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ABSTRACT Parkinson Disease (PD) is a chronic neurodegenerative disorder due to the degeneration of
dopamine-producing neurons in a brain region, crucial for motor function regulation. Rest tremor is a vital
parameter and is essential to diagnose the disease and assess its prognosis. The frequency of rest tremor is
a key characteristic to differentiate it from other types of tremors such as Essential tremors. This highlights
the need for reliable and accurate methods to estimate the rest tremor frequency as accurate as possible. This
paper proposes a novel method, Extended Lagrangian combined with Kalman techniques for rest tremor
frequency extraction. The Extended Lagrangian mechanism addresses the irregular oscillatory behavior
of rest tremor by incorporating energy dissipation via Rayleigh’s dissipation function, nonlinear stiffness,
as well as external forces. This mechanism serves as a foundation and helps to track the oscillatory nature of
tremors. The video recordings of PD tremor taken in clinical settings may contain noise and have significant
impact on the rest frequency estimate. The proposed approach addresses this issue, thus improving the
accuracy of these estimates. This algorithm is validated on a dataset of 60 video recordings from PD patients,
annotated by movement disorder specialists. The rest tremor frequency, along with other key features are
then passed to a classifier to determine the severity of PD. The model achieved an accuracy of 98% with 1D
CNN-LSTM classifier. This approach could be used in remote health assessment for PD patients, providing
increased convenience to patients and caregivers.

INDEX TERMS Deep learning, Kalman filter, Lagrangian mechanism, Parkinson disease, rest tremor.

I. INTRODUCTION

Parkinson Disease (PD) is a nervous condition due to the
loss of dopamine-generating neurons. As these neurons
deteriorate, patients experience motor-related symptoms like
uncontrollable shaking (rest tremors), muscle rigidity, slowed
physical actions, and, over time, difficulty in maintaining
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balance. Non-motor issues, including emotional imbalances
and disturbed sleep, also develop as PD advances. PD affects
older adults, with nearly 1% of the global population over
60 years of age being affected. The rise in life expectancy
and aging societies are predicted to escalate PD cases
worldwide [1]. In India, a surge in PD cases is driven
not only by these global patterns, but also by factors like
urban expansion, dietary changes, and environmental triggers
such as toxin exposure [2]. Mortality related to PD has
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increased significantly, by 87.9% at an average annual
rate of 3.8%.

Parkinson research and clinical practice emphasize evalu-
ating rest tremor patterns as a key indicator for early-stage
detection. The frequency patterns of rest tremor provide
essential information about the status or advancement of the
disease [3]. Standard diagnostics techniques based on neurol-
ogist observations and evaluations form the basis of current
diagnostic practice. Such assessments based on subjective
evaluation require additional objective measurement methods
due to inter-rater variability.

The integration of Artificial Intelligence (Al) techniques
for detecting tremors offers several advantages over sensors
and other related approaches. Firstly, it enables straightfor-
ward assessments via video recording. This approach would
be very valuable for Parkinson patients in geographically
isolated or resource-limited settings. Secondly, these models
can be used to analyze very large datasets reliably and identify
even small variations of tremors that remain inconspicuous
to the human observer. This enables earlier diagnosis of PD,
before the clinical symptoms appear. Despite the promising
advances in video based PD severity classification methods,
many challenges remain to be addressed. A major challenge
is developing robust models to distinguish PD tremor from
tremors of other movement disorder, especially at the
early stage. PD-related tremors could resemble other non-
Parkinsonian tremors, such as essential tremor or tremor
induced by drug side effects. The characteristics of the PD
tremor vary from one patient to another, depending on the
affected part of the body, patient’s age, health, medications,
and progression of the disease. Furthermore, cultural or
genetic differences can influence the presentation and mani-
festation of the disease [4]. Additional challenges arise when
transitioning from controlled environments to real-world
clinical settings. Clinical environments have varying lighting
conditions, equipment, and human movements that impact
the quality of video recording. To address these issues, this
study presents two new approaches: (i) a framework to detect
rest tremor frequency in noisy environments (ii) an automated
tool to capture and quantify Parkinson tremor severity based
on rest tremor frequency and other significant features.

The contributions of this study are:

Adaptive Nyquist-Compliant Sparse Sampling (ANCSS)
for PD Tremor Video Analysis: Adaptive Nyquist-
Compliant Sparse Sampling (ANCSS) first detects tremor
onset in video and discards preonset frames. It then analyzes
a short segment using FFT to estimate the dominant
tremor frequency, dynamically setting a Nyquist-compliant
sampling rate. The proposed approach reduces computational
overhead and makes it suitable for resource-limited settings.

Extended Lagrangian Mechanics for Rest Tremor
Modeling: This framework extends classical Lagrangian
mechanics by incorporating energy dissipation (Rayleigh’s
dissipation function), nonlinear stiffness, and external forces,
specifically tailored to capture the irregular oscillatory nature
of rest tremors, which traditional models do not fully address.
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Nonlinear Stiffness and Damping for Frequency Shift
Adaptation: Unlike conventional tremor models that assume
periodic oscillations, this research accounts for tremor
non-periodicity by incorporating nonlinear stiffness and
damping factors, allowing the framework to adapt to
real-world variations in tremor frequency due to fatigue,
voluntary movements, and other patient-specific factors.

II. LITERATURE REVIEW

Recently, diverse methods including wearable sensors, video
analysis, signal processing and deep learning have been
applied to classify Parkinson’s disease severity. This synthe-
sis of studies from 2019 to 2024 highlights advancements in
early detection and symptom quantification. The utilization
of sensor model was promising and has great potential. [5]
reviewed the digital biomarkers after evaluating the data
obtained from the wrist-worn sensors concerning the PD
symptoms in a group of 343 PD patients and 157 healthy
controls. Similarly, [6] created a real-time smartwatch
algorithm for PD detection, achieving results strongly aligned
with clinical metrics. In a study [7].it is further validated
that smartwatch based approach to assess motor symptom
for 45 PD patients, closely matched clinical observations.
A review by [8] confirmed that smartphone-based assess-
ments of gait, balance, and dexterity are sufficiently robust
for clinical integration.

Video analysis has also emerged as a powerful tool.
Reference [9] achieved a 91.5% accuracy rate in distin-
guishing PD patients from healthy controls through gait
analysis. Reference [10] applied pose-estimation techniques
to evaluate motor symptoms in 150 PD patients, showing
significant clinical relevance. Other notable contributions
include the work of [11], who developed a system to detect
PD from facial expressions with 95% accuracy. A study [12]
on Leap Motion-based hand movement classification (with
89% accuracy) further expanded non-invasive diagnostic
options. Reference [13] differentiated PD cases from healthy
individuals, while [14] focused on distinguishing tremor from
non-tremor episodes. Reference [15] addressed tremor sever-
ity classification, enhancing accuracy in symptom prediction.
Some studies adopted broader frameworks. Authors [16]
conducted a dual analysis: first identifying PD versus non-PD
cases, then categorizing tremor subtypes (e.g., Rest Tremor,
Essential Tremor).

A study [17] introduced an automated framework for
detecting PD from videos using deep learning. The proposed
method examines 1,380 videos of motor tasks through
segmentation methods that separate movements and motion
magnification that amplifies even slight movements and
frequency domain analysis. The model demonstrates an
accuracy of 91.8% indicating its potential for real-time
detection of Parkinson’s disease through webcam analysis.
In a pilot study with 70 videos, [18] proposed a method
that achieved an accuracy of 79% for detecting bradykinesia.
The method demonstrated a diagnosis accuracy of 63%
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for detecting Parkinson’s disease. The detection results are
encouraging even though the research data is limited. Such
initiatives highlight the possibilities of integrated strategies
to enhance the accuracy of diagnosis.

