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ABSTRACT

Endogeneity poses a major challenge for Stochastic Frontier Analysis, as input choices may be endogenous to
unobserved components of the error term, resulting in biased efficiency estimates. This paper compares leading
estimators that address this issue, including control-function estimator (Kutlu, 2010), Generalized Method
of Moments (GMM) (Tran and Tsionas, 2013) and copula (Tran and Tsionas, 2015) approaches, as well as
the instrumental variable based maximum likelihood estimator (Karakaplan and Kutlu, 2017a,b; Karakaplan,
2022). Monte Carlo simulations reveal distinct bias-variance trade-offs: likelihood-based estimators provide
more precise efficiency scores, while GMM and copula can be advantageous in specific contexts. An empirical
application to the Portuguese thermal power subsector (2006-2021) shows that accounting for endogeneity
significantly alters coefficients and efficiency distributions. These results demonstrate that estimator choice
affects policy-relevant indicators such as efficiency scores and determinants of cost performance. Despite

Energy sector data limitations, the study underscores the importance of treating endogeneity and provides methodological
guidance for applied efficiency analysis.

1. Introduction

Technical efficiency is the predominant focus of Stochastic Frontier
Analysis (SFA) applied to firms in the energy sector. The performance of
this sector, in turn, underpins overall economic activity. Historically, in
the 20th century, many countries structured their energy sectors around
vertically integrated monopolies under governmental supervision, since
there were high fixed costs of investment and this organization was
seen as the way to create a functioning energy system. However,
the imperative of enhancing efficiency became evident over time, as
the problems inherent to monopoly control surfaced. Consequently,
numerous countries embarked on market reforms to stimulate competi-
tion, segmenting generation, transmission, and distribution into distinct
subsectors with differing technical and economic attributes. While such
reforms generally aim to enhance technical efficiency (Barros, 2008;
Ma and Zhao, 2015; Lundin, 2020; Bobde and Tanaka, 2020), their
effectiveness may be compromised by various challenges stemming
from incomplete deregulation or practical obstacles (Sun and Wu, 2020;
Lee and Howard, 2021; Mirza et al., 2021). To facilitate market reforms
and promote efficiency improvements, regulatory bodies utilize various

benchmarking techniques, such as Data Envelopment Analysis (DEA)
and SFA.

With the ongoing energy transition, new challenges emerge to
energy market regulators, leading to continuing interest in applied re-
search on benchmark methods. Accurate estimations of firms’ efficiency
levels are important to policy making in order to correctly incentivize
inefficient players to catch up with efficient ones. One issue that awaits
resolution is how to deal with potential endogeneity in benchmark-
ing methods. This issue has received attention from recent studies
(Kumbhakar et al., 2020; Kuosmanen, 2023). Notably, inputs can be
endogenous as firms select them according to specific economic goals.
Consequently, the inputs within a production function exhibit corre-
lation with the error term, which includes unobserved firm-specific
effects, production risk (statistical noise), and technical inefficiency
(Lai and Kumbhakar, 2019). Thus, the use of conventional Stochastic
Frontier estimators without considering endogeneity is problematic.
Early attempts to address the endogeneity issue in Stochastic Frontier
models include Guan et al. (2009), Kutlu (2010) and Kim and Kim
(2011). They are followed by subsequent studies: Tran and Tsionas
(2013, 2015), Griffiths and Hajargasht (2016) and Amsler et al. (2016,
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2017), among others. Various methods are used to handle endogeneity
in Stochastic Frontier estimation, for example, Bayesian approach (Grif-
fiths and Hajargasht, 2016), nonparametric approach (Prokhorov et al.,
2021) and Poisson frontier models (Haschka and Herwartz, 2022).
Lai and Kumbhakar (2019) and Kumbhakar et al. (2020) show that
endogeneity can be eliminated once input misallocation is accounted
for, but the theoretical formulation relies on specific assumptions and
still does not directly treat endogeneity in the econometrical estimation.
Therefore, the endogeneity problem remains unsolved when evaluating
technical efficiency in the energy sector, especially when electricity is
the object of study.

A maximum likelihood estimator to correct for endogeneity in
Stochastic Frontier models is proposed by Karakaplan and Kutlu (2017a)
and Karakaplan (2017). The method initially enables the estimation of
cross-sectional models; Karakaplan and Kutlu (2017b) and Karakaplan
(2022) further develop the panel-data version of the method. For the
time being, this is a comprehensive and practical method which has
been applied in studies of various economic fields, including energy
economics (e.g., Xu et al., 2022). Notwithstanding, it has not yet been
applied to evaluate firm efficiency in the energy sector.

In particular, endogeneity needs to be addressed in benchmark
assessments of the sector in order to obtain reliable efficiency measures
and avoid misleading policy conclusions. To this end, we evaluate
alternative estimators that have been proposed to handle endogeneity
in stochastic frontier models: control function estimator (Kutlu, 2010);
GMM estimator (Tran and Tsionas, 2013); copula-based estimator (Tran
and Tsionas, 2015); instrumental variable (IV) based maximum like-
lihood estimator (Karakaplan and Kutlu, 2017b; Karakaplan, 2022).!
In doing so, the paper goes beyond a single application and estab-
lishes a comparative benchmark for the use of endogeneity-corrected
frontier methods in applied research. A further contribution is the
explicit implementation of these estimators (except for the IV-based
maximum likelihood estimator xtsfkk, already available as a Stata
package) in R script, provided in the replication package. This not
only enhances transparency and reproducibility but also equips re-
searchers with ready-to-use tools that can be adapted to diverse empir-
ical settings, thereby facilitating the broader adoption of econometric
approaches to efficiency analysis.

In the simulations, we find that IV-based maximum likelihood esti-
mators, GMM, and copula methods differ in their bias-variance trade-
offs, with the likelihood approach generally providing more precise
efficiency scores, while GMM and copula can be advantageous in
specific scenarios. In the empirical application to the Portuguese ther-
mal power subsector, these methodological differences translate into
noticeable variation in estimated efficiency distributions and policy-
relevant indicators. Together, the findings underscore the importance
of explicitly accounting for endogeneity when applying frontier models
in energy and related sectors.

The rest of this article is organized as follows. In the next section we
review related literature. In Section 3 we describe the methodological
formulations of representative approaches correcting for endogeneity
in SFA that we select for Monte Carlo simulations and empirical appli-
cations. In Section 4 we describe the implementation of Monte Carlo
simulations of these representative estimators and compare simula-
tion results. Section 5 describes the empirical model and data used
for the empirical application, and presents and discusses the results.
Concluding remarks are made in Section 6.

1 In fact, the control function estimator is also an IV-based maximum
likelihood approach, which is stated differently here to avoid confusion.
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2. Literature review

Various approaches have been proposed for evaluating technical
efficiency, particularly in the energy sector. An early example is the
best practice efficiency measure by Diewart and Nakamura (1999), based
on Farrell (1957). Jamasb and Pollitt (2001) provide an overview
of prevalent benchmarking methodologies in the electricity industry,
including DEA, Corrected Ordinary Least Squares (COLS), and SFA,
along with their primary applications up to that point. Recently, there
has been a growing preference for DEA and SFA in assessing technical
efficiency. Unlike traditional methods, DEA does not impose specific
functional forms on input and output, thereby enabling researchers to
concentrate on efficiency concerns (Ma and Zhao, 2015). However, it
does not allow direct estimation of the relationship between efficiency
and explanatory factors; when it is indeed justified to do so, a two-
stage approach is often applied (e.g., Bigerna et al., 2019, 2020, 2022),
where extra care is necessary to prevent biased estimations. DEA has
found diverse applications in energy economics, as evidenced by recent
studies. Gultom (2019) analyze efficiency in the U.S. electricity sector;
Navarro-Chavez et al. (2020) examine the Mexican electricity sector;
Alizadeh et al. (2020) investigate the Iranian electricity sector; Jin-
dal and Nilakantan (2021) investigate Indian coal-fired power plants;
Vesterberg et al. (2021) examine the Swedish electricity distribution;
Sanchez-Ortiz et al. (2021) study the Spanish electricity sector; and
Nakaishi et al. (2021) look into the environmental efficiency of Chinese
coal-fired power plants, among others.

The Stochastic Frontier approach presupposes technical inefficiency,
the inability to attain the output frontier given the inputs and prevail-
ing technology. The method involves making distributional assump-
tions regarding the noise and inefficiency components (Kumbhakar and
Tsionas, 2008), facilitating the estimation of how independent vari-
ables influence the mean and variance of technical inefficiency. While
some Stochastic Frontier techniques do not necessitate distributional
assumptions for the noise or inefficiency components, as demonstrated
by Kumbhakar and Bernstein (2019), alternatives such as nonlinear
squares can also obviate the need for such assumptions, as exemplified
by Belotti and Ferrara (2021).

