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Abstract: To address the high-precision measurement requirements for container pose
on dual-trolley quayside crane-transfer platforms, this paper proposes a machine vision-
based measurement method that resolves the challenges of multi-scale lockhole detection
and precision demands caused by complex illumination and perspective deformation in
port operational environments. A hardware system comprising fixed cameras and edge
computing modules is established, integrated with an adaptive image-enhancement prepro-
cessing algorithm to enhance feature robustness under complex illumination conditions. A
multi-scale adaptive frequency object-detection framework is developed based on YOLO11,
achieving improved detection accuracy for multi-scale lockhole keypoints in perspective-
distortion scenarios (mAP@0.5 reaches 95.1%, 4.7% higher than baseline models) through
dynamic balancing of high–low-frequency features and adaptive convolution kernel ad-
justments. An enhanced EPnP optimization algorithm incorporating lockhole coplanar
constraints is proposed, establishing a 2D–3D coordinate transformation model that reduces
pose-estimation errors to millimeter level (planar MAE-P = 0.024 m) and sub-angular level
(MAE-θ = 0.11◦). Experimental results demonstrate that the proposed method outperforms
existing solutions in container pose-deviation-detection accuracy, efficiency, and stability,
proving to be a feasible measurement approach.

Keywords: machine vision; dual-trolley quayside container crane; container-transfer plat-
form; high-precision pose measurement; adaptive image enhancement; multi-scale object
detection

1. Introduction
With the rapid development of automated container terminals, dual-trolley quayside

container cranes, as core equipment for efficient loading/unloading operations, rely on their
critical connecting component—the container-transfer platform—to facilitate container han-
dover between the main trolley and gantry trolley. However, during container-unloading
operations, mechanical clearance caused by long-term wear of container guide frames
and spreader oscillations frequently result in actual container poses deviating from preset
positions on the transfer platform. Figure 1a illustrates standard poses of a 40-foot general
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purpose container and dual 20-foot general purpose containers on the transfer platform;
Figure 1b demonstrates horizontal deviation of containers; Figure 1c depicts rotational
deviation; Figure 1d presents combined horizontal–rotational deviations. These deviation
patterns necessitate frequent spreader pose adjustments during secondary grasping opera-
tions, which critically depend on perception systems’ precise calculation of 3D positions
and deflection angles. The accuracy and speed of container pose estimation thus become
crucial factors affecting operational efficiency. Enhancing the measurement accuracy and
reliability of container positions and orientations on transfer platforms remains a signifi-
cant research focus. Traditional manual measurement methods suffer from low efficiency
and inconsistent precision, while existing vision-based systems face multiple challenges
in complex port environments: dynamic lighting conditions (e.g., intense glare, rain/fog
interference) causing image feature degradation and target-recognition failures; perspective-
induced multi-scale deformations of container top-surface lockholes under fixed camera
top-view configurations that hinder traditional image algorithms; and stringent robustness
requirements for millimeter-level pose measurement.

Figure 1. Schematic diagram of horizontal and rotational deviations of containers on transfer platform.

This paper introduces a high-precision pose-measurement method for containers on
the dual-trolley quayside container crane-transfer platform. The method employs a fixed
camera-based pure vision detection approach, utilizing an adaptive image-enhancement
preprocessing algorithm to flexibly adapt to complex illumination environments in ports.
A multi-scale adaptive frequency object-detection framework based on YOLO11 is devel-
oped. The framework combines image characterization at different scales and dynamically
adjusts the frequency domain information-processing strategy to more accurately identify
and localize targets of different sizes in complex scenes. It can effectively address the
issue of excessive scale variations in container lockhole keypoints caused by perspective
transformation. Subsequently, the three-dimensional coordinates of container lockhole
keypoints are calculated by combining the coplanar characteristics of container top lock-
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holes with an improved EPnP optimization method, achieving millimeter-level horizontal
deviation estimation and sub-angle-level deflection angle measurement. The proposed
method provides a feasible solution for high-precision container pose measurement on
dual-trolley quayside container crane-transfer platforms.

The contributions of this paper are summarized as follows:

1. To address the limitations of low efficiency and unstable accuracy in traditional
manual operations for field engineering applications, a machine vision-based high-
precision pose-measurement system for containers on the dual-trolley quayside con-
tainer crane-transfer platform is proposed;

2. To mitigate interference from complex illumination and meteorological interference
in port environments on operational site images, an adaptive image-enhancement
preprocessing algorithm is designed to strengthen image features;

3. To resolve the challenge of large-scale variations in lockhole keypoints on container
tops caused by perspective transformation in operational scenarios, a multi-scale
adaptive frequency object-detection framework is developed based on the YOLO11
architecture, enabling robust target recognition and keypoint detection;

4. To overcome the low precision of traditional pose-estimation algorithms, an improved
EPnP optimization method is proposed to achieve high-accuracy measurement of 3D
container positions and orientations.

