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 A B S T R A C T

Endogeneity poses a major challenge for Stochastic Frontier Analysis, as input choices may be endogenous to 
unobserved components of the error term, resulting in biased efficiency estimates. This paper compares leading 
estimators that address this issue, including control-function estimator (Kutlu, 2010), Generalized Method 
of Moments (GMM) (Tran and Tsionas, 2013) and copula (Tran and Tsionas, 2015) approaches, as well as 
the instrumental variable based maximum likelihood estimator (Karakaplan and Kutlu, 2017a,b; Karakaplan, 
2022). Monte Carlo simulations reveal distinct bias–variance trade-offs: likelihood-based estimators provide 
more precise efficiency scores, while GMM and copula can be advantageous in specific contexts. An empirical 
application to the Portuguese thermal power subsector (2006-2021) shows that accounting for endogeneity 
significantly alters coefficients and efficiency distributions. These results demonstrate that estimator choice 
affects policy-relevant indicators such as efficiency scores and determinants of cost performance. Despite 
data limitations, the study underscores the importance of treating endogeneity and provides methodological 
guidance for applied efficiency analysis.
1. Introduction

Technical efficiency is the predominant focus of Stochastic Frontier 
Analysis (SFA) applied to firms in the energy sector. The performance of 
this sector, in turn, underpins overall economic activity. Historically, in 
the 20th century, many countries structured their energy sectors around 
vertically integrated monopolies under governmental supervision, since 
there were high fixed costs of investment and this organization was 
seen as the way to create a functioning energy system. However, 
the imperative of enhancing efficiency became evident over time, as 
the problems inherent to monopoly control surfaced. Consequently, 
numerous countries embarked on market reforms to stimulate competi-
tion, segmenting generation, transmission, and distribution into distinct 
subsectors with differing technical and economic attributes. While such 
reforms generally aim to enhance technical efficiency (Barros, 2008; 
Ma and Zhao, 2015; Lundin, 2020; Bobde and Tanaka, 2020), their 
effectiveness may be compromised by various challenges stemming 
from incomplete deregulation or practical obstacles (Sun and Wu, 2020; 
Lee and Howard, 2021; Mirza et al., 2021). To facilitate market reforms 
and promote efficiency improvements, regulatory bodies utilize various 
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benchmarking techniques, such as Data Envelopment Analysis (DEA) 
and SFA.

With the ongoing energy transition, new challenges emerge to 
energy market regulators, leading to continuing interest in applied re-
search on benchmark methods. Accurate estimations of firms’ efficiency 
levels are important to policy making in order to correctly incentivize 
inefficient players to catch up with efficient ones. One issue that awaits 
resolution is how to deal with potential endogeneity in benchmark-
ing methods. This issue has received attention from recent studies 
(Kumbhakar et al., 2020; Kuosmanen, 2023). Notably, inputs can be 
endogenous as firms select them according to specific economic goals. 
Consequently, the inputs within a production function exhibit corre-
lation with the error term, which includes unobserved firm-specific 
effects, production risk (statistical noise), and technical inefficiency 
(Lai and Kumbhakar, 2019). Thus, the use of conventional Stochastic 
Frontier estimators without considering endogeneity is problematic. 
Early attempts to address the endogeneity issue in Stochastic Frontier 
models include Guan et al. (2009), Kutlu (2010) and Kim and Kim 
(2011). They are followed by subsequent studies: Tran and Tsionas 
(2013, 2015), Griffiths and Hajargasht (2016) and Amsler et al. (2016, 
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2017), among others. Various methods are used to handle endogeneity 
in Stochastic Frontier estimation, for example, Bayesian approach (Grif-
fiths and Hajargasht, 2016), nonparametric approach (Prokhorov et al., 
2021) and Poisson frontier models (Haschka and Herwartz, 2022). 
Lai and Kumbhakar (2019) and Kumbhakar et al. (2020) show that 
endogeneity can be eliminated once input misallocation is accounted 
for, but the theoretical formulation relies on specific assumptions and 
still does not directly treat endogeneity in the econometrical estimation. 
Therefore, the endogeneity problem remains unsolved when evaluating 
technical efficiency in the energy sector, especially when electricity is 
the object of study.

A maximum likelihood estimator to correct for endogeneity in 
Stochastic Frontier models is proposed by Karakaplan and Kutlu (2017a)
and Karakaplan (2017). The method initially enables the estimation of 
cross-sectional models; Karakaplan and Kutlu (2017b) and Karakaplan 
(2022) further develop the panel-data version of the method. For the 
time being, this is a comprehensive and practical method which has 
been applied in studies of various economic fields, including energy 
economics (e.g., Xu et al., 2022). Notwithstanding, it has not yet been 
applied to evaluate firm efficiency in the energy sector.

In particular, endogeneity needs to be addressed in benchmark 
assessments of the sector in order to obtain reliable efficiency measures 
and avoid misleading policy conclusions. To this end, we evaluate 
alternative estimators that have been proposed to handle endogeneity 
in stochastic frontier models: control function estimator (Kutlu, 2010); 
GMM estimator (Tran and Tsionas, 2013); copula-based estimator (Tran 
and Tsionas, 2015); instrumental variable (IV) based maximum like-
lihood estimator (Karakaplan and Kutlu, 2017b; Karakaplan, 2022).1 
In doing so, the paper goes beyond a single application and estab-
lishes a comparative benchmark for the use of endogeneity-corrected 
frontier methods in applied research. A further contribution is the 
explicit implementation of these estimators (except for the IV-based 
maximum likelihood estimator xtsfkk, already available as a Stata 
package) in R script, provided in the replication package. This not 
only enhances transparency and reproducibility but also equips re-
searchers with ready-to-use tools that can be adapted to diverse empir-
ical settings, thereby facilitating the broader adoption of econometric 
approaches to efficiency analysis.

In the simulations, we find that IV-based maximum likelihood esti-
mators, GMM, and copula methods differ in their bias–variance trade-
offs, with the likelihood approach generally providing more precise 
efficiency scores, while GMM and copula can be advantageous in 
specific scenarios. In the empirical application to the Portuguese ther-
mal power subsector, these methodological differences translate into 
noticeable variation in estimated efficiency distributions and policy-
relevant indicators. Together, the findings underscore the importance 
of explicitly accounting for endogeneity when applying frontier models 
in energy and related sectors.

The rest of this article is organized as follows. In the next section we 
review related literature. In Section 3 we describe the methodological 
formulations of representative approaches correcting for endogeneity 
in SFA that we select for Monte Carlo simulations and empirical appli-
cations. In Section 4 we describe the implementation of Monte Carlo 
simulations of these representative estimators and compare simula-
tion results. Section 5 describes the empirical model and data used 
for the empirical application, and presents and discusses the results. 
Concluding remarks are made in Section 6.

1 In fact, the control function estimator is also an IV-based maximum 
likelihood approach, which is stated differently here to avoid confusion.
2 
2. Literature review

Various approaches have been proposed for evaluating technical 
efficiency, particularly in the energy sector. An early example is the
best practice efficiency measure by Diewart and Nakamura (1999), based 
on Farrell (1957). Jamasb and Pollitt (2001) provide an overview 
of prevalent benchmarking methodologies in the electricity industry, 
including DEA, Corrected Ordinary Least Squares (COLS), and SFA, 
along with their primary applications up to that point. Recently, there 
has been a growing preference for DEA and SFA in assessing technical 
efficiency. Unlike traditional methods, DEA does not impose specific 
functional forms on input and output, thereby enabling researchers to 
concentrate on efficiency concerns (Ma and Zhao, 2015). However, it 
does not allow direct estimation of the relationship between efficiency 
and explanatory factors; when it is indeed justified to do so, a two-
stage approach is often applied (e.g., Bigerna et al., 2019, 2020, 2022), 
where extra care is necessary to prevent biased estimations. DEA has 
found diverse applications in energy economics, as evidenced by recent 
studies. Gultom (2019) analyze efficiency in the U.S. electricity sector; 
Navarro-Chávez et al. (2020) examine the Mexican electricity sector; 
Alizadeh et al. (2020) investigate the Iranian electricity sector; Jin-
dal and Nilakantan (2021) investigate Indian coal-fired power plants; 
Vesterberg et al. (2021) examine the Swedish electricity distribution; 
Sánchez-Ortiz et al. (2021) study the Spanish electricity sector; and 
Nakaishi et al. (2021) look into the environmental efficiency of Chinese 
coal-fired power plants, among others.

The Stochastic Frontier approach presupposes technical inefficiency, 
the inability to attain the output frontier given the inputs and prevail-
ing technology. The method involves making distributional assump-
tions regarding the noise and inefficiency components (Kumbhakar and 
Tsionas, 2008), facilitating the estimation of how independent vari-
ables influence the mean and variance of technical inefficiency. While 
some Stochastic Frontier techniques do not necessitate distributional 
assumptions for the noise or inefficiency components, as demonstrated 
by Kumbhakar and Bernstein (2019), alternatives such as nonlinear 
squares can also obviate the need for such assumptions, as exemplified 
by Belotti and Ferrara (2021).

Stochastic Frontier models offer adaptability, allowing customiza-
tion to tackle a diverse array of issues, thereby more effectively catering 
to specific research inquiries. Thus, SFA has garnered widespread ac-
ceptance in the field of energy economics. It is a versatile tool, suitable 
for evaluating various aspects such as directed technological change 
(Hou et al., 2020, 2021), profitability and the long-term viability 
of energy production options (Lee and Howard, 2021). Llorca et al. 
(2017) analyze efficiency in the Latin-American transport sector using 
energy demand functions. Kumbhakar et al. (2020) assess the cost 
efficiency of Norwegian electricity distribution firms, contributing to 
the growing body of research employing SFA to address efficiency 
concerns in the electricity sector. Other studies focusing on technical 
efficiency in Norwegian electricity distribution include Growitsch et al. 
(2012), Kumbhakar et al. (2015), Kumbhakar and Lien (2017), Orea 
et al. (2018), Mydland et al. (2018), Musau et al. (2021), among 
others. Soroush et al. (2021) investigate the impact of institutional 
quality on cost efficiency in Italian electricity distribution utilities. 
Vesterberg et al. (2021) study the efficiency of small-scale electricity 
and distribution grid in Sweden.

When it comes to electricity generation, Lai and Kumbhakar (2018) 
introduce a homoscedastic four-component stochastic frontier (H4CSF) 
model, linking technical inefficiency in production to factors such as the 
age and capacity of coal-fired power plants. Liu et al. (2019) explore 
whether environmental variations affect the technical efficiency of 
Chinese grid utilities. Silva et al. (2019) employ a stochastic frontier 
approach with maximum entropy estimation to analyze European elec-
tricity distribution companies. Peñasco et al. (2019) delve into the 
influence of policy factors on the efficiency of Spanish solar energy 
plants.
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Early attempts to mitigate endogeneity in SFA adopted IV-based 
control-function strategies. Kutlu’s (2010) two-step “BCIV” estimator 
projects each potentially endogenous input on external instruments and 
then inserts the first-stage residuals into a Battese–Coelli likelihood 
(Battese and Coelli, 1992).2 Karakaplan and Kutlu (2017a,b), extend 
this idea to the sfkk/xtsfkk estimators, which jointly estimate the fron-
tier and reduced-form equations for the endogenous regressors in one 
maximum-likelihood step. Guan et al. (2009) and Tran and Tsionas 
(2013) replace the second-step ML with a one-step, just-identified 
GMM based on score conditions, preserving consistency under weaker 
distributional assumptions but still relying on valid instruments.

