In contrast, once participants had internalized the workflow, misclick frequency de-
creased significantly, remaining below 10% during the rule creation and design generation
stages. The Blockly task (Task 13) and the final Design task (Task 16) were excluded
from this metric, as the former was executed outside the Maze environment and the latter
was an exploratory task without a predefined target screen.

Figure 5.12. Misclick rate per task

To better understand these quantitative results, all heatmaps generated by Maze were
examined. Each task’s heatmap was analyzed to identify potential causes for interaction
errors or atypical click distributions.

It is important to clarify that, for the purpose of this evaluation, a specific interaction
flow was defined to ensure consistent data collection across participants. For example,
when creating a shape, the expected order of actions was: first assign a name, then adjust
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its size, and finally set its position. Consequently, any deviation from this predefined
sequence, such as modifying a shape’s position before naming it, was automatically logged
by Maze as a misclick. However, these cases do not represent genuine usability issues,
as the final version of SAGE will allow users to perform these actions in any order.
Therefore, many of the recorded misclicks correspond to alternative, valid interaction
strategies rather than actual user errors.

With that in mind, some of the observed misclick rates are attributable to such ex-
ploratory or non-sequential behavior. Still, a few screens revealed clearer patterns of
interaction difficulty or misunderstanding, which are discussed below:

• Bedroom: Several participants initially attempted to click or drag directly on the
grid to create a shape, instead of pressing the “Add Shape” button (Fig 5.13a).

• Bathroom: Some users misunderstood the task’s intent and tried to edit the pa-
rameters of the previously created Bedroom shape instead of creating a new one,
leading to repeated misclicks before identifying the correct control (Fig 5.13b).

• Suite: Apart from misclicks caused by drag attempts (which Maze occasionally
registered as clicks), participants often tried to select the Suite as a whole by
clicking its thumbnail, rather than by clicking outside the active shape as required
(Fig 5.13c).

• Kitchen + Pantry: The most frequent misclicks were related to participants
attempting to reposition the Pantry shape manually on the canvas instead of
using the numeric X and Y parameters (Fig 5.13d).2

• Rule: Kitchen + Pantry: The misclick rate in this task was mainly due to scrolling
issues within dropdown menus, which required highly specific click locations that
Maze sometimes failed to register properly (Fig 5.13e).

2The background screens visible in these heatmaps are low-resolution images automatically generated
by Maze. As a result, certain interface elements may appear slightly distorted or misaligned. This is
particularly noticeable in the Rule: Kitchen + Pantry heatmap, where text formatting artifacts cause
overlapping buttons.These visual distortions do not affect the accuracy of the recorded click data.
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(a) Heatmap for the Bedroom task, showing
concentrated clicks on the canvas area due to
direct creation attempts.

(b) Heatmap for the Bathroom task, highlight-
ing misclicks from users editing the previous
shape instead of creating a new one.

(c) Heatmap for the Suite task, with clustered
clicks near thumbnails caused by incorrect se-
lection attempts.

(d) Heatmap for the Kitchen + Pantry task,
showing drag attempts on the canvas instead
of parameter-based repositioning.

(e) Heatmap for the Rule: Kitchen + Pantry
task, illustrating misclicks from dropdown
scroll sensitivity.

Figure 5.13. Selected heatmaps highlighting interaction patterns associ-
ated with higher misclick rates. Red zones represent frequent click areas
registered by Maze.
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These observations highlight that most misclicks were not the result of confusion
or poor usability, but of exploratory interaction, participants testing possible ways to
achieve their goals or performing legitimate actions that happened outside Maze’s strict
success-tracking sequence. The heatmaps therefore provide valuable contextual evidence
that complements the quantitative data, confirming that the high error rates observed in
certain tasks stem from interface exploration and not from conceptual misunderstanding.
This triangulation between quantitative rates, observational notes, and heatmap analysis
strengthens the reliability of the evaluation, offering both numerical and behavioural
validation of the results.

5.2.4. Qualitative Observations and Participant Feedback

In addition to quantitative metrics, qualitative insights were gathered through direct
observation and notes taken throughout each evaluation session. These observations pro-
vided a deeper understanding of the participants’ reasoning processes, interaction pat-
terns, and expectations toward the interface and workflow. Overall, the feedback revealed
a high level of engagement and curiosity, alongside several recurring suggestions for re-
finement across different stages of the workflow.

