e

Novos exemplos de
Praticas Pedagdgicas -
e Estratégias de
Inovacao Pedagodgica

_— no Iscte \

CONSELHO
PEDAGOGICO

UNIVERSITARIO
DDDDDDDD

FICHA TECNICA

Titulo
Novos Exemplos de praticas pedagdgicas
e estratégias de inovagdo pedagdgica no Iscte

Suporte
Eletrénico

Formato
PDF

Organizadores

Sénia Pintassilgo, Alexandre Almeida,

Ana Catarina Nunes, Helena Soares, Isabel
Correia, Patricia Dinis Costa, Vania Baldi,
David Isaac, Henrique Lage, Beatriz Saavedra,
Gongalo Tomé Ribeiro, Helena Alvito

Autores

Anténio Luis Lopes & ChatGPT; Joana Martinho
Costa; Sara Soares & Rita Jerénimo; Marilia
Prada & Margarida Vaz Garrido; Sibila Marques,
Mariana Montalvéao e Silva & André
Samora-Arvela; Rodrigo Vieira de Assis & Filipa
Pinho; Elsa Justino & Inés Casquilho-Martins;
Malwina Wojciechowska & Sofia Gomes;

Dulce Morgado Neves & Adriana Albuquerque;
Mara Clemente; Carlos Rocha, Inés Gama

& Sara Mourato; Mel Campos, Leo Oliveira &
Paulo Raposo; Cristiane Souza, Sofia Frade

& Marilia Prada; Conceig¢ao Pereira; Ricardo
Mendes Correia; André Almeida Pinho;

Ana Simaens; Ana LUcia Martins; Adriana Rosa
& Arlindo Ribeiro; Carlos Coutinho

Edicdo
Iscte — Instituto Universitario de Lisboa

Projeto grafico e paginacgao
Gabinete de Comunicagao Iscte

Local e data
Lisboa, junho, 2025

Responsabilidade
Cada capitulo é da exclusiva
responsabilidade dos seus autores

ISBN
978-989-584-117-2

— \

Principios pedagodgicos
sobre a Unidade
Curricular de Sistemas
Operativos no Iscte

Carlos Coutinho
carlos.eduardo.coutinho@iscte-iul.pt

Iscte — Instituto Universitario de Lisboa

SUMARIO EXECUTIVO

Os sistemas operativos sao uma componente fundamental da computacao
moderna, desempenhando um papel crucial na gestao dos recursos infor-
maticos, facilitando a comunicagao entre hardware e software e proporcio-
nando uma interface de facil utilizagdo para os utilizadores interagirem com o
computador.

A histéria dos sistemas operativos remonta aos primérdios da computagao, na
década de 1950, quando os primeiros computadores, usados principalmente
para fins cientificos e militares, foram desenvolvidos. Nessa altura, o propdsito
primordial dos sistemas operativos era controlar as entradas e saidas do compu-
tador. Com o passar do tempo, os sistemas operativos tornaram-se mais sofis-
ticados, passando a proporcionar multiprocessamento, permitindo o acesso a
multiplos utilizadores segundo o modelo time-sharing. Para facilitar a intera-
¢ao entre os utilizadores e a maquina, desenvolveram-se interfaces de linha de
comandos, e, mais tarde, interfaces graficas (GUI) que se destinaram a simplifi-
car e apresentar um ambiente user-friendly para utilizadores comuns, demo-
cratizando o acesso e utilizagao dos computadores, e possibilitando-lhes o
acesso rapido e eficaz as funcionalidades mais populares e comuns dos siste-
mas operativos.

Na atualidade, como resultado da heterogeneidade de acessos a recursos
computacionais em todas as areas da sociedade, que vdao desde a computa-
¢cao movel, aos sistemas de computador tradicionais, a dispositivos weara-
bles, ou sensores interligados em rede para a Internet das Coisas, modelos
de digital twin de elementos fisicos reais, ou de realidade aumentada, até a
computagao em nuvem, estes recursos apresentam propositos muito dife-
rentes. Naturalmente, também as suas formas de gestdo, armazenamento,
interacdo e outros sdo eles préprios também heterogéneos. Nesse sentido,
0s sistemas operativos tornaram-se um importante aliado para consolidar
e homogeneizar conceitos, solugcdes e interfaces, simplificando e democra-
tizando uma vez mais o acesso a todas essas funcionalidades, que agora
incluem como a gestao de recursos, a interface com o hardware e dispositi-
vos associados, o multiprocessamento de tarefas, e a seguranga no acesso,
entre outras.

Os conhecimentos e ideias aqui abrangidos ndo sé tém utilidade em si mes-
mos, como também contribuem para o desenvolvimento de metodologias e

333

Carlos Coutinho

de abstracao de conceitos que serao fundamentais para obterem uma visao
mais consolidada do mundo na area informatica dos alunos.

Neste capitulo é descrita a Unidade Curricular (UC) de Sistemas Operativos
(SO), transversal as licenciaturas em Informatica e Gestdo de Empresas
(LIGE e LIGE-PL), Engenharia Informatica (LElI e LEI-PL), e Engenharia de
Telecomunicagdes e Informatica (LETI) do Iscte — Instituto Universitario de
Lisboa (Iscte), aproveitando a experiéncia adquirida no seu leccionamento
nos anos letivos de 2016/17 até 2024/25. Esta UC tem sido lecionada no pri-
meiro semestre do segundo ano € no segundo semestre do primeiro ano des-
tas licenciaturas. A UC ndao tem pré-requisitos formais, embora se assuma que
os alunos tenham bons conhecimentos de algoritmia e estrutura de dados e
conhecimentos em pelo menos uma linguagem de programagao de alto nivel
(e.g., Java, C++, JavaScript).

Esta UC enquadra-se na area cientifica de Arquitetura de Computadores
e Sistemas Operativos do Departamento de Ciéncias e Tecnologias da
Informacao (DCTI) do Iscte, do qual também fazem parte a UC de Fundamentos
de Arquitetura de Computadores e a UC de Microprocessadores, todas do
primeiro ano, embora a UC de Microprocessadores apenas seja dada na
Licenciatura em Engenharia Informatica.

1. OBJETIVOS GERAIS

A UC de Sistemas Operativos tem o objetivo principal de apresentar os fun-
damentos dos Sistemas Operativos e relaciona-los, por um lado com a expe-
riéncia do aluno, e por outro, com as matérias que sao dadas noutras UCs,
nomeadamente nas Arquiteturas de Computadores, da qual esta UC é uma
progressao légica, as Redes de Computadores, ou Seguranga. O propdsito
principal desta UC é enumerar as (principais) multiplas diferentes funciona-
lidades dos sistemas operativos, avaliando os algoritmos e solu¢des alterna-
tivas, e comparando as abordagens tomadas pelos principais fornecedores
em cada uma dessas funcionalidades. De seguida, ainda no ambito de cada
funcionalidade, descrevemos em maior pormenor a abordagem tomada pelo
sistema operativo Linux.

