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ABSTRACT
In this paper, we construct a hybrid epidemic mathematical model based on a reaction–diffusion system of the SIR
(susceptible-infected-recovered) type. This model integrates the impact of random factors on the transmission rate of
infectious diseases, represented by a probabilistic process acting at discrete time steps. The hybrid model couples a
continuous reaction–diffusion system, which describes the spatiotemporal dynamics of the infectious disease, with
a discrete probabilistic process that models potential change in the transmission rate. We establish properties of both
biological and mathematical interest in the hybrid model, including the existence of global solutions, stability anal-
ysis of equilibrium points, and the emergence of oscillatory behaviors. Additionally, we extend the hybrid model
by including vaccination. The dynamics and emergence of oscillations in the hybrid model are investigated under
various scenarios, which are illustrated through numerical simulations.

1 | Introduction

According to the centers for disease control and prevention (CDC), an epidemic is defined as a sudden increase in the
number of cases of a disease above what is normally expected in a population of a specific area. An outbreak shares the
same definition as an epidemic but is often used to describe a more geographically limited event. On the other hand, a
pandemic refers to an epidemic that has spread across multiple countries or continents, usually affecting a large number of
people [1]. Epidemics can refer to diseases or other health-related behaviors, such as smoking or excessive drinking, when
their rates significantly exceed the expected occurrence in a community or region [2]. The primary aim of epidemiologists
is to first understand the causes of a disease, then predict its progression, and ultimately develop strategies to control it,
including comparisons of various potential approaches [3].
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Mathematical models of infectious disease transmission have become increasingly important in guiding public health
policy [4]. Since Bernoulli developed the first mathematical model of infectious disease transmission in 1760 to assess the
effects of variolation [5], numerous additional models have been proposed. These models play a vital role in interpreting
data, formulating hypotheses, designing experiments for testing, diagnosing based on observed signs and symptoms, and
supporting decision-making processes [4].

In compartmental models, a population is divided into compartments, with each compartment representing individu-
als based on their current state in the epidemic. When a system of ordinary differential equations is used to analyze the
disease’s progression over time, these models are referred to as deterministic. The foundations of compartmental epidemi-
ological models were established by public health physicians such as Sir R. A. Ross, W. H. Hamer, A. G. McKendrick,
and W. O. Kermack between 1900 and 1935 [3]. The basic compartmental models used to describe the transmission of
communicable diseases are presented in a series of three papers by Kermack and McKendrick: the first in 1927 [6], fol-
lowed by subsequent works in 1932 [7] and 1933 [8]. The Kermack–McKendrick theory laid the foundation for the SIR
(susceptible-infectious-recovered) models and their variants. The compartmental representations are as follows: suscep-
tible individuals (𝑆) are those who have never been infected and are susceptible to the disease; infected individuals (𝐼)
are those currently infected and capable of transmitting the disease; and recovered individuals (𝑅) are those who have
recovered and developed immunity. The SIR models have been extended to study a wide range of infectious diseases (see,
e.g., [9–14]).

A general SIR model with vital dynamics (i.e., births and deaths), studied by authors such as [15–17], is described by the
following system of equations:

⎧
⎪
⎨
⎪
⎩

𝑑𝑆

𝑑𝑡
= 𝜇𝑁 − 𝜇𝑆 − 𝛽𝑆𝐼, 𝑆(0) = 𝑆0 ≥ 0 ,

𝑑𝐼

𝑑𝑡
= 𝛽𝑆𝐼 − 𝜈𝐼 − 𝜇𝐼, 𝐼(0) = 𝐼0 ≥ 0 ,

𝑑𝑅

𝑑𝑡
= 𝜈𝐼 − 𝜇𝑅, 𝑅(0) = 𝑅0 ≥ 0 ,

(1)

with 𝑆(𝑡) + 𝐼(𝑡) + 𝑅(𝑡) = 𝑁 , at time 𝑡, and 𝑁 represents the total population. The inflow of newborns into susceptible
class occurs at a rate 𝜇𝑁 , and the deaths in the three compartments are 𝜇𝑆, 𝜇𝐼 , and 𝜇𝑅, respectively. The deaths balance
the births, keeping the total population 𝑁 constant [15].

In model (1), the standard incidence term 𝛽𝐼𝑆∕𝑁 is used, where 𝛽, often referred to as the transmission coefficient, rep-
resents the average number of sufficient contacts for transmission per person per unit of time. The expression 𝛽𝐼𝑆∕𝑁
represents the number of new cases per unit of time; see, for example, [15] and references cited therein.

In compartmental models, variations in the transmission rate (𝛽) play a crucial role in determining the spread of the
disease. Temporal fluctuations in the transmission rate can significantly affect disease propagation; for methods to infer
time-varying transmission rates, see, for example, [18, 19]. A high transmission rate leads to rapid disease spread, increas-
ing the likelihood of outbreaks and epidemics throughout the population. Conversely, a low transmission rate results in
slower disease spread, which may limit the disease to isolated outbreaks or containment within specific regions.

Many researchers have studied SIR models incorporating random perturbations in the transmission rate to account for
the significant impact of environmental fluctuations. For further information on such models, see, for example, [20–25]
and references cited therein.

Deterministic SIR-type compartmental models have been extended to reaction–diffusion equations to estimate the
asymptotic rate of spatial spread; see, for example, [11, 26] and references therein. Reaction–diffusion compartmental
models account for the spatial structure of disease propagation and the mobility of individuals. Additionally, the inclu-
sion of diffusion terms allows for the examination of how spatial heterogeneity can influence disease dynamics [26].
Reaction–diffusion SIR-type models have been both analytically and numerically studied; see, for instance, [27–33].
Various studies have also investigate the role of vaccination in controlling the spread of infectious diseases [30, 34–36].

Hybrid models in epidemiology provide a robust framework for epidemic modeling by combining deterministic and
probabilistic approaches, offering comprehensive insights into disease dynamics and control strategies. By addressing
complexity, uncertainty, and heterogeneity, these models enhance our understanding of infectious disease transmission
and support evidence-based decision-making in public health interventions [37–40]. Recent studies have explored epi-
demic hybrid models, including abstract hybrid models with applications to the COVID-19 pandemic; see, for example,
[41, 42].
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In this paper, our aim is to enhance the integration of transmission rate fluctuations within a continuous spatiotem-
poral model, described by a reaction–diffusion system. A similar conceptual approach was proposed in [43], where a
continuous reaction–diffusion system representing the spatiotemporal dynamics of a forest ecosystem was coupled with
a discrete probabilistic process to model the occurrence of extreme events. Here, we propose a novel SIR-type hybrid
model that combines deterministic and probabilistic components. The deterministic part of the hybrid model is given
by a continuous spatiotemporal SIR reaction–diffusion system, previously studied in [28], while the probabilistic com-
ponent is represented by a discrete probabilistic process that accounts for fluctuations in the transmission rate. In this
probabilistic process, the timing of transmission rate changes is determined by discrete random variables. Furthermore,
the frequency and intensity of these changes are incorporated into the model as free parameters, allowing for the explo-
ration of different scenarios. In this way, our hybrid model thus operates by coupling two spatial scales: a regional scale for
the transmission dynamics of the SIR model and a local scale for the variations in the transmission rate. It also integrates
two modeling formalisms: a continuous-deterministic formalism for population dynamics and a discrete–probabilistic
formalism for transmission rate changes. Furthermore, we extend the reaction–diffusion SIR model by incorporating a
vaccination parameter. To the best of our knowledge, this multiscale, multiformalism SIR-type parametric model has not
been previously considered.

This paper is structured as follows. Section 2 presents a detailed formulation of our hybrid model and establishes its
well-posedness at a theoretical level. In Section 3, we provide sufficient conditions on the intensity of transmission rate
changes to ensure the stability of the disease-free equilibrium, both with and without the inclusion of a vaccination cov-
erage parameter. Section 4 features several numerical experiments designed to illustrate the theoretical stability results.

2 | Continuous-Deterministic and Discrete–Probabilistic SIR Hybrid Model

In this section, we describe the construction of a hybrid model that captures the complex evolution of an epi-
demic. Initially, the mechanisms of birth, mortality, infection transmission, and spatial diffusion are modeled using a
reaction–diffusion system of the SIR type. We then incorporate the effects of various factors that influence the transmis-
sion rate of infectious diseases–such as ecological changes, air quality, climate, human behavior, demographics, and virus
mutations, which can occur randomly (see, e.g., [44–46])–by coupling the reaction–diffusion system with a probabilistic
process operating at discrete time intervals.

2.1 | Spatiotemporal SIR Model

Let Ω ⊂ ℝ𝑚 denote a bounded domain with a smooth boundary 𝜕Ω and 𝑚 ∈ {1, 2}. We assume that a population of
individuals distributed within Ω is affected by an epidemic. This population is divided into three subgroups: susceptible
individuals 𝑆, infected individuals 𝐼 , and recovered individuals 𝑅.