The tutorial stage was positively received but described as dense by some participants.
Approximately 23% (7/30) found it contained too much information, while 30% (9/30)
suggested that the tutorial could be made more interactive or include practical examples.
A smaller group (4/30) reported difficulty understanding the concepts and difference
between Rules and Procedures, indicating that these notions may benefit from progressive
introduction or contextual reinforcement within later stages of the interface.

The Shapes environment generated the richest behavioral observations. A large major-
ity of participants (23/30, 76.7%) expected to reposition shapes by directly dragging them
across the grid, rather than relying solely on numerical parameter adjustments. Others
suggested alternative interaction methods, such as using arrow-key controls (4/30, 13.3%)
or clicking a target position on the canvas to place the shape (2/30, 6.7%). Although the
prototype already supported vertex-based resizing, more than half of the participants
(17/30, 56.7%) explicitly requested the ability to resize shapes by dragging edges as well,
or by combining both approaches: vertices to maintain proportions and edges for free-
form scaling. A smaller subset (2/30, 6.7%) also proposed the inclusion of a proportional
locking shortcut, represented by a padlock icon, to help preserve aspect ratios during
resizing.

When interacting with Composition shapes, participants consistently expressed a pref-
erence for selecting entire compositions through their thumbnails rather than by clicking
outside the active shape, as the prototype required. A total of 20 out of 30 participants
(66.7%) explicitly suggested adopting this method as the default interaction model, argu-
ing that it felt more natural and aligned with standard practices in design software. This
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feedback, consistent with the quantitative findings discussed earlier, reinforces the intu-
itive expectation of direct manipulation typical of contemporary design tools and should
be regarded as a necessary adjustment in future iterations of the system.

Only a few participants (2/30, 6.7%) failed to immediately navigate to the Rules Editor
when prompted, suggesting that the tab-based navigation was generally well understood.
Nonetheless, these same participants reiterated the need for more explicit guidance, both
within the tutorial and inside the Rules Editor itself, to clarify the purpose and workflow
of this stage.

The Blockly stage gathered substantial feedback, with 11 out of 30 participants (36.7%)
requesting a dedicated tutorial for this section and 4 (13.3%) suggesting that such tutorial
could be presented in video format. A total of 5 participants (16.7%) reported difficulty
understanding the block logic, while 12 (40.0%) expressed uncertainty regarding where
to access this feature, indicating that the Grammar tab label was not self-explanatory.
Alternative names were proposed by 4 participants (13.3%), including "All", "Set up",
"Index", "Workspace", and "Sandbox".

Participants also provided aesthetic and organizational feedback regarding the blocks
themselves. Some noted that the colours of Rules and Procedures were too similar (3/30,
10.0%), while others suggested adopting a more consistent color-coding system across cat-
egories (5/30, 16.7%). The inclusion of titles or hierarchical categories within the Blockly
menus was recommended by 7 participants (23.3%), and sorting blocks by complexity
or usability was a common suggestion among 13 participants (43.3%). Additionally, 19
participants (63.3%) explicitly recommended placing the “Available Shapes/Rules” blocks
at the top of the menu for easier access. Other minor suggestions included clearer syn-
tax (e.g., adding colons or arrows for readability), simplified dropdown interactions, and
enhanced visual consistency inspired by existing environments such as IntelliJ or Scratch.

Feedback in the Design Generation phase focused primarily on iconography and inter-
action flow. Two participants (6.7%) did not immediately click the “Build” button, while
4 (13.3%) considered its icon too similar to a settings symbol. Alternative suggestions
included using a standalone “Play” icon (2/30, 6.7%) or changing its color to blue (3/30,
10.0%) to make it more prominent.

A total of 12 participants (40.0%) expressed confusion regarding the question about
the Origin, suggesting that its wording should be simplified or that the color-coding of
the options should be modified, since the red/green distinction implied a right–wrong
dichotomy. A few users (2/30, 6.7%) proposed replacing the question altogether with a
pop-up notification indicating that the origin was fixed at (0,0).

Several usability suggestions also emerged during this stage. Eight participants (26.7%)
found the label “Shapes list” unclear and proposed alternatives such as “Shapes tab,” “Pre-
vious list,” or “Favourite shapes.” Others (7/30, 23.3%) suggested adding clearer visual
cues to emphasize that the grid in the design phase was interactive, allowing users to pan
and zoom. Proposals included changing the cursor to a hand icon when hovering over the
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workspace and displaying a small zoom indicator (e.g., magnifier icon with percentage),
similar to those used in web browsers.