Combining data through multimodal approaches has
shown significant promise. Reference [19] combined
accelerometer data with video analysis, to achieve better
accuracy in severity classification. Reference [20] used
wearable sensors and smartphone data to classify patients’
severity levels of PD with 93% accuracy. Reference [21]
has shown the opportunities of using edge computing in
health care, including the real time analysis of Parkinson’s
disease symptoms from gait abnormalities. Reference [22],
the research examines tremor, speech, and gait signals by
applying non-linear dynamics tools in order to highlight their
significance in the diagnosis of Parkinson’s. Furthermore,
the study also suggests a knowledge-based system for
diagnosis, which utilizes non-linear features to facilitate
early detection and personalized monitoring of Parkinson’s
disease. Reference [23] integrated the explainable Al models
with deep learning models to generate meaningful clinical
insights. Reference [24] established a predictive model based
on Response Surface Methodology that optimizes Deep Brain
Stimulation treatment parameters for Parkinson’s disease
tremor. By processing tremor signals using statistical and
nonlinear tools, the model assists in personalizing DBS
settings for better therapeutic response.

A study on VR applications in PD by [25] used motion
capture for realistic symptom assessment and was tested
on 50 PD patients. Reference [26] gathered recent develop-
ments in digital biomarkers, which also stressed the need
for clinical effectiveness to ensure usefulness in real-world
healthcare settings. These works demonstrate great advances
in PD severity classification through the use of multiple
modalities, such as wearable sensor integration with video
analysis, interpretable AI models with clinically meaningful
outcomes.

IIl. MATERIALS AND METHODS

The importance of rest tremor as a primary symptom is
highlighted at the beginning of the section, followed by
a description of the dataset. In the subsequent parts, the
methodology for detecting the rest tremor frequency using the
proposed framework is discussed in detail, a brief discussion
on the extraction of other significant features of rest tremor is
provided.

A. REST TREMOR IN PARKINSON

PD is estimated to affect over 6 million people globally. As it
progresses, approximately 70% of the patients develop rest
tremors, which are a key characteristic of Parkinsonism [27].
Tremor assessment is one of the motor symptoms included in
the Unified Parkinson’s Disease Rating Scale (UPDRS), and
this research follows the guidelines provided by this scale.
The main clinical characteristics of rest tremor in PD are:
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1) Frequency: PD tremors have a frequency of 4 to 6 Hz.
Tremors can be associated with various neurological
disorders but PD tremors have a distinct frequency [28].

2) Onset Pattern: Tremors are contracted asymmetrically
initially; they often initiate in the hand or fingers;
tremor can be described as pill-rolling due to the back-
and-forth motion between the thumb and the index
finger [29].

3) Progression:Over time, the tremors may extend to the
ipsilateral limb, and later to the opposite side due to the
progression of neurodegeneration [30].

B. METHOD

Figure 1 depicts the workflow for Parkinson severity
classification using the proposed Extended Lagrangian-
kalman (ELK) method. The dataset consists of recordings of
Parkinson patients with varying severity levels and normal
patients. The process begins with the ANCSS method to
select informative frames from raw recording data. The
frames are cropped to keep the hand as the main focus.
In the second stage, 21 key points of the hand are then
extracted from those cropped recordings using a pose
estimation algorithm. The key features are extracted from
these estimated key points, which are then passed to several
classifiers to detect the severity of PD.
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1) ADAPTIVE NYQUIST-COMPLIANT SPARSE SAMPLING
(ANCSS)

PD tremors, particularly rest tremors, are rhythmic oscil-
lations with a frequency range of 4-6 Hz, as established
by prior studies [31], [32]. Video-based analysis requires
sampling that adheres to the Nyquist-Shannon theorem
(sampling frequency > 2x maximum signal frequency) to
avoid aliasing and ensure accurate frequency estimation.
However, processing every frame of a high-frame-rate video
(e.g., 30 fps) is computationally expensive, especially for
continuous, subtle motions like tremors. The methods of
sparse or dense sampling from general video classification
are not suitable for PD tremors as they either ignore fine
temporal details or provide the algorithm with abundant
unimportant data. ANCSS is proposed for efficient and
accurate sampling of tremor data.

a: ANCSS PARAMETER SELECTION
Onset-Detection Threshold: The threshold values for
tremor onset detection in the ANCSS framework were
determined through systematic empirical analysis rather than
arbitrary selection. Using a training subset of 20 videos
spanning all severity classes, we evaluated pixel-wise dif-
ference thresholds ranging from 0.1 to 2.0 in increments
of 0.1. The optimal threshold of 1.2 was selected based on
maximizing the Fl-score for onset detection when validated
against manual expert annotations of tremor initiation
timing. This threshold achieved 94.2% sensitivity and 91.7%
specificity for onset detection, with a mean temporal error of
0.3£0.8 seconds compared to expert-identified onset times
Frame Rate Selection Rationale: We chose a baseline
sampling rate of 15 Hz based on Nyquist requirements
for Parkinson’s tremor (4-6 Hz), which corresponds to a
2.5x safety margin over the maximum expected frequency.
This conservative rate ensures adequate temporal resolution
while minimizing computational overhead. Tremor-specific
sampling rates are then dynamically computed as given in
equation (1).

b: STEP 1: INITIAL FRAME RATE ASSESSMENT

The recording rate of 30 fps is beyond the Nyquist rate
(14 Hz for PD tremors < 7Hz) which implies that the
dynamics of tremors are well captured without interference.
This sets a solid basis for further adaptive subsampling (for
instance, 15-9 fps with ANCSS), which maintains Nyquist
compliance when determining tremor frequency but reduces
computations. The high initial sampling rate can capture
the worst-case tremor frequencies and retains frequency
information while making fine adjustments.

c: STEP 2: TREMOR ONSET DETECTION

Since PD tremors typically emerge after a short delay
(e.g., around 3 seconds when the patient stabilizes), frames
captured before this onset are discarded to reduce the data
volume. The tremor onset is detected through frame analysis
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and a threshold approach. The onset is determined by
analysing the frames and computing the absolute pixel-wise
difference between consecutive frames. When the pixel
difference exceeds a threshold value, that frame is marked
as the onset frame. All frames prior to this are discarded to
minimize computational time.

d: STEP 3: ADAPTIVE SAMPLING RATE CALCULATION

Set the maximum tremor frequency (fmax) to 7 Hz. The
minimum required sampling frequency is greater than 14 Hz;
hence, a baseline rate of 15 Hz is chosen. From the 30 fps
video, sampling every second frame following the onset
frame achieves an effective rate of 15 fps.

e: STEP 4: DYNAMIC ADJUSTMENT BASED ON TREMOR
VARIABILITY

A 5-second segment after tremor onset is analyzed using FFT
to estimate the dominant tremor frequency (fgom)- If faom <
5 Hz, the sampling rate is adjusted to

FPS' =2 x fiom + €, 1

with € = 1 Hz; for example, if fgom = 4 Hz then FPS’ = 9
Hz (implying sampling every third frame). If fjom, > 5 Hz,
FPS’ is maintained at 15 Hz.

f: STEP 5: FRAME SELECTION AND PROCESSING

Frames are uniformly sampled from the tremor-active
segment at the calculated interval (e.g., every second or
third frame, depending on the determined FPS’), and these
frames are passed to the tremor analysis pipeline which
includes keypoint extraction, frequency estimation, and
classification).

2) KEY POINT EXTRACTION

MediaPipe [33] is a framework for building multimodal
applied machine learning pipelines, including pose estima-
tion and hand tracking. In this stage, 21 landmarks on
the hand corresponding to anatomical key points such as
fingertips, joints, and wrist are detected using MediaPipe.
These landmarks are identified as follows: 4 for each finger
(tip, DIP, PIP, MCP joints) and 1 for the wrist. This level
of detail is essential to ensure precise tracking of hand
movements, enabling the analysis of very fine tremors that
are characteristic of PD.

3) FEATURE EXTRACTION
After extracting the 21 landmarks from the input video
dataset, the following key features are computed.

Rest Tremor Frequency: The rate of tremor oscillations
per second, typically measured in hertz (Hz) In PD, this
frequency lies in the range of 4-6 Hz.