Following the works of [26, 30, 36, 47] and [48], we describe the epidemic’s progression using the following
reaction–diffusion system:

⎧
⎪
⎨
⎪
⎩

𝜕𝑆(𝑥,𝑡)
𝜕𝑡

= 𝑑1Δ𝑆(𝑥, 𝑡) + 𝜇𝑁(𝑡) − 𝜇𝑆(𝑥, 𝑡) − 𝛽𝑆(𝑥, 𝑡)𝐼(𝑥, 𝑡), 𝑥 ∈ Ω, 𝑡 > 0,
𝜕𝐼(𝑥,𝑡)
𝜕𝑡

= 𝑑2Δ𝐼(𝑥, 𝑡) − (𝜇 + 𝜈)𝐼(𝑥, 𝑡) + 𝛽𝑆(𝑥, 𝑡)𝐼(𝑥, 𝑡), 𝑥 ∈ Ω, 𝑡 > 0,
𝜕𝑅(𝑥,𝑡)
𝜕𝑡

= 𝑑3Δ𝑅(𝑥, 𝑡) − 𝜈𝐼(𝑥, 𝑡) + 𝜇𝑅(𝑥, 𝑡), 𝑥 ∈ Ω, 𝑡 > 0.
(2)

Here, 𝑥 and 𝑡 represent the spatial and temporal variables, respectively. For each 𝑥 ∈ Ω and 𝑡 ≥ 0, the functions
𝑆(𝑥, 𝑡), 𝐼(𝑥, 𝑡), and 𝑅(𝑥, 𝑡) denote the number of susceptible, infected, and recovered individuals at position 𝑥 and time 𝑡,
respectively.

The parameters 𝑑1, 𝑑2, 𝑑3, 𝜇, 𝛽, and 𝜈 are positive coefficients. Specifically, 𝑑1, 𝑑2, and 𝑑3 represent the diffusion rates of
susceptible, infected, and recovered individuals, respectively. We assume that the birth and death rates are equal and that
newborns are susceptible to the disease, having no inherent immunity. Therefore, both the natural birth and death rates
are denoted by the parameter 𝜇. The recovery rate from infected to recovered individuals is represented by the parameter
𝜈, and the coefficient 𝛽 models the transmission rate from susceptible to infected individuals. Finally, the total population
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size at time 𝑡, denoted by 𝑁(𝑡), is given by the following expression:

𝑁(𝑡) =
∫Ω
[𝑆(𝑥, 𝑡) + 𝐼(𝑥, 𝑡) + 𝑅(𝑥, 𝑡)]𝑑𝑥 .

The reaction–diffusion system (2) is supplemented by the following initial conditions at 𝑡 = 0

𝑆(𝑥, 0) = 𝑆0(𝑥) ≥ 0, 𝐼(𝑥, 0) = 𝐼0(𝑥) ≥ 0, 𝑅(𝑥, 0) = 𝑅0(𝑥) ≥ 0, 𝑥 ∈ Ω, (3)

and by the homogeneous Neumann boundary condition:

𝜕𝑆(𝜉, 𝑡)
𝜕𝑣

= 𝜕𝐼(𝜉, 𝑡)
𝜕𝑣

= 𝜕𝑅(𝜉, 𝑡)
𝜕𝑣

= 0, 𝜉 ∈ 𝜕Ω, 𝑡 > 0, (4)

where 𝑣 denotes the outward unit normal vector on the boundary 𝜕Ω ofΩ. The Neumann boundary condition (4) implies
that no infection occurs across the boundary.

Remark 1. We briefly show that 𝑁(𝑡) is constant over time. Let the total number of individuals inΩ at 𝑡 = 0 de defined
as follows:

𝑁0 =
∫Ω
[𝑆(𝑥, 0) + 𝐼(𝑥, 0) + 𝑅(𝑥, 0)]𝑑𝑥 .

By summing the equations in system (2) and integrating over Ω, we obtain the following:

𝜕

𝜕𝑡 ∫Ω
[𝑆(𝑥, 𝑡) + 𝐼(𝑥, 𝑡) + 𝑅(𝑥, 𝑡)]𝑑𝑥 =

∫Ω
𝑑1Δ𝑆(𝑥, 𝑡) + 𝑑2Δ𝐼(𝑥, 𝑡) + 𝑑3Δ𝑅(𝑥, 𝑡)𝑑𝑥 .

Using Green’s formula and applying the Neumann boundary condition (4), we conclude that

𝜕

𝜕𝑡 ∫Ω
[𝑆(𝑥, 𝑡) + 𝐼(𝑥, 𝑡) + 𝑅(𝑥, 𝑡)]𝑑𝑥 = 0 .

This implies that 𝑁(𝑡) is constant, that is,

𝑁(𝑡) =
∫Ω
[𝑆(𝑥, 𝑡) + 𝐼(𝑥, 𝑡) + 𝑅(𝑥, 𝑡)]𝑑𝑥 = 𝑁0 for all 𝑡 ≥ 0 .

Since the first two equations of system (2) are independent of 𝑅, system (2) can be rewritten as follows:
{

𝜕𝑆(𝑥,𝑡)
𝜕𝑡

= 𝑑1Δ𝑆(𝑥, 𝑡) + 𝜇𝑁 − 𝜇𝑆(𝑥, 𝑡) − 𝛽𝑆(𝑥, 𝑡)𝐼(𝑥, 𝑡), 𝑥 ∈ Ω, 𝑡 > 0,
𝜕𝐼(𝑥,𝑡)
𝜕𝑡

= 𝑑2Δ𝐼(𝑥, 𝑡) − (𝜇 + 𝜈)𝐼(𝑥, 𝑡) + 𝛽𝑆(𝑥, 𝑡)𝐼(𝑥, 𝑡), 𝑥 ∈ Ω, 𝑡 > 0,
(5)

with initial conditions
𝑆(𝑥, 0) = 𝑆0(𝑥), 𝐼(𝑥, 0) = 𝐼0(𝑥), 𝑥 ∈ Ω, (6)

and the homogeneous Neumann boundary condition

𝜕𝑆(𝜉, 𝑡)
𝜕𝑣

= 𝜕𝐼(𝜉, 𝑡)
𝜕𝑣

= 0 𝜉 ∈ 𝜕Ω, 𝑡 > 0. (7)

After this reduction, 𝑅 can be determined using the following relation:

𝑅(𝑥, 𝑡) = 𝑁 − 𝑆(𝑥, 𝑡) − 𝐼(𝑥, 𝑡) .

To prove the existence of global solutions of the system, we first define the following subspace of the Sobolev space𝑊 2,2(Ω)

𝐻
2
𝑁
(Ω) =

{
𝑢 ∈ 𝑊

2,2(Ω), 𝜕𝑢

𝜕𝑣
= 0 on 𝜕Ω

}
.

4 Mathematical Methods in the Applied Sciences, 2025
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We then introduce the subregion Θ defined by

Θ =
{
(𝑆, 𝐼)⊤ ∈

(
𝐿

2(Ω)
)2

| 0 < 𝑆 + 𝐼 ≤ max
{
‖
‖𝑆0(𝑥) + 𝐼0(𝑥)‖‖𝐿∞(Ω), 𝑁

}}
. (8)

The following theorem establishes the existence of global solutions to the initial boundary value problem defined by
Equations (5–7).

Theorem 1. For each initial condition (𝑆0, 𝐼0)⊤ ∈ Θ , the initial boundary value problem given by Equations (5 – 7) has
a unique global solution (𝑆(𝑥, 𝑡), 𝐼(𝑥, 𝑡)) in the function space

𝑆, 𝐼 ∈ 𝒞
(
[0,+∞), 𝐿2(Ω)

)
∩𝒞

(
(0,+∞),𝐻2

𝑁
(Ω)

)
∩𝒞 1((0,+∞), 𝐿2(Ω)

)
. (9)

Furthermore, the global solution (𝑆(𝑥, 𝑡), 𝐼(𝑥, 𝑡)) is positive and bounded.

Proof. First, we prove that the initial boundary value problem given by Equations (5–7) admits a unique local solution.
To achieve this, we reformulate it as the following abstract Cauchy problem:

{
𝑑𝑈

𝑑𝑡
+ 𝐴𝑈 = 𝐹 (𝑈 ), 𝑡 > 0 ,

𝑈 (0) = 𝑈0 ,

in the Hilbert space 𝑌 = 𝐿
2(Ω) × 𝐿2(Ω), where 𝑈 = (𝑆, 𝐼) and 𝐴 = 𝑑𝑖𝑎𝑔(−𝑑1Δ + 1,−𝑑2Δ + 1).

It is known that 𝐴 is a positive definite, self-adjoint, and sectorial operator with an angle strictly less than 𝜋

2
, and its

domain is 𝐷(𝐴) = 𝐻
2
𝑁
(Ω) ×𝐻2

𝑁
(Ω). Moreover, 𝐴 admits fractional powers 𝐴𝜃 , for 0 ≤ 𝜃 ≤ 1, where

• if 0 ≤ 𝜃 <
3
4
, the domain is 𝐷(𝐴𝜃) = 𝐻

2𝜃(Ω) ×𝐻2𝜃(Ω);

• if 3
4
< 𝜃 ≤ 1, the domain is 𝐷(𝐴𝜃) = 𝐻

2𝜃
𝑁
(Ω) ×𝐻2𝜃

𝑁
(Ω).

Now, let 𝜃 ∈ ( 3
4
, 1). The nonlinear operator 𝐹 is defined by

𝐹 (𝑈 ) =

(
𝜇𝑁 + (1 − 𝜇)𝑆 − 𝛽𝑆𝐼

𝛽𝑆𝐼 − (1 + 𝜇 + 𝜈)𝐼

)

, 𝑈 = (𝑆, 𝐼) ∈ 𝐷
(
𝐴
𝜃
)
.