When suitable instruments are unavailable, researchers have turned 
to the joint-distribution approach. Tran and Tsionas (2015) embed a 
Gaussian copula in the composed-error likelihood, obtaining a single-
step ML estimator that remains consistent without instruments, al-
though it assumes normal rank dependence. Griffiths and Hajargasht 
(2016) achieve a similar goal with a Chamberlain–Mundlak control-
function device that links firm-level input averages to permanent inef-
ficiency; their Bayesian/ML framework can also accommodate a tran-
sient inefficiency term. Amsler et al. (2016, 2017) further generalize 
copula and IV ideas, allowing both inputs and the scaling (environmen-
tal) variables that enter the inefficiency term to be endogenous; they 
offer parallel IV-GMM and simulated-ML estimators. More recently, 
Haschka and Herwartz (2022) extend the copula logic to a Poisson 
frontier for count data, again dispensing with instruments.

A second branch of the literature addresses endogeneity by embed-
ding firms’ first-order conditions (FOC) directly in the frontier. Building 
on the H4CSF framework, Lai and Kumbhakar (2018) and Lien et al. 
(2018) impose the FOC from maximizing return to the outlay, while Lai 
and Kumbhakar (2019) and Kumbhakar et al. (2020) include the cost-
minimizing FOC and decompose the resulting allocative-inefficiency 
term into persistent and time-varying parts. Because the FOC error term 
absorbs the correlation between inputs and the composite error, these 
models control endogeneity “structurally” rather than econometrically. 
A complementary line relaxes functional-form assumptions: Prokhorov 
et al. (2021) propose non-parametric and semi-parametric frontiers 
with endogenous regressors, combining flexible series or kernel ap-
proximations with a copula-based dependence structure. To date, these 
structural-FOC and flexible-form estimators have been applied less 
frequently than the IV-based sfkk/xtsfkk family, largely because they 
require stronger behavioral assumptions or heavier computation.

IV-based maximum likelihood estimators remain the most
frequently applied econometric cure for endogeneity in frontier work. A 
practical benchmark is the estimator of Karakaplan and Kutlu (2017a), 
a maximum-likelihood procedure for cross-sectional data that augments 
the Battese–Coelli frontier with first-stage reduced forms for each 
endogenous regressor. Karakaplan (2017) released the Stata command
sfkk, making the method easy to replicate. The same authors extend 
the idea to panels in Karakaplan and Kutlu (2017b); the corresponding 
Stata command, xtsfkk, is documented in Karakaplan (2022). Subse-
quent studies have built on this framework: Kutlu et al. (2019) allow 
the individual inefficiency term to follow a time-varying latent process, 
while Kutlu (2022) embeds the IV-frontier in a spatial setting with an 
endogenous weighting matrix. Together these contributions illustrate 
how the sfkk/xtsfkk family has become the work-horse IV platform for 
applied SFA. The sfkk and xtsfkk estimators have been applied across 
a wide range of topics, including biomass energy (Xu and H.H., 2018), 
school expenditures (Karakaplan and Kutlu, 2019), farmland produc-
tivity (Deng et al., 2020), market power in iron ore (Germeshausen 
et al., 2020), innovation in finger millet (Jerop et al., 2020), rice pro-
ductivity under climate change (Ojo and Baiyegunhi, 2020), corporate 
social responsibility (CSR) and efficiency (Binh et al., 2022), economic 

2 For control-function endogeneity corrections in time-varying-parameter 
models outside the SFA framework, see Kim (2006) and Kim and Kim (2011).
3 
agglomeration and energy efficiency (Xu et al., 2022), rural bank 
efficiency (Amanda, 2023), bank lending in China (Fungáčová et al., 
2023), transport infrastructure and output (Melo-Becerra and Ramírez-
Giraldo, 2023), and coal mining efficiency (Yang and Tsou, 2024). 
To our knowledge, however, no study has yet used the endogeneity 
estimator to analyze firm efficiency in the energy sector.

Table  1 provides an overview of the typical approaches to tackle 
endogeneity in SFA, highlighting essential aspects of each one.

Energy market regulators can utilize benchmarking models to esti-
mate the cost efficiency of firms, enabling the establishment of revenue 
caps and incentivizing improvements in productivity and efficiency 
without unnecessary micro-management (Kumbhakar et al., 2020). 
However, neglecting endogeneity when estimating efficiency scores 
may lead to incorrect information being used for such policy formu-
lation. This study evaluates the performance of alternative estimators 
designed to handle endogeneity in stochastic frontier models, com-
bining Monte Carlo simulations with an empirical application to the 
thermal power subsector of Portugal. By jointly considering simulation 
evidence and a sector-specific application, the analysis highlights both 
the methodological trade-offs and the practical implications of dealing 
with endogeneity, thereby motivating the empirical and simulation 
frameworks developed in the following sections.

3. Overview on representative approaches addressing endogene-
ity in SFA

In this section, we introduce some representative approaches for 
addressing endogeneity in SFA that we will use in Monte Carlo sim-
ulation and empirical application. These include: (1) the standard 
maximum likelihood estimator assuming exogenous inputs, which can 
be referred to as the ‘‘naive estimator’’; (2) the two-step IV control-
function estimator by Kutlu (2010), often referred to as BCIV, which 
is a basic and accessible solution for panel data; (3) the score-based 
GMM estimator by Tran and Tsionas (2013), which offers a one-step 
estimation using external instruments; (4) the copula-based maximum 
likelihood estimator developed by Tran and Tsionas (2015), which 
handles endogeneity without relying on external instruments; and (5) 
the xtsfkk estimator proposed by Karakaplan and Kutlu (2017b) and 
Karakaplan (2022), which provide a maximum likelihood framework 
to jointly estimate the frontier and reduced-form equations and are 
available in Stata. These estimators cover different methodological 
strategies – including control function, GMM, copula approaches and 
IV-based ML – and thus provide a well-rounded basis for performance 
comparison.

For each estimator, we introduce the basic model specification and 
the key steps3 for estimating the model.

3.1. The naive estimator

The “naive” model in our analysis corresponds to the original 
stochastic frontier specification of Aigner et al. (1977) and Meeusen 
and van den Broeck (1977), extended to panel data without introduc-
ing time variation in inefficiency or correcting for endogeneity. The 
production frontier is given by: 
𝑦𝑖𝑡 = 𝐗′

𝑖𝑡𝛽 + 𝑣𝑖𝑡 − 𝑢𝑖𝑡, (1)

where 𝑦𝑖𝑡 denotes the output of firm 𝑖 in period 𝑡, 𝐗𝑖𝑡 is a vector of input 
variables, and 𝛽 is a vector of technology parameters to be estimated. 
The composite error term consists of: 
𝑣𝑖𝑡 ∼ 𝑁(0, 𝜎2𝑣 ), 𝑢𝑖𝑡 ∼ 𝑁+(0, 𝜎2𝑢 ), (2)

3 To avoid redundancy, we describe simplified formulations for the ap-
proaches. The readers may refer to the original articles for complete 
formulations.
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Table 1
Summary of representative empirical approaches that handle endogeneity in SFA.
 Study/Estimator Data required External instruments Inefficiency structure assumed Identification/Estimation 

technique
 

 Kutlu (2010) – BCIV Panel Yes (first-stage OLS) Time-varying half-normal Two-step control-function ⟶ ML  
 Guan et al. (2009) Panel Yes (lags as IVs) Time-varying Difference-GMM first stage; ML 

frontier
 

 Karakaplan and Kutlu (2017a) Cross-section Yes Firm-specific half-normal Joint ML on frontier  
 – sfkk (scaled by covariates) + reduced-form equations  
 Karakaplan (2022) – xtsfkk Panel Yes Same as sfkk; firm effects handled Joint ML (frontier + reduced 

forms)
 

 Tran and Tsionas (2013) Cross-section Yes Time-varying One-step, just-identified  
 (run year-by-year) score-GMM  
 Tran and Tsionas (2015) Cross-section No Time-varying Instrument-free Gaussian-copula 

ML
 

 Griffiths and Hajargasht (2016) Panel No (Chamberlain Permanent (optionally CRE control-function,  
 –Mundlak CRE) plus transient) ML/Bayesian  
 Amsler et al. (2016, 2017) Cross-section Optional Model-specific: IV-GMM or simulated ML with  
 (panel feasible) (IV-GMM variant) permanent or time-varying copula  
 Lai and Kumbhakar (2018); Panel No Persistent + transient Structural FOC of return-to-outlay; 
 Lien et al. (2018) via allocative-inefficiency term unified ML  
 Lai and Kumbhakar (2019); Panel No Persistent FOC of cost minimization;  
 Kumbhakar et al. (2020) + transient (decomposed) structural ML  
 Kutlu et al. (2019) Panel Yes Time-varying true individual effects Expanded ML  
 (extends sfkk/xtsfkk) with state-space inefficiency  
 Prokhorov et al. (2021) Cross-section No Time-varying Non- & semi-parametric frontier;  
 copula dependence  
 Haschka and Herwartz (2022) Cross-section No Time-varying (Poisson frontier) Instrument-free copula ML  
 (count data) for Poisson SFA  
where 𝑣𝑖𝑡 captures statistical noise and other random shocks, while 
𝑢𝑖𝑡 ≥ 0 represents firm-specific technical inefficiency, assumed to follow 
a half-normal distribution 𝑁+ with zero mean and variance 𝜎2𝑢 . The 
variance parameters are reparameterized as: 

𝜎2 = 𝜎2𝑢 + 𝜎2𝑣 , 𝛾 =
𝜎2𝑢
𝜎2

, (3)

where 𝛾 measures the proportion of total variance attributable to ineffi-
ciency. The model parameters 𝛽, 𝜎2𝑢  and 𝜎2𝑣 are estimated by maximum 
likelihood, and firm-specific technical efficiency is predicted following 
(Jondrow et al., 1982): 
𝑇𝐸𝑖𝑡 = 𝐸[exp(−𝑢𝑖𝑡)|𝜀𝑖𝑡], 𝜀𝑖𝑡 = 𝑣𝑖𝑡 − 𝑢𝑖𝑡. (4)

This naive model serves as the baseline for comparison with alter-
native estimators that address endogeneity.

3.2. The control function estimator

Kutlu (2010) extends the standard stochastic frontier framework 
of Aigner et al. (1977) and Meeusen and van den Broeck (1977) to 
allow for endogenous regressors in the production frontier. The baseline 
production frontier is: 
𝑦𝑖𝑡 = 𝐗′

𝑖𝑡𝜷 + 𝜀𝑖𝑡 − 𝑢𝑖𝑡, (5)

where 𝑦𝑖𝑡 denotes the output of firm 𝑖 in period 𝑡, 𝐗′
𝑖𝑡 is an 𝑚 × 1

vector of potentially endogenous regressors, 𝛽 is a vector of technology 
parameters, 𝜀𝑖𝑡 ∼ 𝑁(0, 𝜎2𝜀 ) is statistical noise, and 𝑢𝑖𝑡 ≥ 0 represents 
technical inefficiency, assumed to follow a truncated-normal distribu-
tion 𝑁+(𝜇, 𝜎2𝑢 ). Endogeneity arises when 𝐗𝑖𝑡 is correlated with the noise 
term 𝜀𝑖𝑡. Kutlu (2010) models 𝐗𝑖𝑡 as 

𝐗𝑖𝑡 = 𝐙′
𝑖𝑡𝜹 + 𝐯𝑖𝑡, (6)

where 𝐙𝑖𝑡 contains exogenous instruments, and (𝑣𝑖𝑡, 𝜀𝑖𝑡) are jointly 
normally distributed with correlation vector 𝜌. By a Cholesky decom-
position of the covariance matrix of (𝑣 , 𝜀 )′, the production equation 
𝑖𝑡 𝑖𝑡