Rest Tremor Amplitude: The extent or magnitude of hand
or limb movements, corresponding to the severity of tremor.
Higher amplitude corresponds to increased severity of the
tremor.
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Algorithm 1 Adaptive Nyquist-Compliant Sparse Sampling
(ANCSS)

INITIALIZE(V, FPSoig, fnaxs €, Tseq, Pipeline)
Nioral < length(V)
Trotal < Ntotal/FPS()rig
assert FPSyig > 2 X finax
onset_frame < 0
for i = 1toN;y;y — 1:
diff < FrameDifference(V[i], V[i + 1])
if diff > threshold:
onset_frame < i
break
if onset_frame = 0:
onset_frame < round(3 x FPS,g)
Vactive < Vonset_frame : Nypiq]
Naciive < length(Vicrive)
seg_frames < Vgcivell
FPSarig)» Nactive)]
faom < EstimateDominantFrequency(seg_frames)
if fiom < SHz:
FPS' <« 2 X fiom + €
else:
FPS' < 15Hz
k < round(FPS,iq/FPS")
assert FPS’ > 2 X fiax
Vsampled <~
for i = 1toN csiveStepk:
Vsampled <~ Vsampled ) {Vactive [l]}
result < Pipeline(Vsampiea)
return Vygpiea, FPS’, result

min(round(7Tseg X

Rest Tremor Velocity: The speed at which tremor
movements occur. This can provide important information
on the energy of the tremor, distinguishing it from normal or
voluntary movements.

Rest Tremor Directionality: In Parkinson, they are
predominantly unidirectional.

a: REST TREMOR FREQUENCY COMPUTATION

A Lagrangian mechanism with a Kalman filter is adopted to
compute the rest tremor frequency. The framework is shown
in Figure 2.

b: LAGRANGIAN MECHANISM
Studying tremors involves developing a robust theoretical
framework that can capture their complex, rhythmic pat-
terns. The proposed Extended Lagrangian Mechanics is an
extension of classical Lagrangian mechanics, specifically
designed to capture rest tremors. This framework enables
more accurate analysis of tremors under dynamic conditions
as observed in real-world environments.

One of the main challenges in modeling rest tremors is
their non-periodic nature and the variability of frequency over
time. Moreover, tremor characteristics can vary significantly
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among patients with the same severity due to factors such
as muscle weakness, voluntary movements, and fatigue.
To address these complexities, this study proposes a nonlinear
oscillator model that incorporates nonlinear stiffness and
damping factors to better represent the variability in tremor
behavior. The Extended Lagrangian Mechanics extends
classical mechanics through three fundamental energy com-
ponents that include kinetic energy and potential energy, and
energy dissipation.

These energy components correspond directly to the key
parameters that characterize tremors:

1) Damping factors: These represent the natural resis-
tance within muscles, which acts to counter movement
by dissipating energy. This resistance is crucial for
preventing excessive oscillations and maintaining sys-
tem stability. Without damping, tremors would persist
uncontrolled.

2) Nonlinear stiffness: As compared to systems with
simple harmonic motion, the displacement and restor-
ing force relations associated with tremors are more
complex. These forces follow the equation:

F(x) = —kix — ksx® )

This representation captures distinct dynamic behav-
iors for small and large amplitude tremors.

3) External forces: Involuntary neural signals act as
external forces that inject energy into the system,
driving kinetic energy, and initiating tremor patterns.

The mathematical integration of these components is
achieved using the Euler-Lagrange equation, with Rayleigh’s
dissipation function included, as shown in Equation (8). This
mapping between energy components and tremor parameters
forms a bridge between theoretical modeling and clinical
observations. It helps explain how energy flows through the
tremor system—being stored, transferred, and dissipated—
producing the irregular oscillatory behavior observed in
Parkinson’s disease.

In Parkinson’s disease, tremors typically affect both hands,
and the tremor in one hand can influence the other. This
occurs due to neurological connections between limbs, which
enable synchronization or opposition of movement. As a
result, if one hand is shaking, the other may also begin to
tremble, either in-phase (synchronously) or out-of-phase (in
opposition).

Thus, the Lagrangian formulation is a way of representing
physical systems based on energy, rather than forces.
The proposed work builds on the Lagrangian approach
and incorporates several aspects of energy associated with
Parkinsonian tremor dynamics into the framework. It posits
that Parkinsonian tremors are not driven by a single source of
energy, but rather arise from a dynamic interplay of energy
flow, resistance, and environmental influences within the
body.

The equations of motion are derived using the Lagrangian
function, which is defined as the difference between the
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kinetic energy (7)) and potential energy (V), ie., L =
T — V. The kinetic energy refers to the energy of motion,
while potential energy represents stored energy, including
non-linear characteristics such as stiffness. In Parkinson’s
disease, patients often have tremors that occur without
control. To estimate the rest tremor frequency, this work
uses Rayleigh dissipation function. The equation provides a
mathematical method to measure the energy loss due to body
movement and resistance from joints and muscles. This is
used to calculate the energy loss during tremors. Three factors
are incorporated Rayleigh dissipation function: baseline
resistance, damping factor and voluntary suppression. The
presence of nonlinear stiffness in muscles and joints leads
to variations in tremor frequency with changes in shaking
intensity. External forces such as regular forces and random
disturbances that comes from outside body are also taken into
consideration.

The following section provides the mathematical formula-
tion to estimate the rest tremor frequency using the proposed
framework.

Lagrangian Formulation: The system’s Lagrangian is
given by:

L=T-V 3)

Kinetic Energy is given as
T = Lmi? )
= —m
5 q

where

- m represents the mass,

- g represents the velocity

Potential Energy with Nonlinear Stiffness is given as

1, 1 4
V= qu + 7 Aq 5)

where

- k represents linear stiffness,

- A represents non-linear stiffness coefficient,

- g represents the displacement
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Rayleigh Dissipation Function (Adaptive Damping Includ-
ing Voluntary Suppression) is given as

1
D@ = > (co + BA% + k) (©6)

where
- ¢ represents baseline muscle resistance,
- BA? accounts for adaptive damping,
- k, represents voluntary suppression effects.
The external forces acting on the system are:

Fexi(t) = Fo cos(wot + ¢) + £(1) @)

where: - Fy is the amplitude of external force, - wp is the
driving frequency, - ¢ is the phase shift between system
response and external force, - £(¢) is a stochastic perturbation.

Euler-Lagrange Equation: The system dynamics are
governed by the Euler-Lagrange equation with damping and
external forces:

(L) DL L 0 ®)
dt\ag) aq  ag ™
Computing Derivatives:
o Kinetic term:
oL . d (0L . ©)
—=mg, —|==)=m
ag " a \ag 1
« Potential term:
oL
— = —(kqg+q") (10)
dq
« Dissipation function:
oD 5 . .
9% = (co+ BA” + ky)q = cefiq (1)
Thus, the equation of motion is:
mij + ceftq + kg + Aq® = Focos(awnt + ¢) + &) (12)
where:
Ceff = €0 + BA® + ki (13)
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Frequency Correction Due to Nonlinear Stiffness and
Damping: Assuming a harmonic oscillatory solution:

q(t) = A cos(wesrt + @) (14)

the effective frequency for autonomous oscillations is:

=2l (15)
m

For externally forced oscillations, the system locks onto the
driving frequency wg, modified by nonlinear effects:

Wforced = @0- (16)

Since Parkinsonian tremors are oscillatory, the model is
restricted to { < 1. For autonomous oscillations, where no
external force is applied (Fp = 0, £(¢) = 0), the frequency is:

k 3 2
\/—+—A2—(@), ifr <1,
Wautonomous = m 4dm 2m
Non-oscillatory (overdamped), otherwise.
(17)

Damping Ratio and Damped Frequency Correction: The
damping ratio incorporates the total damping contribution:

Ceff 3.,
= ———, where ke =k+ —AA". 18
The damped frequency is then:
kett Ceff\ 2
wam =/ = = (500) (19)

For small damping { < 1, the approximation:

1
Wdamp ~ Weff (1 - ECZ) . (20

Stochastic Effects and Final Frequency Expression:
Stochastic perturbations &(¢) introduces variability in A and
¢, leading to a distribution of frequencies rather than a
deterministic wfing. Instead of directly modifying frequency,
noise effects should be modeled using a stochastic differential
equation (SDE):

dA = —yAdt + cdW (0), 1)
d¢ = wautonomous At + O¢ dW¢(l‘), (22)

where:

- dW4(t) and dWy(t) are independent Wiener processes
modeling amplitude and phase fluctuations.

- y represents the decay rate of oscillation amplitude.

- o represents the intensity of stochastic fluctuations.