Since 3
4
< 𝜃 ≤ 1, we have the following continuous embedding

𝐷
(
𝐴
𝜃
)
= 𝐻

2𝜃
𝑁
(Ω) ×𝐻2𝜃

𝑁
(Ω) ⊂ 𝐿

∞(Ω) × 𝐿∞(Ω). (10)

Elementary computations show that 𝐹 (𝑈 ) satisfies the following estimation:

||𝐹 (𝑈 ) − 𝐹 (𝑉 )||
𝑌
≤ 𝐶

(
||𝑈 ||


+ ||𝑉 ||


+ 1

)
||𝑈 − 𝑉 ||

𝑌
,

where  = (𝐿∞(Ω))2 and 𝐶 = max((𝜇 + 1), 2𝛽) > 0.

Using the embedding (10), we deduce that there exists 𝐶̃(Ω, 𝐶) > 0 such that

||𝐹 (𝑈 ) − 𝐹 (𝑉 )||
𝑌
≤ 𝐶̃

(
‖
‖
‖
𝐴
𝜃
𝑈
‖
‖
‖𝑌
+ ‖
‖
‖
𝐴
𝜃
𝑉
‖
‖
‖𝑌
+ 1

)
||𝑈 − 𝑉 ||

𝑌
, 𝑈, 𝑉 ∈ 𝐷

(
𝐴
𝜃
)
.

Therefore, by applying the existence and uniqueness theorem for the abstract Cauchy problem (see [49], Theorem 4.4),
the initial boundary value problem given by Equations (5–7) admits a unique local solution satisfying

𝑆, 𝐼 ∈ 𝒞
(
[0, 𝑇

𝑚
], 𝐿2(Ω)

)
∩𝒞

(
(0, 𝑇

𝑚
],𝐻2

𝑁
(Ω)

)
∩𝒞 1((0, 𝑇

𝑚
], 𝐿2(Ω)

)
, 𝑇

𝑚
> 0,

where the final time 𝑇
𝑚
> 0 depends on the initial condition 𝑈0.
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Next, let 𝑈0 = (𝑆0, 𝐼0) be a positive initial condition. By applying Lemma 2.2 from [26], we conclude that the solution
𝑈 (𝑡) = (𝑆(𝑡), 𝐼(𝑡)) is positive in (0, 𝑇

𝑚
).

To demonstrate that the solution 𝑈 (𝑡) = (𝑆(𝑡), 𝐼(𝑡)) is bounded, we use Theorem 2.1 from [26]. Specifically, for all 𝑥 ∈ Ω
and 𝑡 > 0, the following inequality holds:

0 < 𝑆(𝑥, 𝑡) + 𝐼(𝑥, 𝑡) ≤ max{||𝑆0(𝑥) + 𝐼0(𝑥)||𝐿∞(Ω), 𝑁} .

Applying Corollary 4.3 from [49], it follows that 𝑇
𝑚
= +∞. Hence, the initial boundary value problem (5–7) possesses a

unique global solution 𝑈 = (𝑆, 𝐼) in the following function space:

𝒞
(
[0,+∞), 𝐿2(Ω)

)
∩𝒞

(
(0,+∞),𝐻2

𝑁
(Ω)

)
∩𝒞 1((0,+∞), 𝐿2(Ω)

)
.

The proof is complete. ◽

We now turn to the study of the homogeneous steady states of system (5), which are the solutions of the following system:
{
𝜇𝑁 − 𝜇𝑆 − 𝛽𝑆𝐼 = 0,
− (𝜇 + 𝜈)𝐼 + 𝛽𝑆𝐼 = 0 .

(11)

To analyze these steady states, we first introduce the basic reproduction number 𝑅0, defined by the following:

𝑅0 =
𝑁𝛽

𝜇 + 𝜈
. (12)

The basic reproduction number𝑅0 is a key threshold quantity in epidemiology, as it helps determine whether an infection
can invade and persist in a new host population. The following theorem is proved in [26].

Theorem 2. The following assertions hold.

For all 𝜇 > 0, 𝜈 > 0 and 𝛽 > 0, system (5) admits a homogeneous steady state, denoted by 𝐸0 = (𝑆
𝑓
, 0) , where 𝑆

𝑓
= 𝑁 .

If 𝑅0 > 1, system (5) admits a second homogeneous steady state, denoted by𝐸∗ = (𝑆∗, 𝐼∗), where𝑆∗ = 𝜇+𝜈
𝛽

and 𝐼∗ = 𝑁𝜇

𝜇+𝜈
− 𝜇

𝛽
.

The steady state 𝐸0, known as the disease-free equilibrium, represents the absence of infected individuals in the popu-
lation. The steady state 𝐸∗ is referred to as the endemic equilibrium and corresponds to the persistence of the infection
within the population.

We now briefly recall the global stability results of the homogeneous steady states of the SIR model (5).

By virtue of Theorem 2, the region Θ defined by (8) is invariant under the flow induced by system (5). The stability of the
steady states 𝐸0 and 𝐸∗ within this invariant region is established by the following theorem, which was proved in [26].

Theorem 3. If 𝑅0 < 1 , then the disease-free equilibrium 𝐸
0 is globally asymptotically stable inΘ. Conversely, if 𝑅0 > 1,

then the endemic equilibrium 𝐸
∗ is globally asymptotically stable in Θ .

2.2 | Modeling Random Variations in Disease Transmission Using Discrete Probabilistic
Process

Our aim is to incorporate the possibility of random changes in the transmission rate of the disease. Various factors can
influence and alter the transmission rate, such as virus mutations, human behaviors, public health measures, or medical
interventions (see, e.g., [50–52]). These random modifications lead to new dynamics in the spread of the epidemic that
cannot be adequately captured by a purely continuous system. To model these random changes in the transmission rate,
we couple the reaction–diffusion system (5) with a probabilistic process acting at discrete time steps. This probabilistic
process is able to interrupt the trajectory of the reaction–diffusion system (5) and to make it restart in a new parameter
regime. Following [43], we introduce three parameters 𝜏, 𝑝, and  :

6 Mathematical Methods in the Applied Sciences, 2025

 10991476, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/m

m
a.70334 by C

ochrane Portugal, W
iley O

nline L
ibrary on [18/12/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



• 𝜏 > 0 represents the time delay between two potential changes in the transmission rate 𝛽. This establishes a time
discretization given by

 = {0, 𝜏, 2𝜏, … , 𝑘𝜏, … }; (13)

• 𝑝 ∈ [0, 1] denotes the probability of occurrence of a change in the transmission rate at a time step 𝑡 ∈  . For simplicity,
we assume that 𝑝 remains constant over time;

•  is a random variable in the interval [𝐽min, 𝐽max], where −1 ≤ 𝐽min < 𝐽max). This variable determines the intensity
of the changes in the transmission rate.

More specifically, let 𝛯(𝑡) denote the probabilistic event corresponding to the occurrence of a change in the transmission
rate at time 𝑡 ∈  . At each time step 𝑘𝜏 ∈  , with 𝑘 ≥ 0, we consider a Bernoulli variable 𝑋

𝑘
with parameter 𝑝, which

determines the probability of the event 𝛯(𝑡):

ℙ(𝛯(𝑘𝜏)) = ℙ(𝑋
𝑘
= 1) = 𝑝, 𝑘 > 0. (14)

We assume that the Bernoulli variables (𝑋
𝑘
)
𝑘≥0 are pairwise independent. The sequence of Bernoulli variables (𝑋

𝑘
)
𝑘≥0

then determines a probabilistic sequence of transmission rates (𝛽
𝑘
)
𝑘≥0. This sequence is initialized with 𝛽0 = 𝛽 and iterated

as follows: If a change occurs at time 𝑡∗ = 𝑘
∗
𝜏, then the trajectory of the reaction–diffusion system (5) and (6) is interrupted

and restarted according to the dynamics of the reaction–diffusion system (5), with a new transmission parameter 𝛽
𝑘∗+1,

determined by
𝛽
𝑘∗+1 = (1 +  )𝛽𝑘∗ , (15)

where  is randomly chosen from [𝐽min, 𝐽max], according to a probability law that can be arbitrarily chosen.

Finally, the new initial condition is defined by

𝑆
𝑘∗𝜏(𝑥) = 𝑆(𝑥, 𝑘∗𝜏) , 𝐼

𝑘∗𝜏(𝑥) = 𝐼(𝑥, 𝑘∗𝜏) , 𝑥 ∈ Ω. (16)

Altogether, Equations (5–7) and (13–16) define a hybrid model that couples both a deterministic–continuous system and
a discrete–probabilistic process. For simplicity, we refer to this hybrid model as ().

2.3 | Global Solution of the SIR Hybrid Model

Our goal now is to prove that the hybrid model (), as defined in Sections 2.1 and 2.2, admits relevant solutions. The
following theorem addresses this.

Theorem 4. For any initial condition𝑈0 = (𝑆0, 𝐼0)⊤ ∈ Θ, any realization of a sequence of pairwise independent Bernoulli
variables (𝑋

𝑘
)
𝑘≥0, and any realization of the random intensity variable  within the interval [𝐽min, 𝐽max], the hybrid model

() defined by Equations (5 – 7) and (13 – 16) admits a unique global solution. This solution is denoted 𝕌(𝑡) = (𝑆(𝑡), 𝐼(𝑡))⊤,
defined on [0,+∞) with values in Θ.