4 
can be rewritten as 

𝑦𝑖𝑡 = 𝐗′
𝑖𝑡𝜷 + 𝜎𝜀𝝆′Σ

− 1
2

𝑣 (𝐗𝑖𝑡 − 𝐙′
𝑖𝑡𝛿) +𝑤𝑖𝑡 − 𝑢𝑖𝑡, (7)

where 𝑤𝑖𝑡 is independent of 𝑣𝑖𝑡. In practice, Kutlu (2010) suggests either 
a joint maximum likelihood estimation, which incorporates both the 
frontier equation and the reduced form for the endogenous regres-
sors into a single likelihood, or a computationally simpler two-step 
procedure. In the two-step approach, Eq. (6) – the reduced form for 
the endogenous regressors – is first estimated by OLS, and the fitted 
residuals 𝑣̂𝑖𝑡 are then included in the frontier equation as an additional 
regressor: 
𝑦𝑖𝑡 = 𝐗′

𝑖𝑡𝜷 + 𝝆′𝐯𝑖𝑡 +𝑤𝑖𝑡 − 𝑢𝑖𝑡. (8)

This augmented stochastic frontier model is estimated by maximum 
likelihood under the usual half-normal inefficiency assumption. Firm-
specific technical efficiency is predicted as in Jondrow et al. (1982), 
conditional on both 𝑤𝑖𝑡 and the estimated endogenous component 𝑣̂𝑖𝑡: 
𝑇𝐸𝑖𝑡 = 𝐸[exp(−𝑢𝑖𝑡)|𝑤𝑖𝑡, 𝑣̂𝑖𝑡]. (9)

3.3. The GMM estimator

Tran and Tsionas (2013) propose a one-step GMM estimator for 
stochastic frontier models with endogenous regressors. The starting 
point is the frontier equation: 
𝑦𝑖𝑡 = 𝐙′

1,𝑖𝑡𝜶 + 𝐗′
𝑖𝑡𝜷 + 𝑣𝑖𝑡 − 𝑢𝑖𝑡, (10)

where 𝐗𝑖𝑡 is a 𝑝 × 1 vector of potentially endogenous regressors, 𝐙′
1,𝑖𝑡

is a 𝑞1 × 1 vector of exogenous regressors, 𝑣𝑖𝑡 ∼ 𝑁(0, 𝜎2𝑣 ) is statistical 
noise, and 𝑢𝑖𝑡 ∼ 𝑁+(0, 𝜎2𝑢 ) represents non-negative inefficiency. The 
endogenous regressors are modeled in a reduced form4: 
𝐗𝑖𝑡 = 𝐙′

2,𝑖𝑡𝜹+ 𝜺𝑖𝑡, (11)

4 To avoid confusion with the common annotation 𝛾 that represents the 
share of inefficiency variance in the total composed error variance in SFA, 
here we use 𝛿 instead of 𝛾 in Tran and Tsionas (2015).
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where 𝐙2,𝑖𝑡 = 𝐈𝑝⊗ 𝐙̃2,𝑖𝑡 contains 𝑞2 strictly exogenous variables (𝑞2 ≥ 𝑝), 
and (𝜀𝑖𝑡, 𝑣𝑖𝑡) are jointly normally distributed with correlation vector 
𝝆. By applying a Cholesky decomposition to the covariance matrix of 
(𝜀̃𝑖𝑡, 𝑣𝑖𝑡)′, the frontier equation can be re-expressed as: 

𝑦𝑖𝑡 = 𝐙′
1,𝑖𝑡𝜶 + 𝐗′

𝑖𝑡𝜷 + 𝜎𝑣𝝆′Ω
− 1

2
𝜀 (𝐗𝑖𝑡 − 𝐙′

2,𝑖𝑡𝜹) + 𝜔𝑖𝑡 − 𝑢𝑖𝑡, (12)

where 𝜔𝑖𝑡 ∼ 𝑁(0, (1 − 𝝆′𝝆)𝜎2𝑣 ) is independent of 𝜀̃𝑖𝑡. The GMM ap-
proach uses the first-order conditions from the correct likelihood as mo-
ment conditions, combined with the orthogonality conditions from the 
reduced-form equation. In the exactly identified case, the parameters 
(𝜶, 𝜷, 𝜹,variance parameters)′ are estimated by solving: 

1
𝑛

𝑛
∑

𝑖=1
𝐆𝑖(𝜶, 𝜷, 𝜹) = 𝟎. (13)

Following the estimation of parameters, firm-specific efficiency is 
obtained in line with Jondrow et al. (1982). Let 𝜀̂𝑖𝑡 denote the corrected 
residual, 𝜎̂𝑢 and 𝜎̂𝑣 denote the estimated standard deviations of the 
inefficiency and noise terms, 𝜆̂ = 𝜎̂𝑢∕𝜎̂𝑣, and 𝜎̂ =

√

𝜎̂2𝑢 + 𝜎̂2𝑣 . Then the 
technical efficiency of firm 𝑖 at time 𝑡 is calculated as 

𝑇𝐸𝑖𝑡 = exp[−𝜎̂(
𝜑( 𝜀̂𝑖𝑡 𝜆̂𝜎̂ )

1 −𝛷( 𝜀̂𝑖𝑡 𝜆̂𝜎̂ )
−

𝜀̂𝑖𝑡𝜆̂
𝜎̂

)], (14)

where 𝜑(⋅) and 𝛷(⋅) denote the standard normal probability density 
(PDF) and cumulative distribution functions (CDF), respectively.

3.4. The copula-based estimator

The copula-based approach models the dependence between the 
noise term 𝑣𝑖𝑡 and the inefficiency term 𝑢𝑖𝑡 without relying on the joint 
normality assumption. The stochastic frontier is specified as: 
𝑦𝑖𝑡 = 𝐗′

𝑖𝑡𝜷 + 𝑣𝑖𝑡 − 𝑢𝑖𝑡, (15)

where 𝑣𝑖𝑡 ∼ 𝑁(0, 𝜎2𝑣 ) and 𝑢𝑖𝑡 ∼ 𝑁+(𝜇, 𝜎2𝑢 ) are allowed to be statistically 
dependent. The joint distribution 𝐹𝑢,𝑣(𝑢, 𝑣) is constructed via a copula 
function 𝐶𝜃(⋅, ⋅): 

𝐹𝑢,𝑣(𝑢, 𝑣) = 𝐶𝜃(𝐹𝑢(𝑢), 𝐹𝑣(𝑣)), (16)

where 𝐹𝑢 and 𝐹𝑣 are the marginal CDFs of 𝑢𝑖𝑡 and 𝑣𝑖𝑡, and 𝜃 is the copula 
parameter measuring dependence. In our implementation, we employ 
the Gaussian copula: 
𝐶𝜃(𝑠, 𝑡) = 𝛷𝜃(𝛷−1(𝑠), 𝛷−1(𝑡)), (17)

where 𝛷−1 is the standard normal quantile function, and 𝛷𝜃 is the CDF 
of a bivariate normal distribution with correlation coefficient 𝜃. The 
log-likelihood function is obtained from the copula density: 

𝑙(𝜷, 𝜎𝑢, 𝜎𝑣, 𝜇, 𝜃) =
𝑁
∑

𝑖=1

𝑇
∑

𝑡=1
ln𝐶𝜃(𝐹𝑢(𝑢𝑖𝑡), 𝐹𝑣(𝑣𝑖𝑡)) + ln 𝑓𝑢(𝑢𝑖𝑡) + ln 𝑓𝑣(𝑣𝑖𝑡), (18)

where 𝐶𝜃 is the copula density and 𝑓𝑢, 𝑓𝑣 are the marginal densities. Pa-
rameters are estimated by maximizing this log-likelihood. Firm-specific 
technical efficiency is computed as 
𝑇𝐸𝑖𝑡 = 𝐸[exp(−𝑢𝑖𝑡)|𝑣𝑖𝑡], (19)

where the conditional distribution of 𝑢𝑖𝑡 given 𝑣𝑖𝑡 is derived from the 
joint copula-based specification.

3.5. The xtsfkk estimator

The estimator proposed by Karakaplan and Kutlu (2017b) and 
Karakaplan (2022), implemented in Stata as xtsfkk, generalizes the 
control-function approach of Kutlu (2010) to a panel-data framework 
and unlike the previous estimators, allows for endogeneity in both the 
5 
frontier and inefficiency equations. The model is based on the following 
specification:

𝑦𝑖𝑡 = 𝐗′
𝑦,𝑖𝑡𝜷 + 𝑣𝑖𝑡 − 𝑠𝑢𝑖𝑡,

𝐗𝑖𝑡 = 𝐙𝑖𝑡𝜹 + 𝜀𝑖𝑡, (20)

where 𝑦𝑖𝑡 is output, 𝐗𝑦,𝑖𝑡 includes both exogenous and endogenous 
variables in the frontier, 𝑣𝑖𝑡 is the two-sided noise term, 𝑢𝑖𝑡 is the 
one-sided inefficiency term, and 𝑠 = 1 for production frontiers and 
𝑠 = −1 for cost frontiers. The reduced form equation links endogenous 
regressors 𝐗𝑖𝑡 to instruments 𝐙𝑖𝑡. By applying a Cholesky decomposition 
of the joint distribution of (𝜀𝑖𝑡, 𝑣𝑖𝑡), the frontier can be rewritten with a 
bias-correction component: 
𝑦𝑖𝑡 = 𝐗′

𝑦,𝑖𝑡𝜷 + (𝐗𝑖𝑡 − 𝐙𝑖𝑡𝜹)′𝜂 + 𝑒𝑖𝑡, (21)

where (𝐗𝑖𝑡−𝐙𝑖𝑡𝜹)′𝜂 captures the correlation between endogenous regres-
sors and the two-sided error, and 𝑒𝑖𝑡 = 𝑤𝑖𝑡 − 𝑠𝑢𝑖𝑡 with 𝑤𝑖𝑡 independent 
from regressors. The inefficiency is modeled as 
𝑢𝑖𝑡 = ℎ(𝐗′

𝑢,𝑖𝑡𝝋𝑢)𝑢∗𝑖 , 𝑢
∗
𝑖 ∼ 𝑁+(𝜇, 𝜎2𝑢 ). (22)

For each panel unit 𝑖, the log-likelihood function is decomposed as 
ln𝐿𝑖 = ln𝐿𝑖,𝑦|𝐗 + ln𝐿𝑖,𝐗, (23)

where ln𝐿𝑖,𝑦|𝐗 is the conditional density of output given regressors 
and the correction term, and ln𝐿𝑖,𝐗 corresponds to the reduced-form 
equations for the endogenous regressors. Technical efficiency is then 
predicted as 

𝑇𝐸𝑖𝑡 = exp{−ℎ𝑖𝑡[𝜇𝑖∗ + 𝜎𝑖∗
𝜙(𝜇𝑖∗∕𝜎𝑖∗)
𝛷(𝜇𝑖∗∕𝜎𝑖∗)

]}, (24)

where 𝜙(⋅), 𝛷(⋅) are the standard normal PDF and CDF.
Additionally, endogeneity can be assessed by testing the joint sig-

nificance of the bias-correction term (𝐗𝑖𝑡 − 𝐙𝑖𝑡𝜹)𝜂, where 𝜂 loads the 
first-stage residuals. The test relies on similar ideas with the standard 
Durbin–Wu–Hausman test for endogeneity. Under exogeneity these 
residuals are orthogonal to the composed error, hence 𝜂 = 0. Therefore 
it tests
𝐻0 ∶ 𝜂 = 0 vs. 𝐻1 ∶ 𝜂 ≠ 0.

The test statistic is the Wald chi-square 
𝑊 = 𝜂̂′[𝑉 𝑎𝑟(𝜂̂)]−1𝜂̂ 𝑎∼ 𝜒2(𝑞), (25)

with 𝑞 the number of endogenous regressors. Rejection implies endo-
geneity.