2. Related Work
Container pose-measurement technology is a core component of automated port

operations. Early research primarily relied on manual measurement and sensor-assisted po-
sitioning techniques, such as LiDAR-based [1] or inertial navigation-based pose-estimation
systems [2]. Although these methods achieve high accuracy, they suffer from high equip-
ment costs, complexity of deployment, and susceptibility to mechanical vibration interfer-
ence [3]. With the advancement of machine vision, monocular or binocular camera-based
visual measurement methods have emerged as research hotspots. Kuo et al. [4] proposed a
container damage-detection method based on machine vision, and Ji et al. [5] developed a
vision-based truck-lifting accident-detection approach. However, these methods generally
face dual constraints of calibration sensitivity and nonlinear computational complexity
growth. Notably, monocular vision-based pose estimation has gained significant attention
in the last five years due to its deployment flexibility and cost-effectiveness, yet challenges
remain in overcoming dynamic illumination disturbances and target scale variations in
actual port operations.

The complex optical conditions in port operational scenarios, including strong re-
flections and rain/fog blurring, pose significant challenges to image feature extraction.
Traditional image-enhancement methods (e.g., histogram equalization) exhibit unstable
feature performance under non-stationary illumination due to environmental adaptabil-
ity limitations. Degradation-aware image enhancement is an intelligent enhancement
technique that incorporates the analysis of image-degradation factors. Its core idea is to
explicitly identify and model the types of degradation in the image (e.g., noise, blur, low
resolution, etc.) when improving the image quality (e.g., denoising, deblurring, contrast
enhancement, etc.), and adaptively adjust the enhancement strategy based on this informa-
tion, so as to achieve more accurate and efficient restoration and enhancement. Researchers
have proposed various degradation-aware image-enhancement strategies, such as Retinex
theory-based dynamic contrast adjustment algorithms [6], which tend to introduce noise un-
der extreme illumination. Recent deep learning-based feature-enhancement methods [7–9]
demonstrate stronger robustness, exemplified by Li et al.’s [10] attention-guided residual
blocks for real-time low-light image enhancement in smart ports. Lin et al. [11] achieved
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container number recognition with surface contamination and damage through deep learn-
ing and low-light enhancement algorithms. Nevertheless, existing methods still struggle
with composite interference from large-scale variations and degradation coupling in port
scenarios, requiring further optimization of feature fidelity and computational efficiency.

Under fixed camera configurations, container terminal operations frequently encounter
drastic target scale variations. Traditional object-detection models like Faster R-CNN [12]
face limitations in handling scale diversity due to fixed receptive field designs. YOLO-
series algorithm [13] improvements enhance multi-scale detection capabilities through
Feature Pyramid Networks [14], yet still suffer from missed detections under extreme scale
differences. Zhou et al. [15] integrated SRCNN [16] and Resblock [17] to develop a contour
feature-enhancement module, combining DConv [18] for cross-scale feature-enhancement
networks. However, this approach incurs substantial computational overhead. Recent stud-
ies explore frequency-domain analysis with spatial feature extraction [19], enhancing detail
features through high-frequency components while maintaining structural integrity via
low-frequency components [20,21], offering new paradigms for multi-scale detection. How-
ever, their generalization capability in dynamic port scenarios requires further validation.

The core of 3D pose estimation lies in solving camera extrinsic parameters through
2D–3D point correspondences. Traditional PnP algorithms like DLT and EPnP minimize
reprojection errors for pose estimation but tend to fall into local optima under noise inter-
ference. The EPnP algorithm reduces computational complexity through virtual control
points [22]. Some studies integrate RANSAC mechanisms to enhance noise resistance [23],
yet iterative processes compromise real-time performance. Moreover, existing methods
rarely exploit practical constraints from real operational environments, leading to redun-
dant degrees of freedom and limited accuracy in pose estimation.

Despite progress in visual detection and pose estimation, significant gaps remain be-
tween current technical capabilities and operational requirements for dual-trolley quayside
container crane-transfer platforms. Existing image-enhancement methods lack joint mod-
eling capabilities for illumination, meteorological interference, and geometric distortion
when addressing dynamic degradation coupling in complex port environments. Traditional
convolutional networks struggle with extreme scale variations of container top lockhole
keypoints during port operations. The accuracy of the pose estimation remains constrained
by detection precision and algorithmic limitations, leaving substantial room for improve-
ment. Current dual-trolley quayside container crane-transfer platform operations still lack
effective and reliable solutions for container position and orientation measurement.

3. Three-Dimensional Positioning and Pose-Measurement System
3.1. Hardware System

This paper proposes a hardware system based on visual measurement for the mea-
surement of three-dimensional positioning and poses of containers on the transfer platform
of a dual-trolley quayside container crane. The system consists of fixed cameras and edge
computing modules. Fixed visual cameras are installed on the land side column of the
quay crane above the transfer platform, as shown in Figure 2. These cameras are tilted
downward to capture images, with their field of view fully covering the container-transfer
platform to record the operational workflow of container placement.