Furthermore, for each pair of positive integers (𝑘, 𝑘′) such that 𝑘 < 𝑘
′ with 𝑋

𝑘
= 𝑋

𝑘′ = 1 and 𝑋
𝑗
= 0 for 𝑘 < 𝑗 < 𝑘

′, the
restriction 𝕌|[𝑘𝜏,𝑘′𝜏) of 𝕌(𝑡) to the time interval [𝑘𝜏, 𝑘′𝜏) satisfies

𝑆|[𝑘𝜏,𝑘′𝜏)
, 𝐼|[𝑘𝜏,𝑘′𝜏) ∈ 𝒞

(
[𝑘𝜏, 𝑘′𝜏), 𝐿2(Ω)

)
∩𝒞

(
(𝑘𝜏, 𝑘′𝜏),𝐻2

𝑁
(Ω)

)
∩𝒞 1((𝑘𝜏, 𝑘′𝜏), 𝐿2(Ω)

)
. (17)

Proof. We construct the global solution 𝕌(𝑡) of the hybrid model () by induction on 𝑘.

First, consider the initial condition 𝑈0 = (𝑆0, 𝐼0)⊤ ∈ Θ. By Theorem 1, the initial boundary value system (5–7) admits a
unique global solution 𝑈 (𝑡, 𝑈0) = (𝑆(𝑡), 𝐼(𝑡))⊤, such that

𝑆, 𝐼 ∈ 𝒞
(
[0,+∞), 𝐿2(Ω)

)
∩𝒞

(
(0,+∞),𝐻2

𝑁
(Ω)

)
∩𝒞 1((0,+∞), 𝐿2(Ω)

)
.

Mathematical Methods in the Applied Sciences, 2025 7
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Now, let 𝛽0 = 𝛽 and let 𝑘1 denote the first positive integer such that the Bernoulli variable 𝑋
𝑘1

satisfies 𝑋
𝑘1
= 1. We con-

struct the solution 𝕌(𝑡) of the hybrid model on the time interval [0, 𝑘1𝜏] by setting
{

𝕌(𝑡) = 𝑈 (𝑡, 𝑈0), 𝑡 ∈ [0, 𝑘1𝜏),
𝕌(𝑘1𝜏) = (𝑆1, 𝐼1)⊤ ,

where 𝑆1 and 𝐼1 are given by
𝑆1(𝑥) = 𝑆(𝑥, 𝑘1𝜏) , 𝐼1(𝑥) = 𝐼(𝑥, 𝑘1𝜏) , 𝑥 ∈ Ω .

Since Θ is invariant under the flow induced by the reaction–diffusion system (5), we have 𝕌(𝑡) ∈ Θ for all 𝑡 ∈ [0, 𝑘1𝜏].
Next, we define the new transmission rate as

𝛽1 = (1 +  )𝛽0 ,

where  is a randomly chosen from the interval [𝐽min, 𝐽max]. For the time interval [𝑘1𝜏,+∞), we consider the initial
boundary value problem (5–7) with the new transmission rate 𝛽1, the new initial condition 𝑈1 = (𝑆1, 𝐼1)𝑇 , and the new
initial time 𝑘1𝜏. We denote the resulting global solution by 𝑈̃ (𝑡, 𝑈1) = (𝑆̃(𝑡), 𝐼(𝑡)), which is defined on [𝑘1𝜏,+∞) and whose
existence is again guaranteed by Theorem 1.

Next, we consider the first integer 𝑘2 > 𝑘1 such that the Bernoulli variable 𝑋
𝑘2

satisfies 𝑋
𝑘2
= 1. Then the solution 𝕌(𝑡) of

the hybrid model is extended to [0, 𝑘2𝜏) by setting
{

𝕌(𝑡) = 𝑈̃ (𝑡, 𝑈1) , 𝑡 ∈ [𝑘1𝜏, 𝑘2𝜏) ,
𝕌(𝑘2𝜏) = (𝑆2, 𝐼2)⊤ ,

where 𝑆2(𝑥) = 𝑆̃(𝑥, 𝑘2𝜏) and 𝐼2(𝑥) = 𝐼(𝑥, 𝑘2𝜏) for 𝑥 ∈ Ω. Again, we have 𝕌(𝑡) ∈ Θ for all 𝑡 ∈ [𝑘1𝜏, 𝑘2𝜏]. We then define
the new transmission rate 𝛽2 as 𝛽2 = (1 +  )𝛽1.

The initial boundary value problem (5–7) is restarted with the new transmission rate 𝛽2, the new initial condition 𝑈2 =
(𝑆2, 𝐼2)𝑇 , and the new initial time 𝑡0 = 𝑘2𝜏.

Finally, by repeating this process, we construct the global solution 𝕌(𝑡) of the hybrid model () on [0,+∞) by induction.
This solution satisfies 𝕌(𝑡) ∈ Θ for all 𝑡 ≥ 0. The proof is complete. ◽

Theorem 4 shows that the solutions of the hybrid model () are probabilistic sequences of interrupted trajectories
of the reaction–diffusion system (5). Therefore, the hybrid model () can be interpreted as an infinite-dimensional
piecewise-deterministic Markov process, as defined, for example, in [38].

3 | Stability Analysis of the Hybrid Model

In this section, we examine the hybrid SIR reaction–diffusion model in order to investigate the impact of random pertur-
bations of the transmission rate 𝛽 on the asymptotic stability of the disease-free equilibrium, 𝐸0, during the probabilistic
process.

3.1 | Set of Solutions and Stability in Probability

First, define the set of solutions for the hybrid model () as follows:

 =
{
𝕌(𝑡, 𝑈0) ∈ 𝒞 ([0,+∞),Θ) | 𝕌(𝑡, 𝑈0) solution of ()} , (18)

where 𝕌(𝑡, 𝑈0) denotes a solution of the hybrid model () with the initial condition 𝑈0 ∈ Θ.

Let (, 𝔽 ,ℙ) be a probability space, where 𝔽 is the 𝜎-algebra determined by the sequence of Bernoulli variables (𝑋
𝑘
)
𝑘≥0

and the probabilistic sequence (𝛽
𝑘
)
𝑘≥0 of the transmission parameters. Additionally, ℙ denotes the associated probability

measure.

8 Mathematical Methods in the Applied Sciences, 2025
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We define the stability in probability of the equilibrium 𝐸
0 for our hybrid model (), as presented in [53].

Definition 1. The disease-free equilibrium, 𝐸0, of the hybrid model () is said to be stable in probability if for any
realization of a sequence of pairwise independent Bernoulli variables (𝑋

𝑘
)
𝑘≥0, any realization of the random intensity

variable  within the interval [𝐽min, 𝐽max], and any 𝑟 > 0, the following property holds:

lim
||𝑈0−𝐸0||

𝑌
→0
ℙ
{

sup
𝑡≥0

(
||𝕌(𝑡, 𝑈0) − 𝐸

0||
𝑌

)
> 𝑟

}

= 0 .

Otherwise, for the equilibrium 𝐸
0, it is said to be unstable in probability.

Definition 2. The disease-free equilibrium, 𝐸0, of the hybrid model () is said to be locally asymptotically stable in
probability if, in addition to stability in probability, for any realization of the sequence of pairwise independent Bernoulli
variables (𝑋

𝑘
)
𝑘≥0 any realization of the random intensity variable  ∈ [𝐽min, 𝐽max], the following property holds:

lim
||𝑈0−𝐸0||

𝑌
→0
ℙ
{

lim
𝑡→+∞

(
||𝕌(𝑡, 𝑈0) − 𝐸

0||
𝑌

)
= 0

}
= 1 .

Definition 3. The disease-free equilibrium, 𝐸0, of the hybrid model () is said to be globally asymptotically stable in
probability, if it is stable in probability, and for any initial condition𝑈0 ∈ Θ, any realization of a sequence of pairwise inde-
pendent Bernoulli variables (𝑋

𝑘
)
𝑘≥0, and any realization of the random intensity variable  ∈ [𝐽min, 𝐽max], the following

property holds:
ℙ
{

lim
𝑡→+∞

(
||𝕌(𝑡, 𝑈0) − 𝐸

0||
𝑌

)
= 0

}
= 1 .

3.2 | Stability Sufficient Conditions

We now investigate the stability characteristics of the hybrid model () with respect to the probabilistic parameters.

First, we define the following two sets with an empty intersection:

Λ0 =
{
𝛽 > 0|𝛽 < 𝜇 + 𝜈

𝑁

}
and Λ+ =

{
𝛽 > 0|𝛽 > 𝜇 + 𝜈

𝑁

}
.

As a consequence of Theorem 1, when 𝛽 belongs to Λ0, the basic reproduction number satisfies 𝑅0 < 1. This condition
implies the global asymptotic stability of the disease-free equilibrium, 𝐸0.

Conversely, when 𝛽 belongs to Λ+, the global asymptotic stability of the endemic equilibrium point, 𝐸∗, is guaranteed.

Let us now consider the following assumptions.