Stochastic Frontier models offer adaptability, allowing customiza-
tion to tackle a diverse array of issues, thereby more effectively catering
to specific research inquiries. Thus, SFA has garnered widespread ac-
ceptance in the field of energy economics. It is a versatile tool, suitable
for evaluating various aspects such as directed technological change
(Hou et al.,, 2020, 2021), profitability and the long-term viability
of energy production options (Lee and Howard, 2021). Llorca et al.
(2017) analyze efficiency in the Latin-American transport sector using
energy demand functions. Kumbhakar et al. (2020) assess the cost
efficiency of Norwegian electricity distribution firms, contributing to
the growing body of research employing SFA to address efficiency
concerns in the electricity sector. Other studies focusing on technical
efficiency in Norwegian electricity distribution include Growitsch et al.
(2012), Kumbhakar et al. (2015), Kumbhakar and Lien (2017), Orea
et al. (2018), Mydland et al. (2018), Musau et al. (2021), among
others. Soroush et al. (2021) investigate the impact of institutional
quality on cost efficiency in Italian electricity distribution utilities.
Vesterberg et al. (2021) study the efficiency of small-scale electricity
and distribution grid in Sweden.

When it comes to electricity generation, Lai and Kumbhakar (2018)
introduce a homoscedastic four-component stochastic frontier (H4CSF)
model, linking technical inefficiency in production to factors such as the
age and capacity of coal-fired power plants. Liu et al. (2019) explore
whether environmental variations affect the technical efficiency of
Chinese grid utilities. Silva et al. (2019) employ a stochastic frontier
approach with maximum entropy estimation to analyze European elec-
tricity distribution companies. Pefiasco et al. (2019) delve into the
influence of policy factors on the efficiency of Spanish solar energy
plants.
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Early attempts to mitigate endogeneity in SFA adopted IV-based
control-function strategies. Kutlu’s (2010) two-step “BCIV” estimator
projects each potentially endogenous input on external instruments and
then inserts the first-stage residuals into a Battese-Coelli likelihood
(Battese and Coelli, 1992).2 Karakaplan and Kutlu (2017a,b), extend
this idea to the sfkk/xtsfkk estimators, which jointly estimate the fron-
tier and reduced-form equations for the endogenous regressors in one
maximum-likelihood step. Guan et al. (2009) and Tran and Tsionas
(2013) replace the second-step ML with a one-step, just-identified
GMM based on score conditions, preserving consistency under weaker
distributional assumptions but still relying on valid instruments.

When suitable instruments are unavailable, researchers have turned
to the joint-distribution approach. Tran and Tsionas (2015) embed a
Gaussian copula in the composed-error likelihood, obtaining a single-
step ML estimator that remains consistent without instruments, al-
though it assumes normal rank dependence. Griffiths and Hajargasht
(2016) achieve a similar goal with a Chamberlain-Mundlak control-
function device that links firm-level input averages to permanent inef-
ficiency; their Bayesian/ML framework can also accommodate a tran-
sient inefficiency term. Amsler et al. (2016, 2017) further generalize
copula and IV ideas, allowing both inputs and the scaling (environmen-
tal) variables that enter the inefficiency term to be endogenous; they
offer parallel IV-GMM and simulated-ML estimators. More recently,
Haschka and Herwartz (2022) extend the copula logic to a Poisson
frontier for count data, again dispensing with instruments.

A second branch of the literature addresses endogeneity by embed-
ding firms’ first-order conditions (FOC) directly in the frontier. Building
on the H4CSF framework, Lai and Kumbhakar (2018) and Lien et al.
(2018) impose the FOC from maximizing return to the outlay, while Lai
and Kumbhakar (2019) and Kumbhakar et al. (2020) include the cost-
minimizing FOC and decompose the resulting allocative-inefficiency
term into persistent and time-varying parts. Because the FOC error term
absorbs the correlation between inputs and the composite error, these
models control endogeneity “structurally” rather than econometrically.
A complementary line relaxes functional-form assumptions: Prokhorov
et al. (2021) propose non-parametric and semi-parametric frontiers
with endogenous regressors, combining flexible series or kernel ap-
proximations with a copula-based dependence structure. To date, these
structural-FOC and flexible-form estimators have been applied less
frequently than the IV-based sfkk/xtsfkk family, largely because they
require stronger behavioral assumptions or heavier computation.

IV-based maximum likelihood estimators remain the most
frequently applied econometric cure for endogeneity in frontier work. A
practical benchmark is the estimator of Karakaplan and Kutlu (2017a),
a maximume-likelihood procedure for cross-sectional data that augments
the Battese—Coelli frontier with first-stage reduced forms for each
endogenous regressor. Karakaplan (2017) released the Stata command
sfkk, making the method easy to replicate. The same authors extend
the idea to panels in Karakaplan and Kutlu (2017b); the corresponding
Stata command, xtsfkk, is documented in Karakaplan (2022). Subse-
quent studies have built on this framework: Kutlu et al. (2019) allow
the individual inefficiency term to follow a time-varying latent process,
while Kutlu (2022) embeds the IV-frontier in a spatial setting with an
endogenous weighting matrix. Together these contributions illustrate
how the sfkk/xtsfkk family has become the work-horse IV platform for
applied SFA. The sfkk and xtsfkk estimators have been applied across
a wide range of topics, including biomass energy (Xu and H.H., 2018),
school expenditures (Karakaplan and Kutlu, 2019), farmland produc-
tivity (Deng et al., 2020), market power in iron ore (Germeshausen
et al., 2020), innovation in finger millet (Jerop et al., 2020), rice pro-
ductivity under climate change (Ojo and Baiyegunhi, 2020), corporate
social responsibility (CSR) and efficiency (Binh et al., 2022), economic

2 For control-function endogeneity corrections in time-varying-parameter
models outside the SFA framework, see Kim (2006) and Kim and Kim (2011).
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agglomeration and energy efficiency (Xu et al.,, 2022), rural bank
efficiency (Amanda, 2023), bank lending in China (Fungacova et al.,
2023), transport infrastructure and output (Melo-Becerra and Ramirez-
Giraldo, 2023), and coal mining efficiency (Yang and Tsou, 2024).
To our knowledge, however, no study has yet used the endogeneity
estimator to analyze firm efficiency in the energy sector.

Table 1 provides an overview of the typical approaches to tackle
endogeneity in SFA, highlighting essential aspects of each one.

Energy market regulators can utilize benchmarking models to esti-
mate the cost efficiency of firms, enabling the establishment of revenue
caps and incentivizing improvements in productivity and efficiency
without unnecessary micro-management (Kumbhakar et al., 2020).
However, neglecting endogeneity when estimating efficiency scores
may lead to incorrect information being used for such policy formu-
lation. This study evaluates the performance of alternative estimators
designed to handle endogeneity in stochastic frontier models, com-
bining Monte Carlo simulations with an empirical application to the
thermal power subsector of Portugal. By jointly considering simulation
evidence and a sector-specific application, the analysis highlights both
the methodological trade-offs and the practical implications of dealing
with endogeneity, thereby motivating the empirical and simulation
frameworks developed in the following sections.

3. Overview on representative approaches addressing endogene-
ity in SFA

In this section, we introduce some representative approaches for
addressing endogeneity in SFA that we will use in Monte Carlo sim-
ulation and empirical application. These include: (1) the standard
maximum likelihood estimator assuming exogenous inputs, which can
be referred to as the “naive estimator”; (2) the two-step IV control-
function estimator by Kutlu (2010), often referred to as BCIV, which
is a basic and accessible solution for panel data; (3) the score-based
GMM estimator by Tran and Tsionas (2013), which offers a one-step
estimation using external instruments; (4) the copula-based maximum
likelihood estimator developed by Tran and Tsionas (2015), which
handles endogeneity without relying on external instruments; and (5)
the xtsfkk estimator proposed by Karakaplan and Kutlu (2017b) and
Karakaplan (2022), which provide a maximum likelihood framework
to jointly estimate the frontier and reduced-form equations and are
available in Stata. These estimators cover different methodological
strategies — including control function, GMM, copula approaches and
IV-based ML - and thus provide a well-rounded basis for performance
comparison.

For each estimator, we introduce the basic model specification and
the key steps® for estimating the model.

3.1. The naive estimator

The “naive” model in our analysis corresponds to the original
stochastic frontier specification of Aigner et al. (1977) and Meeusen
and van den Broeck (1977), extended to panel data without introduc-
ing time variation in inefficiency or correcting for endogeneity. The
production frontier is given by:

Yir = X,{;ﬁ + Uy — Uy, @

where y;, denotes the output of firm i in period ¢, X;, is a vector of input
variables, and f is a vector of technology parameters to be estimated.
The composite error term consists of:

v ~ N(0,62),u;, ~ NT(0,62), 2

3 To avoid redundancy, we describe simplified formulations for the ap-
proaches. The readers may refer to the original articles for complete
formulations.
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Table 1

Summary of representative empirical approaches that handle endogeneity in SFA.
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Study/Estimator Data required External instruments Inefficiency structure assumed Identification/Estimation
technique

Kutlu (2010) — BCIV Panel Yes (first-stage OLS) Time-varying half-normal Two-step control-function — ML

Guan et al. (2009) Panel Yes (lags as IVs) Time-varying Difference-GMM first stage; ML

frontier

Karakaplan and Kutlu (2017a) Cross-section Yes Firm-specific half-normal Joint ML on frontier
— sfkk (scaled by covariates) + reduced-form equations
Karakaplan (2022) - xtsfkk Panel Yes Same as sfkk; firm effects handled Joint ML (frontier + reduced
forms)
Tran and Tsionas (2013) Cross-section Yes Time-varying One-step, just-identified
(run year-by-year) score-GMM
Tran and Tsionas (2015) Cross-section No Time-varying Instrument-free Gaussian-copula