The edge computing module processes visual data captured from containers on the
transfer platform. In actual operations, the fixed cameras continuously capture container
images and transmit them to the edge computing module. Through advanced image-
processing algorithms and pose-detection algorithms, the module analyzes and processes
these images to ultimately obtain accurate container position and attitude information.
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Figure 2. Fixed camera installation location schematic diagram.

3.2. Algorithm Design

The workflow of the 3D positioning and pose-measurement algorithm for transfer
platform containers based on visual measurement proposed in this paper is illustrated
in Figure 3. First, the video stream captured by fixed cameras is input frame-by-frame
as raw images. Image preprocessing is performed using the proposed adaptive image-
enhancement preprocessing algorithm, which dynamically adjusts enhancement strategies
for complex illumination and meteorological interference in port environments to efficiently
enhance image features.

After dynamic image feature enhancement, container recognition/classification, and
lockhole keypoint detection are required. To address the large-scale variations caused by
perspective transformations in containers and their top lockholes captured by fixed cameras
on dual-trolley quayside container cranes, the proposed multiscale adaptive frequency
object-detection method is implemented. Based on the YOLO11 framework, this method
identifies 20-foot and 40-foot general purpose containers while obtaining two-dimensional
image coordinates of lockhole keypoints.

Finally, using the output container-recognition information and 2D image coordinates
of lockhole keypoints, the proposed 2D–3D keypoint coordinate-conversion algorithm
calculates the three-dimensional coordinates of container lockhole keypoints. These 3D
coordinates are then input into the pose analysis algorithm to ultimately determine the con-
tainer’s offset direction/distance and rotation direction/angle relative to baseline positions
on the transfer platform.

Figure 3. Algorithm flowchart.
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3.2.1. Adaptive Enhancement Image Feature Preprocessing Method

To address interference issues caused by high-contrast complex illumination and rain
fog blur in complex environments at container terminals that affect container images on
transfer platforms, we designed an adaptive enhancement image feature preprocessing
algorithm. This algorithm serves as a preprocessing component before image-detection
algorithms to mitigate the impacts of complex illumination and meteorological interference.
As illustrated in Figure 4, inspired by Zhang et al. [24], we propose a novel method lever-
aging the characteristics of the Chain-of-Thought Prompt Generation Module (CGM) and
Content-Driven Prompt Block (CPB) to enhance port container images under degradation
conditions such as complex illumination and environmental challenges.

Figure 4. Network structure diagram of adaptive image-enhancement preprocessing method.

CGM Module: The Chain-of-Thought prompting mechanism constructs a multilevel
degradation-aware semantic encoding framework, as illustrated in Figure 5. Its core
employs a transposed convolution sequence to generate resolution-increasing prompts,
progressively refining from low-resolution global semantics (Such as rain blur, fog blur,
dark light attenuation and other types of degradation categories) to high-resolution local
features (Degradation intensity distribution for rain and fog blurring, dark light weak-
ening, etc.). Initial prompts undergo multi-stage upsampling and channel compression,
with information filtering achieved through the Hardswish activation function [25]. This
establishes inter-level dependencies. The design breaks through the static limitations of
traditional independent prompts, guiding the model through chain-of-thought reasoning
to parse degradation patterns from coarse to fine. Driven by the training data, CGM au-
tomatically learns the features of different degradation types such as rain blur and dark
light weakening. Combined with the multi-scale features of the decoder, it significantly
enhances adaptive capability for degradation types.

Figure 5. CGM module network architecture diagram.

Specifically, the construction of this module primarily consists of following steps. First,
an initial prompt is constructed by initializing a tensor of a learnable prompt P3 ∈ RĤ×Ŵ×Ĉ

in the third layer of the decoder, where Ĥ × Ŵ denotes the initial spatial resolution and Ĉ
represents the dimension of the channel. This prompt learns global representations of degra-
dation patterns through backpropagation. Subsequently, multiscale prompt sequences
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are progressively generated via stacked transposed convolutions—a 3 × 3 transposed con-
volution operation upsamples P3 to produce the second-layer prompt P2 ∈ R2Ĥ×2Ŵ×Ĉ/2,
following which the first-layer prompt P1 ∈ R4Ĥ×4Ŵ×Ĉ/4 is generated similarly. After
each transposed convolution layer, the Hardswish activation function is used to suppress
irrelevant information flow, selectively propagating degradation-related characteristics as
formulated in Equation (1).

Pi = Hardswish(TC3×3(Pi+1)), i ∈ {1, 2} (1)

where TC3×3 represents the 3 × 3 transposed convolution operation. The CGM module
establishes hierarchical dependency relationships between prompts, enabling coarse-to-fine
progressive reasoning of degradation patterns through multiscale feature interactions.