Como em qualquer UC, uma preocupacao central no planeamento desta foi a
motivagdo dos alunos. Nesse sentido, a UC tem por um lado uma componente
tedrico-pratica, onde se exploram os conceitos e filosofias que levaram as solu-
¢bes técnicas usadas nos SO mais populares, realgando as solugdes existentes
nos sistemas Linux e Windows. E nesta componente também que se explicam
as diferencas de utilizagao entre a linha de comandos e os ambientes grafi-
COos, e se ensinam as bases de interagdo com o sistema operativo tanto usando

334

Principios pedagdgicos sobre a Unidade Curricular de Sistemas Operativos no Iscte

comandos Linux, Shell scripting ou programagao usando a linguagem C. Por
outro lado, tem uma componente pratica laboratorial de importancia pre-
mente, onde os alunos podem consolidar os conhecimentos adquiridos na
parte tedrico-pratica (e.g., funcionalidades do SO, gestdo de recursos, multi-
processamento, seguranga, persisténcia) em sessdes hands-on usando uma
interface linha de comandos para um sistema Linux.

Esta componente pratica laboratorial habilitard o aluno a utilizar a linha de
comandos do sistema operativo Linux e a desenvolver programas, ao nivel
do sistema, usando os mecanismos do sistema operativo, tendo em conta os
modelos de programacao sequencial e concorrente. A escolha do Linux como
sistema operativo teve em conta a tendéncia atual para a utilizagao massiva
deste SO ou semelhantes na esmagadora maioria de equipamentos do mer-
cado, tanto em dispositivos modveis (na sua vertente Android ou iOS), como
nos sistemas de computacgao tradicionais (correndo Unix, Linux, OSX e até
Windows), aos paradigmas mais disruptivos como sejam a configuracao de
dispositivos things usando Arduino (Xinu) ou Raspberry Pi OS, até a configura-
¢ao e gestao de containers e sistemas de computagao na nuvem.

Em termos de planeamento, a componente laboratorial ocorre em todas as
semanas de aulas, tendo o dobro da duracdo das aulas tedrico-praticas. Cada
aula tedrico-pratica tem um documento (conjunto de slides) disponibilizado
no inicio do semestre letivo, com a matéria especifica dada nessa aula. Cada
aula de pratica laboratorial tem um guido, que permite aos alunos terem linhas
de orientagao para as atividades a serem realizadas nas aulas de laboratoério,
0 que promove terem um acompanhamento que cobre praticamente todos
0s conceitos do programa da UC.

Os alunos, para além das horas semanais tedrico-praticas e de pratica labo-
ratorial, tém também de preencher um mini-teste semanal no Moodle que
se destina a fazer com que consolidem os conhecimentos transmitidos nessa
semana, num total de nove mini-testes. Para além disso, tém de espelhar os
seus conhecimentos num projeto de desenvolvimento em Linux, que ja foi
realizado em grupo e € agora individual, dividido em trés partes, com entregas
a cada quatro semanas de aulas.

Todos os programas, conteddos, exercicios, um conjunto extenso de testes
anteriores, e material auxiliar da cadeira estao disponiveis na pagina da UC no
Moodle Iscte, pagina essa que serve também como principal ponto de con-
tacto entre os alunos e a cadeira fora da sala de aula.

335

Carlos Coutinho

2. PROGRAMA

O programa da disciplina esta previsto para 12 semanas de aulas, que incluem,
em cada semana, 1Th30 de aula tedrico-pratica e 3h de aula pratico-laboratorial.
O programa seguido introduz os conceitos referidos nos objetivos da disciplina
mediante uma sequéncia légica de apresentagao de cada funcionalidade dos
sistemas operativos alinhada sempre que possivel com a sua experimenta-
¢ao em aulas praticas laboratoriais, e enquadrando as mesmas com desafios
reais do mundo a nossa volta, por forma a alinhar os conceitos e trabalhos
com potenciais solugdes que possam ser reutilizaveis pelos alunos no futuro.
O programa espelha os seguintes conteddos programaticos (CP) enumerados:

CP1: Introducao aos Sistemas Operativos: Evolugao histérica, tipos, fungdes
e caracteristicas dos varios sistemas operativos.

Processos:
CP2: Concorréncia e gestao de processos: Concorréncia de processos,
pseudo-paralelismo e multiprogramacao, criagao e execugao de processos.

CP3: Escalonamento de processos: Estados de um processo, gestao de pro-
cessos e context-switching, algoritmos de escalonamento mais utilizados.

CP4: Sincronizacdo entre processos: Processos e threads, zonas criticas e
exclusao mutua, mecanismos de sincronizagdo entre processos
IPC: semaforos.

CP5: Comunicacao entre processos: Pipes, FIFOs, mecanismos de comuni-
cacgao IPC: memobdrias partilhadas, filas de mensagem.

Gestdo de Memoédria:
CP6: Modelos e algoritmos de gestao de memédria: Organizagao hierarquica
da memoédria, segmentacao e paginagao, enderecamento real e virtual.

CP7: Memdria Virtual: Algoritmos de substituicao de paginas, conceito de
Thrashing e de Working Set.

CP8: Entradas e Saidas: Periféricos, interrupgdes, device drivers, chamadas
ao sistema e spooling.

CP9: Sistema de Ficheiros: ficheiros, diretérios, redireccionamento, expan-
sdo, standard streams, hard links, soft links.

CP10: Administracdo e Seguranca: Conhecer os diversos tipos de autentica-
cao de utilizadores, conhecer varios tipos de atagues, de dentro e de fora do
sistema, acesso SSH, SFTP.

336

Principios pedagdgicos sobre a Unidade Curricular de Sistemas Operativos no Iscte

Utilizacdo do Linux (aulas praticas laboratoriais)
CPT11: Comandos Shell e programacao em Shell: Comandos comuns de
manipulacao do sistema de ficheiros, manipulagao de texto, estruturas de
controlo, criagao de scripts.

CP12: Mecanismos de comunicagdo e sincronizacdo: Sinais, PIPEs, IPC.

3. PROCESSO DE ENSINO - APRENDIZAGEM

O processo de ensino/aprendizagem nesta UC é orientado pelos seguintes
principios:

> Enfase na compreensdao dos conceitos base sobre os sistemas operati-
VOS € no relacionamento destes conceitos com a experiéncia e matérias
de outras UC.

> Forte relacionamento entre a componente tedrica e a expressdo pratica
dos mesmos conceitos.

> Trabalho pratico de desenvolvimento como meio de consolidagao dos
conhecimentos e competéncias.

A metodologia adotada ndo sé da um conhecimento amplo sobre os diver-
sos aspetos de funcionamento dos diversos sistemas operativos, como
permite fortalecer o conhecimento do aluno em aspetos mais relevantes,
devido a forte componente laboratorial.

A forte componente laboratorial baseia-se na utilizagdo do sistema operativo
Linux, um sistema operativo unix-like, de cddigo aberto e amplamente divul-
gado, o que permite dar uma énfase ao trabalho remoto com base na linha de
comandos e na utilizagao direta das chamadas do sistema usando a linguagem C.