ML

Griffiths and Hajargasht (2016)

Panel

No (Chamberlain
—Mundlak CRE)

Permanent (optionally
plus transient)

CRE control-function,
ML/Bayesian

Amsler et al. (2016, 2017)

Cross-section
(panel feasible)

Optional
(IV-GMM variant)

Model-specific:
permanent or time-varying

IV-GMM or simulated ML with
copula

Lai and Kumbhakar (2018); Panel No Persistent + transient Structural FOC of return-to-outlay;
Lien et al. (2018) via allocative-inefficiency term unified ML
Lai and Kumbhakar (2019); Panel No Persistent FOC of cost minimization;
Kumbhakar et al. (2020) + transient (decomposed) structural ML
Kutlu et al. (2019) Panel Yes Time-varying true individual effects Expanded ML

(extends sfkk/xtsfkk) with state-space inefficiency
Prokhorov et al. (2021) Cross-section No Time-varying Non- & semi-parametric frontier;

copula dependence

Haschka and Herwartz (2022) Cross-section No Time-varying (Poisson frontier) Instrument-free copula ML

(count data)

for Poisson SFA

where v;, captures statistical noise and other random shocks, while
u;, > 0 represents firm-specific technical inefficiency, assumed to follow
a half-normal distribution N* with zero mean and variance ¢2. The
variance parameters are reparameterized as:

2_ 2

— 2 .,
6" =o0,+o0,,r=

q
(NS BN )

; 3

Q

where y measures the proportion of total variance attributable to ineffi-
ciency. The model parameters §, o> and o2 are estimated by maximum
likelihood, and firm-specific technical efficiency is predicted following
(Jondrow et al., 1982):

TE; = Elexp(-u;)le; ), € = vy — uyy. 4

This naive model serves as the baseline for comparison with alter-
native estimators that address endogeneity.

3.2. The control function estimator

Kutlu (2010) extends the standard stochastic frontier framework
of Aigner et al. (1977) and Meeusen and van den Broeck (1977) to
allow for endogenous regressors in the production frontier. The baseline
production frontier is:

Yir = X,,,ﬂ + &y — Uy, (5)
where y;, denotes the output of firm i in period #, X/, is an m x 1
vector of potentially endogenous regressors, f is a vector of technology
parameters, ¢; ~ N(0, ‘73) is statistical noise, and u; > 0 represents
technical inefficiency, assumed to follow a truncated-normal distribu-
tion N*(u, 53). Endogeneity arises when X, is correlated with the noise
term g;,. Kutlu (2010) models X;, as

X, =Z8+v,, 6)

where Z; contains exogenous instruments, and (v;,€;) are jointly
normally distributed with correlation vector p. By a Cholesky decom-
position of the covariance matrix of (v;,¢;)’, the production equation

can be rewritten as
_1
Vit = X:,ﬂ +0.p'2, 7 (X, — Z;ﬁ) + Wi — Uy, 7)

where w;, is independent of v;,. In practice, Kutlu (2010) suggests either
a joint maximum likelihood estimation, which incorporates both the
frontier equation and the reduced form for the endogenous regres-
sors into a single likelihood, or a computationally simpler two-step
procedure. In the two-step approach, Eq. (6) — the reduced form for
the endogenous regressors — is first estimated by OLS, and the fitted
residuals 9, are then included in the frontier equation as an additional
regressor:

Yir = X,{;ﬁ + p’vn + Wy — . ®
This augmented stochastic frontier model is estimated by maximum
likelihood under the usual half-normal inefficiency assumption. Firm-

specific technical efficiency is predicted as in Jondrow et al. (1982),
conditional on both w;, and the estimated endogenous component 9;:

TE; = Elexp(—u;)|wy, 0;;]. €©)

3.3. The GMM estimator

Tran and Tsionas (2013) propose a one-step GMM estimator for

stochastic frontier models with endogenous regressors. The starting
point is the frontier equation:
Vie = Z’l,”a+X;tﬁ+U,-, — U, (10)
where X, is a p x 1 vector of potentially endogenous regressors, Z/
is a q; X 1 vector of exogenous regressors, v;, ~ N(0,02) is statistical
noise, and u;, ~ N*(0, 0'3) represents non-negative inefficiency. The
endogenous regressors are modeled in a reduced form*:

X, =Z} 5+ (11)

4 To avoid confusion with the common annotation y that represents the
share of inefficiency variance in the total composed error variance in SFA,
here we use § instead of y in Tran and Tsionas (2015).
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where Z, ;, =1, ®Z,, contains g, strictly exogenous variables (¢, > p),
and (g;,v;,) are jointly normally distributed with correlation vector
p. By applying a Cholesky decomposition to the covariance matrix of
(€4, vy)', the frontier equation can be re-expressed as:

_L
Yie = Z’]q,‘;a +X,’gﬂ + Uuplﬂg 2(Xit -7

210 + @y — Uy, (12)

where w; ~ N(,(1 — p'p)s?) is independent of &,. The GMM ap-
proach uses the first-order conditions from the correct likelihood as mo-
ment conditions, combined with the orthogonality conditions from the

reduced-form equation. In the exactly identified case, the parameters
(a, B, S,variance parameters)’ are estimated by solving:

1 % 3
- ; G,(a, B,8) = 0. (13)

Following the estimation of parameters, firm-specific efficiency is
obtained in line with Jondrow et al. (1982). Let ¢;, denote the corrected
residual, 6, and 6, denote the estimated standard deviations of the
inefficiency and noise terms, 1 = 6,/6,, and 6 = 4/62 + 2. Then the
technical efficiency of firm i at time ¢ is calculated as

it
TE; = exp[-6(————— — %)L 14)

where ¢(-) and @(-) denote the standard normal probability density
(PDF) and cumulative distribution functions (CDF), respectively.

3.4. The copula-based estimator

The copula-based approach models the dependence between the
noise term v;, and the inefficiency term u;, without relying on the joint
normality assumption. The stochastic frontier is specified as:

Yie = Xf,ﬁ + Uy — Uy, (15)

where v;, ~ N(0,62) and u;, ~ N*(u,02) are allowed to be statistically
dependent. The joint distribution F, ,(u,v) is constructed via a copula
function Cy(-,-):

F, ,(u,0) = Co(F, (), F,(v)), (16)

where F, and F, are the marginal CDFs of u;, and v;;, and 6 is the copula
parameter measuring dependence. In our implementation, we employ
the Gaussian copula:

Cy(s, 1) = Dy(D™ ' (5), D7 (1)), a7

where @~! is the standard normal quantile function, and @, is the CDF
of a bivariate normal distribution with correlation coefficient 6. The
log-likelihood function is obtained from the copula density:

N T

1B, 0,00 1,0) = 3" D InCyl(F, (), Fy(v;) +In £, () +In fo(v,), (18)
i=1 t=1

where C, is the copula density and f,, f, are the marginal densities. Pa-

rameters are estimated by maximizing this log-likelihood. Firm-specific

technical efficiency is computed as

TE;, = Elexp(—u;)|v;]1, (19)
where the conditional distribution of u;, given v;, is derived from the
joint copula-based specification.

3.5. The xtsfkk estimator

The estimator proposed by Karakaplan and Kutlu (2017b) and
Karakaplan (2022), implemented in Stata as xtsfkk, generalizes the
control-function approach of Kutlu (2010) to a panel-data framework
and unlike the previous estimators, allows for endogeneity in both the
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frontier and inefficiency equations. The model is based on the following
specification:

!
yie = X, B+v, —suy,

X, = Z,5+¢,. (20)

it
where y, is output, X, includes both exogenous and endogenous
variables in the frontier, v, is the two-sided noise term, u; is the
one-sided inefficiency term, and s = 1 for production frontiers and
s = —1 for cost frontiers. The reduced form equation links endogenous
regressors X;, to instruments Z;,. By applying a Cholesky decomposition
of the joint distribution of (¢, v;,), the frontier can be rewritten with a
bias-correction component:

= x’y’,.,ﬂ +X; —Z,8)n+ey;, (21)
where (X, —Z;,6)'n captures the correlation between endogenous regres-
sors and the two-sided error, and ¢;, = w;, — su;; with w;, independent
from regressors. The inefficiency is modeled as
uy = h(X] @ u . uf ~ N*(u,02). (22)

u,i

For each panel unit i, the log-likelihood function is decomposed as
InL;=InL;,x +InL;x, (23)

where InL; ,x is the conditional density of output given regressors
and the correction term, and InL; x corresponds to the reduced-form
equations for the endogenous regressors. Technical efficiency is then
predicted as

¢(/4i*/ Gi*)

(p(”i*/ gi*) '

where ¢(-), @(-) are the standard normal PDF and CDF.
Additionally, endogeneity can be assessed by testing the joint sig-

nificance of the bias-correction term (X;, — Z;,6)n, where n loads the

first-stage residuals. The test relies on similar ideas with the standard

Durbin-Wu-Hausman test for endogeneity. Under exogeneity these

residuals are orthogonal to the composed error, hence n = 0. Therefore

it tests

TE; = exp{—h;lu;, + 0, 24)

Hy:n=0vs. H :n#0.
The test statistic is the Wald chi-square
W =i Var™'h ~ (), (25)

with ¢ the number of endogenous regressors. Rejection implies endo-
geneity.