CPB Module: Achieves degradation-aware feature enhancement through dual-path
hybrid attention and parallel Transformers as illustrated in Figure 6. First, the channel-
spatial attention jointly models feature importance to generate content-sensitive weight
distributions. Subsequently, the prompt information undergoes interpolation alignment
and concatenation with features. The fused features are then fed into multiple parallel
Transformer sub-blocks via a channel-splitting strategy, where cross-channel attention is
computed individually and gating mechanisms control information flow. Prompts gener-
ated by the CGM dynamically adjust the enhancement strategy by interacting with image
features at each layer of the decoder through the CPB module. At the shallow decoder, the
prompt may guide the removal of rain noise (e.g., suppressing rain line artifacts). Whereas
at the deep decoder, prompt may enhance object-critical features (e.g., edges of container
lock holes) to improve detection robustness. This design reduces computational complexity
through a divide-and-conquer principle while achieving adaptive degradation context
enhancement via fine-grained feature-prompt interactions.

Figure 6. CPB module network structure diagram.

The specific implementation process of the CPB Module is as follows. Firstly, generate
channel attention weights Wc

i ∈ R1×1×Ci and spatial attention weights Ws
i ∈ RHi×Wi×Ci . to

capture the key information of the input features, the calculation equation for Wc
i is shown

in Equation (2), and the calculation equation for Ws
i is shown in Equation (3).

Wc
i = C1×1(ReLU(C1×1(GAPc(Fi)))) (2)

Ws
i = C7×7([GAPs(Fi), GMPs(Fi)]) (3)

where Ck×k denotes k × k convolution. ReLU represents the ReLU activation function.
GAPc is the global average pooling operation across the spatial dimensions. GMPs is
the global max pooling operation across channel attention.

[
·
]

denotes the channel-wise
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concatenation operation. Subsequently, the attention weights are fused with the input
features, as shown in Equations (4)–(6).

Fw
i = [(Wc

i ⊕ Ws
i )⊙ Fi, Fi] (4)

Fs
i = σ(DC7×7(CS(Fw

i ))) (5)

Fp
i = C1×1([Fi, Rescale(Pi)⊕ Fs

i ]) (6)

where ⊙ and ⊕, respectively, represent element-wise multiplication and element-wise
addition. DCk×k is the depthwise separable convolution with a stride of k × k. CS denotes
the channel shuffle operation.

Fp
i is split into n blocks along the channel dimension in Equation (7).

Fi,j
p = Fp

i

[
:, :, (j − 1)

Ci
n

: j
Ci
n

]
, j ∈ {1, 2, . . . , n} (7)

Each sub-block is input into an independent Transformer Block. Finally, the enhanced
feature is obtained by concatenating the results of all sub-blocks:

Fg
i = [Fi,1

g , . . . , Fi,j
g , . . . , Fi,n

g ], j ∈ {1, 2, . . . , n} (8)

In the design of the enhancement module, we employ LDConv [26] (Linear Deformable
Convolution) to generate convolution kernels of arbitrary sizes and diverse initial sam-
pling positions. By adaptively adjusting sampling points through offsets, the convolution
operation can better accommodate shape variations of the targets. This flexibility enables
the model to efficiently extract critical information and enhance feature representation
capabilities when processing multi-scale image data.

The approach combines hierarchical reasoning and dynamic coupled synergetic ar-
chitecture construction. It can effectively deal with the multiple challenges of complex
illumination, meteorological interference and geometric distortion. This approach signif-
icantly improves both semantic adaptability and structural fidelity in container image
enhancement for transfer platforms.

3.2.2. Multi-Scale Adaptive Frequency Object Recognition and Keypoint-Detection Method

Traditional object-detection methods exhibit poor performance in the complex envi-
ronments of container terminals, particularly in scenarios with significant scale variations
of container top lockhole targets caused by perspective transformation effects from fixed
cameras during container operations at transfer platforms. To address this issue, our recog-
nition framework improves upon the conventional YOLO11 and proposes a multi-scale
object-detection and keypoint-detection method, as illustrated in Figure 7.

The original bottleneck module employs fixed-size convolution kernels, leading to
insufficient information capture or excessive smoothing when processing features at dif-
ferent scales, thereby failing to meet the demands of diversified feature representation.
Simultaneously, traditional convolution operations extract features solely in the spatial
domain, exhibiting limited capacity to capture fine details under large-scale structures.
Although stacking multiple layers can expand the receptive field, the fixed kernel size in-
herently restricts the local feature extraction capacity of single-layer convolution operations.
This limitation becomes particularly pronounced in high-level semantic feature extraction
or multi-scale tasks, where long-range dependency information in input data remains
underutilized. To address this, we introduce Frequency-Adaptive Dilated Convolution
(FADConv) into the C3k2 module for the first time, with its network architecture illustrated
in Figure 8.
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Figure 7. Network architecture diagram of multi-scale adaptive frequency object recognition and
keypoint detection.

Figure 8. C3k2 FADC network architecture.