Thus, the final frequency can be described probabilistically
as:

k3 eff\ 2
Orma(t) = / —4loAr - (). @)

This formulation intends to capture the effects of nonlinear
stiffness, damping, external force, and stochastic perturba-
tions on tremor frequency.
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Algorithm 2 Nonlinear Oscillator With Adaptive Damping
and Stochastic Effects

INITIALIZE(m, k, A, g(0), g(0), A(0), 8(0),
CO’ 137 kVa F()a CUO, ¢7 UA’ 09’
At,T)
Tota < T
t <0

DEFINE SYSTEM DYNAMICS()
T <« Lmg?
V <« %qu + %Aq“
L<«~T-V
ceft(t) < co + BA()? + k,
D <« Lee(t)i?
Fext(t) <= Focos(wot + @) + &(1)

COMPUTE FREQUENCIES(A(?))
kee(t) < k + 3AA(1)?

. ke (1)
weff(t) < m

@damp(?) < \/weff(l‘)2 - (ceéigt))

return weg(t), wdamp(t )

STOCHASTIC INTEGRATION(z, Af)
na, ne ~ N, 1)
At + A1) < A(t) — “LLA(1) At + oav/ Aty
0t + A1) < 0(t) + @damp(t) At + o/ Atng
return A(t + Ar), 6(t + At)

MAIN()
while 1 < Tiosar:
Weff, Wdamp <— Compute Frequencies(A(t))
Apews Onew < Stochastic Integration(?, At)
q(t + At), g(t + At) < SolveEOM(mq + cefr(t)g +
kg + 1’ = Fex(1))
A(1) < Apew
0(1) < Ghew
t<—t+ At
Record time series data: g(t), §(¢), A(t), 0(t), west(t),
wdamp(t)
return Time series data

¢: FREQUENCY ESTIMATION FROM LAGRANGIAN
DYNAMICS

After computing the velocity and acceleration, the dominant
frequency (f) of the tremor is calculated using the smoothed
peaks and troughs of the signal ¢(¢). The steps for extracting
the frequency are: Detect Peaks and Troughs: Local maxima
(peaks) and minima (troughs) are first captured in the
acceleration signal g(t). Compute Time Intervals: Calculate
the time intervals between consecutive peaks Tpeax and
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troughs Tyough-
Tpeak = tit1 — 1 (24)
Ttrough = ti/+1 - ti/ (25)

Average the Intervals: Combine the peak-to-peak and trough-
to-trough intervals to compute the average period

1 (z Tpeak + Z Ttrough)

5 (26)
2 N, peak Nirou gh

Taverage =

where
- Npeax represents the number of peak-to-peak intervals
measured.
Nirough tepresents the number of trough-to-trough
intervals measured.

Calculate the Frequency: The dominant frequency (f) is
computed as the reciprocal of the average period.

1
f:

27
Taverage

Angular Frequency: Convert the frequency f to angular

frequency w(t) as in equation (28).

o(t) = 2nf (28)

This estimated angular frequency serves as an input to
the Kalman filter, forming the basis for the state transition
matrix F in the prediction step as given below. To integrate
the continuous dynamics into the discrete Kalman filter
framework, the acceleration g(7) is discretized using the Euler
method. The velocity update equation is derived as:

Gi+1 = gk + Gr At. (29)

Substituting §(f) = —w?(t)q(t) — 2¢w(1)§(t) into the
velocity update equation (29):

a1 % @+ (—0 0@ — 2ea) At (30)

This gives the state transition matrix:

1 At
- |:—a)2(t)At 1— 2§w(t)At:| (D

Rest tremor is rhythmic and oscillatory in nature, so the
damping effect is negligible for frequency estimation. As the
goal is to estimate frequency, damping factor ¢ is set to O,
equation (31) reduces to:

1 At
F= [—wz(t)m 1 } G2)

d: KALMAN FILTER

A second-order Kalman filter is implemented to estimate
and refine the state vectorSV. The filter suppresses noise in
the feature sequence, thereby producing a smoothed estimate
of tremor dynamics. Figure 3 shows the integration of
Lagrangian-derived tremor frequency with Kalman filtering
for real-time estimation and refinement of PD tremors. The
frequency f is not directly fed into the Kalman filter as a
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FIGURE 3. Lagrangian-Kalman based Tremor frequency estimation.

measurement but influences the filter’s dynamics through F
and Q. A detailed explanation of the Kalman filter tailored
for rest frequency estimation is provided.

Let [gk, gx] represent the state vector svy at time k, where
gk (velocity) indicates the rate of change of gx (position). The
extracted feature vector svi at time (k + 1) and the frequency
estimate f; at time k can then be defined in the state-space
model as:

SVi+1 = F - svi + wy (33)
fi=[1 O]svi+u (34)

where F' is obtained from the Lagrangian-derived frequency
f, u; is the measurement noise associated with the feature
vector, and w; ~ N(0, Q) represents the process noise with
zero mean and covariance Q.

3 2
g2AR 2A2

w 3 w 2
Ok = i (35)
GC%ATI oaz)At

where the process noise variance oy, is the angular frequency
derived from the Lagrangian model.

The Kalman filter operates in two main phases: Prediction
and Update.

Prediction Phase: State Prediction: The Kalman filter
predicts the next state and its uncertainty based on the
previous state and process model, as in equation (36).

SVik—1 = F - sV

1 Ar
F= |:—a)2(t)At 1} 30

where At is the time step, w(t) = 27 f.

Error Covariance Prediction: The predicted error covari-
ance matrix Pyx—1 quantifies the uncertainty in the predicted
state estimate. It accounts for both the uncertainty in the
current state estimate and any noise or uncertainty in the
process model. It is computed as:

Prj—1 = FPx_1FT + Q4 37

where Py is the error covariance at step k, QO is the process
noise covariance.

Measurement and Update Phase: Once a new measure-
ment f; is obtained, as given in equation (34), the Kalman
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filter performs the update step to refine the state estimate
and the error covariance based on this new information.
The measurement helps correct any deviations between the
predicted state and the actual system behavior.
Measurement Residual: The measurement residual yy is
the difference between the actual measurement f and pre-
dicted measurement H - sV x—1 and is given in equation (38).

Vi = fi—H - SVpr—1 (38)

The innovation covariance S; determines the uncertainty in
the measurement residual. It is computed as:

Sk =H - Pyj—1 - H' + Ry (39)

Kalman Gain: The Kalman gain K} determines how much
weight to give to the new measurement when updating the
state and is computed as:

Ki = Peg—1 - H -5 (40)

The Kalman gain is higher when the measurement uncer-
tainty Ry is lower, and it is lower when the process noise Qx
is higher.

State Update: The updated state estimate svgx incorpo-
rates the measurement to correct the predicted state, as shown
in equation (41).

SViklk = SVijk—1 + Ki - vk 41)

This step refines the state estimate by blending the prediction
from the process model with the actual measurement.

Error Covariance Updated: The updated error covariance
Py reflects the reduced uncertainty in the state estimate after
incorporating the new measurement:

P =U — Ky - H) - Prji—1 42)

where H = [—a)z(t) 0] is the observation matrix, / is the
Identity matrix, and K} is the Kalman gain. The new state
estimate and error covariance are used as initial conditions for
the next prediction and update cycle. This recursive process
continues as new measurements arrive, continuously refining
the tremor frequency and state estimates based on noisy data.

e: 3.2.2.2 REST TREMOR AMPLITUDE COMPUTATION

The algorithm takes the positions(x-y) coordinates of 21 hand
landmarks detected by MediaPipe for amplitude computa-
tion. As suggested in study [14], a window with a fixed frame
size of 5 is used. Using equation (43), the Euclidean distance
between each hand landmark position of the fifth frame and
those of the four preceding frames is calculated.

dj = \J (x5 — ) + (s — y)? 43)
where d;; represents the distance of key point i between the
fifth frame and that of jth frame, where j € {1, ..., 4}, and

(x, y) are each key point’s 2D coordinates.
All key points’ distances are collected in each window,
and their respective mean distance is calculated using the
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equation (44), which represents the tremor amplitude of that
specific window.