Similarly, for the models introduced in Sections 3.2-3.4, In the R
implementation, endogeneity is tested by a Wald test applied to the
model-specific correction parameters.

4. Monte Carlo simulations

This section aims to evaluate the performance of the representative
estimators mentioned in the previous section through a controlled
Monte Carlo simulation. The objective is twofold: first, to illustrate the
magnitude of bias and efficiency loss when endogeneity is ignored in
Stochastic Frontier estimation; and second, to compare the performance
of representative estimators that have been developed to address en-
dogeneity, and therefore, evaluate their strengths and weaknesses in
application.

In each of the above mentioned estimators that address endogeneity
in SFA, endogeneity is assumed to be present between only the re-
gressor and the noise term except in the xtsfkk estimator. Thus, two
DGPs (data-generating processes) are adopted to suit the assumptions
of different estimators. One DGP assumes correlation between the
regressor(s) and the noise term, while another DGP follows Karakaplan
(2022) for the xtsfkk estimator, which targets endogeneity between
the regressor(s), the inefficiency term and the noise term. For each
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simulation, we compare the mean bias and Root Mean Squared Error
(RMSE)® between each estimated coefficient and its true value for
assessing the accuracy of estimation. The DGPs and implementation of
the estimators are described as follows.

4.1. Endogeneity between the regressor and the noise term

4.1.1. Data-generating process

The DGP follows a standard Cobb-Douglas stochastic frontier spec-
ification with additive composite error and endogenous regressors.
For each simulation replication, we generate a balanced panel with
N = 100 cross-sectional units observed over T' = 20 time periods. The
outcome variable y,, is generated as:

Yie = Pix1i + PaXoy + Uy — uyy, (26)
Xoit = Zip T Eips 27)

vy =pgi + V1 - pzuft, (28)

where y;; denotes the output for unit i at time #; x;;, is an exogenous
input; x,;, is an endogenous input; z;, is an instrumental variable used
to construct x,;. The composed error consists of a two-sided noise
term v, ~ N(0,02) and a non-negative inefficiency term u;, = u;, with
u; ~ N*(0,02).° The endogeneity arises through correlation between v;,
and ¢;,, parameterized by p € [0, 1]. The idiosyncratic error terms follow
£i> Uy, ~ N(0, 1), independently across units and time. Simulations are
performed for varying levels of endogeneity p € {0,0.4,0.8} with 1000
repetitions each. The true parameter values are set to py =p =05
2 %

02 = o2 = 1. Therefore, the inefficiency share y = '~ =05.
O'“ GU

4.1.2. Implementation of the estimators

The naive model. The naive Stochastic Frontier model is estimated
using maximum likelihood under the standard composed error spec-
ification, where the inefficiency term u; ~ N7¥(0,02) is assumed to
be time-invariant and independent of the regressors. The model takes
the form y, = yx; + frxyy + U;; — u;;, Where v, ~ N(0,02) captures
statistical noise. This specification ignores potential endogeneity in
the regressors and thus serves as a benchmark. The log-likelihood
function is constructed following the standard normal-truncated normal
formulation, and parameters are estimated via the BFGS algorithm
using the maxLik package in R.

The Battese—Coelli estimator. To account for endogeneity, the
Battese—Coelli estimator of Kutlu (2010) is implemented by augmenting
the frontier equation with residuals obtained from the first-stage regres-
sion of the endogenous regressor on its instruments. In the first stage,
X,;, is regressed on z;,, and the residual r;, = x,;, — %,;, is extracted. This
residual is then included as an additional regressor in the stochastic
frontier model: y;, = pyxy;, + fyxy, + 6ry + v;, — u;. The model is
estimated by maximum likelihood using the standard composed error
specification, where v;, ~ N(0,02) and u;, ~ N*(0, 02). By incorporating
the control function r;,, correlation between x,;, and the noise term
is captured, allowing consistent estimation without requiring external
instruments in the second stage.

The GMM estimator. The GMM estimator follows Tran and Tsionas
(2013), with necessary adaptations. It is implemented by constructing
a system of orthogonality conditions that account for the endogeneity
of regressors within the stochastic frontier framework. First, residuals
from the reduced-form equation x,;, = z;0 + ¢, are computed, and

5 Because RMSE is in the same unit as the estimated parameter, it provides
a more interpretable measure of estimation accuracy than MSE, which is
expressed in squared units.

6 Kutlu (2010) assumes that inefficiency is time-decaying. For simplicity of
implementation, we assume that inefficiency does not decay over time.
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these residuals are included in the structural equation as a control
function: y;, = fxy;, + foxy;; + 67 + v, — u;, Where r, = x,;, — %5;,. The
resulting moment conditions are derived from the score functions of the
log-likelihood with respect to the parameters of interest, and include
both analytical terms and numerical derivatives with respect to the
inefficiency and noise variances. A Q-minimization procedure is then
applied to the average moment vector using a BFGS optimizer, yielding
consistent estimates under the assumption that the instruments are
valid and the inefficiency term u;, = u; ~ N*(0, 52) is independent of the
regressors. Asymptotic efficiency is achieved through joint estimation
of both structural and reduced-form parameters.

The copula-based estimator. The estimation of the copula-based
estimator follows Tran and Tsionas (2015), with necessary adaptations.
It is implemented by jointly modeling the dependence between the
endogenous regressor and the composed error term using a Gaussian
copula function. The stochastic frontier equation is specified as y;, =
BiX1; + BoXoy + Uy — y, With v, ~ N(0,62) and u;, ~ N*(0,62). The
composite error £, = y; — (f1X;; + Prx,;;) is transformed into a skew-
normal distribution, and its probability integral transform is paired
with that of x,;, using a Gaussian copula. The log-likelihood is con-
structed from the joint density implied by the copula and the marginal
distributions of x,;, and ¢;. The parameters are first initialized using
a global optimization routine (DEoptim), and then refined using maxi-
mum likelihood estimation via a BFGS optimizer. This approach allows
the correlation between the endogenous regressor and the composed
error to be directly estimated without requiring external instruments.

4.1.3. Simulation results and discussion

The above models are simulated with 1000 repetitions, in each of
which using the same generated sample across different models. The
simulation results are demonstrated in Table 2.

The naive stochastic frontier estimator, which ignores the endo-
geneity of regressors, performs well only when the correlation between
the regressors and the composed error is absent (p = 0). In this case,
the estimates of both slope coefficients and inefficiency parameters are
nearly unbiased. However, as endogeneity increases (p = 0.4 and 0.8),
the estimator fails to account for the correlation between regressors and
the noise term, leading to substantial bias in the estimated coefficient of
the endogenous regressor (f,). The inefficiency share (y) and variance
components (o,, 6,) also become distorted, indicating that the naive
estimator is unreliable under even moderate levels of endogeneity.

The control function approach (following Kutlu, 2010) effectively
corrects for endogeneity across all levels of p. It consistently produces
unbiased estimates of both slope coefficients, including the endogenous
regressor f,, while maintaining accurate inference for inefficiency-
related parameters. Its relatively low RMSE and stable convergence
behavior make it the most robust estimator in the simulation. Over-
estimation of y and underestimation of ¢, is only evident in high-
endogeneity settings. The control function estimator strikes a favorable
balance between model complexity and performance in finite samples.

The GMM estimator (following Tran and Tsionas, 2013) yields
consistent estimates by relying on moment conditions derived from the
joint likelihood structure. In the simulation, it successfully removes
the endogeneity bias in f,, especially when p is high. However, it
exhibits larger RMSE and inflated estimates of y and o,, along with
downward bias in ¢,. These discrepancies are evident in the simulated
sample size, suggesting that the method may be sensitive to finite-
sample variability and the use of equally weighted moments. Despite its
theoretical appeal, the GMM estimator’s practical performance depends
heavily on such implementation details.

The copula-based estimator (following Tran and Tsionas, 2015)
addresses endogeneity by modeling the joint distribution between the
endogenous regressor and the composed error, avoiding the need for
external instruments. In our simulations, however, it consistently fails
to correct the bias in the structural coefficient f,, and the estimated
dependence parameter p often deviates substantially from its true value,
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Table 2

Monte Carlo simulation results for representative SFA models addressing endogeneity®.
p=0 Naive Control function GMM Copula
Parameter bias RMSE bias RMSE bias RMSE bias RMSE
b —0.0018 0.0252 —0.0018 0.0252 —0.0022 0.0283 —0.0017 0.0252
i —0.0006 0.0171 —0.0005 0.0247 0.0003 0.0307 0.0019 0.0811
3 —0.0003 0.0360 —-0.0013 0.0433
Y —0.0012 0.0459 —0.0010 0.0459 0.2137 0.2147
o, —0.0010 0.0793 —0.0009 0.0793 0.3017 0.3057 0.0122 0.0844
o, —0.0014 0.0302 —0.0017 0.0302 —-0.1767 0.1787 0.5389 0.5405
p —0.0044 0.1349
p=04
b 0.0007 0.0244 0.0010 0.0233 0.0010 0.0250 0.0007 0.0244
b 0.2000 0.2007 0.0006 0.0255 0.0006 0.0290 0.2031 0.2173
] —0.0011 0.0353 —0.0010 0.0403
b4 0.0201 0.0472 0.0426 0.0608 0.2323 0.2332
o, —0.0022 0.0728 —0.0022 0.0732 0.2447 0.2496 0.0128 0.0783
o, —0.0438 0.0531 —0.0864 0.0915 —0.2485 0.2498 0.4815 0.4833
p —0.4055 0.4266
p=0.8
b 0.0000 0.0227 0.0005 0.0185 0.0004 0.0192 0.0000 0.0226
i 0.4003 0.4006 0.0012 0.0260 0.0015 0.0269 0.4029 0.4079
8 —0.0013 0.0319 —0.0015 0.0332
v 0.0937 0.1039 0.2328 0.2361 0.3252 0.3259
o, —0.0023 0.0760 —0.0031 0.0755 0.0837 0.1046 0.0169 0.0839
o, —0.1779 0.1805 —0.4018 0.4029 —0.5034 0.5039 0.3052 0.3082
» ~0.8051 0.8145

N =100,T = 20, reps = 1000; true values: g, =, =0.5,6§ =1,y =05,6,=0,=1.
2 The Copula estimator does not include a control function term and therefore does not estimate 5. Instead, endogeneity is addressed by
directly modeling the dependence between the endogenous regressor and the error term through the copula parameter p, which captures their

joint distributional structure.