Similarly, for the models introduced in Sections 3.2–3.4, In the R 
implementation, endogeneity is tested by a Wald test applied to the 
model-specific correction parameters.

4. Monte Carlo simulations

This section aims to evaluate the performance of the representative 
estimators mentioned in the previous section through a controlled 
Monte Carlo simulation. The objective is twofold: first, to illustrate the 
magnitude of bias and efficiency loss when endogeneity is ignored in 
Stochastic Frontier estimation; and second, to compare the performance 
of representative estimators that have been developed to address en-
dogeneity, and therefore, evaluate their strengths and weaknesses in 
application.

In each of the above mentioned estimators that address endogeneity 
in SFA, endogeneity is assumed to be present between only the re-
gressor and the noise term except in the xtsfkk estimator. Thus, two 
DGPs (data-generating processes) are adopted to suit the assumptions 
of different estimators. One DGP assumes correlation between the 
regressor(s) and the noise term, while another DGP follows Karakaplan 
(2022) for the  xtsfkk estimator, which targets endogeneity between 
the regressor(s), the inefficiency term and the noise term. For each 
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simulation, we compare the mean bias and Root Mean Squared Error 
(RMSE)5 between each estimated coefficient and its true value for 
assessing the accuracy of estimation. The DGPs and implementation of 
the estimators are described as follows.

4.1. Endogeneity between the regressor and the noise term

4.1.1. Data-generating process
The DGP follows a standard Cobb–Douglas stochastic frontier spec-

ification with additive composite error and endogenous regressors. 
For each simulation replication, we generate a balanced panel with 
𝑁 = 100 cross-sectional units observed over 𝑇 = 20 time periods. The 
outcome variable 𝑦𝑖𝑡 is generated as: 

𝑦𝑖𝑡 = 𝛽1𝑥1𝑖𝑡 + 𝛽2𝑥2𝑖𝑡 + 𝑣𝑖𝑡 − 𝑢𝑖𝑡, (26)

𝑥2𝑖𝑡 = 𝑧𝑖𝑡 + 𝜀𝑖𝑡, (27)

𝑣𝑖𝑡 = 𝜌𝜀𝑖𝑡 +
√

1 − 𝜌2𝑣∗𝑖𝑡, (28)

where 𝑦𝑖𝑡 denotes the output for unit 𝑖 at time 𝑡; 𝑥1𝑖𝑡 is an exogenous 
input; 𝑥2𝑖𝑡 is an endogenous input; 𝑧𝑖𝑡 is an instrumental variable used 
to construct 𝑥2𝑖𝑡. The composed error consists of a two-sided noise 
term 𝑣𝑖𝑡 ∼ 𝑁(0, 𝜎2𝑣 ) and a non-negative inefficiency term 𝑢𝑖𝑡 = 𝑢𝑖, with 
𝑢𝑖 ∼ 𝑁+(0, 𝜎2𝑢 ).6 The endogeneity arises through correlation between 𝑣𝑖𝑡
and 𝜀𝑖𝑡, parameterized by 𝜌 ∈ [0, 1]. The idiosyncratic error terms follow 
𝜀𝑖𝑡, 𝑣∗𝑖𝑡 ∼ 𝑁(0, 1), independently across units and time. Simulations are 
performed for varying levels of endogeneity 𝜌 ∈ {0, 0.4, 0.8} with 1000 
repetitions each. The true parameter values are set to 𝛽1 = 𝛽2 = 0.5, 
𝜎2𝑢 = 𝜎2𝑣 = 1. Therefore, the inefficiency share 𝛾 = 𝜎2𝑢

𝜎2𝑢+𝜎2𝑣
= 0.5.

4.1.2. Implementation of the estimators
The naive model. The naive Stochastic Frontier model is estimated 

using maximum likelihood under the standard composed error spec-
ification, where the inefficiency term 𝑢𝑖𝑡 ∼ 𝑁+(0, 𝜎2𝑢 ) is assumed to 
be time-invariant and independent of the regressors. The model takes 
the form 𝑦𝑖𝑡 = 𝛽1𝑥1𝑖𝑡 + 𝛽2𝑥2𝑖𝑡 + 𝑣𝑖𝑡 − 𝑢𝑖𝑡, where 𝑣𝑖𝑡 ∼ 𝑁(0, 𝜎2𝑣 ) captures 
statistical noise. This specification ignores potential endogeneity in 
the regressors and thus serves as a benchmark. The log-likelihood 
function is constructed following the standard normal-truncated normal 
formulation, and parameters are estimated via the BFGS algorithm 
using the maxLik package in R.

The Battese–Coelli estimator. To account for endogeneity, the 
Battese–Coelli estimator of Kutlu (2010) is implemented by augmenting 
the frontier equation with residuals obtained from the first-stage regres-
sion of the endogenous regressor on its instruments. In the first stage, 
𝑥2𝑖𝑡 is regressed on 𝑧𝑖𝑡, and the residual 𝑟𝑖𝑡 = 𝑥2𝑖𝑡− 𝑥̂2𝑖𝑡 is extracted. This 
residual is then included as an additional regressor in the stochastic 
frontier model: 𝑦𝑖𝑡 = 𝛽1𝑥1𝑖𝑡 + 𝛽2𝑥2𝑖𝑡 + 𝛿𝑟𝑖𝑡 + 𝑣𝑖𝑡 − 𝑢𝑖𝑡. The model is 
estimated by maximum likelihood using the standard composed error 
specification, where 𝑣𝑖𝑡 ∼ 𝑁(0, 𝜎2𝑣 ) and 𝑢𝑖𝑡 ∼ 𝑁+(0, 𝜎2𝑢 ). By incorporating 
the control function 𝑟𝑖𝑡, correlation between 𝑥2𝑖𝑡 and the noise term 
is captured, allowing consistent estimation without requiring external 
instruments in the second stage.

The GMM estimator. The GMM estimator follows Tran and Tsionas 
(2013), with necessary adaptations. It is implemented by constructing 
a system of orthogonality conditions that account for the endogeneity 
of regressors within the stochastic frontier framework. First, residuals 
from the reduced-form equation 𝑥2𝑖𝑡 = 𝑧𝑖𝑡𝜃 + 𝜀𝑖𝑡 are computed, and 

5 Because RMSE is in the same unit as the estimated parameter, it provides 
a more interpretable measure of estimation accuracy than MSE, which is 
expressed in squared units.

6 Kutlu (2010) assumes that inefficiency is time-decaying. For simplicity of 
implementation, we assume that inefficiency does not decay over time.
6 
these residuals are included in the structural equation as a control 
function: 𝑦𝑖𝑡 = 𝛽1𝑥1𝑖𝑡 + 𝛽2𝑥2𝑖𝑡 + 𝛿𝑟𝑖𝑡 + 𝑣𝑖𝑡 − 𝑢𝑖𝑡, where 𝑟𝑖𝑡 = 𝑥2𝑖𝑡 − 𝑥̂2𝑖𝑡. The 
resulting moment conditions are derived from the score functions of the 
log-likelihood with respect to the parameters of interest, and include 
both analytical terms and numerical derivatives with respect to the 
inefficiency and noise variances. A Q-minimization procedure is then 
applied to the average moment vector using a BFGS optimizer, yielding 
consistent estimates under the assumption that the instruments are 
valid and the inefficiency term 𝑢𝑖𝑡 = 𝑢𝑖 ∼ 𝑁+(0, 𝜎2𝑢 ) is independent of the 
regressors. Asymptotic efficiency is achieved through joint estimation 
of both structural and reduced-form parameters.

The copula-based estimator. The estimation of the copula-based 
estimator follows Tran and Tsionas (2015), with necessary adaptations. 
It is implemented by jointly modeling the dependence between the 
endogenous regressor and the composed error term using a Gaussian 
copula function. The stochastic frontier equation is specified as 𝑦𝑖𝑡 =
𝛽1𝑥1𝑖𝑡 + 𝛽2𝑥2𝑖𝑡 + 𝑣𝑖𝑡 − 𝑢𝑖𝑡, with 𝑣𝑖𝑡 ∼ 𝑁(0, 𝜎2𝑣 ) and 𝑢𝑖𝑡 ∼ 𝑁+(0, 𝜎2𝑢 ). The 
composite error 𝜀𝑖𝑡 = 𝑦𝑖𝑡 − (𝛽1𝑥1𝑖𝑡 + 𝛽2𝑥2𝑖𝑡) is transformed into a skew-
normal distribution, and its probability integral transform is paired 
with that of 𝑥2𝑖𝑡 using a Gaussian copula. The log-likelihood is con-
structed from the joint density implied by the copula and the marginal 
distributions of 𝑥2𝑖𝑡 and 𝜀𝑖𝑡. The parameters are first initialized using 
a global optimization routine (DEoptim), and then refined using maxi-
mum likelihood estimation via a BFGS optimizer. This approach allows 
the correlation between the endogenous regressor and the composed 
error to be directly estimated without requiring external instruments.

4.1.3. Simulation results and discussion
The above models are simulated with 1000 repetitions, in each of 

which using the same generated sample across different models. The 
simulation results are demonstrated in Table  2.

The naive stochastic frontier estimator, which ignores the endo-
geneity of regressors, performs well only when the correlation between 
the regressors and the composed error is absent (𝜌 = 0). In this case, 
the estimates of both slope coefficients and inefficiency parameters are 
nearly unbiased. However, as endogeneity increases (𝜌 = 0.4 and 0.8), 
the estimator fails to account for the correlation between regressors and 
the noise term, leading to substantial bias in the estimated coefficient of 
the endogenous regressor (𝛽2). The inefficiency share (𝛾) and variance 
components (𝜎𝑢, 𝜎𝑣) also become distorted, indicating that the naive 
estimator is unreliable under even moderate levels of endogeneity.

The control function approach (following Kutlu, 2010) effectively 
corrects for endogeneity across all levels of 𝜌. It consistently produces 
unbiased estimates of both slope coefficients, including the endogenous 
regressor 𝛽2, while maintaining accurate inference for inefficiency-
related parameters. Its relatively low RMSE and stable convergence 
behavior make it the most robust estimator in the simulation. Over-
estimation of 𝛾 and underestimation of 𝜎𝑣 is only evident in high-
endogeneity settings. The control function estimator strikes a favorable 
balance between model complexity and performance in finite samples.

The GMM estimator (following Tran and Tsionas, 2013) yields 
consistent estimates by relying on moment conditions derived from the 
joint likelihood structure. In the simulation, it successfully removes 
the endogeneity bias in 𝛽2, especially when 𝜌 is high. However, it 
exhibits larger RMSE and inflated estimates of 𝛾 and 𝜎𝑢, along with 
downward bias in 𝜎𝑣. These discrepancies are evident in the simulated 
sample size, suggesting that the method may be sensitive to finite-
sample variability and the use of equally weighted moments. Despite its 
theoretical appeal, the GMM estimator’s practical performance depends 
heavily on such implementation details.