Through a frequency-adaptive mechanism, the convolutional weights are decomposed
into high-frequency components and low-frequency components. As shown in Figure 9,
by dynamically adjusting the convolution dilation rate and convolution kernel weight,
the model can adaptively adjust its receptive field according to different local frequency
characteristics, thereby enhancing its ability to capture high-frequency detail information.
Additionally, the model effectively expands the receptive field of convolutional layers by
balancing high- and low-frequency components. This enables the model to perform more
stably when processing inputs containing both high-frequency details (e.g., textures of
small-scale objects) and low-frequency structures (e.g., contours of large-scale objects),
particularly in multi-scale adaptive frequency object-detection scenarios.
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Figure 9. Schematic diagram of high–low frequency features in container images.

Specifically, this method balances Effective Bandwidth and Receptive Field through
Adaptive Dilation Rate (AdaDR). The spatial dynamic dilation rate is shown in Equation (9).

Y(p) =
K×K

∑
i=1

WiX
(

p + ∆pi × D̂(p)
)

(9)

where D̂(p) is the dynamic dilation rate at position P, predicted by a lightweight convolu-
tion. We first transform the feature map X ∈ RH×W into the frequency domain using the
Discrete Fourier Transform (DFT), it can be represented as:

XF(u, v) =
1

HW

H−1

∑
h=0

W−1

∑
w=0

X(h, w)e−2π j(uh+vw) (10)

High-Frequency Power is defined as:

HP(p) = ∑
(u,v)∈H+

D̂(p)

|X(p,s)
F (u, v)|2 (11)

where H+
D̂(p)

= {(u, v) | |u| > 1
2D̂(p)

or |v| > 1
2D̂(p)

} represents the high-frequency region

that cannot be captured by the dilation rate D̂(p). Then dynamically adjust the proportion
of low-frequency and high-frequency components of the convolution kernel to improve the
effective bandwidth.

W̄ =
1

K × K

K×K

∑
i=1

Wi, Ŵ = W − W̄ (12)

where W̄ represents the kernel-wise averaged W, Ŵ captures high-frequency details.
Through global pooling and convolutional layers to generate channel-level dynamic
weights λl and λh, reconstructing the adaptive convolutional kernel:

W ′ = λlW̄ + λhŴ (13)

Finally, the feature spectrum is balanced through frequency band decomposition and
reweighting to expand the receptive field.

Xb = F−1(Mb ⊙ XF) (14)
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Mb is the binary mask that extracts the frequency band [ϕb, ϕb+1). A spatially variant
attention weight Ab ∈ RH×W is applied to each frequency band Xb:

X̂(i, j) =
B−1

∑
b=0

Ab(i, j)Xb(i, j) (15)

This method can suppress high-frequency components in background regions, encour-
aging FADConv to select larger dilation rates to expand the receptive field.

Based on the fundamental framework of YOLO11, combined with the multi-scale
adaptive frequency object-detection method, the preprocessed images undergo precise
recognition to obtain identification results for 20-foot and 40-foot general purpose contain-
ers. Simultaneously, a keypoint-detection branch is added through an inherited detection
head to accurately detect the lockhole keypoints of different containers in the image and
acquire their two-dimensional image coordinates. The final recognition and detection
results are illustrated in Figure 10.

Figure 10. Detection results.

3.2.3. Three-Dimensional Position and Pose-Measurement Method for Containers

After obtaining the container-identification results and the 2D image coordinates of the
lockhole keypoints, it is necessary to calculate the position and pose of 20-foot and 40-foot
general purpose containers separately. This allows determining the offset and rotation
angle of the container relative to the standard position on the transfer platform. This
paper proposes a three-dimensional position and pose-measurement method for containers,
which consists of two parts: (1) 2D–3D Lockhole Keypoint Coordinate Conversion; (2)
Container Pose Calculation.

• Step 1: 2D–3D Lockhole Keypoint Coordinate Conversion.

Assuming the coordinates of the container lockhole in the 3D world coordinate system
are denoted as Pw = [X, Y, Z, 1]T , and its projected coordinates in the image coordinate
system are p = [u, v, 1]T , the mapping relationship between them can be expressed as
Equation (16) according to the fixed camera model.

sp = K[R | t]Pw (16)

Among them, s is the scale factor, K is the intrinsic matrix of the camera, R ∈ R3×3 is
the rotation matrix, and t ∈ R3 is the translation vector. The intrinsic matrix is defined by
Equation (17).

K =

 fx 0 cx

0 fy cy

0 0 1

 (17)
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In the formula, fx, fy represents the focal length parameter, and (cx, cy) denotes the
principal point coordinates.

Given n sets of 3D-2D correspondences {P(i)
w , p(i)}n

i=1, this work employs the EPnP
algorithm (Efficient PnP) to solve the extrinsic parameters R and t. The core idea involves
representing 3D points as weighted combinations of four virtual control points {Cj}4

j=1, as
shown in Equation (18).