The inefficiency share y = 62 /(62 +6?2) is not reported for the Copula estimator, as its estimation is not based on the composed error structure
typically used in standard stochastic frontier models. While ¢, and o, are estimated, their ratio does not carry the same interpretive meaning

under the copula framework.

especially under moderate to strong endogeneity. The estimator also
tends to overestimate the variance of the noise component o, leading
to inflated inefficiency ratios. Nonetheless, the bias and RMSE of o,
decrease as endogeneity level increases. That said, it performs relatively
well in estimating the inefficiency variance ¢,, with smaller bias and
RMSE compared to GMM. This suggests that while the copula approach
may struggle to adjust structural bias in small samples, it retains some
accuracy in characterizing the inefficiency component of the model.

While the GMM and copula estimators show higher bias and RMSE
in our simulations, these results should be interpreted in light of
necessary implementation simplifications made to ensure numerical
feasibility and comparability across methods.” For example, the GMM
estimator is implemented using equally weighted moments and numer-
ical derivatives, while the copula estimator adopts a two-stage proce-
dure with a Gaussian copula and parametric margins. These choices
may limit finite-sample accuracy but do not affect the identification
structure or theoretical soundness of the estimators. As discussed above,
GMM remains a robust moment-based approach when instruments are
available, and the copula method offers a flexible solution in the ab-
sence of valid instruments, particularly in applications with nonlinear
or unobserved dependence.

4.2. Endogeneity between the regressor, the inefficiency term and the noise
term

4.2.1. Data-generating process and implementation

The xtsfkk estimator allows to assume correlation between the re-
gressor and the inefficiency term, therefore, its Monte Carlo simulation
has to adopt a different DGP, which basically follows Karakaplan
(2022), with slight adaptations. To ensure that the simulations well

7 Reproducing the full numerical behavior of the original estimators may
require implementation in compiled languages such as C or Fortran.

capture the features of the estimator, it is realized on Stata using the
xtsfkk command. A panel with N = 100 units and T = 20 time periods
is generated as below:

Yy =B +Bax + B2 +u+y,

2
6, = exp(fer + BraXo + f02)),

u* ~ N*0,1),

u=o,u’,

where x; and x, are exogenous variables, and z, and z, are endogenous
variables. The true parameters are set at f,, = f,; = f,; = 05,
By = By = B, = 0.25, and all variables are generated randomly from
the normal distribution with a mean of 0 and a standard deviation
of 1. The endogeneity of z, and z, are independently and randomly
generated from the normal distribution with a mean of v X p and a
standard deviation of 1 — p, where the degree of endogeneity increases
with the p parameter. The IVs iv; and iv, are also independently and
randomly generated from the normal distribution with a mean of z; % §
and z, = 6, respectively, and a standard deviation of 1 — §, where the
strength of IVs increases with the § parameter. The strength of the IVs
are set at levels of § € {0.6,0.9}. The Monte Carlo simulations are run
for p € {0,0.4,0.8} with 1000 repetitions each. Results of the loops
in which the endogenous models converge are used in calculating the
results.

4.2.2. Simulation results and discussion

The results of Monte Carlo simulations for the xtsfkk estimator,
including the EX — exogenous model (which ignores potential endo-
geneity, equivalent to the naive model in the previous subsection) and
the EN — endogenous model (which applies the xtsfkk estimator) at
three endogeneity levels and two levels of IV strength are summarized
in Tables 3 and 4.
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Table 3

Monte Carlo simulation results for the xtsfkk estimator at § = 0.6.
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Endogeneity p =0 (attempts = 1591) p =04 (attempts = 1058) p = 0.8 (attempts = 1060)
Model EX EN EX EN EX EN

bias g, 1.0744 1.0646 1.4150 1.1885 1.0464 1.0107
RMSE 4., 1.0753 1.0657 1.4162 1.1894 1.0467 1.0111
bias f,, 0.0001 0.0000 0.0003 0.0003 —-0.0001 —0.0002
RMSE 4, 0.0288 0.0288 0.0244 0.0248 0.0169 0.0169
bias 4., —0.0100 —-0.0105 0.6725 0.7955 1.2159 1.3391
RMSE 4., 0.0263 0.0326 0.6735 0.7973 1.2163 1.3395
bias g, —-3.9796 —4.5444 —1.8794 —3.2766 —4.6507 —-5.0306
RMSE 8., 4.0160 9.3789 1.8935 6.3122 7.1198 5.0761
bias g, —1.0892 —-1.1584 -0.5197 —0.5906 —1.1054 -1.4723
RMSE 4., 1.1179 1.3073 0.5250 1.7223 1.5883 1.4818
bias g., —-1.0876 —-0.8612 —2.0329 —2.0399 —1.4381 0.1063
RMSE 4, 1.1149 2.8645 2.0361 2.1585 2.1600 0.4504
bias o, 0.2219 0.2213 0.0371 0.0325 -0.2524 —-0.2750
RMSE o, 0.2229 0.2223 0.0411 0.0370 0.2528 0.2753

N =100,T = 20, reps = 1000.

Table 4

Monte Carlo simulation results for the xtsfkk estimator at § = 0.9.

Endogeneity p =0 (attempts = 2075) p =04 (attempts = 1173) p = 0.8 (attempts = 1125)
Model EX EN EX EN EX EN

bias g, 1.0741 1.0572 1.4127 1.4000 1.0460 1.0252
RMSE 4., 1.0751 1.0593 1.4140 1.4016 1.0463 1.0257
bias f,, —-0.0010 —-0.0010 —0.0000 —0.0000 0.0001 0.0000
RMSE 4, 0.0291 0.0291 0.0245 0.0245 0.0170 0.0170
bias 4., —-0.0103 —-0.0104 0.6733 0.6780 1.2162 1.2481
RMSE 4., 0.0262 0.0265 0.6742 0.6790 1.2165 1.2485
bias g, -3.9679 4.0060 -1.8871 -2.6711 —4.6493 —9.3465
RMSE §,, —-18.8113 70.6222 1.9011 13.3899 7.1189 35.5813
bias g, —1.0828 —0.0500 —0.5228 —0.6268 —1.1035 -1.2162
RMSE 8., 1.1122 15.9387 0.5280 3.7279 1.5868 3.8164
bias 4., —1.0940 —-1.0698 —2.0343 -2.1116 —1.4360 0.4124
RMSE 4, 1.1224 15.7230 2.0375 3.1870 2.1587 12.1557
bias o, 0.2220 0.2225 0.0373 0.0372 -0.2525 -0.2575
RMSE o, 0.2229 0.2235 0.0413 0.0416 0.2529 0.2579

N =100,T = 20, reps = 1000.

In practice, there is possibility of non-convergence for the endoge-
nous model, depending on the generated sample. The numbers of actual
attempts made until 1000 valid repetitions are reached are shown in the
table. When p = 0, it is more difficult for the endogenous model to con-
verge, since the estimator is designed to address potential endogeneity.
p = 04 and 0.8 share similar and non-ignorable frequency of non-
convergence, indicating pragmatic difficulty in applying the estimator
to real data. The frequency of non-convergence of all endogeneity levels
grows with the strength of IV.

On the other hand, when the endogenous model converges, in rare
but non-trivial cases, extreme values are estimated for some of the coef-
ficients, with large standard deviations and statistical non-significance.
In practice, when such results are obtained from the endogenous model,
prudence is required in interpreting them. In normal loops, the differ-
ence between the exogenous and endogenous models are very small
and insufficient to offset the extreme values. This makes the average
bias and RMSE of some coefficients larger in the endogenous model.
Nevertheless, we can still compare the performance of the estimator
across different endogenous levels and strengths of IV.