(H1) The disease-free equilibrium, 𝐸0, of the reaction–diffusion systems (5) and (6) is globally asymptotically stable
(i.e., 𝛽 ∈ Λ0).

(H2) There exist 𝛼, 𝜚 > 0 sufficiently small such that

𝑉
𝛼
(𝐸0) ∩ 𝑉

𝜚
(𝐸∗) = ∅ ,

where 𝑉
𝛼
(𝐸0) and 𝑉

𝜚
(𝐸∗) are neighborhoods of 𝐸0 and 𝐸∗, respectively.

In the following proposition, we prove a sufficient condition on the intensity  that ensures the persistence of solutions
of the hybrid model () in a neighborhood of the disease-free equilibrium, 𝐸0, over the entire time interval  .

Proposition 1. Let the assumption (𝐻1) hold, and let 𝛿 be the maximum value of the sequence (𝛽
𝑘
)
𝑘∈ℕ ∈ Λ0. If the fol-

lowing inequality is satisfied,
𝐽max ≤

𝜇 + 𝜈

𝑁𝛿
− 1, (19)

Mathematical Methods in the Applied Sciences, 2025 9

 10991476, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/m

m
a.70334 by C

ochrane Portugal, W
iley O

nline L
ibrary on [18/12/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



then the disease-free equilibrium, 𝐸0, of the hybrid model () is globally asymptotically stable in probability, for all values of
𝑝 ∈ (0, 1) and for all  ∈ [𝐽min, 𝐽max] .

Proof. Let (𝑋
𝑘
)
𝑘≥0 be a sequence of pairwise independent Bernoulli variables indicating changes in the transmission

coefficient 𝛯(𝑘𝜏), at the time instances 𝑡 = 𝑘𝜏.

Assume that there exists at least one positive integer 𝑘1 such that 𝑋
𝑘1
= 1. If no such 𝑘1 exists, the result follows directly

from assumption (𝐻1).

At time 𝑡1 = 𝑘1𝜏, the transmission coefficient becomes 𝛽
𝑘1
= (1 +  )𝛽, where  is randomly selected from the interval

[𝐽min, 𝐽max]. Due to condition (19) on 𝐽max, the coefficient 𝛽
𝑘1

remains in Λ0. Therefore, the basic reproduction number is
less than one, which implies that the trajectories of the hybrid system will converge to the disease-free equilibrium, 𝐸0,
after a certain time 𝑇 within the time interval [𝑘1𝜏,+∞). In other words, the following convergence is valid

lim
𝑡→+∞

||𝕌(𝑡, 𝑈0) − 𝐸
0||

𝑌

= 0, with probability 1 .

More generally, consider the positive integers 𝑘1, … , 𝑘
𝑛

such that the Bernoulli variable (𝑋
𝑘
𝑖

)
𝑖

satisfies 𝑋
𝑘
𝑖

= 1, for all
𝑖 ∈ {1, … , 𝑛}. By induction, we construct a probabilistic sequence of transmission rates (𝛽

𝑘
𝑖

)
𝑖

belonging to Λ0.

Thus, using similar reasoning as for the the first change, we conclude that the disease-free equilibrium, 𝐸0, of the hybrid
model () is globally asymptotically stable with probability 1. ◽

If we consider the hybrid model () with a sequence of decreasing transmission coefficients, we obtain the following
result.

Corollary 1. Let the assumption (𝐻1) hold, and assume that 𝐽max ≤ 0 . Then for all 𝑝 ∈ (0, 1) and all  ∈ [𝐽min, 𝐽max] ,
the solution of the hybrid model () converges to the disease-free equilibrium 𝐸

0.

Proof. Let (𝑋
𝑘
)
𝑘>0 be a sequence of pairwise independent Bernoulli variables and suppose that there exists a positive

integer 𝑘1 such that 𝑋
𝑘1
= 1.

Using formula (15) and assuming that all  are negative, the new transmission coefficient satisfies 𝛽
𝑘1
≤ 𝛽.

Under the assumption (𝐻1), it follows that 𝛽
𝑘1
∈ Λ0. Or equivalently,

||𝕌(𝑡, 𝑈0) − 𝐸
0||

𝑌

→ 0 as 𝑡→ +∞ with probability 1 fo any 𝑈0 ∈ Θ.

More generally, if there exist positive integers 𝑘1, … , 𝑘
𝑛

such that𝑋
𝑘
𝑖

= 1, for all 𝑖 ∈ {1, … , 𝑛}, then we obtain a sequence
of transmission coefficients (𝛽

𝑘
𝑖

)
𝑖

which decreases over time and remains within Λ0. Therefore, the global stability in
probability of the trajectories of the hybrid model (), with 𝑛 perturbations of 𝛽, holds.

By induction, it follows that for any sequence of pairwise independent Bernoulli variables (𝑋
𝑘
)
𝑘>0 and any negative  ,

the solution of the hybrid model 𝕌(𝑡, 𝑈0) converges to 𝐸0 with probability 1. ◽

The results above can be interpreted as follows: If the intensity  is negative or possibly positive but within a small range
(as long as it satisfies the condition on 𝐽max), then the trajectories of the hybrid model will remain in the vicinity of the
disease-free equilibrium 𝐸0. This implies that the stability of 𝐸0 is preserved with probability 1, even in the presence of
transmission rate changes with negative intensity or slightly positive intensity. In epidemiological terms, this means that
when the transmission rate decreases or slightly increases (due to external factors), the disease will not spread widely.
As a result, the population will stay closer to the disease-free state, indicating that the disease remains under control and
does not lead to widespread outbreaks.

In the following proposition, we investigate the hybrid model 𝕌(𝑡, 𝑈0) with an increasing of the transmission coefficient.

Proposition 2. Consider the hybrid model 𝕌(𝑡, 𝑈0) under the assumptions (𝐻1) and (𝐻2), with a sufficiently large 𝜏 and

𝐽min ≥
𝜇 + 𝜈

𝑁𝜖
− 1 > 0, (20)

10 Mathematical Methods in the Applied Sciences, 2025
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where 𝜖 represents the smallest value of the sequence (𝛽
𝑘
)
𝑘∈ℕ within the set Λ0. Then, for all 𝑝 ∈ (0, 1) and for all  ∈

[𝐽min, 𝐽max], the disease-free equilibrium, 𝐸0, of the hybrid model () becomes unstable in probability.

Proof. Consider a sequence
(
𝑋
𝑙

)
𝑙>0 of pairwise independent Bernoulli variables, and assume that here exists 𝑘

𝑛
> 0,

such that the Bernoulli variable 𝑋
𝑘
𝑛

satisfies 𝑋
𝑘
𝑛

= 1. Under the condition given in Equation (20), for any  randomly
chosen in the interval [𝐽min, 𝐽max], we can easily show that the corresponding transmission coefficient 𝛽

𝑘
𝑛

belongs to Λ+.
Moreover, since 𝜏 is assumed to be sufficiently large, the solution of the hybrid model 𝕌(𝑡, 𝑈0)will leave the neighborhood
𝑉
𝛼
(𝐸0) after a time 𝑡 > 𝑘

𝑛
𝜏 with probability 1.

For a given time 𝑡
𝑘
𝑚

> 𝑡
𝑘
𝑛

, where the Bernoulli variable 𝑋
𝑘
𝑚

satisfies 𝑋
𝑘
𝑚

= 1, we can show that 𝛽
𝑘
𝑚

belongs to Λ+, due to
the fact that the intensity  is randomly chosen from a nonnegative interval. Furthermore, assuming that 𝜏 is sufficiently
large, the solution of the hybrid model 𝕌(𝑡, 𝑈0)will eventually converge to the endemic equilibrium 𝐸

∗. According to the
assumption (𝐻2), this convergence implies the instability in probability of the disease-free equilibrium 𝐸

0.

By repeating the preceding reasoning over the sequence of times (𝑡
𝑘
𝑛

)
𝑛
, where the Bernoulli variables (𝑋

𝑘
𝑛

)
𝑛

satisfy𝑋
𝑘
𝑛

= 1,
we conclude by induction that the disease-free equilibrium 𝐸

0 becomes unstable in probability. ◽

Proposition 2 shows that when the intensity  is sufficiently large, the trajectory of the hybrid model leaves the neigh-
borhood of the disease-free equilibrium, 𝐸0, and converges toward the endemic equilibrium, 𝐸∗. Consequently, in the
modified SIR model with frequent probabilistic changes in transmission rate and higher intensity, the system is unable to
return to the disease-free equilibrium, 𝐸0, after a certain time. This result suggests that larger fluctuations in the trans-
mission rate lead to a persistent spread of the disease, making eradication of the infection unattainable.

3.3 | Emergence of Oscillations

In this section, we present the conditions on the intensity  and the time delay 𝜏 under which the hybrid SIR model
𝕌(𝑡, 𝑈0) exhibits oscillatory behavior or not.

Initially, we examine the case where the solution of the hybrid model 𝕌(𝑡, 𝑈0) exhibits oscillations between the neighbor-
hood of the disease-free equilibrium 𝐸

0 and the neighborhood of the endemic equilibrium 𝐸
∗.