P(i)
w =

4

∑
j=1

αijCj,
4

∑
j=1

αij = 1 (18)

By substituting Equation (18) into the projection Equation (16), Equation (19) can be
derived.

sip(i) = K
4

∑
j=1

αij(RCj + t) (19)

Through algebraic elimination of the scale factor si, a linear system of equations con-
cerning control point coordinates is constructed. After solving this system using Singular
Value Decomposition (SVD), the rotation matrix R and translation vector t are recovered
via Orthogonal Procrustes Analysis. The specific steps are as follows:

1. Control Point Initialization: Select four non-coplanar control points, typically choosing
the centroid of the 3D point set and principal component directions;

2. Weight Coefficient Calculation: Solve for αij using the least squares method to mini-
mize the residual error in Equation (18);

3. Camera Coordinate System Control Point Solution: Construct an overdetermined
system of equations using Equation (19) and solve it via SVD;

4. Extrinsic Parameter Recovery: Align control points in the world coordinate system
with those in the camera coordinate system, minimizing registration errors as shown
in Equation (20).

arg min
R,t

4

∑
j=1

∥Ccam
j − (RCworld

j + t)∥2 (20)

The containers on the transfer platform are positioned horizontally, with their upper
surface lockholes also located on the same horizontal plane (Z = h). This plane constraint
enhances the stability of solver computations. In this configuration, only four pairs of
initial point correspondences between 2D image coordinates and 3D world coordinates are
required to obtain a unique solution for the solver.

Given the 2D coordinates pk = [uk, vk]
T of the lockholes in the image and their height

constraint Zk = h, the 3D coordinates A are computed through back projection calculation.
Equation (16) is expanded into Equation (21).

suk = fx(r11Xk + r12Yk + r13h + tx) + cx(r31Xk + r32Yk + r33h + tz)

svk = fy(r21Xk + r22Yk + r23h + ty) + cy(r31Xk + r32Yk + r33h + tz)

s = r31Xk + r32Yk + r33h + tz

(21)

By eliminating the scale factor s, we obtain the linear equation system Equation (22)
concerning Xk, Yk. [

fxr11 + (cx − uk)r31 fxr12 + (cx − uk)r32

fyr21 + (cy − vk)r31 fyr22 + (cy − vk)r32

][
Xk

Yk

]

=

[
uk(r33h + tz)− fx(r13h + tx)− cx(r33h + tz)

vk(r33h + tz)− fy(r23h + ty)− cy(r33h + tz)

] (22)
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Solving Equation (22) uniquely determines the three-dimensional coordinates (Xk, Yk, h)
of the lockhole.

• Step 2: Container Pose Calculation.

Through the acquired three-dimensional coordinates of lockholes on the container’s
top surface, we analyze the container’s pose to calculate its position deviation and
deflection angle on the transfer platform. Given the three-dimensional coordinates
{Pk = (Xk, Yk, h)}4

k=1 of four lockholes on the container’s top surface, their geometric
center coordinate C = (Cx, Cy, h) can be calculated using the spatial point set centroid
formula, as shown in Equation (23).

Cx =
1
4

4

∑
k=1

Xk, Cy =
1
4

4

∑
k=1

Yk (23)

For the estimation of the container’s principal direction vectors, the long-axis direction
vector vL and short-axis direction vector vW are defined on the container’s top surface. By
selecting long-edge container lockhole pairs, two sets of vectors are calculated as shown in
Equation (24).

vL1 = P3 − P1, vL2 = P4 − P2 (24)

Since each container lockhole keypoint contains unique numbering, the vector direc-
tion will not be reversed due to incorrect lockhole numbering sequence, eliminating the
need for direction consistency correction. A weighted average of the two vector sets yields
the final long-axis direction estimation as demonstrated in Equation (25).

vL =
w1vL1 + w2vL2

w1 + w2
(25)

In this scenario, the weight allocation strategy adopts equal-weight averaging, w1 =

w2 = 1.
The resolved container position and pose information are calculated with the stan-

dard position center point C0 = (Cx0, Cy0, h) and standard direction vector vL0 =

(cos θ0, sin θ0, 0) (preset angle: θ0) to obtain the positional offset and directional deviation.
The container positional deviation ∆C is shown in Equation (26).

∆Cx = Cx − Cx0, ∆Cy = Cy − Cy0 (26)

By integrating dot product and cross product information, the four-quadrant arctan-
gent function arctan2(y, x) is employed to calculate the signed deviation angle as shown in
Equation (27).

∆θ = arctan2(vL × vL0 · ez, vL · vL0) (27)

After expansion, it is equivalent to Equation (28).

∆θ = arctan2

(
vLx sin θ0 − vLy cos θ0, vLx cos θ0 + vLy sin θ0

)
(28)

This method ensures that ∆θ ∈ (−π, π] precisely reflects the rotational direction and
magnitude of container deviation. The final solution yields the container position deviation
∆C and the rotational direction and magnitude ∆θ of the container.