1 n 4
Avindow = - > > di (44)

i=1 j=I

This process is iterated across the video, with a 5-frame
window. Finally, the average of window amplitudes across
all windows are computed, as given in equation (45), thereby
giving the overall tremor amplitude:

1 n
A= N ;Awindowk (45)

where N is the total number of windows.

f: 3.2.2.3 REST TREMOR VELOCITY

Velocity is essential for understanding the tremor severity,
indicating how quickly movements occur. The hand tremor
velocity is calculated as the rate of change in position over
time. The instantaneous velocity between two consecutive
frames for each hand landmark is computed using the
formula (46):

Xt — D)2 -2
V(t)=\/(x(t) x(t tl_))(;t(ﬁt) y& —1) (46)

where V(¢) is the velocity at time 7.

g: 3.2.2.4 REST TREMOR DIRECTIONALITY

The predominant direction of involuntary hand movements
(tremors) is given by rest tremor directionality. The coordi-
nates on the x-axis and the y-axis at time ¢ are obtained to
calculate the tremor directionality. The angle of motion can
be calculated using the formula (47):

(0
6(i) = arctan (dx(i)) 47

where 6(i) represents the angle of movement at each time
point, dx(i) and dy(i) are the displacements of the x and y
coordinates between consecutive frames, and are calculated
as follows using (48) and (49):

dx(i) = x(i + 1) — x(i) (48)
dy(i) = y(i + 1) — y() (49)

where Theta 6 corresponds to the tremor’s orientation. For
instance:

If & = 0°, the tremor is perfectly oriented along the x-axis
(horizontal direction).

If 8 = 90°, the tremor is precisely aligned with the y-axis
(vertical direction).

Intermediate angles (e.g., 8 = 45°), the tremor lies along the
diagonal between the x and y axes.
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(b) Rest Tremor at 75cm

(c) Rest Tremor at 100cm

FIGURE 4. Rest Tremor recorded at three different distances.

IV. EXPERIMENTAL SETUP AND RESULTS

A. DATASET

The video recording dataset consists of 60 videos, procured
from [34], with each participant performing two types
of tremors (resting and postural), five different tremor
amplitudes, and recordings taken at three different distances,
yielding a total of 60 unique video recordings. Sample
recordings of rest tremor are shown in Figure 4.

B. RESULTS AND DISCUSSION

A comprehensive set of machine learning techniques are
implemented, encompassing traditional regression algo-
rithms and neural network architectures. A standard set
of regressor models, including XGBoost, Support Vector
Machine(SVM), and Random Forest, is leveraged, each
chosen for its unique strengths in handling various data
characteristics. Additionally, a ID CNN-LSTM model is also
incorporated. The PyTorch library is used for the model’s
implementation and executed alongside a GPU - NVIDIA
GeForce RTX 3090, on a desktop with CPU-Intel Core
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TABLE 1. Comparison of sampling approaches.

Metric Fixed Sampling Adaptive Sampling
Computational Time 15.0 £ 2.5 ms/frame | 9.5 £ 1.8 ms/frame
Frequency RMSE 0.4 Hz 0.28 Hz

Frequency MAE 0.35 Hz 0.22 Hz

Memory Usage 65.0 MB 42.5 MB

UPDRS Correlation () 0.82 0.93

i9-13900k. The division of dataset for training-validation
follows a ratio of 85:15.

A comparison between the proposed ANCSS sampling
technique and a fixed sampling approach (30 fps) for
estimating Parkinson’s rest tremor is provided in Table 1.
Four main metrics are used for evaluation: computational
time as measured in ms per frame, frequency estimation
error in terms of RMSE and MAE, memory usage measured
in MB, and correlation to the Unified Parkinson’s Disease
Rating Scale (UPDRS) score. The reported computational
time includes the time taken for the stages of feature
extraction using MediaPipe, frequency calculation, and
storage operations. Memory usage relates to the size of the
frame buffers and feature data.

Table 1 highlights the advantages of ANCSS in terms of
computation time, memory requirements, and a improved
accuracy and clinical correlation compared to the fixed-
sampling technique.

The graph in Figure 5 compares the effectiveness of the
proposed method with other filtering methods in the analysis
of Parkinson’s tremors.

The rest tremor signal for severity level 3 varies widely
within the 0.0-4.5 Hz range reflecting both physiological
tremor activity and extraneous noise. The raw signal, repre-
sented by the blue line, contains irregular tremor patterns and
erratic changes caused by noise from voluntary movements.
These mask the true underlying nature of the tremor signal
and poses a challenge in extracting the useful information
needed for severity classification.

The Kalman filter, shown in orange, reduces some of
the high frequency noise, but primarily serves as a linear
estimator, which is unlikely to perform well with the
non-linear and dynamic characteristics of tremor signals.
It poses a risk of over-smoothing, resulting in the loss of
transient features critical for severity classification.

The Lagrangian - Kalman framework suppresses noise
effectively while preserving the transient characteristics of
the signal. The filtered signal shows a stabilized band
of 42-44 Hz in the frequency domain, corresponding
to the characteristic frequency of Parkinson rest tremors.
The proposed Extended Lagrangian-Kalman Filter (dark
red line) demonstrates superior performance by producing
the smoothest estimation curve that closely follows the
mean frequency (red dashed line at approximately 4.24 Hz).
This precision preserves critical tremor features, including
frequency, amplitude, and periodicity, ensuring a solid basis
for clinical analysis and interpretation. The Lagrangian -
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Frequency (He)

FIGURE 5. Tremor signal smoothing using Kalman vs Lagrangian-Kalman.

Kalman estimate line (green line) appears to be a better match
with the mean frequency (red dashed line). This implies an
improved estimation of the tremor frequency.

1) FREQUENCY ESTIMATION AND CLASSIFICATION
PERFORMANCE

The performance of the proposed method is assessed based on
its accuracy in estimating tremor frequency and classifying
PD severity levels. In addition,how closely its estimates align
with the UPDRS scores is evaluated. Table 2 presents the
results, featuring mean tremor frequency in Hz, standard
deviation in Hz and mean classification accuracy in percent,
and correlation coefficient (r) with UPDRS scores across five
classes from ‘“No Tremor” to “Very Severe” .

To determine the clinical significance of this proposed
method, the correlation coefficient (r) between the computed
tremor frequencies and the UPDRS scores is computed for
each severity class. The correlation coefficient was calculated
using the formula:

_ D — X0 — )
r =
\/Z?:l(xi —¥)?- \/Z:‘l:l(yi —-y)?

where x; is the estimated tremor frequency for the i’ patient,
y; is the UPDRS score, x is the mean tremor frequency,
and y is the mean UPDRS score. The correlation was not
computed for Class 0 (No Tremor) due to the absence of
tremor frequency data. The correlation coefficient for Classes
1-4 varied from 0.79 (Mild) to 0.91 (Very Severe), and
with an overall correlation of 0.85 for all tremor-present
classes. These high correlation values indicate a strong
positive linear relationship between the system’s frequency
estimates and clinical severity scores, suggesting that the
proposed method provides clinically meaningful insights into
PD tremor severity.

The method excels at severity O (No Tremor), with a mean
frequency of 0.0 Hz, zero standard deviation, and 98.0%
accuracy, reflecting its ability to reliably detect the absence of
tremor in healthy controls or tremor-free states. For Severity 1
(Mild) and 2 (Moderate), frequencies of 3.8 Hz and 4.9 Hz,
with standard deviations of 0.40 Hz and 0.45 Hz, respectively,
and accuracies of 97.5% and 96.5%, demonstrate high
precision for early-to-mid PD stages, where tremors are

(50)
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TABLE 2. Frequency estimation accuracy.

Tremor Sever- | Mean Freq. | Std  Dev. | Accuracy | UPDRS ()
ity Class (Hz) (Hz) (%)

0 (No Tremor) | 0.0 0.00 99.0 1.0

1 (Mild) 3.8 0.40 97.5 0.79

2 (Moderate) | 4.9 0.45 96.4 0.82

3 (Severe) 6.0 0.50 95.4 0.87

4 (Very Severe) | 6.8 0.60 93.0 0.91
Overall - - 96.3 0.85

TABLE 3. Amplitude, velocity & direction metrics.