Os conteudos necessarios para a compreensao da matéria da UC encontram-
-se centralizados, em primeiro lugar, na sebenta da UC, que acompanha de
forma extensa a matéria que é dada nas aulas. Esta sebenta estd organizada
em capitulos, sendo que varios destes capitulos sao diretamente mapeados
em correspondentes semanas de aulas, contemplando tanto os conceitos
tedricos associados como contém dicas praticas e sugestdes de exercicios
praticos que sdo proximos dos dados nas aulas praticas de laboratdrio. Para
além da sebenta, os conteldos tanto das aulas tedrico-praticas como as das
aulas de pratica laboratorial estdo divididos em apresentacdes separadas
para cada aula, todas disponiveis de forma clara no Moodle Iscte.

O planeamento do semestre € apresentado claramente na primeira aula tedrico-
-pratica, mostrando um diagrama com o calendario de aulas e associagao

337

Carlos Coutinho

entre as aulas tedrico-praticas e as aulas de pratica laboratorial, como mostrado
na Figura 1.

Week Monday Slllldq Week | Theoretical | Practical | Output
501 6-fov 12-foy 1 Concepts, OS structures shell (Command Line) HwW1
S0-2 13-few 19-fev 2 Cancepts, 05 structures Text Manipulation Commands HW?2

50-3 21-fev S-mar 3 InputsfOutputs (1/0) Shell Seript Programming HW3
50-4 G=mar 12-mar 4 File Systems Apoio ao Trabalho Pratico PAl
505 13-mar 19-mar 5 C Language (revision) Files and 1/O HW4
50-6 20-mar 2G-mar [Processes: creation, management C Language (exercises) HWS
50-7 27-mar 2-abr 7 Processes: threads and synchronization, Processes and Signals HWE

50-8 17-abr 23-abr ! Pracesses: Synchronisation Apaoio ao Trabalho Pritico PA2

50-9 2d-abr 30-abr 9 Processes: Communication Inter Process Communication (IPC) HW7?

50-10 1-mai 7-mai 10 Memory Management, Inter Process Communication (IPC) HwW3

S0-11 &-mai 14-mai 11 Wirtual Memory Inter Process Communication (IPC) HW3S

$0-12 15-mai 21-mai 12 Management / Security Apoio a0 Trabalho Pritico PA3
22-mai 28-mai Oral evaluations

Figura 1- Planeamento da UC de SO apresentado aos alunos na primeira aula

Como se pode ver, o planeamento estd normalmente dividido em trés blocos
principais de quatro semanas cada. No primeiro bloco, sdao dados nas aulas
tedrico-praticas os conceitos basicos dos sistemas operativos, introduzindo os
alunos a necessidade de gestao de periféricos e de sistemas de gestao de fichei-
ros, complementadas por demonstracdes em sala de aula, por acesso remoto
via SSH ao servidor Linux “Tigre” (alojado no Data Centre do Iscte no endereco
tigre.iul.lab), para apresentar de forma direta as diferencas e semelhancas entre,
por exemplo, o sistema de ficheiros Linux e o Windows. Este bloco de quatro
semanas de aulas € complementado por correspondentes aulas semanais de
pratica laboratorial, realizadas nos laboratérios de informatica do Iscte (Figura 2),
em que sao ensinados aos alunos os fundamentos de ligacao via SSH ao servi-
dor “Tigre”, e onde sao dados os primeiros passos na desenvoltura de utilizagao
de um terminal que permite o acesso via linha de comandos ao Linux, expli-
cando o que é um terminal, o que é uma Shell e assim por diante.

No primeiro bloco de quatro semanas de aulas sao também ensinados os funda-
mentos de utilizagdo de um editor de texto remoto (vi), assim como apresenta-
dos os fundamentos ao sistema de ficheiros do Linux, incluindo a descricdo de
atributos dos ficheiros, definicao de i-nodes, definicao de standard-streams e
a sua utilidade (STDIN, STDOUT, STDERR), redireccionamento dessas streams
para ficheiros, no¢cdo de conjuncdao de comandos em Linux e interligagao do
resultado de varios comandos usando pipes. Nog¢ao de soft-links e hard-links,
semelhancgas e diferencas, e sdo apresentados varios pequenos programas
utilitarios disponiveis em Linux, assim como varias opgdes que podem ser
utilizadas nesses programas. E também explicado de que forma se podem
conjugar esses programas para obter varios resultados de valor acrescentado,
e muitas outras dicas na utilizagdo do sistema operativo Linux.

338

Principios pedagdgicos sobre a Unidade Curricular de Sistemas Operativos no Iscte

Figura 2 - Um dos laboratérios de Informatica no Iscte

No segundo bloco de quatro semanas de aulas, os alunos de SO aprendem de
forma breve a especificacdo da linguagem C. Diz-se de forma breve, ja que se
assume que ja frequentaram a UC de Introdugao a Programagao no semestre
anterior, onde se da a linguagem Java, derivada do C, e em que grande parte
das estruturas de controlo e a prépria sintaxe das duas linguagens tem varios
pontos em comum. Sdo também ensinados os fundamentos da criacao de
novos processos, em Windows e Linux, a hierarquia entre processos, e 0s prin-
cipios do multiprocessamento e multiprogramacgao. Sao também ensinadas
técnicas de interagao entre processos, nomeadamente o estabelecimento de
canhais de comunicagao entre processos inter-relacionados via programagao
em C, e interrupgdes usando sinais, quer usando a linguagem C ou a prépria
linha de comandos.

Finalmente, noterceiro bloco de quatro semanas de aulas, osalunosaprendem
como utilizar os mecanismos de comunicagao e sincronizagao de processos
IPC do Linux, enquanto compreendem a necessidade da utilizagao dos mes-
Mos, assim como 0s problemas associados ao multiprocessamento em cena-
rios reais. Aprendem também as técnicas associadas a gestao de memoria,
as nogdes de memoria virtual e mapeamento de memoaria virtual em memo-
ria real. S3o apresentados os conceitos de particdes swap, de fragmentagao
interna e externa, da necessidade de overlays e mapeamento de enderecos de
memaoria em sistemas com multiprocessamento e concorréncia.

Como ja indicado anteriormente, as aulas tedérico-praticas tém cada semana
uma apresentacdo com os conteddos a dar nessa semana, que é explicada
em periodo de aula, em conjungao com demonstragdes e exemplos de como
0s conceitos tedricos se transportam para problemas reais dos sistemas ope-
rativos, e como lidar com eles no SO Linux. Da mesma forma, a aula de pratica
laboratorial tem também um guiao para direcionar mais facilmente os alunos
na conclusao dessa aula pratica hands-on.

339

Carlos Coutinho

Da experiéncia de varios anos a lecionar esta UC, foram recolhidos e analisados
com toda a atengao os comentarios, criticas e sugestdes de melhoria apresen-
tados pelos alunos, e uma delas que era recorrente era o fato de que, ape-
sar de reconhecerem o esforco de ligagao entre a componente tedrico-pratica
e a pratica laboratorial, por vezes sentiam a falta de algum suporte tedrico
para apoiar as aulas praticas, cobrindo conceitos associados com estas aulas
mas que, por pura falta de temypo, ndo teria sido possivel apresentar, como por
exemplo as alternativas na escolha da melhor aplicagao para terminal, ou o
melhor editor de texto, ou as melhores técnicas best-practices para trabalhar
com o0s mecanismos de comunicagao em Linux. Ou, também, técnicas inova-
doras como a utilizagcao de Git e os problemas de seguranga associados com
a utilizagao de determinadas funcionalidades do C. Por forma a mitigar este
problema, tém progressivamente sido construidos novos conteudos, deno-
minados “suporte tedérico das aulas praticas” sob a forma de apresentacdes
semanais sobre topicos relacionados com a utilizagao dos mecanismos que
estao propostos para a aula de pratica laboratorial em questao.