The estimations of f.; and g,; are very similar in both exogenous
and endogenous models, which is expected for exogenous variables.
The estimations of f,, have larger bias in the endogenous model when
6 = 0.6, but the bias becomes smaller with 6 = 0.9. It implies that
stronger IVs may improve the performance of the xtsfkk estimator
on endogenous variables. For the other endogenous variable, g,,, the
estimator outperforms the exogenous model at high endogeneity level.
When § = 0.9, the average bias is smaller than 6§ = 0.6, but RMSE
grows. Meanwhile, the estimator brings about higher volatility to other

variables in the inefficiency term. Considering the existence of occa-
sional extreme values, the results of the normal estimations should be
more precise. When endogeneity is at moderate level (p = 0.4), the
estimations of ¢, by both models are quite good, while there is larger
bias at both low (p = 0) and high (p = 0.8) endogeneity level.

Compared to the four representative estimators evaluated earlier,
the xtsfkk estimator targets a different source of endogeneity — namely,
the correlation among regressors, the inefficiency term and the noise
component. This distinction is reflected in its separate data-generating
process and simulation design. In terms of performance, the xtsfkk esti-
mator outperforms exogenous estimator when endogeneity is present,
especially in recovering coefficients of endogenous regressors. Its ad-
vantage becomes more apparent as endogeneity intensifies and instru-
mental variables become stronger. Nonetheless, the estimator exhibits
notable sensitivity to convergence and volatility in finite samples, with
occasional extreme estimates that inflate overall bias and RMSE. This
trade-off highlights xtsfkk’s strength in addressing inefficiency-related
endogeneity, while also underscoring the importance of specification
choices and instrument selection.

When compared to the other estimators, xtsfkk offers a flexible and
theoretically grounded framework suitable for panel data, with the
added benefit of integrated treatment of endogeneity and inefficiency
structure. However, in practice, it requires careful tuning and some-
times simplified functional forms to ensure numerical feasibility. The
choice among these methods should take into account the assumed
structure of endogeneity and the empirical context at hand.

Overall, the simulations show that each estimator has its own
advantages and drawbacks. The naive model is clearly biased when
regressors are endogenous. The control function estimator provides a
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straightforward correction and yields reasonably reliable results. The
GMM estimator is theoretically appealing due to its general moment-
based formulation, but in practice its performance advantage is limited.
The copula approach offers a flexible alternative when external in-
struments are unavailable, with satisfactory results in finite samples.
Finally, the xtsfkk estimator addresses endogeneity in both frontier
and inefficiency terms, though convergence issues may arise. Taken
together, the findings underscore that each method involves trade-offs
between bias control, efficiency, and feasibility.

5. Empirical application
5.1. Empirical model

In this section, we apply the representative estimators addressing
endogeneity SFA to real data of firms in the Portuguese electricity
sector — specifically, the subsector of electricity generation from ther-
mal sources. The main purpose of this section is to illustrate the
application of these estimators to real data where endogeneity may
exist in estimating Stochastic Frontier models, and to compare their
performance in such application.

Following Kumbhakar, Wang and Horncastle (2015), the cost min-
imization problem for producer i under an input-oriented technical
efficiency specification is

minw'x s.t. y = f(xe™), (29)
fi(xe™) _w;
fixe ™) w,;
where x and w are vectors of inputs and their prices, and # > 0 is
the input-oriented technical inefficiency that measures the percentage

by which all the inputs are overused in producing output y. The cost
function can therefore be defined as

C*(w,y) = ijxje_”, 31
J

F.O.C.: =2, (30)

which is the frontier cost function that gives the minimum cost given
input prices w and the observed output level y. On the other hand, the
actual cost can be written as

Cc?= 2 w;x; = C*(w,y)exp(n), ©2)
J

and therefore, we have
InC? =InC*(w, y) + 1. (33)

The relationship implies that log actual cost is increased by 7, i.e. all
the inputs are overused by 7. The efficiency index of a producer is then
C*
exp(—n) = ca
In implementation, we specifically assume that the cost function
takes a translog form:

InCj =In C (Wi, ¥i) + Uy + 1y,
= fy+ Zﬁ/ lnwﬂ, + Zﬂ,jtln wj; + P, Iny; + ﬂ,ytlny[,
J J

1 1
+ 5 z Zﬁjk In Wi Inw; + Eﬂyy(lnyi,)2 + z By In Wi Iny;
Jok J

2
+ 2 BtInw;j; + Byt Iny;, + it + fit° + v
J

+ w0 ~ iid.N(O, 612)), B4

where i, ¢t denotes observation of firm i at period ¢, # represents un-
known parameters to be estimated, v;, is the normally distributed error
term and u;, is the inefficiency term that follows specific assumptions
according to the estimator adopted. Some theoretical assumptions are
necessary to facilitate the transformation of the cost function. Following
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Kumbhakar et al. (2015), f;, = f; is required by symmetry. The
cost function is homogeneous of degree one in the input prices, which
imposes the following parameter restrictions:

Y B=1.Y B =0k B;,=03 ;=0 (35)
J J J J

Once these constraints are substituted into the model, the homo-
geneity conditions are automatically satisfied. This procedure amounts
to using one of the input prices to normalize cost and other input
prices. With K and L representing capital and labor as two inputs, after
substitution and manipulation, we normalize the cost function using
wg;; as the normalizing price, obtaining

a

Ci Wit Wit
In( )= Po+ By Iny; + Byt Iny; + B In( )+ BiptIn( )
Wkir Wkir Wkir
1
+ Eﬂyy(ln y,-,)z
1 Wwr; Wy 1
+ EﬂLL(w_K:)z + By ln(w_K‘[_:)an’it + B+ Eﬂrttz + 0yt Uy

(36)

The equation above is estimated with the 5 estimators described
in Section 3: the naive estimator, the control function estimator, the
GMM estimator, the copula-based estimator and the xtsfkk estimator.
Necessary adjustments are made according to the cost function.

5.2. Data

The data employed in the empirical application is part of the BPLIM
database® of the Bank of Portugal (Banco de Portugal). Firms are iden-
tified by anonymized tax/bank identification numbers and the data can
only be accessed on BPLIM’s remote servers. The data used in this study
comes from the Central Balance Sheet, mostly based on information
reported through Informacédo Empresarial Simplificada (IES, Simplified
Corporate Information) and contains annual data. As the database is
not exclusively dedicated to the electricity sector, it contains general
information on firms’ financial status.

Depending on data availability, we choose a set of variables to
estimate Stochastic Frontier cost functions with annual panel data from
2006 to 2021 for firms in thermal power subsector of Portugal. The
following variables are used in our study:

Frontier equation:

+ y - measured by non-financial revenue;

wg - calculated by interest expenses divided by obtained funding
as a proxy for the price of capital;

» w; - measured by average hourly wage, calculated by salaries
paid to employees divided by total hours worked;

C? - calculated by the sum of financial expenses, salary expenses
and expenses on goods and materials.

Inefficiency variables (when applicable):

» Age (AGE): the age of the firm; the impact of firm age on technical
inefficiency is studied by Lai and Kumbhakar (2018);

+ Financial investment (FIV): measured by the natural logarithm
financial investment; firms’ involvement in financial activities
may affect their efficiency (Hou et al., 2021, 2024).

As in the xtsfkk estimator, endogenous variables can be defined in
both frontier and inefficiency equations, we assume one endogenous
variable in each of them. For firms operating in electricity generation,
it is reasonable to assume that the output is determined by demand and
is thus exogenous (Liu et al., 2019). Therefore, n W = ln(%) is as-
sumed as the endogenous variable in the frontier equation. Among the

8 Website: https://bplim.bportugal.pt/.
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Table 5
Descriptive statistics of data of the thermal power subsector of Portugal.
Source: Descriptive statistics based on data from the BPLIM database.

Variable Unit Obs. Mean Std. Dev. Missing %
y Euro 2468 1.96e + 07 1.23e + 08 0%

wy Ratio 1006 1561628 1.170435 59.23%
wy Euro/hour 898 13.13717 13.22797 63.61%
ce Euro 2468 2201233 1.90e 4+ 07 0%

Age Year 2468 12.17018 9.814504 0%

F1v Euro 666 5285540 3.51e+07 73.01%
CcD Ratio 829 4661586 3.32e +07 66.41%
AVHRS Hour 896 1716.052 446.9426 63.69%

Note: Minimum and maximum values omitted as requested by confidentiality terms of
the BPLIM database.

inefficiency variables, a firm’s age is apparently exogenous; its financial

investment (FIV), on the other hand, can be related to unobserved op-

erational features of each firm and thus assumed as endogenous. In the

control-function estimator, the GMM estimator and the copula-based

estimator, only In W is assumed endogenous since the specifications do

not allow explanatory variables for the inefficiency term.
Instrumental variables® (when applicable):

+ Capital deepening (CD): measured by the natural logarithm of
the ratio of capital (fixed tangible asset) to labor (number of
employees); the ratio of capital to labor of a firm may reflect
a firm’s incentive for financial investment (FIV); it may also
indicate willingness to pay higher wage to its employees, thus be
related to In W;

Average hours worked (AVHRS): measured by the natural loga-
rithm of average hours worked per paid employee; working hours
can reflect a firm’s managerial structure and intuitively, it can be
related to average wage (therefore In W).

Both IVs are assumed for the control-function estimator, the GMM
estimator and the xtsfkk estimator. The copula-based estimator does not
require IVs.