Severity Amp. (mm) | Vel. (mm/s) | Direction (0+ std)
0 (No Tremor) 0.0 0.0 0° £ 0°

1 (Mild) 39 19.50 45° £+ 10°

2 (Moderate) 18.6 95.0 50° £ 15°

3 (Severe) 32.9 164.5 55° + 20°

4 (Very Severe) 113.8 253.5 60° £ 25°

subtler but distinct. Severity 3 (Severe) and 4 (Very Severe)
show frequencies of 6.0 Hz and 6.8 Hz, with increased
variability (0.50 Hz and 0.60 Hz) and accuracies of 95.5% and
95.0%, respectively, indicating robust performance despite
greater tremor complexity. As expected, the classification
accuracy is lowest for Severity 4, decreasing from 98.0% to
95.0%, due to the irregular and high amplitude movements
present in the video data. Nevertheless, the results still
fall within the good range of 95-98%. This shows that
our proposed Extended Lagrangian-Kalman framework is
effective in capturing and decoding distinct patterns of
tremor, even in noisy environments. This underscores the
possibility of using the method as an efficient and objective
clinical tool for monitoring the condition’s severity in
practical situations.

The results presented in Table 3 provide a detailed analysis
of the amplitude, velocity, and directionality metrics for
tremor movements at different severity levels (0—(4) using
the proposed method. These metrics offer complementary
insights into the characteristics of tremors, enabling a com-
prehensive understanding of their progression and intensity.

For tremor amplitude, which measures the displacement
of movement in millimeters (mm), the values increase
significantly with higher severity levels. In the absence of
tremors (Class 0), the amplitude is naturally 0 mm, while mild
tremors (Class 1) exhibit an average amplitude of 3.9 mm.
This value escalates to 18.6 mm for moderate tremors (Class
2), 32.9 mm for severe tremors (Class 3), and reaches
113.8 mm for very severe tremors (Class 4). These findings
are consistent with clinical expectations, as more pronounced
tremors typically involve larger oscillatory displacements.

Similarly, tremor velocity, measured in millimeters per
second (mm/s), demonstrates a marked increase with severity.
Mild tremors exhibit an average velocity of 19.50 mm/s,
which rises to 95.0 mm/s for moderate tremors, 164.5 mm/s
for severe tremors, and 253.5 mm/s for very severe tremors.
The strong correlation between amplitude and velocity
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TABLE 4. Extended Lagrangian-Kalman model parameters and CNN-LSTM
hyperparameters.

Parameter [ Value (Units)
Lagrangian-Kalman Model Parameters

Mass 0.5kg

Stiffness 500 N/m

Nonlinearity 100 N/m3

Baseline Damping 6.0 Ns/m%

Adaptive Damping 15 Ns/m?

Amplitude Noise 0.1 mm/s

Phase Noise 0.05 rad/s

CNN-LSTM Model Hyperparameters
Architecture

CNN Layers 3

CNN Kernel Sizes [5,3, 3]

CNN Filters [64, 128, 256]

LSTM Layers 2

LSTM Units 128 per layer
Training

Learning Rate 1x 1074

Batch Size 32

Epochs 100

Optimizer
Loss Function

Adam (31 = 0.9, B2 = 0.999)
Categorical Cross-Entropy
Regularization

0.5 (after CNN/LSTM layers)
1x10~°

Preprocessing

Adaptive (915 fps)

Enabled (Q = 0.01, R =0.1)

Dropout Rate
Weight Decay

Frame Sampling (ANCSS)
Kalman Filter Smoothing

highlights the dynamic nature of tremors, where larger dis-
placements are generally accompanied by faster movements.

In addition to amplitude and velocity, directionality (6+
std) provides critical information about the angular orien-
tation of tremor movements and their variability. For mild
tremors, the primary direction of movement is approximately
45°, with a standard deviation of +10°, indicating relatively
consistent motion patterns. As tremor severity increases, the
mean direction shifts slightly (e.g., 50° for moderate tremors,
55° for severe tremors, and 60° for very severe tremors),
while the variability in direction also increases (£15°, £20°,
and £25°, respectively). This widening range of directional
variability suggests greater irregularity and unpredictability
in tremor movements as severity progresses.

The hyperparameters used in the Extended Lagrangian-
Kalman framework are summarized in table 4. However,
parameter values in the Lagrangian-Kalman model are
based on the biomechanics and clinical observations of
Parkinsonian tremor. Additionally, Table 4 includes the set
of hyperparameters used for training the CNN-LSTM model
for tremor classification.

Figure 6 compares the performance of four classifiers—
Support Vector Machine (SVM), Random Forest (RF),
XGBoost, and 1D CNN-LSTM—under three filtering con-
ditions: no filtering, Kalman filtering, and the proposed
Extended Lagrangian-Kalman (ELK) filtering.

The 1D CNN-LSTM emerged as the top performer,
achieving an accuracy of 98.3%, precision of 98.8%, recall
of 94.4%, Fl-score of 98.3%, specificity of 99.1%, and
AUC of 0.97 when used with ELK filtering. This superior
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performance stems from its ability to capture both spatial and
temporal patterns in tremor data, making it highly effective
for Parkinson’s Disease (PD) tremor classification.

In contrast, SVM delivered the lowest performance, with a
maximum accuracy of 78.5% and an AUC of 0.82, limited by
its inability to model sequential and temporal dependencies.
Random Forest and XGBoost provided intermediate results,
with XGBoost achieving up to 92.1% accuracy and 0.94 AUC
under ELK method.

Conventional Kalman filters rely on assumptions of linear-
ity and stationarity, which are inadequate for modeling the
non-periodic, asymmetric, and mixed voluntary-involuntary
nature of Parkinsonian tremors. The ELK framework
overcomes these limitations by enhancing signal fidelity
and preserving the physiological characteristics of tremor
dynamics. These improvements are particularly beneficial for
deep learning models. The 1D CNN-LSTM, with its hybrid
architecture, effectively captures nonlinear spatiotemporal
features and long-range dependencies. The synergy between
ELK filtering and deep temporal modeling enables more
robust and discriminative feature extraction. The ELK-CNN-
LSTM pipeline offers a practical, clinically viable solution
for characterizing Parkinsonian tremors in dynamic, real-
world environments. It handles noisy, unconstrained video
data with high accuracy and reliability, making it suitable
for deployment in mobile health applications and remote
monitoring systems.

Figure 7 illustrates the class-wise precision, recall and
specificity of four classification models using the proposed
framework. The 1D CNN-LSTM model consistently outper-
forms others across all metrics, while SVM typically shows
the lowest performance. Precision and recall exhibit more
pronounced downward trends across classes compared to
specificity, which remains relatively stable. Notably, recall
drops significantly for all models in Classes 3 and 4,
as these classes are imbalanced with fewer videos in the
dataset.

Figure 8 visualizes the training - validation accuracy, along
with the loss graph for the model with best performance, 1D
CNN-LSTM. Figure 9 shows the confusion matrix for the
proposed model.

The ROC curve shown in Figure 10 illustrates the perfor-
mance of various classifiers in terms of AUC (Area Under
the Curve) across different filtering methods. Without any
filtering, all classifier models perform poorly. The introduc-
tion of basic Kalman filtering leads to a slight improvement
in performance. The Lagrangian-Kalman method further
enhances the AUC by more effectively capturing the
dynamics of tremors. However, the best performance is
achieved with the Extended Lagrangian-Kalman method,
which incorporates more realistic physiological factors such
as muscle stiffness, damping, and stochastic variability
characteristic of Parkinson’s tremors. In addition to the above,
Figure 11 shows the AUC comparison of classifiers, in which
the proposed model yielded the highest value AUC score in
all the cases.
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Classifier Performance Comparison Across Filtering Methods
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FIGURE 6. Metrics overview for model performance.
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FIGURE 7. Classwise comparative performance metrics.

The performance gap between the ELF approach and other
methods becomes more pronounced as model complexity
increases. The 1D CNN-LSTM model benefits the most,
achieving an AUC of 0.97, representing a 57% improve-
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ment over the unfiltered baseline (0.62). The Extended
Lagrangian-Kalman filter consistently outperforms all other
methods, achieving near-perfect classification ability. The
error bars further validate the statistical significance of these
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FIGURE 8. Training and validation loss.

Normalized Confusion Matrix

0.005

True label

0.4

0.2

0 L 2 3 4
Predicted label

FIGURE 9. Normalised confusion matrix.

differences. These findings suggest that advanced filtering,
when combined with deep learning, is highly effective in
extracting clinically relevant features from tremor signals for
automated severity classification.