Ou seja, nas aulas de pratica laboratorial, para além do guiao, sao disponibiliza-
dos varios conteudos adicionais, sob a forma de apresentacdes e videos, tuto-
riais, cheat-sheets e outros, todos disponiveis na plataforma Moodle, de forma
tabular com separagao semana a semana, para que os alunos percebam clara-
mente quais sao 0s conteudos que deverao usar para se preparar para as res-
petivas aulas de SO, como se pode ver na Figura 3, um exemplo da tabela que
mostra os contelddos das primeiras 4 semanas. A tabela disponivel no Moodle
tem as 12 semanas completas.

Todos estes conteudos e metodologias destinam-se a dotar os alunos de uma
maior capacidade de analise e resiliéncia de conhecimentos, estruturando
a matéria de uma forma sequencial e I6gica, e promovendo os conceitos de
comunidade e partilha de conhecimentos.

Como se pode ver na Figura 3, os conteudos disponibilizados no Moodle quer
para as aulas tedrico-praticas (a esquerda) como para as aulas de pratica labo-
ratorial sdo apresentados de forma clara e separados por semanas, de acordo
com o gue é esperado dos alunos nessa semana.

Para além da frequéncia das aulas tedrico-praticas, e da frequéncia das aulas
de préatica laboratorial, os alunos também realizam de forma auténoma um
mini-teste semanal que se destina a avaliar os conhecimentos do aluno
durante essa semana, num total de 9 mini-testes (carinhosamente apelidados
de TPC ou Homework (HW) pelos alunos) para as 12 semanas de aulas, sendo
0os mesmos distribuidos, como mostrado na Figura 1, da seguinte forma: a cada
bloco de 4 semanas de aulas, as trés primeiras semanas culminarao cada uma
com a entrega do tal mini-teste. Logo no inicio da segunda semana de aulas,
€ apresentado aos alunos o enunciado da primeira parte (de trés) do trabalho
pratico de SO, trabalho esse que tem de ser submetido no Moodle até ao final

340

Principios pedagdgicos sobre a Unidade Curricular de Sistemas Operativos no Iscte

Theoretical Class Slides [Aula Prélica (LaboralGri D F
01 - Concepts Aula TO1 Auia PO - Suparte Tedricn
U2 - Loncepts Aua T02

Aula PO - Guido

03 - Input/Output Auia TO3 Cheat Sheek: She

Cheat Eheet: vi Text Editor

04 - File Systems Auta T04 01 - Infroducdo ao trabalho remoto, comandos e ¥i

Video: VPN Windows
{caps 1¢ 10 da scbenta)
Videw: Instadl PuTTY
Wides: Install Mobakierm
Video: Install VSCode + SEHFS

aula Pol

Ausia P02 - Suporte Tednco

07 - Comandnos de manipuiagino de texto Augia PO? - Guldn
{Lap. 2 da selerila) Cheal Sheel: Texl Comnmands [PT /EN]
Aula P02

03 - Shell Programming Aufa P03 - Guido
cap. 3 da sebents) Cheat Sheet: BASH Scripts
Aula PO
04 - Linux Acministrabion Auia PO - Suporte Tednoo
{cap. & ta seterita) Widderr Criar Ficheirn 7IP para submeter fratialbo no Moodie

Figura 3 — Moodle: Tabela de conteldos semanais para as primeiras 4 semanas

da quarta semana, sendo, portanto, que nessa quarta semana, os alunos nao
farao mini-teste de SO, devendo nessa semana submeter a primeira parte do
trabalho. De forma analoga, nas trés semanas seguintes a entrega do traba-
Iho, novamente os alunos terdao de completar mini-testes (Figura 4) todas as
semanas, submetendo na oitava semana a segunda parte do trabalho de SO,
e acontecendo o0 mesmo para a terceira parte do trabalho. Apesar destes mini-
-testes contarem para a avaliagdo da UC (ver capitulo 6), o propésito principal
é garantir que os alunos aprendam e retenham o conhecimento.

Mavegacin do teste
Pode pré-visualizar o teste, mas se fosse uma tentativa real
S0 seria poss ' m G000
ndo seria possivel porque:
Le momento, o teste N30 estd disponivel, Ii|

Terminar tentativa

Pergunta 3 Supenhamos que foi criade um ficheiro com o comande skfits pl. O que acontece 5 =
For respender B INICIar NoVa Pre-vIsUaliZagao

Nota: 100

¢ Marcar T a. o primeiro comando cria um pipe half-duplex, pele que o 2° comando
P NUNCE pode Ser executado

£ Lo ~ b. o processo bloguela A espera gue um cutno processo escreva no plpe
pargunia

Z' & Como o ficheiro acabou de ser riado ndo tem |4 nada e portanto o
scgundo comande nio faz nada

T d. ndo & possivel usar o comando <ot num pipe

m Digia sepe i

Figura 4 - Mini-teste semanal de SO

Com vista a melhorar ainda mais a experiéncia pedagdgica dos alunos,
o docente Carlos Coutinho desenvolveu um conjunto de Knowledge Bases

341

Carlos Coutinho

(bases de dados de conhecimento), criadas com base nas perguntas que os
alunos vao fazendo ao docente, sendo depois as respostas colocadas de modo
a serem mais explicativas. Foram desenvolvidas 6 Knowledge Bases (KB),
como descrito na Figura 5:

KB Basics: Forum dedicado a perguntas iniciais, de acesso ao servidor,
perda de password, escolha de uma aplicagao para terminal, acesso a VPN.

KB Shell Commands & Scripting: Férum dedicado a matéria de Linux
commands & Shell, dada nas primeiras 4 semanas de aulas.

KB C Language & Compiling: Forum dedicado a parte basica de criagcéo e
compilagdo de programas em C, ndo diretamente relacionado com a parte
de SO.

KB Linux Processes: Forum dedicado a matéria de criacdo e gestdo de pro-
cessos, sinais e comunicagao usando pipes, dada nas segundas 4 semanas
de aulas.

KB Linux Process Communication: Férum dedicado a matéria de comu-
nicagdo usando mecanismos IPC do Linux, dada nas ultimas 4 semanas de
aulas.

KB Practical Assignment: Forum dedicado especialmente as questdes e
duvidas relacionadas com o projeto pratico do ano em questao.

Knowledge Bases

KB Basics

Knowledge Base {Forum) about Cennecticn to the SO Linux Server "Tigre™ and other related preblems

KB Shell Commands & Scripting

Knowledge Base (Forum) about Shell Commands and Scripting related problems

=
[ii]

Knowledge Base (Forum) about the C Language, compiling C applications, deploying solutions

KB Linux Processes
Krwowledyge Base [Furum) aboul e Linux Provesses, ils uedlion and inleraclion
KB Linux Process Communication

Knowledge Base (Forum] about the Linux Process communication mechanisms

KB Practical Assignment 2022-2023

Knowledge Base {Forum) about problems regarding this year's practical assignment

Figura 5 - Knowledge Bases criadas para os alunos de SO

342

Principios pedagdgicos sobre a Unidade Curricular de Sistemas Operativos no Iscte

Cada uma dessas KB é depois formatada por forma a apresentar uma interface
muito informal para que o aluno tenha maior empatia para procurar a solu-
¢ao em vez de ir pesquisar na internet pelas solugdes, como apresentado na
Figura 6.