Requests for more intuitive navigation were also noted, including arrow-key iteration
between design solutions (2/30, 6.7%) and clearer export options, such as “Download” or
“Save Design,” mentioned by 13 participants (43.3%). Finally, a strong majority (25/30,
83.3%) preferred the “home” icon over the “arrow” one for exiting the design phase, con-
firming this as the definitive choice for the final implementation.

Following the prototype sessions, participants shared additional general suggestions
aimed at improving accessibility and user experience. Multilingual support was requested
by 4 participants (13.3%), while 2 (6.7%) recommended adding accessibility options for
color-blind users. Five participants (16.7%) suggested incorporating more keyboard short-
cuts (e.g., Ctrl+Z for undo or shortcuts for tab switching), and one (3.3%) proposed
introducing greater color diversity across the interface to enhance visual appeal.

A small subset of participants (4/30, 13.3%) considered the overall visual design to
appear somewhat childlike, whereas one participant (3.3%) suggested further developing
the mascot’s personality to strengthen emotional engagement with the user.

Overall, these qualitative observations reinforced the quantitative findings and vali-
date the system’s current design direction but also underscore specific opportunities for
refinement for future work.

5.3. Summary of Results

The results of the summative evaluation demonstrate that SAGE successfully achieved
its main objectives of usability, clarity, and accessibility, particularly among users with
little or no prior experience in digital design or Shape Grammars. Through a combination
of quantitative and qualitative data, the study confirmed that the system’s interface and
workflow effectively support both intuitive exploration and conceptual understanding of
grammar-based design.

From a quantitative perspective, the overall SUS score of 78.08 places SAGE within
the “Good to Excellent” usability range, surpassing the standard benchmark of 68. Com-
plementary Likert-scale responses further reinforce this positive assessment, with high
agreement on statements regarding enjoyment, visual appeal, and learning support. Cor-
relational analysis revealed strong links between usability, enjoyment, and perceived un-
derstanding, suggesting that participants who found the interface more engaging also felt
they learned Shape Grammar concepts more effectively.

Behavioural data collected through the Maze platform corroborated these perceptions.
Task completion rates remained consistently high across all workflow phases, with an
overall average success rate above 85%. Misclick analysis confirmed that most errors
stemmed from exploratory actions rather than from confusion or design flaws.

Qualitative feedback further emphasized SAGE’s intuitive character and educational
potential. Participants quickly grasped the workflow of creating and combining shapes,
defining rules, and applying procedures.
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However, several patterns of improvement emerged:

• a strong expectation for direct manipulation through drag-and-drop and edge-
based resizing in the Shapes tab;

• the need for more explicit differentiation between Rules and Procedures, ideally
supported by progressive tutorials;

• clearer organization and color-coding of Blockly blocks, with frequently used
items placed at the top;

• refined iconography and clearer labels (e.g., replacing “Build” and “Shapes list”
with more intuitive alternatives).

Participants also suggested accessibility and usability enhancements such as keyboard
shortcuts, multilingual support, and clearer zoom and navigation cues within the design
environment. Despite these refinements, overall engagement and satisfaction remained
high, with most users completing all tasks independently and expressing interest in using
the tool again.

In summary, the evaluation confirmed that SAGE provides an effective and approach-
able environment for learning and applying Shape Grammar principles. Its visual, mod-
ular, and interactive design was perceived as both enjoyable and pedagogically valuable,
bridging the gap between theoretical grammar formalism and practical design interaction.
The identified improvement areas represent opportunities for future iterations rather than
limitations of the current implementation.
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CHAPTER 6

Conclusion

This chapter concludes the dissertation by revisiting its objectives, summarising the
main findings, and reflecting on the implications of the developed system SAGE (ShApe
Grammar assisted Environment). The work aimed to explore how Shape Grammars
could be made more accessible through visual interaction and user-centred methodologies,
bridging the gap between formal computational design theory and practical usability. The
chapter also revisits the research questions, outlines the key contributions and limitations,
and identifies directions for future work.

6.1. Overview

The motivation for this research stemmed from the recognised gap between the theoretical
richness of Shape Grammars and their limited adoption in practice, largely due to the
absence of intuitive and interactive tools. Addressing this gap, SAGE was conceived as a
proof-of-concept application that integrates Shape Grammar logic, procedural reasoning,
and User-Centred Design principles.