The copula-based estimator (following Tran and Tsionas, 2015) 
addresses endogeneity by modeling the joint distribution between the 
endogenous regressor and the composed error, avoiding the need for 
external instruments. In our simulations, however, it consistently fails 
to correct the bias in the structural coefficient 𝛽2, and the estimated 
dependence parameter 𝜌 often deviates substantially from its true value, 
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Table 2
Monte Carlo simulation results for representative SFA models addressing endogeneitya.
 𝜌 = 0 Naive Control function GMM Copula

 Parameter bias RMSE bias RMSE bias RMSE bias RMSE  
 𝛽1 −0.0018 0.0252 −0.0018 0.0252 −0.0022 0.0283 −0.0017 0.0252 
 𝛽2 −0.0006 0.0171 −0.0005 0.0247 0.0003 0.0307 0.0019 0.0811 
 𝛿 −0.0003 0.0360 −0.0013 0.0433  
 𝛾 −0.0012 0.0459 −0.0010 0.0459 0.2137 0.2147  
 𝜎𝑢 −0.0010 0.0793 −0.0009 0.0793 0.3017 0.3057 0.0122 0.0844 
 𝜎𝑣 −0.0014 0.0302 −0.0017 0.0302 −0.1767 0.1787 0.5389 0.5405
 𝜌 −0.0044 0.1349 
 𝜌 = 0.4  
 𝛽1 0.0007 0.0244 0.0010 0.0233 0.0010 0.0250 0.0007 0.0244 
 𝛽2 0.2000 0.2007 0.0006 0.0255 0.0006 0.0290 0.2031 0.2173 
 𝛿 −0.0011 0.0353 −0.0010 0.0403  
 𝛾 0.0201 0.0472 0.0426 0.0608 0.2323 0.2332  
 𝜎𝑢 −0.0022 0.0728 −0.0022 0.0732 0.2447 0.2496 0.0128 0.0783
 𝜎𝑣 −0.0438 0.0531 −0.0864 0.0915 −0.2485 0.2498 0.4815 0.4833
 𝜌 −0.4055 0.4266

 𝜌 = 0.8  
 𝛽1 0.0000 0.0227 0.0005 0.0185 0.0004 0.0192 0.0000 0.0226
 𝛽2 0.4003 0.4006 0.0012 0.0260 0.0015 0.0269 0.4029 0.4079
 𝛿 −0.0013 0.0319 −0.0015 0.0332  
 𝛾 0.0937 0.1039 0.2328 0.2361 0.3252 0.3259  
 𝜎𝑢 −0.0023 0.0760 −0.0031 0.0755 0.0837 0.1046 0.0169 0.0839
 𝜎𝑣 −0.1779 0.1805 −0.4018 0.4029 −0.5034 0.5039 0.3052 0.3082
 𝜌 −0.8051 0.8145

𝑁 = 100, 𝑇 = 20, 𝑟𝑒𝑝𝑠 = 1000; true values: 𝛽1 = 𝛽2 = 0.5, 𝛿 = 1, 𝛾 = 0.5, 𝜎𝑢 = 𝜎𝑣 = 1.
a The Copula estimator does not include a control function term and therefore does not estimate 𝛿. Instead, endogeneity is addressed by 
directly modeling the dependence between the endogenous regressor and the error term through the copula parameter 𝜌, which captures their 
joint distributional structure.
The inefficiency share 𝛾 = 𝜎2

𝑢∕(𝜎
2
𝑢 +𝜎2

𝑣 ) is not reported for the Copula estimator, as its estimation is not based on the composed error structure 
typically used in standard stochastic frontier models. While 𝜎𝑢 and 𝜎𝑣 are estimated, their ratio does not carry the same interpretive meaning 
under the copula framework.
especially under moderate to strong endogeneity. The estimator also 
tends to overestimate the variance of the noise component 𝜎𝑣, leading 
to inflated inefficiency ratios. Nonetheless, the bias and RMSE of 𝜎𝑣
decrease as endogeneity level increases. That said, it performs relatively 
well in estimating the inefficiency variance 𝜎𝑢, with smaller bias and 
RMSE compared to GMM. This suggests that while the copula approach 
may struggle to adjust structural bias in small samples, it retains some 
accuracy in characterizing the inefficiency component of the model.

While the GMM and copula estimators show higher bias and RMSE 
in our simulations, these results should be interpreted in light of 
necessary implementation simplifications made to ensure numerical 
feasibility and comparability across methods.7 For example, the GMM 
estimator is implemented using equally weighted moments and numer-
ical derivatives, while the copula estimator adopts a two-stage proce-
dure with a Gaussian copula and parametric margins. These choices 
may limit finite-sample accuracy but do not affect the identification 
structure or theoretical soundness of the estimators. As discussed above, 
GMM remains a robust moment-based approach when instruments are 
available, and the copula method offers a flexible solution in the ab-
sence of valid instruments, particularly in applications with nonlinear 
or unobserved dependence.

4.2. Endogeneity between the regressor, the inefficiency term and the noise 
term

4.2.1. Data-generating process and implementation
The xtsfkk estimator allows to assume correlation between the re-

gressor and the inefficiency term, therefore, its Monte Carlo simulation 
has to adopt a different DGP, which basically follows Karakaplan 
(2022), with slight adaptations. To ensure that the simulations well 

7 Reproducing the full numerical behavior of the original estimators may 
require implementation in compiled languages such as C or Fortran.
7 
capture the features of the estimator, it is realized on Stata using the
xtsfkk command. A panel with 𝑁 = 100 units and 𝑇 = 20 time periods 
is generated as below:

𝐲 = 𝛽𝑐1 + 𝛽𝑥1𝐱1 + 𝛽𝑧1𝐳1 + 𝐮 + 𝐯,

𝜎2𝑢 = exp(𝛽𝑐2 + 𝛽𝑥2𝐱2 + 𝛽𝑧2𝐳2),

𝐮∗ ∼ 𝑁+(0, 1),

𝐮 = 𝜎𝑢𝐮∗,

where 𝐱1 and 𝐱2 are exogenous variables, and 𝐳1 and 𝐳2 are endogenous 
variables. The true parameters are set at 𝛽𝑐1 = 𝛽𝑥1 = 𝛽𝑧1 = 0.5, 
𝛽𝑐2 = 𝛽𝑥2 = 𝛽𝑧2 = 0.25, and all variables are generated randomly from 
the normal distribution with a mean of 0 and a standard deviation 
of 1. The endogeneity of 𝐳1 and 𝐳2 are independently and randomly 
generated from the normal distribution with a mean of 𝐯 × 𝜌 and a 
standard deviation of 1 − 𝜌, where the degree of endogeneity increases 
with the 𝜌 parameter. The IVs 𝐢𝐯1 and 𝐢𝐯2 are also independently and 
randomly generated from the normal distribution with a mean of 𝐳1 ∗ 𝛿
and 𝐳2 ∗ 𝛿, respectively, and a standard deviation of 1 − 𝛿, where the 
strength of IVs increases with the 𝛿 parameter. The strength of the IVs 
are set at levels of 𝛿 ∈ {0.6, 0.9}. The Monte Carlo simulations are run 
for 𝜌 ∈ {0, 0.4, 0.8} with 1000 repetitions each. Results of the loops 
in which the endogenous models converge are used in calculating the 
results.

4.2.2. Simulation results and discussion
The results of Monte Carlo simulations for the xtsfkk estimator, 

including the EX — exogenous model (which ignores potential endo-
geneity, equivalent to the naive model in the previous subsection) and 
the EN — endogenous model (which applies the xtsfkk estimator) at 
three endogeneity levels and two levels of IV strength are summarized 
in Tables  3 and 4.
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Table 3
Monte Carlo simulation results for the xtsfkk estimator at 𝛿 = 0.6.
 Endogeneity 𝜌 = 0 (𝑎𝑡𝑡𝑒𝑚𝑝𝑡𝑠 = 1591) 𝜌 = 0.4 (𝑎𝑡𝑡𝑒𝑚𝑝𝑡𝑠 = 1058) 𝜌 = 0.8 (𝑎𝑡𝑡𝑒𝑚𝑝𝑡𝑠 = 1060)

 Model EX EN EX EN EX EN  
 bias 𝛽𝑐1 1.0744 1.0646 1.4150 1.1885 1.0464 1.0107  
 RMSE 𝛽𝑐1 1.0753 1.0657 1.4162 1.1894 1.0467 1.0111  
 bias 𝛽𝑥1 0.0001 0.0000 0.0003 0.0003 −0.0001 −0.0002  
 RMSE 𝛽𝑥1 0.0288 0.0288 0.0244 0.0248 0.0169 0.0169  
 bias 𝛽𝑧1 −0.0100 −0.0105 0.6725 0.7955 1.2159 1.3391  
 RMSE 𝛽𝑧1 0.0263 0.0326 0.6735 0.7973 1.2163 1.3395  
 bias 𝛽𝑐2 −3.9796 −4.5444 −1.8794 −3.2766 −4.6507 −5.0306 
 RMSE 𝛽𝑐2 4.0160 9.3789 1.8935 6.3122 7.1198 5.0761  
 bias 𝛽𝑥2 −1.0892 −1.1584 −0.5197 −0.5906 −1.1054 −1.4723 
 RMSE 𝛽𝑥2 1.1179 1.3073 0.5250 1.7223 1.5883 1.4818  
 bias 𝛽𝑧2 −1.0876 −0.8612 −2.0329 −2.0399 −1.4381 0.1063  
 RMSE 𝛽𝑧2 1.1149 2.8645 2.0361 2.1585 2.1600 0.4504  
 bias 𝜎𝑣 0.2219 0.2213 0.0371 0.0325 −0.2524 −0.2750  
 RMSE 𝜎𝑣 0.2229 0.2223 0.0411 0.0370 0.2528 0.2753  
𝑁 = 100, 𝑇 = 20, 𝑟𝑒𝑝𝑠 = 1000.
Table 4
Monte Carlo simulation results for the xtsfkk estimator at 𝛿 = 0.9.
 Endogeneity 𝜌 = 0 (𝑎𝑡𝑡𝑒𝑚𝑝𝑡𝑠 = 2075) 𝜌 = 0.4 (𝑎𝑡𝑡𝑒𝑚𝑝𝑡𝑠 = 1173) 𝜌 = 0.8 (𝑎𝑡𝑡𝑒𝑚𝑝𝑡𝑠 = 1125)

 Model EX EN EX EN EX EN  
 bias 𝛽𝑐1 1.0741 1.0572 1.4127 1.4000 1.0460 1.0252  
 RMSE 𝛽𝑐1 1.0751 1.0593 1.4140 1.4016 1.0463 1.0257  
 bias 𝛽𝑥1 −0.0010 −0.0010 −0.0000 −0.0000 0.0001 0.0000  
 RMSE 𝛽𝑥1 0.0291 0.0291 0.0245 0.0245 0.0170 0.0170  
 bias 𝛽𝑧1 −0.0103 −0.0104 0.6733 0.6780 1.2162 1.2481  
 RMSE 𝛽𝑧1 0.0262 0.0265 0.6742 0.6790 1.2165 1.2485  
 bias 𝛽𝑐2 −3.9679 4.0060 −1.8871 −2.6711 −4.6493 −9.3465 
 RMSE 𝛽𝑐2 −18.8113 70.6222 1.9011 13.3899 7.1189 35.5813 
 bias 𝛽𝑥2 −1.0828 −0.0500 −0.5228 −0.6268 −1.1035 −1.2162 
 RMSE 𝛽𝑥2 1.1122 15.9387 0.5280 3.7279 1.5868 3.8164  
 bias 𝛽𝑧2 −1.0940 −1.0698 −2.0343 −2.1116 −1.4360 0.4124  
 RMSE 𝛽𝑧2 1.1224 15.7230 2.0375 3.1870 2.1587 12.1557 
 bias 𝜎𝑣 0.2220 0.2225 0.0373 0.0372 −0.2525 −0.2575  
 RMSE 𝜎𝑣 0.2229 0.2235 0.0413 0.0416 0.2529 0.2579  
𝑁 = 100, 𝑇 = 20, 𝑟𝑒𝑝𝑠 = 1000.
In practice, there is possibility of non-convergence for the endoge-
nous model, depending on the generated sample. The numbers of actual 
attempts made until 1000 valid repetitions are reached are shown in the 
table. When 𝜌 = 0, it is more difficult for the endogenous model to con-
verge, since the estimator is designed to address potential endogeneity. 
𝜌 = 0.4 and 0.8 share similar and non-ignorable frequency of non-
convergence, indicating pragmatic difficulty in applying the estimator 
to real data. The frequency of non-convergence of all endogeneity levels 
grows with the strength of IV.