Descriptive statistics of the data of each subsector in our study
are presented in Table 5. The descriptive statistics are based on the
original values of the variables. As some of the observations take the
original values of 0, missing values are generated when transformed
into natural logarithms. This makes the panel less balanced and reduces
the effective observations in the estimation. The percentage of missing
values of each variable is also reported in the table.

Additionally, the correlation matrix among the variables used in the
estimation is reported in Table 6. The matrix is calculated with the
values actually used in the estimation, i.e., after transformations such
as taking natural logarithms.

The correlation matrix indicate that C D is more strongly correlated
with the endogenous wage variable than AV HRS. Such correlations
offer preliminary intuition about instrument relevance, but the strength
of these IVs requires formal test discussed in the next subsection.

5.3. Results and discussion

The empirical model described in Section 5.1 is estimated with
the estimators mentioned in Section 3. For each estimation procedure,
several diagnostics are embedded. First, an endogeneity test is done ac-
cording to Section 3.5 to detect the presence of potential endogeneity.
Second, weak instruments are assessed both in the R implementation
and in the xtsfkk framework. In R, a first-stage regression of the

9 The effects of the above inefficiency and/or instrumental variables may
imply firm-specific production/cost features and thus be confounded with the
residual forming the cost inefficiency. While there are models dedicated to
treating such effect, the analysis of this section focus on the endogeneity issue.
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Fig. 1. Distribution of cost efficiency in the Portuguese thermal power sub-
sector, Naive estimator.

endogenous variable on the instruments and exogenous covariates is
estimated, and the joint significance of the instruments is tested. In
xtsfkk, the test command provides an analogous check, yielding a chi-
squared statistic for the null that a given instrument has no explanatory
power across all endogenous regressors. In both cases, rejection of the
null indicates instrument relevance. Third, in the R framework, since
the number of instruments exceeds the number of endogenous regres-
sors, an overidentification test is conducted. Specifically, a Sargan nR>
statistic, which tests the null hypothesis that the instruments are valid.
In contrast, the xtsfkk specification with two instruments for two en-
dogenous regressors is exactly identified, and thus no overidentification
test is available.

Similar to the Monte Carlo simulations, the xtsfkk estimator is
applied using Stata. The other estimators are implemented using R, and
the results are presented in Table 7.

The results presented in Table 7 are estimated assuming CD and
AVHRS as IVs; estimated results, including test results, are very similar
if only one of them is assumed as IV (although the model is supposed
to be correctly identified with one endogenous variable and one IV).
Endogeneity tests cannot reject the null hypothesis that there is no
endogeneity in the model, which is possibly because of the high stan-
dard error in the data, and thus, in the test results. Weak IV tests show
that the IVs adopted in the model is strong enough. When two IVs are
assumed, the model is likely to be over-identified; nonetheless, there is
marginal difference in the results compared with the those when one
IV is assumed.

In the naive model, without considering endogeneity, coefficients
on Iny and (Iny)? are statistically significant. In the control-function
model, the coefficient on (In y)? loses statistical significance while that
on the endogenous variable InW gains it. As demonstrated by the
Monte Carlo simulations, the naive estimator generates large biases
with endogenous variables (when endogeneity is present). By account-
ing for endogeneity, such biases are corrected, leading to changes in
statistical significances of the coefficients. This is in line with theoreti-
cal expectations. In the GMM model, the sign on In W is reversed, which
is a typical symptom of endogeneity. Although collinearity among
regressors can amplify this effect, the primary source is the correlation
between explanatory variables and the error term.

The GMM estimator delivers relatively large standard errors and
weaker significance, indicating limited precision in finite samples. This
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Table 6
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Correlation matrix among the variables used in the empirical estimation.
Source: Reported by Stata based on data from the BPLIM database.

InC Iny InW AGE FIV CcD AVHRS
InC 1.0000
Iny 0.4696*** 1.0000
InW 0.6970*** 0.0892* 1.0000
AGE 0.2725** 0.1676*** -0.0174 1.0000
FI1V 0.5365*** 0.3596"* 0.1188* 0.1870™** 1.0000
CcD 0.2216*** 0.2752*=* 0.1597*** 0.0991*=* 0.1297** 1.0000
AV HRS 0.1442%+* 0.1334"* -0.0769 0.0551* 0.0024 —-0.0670* 1.0000

Note: InC = In(C*/wg);InW = w; [wg;.

stands for statistical significance at 10%/5%/1% level.

Table 7

Estimated results of the naive estimator, the cost function estimator, the GMM estimator and the copula-based estimator.
Variable Coefficient

Naive Control function® GMM?* Copula

Frontier
Iny —1.7077***(0.1501) —1.5302***(0.5037) —0.7010**(0.3491) —1.5249**(0.1514)
Inw —0.1067(0.7611) —0.4515*(0.0213) 0.0039(1.3308) —0.3466(0.8274)
(Iny)? 0.0734**(0.0054) 0.0708(1.7371) 0.1746(0.0779) 0.0697***(0.0055)
(Inw)? —0.0914(0.0775) —0.1085(0.3631) 0.4175(0.9748) —0.1636**(0.0810)
InylnW 0.0588(0.0504) 0.0431(0.2292) —0.2531(0.3517) 0.0372(0.0520)
tlny 0.0054(0.0099) —0.0021(0.0292) 0.4431**(0.0569) 0.0001(0.0097)
tinW —0.0223(0.0325) —0.0242(0.0922) —0.0807(0.3841) —0.0115(0.0331)
t —0.0943(0.1565) 0.0534(0.5075) 0.3151(0.6981) —0.0002(0.1545)
2 0.0038(0.0052) 0.0022(0.0106) —0.2261**(0.0261) 0.0014(0.0052)
Intercept 21.8979"(2.0487) 21.2599*(2.7972) 21.5928"%(2.1590) 23.7919%%(2.3417)
Ino, 0.5517*(0.1720) 0.5901(0.4962) 0.1158(0.6417) 1.0607***(0.0573)
Inc, 0.5023**(0.0716) 0.4825*(0.1748) 0.1190(0.5437) 0.4636™*(0.1597)
8 0.7143(2.6260) 0.2527(1.5247)
P —0.3194(1.1949)
Efficiency
Mean 0.2309 0.4745 0.6893 0.2828
Median 0.1235 0.4807 0.9999 0.2836
Endogeneity test
Wald 0.07400148 0.02747196 0.8725226
p-value 0.7855973 0.8683563 0.3502579

Weak 1V test: F =10.577,Pr(>F)=3.342¢ — 05 (Reject H, : CD = AVHRS =0)

Over-identification test: Sargan nR* = 1.1716,p = 0.2791 (Cannot reject H,; model over identified.)

Note: N.obs.=410; InW = In(w, /wy); */**/*** stands for statistical significance at 10%/5%/1% level.

a Standard errors calculated by bootstrap with 100 repetitions.

outcome is consistent with the Monte Carlo simulations, where GMM
was shown to be robust in principle but less efficient with the simulated
sample size. By contrast, the copula estimator yields results similar to
those of the control-function model, further confirming its ability to ac-
count for endogeneity by capturing the dependence structure between
regressors and the error component. Taken together, these empirical
results align with the simulation evidence: while the naive estimator
suffers from bias, both the control-function and copula approaches
correct it, and GMM remains less precise despite its general robustness.

Estimated results on In 6, and In 6, demonstrate apparent differences
across these approaches. Similar to simulation results, the GMM results
diverge substantially from the other estimators, with much larger stan-
dard errors. While the estimates of In o, are fairly consistent across the
other estimators, those of In ¢, differ case by case. The control-function
estimator provides a coefficient similar to the naive estimator but with
larger standard error; the copula estimator provides a larger coefficient
with smaller standard error.

The predicted efficiency values of each estimator should be inter-
preted along with Figs. 1-4, which demonstrate the histogram and
kernel density of predicted efficiency levels for each of the estimators.

In the naive model, the mean efficiency score is relatively low,
with an even lower median, and the overall distribution is left-skewed.

11

In addition, a large number of observations are concentrated at full
efficiency (100%).1°

In the control-function model, the mean efficiency is higher and
close to the median, but the distribution is irregular, exhibiting bi-
modality with two distinct modes. In fact, efficiency values predicted
by the naive model can also be considered as bimodal, but with a more
dispersed pattern; by reducing the mass at full efficiency, the control-
function model brings the two modes closer together and thereby
largely corrects the bias.

In the GMM model, the mean efficiency is about 0.6893, higher than
in the previous two models, while the median reaches 0.9999. This
apparent anomaly is explained by the distribution in Fig. 3: a small
number of observations lie in the middle-to-low range, whereas a large
mass is truncated at full efficiency (unity). This outcome contrasts with
the large bias observed in the estimate of Ins,, further highlighting the
instability of the GMM estimator.

In the copula model, the mean and median efficiency values are very
close, lying between those of the naive and control-function models.

10 Efficiency values exceeding unity occur when the conditional expectation
of inefficiency, E(y;|¢;), becomes negative due to estimation noise, which after
transformation yields exp(—E(u;|¢;)) > 1; these values are truncated at one.
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Fig. 2. Distribution of cost efficiency in the Portuguese thermal power sub-
sector, control-function estimator.
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Fig. 3. Distribution of cost efficiency in the Portuguese thermal power sub-
sector, GMM estimator.

The distribution is approximately normal, and the bimodality observed
in the other models is much less pronounced.