Sensors 2025, 25, 2760 14 of 21

4. Experiments
4.1. Experimental Setup

To validate the effectiveness of the machine vision-based pose-measurement algorithm
for containers on the transfer platform of dual-trolley quayside container cranes, a series of
related experiments were conducted.

4.1.1. Experimental Environment

The training environment parameters for these experiments are shown in Table 1.

Table 1. Training environment parameters for this experiment.

Hardware/Software Configuration Parameters

CPU Intel(R) Xeon(R) CPU E5-2690
GPU NVIDIA GeForce RTX 3090

Memory 64 GB
Operating System Ubuntu 20.04

Programming Language Python = 3.10
Deep Learning Framework PyTorch = 2.0

The camera used in this study is a fixed camera with adjusted and fixed shooting
angles and focal lengths. This fixed camera has a pixel resolution of 1920 × 1080 and an fps
of 30. The actual installation position of the fixed camera is shown in Figure 11. The red
rectangle indicates the transfer platform of the dual-trolley quayside container crane, while
the green rectangle marks the actual installation location of the fixed camera.

Figure 11. Installation position of fixed camera.

4.1.2. Datasets and Evaluation Metrics

The container samples from the transfer platform were collected using fixed cameras,
comprising a dataset of 4250 images. These include 20-foot general purpose containers and
40-foot general purpose containers, with samples captured under complex illumination
and diverse port environmental conditions. The sample contains 827 rainy day images,
1273 sunny day images, 516 foggy day images, and 302 low light images, as illustrated
in Figure 12. The richness of image samples will continue to increase with subsequent
engineering deployments.

The measurement system proposed in this study primarily depends on three aspects:
container-recognition and lockhole keypoint-detection accuracy, container-offset-detection
accuracy, and container rotation angle-detection accuracy. To evaluate these, three core met-
rics are designed: detection model inference accuracy, container-offset-detection accuracy,
and container rotation angle-detection accuracy.
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(a) Detection Model Inference Accuracy
The evaluation metrics include precision, recall, and mean Average Precision (mAP).

Precision refers to the ratio of true positive predictions among all positive predictions in
the test data, defined as Equation (29).

Precision =
TP

TP + FP
(29)

In this context, TP (True Positive) represents the number of true positive instances,
while FP (False Positive) denotes the number of false positive instances.

Recall measures the proportion of correctly identified positive class samples relative
to all actual positive class samples. This is expressed in Equation (30).

Recall =
TP

TP + FN
(30)

where TP (True Positive) indicates the number of correctly predicted positive class samples,
and FN (False Negative) represents the number of samples that are actually positive but
were erroneously predicted as negative.

mAP (mean Average Precision) is the average of the Average Precision (AP) values
computed for each detection category. This experimental section employs two evaluation
metrics: mAP@0.5 and mAP@0.5:0.95. Specifically, mAP@0.5 is defined as the mean
average precision calculated with an Intersection over Union (IoU) threshold of 0.5, where
a detection is considered correct if the IoU between the predicted bounding box and the
ground truth bounding box is ≥0.5. To comprehensively evaluate model performance under
varying localization accuracy requirements, particularly focusing on detection capability at
high IoU thresholds, this study additionally calculates the average mAP across 10 distinct
IoU thresholds ranging from 0.5 to 0.95 with a step size of 0.05.

Figure 12. Schematic diagram of 20-foot and 40-foot general purpose container samples.

(b) The detection accuracy of container horizontal deviation
In the experimental evaluation, to quantify the translation-detection accuracy of

containers along coordinate axes within the planar coordinate system, this study conducts
independent error analyses on the offset deviations along the X-axis and Y-axis within the
horizontal plane. For the offset deviations ∆Cx in the X-axis direction and ∆Cy in the Y-axis
direction, the evaluation metrics are defined as the deviations from manually measured
ground truth values ∆Cx0 and ∆Cy0.
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Single-axis Mean Absolute Deviation (MAD): To characterize systematic errors in
single-axis offset deviations, this metric calculates the mean absolute deviation across all
samples, as shown in Equation (31).

MADX =
1
N

N

∑
i=1

∣∣∣∆C(i)
x − ∆C(i)

x0

∣∣∣, MADY =
1
N

N

∑
i=1

∣∣∣∆C(i)
y − ∆C(i)

y0

∣∣∣ (31)

Mean Absolute Error in the Plane (MAE-P): To further evaluate the overall trans-
lation accuracy within the horizontal plane (XY plane), we define the mean value of
two-dimensional projection absolute errors, as shown in Equation (32).

MAE − P =
1
N

N

∑
i=1

√(
∆C(i)

x − ∆C(i)
x0

)2
+

(
∆C(i)

y − ∆C(i)
y0

)2
(32)

(c) The detection accuracy of container rotational deviation
In experimental evaluations, for the calculated container rotation angle ∆θ and manu-

ally measured rotation angle ∆θ0, we employ the Mean Absolute Error of Rotation Angle
(MAE-θ) to establish an angular error evaluation system, shown in Equation (33).