KB Basics

Knowiedge Base (Forum) about Connection to the SO Linux Server "Tigre” and other related p

Criar um novo topico

Topico 1

v 4

r

b 4 Perdi 2 minha password de acesso ao tigre.iul.lab

b Problema na escrita da password de login do Linux

ir Tutorial como utilizar VSCode com servidor tigre.ullab
i Utilizacdo de CTRL+Z no Linu

4 Utilizador com Disk Quota Exceeded

v VPN Iscte-IUL a partir do Linux

Figura 6 - Exemplo de KB na UC de SO

Na Figura 7 podemos ver um exemplo da forma de apresentagao de uma per-
gunta na KB. Dado o caracter extremnamente visual e web-based das pergun-
tas, as mesmas nao foram colocadas na lista de conteldos, mas ainda assim
estao todas disponiveis no Moodle Iscte.

O trabalho pratico de SO é normalmente um projeto de sistemas de infor-
macao que é montado com base num cenario ficticio, mas verosimil, de um
negocio empresarial. O trabalho em si é dividido em trés partes:

> Na primeira parte, alinhada com o que os alunos estdo a aprender nas
aulas, o propdsito é focado na manipulagao de ficheiros de texto e extra-
¢ao de dados utilizando as funcionalidades poderosas do SO Linux para
esse efeito. Sao, portanto, pedidas funcionalidades de administragcao
de um sistema de informacao sob a forma de scripts Bash que cuidam
detarefas como o registo de utilizadores, a criagcdo de estatisticas de
acesso, ou um menu interativo apresentado na Shell.

343

Carlos Coutinho

Para que serve o operador (()) ?

— Nio tenho permissdo para fazer o comando "touch teste.bd”

Mostrar respostas em lista encadeada : Mover este topico de discussdo para.. # m

L]

Para nue serve n nperador ({1} ?
por Carlos Coutinho - sexta, 3 de margo de 2023 as 15:42

Wi nn ficheirn "sn-aula-pl3-suparte-tenricn” a desrricin dn aperador [1)° mas ainda ndn percehi muitn bem para que serve?

=]

344

Re: Para que serve o operador ({1} ?
por Carlos Coutinho - sexta, 3 de margo de 2023 as 16:11

O operador *{[))" é muito interessante e de grande utilidade para os vossos scripts!!
Podem ver uma excelente descrigio do potencial deste operador em hittps://tldp.org/LDP/abs/html/dblparens.html

Coma exemplos, destarn vérias utilidades:

v Validar que o n® de argumentos na chamada do script atual foi 3:

Até da para fazer o operador ternario do Java:

{(a - (b 2) 21 2 # & equivalente if (b < 2 them s=1; elze a=2; fi

Genéricamente, grande parte das operagdes envolvendo aritmética beneficia deste operador, comao:

e{(i<18));do... #¢é equivalente a while ["$i" -1t "18”]; do ...

Figura 7 — Exemplo de apresentacdo de pergunta numa KB

Na segunda parte, o projeto ja é realizado através do recurso a progra-
macao em linguagem C, e onde o foco é a criagdo de multiplos pro-
cessos, tipicamente num cenario de utilizagao usando um padrao de
aplicagao cliente-servidor, onde o servidor tem um comportamento
tipico asaplicagdes realizadas na industria, recebendo pedidos e dele-
gando 0s mesmos a hovos processos dedicados a cada um dos clientes.
O projeto implica também uma boa dose de comunicagao e interagao
entre clientes e servidores dedicados, pelo que se utilizam pipes, acesso
a ficheiros sequenciais e de acesso direto, e sinais para tratamento de
situacdes excecionais (como erros, ou processamento de cancelamen-
tos por parte doutilizador).

Finalmente, a terceira parte do projeto de SO é sobretudo dedicado a
comunicagdo usando os mecanismos de comunicagao inter-processual
do Linux (IPC), onde realca-se a utilizacao de filas de mensagem e

Principios pedagdgicos sobre a Unidade Curricular de Sistemas Operativos no Iscte

memoarias partilhadas. Da mesma forma, evidencia-se o grave problema
de concorréncia que os proprios alunos puderam verificar nos seus tra-
balhos, na segunda parte do projeto, que diz respeito a termos multiplos
processos (servidores dedicados) todos a aceder a um sistema de infor-
macgao de forma descontrolada e desordenada, com enormes riscos de
incoeréncia devidas ao acesso concorrente a recursos partilhados. Desse
modo, também esta parte do projeto se dedica a colmatar esse pro-
blema através do uso de mecanismos de sincronizagcao (semaforos IPC).

O projeto de Sistemas Operativos foi realizado em grupo durante os primeiros
anos do periodo reportado, sendo que atualmente a equipa docente considera
ser pedagogicamente mais proveitoso para os alunos que este projeto seja
feito individualmente pelos alunos. Esta UC ndo se destina a ensinar ou avaliar
os alunos em programacgao, mas sim em compreender os sistemas operativos
e as técnicas de utilizagao das funcionalidades disponibilizadas pelos mesmos
para resolver os problemas aplicacionais, e, portanto, considera-se ser este o
meio mais eficaz para os alunos aprenderem e ganharem uma maior profi-
ciéncia na matéria em questao.

Curiosamente, apesar destas alteragdes terem sido no sentido de passar o tra-
balho de grupo para individual, os proponentes sao fervorosos e aguerridos
defensores do trabalho em grupo e do espirito de comunidade. A questao
aqui € que o modelo tradicional de trabalho de grupo universitario, nos mol-
des que estava a ser realizado durante varios anos, foi o de um elemento do
grupo que trabalhava e os restantes que se “encostavam”, e, por mais que as
avaliagdes de grupo incluissem avaliagdes orais, o espirito de entreajuda dos
colegas tentava sempre evitar que os alunos que nao trabalhavam (nesta UC,
provavelmente o fariam noutras) ficassem com nota mais baixa. A partir da
altura em que os trabalhos passaram a ser individuais, notou-se claramente
uma enorme diferenca na qualidade dos alunos, facilmente demonstrada na
qualidade das duvidas apresentadas aos docentes, a proficiéncia com que
0s mesmos demonstram no manuseamento das ferramentas e ambientes
propostos, etc. Ainda assim, nao é proibido o ajuntamento, é perfeitamente
aceite que os alunos mostrem abertamente que se juntam ainda em grupos
informais para discussao de ideias e solugdes de forma colaborativa, e depois
extraiam dai os resultados para os seus trabalhos individuais.

4. AVALIACAO

Mediante aprovagao em Comissao Pedagdgica da Escola, foi estabelecido que
esta UC é feita apenas por Avaliagdo ao longo do semestre, nao contemplando
Exame Final. As diferentes componentes da avaliagdo sao explicadas aos alu-
Nnos Na primeira aula tedrico-pratica.