Following a DSR methodology, the project evolved through iterative design and eval-
uation cycles: from medium-fidelity prototypes in Figma, to a functional JavaFX desktop
application that integrates Blockly and the Alternative Shaper engine. Each iteration
was guided by feedback from users, ensuring that the final system aligned with both
theoretical goals and practical usability needs.

6.2. Revisiting the Research Questions

The research was guided by three overarching questions, each addressing a specific di-
mension of the problem. Their answers are summarized below in light of the design,
implementation, and evaluation outcomes.

RQ1. Which graphical representations are most effective for supporting the visual
design of Shape Grammars, particularly for novice users?

SAGE demonstrated that separating the Shape Grammar workflow into three dedi-
cated visual spaces (Shape Editor, Rule Editor, and Grammar Editor) is effective in sup-
porting novice users. The combination of grid-based spatial composition, shape thumb-
nails, and explicit before/after rule previews helped participants reason about geometric
transformations and grammar structure without requiring prior domain knowledge. The
summative evaluation showed that users were able to identify shapes, create rule trans-
formations, and understand grammar progression, despite most having only superficial
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awareness of Shape Grammars beforehand.

RQ2. Which interaction metaphors best facilitate the intuitive creation, manipulation,
and understanding of shapes, rules, and grammars within a visual environment?

The evaluation showed that interaction metaphors drawn from familiar creative soft-
ware were most effective. Tabbed navigation; grid-based canvases and parameter side-
panels supported precise manipulation; and thumbnails enabled quick recognition and
selection. Participants naturally attempted direct manipulation (drag-to-move, vertex-
based resizing, canvas-first selection) before turning to form fields, reflecting expectations
shaped by mainstream design tools. The block-based logic editor also helped translate
procedural thinking into tangible, draggable units.

Crucially, the “experienced builder” character functioned as an on boarding and guid-
ance metaphor: a domain-savvy companion that offers contextual prompts, step-wise
instructions, and corrective hints. This narrative device operationalizes scaffolding[73]
by chunking tasks, reducing uncertainty, and keeping attention on the design goal rather
than on interface discovery.

Overall, the most effective metaphors were those aligning with users’ prior interac-
tion schemas (direct manipulation, staged workflows) and those that externalize guidance
through a trusted, in-context “coach” (the builder), thereby lowering cognitive load and
accelerating novice uptake.

RQ3. How can iterative prototyping and user feedback inform and validate these
representations and interaction models to enhance the accessibility, clarity, and usability
of Shape Grammar-based design tools?

The iterative development process guided by UCD and DSR proved essential to refining
both the visual and interactive aspects of SAGE. Early Figma prototypes allowed the
validation of interface layout and user flow, while later evaluations with the fully functional
application provided concrete evidence of usability and learnability. Successive rounds
of feedback directly informed design adjustments, such as the introduction of clearer
iconography, improved thumbnails, and the reorganization of Blockly categories. The
summative evaluation, with a mean SUS score of 78.08, validated that this iterative and
feedback-driven process effectively enhanced clarity, usability, and overall user satisfaction.

6.3. Limitations

Although the results are promising, certain limitations constrain the current version of
SAGE. First, the system depends on the Alternative Shaper Prolog engine, which restricts
its independence and flexibility, as the grammar execution relies on an external inference
module. Secondly, the Blockly integration currently functions only as a visual interface; it
does not yet persist or execute user-defined procedures independently, limiting the extent
to which users can create and test their own procedural logic within the environment.
Moreover, the evaluation primarily focused on short-term interactions, providing valuable
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insights into initial usability but not addressing long-term learning effects or professional
applicability. Finally, the participant sample, although diverse in disciplinary background,
consisted solely of university students with no prior experience in Shape Grammars, which
may affect the generalization of the findings.

Recognizing these limitations provides a solid foundation for targeted improvements in
future iterations of SAGE and for subsequent research exploring its broader applicability
and pedagogical impact.

6.4. Future Work

Building upon the limitations discussed in the previous section, several directions for
future improvement and exploration have emerged from this research. A primary avenue
for development concerns the technical independence of SAGE. Replacing the current
dependency on the Alternative Shaper Prolog engine with an internally managed inference
module would grant the system greater autonomy and flexibility, facilitating smoother
integration between the interface and the underlying grammar execution.