On the other hand, when the endogenous model converges, in rare 
but non-trivial cases, extreme values are estimated for some of the coef-
ficients, with large standard deviations and statistical non-significance. 
In practice, when such results are obtained from the endogenous model, 
prudence is required in interpreting them. In normal loops, the differ-
ence between the exogenous and endogenous models are very small 
and insufficient to offset the extreme values. This makes the average 
bias and RMSE of some coefficients larger in the endogenous model. 
Nevertheless, we can still compare the performance of the estimator 
across different endogenous levels and strengths of IV.

The estimations of 𝛽𝑐1 and 𝛽𝑥1 are very similar in both exogenous 
and endogenous models, which is expected for exogenous variables. 
The estimations of 𝛽𝑧1 have larger bias in the endogenous model when 
𝛿 = 0.6, but the bias becomes smaller with 𝛿 = 0.9. It implies that 
stronger IVs may improve the performance of the xtsfkk estimator 
on endogenous variables. For the other endogenous variable, 𝛽𝑧2, the 
estimator outperforms the exogenous model at high endogeneity level. 
When 𝛿 = 0.9, the average bias is smaller than 𝛿 = 0.6, but RMSE 
grows. Meanwhile, the estimator brings about higher volatility to other 
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variables in the inefficiency term. Considering the existence of occa-
sional extreme values, the results of the normal estimations should be 
more precise. When endogeneity is at moderate level (𝜌 = 0.4), the 
estimations of 𝜎𝑣 by both models are quite good, while there is larger 
bias at both low (𝜌 = 0) and high (𝜌 = 0.8) endogeneity level.

Compared to the four representative estimators evaluated earlier, 
the xtsfkk estimator targets a different source of endogeneity — namely, 
the correlation among regressors, the inefficiency term and the noise 
component. This distinction is reflected in its separate data-generating 
process and simulation design. In terms of performance, the xtsfkk esti-
mator outperforms exogenous estimator when endogeneity is present, 
especially in recovering coefficients of endogenous regressors. Its ad-
vantage becomes more apparent as endogeneity intensifies and instru-
mental variables become stronger. Nonetheless, the estimator exhibits 
notable sensitivity to convergence and volatility in finite samples, with 
occasional extreme estimates that inflate overall bias and RMSE. This 
trade-off highlights xtsfkk’s strength in addressing inefficiency-related 
endogeneity, while also underscoring the importance of specification 
choices and instrument selection.

When compared to the other estimators, xtsfkk offers a flexible and 
theoretically grounded framework suitable for panel data, with the 
added benefit of integrated treatment of endogeneity and inefficiency 
structure. However, in practice, it requires careful tuning and some-
times simplified functional forms to ensure numerical feasibility. The 
choice among these methods should take into account the assumed 
structure of endogeneity and the empirical context at hand.

Overall, the simulations show that each estimator has its own 
advantages and drawbacks. The naive model is clearly biased when 
regressors are endogenous. The control function estimator provides a 
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straightforward correction and yields reasonably reliable results. The 
GMM estimator is theoretically appealing due to its general moment-
based formulation, but in practice its performance advantage is limited. 
The copula approach offers a flexible alternative when external in-
struments are unavailable, with satisfactory results in finite samples. 
Finally, the xtsfkk estimator addresses endogeneity in both frontier 
and inefficiency terms, though convergence issues may arise. Taken 
together, the findings underscore that each method involves trade-offs 
between bias control, efficiency, and feasibility.

5. Empirical application

5.1. Empirical model

In this section, we apply the representative estimators addressing 
endogeneity SFA to real data of firms in the Portuguese electricity 
sector — specifically, the subsector of electricity generation from ther-
mal sources. The main purpose of this section is to illustrate the 
application of these estimators to real data where endogeneity may 
exist in estimating Stochastic Frontier models, and to compare their 
performance in such application.

Following Kumbhakar, Wang and Horncastle (2015), the cost min-
imization problem for producer i under an input-oriented technical 
efficiency specification is 
min𝐰′𝐱 s.t. 𝑦 = 𝑓 (𝐱𝑒−𝜂), (29)

F.O.C.: 
𝑓𝑗 (𝐱𝑒−𝜂)
𝑓1(𝐱𝑒−𝜂)

=
𝑤𝑗

𝑤1
, 𝑗 = 2,… , 𝐽 , (30)

where 𝐱 and 𝐰 are vectors of inputs and their prices, and 𝜂 ≥ 0 is 
the input-oriented technical inefficiency that measures the percentage 
by which all the inputs are overused in producing output 𝑦. The cost 
function can therefore be defined as 
𝐶∗(𝐰, 𝑦) =

∑

𝑗
𝐰𝑗𝑥𝑗𝑒

−𝜂 , (31)

which is the frontier cost function that gives the minimum cost given 
input prices 𝐰 and the observed output level 𝑦. On the other hand, the 
actual cost can be written as 
𝐶𝑎 =

∑

𝑗
𝑤𝑗𝑥𝑗 = 𝐶∗(𝐰, 𝑦) exp(𝜂), (32)

and therefore, we have 
ln𝐶𝑎 = ln𝐶∗(𝐰, 𝑦) + 𝜂. (33)

The relationship implies that log actual cost is increased by 𝜂, i.e. all 
the inputs are overused by 𝜂. The efficiency index of a producer is then

exp(−𝜂) = 𝐶∗

𝐶𝑎 .

In implementation, we specifically assume that the cost function 
takes a translog form:
ln𝐶𝑎

𝑖𝑡 = ln𝐶∗(𝐰𝑖𝑡, 𝑦𝑖𝑡) + 𝑣𝑖𝑡 + 𝜂𝑖𝑡
= 𝛽0 +

∑

𝑗
𝛽𝑗 ln𝑤𝑗𝑖𝑡 +

∑

𝑗
𝛽𝑡𝑗 𝑡 ln𝑤𝑗𝑖𝑡 + 𝛽𝑦 ln 𝑦𝑖𝑡 + 𝛽𝑡𝑦𝑡 ln 𝑦𝑖𝑡

+ 1
2
∑

𝑗

∑

𝑘
𝛽𝑗𝑘 ln𝑤𝑗𝑖𝑡 ln𝑤𝑘𝑖𝑡 +

1
2
𝛽𝑦𝑦(ln 𝑦𝑖𝑡)2 +

∑

𝑗
𝛽𝑗𝑦 ln𝑤𝑗𝑖𝑡 ln 𝑦𝑖𝑡

+
∑

𝑗
𝛽𝑡𝑗 𝑡 ln𝑤𝑗𝑖𝑡 + 𝛽𝑡𝑦𝑡 ln 𝑦𝑖𝑡 + 𝛽𝑡𝑡 + 𝛽𝑡𝑡𝑡

2 + 𝑣𝑖𝑡

+ 𝑢𝑖𝑡; 𝑣𝑖𝑡 ∼ 𝑖.𝑖.𝑑.𝑁(0, 𝜎2𝑣 ), (34)

where 𝑖, 𝑡 denotes observation of firm 𝑖 at period 𝑡, 𝛽 represents un-
known parameters to be estimated, 𝑣𝑖𝑡 is the normally distributed error 
term and 𝑢𝑖𝑡 is the inefficiency term that follows specific assumptions 
according to the estimator adopted. Some theoretical assumptions are 
necessary to facilitate the transformation of the cost function. Following 
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Kumbhakar et al. (2015), 𝛽𝑗𝑘 = 𝛽𝑘𝑗 is required by symmetry. The 
cost function is homogeneous of degree one in the input prices, which 
imposes the following parameter restrictions: 
∑

𝑗
𝛽𝑗 = 1,

∑

𝑗
𝛽𝑗𝑘 = 0∀𝑘,

∑

𝑗
𝛽𝑗𝑦 = 0,

∑

𝑗
𝛽𝑡𝑗 = 0. (35)

Once these constraints are substituted into the model, the homo-
geneity conditions are automatically satisfied. This procedure amounts 
to using one of the input prices to normalize cost and other input 
prices. With 𝐾 and 𝐿 representing capital and labor as two inputs, after 
substitution and manipulation, we normalize the cost function using 
𝑤𝐾𝑖𝑡 as the normalizing price, obtaining

ln(
𝐶𝑎
𝑖𝑡

𝑤𝐾𝑖𝑡
) = 𝛽0 + 𝛽𝑦 ln 𝑦𝑖𝑡 + 𝛽𝑡𝑦𝑡 ln 𝑦𝑖𝑡 + 𝛽𝐿 ln(

𝑤𝐿𝑖𝑡
𝑤𝐾𝑖𝑡

) + 𝛽𝑡𝐿𝑡 ln(
𝑤𝐿𝑖𝑡
𝑤𝐾𝑖𝑡

)

+ 1
2
𝛽𝑦𝑦(ln 𝑦𝑖𝑡)2

+ 1
2
𝛽𝐿𝐿(

𝑤𝐿𝑖𝑡
𝑤𝐾𝑖𝑡

)2 + 𝛽𝐿𝑦 ln(
𝑤𝐿𝑖𝑡
𝑤𝐾𝑖𝑡

) ln 𝑦𝑖𝑡 + 𝛽𝑡𝑡 +
1
2
𝛽𝑡𝑡𝑡

2 + 𝑣𝑖𝑡 + 𝑢𝑖𝑡.

(36)
The equation above is estimated with the 5 estimators described 

in Section 3: the naive estimator, the control function estimator, the 
GMM estimator, the copula-based estimator and the xtsfkk estimator. 
Necessary adjustments are made according to the cost function.

5.2. Data

The data employed in the empirical application is part of the BPLIM 
database8 of the Bank of Portugal (Banco de Portugal). Firms are iden-
tified by anonymized tax/bank identification numbers and the data can 
only be accessed on BPLIM’s remote servers. The data used in this study 
comes from the Central Balance Sheet, mostly based on information 
reported through Informação Empresarial Simplificada (IES, Simplified 
Corporate Information) and contains annual data. As the database is 
not exclusively dedicated to the electricity sector, it contains general 
information on firms’ financial status.

Depending on data availability, we choose a set of variables to 
estimate Stochastic Frontier cost functions with annual panel data from 
2006 to 2021 for firms in thermal power subsector of Portugal. The 
following variables are used in our study:

Frontier equation:

• 𝑦 - measured by non-financial revenue;
• 𝑤𝐾 - calculated by interest expenses divided by obtained funding 
as a proxy for the price of capital;

• 𝑤𝐿 - measured by average hourly wage, calculated by salaries 
paid to employees divided by total hours worked;

• 𝐶𝑎 - calculated by the sum of financial expenses, salary expenses 
and expenses on goods and materials.

Inefficiency variables (when applicable):

• Age (AGE): the age of the firm; the impact of firm age on technical 
inefficiency is studied by Lai and Kumbhakar (2018);

• Financial investment (FIV): measured by the natural logarithm 
financial investment; firms’ involvement in financial activities 
may affect their efficiency (Hou et al., 2021, 2024).