345

Carlos Coutinho

4.1. Nota final de avaliacao

A avaliagao a UC de Sistemas operativos € resultante da soma de duas compo-
nentes principais, uma tedrica e uma pratica, sendo que ambas tém um peso
equivalente de 50% para a nota final:

Nota Final de SO = Nota Tedrica (50%) + Nota Pratica (50%)

Apesar de cada uma das componentes tedrica e pratica terem os seus requi-
sitos para aproveitamento, para aproveitamento na UC de SO é preciso que
a soma das duas componentes, pesada da percentagem correspondente,
resulte numa nota igual ou superior a 9,5 valores.

4.2. Componente tedrica de avaliacao

A componente tedrica para avaliagdo da UC de SO resulta da nota obtida num
teste escrito, onde € avaliada:

> A capacidade do aluno para compreensdo da matéria tedrica (peso
8/20), assim como

> A capacidade de utilizagao de comandos Linux e desenvolvimento de
scripts Bash (4/20),

> A capacidade de desenvolvimento de programas em C onde haja
necessidade de multiprocessamento e interacdo usando sinais (4/20),
e finalmente,

> A capacidade de utilizar mecanismos de comunicagao e sincronizagao
IPC (4/20).

As quotas mencionadas anteriormente sao puramente indicativas, podendo
pontualmente ser alteradas em algum teste em particular.

As perguntas feitas na prova escrita podem envolver aspetos relativos aos tra-
balhos feitos na componente laboratorial.

Para poder ter aproveitamento em Avaliagdo ao longo do semestre (a Unica
possivel), os alunos terao de ter uma nota de teste tedrico de pelo menos
7 valores. A assiduidade nas aulas nao € um requisito para o aproveitamento
nesta componente de avaliagao.

4.3. Componente pratica de avaliacao

A componente pratica de avaliagao da UC de SO é composta pelos resultados
obtidos em duas provas:

346

Principios pedagdgicos sobre a Unidade Curricular de Sistemas Operativos no Iscte

> Um projeto (trabalho pratico), realizado em grupo ou individualmente,
dividido em trés etapas, cada um deles com o peso de 25% da nota da
componente pratica;

> 9 (nove) mini-testes “TPC” para submissdo no Moodle (contam apenas
0s 8 melhores), contando a nota médias desses 8 melhores testes com o
peso de 25% da nota pratica.

Os mini-testes sao disponibilizados todas as semanas durante as semanas1, 2,
3,5,6,7,9,10 e 11, publicados a segunda-feira a noite, e o periodo de submissdo
de cada mini-teste encerra ao domingo as 23h59.

As trés partes do projeto tém de ser submetidas até as 23h59 de domingo das
semanas 4,8 e 12.

A nota da componente pratica do trabalho pode ser sujeita a cada aluno atra-
vés de uma prova oral. A nota dependera dos relatérios, do desempenho do
aluno na oral e poderd ter em conta a assiduidade.

Para poder ter aproveitamento em Avaliagao ao longo do semestre (a Unica
possivel), os alunos terdo de ter uma nota na componente pratica de pelo
menos 9,5 valores, sendo que a nota maxima da componente pratica é limitada
automaticamente para nao poder ser superior a 6 valores da nota obtida no
teste tedrico.

Até ha poucos anos, a realizagao do projeto de SO era efetuada em grupo, com
todas as vantagens de promog¢ao do trabalho em equipa que é totalmente
valorizada. Com a experiéncia do contacto com os alunos nos projetos, o corpo
docente comegou a aperceber-se de que, por norma, em cada grupo de 3 alu-
nos, apenas um deles fazia o trabalho e os restantes ndo faziam esforco para
se colocarem a par do que tinha sido feito (dado que a complexidade do tra-
balho assim nao o permitia). Devido a esse fato, e apds acordo entre todos os
docentes da UC, foi decidido que o trabalho iria reduzir um pouco em comple-
xidade, mas que iria passar a ser individual. Este simples fator, segundo o fee-
dback que o corpo docente passou a ter dos alunos, fez com que a proficiéncia
dos alunos globalmente melhorasse muito. Continua a haver alunos que nao
adquirem conhecimentos necessarios para passar a UC, mas globalmente o
nivel das turmas melhorou substancialmente.

Claro que isso trouxe um acréscimo substancial de peso para os docentes,
gue em vez de corrigirem 100 trabalhos complexos, passariam a ter de corri-
gir 400 ou 500 trabalhos mais simples. A solugao passou por desenvolver-se
uma forma automatizada de correcao dos trabalhos, através de um inteligente
conjunto de scripts realizados em Python que fazem overload dos métodos
principais avaliados para os conteddos de Sistemas Operativos, e gue com isso
determinam de forma inteligente qual é o padrao esperado para a solucgao.
No primeiro ano, a experiéncia revelou-se pouco produtiva, ja que os alunos

347

Carlos Coutinho

nao faziam o seu desenvolvimento de acordo com os padrdes esperados pelos
scripts de validagcdo e avaliagcdo, por isso, foi necessario realizar a avaliagao
manual dos trabalhos. Esse esforco adicional trouxe a motivagao necessaria
para fazer as alteragdes que resultariam no modelo atual.

Mais uma vez, a UC de SO nao faz parte da area de disciplinas de ensino a pro-
gramacao e algoritmia, logo nao € esse tipo de avaliagao que é pretendida ser
feita aos alunos. O projeto de SO atualmente é composto de um esqueleto
completo do conteudo do projeto (ver Figura 8).

; srmwrEse FREEEERE sEereEs

** [SCTE-IUL: Trabalho pratico 3 de Sistemas Operativos 2823/2024, Enunciado Versdo 1+

** Este Modulo ndo deverd ser alterado, e ndo precisa ser entregus

** Nome do Médulo: common.h

** Descricdo/Explicacéo do Modulo:

= Definicdo das estruturas de dados comuns aos midulos servidor e cliente

EEEREEEE FEEEEERE xxxsx&'*f.’
#ifndef _ COMMON_H__
| #define _ COMMON_H

#nclude "/homesso/utlls/sincludesso_utlls.h”

#include <signal.h> /f Header para as constantes SIG * e as fungdes signal() e kill()

#include <unistd.h> //{ Header para as fungdes alarm(), pause(}, sleep(), fork(), exec*() e get*pid()
#include <sys/ip /f lleader para os fungdes de IPC

#include <sys/sem.h> /7 Header para as fungdes de IPC

#define FILE_DATABASE PASSAGEIROS "bd_pacsageiros .dat"” f/ Ficheiro de acesso direto que armazena a liczta de passageiros
#define FILE_DATABASE_VOOS "bd_voos.dat” f{ Ficheiro de acesso direto que armazena a lista de voos
#define RETURN_SUCCESS] // Defines wtilitdrios para valores de retorno

#define RETURN_ERROR -1 /f Defines wutilitdrios para valores de retorno

#define CICLO1_CONTINUE 2 /¥ Valor de retorno que indica que o main() deve recomecar o CICLO1