Another key priority involves extending the Blockly integration to support persistent
and executable logic, enabling users to define, save, and run custom procedures directly
within the visual interface rather than relying solely on predefined logic. Further enhance-
ments to direct manipulation, such as drag-and-drop positioning, edge-based resizing, and
proportional scaling would also align the system with interaction patterns familiar from
professional design tools. In parallel, refining the tutorial system to include contextual,
example-based learning and step-by-step on boarding would make the tool more approach-
able to first-time users and strengthen its pedagogical value.

From a user experience and research perspective, future iterations of SAGE should
also expand accessibility options, incorporating features such as keyboard shortcuts, color-
blind modes, and multilingual support. Longitudinal studies could evaluate how sustained
use of the tool affects users’ conceptual understanding of Shape Grammars, while com-
parative experiments with traditional text-based grammar systems could help quantify
learning gains and cognitive load differences more precisely. In addition, future eval-
uations should involve participants with prior experience in Shape Grammars, such as
researchers, architects, or advanced design students to assess the tool’s applicability and
effectiveness in professional or expert-oriented contexts.

Collectively, these directions point toward a more mature and autonomous version
of SAGE, capable not only of supporting interactive learning but also of serving as a
research platform for studying the relationship between generative systems, pedagogy,
and human–computer interaction.

6.5. Final Remarks

This dissertation demonstrated that the principles of Shape Grammars, often regarded as
abstract and technically demanding, can be reinterpreted through accessible, user-centred
design. The development of SAGE (ShApe Grammar assisted Environment) exemplifies
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how a rigorous computational framework can coexist with intuitive interaction design,
bridging theoretical formalism and creative exploration.

The project’s contributions extend beyond its technical implementation. By applying
Design Science Research and Human–Computer Interaction principles, it established a
replicable process for transforming formal generative systems into usable, pedagogical
tools. The evaluation confirmed that even users without prior design or programming
experience were able to understand and manipulate Shape Grammar concepts effectively,
perceiving the tool as both enjoyable and educational.

In doing so, SAGE illustrates the broader potential of visual and interactive paradigms
to democratize access to computational design. The findings suggest that when systems
are designed with the user’s cognitive processes in mind complex theories like Shape
Grammars can evolve from academic constructs into practical design instruments.

Ultimately, SAGE stands as both a functional prototype and a methodological contri-
bution: a demonstration that usability and formal expressiveness need not be opposites,
but complementary forces in advancing generative design research.
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APPENDIX A

Snapshots of Prototype 1

Figure A.1. Expanded
workspace view in the first
SAGE prototype, showing
the shape “quarto” and
illustrating the adjustable
grid area relative to the
thumbnail panel and shape
properties.

Figure A.2. View of the
first SAGE prototype show-
ing the default shape and the
confirmation popup required
to delete it before defining
the new composition shape
“apartamento”.

Figure A.3. Interface of
the first SAGE prototype
showing the parameter cre-
ation popup for the shape
“apartamento”.

Figure A.4. Display of all
shapes created by partic-
ipants during the testing
phase of the first SAGE pro-
totype.
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Figure A.5. Initial popup
displayed before composing
the parameter “door” within
the first SAGE prototype.

Figure A.6. Popup win-
dow displayed in the first
SAGE prototype for defining
the parameter “door” of the
shape “apartamento”.

Figure A.7. Display of the rule defined by participants during the evalu-
ation of the first SAGE prototype.

(a) Popup for editing the rule condition in the
first SAGE prototype.

(b) Popup for defining the rule procedure in
the first SAGE prototype.

Figure A.8. Rule Editor popups in the first SAGE prototype, showing the
interfaces for defining conditional logic (a) and procedural behavior (b).
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Figure A.9. Window dis-
played in the first SAGE
prototype during the design
generation phase, prompting
the user to adjust the origin
point of the generated layout
before execution.

Figure A.10. Final dia-
log in the design generation
phase of the first SAGE pro-
totype.
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APPENDIX B

Design Options of Prototype 1

Figure B.1. Prototype 1
– Alternative “Build” icon
(Option 1).

Figure B.2. Prototype 1
– Alternative “Build” icon
(Option 2).

Figure B.3. Prototype 1
– Alternative “Build” icon
(Option 3).