As in the xtsfkk estimator, endogenous variables can be defined in 
both frontier and inefficiency equations, we assume one endogenous 
variable in each of them. For firms operating in electricity generation, 
it is reasonable to assume that the output is determined by demand and 
is thus exogenous (Liu et al., 2019). Therefore, ln𝑊 = ln( 𝑤𝐿

𝑤𝐾
) is as-

sumed as the endogenous variable in the frontier equation. Among the 

8 Website: https://bplim.bportugal.pt/.

https://bplim.bportugal.pt/
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Table 5
Descriptive statistics of data of the thermal power subsector of Portugal.
Source: Descriptive statistics based on data from the BPLIM database.
 Variable Unit Obs. Mean Std. Dev. Missing % 
 𝑦 Euro 2468 1.96𝑒 + 07 1.23𝑒 + 08 0%  
 𝑤𝐾 Ratio 1006 .1561628 1.170435 59.23%  
 𝑤𝐿 Euro/hour 898 13.13717 13.22797 63.61%  
 𝐶𝑎 Euro 2468 2201233 1.90𝑒 + 07 0%  
 𝐴𝑔𝑒 Year 2468 12.17018 9.814504 0%  
 𝐹𝐼𝑉 Euro 666 5285540 3.51𝑒 + 07 73.01%  
 𝐶𝐷 Ratio 829 4661586 3.32𝑒 + 07 66.41%  
 𝐴𝑉𝐻𝑅𝑆 Hour 896 1716.052 446.9426 63.69%  
Note: Minimum and maximum values omitted as requested by confidentiality terms of 
the BPLIM database.

inefficiency variables, a firm’s age is apparently exogenous; its financial 
investment (FIV), on the other hand, can be related to unobserved op-
erational features of each firm and thus assumed as endogenous. In the 
control-function estimator, the GMM estimator and the copula-based 
estimator, only ln𝑊  is assumed endogenous since the specifications do 
not allow explanatory variables for the inefficiency term.

Instrumental variables9 (when applicable):

• Capital deepening (CD): measured by the natural logarithm of 
the ratio of capital (fixed tangible asset) to labor (number of 
employees); the ratio of capital to labor of a firm may reflect 
a firm’s incentive for financial investment (FIV); it may also 
indicate willingness to pay higher wage to its employees, thus be 
related to ln𝑊 ;

• Average hours worked (AVHRS): measured by the natural loga-
rithm of average hours worked per paid employee; working hours 
can reflect a firm’s managerial structure and intuitively, it can be 
related to average wage (therefore ln𝑊 ).

Both IVs are assumed for the control-function estimator, the GMM 
estimator and the xtsfkk estimator. The copula-based estimator does not 
require IVs.

Descriptive statistics of the data of each subsector in our study 
are presented in Table  5. The descriptive statistics are based on the 
original values of the variables. As some of the observations take the 
original values of 0, missing values are generated when transformed 
into natural logarithms. This makes the panel less balanced and reduces 
the effective observations in the estimation. The percentage of missing 
values of each variable is also reported in the table.

Additionally, the correlation matrix among the variables used in the 
estimation is reported in Table  6. The matrix is calculated with the 
values actually used in the estimation, i.e., after transformations such 
as taking natural logarithms.

The correlation matrix indicate that 𝐶𝐷 is more strongly correlated 
with the endogenous wage variable than 𝐴𝑉𝐻𝑅𝑆. Such correlations 
offer preliminary intuition about instrument relevance, but the strength 
of these IVs requires formal test discussed in the next subsection.

5.3. Results and discussion

The empirical model described in Section 5.1 is estimated with 
the estimators mentioned in Section 3. For each estimation procedure, 
several diagnostics are embedded. First, an endogeneity test is done ac-
cording to Section 3.5 to detect the presence of potential endogeneity. 
Second, weak instruments are assessed both in the R implementation 
and in the xtsfkk framework. In R, a first-stage regression of the 

9 The effects of the above inefficiency and/or instrumental variables may 
imply firm-specific production/cost features and thus be confounded with the 
residual forming the cost inefficiency. While there are models dedicated to 
treating such effect, the analysis of this section focus on the endogeneity issue.
10 
Fig. 1. Distribution of cost efficiency in the Portuguese thermal power sub-
sector, Naive estimator.

endogenous variable on the instruments and exogenous covariates is 
estimated, and the joint significance of the instruments is tested. In
xtsfkk, the test command provides an analogous check, yielding a chi-
squared statistic for the null that a given instrument has no explanatory 
power across all endogenous regressors. In both cases, rejection of the 
null indicates instrument relevance. Third, in the R framework, since 
the number of instruments exceeds the number of endogenous regres-
sors, an overidentification test is conducted. Specifically, a Sargan 𝑛𝑅2

statistic, which tests the null hypothesis that the instruments are valid. 
In contrast, the xtsfkk specification with two instruments for two en-
dogenous regressors is exactly identified, and thus no overidentification 
test is available.

Similar to the Monte Carlo simulations, the xtsfkk estimator is 
applied using Stata. The other estimators are implemented using R, and 
the results are presented in Table  7.

The results presented in Table  7 are estimated assuming CD and 
AVHRS as IVs; estimated results, including test results, are very similar 
if only one of them is assumed as IV (although the model is supposed 
to be correctly identified with one endogenous variable and one IV). 
Endogeneity tests cannot reject the null hypothesis that there is no 
endogeneity in the model, which is possibly because of the high stan-
dard error in the data, and thus, in the test results. Weak IV tests show 
that the IVs adopted in the model is strong enough. When two IVs are 
assumed, the model is likely to be over-identified; nonetheless, there is 
marginal difference in the results compared with the those when one 
IV is assumed.

In the naive model, without considering endogeneity, coefficients 
on ln 𝑦 and (ln 𝑦)2 are statistically significant. In the control-function 
model, the coefficient on (ln 𝑦)2 loses statistical significance while that 
on the endogenous variable ln𝑊  gains it. As demonstrated by the 
Monte Carlo simulations, the naive estimator generates large biases 
with endogenous variables (when endogeneity is present). By account-
ing for endogeneity, such biases are corrected, leading to changes in 
statistical significances of the coefficients. This is in line with theoreti-
cal expectations. In the GMM model, the sign on ln𝑊  is reversed, which 
is a typical symptom of endogeneity. Although collinearity among 
regressors can amplify this effect, the primary source is the correlation 
between explanatory variables and the error term.

The GMM estimator delivers relatively large standard errors and 
weaker significance, indicating limited precision in finite samples. This 
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Table 6
Correlation matrix among the variables used in the empirical estimation.
Source: Reported by Stata based on data from the BPLIM database.
 ln𝐶 ln 𝑦 ln𝑊 𝐴𝐺𝐸 𝐹𝐼𝑉 𝐶𝐷 𝐴𝑉𝐻𝑅𝑆 
 ln𝐶 1.0000  
 ln 𝑦 0.4696∗∗∗ 1.0000  
 ln𝑊 0.6970∗∗∗ 0.0892∗ 1.0000  
 𝐴𝐺𝐸 0.2725∗∗∗ 0.1676∗∗∗ −0.0174 1.0000  
 𝐹𝐼𝑉 0.5365∗∗∗ 0.3596∗∗∗ 0.1188∗ 0.1870∗∗∗ 1.0000  
 𝐶𝐷 0.2216∗∗∗ 0.2752∗∗∗ 0.1597∗∗∗ 0.0991∗∗∗ 0.1297∗∗∗ 1.0000  
 𝐴𝑉𝐻𝑅𝑆 0.1442∗∗∗ 0.1334∗∗∗ −0.0769 0.0551∗ 0.0024 −0.0670∗ 1.0000  
Note: ln𝐶 = ln(𝐶𝑎∕𝑤𝐾 ); ln𝑊 = 𝑤𝐿∕𝑤𝐾 ;.
*/**/*** stands for statistical significance at 10%/5%/1% level.
Table 7
Estimated results of the naive estimator, the cost function estimator, the GMM estimator and the copula-based estimator.
 Variable Coefficient

 Naive Control functiona GMMa Copula

 Frontier
 ln 𝑦 −1.7077∗∗∗(0.1501) −1.5302∗∗∗(0.5037) −0.7010∗∗(0.3491) −1.5249∗∗∗(0.1514)
 ln𝑊 −0.1067(0.7611) −0.4515∗∗∗(0.0213) 0.0039(1.3308) −0.3466(0.8274)
 (ln 𝑦)2 0.0734∗∗∗(0.0054) 0.0708(1.7371) 0.1746∗∗(0.0779) 0.0697∗∗∗(0.0055)
 (ln𝑊 )2 −0.0914(0.0775) −0.1085(0.3631) 0.4175(0.9748) −0.1636∗∗(0.0810)
 ln 𝑦 ln𝑊 0.0588(0.0504) 0.0431(0.2292) −0.2531(0.3517) 0.0372(0.0520)
 𝑡 ln 𝑦 0.0054(0.0099) −0.0021(0.0292) 0.4431∗∗∗(0.0569) 0.0001(0.0097)
 𝑡 ln𝑊 −0.0223(0.0325) −0.0242(0.0922) −0.0807(0.3841) −0.0115(0.0331)
 𝑡 −0.0943(0.1565) 0.0534(0.5075) 0.3151(0.6981) −0.0002(0.1545)
 𝑡2 0.0038(0.0052) 0.0022(0.0106) −0.2261∗∗∗(0.0261) 0.0014(0.0052)
 Intercept 21.8979∗∗∗(2.0487) 21.2599∗∗∗(2.7972) 21.5928∗∗∗(2.1590) 23.7919∗∗∗(2.3417)
 ln 𝜎𝑢 0.5517∗∗∗(0.1720) 0.5901(0.4962) 0.1158(0.6417) 1.0607∗∗∗(0.0573)
 ln 𝜎𝑣 0.5023∗∗∗(0.0716) 0.4825∗∗∗(0.1748) 0.1190(0.5437) 0.4636∗∗∗(0.1597)
 𝛿 0.7143(2.6260) 0.2527(1.5247)  
 𝜌 −0.3194(1.1949)

 Efficiency
 Mean 0.2309 0.4745 0.6893 0.2828
 Median 0.1235 0.4807 0.9999 0.2836

 Endogeneity test
 Wald 0.07400148 0.02747196 0.8725226
 𝑝-value 0.7855973 0.8683563 0.3502579

 Weak IV test: 𝐹 = 10.577,𝑃𝑟(>𝐹 )=3.342𝑒 − 05 (Reject 𝐻0 ∶ 𝐶𝐷 = 𝐴𝑉𝐻𝑅𝑆 = 0)

 Over-identification test: Sargan 𝑛𝑅2 = 1.1716, 𝑝 = 0.2791 (Cannot reject 𝐻0; model over identified.)
Note: 𝑁.𝑜𝑏𝑠.=410; ln𝑊 = ln(𝑤𝐿∕𝑤𝐾 ); */**/*** stands for statistical significance at 10%/5%/1% level.
a Standard errors calculated by bootstrap with 100 repetitions.
outcome is consistent with the Monte Carlo simulations, where GMM 
was shown to be robust in principle but less efficient with the simulated 
sample size. By contrast, the copula estimator yields results similar to 
those of the control-function model, further confirming its ability to ac-
count for endogeneity by capturing the dependence structure between 
regressors and the error component. Taken together, these empirical 
results align with the simulation evidence: while the naive estimator 
suffers from bias, both the control-function and copula approaches 
correct it, and GMM remains less precise despite its general robustness.

Estimated results on ln 𝜎𝑢 and ln 𝜎𝑣 demonstrate apparent differences 
across these approaches. Similar to simulation results, the GMM results 
diverge substantially from the other estimators, with much larger stan-
dard errors. While the estimates of ln 𝜎𝑣 are fairly consistent across the 
other estimators, those of ln 𝜎𝑢 differ case by case. The control-function 
estimator provides a coefficient similar to the naive estimator but with 
larger standard error; the copula estimator provides a larger coefficient 
with smaller standard error.

The predicted efficiency values of each estimator should be inter-
preted along with Figs.  1–4, which demonstrate the histogram and 
kernel density of predicted efficiency levels for each of the estimators.

In the naive model, the mean efficiency score is relatively low, 
with an even lower median, and the overall distribution is left-skewed. 
11 
In addition, a large number of observations are concentrated at full 
efficiency (100%).10

In the control-function model, the mean efficiency is higher and 
close to the median, but the distribution is irregular, exhibiting bi-
modality with two distinct modes. In fact, efficiency values predicted 
by the naive model can also be considered as bimodal, but with a more 
dispersed pattern; by reducing the mass at full efficiency, the control-
function model brings the two modes closer together and thereby 
largely corrects the bias.