#define CYCLE1 CONTINUE CICLO1 CONTIMUE

typedef struct {

long msgType; /f Tipo da Mensagem

struct {
CheckIn infoCheckIn; /¢ Informagdo sobre o CheckIn
Voo infoVoo; /# Informacdo sobre um Voo

T msgData; /f Dados da Mensagem

} Msglontent;

typedef struct { /f Base de dados de Megbcio, em Meméria Partilhada
CheckIn listClients[MAX PASSENGERS]; // Lista de passageiros
Voo Listrlights|MAX FL1GHIS]; {/ Lista de voos dos passageiros

} DadosServidor;

7+ P
int /f 51: Funcdo a ser implementada pelos alunos
int /f 52: Funcdo a ser implementada pelos alunos
int ff 53: Tuncgéo & ser implementads pelos alunos
int triggerSignals_S4 (); /f S4: Funcdo a ser implementada pelos alunos
int readRequest_S55 (); /f 55: Funcdo a ser implementada pelos alunos
int createServidorDedicado_S& () fJ S6: Funcdo a ser implementada pelos alunos
void termin vidor 57 (); {/f 57: Fungdo a ser implementada pelos alunos
woid trataSinalSIGINT_S& (int); /f 58: Funcdo a ser implementada pelos alunos
wnid trataSinalSTGCHIN S9 (int); P H Funcin a ser implementada pelns alunns
int triggerSignals_SD1@ (); // SD1@: Fungdo a ser implementada pelos alunos
int searchClientDB_SD11 (); /f SD11: Funcdo a ser implementada pelos alunos
int searchFlightDB SD12 (}: /f SD12: Funcdo a ser implementada pelos alunos

Figura 8 - Exemplo de cabecalho de projeto de SO
Este esqueleto inclui uma fungao main() fechada que os alunos ndo devem

alterar, que chama de forma metddica fungdes que, essas sim, deverdo ser
desenvolvidas pelos alunos.

348

Principios pedagdgicos sobre a Unidade Curricular de Sistemas Operativos no Iscte

=
* @brief Processamento do processo Cliente

* "o0s ndc deverdo alterar a funcdo main(), apenas compreender o gue faz.

do, sim, completar as fungd intes & main(), nos locais onde estd claramente assinalado

* '// Substituir este comentdrio pele cddigo da funcdo a ser implementado pelo aluno'
.’:
int main () {
|
msgld = tMsg_C1();
so_exit_on_er msgld, "initMsg C1"};
fr a2
so_exit_on_error(triggersignals_C2(), "triggersignals_C2");
I3
so_exit_on_error(getDadosPedidoUtilizador_C3(), "getDadosPedidoUtilizador_C3");
ffa
so_exit_on_error(sendRequest_C4(), "sendRequest C4");
A C5: CICLO6
while (TRUE) {
JfC5
nfigureTimer C5(MAX_ESPERA);
ff 06
exit_on_error(readResponsesD C6(), "readResponseSD_CE");
7
int lugarEscolhido = trataResponsesD_C7();
if (RETURN_ERROR == lugarEscolhido)
terminateCliente_C9();
If C8
if (RETURN_ERROR == sendSeatChoice_C&(lugarEscolhido))
terminateCliente_C9{});
}.

Figura 9 - Exemplo de fungdo main() do projeto de SO

Nestas fungdes invocadas pelo main(), € onde os alunos se podem limitar a
mostrar a sua capacidade de trabalhar com os elementos e conceitos de SO,
e nao (tanto) de algoritmia e programacao (Figura 10). O processo nao é facil,
ja que o docente Carlos Coutinho tem o trabalho de especificar com todo o
detalhe possivel o que é suposto que os alunos facam, e depois passa todas
as linhas desse enunciado de projeto gigantesco (Figura 11) para cédigo e para
comentarios no trabalho. Como resultado, passou a ser possivel avaliar de
forma automatica o trabalho dos alunos. Podemos, com orgulho, dizer que o
processo foi tao popular que os alunos tém passado a palavra, e ja comecga a
haver outras UC que iniciaram o mesmo processo na UC respetiva.

Ainda assim, as notas nos projetos de SO nao eram muito boas, dado que os
alunos se limitavam a realizar o que pensavam ser o pedido nos enunciados,
esquecendo-se de realizar muitas das validacgdes e verificagdes essenciais para
um bom funcionamento do projeto. Esse fato associado agora a avaliagao ser
automatizada, logo, sem a tolerancia e “vista grossa” do docente humano,
levou a que muitos alunos pensassem que teriam notas elevadas e ndo era o
caso. Depois de alguns casos em que foi necessario realizar provas orais para
garantir o conhecimento, e dado que os docentes querem mesmo que os alu-
nos saibam utilizar corretamente os elementos de SO, em vez de facilitarem
de futuro o validador para ser menos exigente, tomaram outra abordagem,
qgue foi a de entregarem o script validador aos alunos. Desta forma, na atua-
lidade, os alunos apods fazerem os seus trabalhos correm um script validador
que lhes diz que tém varios dos seus testes errados, explicando-lhes qual é o

349

Carlos Coutinho

teste que estd a ser realizado, e os resultados esperados. Esse fator levou a que,
desde entdo, as notas do projeto de SO melhoraram substancialmente, e levou
em conseqguéncia a que até nos testes escritos, os alunos ja tém em conside-
ragao esses testes e verificagdes, o que faz com que haja uma maior satisfagao
tanto por parte dos docentes com a qualidade dos conhecimentos dos alunos,
como dos préprios alunos que agora conseguem fazer os trabalhos de forma
mais alinhada com as expectativas dos docentes.

Jee
* gbrief 52 Cria a Message Queue (MSG) do projeto, que tem a KEY IPC_KEY, realizando as
. seguintes operacdes:
- $2.1 Se ja existir, deve apagar a fila de mensagens. Em caso de qualquer erro, dé
o so_error e retorna erro (val para 57). Caso contrdrio, déd so_success.
. 52.2 (Cria a Message Queue com a KEY IPC_KEY. Em caso de erro, dé so_error e retorna
* erro (val para 57). Caso contrdrio, dd so_success <msgld> e retorna o ID da MSG.

* @return int RET_ERROR em casc de erro, ou a msgld em caso de sucesso
%/
int initMsg S2() {
int result = RET_ERROR; // Por omissdo retorna erro

so_debug("<");
/{ Substituir este comentdrio pelo cédigo da funcdo a ser implementado pelo aluno

so_debug("> [@return:®d]™, result);
return result;

b

ll."\.n
* @brief 53 Cria um grupo de semdforos (SEM) que tem a KEY IPC_KEY, realizando as seguintes
" operagdes:
" 53.1 Se ja existir, deve apagar o grupo de semiforos. Em caso de qualquer erro, da
- so_error e retorna erro (vai para 57). Caso contrdrio, dd so_success.
. 53.2 Cria um grupo de trés semiaforos com a KEY IPC_KEY. Em caso de qualquer erro, da
o so_error e retorna erro (vai para 57). Caso contrdrio, dé so_success <semld>.
5 53.3 1Inicia o valor dos sem&foros SEM_USERS e SEM_PRODUCTS para que possam trabalhar em
" modo "exclusdo mitua”, e inicia o valor do sem&foro SEM_NR_SRV_DEDICADOS com o
. valor 8. Em caso de erro, did so_error e retorna erro (val para 57).
o Caso contrdrio, dd so_success e retorna o ID do SEM.