Theorem 5. Let 𝐽max be a sufficiently large positive parameter to ensure that there exists a probabilistic change in trans-
mission rate 𝛽

𝑘
that belongs to Λ+, assuming that 𝜏 is sufficiently large and that the assumptions (𝐻1) and (𝐻2) hold. Under

these conditions, for all 𝑝 ∈ (0, 1) and for all  ∈ [𝐽min, 𝐽max] , the solution of the hybrid model 𝕌(𝑡, 𝑈0) exhibits oscillations
between a neighborhood 𝑉

𝛼
(𝐸0) of the disease-free equilibrium, 𝐸0, and a neighborhood 𝑉

𝜚
(𝐸∗) of the endemic equilibrium,

𝐸
∗.

Proof. Let (𝑋
𝑘
)
𝑘≥0 be a sequence of pairwise independent Bernoulli variables determining changes in the transmission

coefficient 𝛯(𝑘𝜏) at times 𝑡
𝑘
= 𝑘𝜏 with a randomly varying intensity  . Consider the following sequence of realizations

(𝑋
𝑘
)
𝑘≥0 satisfying for all 𝑗 ≥ 0:

⎧
⎪
⎨
⎪
⎩

𝑋
𝑘
= 1, and  ≥ 𝜇+𝜈

𝑁𝜖
− 1 𝑘1 × 𝑗 ≤ 𝑘 < 𝑘1 × 𝑗 + 𝑘2,

𝑋
𝑘
= 1, and  ∈ [𝐽min,

𝜇+𝜈
𝑁𝛿

− 1] 𝑘1 × 𝑗 + 𝑘2 ≤ 𝑘 < 𝑘1 × 𝑗 + 𝑘3,

𝑋
𝑘
= 0 𝑘1 × 𝑗 + 𝑘3 ≤ 𝑘 < 𝑘1 × (𝑗 + 1),

(21)

where 𝑘1, 𝑘2, and 𝑘3 are positive integers such that 𝑘1 > 𝑘3 > 𝑘2 and 𝜖 and 𝛿 represent, respectively, the smallest and
largest values among all potential occurrences of probabilistic changes 𝛽

𝑘
within the set Λ0.

With this sequence (𝑋
𝑘
)
𝑘≥0, the solution 𝕌(𝑡, 𝑈0) of the hybrid model () undergoes 𝑘3 successive changes in the trans-

mission rate 𝛽. Specifically, there are 𝑘2 changes where the new transmission parameter is in Λ+ and 𝑘3 − 𝑘2 changes
where the new transmission rate is in Λ0. These changes alternate with a time interval of length (𝑘1 − 𝑘3)𝜏 without any
changes.

Assuming that 𝜏 is sufficiently large and if 𝑘2 is sufficiently large, then the solution 𝕌(𝑡, 𝑈0) is attracted to a neighborhood
𝑉
𝜚
(𝐸∗) of the endemic equilibrium in the time interval [𝑘1 × 𝑗𝜏, (𝑘1 × 𝑗 + 𝑘2)𝜏] for all 𝑗 ≥ 0.

Mathematical Methods in the Applied Sciences, 2025 11
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If 𝑘3 is sufficiently large, 𝕌(𝑡, 𝑈0) is attracted to a neighborhood 𝑉
𝛼
(𝐸0) of the disease-free equilibrium in the time interval

[(𝑘1 × 𝑗 + 𝑘2)𝜏, (𝑘1 × 𝑗 + 𝑘3)𝜏] for 𝑗 ≥ 0. Since𝐸0 is globally asymptotically stable when𝑘1 is sufficiently large, the solution
𝕌(𝑡, 𝑈0) reaches a neighborhood 𝑉

𝛼
(𝐸0) in the time interval [(𝑘1 × 𝑗 + 𝑘3)𝜏, 𝑘1 × (𝑗 + 1)𝜏] for all 𝑗 ≥ 0.

Consequently, the solution 𝕌(𝑡, 𝑈0) of the hybrid model () oscillates between 𝑉
𝛼
(𝐸0) and 𝑉

𝜚
(𝐸∗), completing the proof.◽

In epidemic terms, the emergence of oscillations in the hybrid SIR model reflects wave-like epidemic patterns, where
the number of infections fluctuates periodically over time. Understanding these oscillations is crucial for predicting the
timing and intensity of epidemic waves, which can help inform public health strategies aimed at mitigating the impact of
infectious diseases.

For the stability of the hybrid model () in situations where the solution temporarily converges to a neighborhood of 𝐸∗

over a short time interval, consider the following hypothesis:

(H 3) Let (𝑡
𝑘
𝑛

)
𝑘
𝑛
>0 be a sequence of times in  such that 𝑡

𝑘
𝑛

< 𝑡
𝑘
𝑛
+1. Assume that

if 𝛽
𝑘
𝑛

∈ Λ+ then 𝛽
𝑘
𝑛
+1 ∈ Λ0 .

Let 𝜏∗ ∶= max
𝑘
𝑛
≥1
|𝑡
𝑘
𝑛

− 𝑡
𝑘
𝑛
+1| denote the maximum time interval between two successive changes in transmission rates in

the sequence (𝑡
𝑘
𝑛

)
𝑘
𝑛
>0.

We can establish the following theorem.

Theorem 6. Assume that conditions (𝐻1) – (𝐻3) hold and that 𝜏∗ is sufficiently small. Then, for all 𝑝 ∈ (0, 1) and for all
 ∈ [𝐽min, 𝐽max] where 𝐽max is a sufficiently large positive parameter, the solution of the hybrid model () converges to the
disease-free equilibrium 𝐸

0.

Proof. Let (𝑡
𝑘
𝑛

)
𝑘
𝑛
>0 be a sequence of times that satisfies (𝐻3). Then, the solution of the hybrid model, 𝕌(𝑡, 𝑈0), can

be attracted to 𝑉
𝜚
(𝐸∗) during the time interval [𝑡

𝑘
𝑛

, 𝑡
𝑘
𝑛
+1] for all 𝑘

𝑛
> 0. This follows from the same argument used in

the proof of Theorem 5. Under the assumption that 𝜏∗ is very small, the hybrid model does not have enough time to
align with the endemic equilibrium 𝐸

∗. Hence, the solution 𝕌(𝑡, 𝑈0) remains close to 𝐸
0 throughout the entire time

interval  . ◽

Theorem 6 can be interpreted as follows: When there are alternating high and low intensity changes in 𝛽 within a suffi-
ciently short time frame, the asymptotic stability of 𝐸0 is preserved with probability 1. Essentially, this means that timely
and effective interventions can lead to the elimination of the disease, even when population behaviors and intervention
intensities fluctuate. This highlights the importance of rapid response and adaptable policies in managing and eradicating
epidemics.

To investigate the stability properties of the disease-free equilibrium, 𝐸0, within the hybrid model (), when the trans-
mission rate 𝛽0 belongs to Λ+, the following proposition is established.

Proposition 3. If 𝛽0 ∈ Λ+ and 𝜏 is sufficiently large, then for all 𝑝 ∈ (0, 1) and for all  ∈ [𝐽min, 𝐽max] satisfying

𝐽max ≤
𝜇 + 𝜈

𝑁𝜆
− 1 ,

where 𝜆 is the maximum value of all possible occurrences of 𝛽 within the set Λ+ , the trajectories of the hybrid model leave the
neighborhood of 𝐸∗ and are attracted to a neighborhood of the disease-free equilibrium, 𝐸0, after a time 𝑇 .

Proof. Consider a sequence
(
𝑋
𝑘

)
𝑘>0 of pairwise independent Bernoulli variables and assume that there exists a positive

integer 𝑘 > 0 such that 𝑋
𝑘
= 1. Given the condition

𝐽max ≤
𝜇 + 𝜈

𝑁𝜆
− 1 ,

for any  randomly chosen from [𝐽min, 𝐽max], we can show that 𝛽
𝑘

becomes an element of Λ0, provided 𝜏 is sufficiently
large. Thus, the solution of the hybrid model 𝕌(𝑡, 𝑈0) leaves the neighborhood 𝑉

𝛼
(𝐸∗) and is attracted to a neighborhood

of 𝐸0 with probability 1, after a time 𝑡 > 𝑘𝜏.

12 Mathematical Methods in the Applied Sciences, 2025
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More generally, by applying the same reasoning to all Bernoulli variables𝑋
𝑘
= 1, we deduce that the solution of the hybrid

model () will certainly be attracted to a neighborhood of 𝐸0. ◽

In other words, when the intensity of transmission rate changes remains within a certain range, the dynamics of the
disease in the hybrid model stabilize, even in scenarios where the value of the transmission coefficient 𝛽0 suggests a
higher risk of instability.