In the GMM model, the mean efficiency is about 0.6893, higher than 
in the previous two models, while the median reaches 0.9999. This 
apparent anomaly is explained by the distribution in Fig.  3: a small 
number of observations lie in the middle-to-low range, whereas a large 
mass is truncated at full efficiency (unity). This outcome contrasts with 
the large bias observed in the estimate of ln 𝜎𝑢, further highlighting the 
instability of the GMM estimator.

In the copula model, the mean and median efficiency values are very 
close, lying between those of the naive and control-function models. 

10 Efficiency values exceeding unity occur when the conditional expectation 
of inefficiency, 𝐸(𝑢𝑖|𝜀𝑖), becomes negative due to estimation noise, which after 
transformation yields exp(−𝐸(𝑢 |𝜀 )) > 1; these values are truncated at one.
𝑖 𝑖
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Fig. 2. Distribution of cost efficiency in the Portuguese thermal power sub-
sector, control-function estimator.

Fig. 3. Distribution of cost efficiency in the Portuguese thermal power sub-
sector, GMM estimator.

The distribution is approximately normal, and the bimodality observed 
in the other models is much less pronounced.

The comparison of efficiency distributions reveals that both the 
naive and control-function models exhibit bimodality, though the latter 
reduces the mass at full efficiency and brings the two modes closer 
together, largely correcting the bias. The GMM estimator, by contrast, 
produces an anomalous pattern with most observations truncated at 
unity, consistent with its unstable variance estimates. The copula model 
stands out by yielding a smoother, near-normal distribution with close 
mean and median values, suggesting a more balanced characterization 
of efficiency.

The Stata command xtsfkk reports results for the exogenous model 
(where endogeneity is ignored) and the endogenous model (where the 
12 
Fig. 4. Distribution of cost efficiency in the Portuguese thermal power sub-
sector, copula-based estimator.

Table 8
Estimated results of the xtsfkk estimator.
 Variable Coefficient

 Exogenous (EX) model Endogenous (EN) model 
 Frontier
 ln 𝑦 0.2017(0.2580) −1.5545∗∗∗(.4642)  
 ln𝑊 0.3974∗∗(.1791) −4.3991∗∗∗(1.6162)  
 (ln 𝑦)2 0.0080(0.0089) 0.0120(0.0145)  
 (ln𝑊 )2 0.0145∗∗∗(0.0035) 0.0093(0.0090)  
 ln 𝑦 ln𝑊 0.0092(0.0132) 0.3294∗∗∗(0.1002)  
 𝑡 ln 𝑦 −0.0426∗∗∗(0.0052) −0.0624∗∗∗(0.0141)  
 𝑡 ln𝑊 0.0062(0.0060) 0.0115(0.0139)  
 𝑡 0.6347∗∗∗(0.0863) 0.8993∗∗∗(0.2109)  
 𝑡2 −0.0076∗∗∗(0.0018) −0.0084∗(0.0043)  
 Intercept 5.8306∗∗∗(1.9172) 31.2422∗∗∗(6.7084)  
 Inefficiency term
 𝐴𝐺𝐸 0.0894∗∗∗(0.0112) 0.0918∗∗∗(0.0110)  
 𝐹𝐼𝑉 −0.0128(0.0186) −0.1705∗∗∗(0.0295)  
 Intercept 0.7093∗∗∗(0.3234) 2.5019∗∗∗(0.5043)  
 Efficiency
 Mean 0.1988 0.2135  
 Median 0.0993 0.1260  
 Endogeneity test: 𝜒2(2) = 23.06(𝑝𝑟𝑜𝑏 > 𝜒2 = 0.0000)

 Reject 𝐻0 ∶ 𝜂ln𝑊 = 𝜂𝐹𝐼𝑉 = 0 at 1% level.
 Weak IV test
 𝐶𝐷 𝜒2(2) = 44.57(𝑝𝑟𝑜𝑏 > 𝜒2 = 0.0000)

 𝐴𝑉𝐻𝑅𝑆 𝜒2(2) = 6.53(𝑝𝑟𝑜𝑏 > 𝜒2 = 0.0381)

Note: N.obs.=234; ln𝑊 = ln(𝑤𝐿∕𝑤𝐾 );
*/**/*** stands for statistical significance at 10%/5%/1% level.

estimator is used to correct for endogeneity). The results of both are 
presented in Table  8.

𝜕 Endogeneity test unambiguously confirms the presence of en-
dogeneity in the model. Although in Table  7 the evidence for endo-
geneity is weaker, this likely reflects differences in model specification 
rather than its true absence. It is therefore reasonable to conclude that 
endogeneity remains a relevant concern, and that accounting for it 
materially changes both the coefficients and the efficiency estimates. 𝜒2

statistics show that both IVs are valid. In this estimation, 234 effective 
observations are used, fewer than the number used for Table  7. With 
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Fig. 5. Distribution of cost efficiency in the Portuguese thermal power sub-
sector, exogenous model estimated with xtsfkk package.

missing values for some variables in the data, more complicated specifi-
cations lead to fewer effective observations, which may undermine the 
accuracy of the results. This is another factor to be taken into account 
in practical application of estimating approaches.

In Table  8, the endogenous specification produces notable changes 
relative to the exogenous one. The coefficients on ln 𝑦 and ln𝑊  switch 
signs, a pattern also seen in the GMM results of Table  7, underscoring 
how accounting for endogeneity alters the estimated relationships. For 
the inefficiency determinants, FIV is statistically insignificant in the ex-
ogenous model but becomes significant once endogeneity is controlled 
for. The estimated results on inefficiency explanatory variables AGE 
and FIV11 are consistent with previous research (Hou et al., 2024). 
A firm with longer history may suffer from inertia in its managerial 
structure and face more difficulty in cost optimization. The nega-
tive association between FIV and inefficiency suggests that firms with 
greater financial investment tend to operate more efficiently. A possi-
ble explanation is that stronger financial capacity facilitates access to 
better technologies, management practices, or scale economies, thereby 
reducing inefficiency.

The abovementioned differences show that the xtsfkk estimator can 
correct biases caused by endogeneity in both frontier and inefficiency 
equations. Efficiency scores also differ markedly: the endogenous model 
yields higher mean and median values, indicating that efficiency is 
likely underestimated when endogeneity is ignored. The distribution 
of efficiency values of the exogenous and endogenous models are 
illustrated in Figs.  5 and 6.

The distribution of efficiency values predicted by the exogenous and 
endogenous models are similar; the efficiency distribution under the 
EN specification appears slightly right-skewed and with lower kurtosis 
compared to the EX model. The efficiency distribution of these models 
more closely resembles that of the naive model (rather than that of 
the cost-function or copula model). This pattern may reflect incomplete 
correction on the predicted efficiency scores under the influence of 
inefficiency determinants.

The representative models examined in this paper each offer distinct 
advantages in addressing endogeneity. The control-function approach is 
relatively simple to implement and delivers reliable results. The GMM 
framework contributes more on the theoretical side than in empirical 
performance. The copula model, by not requiring instruments, provides 
reasonably robust estimates and may serve as a flexible alternative in 
some contexts. The xtsfkk estimator extends further by incorporating 
inefficiency determinants, enhancing practical applicability; its Stata 

11 Since the definition of the inefficiency term is quite complex, as defined 
by Eq. (22), it is difficult to intuitively interpret the magnitude of the 
effects of these variables on inefficiency. Nevertheless, the sign and statistical 
significance is of interest for policy consideration.
13 
Fig. 6. Distribution of cost efficiency in the Portuguese thermal power sub-
sector, endogenous model estimated with xtsfkk package.

package greatly facilitates its usage in applied studies. Nevertheless, the 
inclusion of too many variables can increase convergence difficulties 
and destabilize efficiency estimates, which calls for cautious application 
in practice. The replication package includes an R script which imple-
ments estimators applied in this empirical application (except the xtsfkk
estimator), which can be used as a reference for practical studies with 
proper adaptations. Issues such as presence of endogeneity, instrument 
strength, and over-identification are highly sensitive to model speci-
fication, and test outcomes can vary substantially depending on how 
the model is defined. Hence, careful tuning is essential in empirical 
applications.

From a policy perspective, the empirical application illustrates how 
different estimators can alter the interpretation of efficiency patterns in 
the thermal power subsector. Variations in average efficiency levels, the 
significance of firm characteristics such as AGE and FIV, and the rank-
ing of firms by efficiency scores are not merely econometric details, but 
indicators that regulators may use when setting revenue caps, designing 
incentive schemes, or prioritizing investment support. The finding that 
financial investment (FIV) reduces inefficiency, for instance, points 
to the importance of facilitating firms’ access to capital in order to 
promote technological upgrading and cost optimization. Conversely, 
the sensitivity of results to estimator choice cautions against relying on 
a single benchmark when formulating regulation. Thus, methodological 
rigor in addressing endogeneity directly translates into more reliable 
policy-relevant indicators for the governance of the energy sector.

6. Conclusion

Stochastic Frontier Analysis is widely applied in the energy sector, 
as efficiency scores derived from frontier models often serve as ref-
erences for regulatory policies aimed at stimulating competition and 
improving performance. Yet, the presence of endogeneity between in-
put variables and the inefficiency component can seriously compromise 
the accuracy of such evaluations. Because of the specific structure of 
frontier models, dedicated estimators are needed to address this issue. 
A range of approaches have recently been proposed, including IV-
based maximum likelihood estimators, GMM, and copula models, each 
offering a different route to mitigate the bias induced by endogeneity.

This study evaluates the performance of alternative estimators 
through Monte Carlo simulations and an empirical application to the 
Portuguese thermal power subsector from 2006 to 2021. The results 
indicate that neglecting potential endogeneity can lead to substantial 
differences in both frontier coefficients and efficiency scores. Models 
that explicitly account for endogeneity generally deliver more robust 
and interpretable outcomes, while exogenous specifications risk un-
derstating inefficiency and mischaracterizing its determinants. Overall, 
addressing endogeneity is crucial to ensure that such policy measures 
are based on reliable efficiency benchmarks.
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Turning to the empirical findings, firm age is generally associated 
with higher inefficiency, reflecting inertia in managerial structures. 
Financial investment reduces inefficiency, pointing to the importance 
of access to capital in facilitating technological upgrading and cost 
optimization.

Several limitations of this study should be acknowledged. First, 
the database employed is not specifically designed for the energy 
sector, and some relevant variables are either imperfectly measured, 
unavailable, or subject to missing values. Second, these data limitations 
constrain the set of inefficiency determinants that can be incorporated, 
which in turn narrows the scope of policy insights that can be drawn 
from the empirical results. Third, our approach addresses endogeneity 
at the econometric level rather than through a structural cost specifica-
tion that disentangles modeling errors from price-related inefficiency, 
partly because the available data does not permit such modeling. Future 
research may overcome these shortcomings by using more specialized 
and higher-quality datasets. While these limitations restrict the extent 
of sector-specific policy contributions, they do not undermine the main 
aim of the paper, which is to provide a comparative assessment of 
alternative estimators for handling endogeneity in Stochastic Frontier 
models.

This analysis also offers guidance for further applications. Flexible 
specifications such as translog may improve realism but often raise 
convergence issues, making simpler forms preferable in practice. Future 
research could combine endogeneity-corrected estimators with richer 
sectoral datasets that incorporate regulatory measures, thereby linking 
efficiency outcomes more closely to policy. Extending the comparative 
assessment to other industries or frontier frameworks would further 
strengthen the methodological toolkit for applied efficiency analysis.
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