* @return int RET_ERROR em caso de erro, ou a semld em caso de sucesso
Y,
int initSem S3() {
int result = RET_ERROR; // Por omissdo retorna erro

so_debug(“<");
/{ Substituir este comentario pelo cédigo da funcdo a ser implementado pelo aluno

so_debug(”> [@return:Xd]”, result);
return result;

Figura 10: Exemplo de fungdes totalmente documentadas,
para serem realizadas pelos alunos

350

Principios pedagdgicos sobre a Unidade Curricular de Sistemas Operativos no Iscte

52 Osinal armado SIGINT serve para o dono da loja encerrar o Servidor, usando o atalho <CTRL+C>, Se receber
esse sinal (do utilizador via Shell), o Servidor dd 50_success, c vai para o passo terminal 57.

59 O sinal armado SIGCHLD serve para que o Servider seja alertado quande um dos seus filhos Servidor

Dedicado terminar. Se o Servidor receber esse sinal, identifica o PID do Servidor Dedicado que terminou
(usando wait), dd so_success “Terminou Dedicado <pidservidorDedicado>”,
retornando ao que estava a farer anteriormente.
SD10 O novo pracesse Servidor Dedicado (filho) arma as sinais SIGUSR1 (ver 5D18) e SIGINT (programa-o para
ignorar este sinal). Em caso de erro a armar os sinais, da so_error e retorna erro (vai para 5D17). Caso

contrario, da $o_success.

$D11 O Saervidor D

processe Servidor pai), se o campe pidCliente > @. Se for, da so_success e returna sucesso. Caso

> deve validar, em primeiro lugar, no pedido Login recebido do Clients (herdado do

contrario, da so_error e retorna erro (vai para SD17).

5012 Percorre a lista de utilizadores, atualizando a varidvel indexclienl, procurando pelo utilizador com o
MIF recebido no pedido do Cliente.

SD12.1 Se encontrou um utilizador com o NIF recebido, e a Senha registada € igual & gque foi recebida no pedido
do Cliente, entdv dé so_success <indexClient>, e retorna indexClient (vai para SD13). Caso
contrério, dd so_error.

Figura 11 - Exemplo de trecho do enunciado de um projeto de SO

5. CONCLUSOES

O modelo de UC aqui proposto tem sido experimentado e tem evoluido na UC
de Sistemas Operativos do Iscte, uma UC que engloba anualmente cerca de
600 alunos. Da experiéncia desta evolugao podem-se tirar varias conclusoes.
A primeira é de que os alunos aqui chegados tém ainda habitos e proficiéncia
muito baixos, e, segundo os relatos de varios deles passados alguns anos, é de
gue adquirem nesta UC competéncias que se revelaram essenciais para o seu
desenvolvimento pessoal. Desde o inicio, a UC promove e propde o trabalho
num ambiente remoto (um servidor Linux), que € algo de muito estranho aos
alunos, habituados a trabalhar nos ambientes locais das suas maquinas. Esta
competéncia é cada vez mais importante num mundo cada vez mais global,
e onde o trabalho remoto na industria € cada vez mais uma realidade diaria,
com trabalhadores a realizarem o seu trabalho remotamente a partir da sua
casa, ou a partir da sua cidade, ou até a partir do seu pais, elementos esses que
cada vez mais sao diferentes do local da empresa onde trabalham. O trabalho
em ambiente remoto Cloud é também algo que os alunos terdao de enfrentar
vulgarmente, portanto é essencial que desde o primeiro ano estejam familia-
rizados com estes ambientes. Também a transicao de trabalho em ambien-
tes graficos, tipicamente destinados a utilizadores de massa, para ambientes
em linha de comandos, muito mais poderosos e versateis, € algo que é alta-
mente valorizado para os profissionais dos cursos da Escola de Tecnologias.
Os resultados também demonstraram que a proficiéncia de um aluno desta
UC ha alguns anos é claramente muito inferior ao dos alunos atuais da UC, que
demonstram de uma forma clara uma destreza e capacidade notaveis. Outros
aspetos foram altamente promovidos, o desenvolvimento de um ambiente

351

Carlos Coutinho

de trabalho customizado, com primitivas e fungdes préprias da prdpria UC,
o que faz com que seja mais dificil obter respostas na internet ou em moto-
res de Inteligéncia Artificial Generativa. Isto também promoveu que os alunos
nao fagam tanto o trabalho isoladamente com recurso as tecnologias anterio-
res, mas promovam sim o trabalho colaborativo, onde os alunos aprenderam
a consultar féruns internos da UC (onde estdo varias respostas especificas que
resolvem os seus problemas) antes de irem pesquisar em recursos externos,
e também a colocar as suas duvidas nos féruns da UC, onde outros colegas
mais experientes sdo incentivados a exprimir as suas ideias e propostas para
resolver os problemas dos menos habilitados.

BIBLIOGRAFIA E MATERIAIS PEDAGOGICOS RELEVANTES

A maior parte das apresentagdes, quer tedricas ou praticas, dadas no ambito
desta UC tem no seu Ultimo slide uma lista de referéncias, quer porque tenham
sido utilizadas na elaboragao da apresentagao em si, ou porque o autor con-
siderou que seriam interessantes para que os alunos possam detalhar e apro-
fundar mais os conhecimentos da apresentagdo em gquestao:

Brian Kernighan, Dennis Ritchie (1988), “The C Programming Language”, second
Edition, Prentice Hall, ISBN: 9780131101630
https://www.infopedia.pt/$sistema-operativo
https:/kids.pplware.sapo.pt/o-meu-computador/o-que-e-um-sistema-operativo/
https:/kids.pplware.sapo.pt/o-meu-computador/que-outros-sistemas-operativos-
-existem/
https://www.e-konomista.pt/o-que-e-um-sistema-operativo/
https://conceito.de/sistema-operativo
https://www.tecmundo.com.br/sistema-operacional/2031-a-historia-dos-sistemas-
-operacionais-ilustracao-.htm
https:/pt.wikibooks.org/wiki/Sistemas_operacionais/Historia
https://ricardoribeiro21.wordpress.com/2013/11/22/historia-e-evolucao-dos-sistemas-
-operativos/
https:/fen.wikipedia.org/wiki/History_of_Linux
https://mwww.digitalocean.com/community/tutorials/brief-history-of-linux
https://gs.statcounter.com/os-market-share
https://blog.codinghorrorcom/understanding-user-and-kernel-mode
https://Mmww.sciencedirect.com/topicsfengineering/kernel-mode
https:/fen.wikipedia.org/wiki/Protected_mode
https://www.geeksforgeeks.org/functions-of-operating-system
https://www.daydreameducation.co.uk/poster-operating-systems
https://mwww.tutorialspoint.com/operating_system/os_multi_threading.htm
https://Mwww.quora.com/What-is-Memory-hierarchy/answer/Atul-Kumar-1028
https:/Mww.slideshare.net/sgpraju/os-swapping-paging-segmentation-and-virtual-
memory

352