3.4 | Hybrid SIR Model With Vaccination

In this scenario, let 𝛽0 ∈ Λ+ and consider the deterministic SIR model (2) with vaccination described by the following
system:

⎧
⎪
⎨
⎪
⎩

𝜕𝑆(𝑥,𝑡)
𝜕𝑡

= 𝑑1Δ𝑆(𝑥, 𝑡) + 𝜇𝑁 − 𝜇𝑆(𝑥, 𝑡) − 𝛽𝑆(𝑥, 𝑡)𝐼(𝑥, 𝑡) − 𝑢𝑆(𝑥, 𝑡), 𝑥 ∈ Ω, 𝑡 > 0,
𝜕𝐼(𝑥,𝑡)
𝜕𝑡

= 𝑑2Δ𝐼(𝑥, 𝑡) − (𝜇 + 𝜈)𝐼(𝑥, 𝑡) + 𝛽𝑆(𝑥, 𝑡)𝐼(𝑥, 𝑡), 𝑥 ∈ Ω, 𝑡 > 0,
𝜕𝑅(𝑥,𝑡)
𝜕𝑡

= 𝑑3Δ𝑅(𝑥, 𝑡) − 𝜈𝐼(𝑥, 𝑡) + 𝜇𝑅(𝑥, 𝑡) + 𝑢𝑆(𝑥, 𝑡), 𝑥 ∈ Ω, 𝑡 > 0,
(22)

where 𝑢 represents the vaccination coverage of susceptible individual. We assume that the vaccination parameter satisfies
0 ≤ 𝑢 ≤ 𝑢

𝑚𝑎𝑥
≤ 1. The vaccination strategy influences the transmission dynamics, potentially reducing the infection rate

and affecting the spread of the epidemic. System (22) can be simplified to the first two equations concerning 𝑆 and 𝐼 .

Our goal is to establish a condition on the vaccination parameter that ensures disease eradication by a final time 𝑇 (i.e.,
𝐼(⋅, 𝑇 ) = 0).

We now present the particular stability properties of equilibrium related to the first two equations of system (22). Some
properties of the SIR model with vaccination coverage are discussed in [34]. for a system of ordinary differential equations.
By applying similar arguments, we can establish the following lemma.

Lemma 1. ([34]). We define the induced reproduction number as follows: 𝑅(𝑢) = 𝛽𝜇𝑁

(𝜇+𝜈)(𝜇+𝑢)
. The following properties

hold:

1. The equilibrium of system (22) corresponds to the disease-free equilibrium 𝐸
0
𝑢
=
(
𝜇𝑁

𝜇+𝑢
, 0
)

. Additionally, if 𝑅(𝑢) > 1, the

system admits an endemic equilibrium 𝐸
∗
𝑢
= (𝑆∗, 𝐼∗), where 𝑆∗ = 𝜇𝑁

(𝜇+𝑢)𝑅(𝑢)
and 𝐼

∗ = 𝜇+𝑢
𝛽
(𝑅(𝑢) − 1).

2. 𝑅(𝑢) is a decreasing function of 𝑢, indicating that vaccination reduces the vaccine-induced reproduction number.

3. In the absence of vaccination, we have 𝑅(𝑢 = 0) = 𝑅0 =
𝛽𝑁

𝜇+𝜈
.

4. We have 𝑅(𝑢) ≤ 𝑅0 . Consequently, if 𝑅0 < 1, then 𝑅(𝑢) < 1. Thus, 𝐸0
𝑢

is asymptotically stable if 𝑅(𝑢) < 1.

5. If 𝑅0 > 1, we have the following inequality: 𝜇

𝜇+𝑢
𝑅0 ≤ 𝑅(𝑢) ≤ 𝑅0. Since 𝜇

𝜇+𝑢
≤ 1, if 𝑢 > 𝜇

(
𝛽𝑁

𝜇+𝜈
− 1

)
∶= 𝑢

𝑐
, then𝑅(𝑢) < 1.

Now, we can present the condition on the vaccination parameter for the hybrid model with vaccination, as defined by
Equations ((22), (6), (7), (13), (14), (15), and (16)), where 𝑅0 > 1, to ensure the asymptotic stability of 𝐸0

𝑢
.

Theorem 7. Assume that 𝑅(𝑢 = 0) > 1, and let 𝜏 be sufficiently large. For all 𝑝 ∈ (0, 1) and for all  ∈ [𝐽min, 𝐽max] , if

𝑢 > 𝜇

(
𝜌𝑁

𝜇 + 𝜈
− 1

)

, (23)

where 𝜌 is the smallest value of all possible changes in 𝛽 within the set Λ+, then the trajectories of the hybrid model with
vaccination converge to the disease-free equilibrium, 𝐸0

𝑢
.

Proof. Let (𝑋
𝑘
)
𝑘≥0 be a sequence of pairwise independent Bernoulli variables representing changes in the transmission

coefficient for the system (22), occurring at time instances 𝑡 = 𝑘𝜏. Suppose 𝑘1 is a positive integer such that 𝑋
𝑘1
= 1. If

𝑢 > 𝜇( 𝛽0𝑁

𝜇+𝜈
− 1), then the solution of the hybrid model () converges to the disease-free equilibrium 𝐸

0
𝑢

after time 𝑡 = 𝑡
𝑘1

,
given that 𝑅(𝑢) < 1.

Mathematical Methods in the Applied Sciences, 2025 13
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More generally, by applying the same reasoning to all subinterval [𝑡
𝑘
𝑖

, 𝑡
𝑘
𝑖+1
] where 𝑋

𝑘
𝑖

= 1 for all 𝑖 ∈ {𝑖 = 1, · · · , 𝑛} and
using condition (23), we can ensure that 𝑅(𝑢) < 1 for 𝑘

𝑛
𝜏 ∈  . The proof is complete. ◽

This theorem suggests that if the vaccination parameter is chosen appropriately within the hybrid model framework, the
epidemic can be eradicated.

4 | Numerical Simulations

In this section, we present numerical simulations for the hybrid model () to illustrate how probabilistic behaviors can
influence the dynamics of the epidemic. The simulations were conducted using MATLAB R2018a on a desktop computer
equipped with an Intel Core i7-1255U processor and 16 GB of RAM.

4.1 | Two-Dimensional SIR Model

In this example, we consider system (5) in the two-dimensional spatial domain Ω = [0, 10] × [0, 10], with the initial
condition 𝑈0(𝑥, 𝑦) ∶= (𝑆0(𝑥, 𝑦), 𝐼0(𝑥, 𝑦)) defined as follows:

𝑆0(𝑥, 𝑦) = 100(𝑒−(𝑥−5)2 + 𝑒
−(𝑥−10)2 + 𝑒

−(𝑥−6)2)(𝑒−(𝑦−5)2 + 𝑒
−(𝑦−10)2 + 𝑒

−(𝑦−2)2),

𝐼0(𝑥, 𝑦) = 10(𝑒−(𝑥−5)2 + 𝑒
−(𝑥−7)2 + 𝑒

−(𝑥−10)2)(𝑒−(𝑦−5)2 + 𝑒
−(𝑦−7)2 + 𝑒

−(𝑦−8)2).
(24)

Note that the initial conditions (24) are chosen to better reflect real-world disease scenarios, such as the spread of the
disease across different regions (Figure 1).

For the reaction–diffusion model, we use the following parameter values:

𝜈 = 25, 𝜇 = 1.4, 𝛽 = 0.13, 𝑁 = 200, 𝑑1 = 6, 𝑑2 = 1.2 .

Under these conditions, hypothesis (𝐻1) is satisfied (i.e., 𝛽 ∈ Λ0), and we have 𝑅0 = 0.985. Therefore, the disease-free
equilibrium is asymptotically stable.

The disease-free state of the two-dimensional system is illustrated graphically in Figure 2.

FIGURE 1 | Initial condition (24) for system (5) in the two-dimensional spatial domain Ω. (a) 3D plot showing the density of
susceptible individuals 𝑆(𝑥, 𝑦) at 𝑡 = 0. (b) 3D plot showing the density of infected individuals 𝐼(𝑥, 𝑦) at 𝑡 = 0. [Colour figure can be
viewed at wileyonlinelibrary.com]

14 Mathematical Methods in the Applied Sciences, 2025

 10991476, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/m

m
a.70334 by C

ochrane Portugal, W
iley O

nline L
ibrary on [18/12/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://wileyonlinelibrary.com


FIGURE 2 | The disease-free state, 𝐸0 = (𝑆0(𝑥, 𝑦), 𝐼0(𝑥, 𝑦)), associate with system 5 and positive initial conditions (24). (a) 3D plot
showing the density of susceptible individuals 𝑆0(𝑥, 𝑦). (b) 3D plot showing the density of infected individuals 𝐼0(𝑥, 𝑦). [Colour figure
can be viewed at wileyonlinelibrary.com]

FIGURE 3 | Dynamics of the hybrid system () for the parameters in Case 1 (Section 4.1.1): 𝜏 = 2, 𝑝 = 0.3, 𝐽 ∈ [−1, 0.1]. (a) 3D
plot showing the density of susceptible individuals 𝑆(𝑥, 𝑦) at 𝑡 = 100. (b) 3D plot showing the density of infected individuals 𝐼(𝑥, 𝑦) at
𝑡 = 100. The results indicate that the global solution of the hybrid system () converges to the disease-free equilibrium. [Colour figure
can be viewed at wileyonlinelibrary.com]

4.1.1 | Case 1: Decrease or Small Increase in Transmission Rate

Consider 𝜏 = 2, 𝑝 = 0.3, and  ∈ [−1, 0.1] as the parameters of the probabilistic process. Under these conditions,
Proposition 1 is satisfied. The hybrid model 𝕌(𝑡, 𝑈0) = (𝑆, 𝐼) converges to the disease-free equilibrium 𝐸

0 = (200, 0) at
𝑡 = 100, as illustrated in Figure 3.