The comparison of efficiency distributions reveals that both the
naive and control-function models exhibit bimodality, though the latter
reduces the mass at full efficiency and brings the two modes closer
together, largely correcting the bias. The GMM estimator, by contrast,
produces an anomalous pattern with most observations truncated at
unity, consistent with its unstable variance estimates. The copula model
stands out by yielding a smoother, near-normal distribution with close
mean and median values, suggesting a more balanced characterization
of efficiency.

The Stata command xtsfkk reports results for the exogenous model
(where endogeneity is ignored) and the endogenous model (where the

12
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Fig. 4. Distribution of cost efficiency in the Portuguese thermal power sub-
sector, copula-based estimator.

Table 8

Estimated results of the xtsfkk estimator.
Variable Coefficient

Exogenous (EX) model Endogenous (EN) model

Frontier
Iny 0.2017(0.2580) —1.5545**(.4642)
InWw 0.3974*(.1791) —4.3991*"(1.6162)
(Iny)? 0.0080(0.0089) 0.0120(0.0145)
(InW)? 0.0145*%(0.0035) 0.0093(0.0090)
InylnW 0.0092(0.0132) 0.3294***(0.1002)
tiny —0.0426**(0.0052) —0.0624*+(0.0141)
tinW 0.0062(0.0060) 0.0115(0.0139)
t 0.6347*(0.0863) 0.8993***(0.2109)
2 —0.0076**(0.0018) —0.0084*(0.0043)
Intercept 5.8306°*(1.9172) 31.24227*(6.7084)

Inefficiency term

AGE 0.0894**(0.0112) 0.0918***(0.0110)
FIV —0.0128(0.0186) —0.1705***(0.0295)
Intercept 0.7093*+*(0.3234) 2.5019***(0.5043)
Efficiency

Mean 0.1988 0.2135

Median 0.0993 0.1260

Endogeneity test: y*(2) = 23.06(prob > y* = 0.0000)

Reject Hy, : M,y = nppy =0 at 1% level.

Weak IV test

CcD

72(2) = 44.57(prob > y* = 0.0000)

AVHRS

22(2) = 6.53(prob > y* = 0.0381)

Note: N.obs.=234; InW = In(w, /wy);
* /%% /%% stands for statistical significance at 10%/5%/1% level.

estimator is used to correct for endogeneity). The results of both are

presented in Table 8.

0 Endogeneity test unambiguously confirms the presence of en-
dogeneity in the model. Although in Table 7 the evidence for endo-
geneity is weaker, this likely reflects differences in model specification
rather than its true absence. It is therefore reasonable to conclude that
endogeneity remains a relevant concern, and that accounting for it
materially changes both the coefficients and the efficiency estimates. y2
statistics show that both IVs are valid. In this estimation, 234 effective
observations are used, fewer than the number used for Table 7. With
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Fig. 5. Distribution of cost efficiency in the Portuguese thermal power sub-
sector, exogenous model estimated with xtsfkk package.

missing values for some variables in the data, more complicated specifi-
cations lead to fewer effective observations, which may undermine the
accuracy of the results. This is another factor to be taken into account
in practical application of estimating approaches.

In Table 8, the endogenous specification produces notable changes
relative to the exogenous one. The coefficients on Iny and In W switch
signs, a pattern also seen in the GMM results of Table 7, underscoring
how accounting for endogeneity alters the estimated relationships. For
the inefficiency determinants, FIV is statistically insignificant in the ex-
ogenous model but becomes significant once endogeneity is controlled
for. The estimated results on inefficiency explanatory variables AGE
and FIV!! are consistent with previous research (Hou et al., 2024).
A firm with longer history may suffer from inertia in its managerial
structure and face more difficulty in cost optimization. The nega-
tive association between FIV and inefficiency suggests that firms with
greater financial investment tend to operate more efficiently. A possi-
ble explanation is that stronger financial capacity facilitates access to
better technologies, management practices, or scale economies, thereby
reducing inefficiency.

The abovementioned differences show that the xtsfkk estimator can
correct biases caused by endogeneity in both frontier and inefficiency
equations. Efficiency scores also differ markedly: the endogenous model
yields higher mean and median values, indicating that efficiency is
likely underestimated when endogeneity is ignored. The distribution
of efficiency values of the exogenous and endogenous models are
illustrated in Figs. 5 and 6.

The distribution of efficiency values predicted by the exogenous and
endogenous models are similar; the efficiency distribution under the
EN specification appears slightly right-skewed and with lower kurtosis
compared to the EX model. The efficiency distribution of these models
more closely resembles that of the naive model (rather than that of
the cost-function or copula model). This pattern may reflect incomplete
correction on the predicted efficiency scores under the influence of
inefficiency determinants.

The representative models examined in this paper each offer distinct
advantages in addressing endogeneity. The control-function approach is
relatively simple to implement and delivers reliable results. The GMM
framework contributes more on the theoretical side than in empirical
performance. The copula model, by not requiring instruments, provides
reasonably robust estimates and may serve as a flexible alternative in
some contexts. The xtsfkk estimator extends further by incorporating
inefficiency determinants, enhancing practical applicability; its Stata

11 Since the definition of the inefficiency term is quite complex, as defined
by Eq. (22), it is difficult to intuitively interpret the magnitude of the
effects of these variables on inefficiency. Nevertheless, the sign and statistical
significance is of interest for policy consideration.
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Fig. 6. Distribution of cost efficiency in the Portuguese thermal power sub-
sector, endogenous model estimated with xtsfkk package.

package greatly facilitates its usage in applied studies. Nevertheless, the
inclusion of too many variables can increase convergence difficulties
and destabilize efficiency estimates, which calls for cautious application
in practice. The replication package includes an R script which imple-
ments estimators applied in this empirical application (except the xtsfkk
estimator), which can be used as a reference for practical studies with
proper adaptations. Issues such as presence of endogeneity, instrument
strength, and over-identification are highly sensitive to model speci-
fication, and test outcomes can vary substantially depending on how
the model is defined. Hence, careful tuning is essential in empirical
applications.

From a policy perspective, the empirical application illustrates how
different estimators can alter the interpretation of efficiency patterns in
the thermal power subsector. Variations in average efficiency levels, the
significance of firm characteristics such as AGE and FIV, and the rank-
ing of firms by efficiency scores are not merely econometric details, but
indicators that regulators may use when setting revenue caps, designing
incentive schemes, or prioritizing investment support. The finding that
financial investment (FIV) reduces inefficiency, for instance, points
to the importance of facilitating firms’ access to capital in order to
promote technological upgrading and cost optimization. Conversely,
the sensitivity of results to estimator choice cautions against relying on
a single benchmark when formulating regulation. Thus, methodological
rigor in addressing endogeneity directly translates into more reliable
policy-relevant indicators for the governance of the energy sector.

6. Conclusion

Stochastic Frontier Analysis is widely applied in the energy sector,
as efficiency scores derived from frontier models often serve as ref-
erences for regulatory policies aimed at stimulating competition and
improving performance. Yet, the presence of endogeneity between in-
put variables and the inefficiency component can seriously compromise
the accuracy of such evaluations. Because of the specific structure of
frontier models, dedicated estimators are needed to address this issue.
A range of approaches have recently been proposed, including IV-
based maximum likelihood estimators, GMM, and copula models, each
offering a different route to mitigate the bias induced by endogeneity.

This study evaluates the performance of alternative estimators
through Monte Carlo simulations and an empirical application to the
Portuguese thermal power subsector from 2006 to 2021. The results
indicate that neglecting potential endogeneity can lead to substantial
differences in both frontier coefficients and efficiency scores. Models
that explicitly account for endogeneity generally deliver more robust
and interpretable outcomes, while exogenous specifications risk un-
derstating inefficiency and mischaracterizing its determinants. Overall,
addressing endogeneity is crucial to ensure that such policy measures
are based on reliable efficiency benchmarks.
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Turning to the empirical findings, firm age is generally associated
with higher inefficiency, reflecting inertia in managerial structures.
Financial investment reduces inefficiency, pointing to the importance
of access to capital in facilitating technological upgrading and cost
optimization.

Several limitations of this study should be acknowledged. First,
the database employed is not specifically designed for the energy
sector, and some relevant variables are either imperfectly measured,
unavailable, or subject to missing values. Second, these data limitations
constrain the set of inefficiency determinants that can be incorporated,
which in turn narrows the scope of policy insights that can be drawn
from the empirical results. Third, our approach addresses endogeneity
at the econometric level rather than through a structural cost specifica-
tion that disentangles modeling errors from price-related inefficiency,
partly because the available data does not permit such modeling. Future
research may overcome these shortcomings by using more specialized
and higher-quality datasets. While these limitations restrict the extent
of sector-specific policy contributions, they do not undermine the main
aim of the paper, which is to provide a comparative assessment of
alternative estimators for handling endogeneity in Stochastic Frontier
models.

This analysis also offers guidance for further applications. Flexible
specifications such as translog may improve realism but often raise
convergence issues, making simpler forms preferable in practice. Future
research could combine endogeneity-corrected estimators with richer
sectoral datasets that incorporate regulatory measures, thereby linking
efficiency outcomes more closely to policy. Extending the comparative
assessment to other industries or frontier frameworks would further
strengthen the methodological toolkit for applied efficiency analysis.
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