Figure B.4. Prototype 1 –
Shape Editor showing a uni-
tary origin indicator.
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Figure B.5. Prototype 1 –
Shape Editor showing the
parameter buttons “+” and
“–” with color coding.

Figure B.6. Prototype 1
– Parameter Editor showing
the “Accept” and “Discard”
buttons with color coding.

Figure B.7. Prototype 1 –
Rule Editor showing the “Ac-
cept” and “Discard” buttons
with color coding.

Figure B.8. Prototype 1
– Design Generation phase
showing the “Accept” and
“Discard” solution buttons
with color coding.
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APPENDIX C

Snapshots of Prototype 2

Figure C.1. Snapshot of
the confirmation popup
introduced in the second
SAGE prototype, shown
after clicking the “Delete
Shape” button in the prop-
erties panel of a default
shape.

Figure C.2. Display of all
shapes created by partic-
ipants during the testing
phase of the second SAGE
prototype.
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APPENDIX D

Snapshots of Prototype 3

Figure D.1. Snapshot of
the new Add Shape interac-
tion introduced in the third
SAGE prototype, showing
the “Add Simple Shape” op-
tion highlighted as the user
hovers over it.

Figure D.2. Snapshot of
the Shape Editor in the third
SAGE prototype, showing
the shape “wc” selected
within the composition
shape “apartamento”.

Figure D.3. Snapshot of a
rule created by participants
during the third SAGE pro-
totype evaluation.

Figure D.4. Snapshot of
the Rule Editor in the third
SAGE prototype, showing
the rule “quarto to wc” se-
lected and the trash icon now
available to allow deletion.
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Figure D.5. Popup displayed in the third SAGE prototype asking the
user to confirm whether they wish to exit the design generation phase.
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APPENDIX E

Snapshots of Final Prototype simulating SAGE

Figure E.1. Snapshot of
the first tutorial dialog intro-
duced in the final SAGE pro-
totype.

Figure E.2. Snapshot of
the dialog displayed when
the user chooses not to fol-
low the tutorial in the final
SAGE prototype.

Figure E.3. Snapshot of
the dialog displayed when
the user chooses to start the
tutorial in the final SAGE
prototype.

Figure E.4. Snapshot of
the tutorial dialog in the fi-
nal SAGE prototype intro-
ducing the concept of shapes
and their function in the sys-
tem.
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Figure E.5. Snapshot of
the final SAGE prototype tu-
torial, detailing the differ-
ences between simple and
composition shapes.

Figure E.6. Snapshot of
the tutorial in the final
SAGE prototype introducing
the concept of Rules.

Figure E.7. Snapshot of
the tutorial in the final
SAGE prototype, detailing
how Rules may include Con-
ditions and Procedures that
extend their behavior.

Figure E.8. Snapshot of
the tutorial in the final
SAGE prototype, introduc-
ing the concept of Proce-
dures.
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Figure E.9. Snapshot of
the concluding tutorial dia-
log in the final SAGE pro-
totype, summarizing how
shapes, rules, and proce-
dures together compose a
grammar.

Figure E.10. Snapshot of
the Shape Editor in the final
SAGE prototype, illustrat-
ing the process of creating a
new composition shape with
previously defined Shapes.

Figure E.11. Overview of
all shapes generated during
the final SAGE prototype
evaluation.

Figure E.12. Overview of
the Rules produced by par-
ticipants during the final
SAGE prototype evaluation.
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Figure E.13. Snapshot of the intended procedures created by participants
during the final SAGE prototype evaluation.

Figure E.14. Snapshot of
the design generation phase
in the final SAGE prototype,
illustrating the intermediate
step where the user chooses
the procedure to continue
the generative sequence.

Figure E.15. Snapshot of
the design generation pro-
cess in the final SAGE pro-
totype, showing the “Next
Step” stage that precedes the
completion of the design.
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APPENDIX F

SUS Results

Participant SUS Score
1 82.5
2 62.5
3 80.0
4 45.0
5 77.5
6 90.0
7 95.0
8 95.0
9 62.5
10 70.0
11 72.5
12 62.5
13 80.0
14 75.0
15 75.0
16 75.0
17 87.5
18 95.0
19 92.5
20 92.5
21 75.0
22 82.5
23 85.0
24 75.0
25 77.5
26 62.5
27 85.0
28 72.5
29 82.5
30 77.5

Table F.1. Individual SUS scores for all participants (N=30).
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