4.1.2 | Case 2: High Intensity of Change

In this scenario, we consider 𝜏 = 1, 𝑝 = 0.3, and ∈ [1, 3], which aligns with the context of Proposition 2. Figure 4 shows
that the solution of the hybrid model converges to the endemic equilibrium, 𝐸∗, at various time points, reflecting the
changes in the parameter 𝛽. For example, at 𝑡 = 4, we have 𝛽 = 0.4811, resulting in 𝐸

∗ = (54.87, 7.69). At 𝑡 = 100, 𝛽 =
0.3312, leading to𝐸∗ = (80.01, 6.35). Consequently, the system fails to recover the disease-free equilibrium𝐸

0 throughout
the observed time interval.

We present in Table 1 several values of 𝛽 and their corresponding 𝑅0 in the hybrid model ().

Mathematical Methods in the Applied Sciences, 2025 15
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FIGURE 4 | Dynamics of the hybrid system () for the parameters corresponding to Case 2 (Section 4.1.2): 𝜏 = 1, 𝑝 = 0.3,  ∈
[1, 3]. (a) 3D plots showing the density of susceptible individuals at 𝑡 = 4 and 𝑡 = 100. (b) 3D plots showing the density of infected
individuals at 𝑡 = 4 and 𝑡 = 100. We observe that the global solution of the hybrid system () converges to the endemic equilibrium.
[Colour figure can be viewed at wileyonlinelibrary.com]

TABLE 1 | Values of 𝛽 and 𝑅0 at various times during the evolution of the hybrid model () when the intensity of change in the
transmission coefficient 𝛽 is contained within the interval [1, 3].

Time 𝒕 5 20 40 60 100

Transmission rate 𝛽 0.4797 0.3220 0.3397 0.3036 0.3312
Reproduction number 𝑅0 3.6203 2.4301 2.5637 2.2913 2.4996

4.1.3 | Case 3: Emergence of Oscillations

In this case, let 𝜏 = 1, 𝑝 = 0.3, and  ∈ [−0.8, 1.8]. According to Theorem 5, the solution of the hybrid model () exhibits
oscillations between a neighborhood of 𝐸0 and a neighborhood of 𝐸∗. The graphs in Figure 5 illustrate that from 𝑡 = 1 to
𝑡 = 10, there are at least two oscillations between these neighborhoods.

Table 2 presents several values of 𝛽 and the corresponding reproduction number 𝑅0 for the hybrid model () with the
specified parameters. We observe that the multiple epidemic waves are related to variations in 𝑅0 within our constructed
hybrid SIR model.

Figure 6 presents plots of susceptible and infected individuals, 𝑆(10, 5, ∶) and 𝐼(5, 10, ∶) versus time for different time
delays 𝜏 = 0.1, 1, 2, 5, 10. These plots illustrate that the time delay between changes in the transmission coefficient
within the probabilistic process can acts as a bifurcation parameter, significantly influencing the stability behavior of
the equilibrium.

16 Mathematical Methods in the Applied Sciences, 2025
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FIGURE 5 | Dynamics of the hybrid system () for the parameters corresponding to Case 3: 𝜏 = 1, 𝑝 = 0.3,  ∈ [−0.8, 1.8]. (a) 3D
plots showing the density of susceptible individuals at various times: 𝑡 = 1, 5, 6, 9, 10. (b) 3D plots showing the density of infected indi-
viduals at the same times. The global solution of the hybrid model () exhibits oscillations between a neighborhood of the disease-free
equilibrium and a neighborhood of the endemic equilibrium. [Colour figure can be viewed at wileyonlinelibrary.com]

Mathematical Methods in the Applied Sciences, 2025 17
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TABLE 2 | Several values of 𝛽 and 𝑅0 in the Case 3 of the hybrid model (), where  ∈ [−0.8, 1.8].

Time 𝒕 1 4 5 6 10

Transmission rate 𝛽 0.0670 0.3699 0.0484 0.3563 0.0209
Reproduction number 𝑅0 0.5075 2.8022 0.3666 2.6992 0.1583

FIGURE 6 | Global solution of the hybrid system () for various time delays in the transmission coefficient, 𝜏 = 0.1, 1, 2, 5, 10,
using the parameters from Case 4. (a) Plots of susceptible individuals at 𝑥 = 10, 𝑦 = 5 versus time. (b) Plots of infected individuals at
(5, 10, ∶) versus time. The results show that 𝜏 acts as a bifurcation parameter that alters the stability behavior of the equilibrium. [Colour
figure can be viewed at wileyonlinelibrary.com]

Remark 2. The parameter 𝜏 serves as a bifurcation parameter in the epidemic hybrid model. Specifically, if 𝜏 is small
enough, the stability of the disease-free equilibrium is preserved. However, when 𝜏 is sufficiently large, oscillations emerge
(see Figure 6). Thus, analogous to the transmission coefficient, 𝜏 randomly influences the dynamics of disease spread.

4.1.4 | Case 4: Switching Between High and Low Intensity of Change

This scenario corresponds to Theorem 6. Let 𝑝 = 0.3 and  be an element of [−0.8, 2]. Assuming that hypothesis (𝐻3)
holds, we observe that 𝕌(𝑡, 𝑈0) converges to the state 𝐸0 = (𝑆0(𝑥, 𝑦), 𝐼0(𝑥, 𝑦)), as presented in Figure 2, by time 𝑡 = 100.

4.1.5 | Case 5: 𝜷0 ∈ 𝚲+ and Negative Intensity of Change or Vaccination Strategy

Firstly, we consider the scenario for the two-dimensional system with the following parameter values:

𝜈 = 25, 𝜇 = 1.4, 𝛽 = 0.5, 𝑁 = 200, 𝑑1 = 6, 𝑑2 = 1.2 .

In this case, the reproduction number 𝑅0 is calculated as 𝑅0 = 3.7879 > 1.

Consider 𝜏 = 1, 𝑝 = 0.3, and  ∈ [−0.8, 0] as the parameters of the probabilistic process. Figure 7 shows that the solution
𝕌(𝑡, 𝑈0) is close to the disease-free equilibrium 𝐸

0 at time 𝑡 = 100, even though 𝑅0 > 1.

For the vaccine SIR model, consider the first two equations of system (22) with 𝑢 = 0.78 and the intensity  in [−0.8, 2],
while keeping all other parameter values as in the beginning of Case 5. We observe in Figure 8 that the trajectories of the
hybrid model () converge to the disease-free equilibrium 𝐸

0
0.78 = (128.44, 0) at time 𝑡 = 6.

18 Mathematical Methods in the Applied Sciences, 2025
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FIGURE 7 | Dynamics of the hybrid system () for the parameters corresponding to Case 5: 𝛽0 = 0.5, 𝜏 = 1,  ∈ [−0.8, 0]. (a)
3D plot of the density of susceptible individuals at time 𝑡 = 100. (b) 3D plot of the density of infected individuals at time 𝑡 = 100. We
observe that the solution of the hybrid model is close to the disease-free equilibrium 𝐸

0 at time 𝑡 = 100, even though 𝑅0 > 1. [Colour
figure can be viewed at wileyonlinelibrary.com]

FIGURE 8 | Solution of the hybrid system () with vaccination for the parameters corresponding to Case 5: 𝛽0 = 0.5, 𝜏 = 1,  ∈
[−0.8, 2] and vaccine parameter 𝑢 = 0.78. (a) 3D plot of the density of susceptible individuals at time 𝑡 = 6. (b) 3D plot of the density
of infected individuals at time 𝑡 = 6. We observe that the global solution of the hybrid system with vaccination parameter converges to
the disease-free equilibrium at time 𝑡 = 6. [Colour figure can be viewed at wileyonlinelibrary.com]

5 | Conclusion

In this paper, we studied the dynamics and stability of a hybrid reaction–diffusion SIR-type model under the influence of
external factors that alter the transmission coefficient. We constructed the hybrid model by coupling a deterministic, con-
tinuous process that describes the evolution of an infectious disease with discrete, probabilistic processes that account
for potential changes in the transmission coefficient. The hybrid model incorporates a random parameter to simulate
varying transmission rates, allowing us to explore scenarios involving both increases and decreases in the rate. We estab-
lished the well-posedness of our parametric model and verified stability conditions theoretically, supported by numerical
simulations.

The main results highlighted in our work include the following:

• A decrease or a small increase in the transmission coefficient preserves the stability of the disease-free equilibrium
of the SIR hybrid model.

• When the transmission coefficient changes with higher intensity, the SIR model can attract the endemic state.

Mathematical Methods in the Applied Sciences, 2025 19
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• Oscillatory behaviors between the disease-free state and the endemic state can occur, depending in the intensity 
and the time delay between two successive changes in the transmission coefficient.

• The speed of the disease spread can be controlled if there exists a switch between high and low intensity of the
transmission rates in the hybrid model with a small time delay.

• When the transmission coefficient is large, and if the intensity or the vaccination parameter satisfies certain theoret-
ical conditions, the SIR model can attract the disease-free state.

In the near future, we aim to explore two key research directions. The first involves developing an optimal control strategy
for the reaction–diffusion hybrid epidemic model. This will include devising numerical methods to construct optimal
control policies within an abstract framework and investigate how these methods can be applied to real-world scenarios
where hybrid models and external factors interact. The second direction focuses on extending the model to a more general
framework where the transmission coefficient is a function of both space and time. This extension aims to provide a more
realistic representation of epidemic dynamics in reaction–diffusion models.
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