The 1D CNN-LSTM model excels in classifying rest
tremor in hand videos due to its effective integration of
spatial and temporal pattern recognition. Utilizing con-
volutional blocks, the model learns spatial features like
distinct postures and movements of the hands. LSTMs can
retain and recall relevant information over time, which
assists in distinguishing regular tremor oscillations from
ordinary arm movements. It is the combination of CNN
and LSTM layers that makes it possible to identify both
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ROC Curve for Multi-Class Classification

1.0

0.8

o
o

True Positive Rate
o
>

Class 0 (AUC = 1.00)
Class 1 (AUC = 0.99)
Class 2 (AUC = 0.98)
Class 3 (AUC = 0.97)
Class 4 (AUC = 0.93)
Random Guess

0.2

0.0

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

FIGURE 10. ROC curve of different classifiers.
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FIGURE 11. AUC comparison of classifiers.

short-rest tremor patterns and long rhythmic-rest tremor
oscillations. Furthermore, the 1D CNN-LSTM model is
specifically designed to handle time series data, which is
essentially what hand tremor videos represent. Unlike some
traditional classifiers, this model inherently accounts for the
temporal aspect of the data. It also exploits automatic feature
learning to potentially capture subtle tremor characteristics
that might be missed by methods that rely on hand-crafted
features. These conventional machine learning algorithms,
including Random Forest and SVM have some constraints
specifically when it comes to handling the temporal features
of rest tremor data. These models tend to learn each data
instance separately and do not have the capacity to model
temporal dependencies or temporal relations in a time
series data set. Although Random Forests are capable of
capturing non-linearity and feature interactions, they are not
capable of modelling the temporal evolution of tremors.
Similarly, SVMs excel in finding optimal decision boundaries
in high-dimensional spaces but struggle to incorporate
time-based patterns crucial for tremor detection. Because
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FIGURE 12. Comparative accuracy analysis.

of their static nature, they struggle to distinguish minor
fluctuations in hand motions over time, which are important
to distinguish between different types of rest tremors. Due
to their inability to process time dependent characteristics
of tremor data, their AUC scores in the ROC curve analysis
are relatively poor compared to that of the 1D CNN-LSTM
model.

Figure 12 shows the comparative accuracy analysis across
different study types, in which the proposed video-based
method for classifying Parkinson’s disease tremors achieves
an impressive 98% accuracy, surpassing all existing methods
from video, sensor, and multimodal studies. In video-based
research, it exceeds top approaches like [16] at 93.7%
and [11] at 93.5% by about 4.3% to 4.5%. It also improves
over sensor-based methods, which reach up to 91.8%,
showing a 6.2-12.4% gain by capturing tremor dynamics
(amplitude, frequency, and coordination) without using
wearable devices. Additionally, it outperforms multimodal
systems like [23] (95.0%) by 3%, suggesting that advanced
algorithms—possibly with attention mechanisms or self-
supervised learning—can extract rich information from
video alone. While this method shows clear technical and
clinical advantages, such as better temporal analysis and
reduced need for subjective assessments, challenges like
high computational demands and validation in real-world
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settings remain. Future work may include combining video
with wearable sensors and integrating explainable Al
to build clinician trust, aiming to establish video-based
tremor classification as a new standard for Parkinson’s
diagnosis.

To further support the robustness of the reported improve-
ments, we performed statistical analyses to quantify the
significance of our model’s performance gains. For the
multi-class tremor severity classification task, we report
a mean classification accuracy of 98.3%, with a 95%
confidence interval (CI) of [96.1%, 99.7%] based on
stratified 10-fold cross-validation. The corresponding F1-
score averaged across all classes was 0.982 (95% CI: [0.963,
0.995]), indicating consistent performance across folds and
severity levels. To evaluate the correlation between model
predictions and expert-rated UPDRS scores, we computed
the Pearson correlation coefficient, yielding r = 0.85 with
a p-value < 0.001, confirming a statistically significant
linear relationship. Additionally, paired two-tailed t-tests
were conducted to compare the Fl-scores and accuracy of
our Extended Lagrangian—Kalman model against baseline
architectures (e.g., CNN-LSTM and RNN-only models). The
improvements in both metrics were statistically significant,
with p < 0.01, indicating that the observed gains are
unlikely due to random variation and can be attributed
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to the specific contributions of the proposed modelling
approach.

C. ABLATION STUDY

These ablation results clearly demonstrate that each com-
ponent of the proposed pipeline contributes significantly to
overall model performance. The full configuration combining
ANCSS, the Extended Lagrangian model, and Kalman
filtering achieves the highest classification accuracy (98.3%),
F1-score (0.982), and the lowest frequency estimation error
(0.07 Hz), establishing a robust baseline for clinically reliable
tremor analysis. When the ANCSS module is removed,
performance declines to 93.5% accuracy and 0.928 FI1-
score, while frequency estimation error increases to 0.11 Hz.
This suggests that adaptive temporal sampling plays a
critical role in eliminating redundant frames and focusing
the analysis on tremor-relevant segments. Without ANCSS,
the model is exposed to more non-tremor motion and
temporal noise, resulting in degraded signal quality and
reduced classification robustness. Excluding the Extended
Lagrangian model causes the most substantial performance
drop. Accuracy decreases to 89.2%, Fl-score to 0.887,
and frequency estimation error rises to 0.15 Hz. This
confirms the essential role of biomechanical modeling in
capturing the nonlinear dynamics of tremor oscillations.
Linear approximations fail to represent the complex inertial
and constraint forces observed in real-world PD tremor,
leading to poorer signal reconstruction and classification.
Clinically, a 0.15 Hz frequency error (10-12% deviation)
may misinform UPDRS scoring or impair the tuning of
tremor-specific interventions such as deep brain stimulation
(DBS). The Kalman filter, though slightly less impact
in classification metrics, still contributes meaningfully to
temporal smoothing and noise suppression. Its removal
results in a performance drop to 91.4% accuracy, 0.901 F1-
score, and an increase in frequency error to 0.21 Hz. This
highlights the Kalman filter’s importance in stabilizing tra-
jectory estimation under noisy or low-amplitude conditions.
Although the accuracy impact is smaller than that of ANCSS
or the Lagrangian model, the nearly threefold increase in
frequency error can undermine confidence in time-sensitive
or longitudinal tremor assessments. Finally, removing all
modeling and preprocessing components—leaving a raw
CNN-LSTM pipeline—results in the poorest performance,
with 85.7% accuracy, 0.861 F1-score, and 0.28 Hz frequency
error. This baseline confirms that the deep learning model
alone is insufficient to capture clinically meaningful tremor
features without structured signal conditioning. Collectively,
these results reinforce the importance of integrating adaptive
sampling, biomechanical modeling, and temporal filtering
to achieve robust, interpretable, and clinically actionable
tremor detection. The advanced physics model provides
better accuracy than simple methods and gives doctors
muscle stiffness measurements that basic approaches cannot
detect.
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TABLE 5. Ablation study results.

Configuration Accuracy | F1-Score | Frequency Er-
(%) ror (Hz)

Full pipeline (ANCSS + La-|98.3 0.982 0.07

grangian + Kalman)

No ANCSS (Fixed 30 fps in- | 93.5 0.928 0.11

put)

No Extended Lagrangian (Lin- | 89.2 0.887 0.15

ear model used)

No Kalman Filter (raw signal | 91.4 0.901 0.21

input)

CNN-LSTM only (no prepro- | 85.7 0.861 0.28

cessing/modeling/filter)

1) EFFECT OF ANCSS MODULE

Removing the ANCSS signal-conditioning module and
reverting to a fixed-frame sampling rate notably degrades
performance. As shown in Table 5, classification accuracy
drops from 98.3% to 93.5%, F1-score from 0.982 to 0.928,
and frequency estimation error rises from 0.07 Hz to 0.11 Hz.
ANCSS improves performance by adaptively focusing on
tremor-dominant segments, suppressing irrelevant motion
and temporal redundancy. Without it, the model is more
vulnerable to movement noise and non-tremor variability,
resulting in blurred feature representations. Clinically, this
may lead to increased false positives or negatives in
tremor detection, potentially affecting diagnosis or treatment
selection.

2) EFFECT OF EXTENDED LAGRANGIAN MODEL

The Extended Lagrangian model embeds nonlinear biome-
chanical properties into the motion dynamics, enabling
the system to represent variable tremor behaviors more
accurately. Its removal causes the most pronounced drop in
performance: accuracy falls to 89.2%, Fl-score to 0.887,
and frequency error increases to 0.15 Hz. Without this
model, the system relies on simplified linear approximations
that fail to capture the oscillatory complexity of PD
tremor—particularly during amplitude shifts or asymmetric
patterns. From a clinical standpoint, a frequency error of
0.15 Hz (10-12%) could misrepresent disease severity or
lead to suboptimal calibration in therapeutic applications
like DBS.

3) EFFECT OF KALMAN FILTER

The Kalman filter offers temporal smoothing and robust esti-
mation of motion trajectories under noise. Its removal leads
to a reduction in classification accuracy (to 91.4%) and F1-
score (to 0.901), while increasing frequency error to 0.21 Hz.
This demonstrates its role in mitigating frame-to-frame jitter
and motion artifacts, particularly in low-amplitude cases.
Although the classification impact is moderate, the higher
frequency error may undermine confidence in longitudinal
tremor tracking or real-time applications, where temporal
consistency is crucial.
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D. CLINICAL INTERPRETABILITY AND DIAGNOSTIC
WORKFLOW INTEGRATION

While Extended Lagrangian—Kalman model demonstrates
high accuracy in tremor severity classification, its ultimate
value lies in providing neurologists with transparent, clin-
ically meaningful metrics that map directly onto standard
assessment scales. By aligning each extracted feature with
established UPDRS criteria, we ensure that the model’s
outputs can be readily interpreted and acted upon within
routine clinical practice. Tremor amplitude (mm) corresponds
directly to hand-displacement ratings in the UPDRS: for
example, an increase from 5 mm to 15 mm typically reflects
a one-point worsening in clinical severity. Peak tremor
frequency (Hz) is constrained to the well-characterized
4-6 Hz Parkinsonian rest-tremor band, with deviations
prompting consideration of mixed or atypical etiologies such
as medication-induced or dystonic tremors. Velocity and
acceleration metrics (mm/s and mm/s?) mirror bradykinesia
and rigidity assessments rapid, low-amplitude oscillations
often co-occur with mild rigidity, whereas slower, larger
movements may indicate disease progression. Directionality
and axis variability (° of deviation) quantify oscillation
stability; values above a 15° standard deviation suggest
the presence of postural or kinetic components, aiding in
differential diagnosis. To enhance interpretability, we rank
features by their observed effect size and correlation with
UPDRS scores in our validation cohort. For instance,
tremor amplitude variability and axis-change rate showed the
strongest associations with higher severity classes, mirroring
clinical observations that irregular, multidirectional tremors
often signify advanced disease. Presenting these feature
rankings alongside raw values allows clinicians to see which
metrics most strongly influenced the automated severity
assessment. Integration into real-world diagnostic workflows
is achieved through a lightweight, end-to-end software
package deployable on any standard desktop or laptop with
a consumer-grade webcam. During a routine patient visit, the
clinician records a 30-second video of the affected limb under
simple on-screen guidance; the software then (i) adaptively
resamples frames via ANCSS, (ii) extracts and denoises
features with the Extended Lagrangian—Kalman module, and
(iii) generates both a tremor-severity classification and a
detailed feature report. The system works with any standard
computer and webcam, requiring no special equipment or
technical training for clinic staff.

V. LIMITATIONS AND FUTURE WORK

The modest dataset size in this study reflects a fundamental
challenge inherent to Parkinson’s disease tremor research:
the critical scarcity of high-quality, clinically annotated
video datasets. Unlike domains with large repositories (e.g.,
ImageNet or MIMIC), PD tremor analysis lacks standardized
public datasets, and these stringent requirements typically
limit recordings. Additionally, PD is relatively uncommon in
the general population, with a prevalence of approximately
1-2% in individuals over 60 year, resulting in a limited
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pool of eligible participants for clinical studies. To address
these inherent data acquisition challenges, we established col-
laborative partnerships with movement disorder researchers
across multiple institutions. This multi-site approach was
essential for achieving adequate sample diversity while
maintaining the stringent quality standards required for algo-
rithmic development. The current 60-video dataset represents
the culmination of these collaborative efforts. Designed as a
proof-of-concept, our study uses this dataset to validate three
core innovations: (i) the Extended Lagrangian framework
with nonlinear stiffness and energy-dissipation terms, (ii)
the ANCSS adaptive sampling strategy, and (iii) Kalman
filtering for noise reduction. Power analysis confirms that
60 videos exceed the minimum requirements for CNN-LSTM
convergence and provide >80% power to detect large effect
sizes (Cohen’s d > 0.8). The resulting 98% accuracy and
strong UPDRS correlation (r = 0.85) demonstrate technical
feasibility, offering compelling preliminary evidence to sup-
port larger-scale validation studies. While larger sample sizes
will be required for clinical deployment, the current dataset
is statistically adequate for establishing proof-of-concept fea-
sibility and completing algorithm development. The strong
performance metrics achieved with this carefully curated
dataset provide a solid foundation for future large-scale
validation studies and clinical implementation trials.

Due to the limited size of our current dataset, which
constrains the effective training of such high-capacity
architectures, these models were not included in the present
evaluation. However, we plan to benchmark the proposed
framework against Transformer variants in future work, once
our expanded, multi-institutionally collected dataset becomes
available. This will allow a more comprehensive comparison
across modern temporal modeling paradigms.

This limitation raises concerns regarding the robustness
and reliability of the proposed method when extended to
larger and more diverse populations. A limited dataset can
introduce bias, restrict the model’s ability to learn the full
spectrum of tremor variability, and reduce generalizability in
real-world clinical contexts. To comprehensively assess the
model’s accuracy, adaptability, and scalability, it is essential
to validate it against larger, independent datasets. Such testing
would enhance confidence in the model’s predictive perfor-
mance across different demographic groups, tremor severi-
ties, and clinical scenarios. While this study has demonstrated
the feasibility of automatically detecting Parkinsonian hand
tremors using the Extended Lagrangian—Kalman framework,
translating promising research findings into practical clinical
applications remains a more complex endeavor. Meaningful
comparison with existing diagnostic tools—in terms of
usability, processing speed, and interpretability will help
determine whether the proposed framework offers a genuine
advantage for clinicians and patients.

VI. CONCLUSION
This study presents a novel approach by integrating
Extended Lagrangian Mechanics with Kalman filtering
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for video-based hand movement analysis, offering a non-
invasive, remote method to assess Parkinson’s Disease (PD)
severity. By leveraging Adaptive Nyquist-Compliant Sparse
Sampling (ANCSS), the framework optimizes video process-
ing efficiency, capturing subtle rest tremor oscillations (4—6
Hz) with high precision. The Extended Lagrangian model,
incorporating kinetic energy, nonlinear stiffness-based poten-
tial energy, and energy dissipation via Rayleigh’s function,
effectively models the non-periodic, variable nature of
tremors.

The proposed framework integrates these dynamics with
a 1D CNN-LSTM classifier, which achieves a peak AUC of
0.9 and 96.3% accuracy, outperforming SVM, Random For-
est, and XGBoost classifiers. This performance is attributed
to its ability to capture both spatial and temporal tremor
patterns. Additionally, results show strong correlation with
UPDRS scores (r = 0.85), with frequency estimates closely
aligning with clinical severity. The framework also quantifies
tremor amplitude (0-113.8 mm), velocity (0-253.5 mm/s),
and directionality, providing rich diagnostic features.

ANCSS contributes to a reduction in computational time
(9.5 ms/frame vs. 15 ms) and memory usage (42.5 MB vs. 65
MB). The Lagrangian-Kalman filter further refines frequency
estimation, preserving transient features that conventional
Kalman filters may overlook. The system’s robustness in
noisy environments and its real-time capability highlight
its promise for remote healthcare, enabling objective early
diagnosis and monitoring. Nevertheless, the study’s reliance
on a small, ethnically limited dataset limits generalizability.
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