MAE−θ =
1
N

N

∑
i=1

∣∣∣∆θ(i) − ∆θ
(i)
0

∣∣∣ (33)

4.2. Experimental Results
4.2.1. Model Accuracy Testing

To validate the effectiveness of the adaptive enhanced image feature preprocessing
method and multi-scale adaptive frequency object detection with keypoint detection for
container recognition and lockhole detection on container roofs, comparative experiments
were conducted using traditional algorithms, the original YOLO11 algorithm, and our
improved algorithm. The visual comparison results are shown in Figure 13.

Figure 13. Algorithm comparison results.

The comparison of training results between our proposed adaptive enhanced image
feature preprocessing method and the multis-cale adaptive frequency object-detection
algorithm versus the original YOLO11 network is illustrated in Figure 14. The blue line
represents our method, while the red line denotes the original YOLO11 network. The
horizontal axis indicates the number of training epochs.
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Figure 14. Training results comparison between our method and YOLO11 algorithm.

From the training comparison graph, we observe that both methods exhibit rapid
increases in precision curves at similar rates during the initial training phase. However, our
method demonstrates significantly smaller oscillation amplitudes compared to the YOLO11
model, reflecting stronger robustness against noisy samples in the optimization process.
Concurrently, our method achieves faster convergence speed than YOLO11, with higher
accuracy and reduced oscillations between 200–400 epochs. In the recall curve, our model
shows superior capability in recalling true targets compared to YOLO11, with smoother
convergence and smaller late-stage oscillations, indicating enhanced localization ability
for occluded and multi-scale targets. The mAP50 curve reveals that our method stabilizes
after 200 epochs while significantly outperforming YOLO11. The mAP50-95 curve further
confirms the consistent superiority of our proposed model. These results demonstrate
substantial improvements in target-recognition accuracy, localization precision, and overall
algorithm performance. The experimental results are summarized in Table 2.

Table 2. Algorithm comparison experimental results.

Methods P (%) R (%) mAP@0.5 (%) mAP@0.5:0.95 (%)

Traditional 24.1 12.6 / /
HRNet 90.3 88.6 92.1 88.1

YOLO11 89.7 88.3 90.4 80.9
OURS 93.4 92.5 95.1 89.6

As can be seen from the table, our method demonstrates significant advantages
over traditional approaches in terms of precision (P), recall (R), mean Average Precision
(mAP@0.5), and mAP@0.5:0.95. The reason for this construction is mainly due to the
fact that the traditional SIFT algorithm is based on localized features and is sensitive to
changes in lighting, viewing angle, etc., which can easily lead to matching failures in this
scenario. Our approach is also significantly improved compared to YOLO11. Specifically,
the precision is improved by 3.7% and recall by 4.2% compared to YOLO11, indicating dual
optimization of the model’s capability in handling large-scale variation target classification
and target-localization completeness under complex illumination and challenging port
environments. Concurrently, the mAP@0.5 shows a 4.7% enhancement and mAP@0.5:0.95
an 8.7% improvement, reflecting substantial progress in basic detection capabilities and
enhanced multi-scale target-recognition and -localization abilities. Compared with the
multi-scale target-detection algorithm HRNet, all evaluation metrics are improved but
not significantly. However, the larger number of parameters in HRNet requires more
computational resources, and the lighter YOLO algorithm is more suitable for deployment
in port operation environments where computational resources are limited. These results
validate the effectiveness and superior recognition accuracy of the proposed vision-based
container-identification and lockhole keypoint-localization methodology. At the same time,
we noticed a complete loss of distinguishable structure of the lock hole in the image under
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extreme low light and extreme high light reflections. There are some limitations of our
algorithm in that case.

4.2.2. The Detection Accuracy of Container Horizontal Deviation

To verify the precision of container positioning calculation, this paper compares
the proposed three-dimensional position-measurement method with traditional manual
measurements through a complete quayside container crane operation cycle. Independent
error analyses are conducted for horizontal deviations along both the X-axis and Y-axis
directions. Figure 15 is the schematic diagram of horizontal deviation.

The method is scientifically evaluated through Mean Absolute Deviation (MAD) for
single-axis analysis and Mean Absolute Error in the Plane (MAE-P), providing comprehen-
sive assessment from both individual axes and integrated planar perspectives.

Figure 15. Schematic diagram of horizontal deviation.

The comparison results between the method proposed in this paper and manual
operations in Table 3 demonstrate that the proposed method achieves a precision error
of 0.012 m on the x-axis under the Mean Absolute Deviation (MAD), outperforming the
manual operation’s precision error of 0.013 m. However, its y-axis precision error of 0.018 m
is slightly higher than the manual operation’s 0.016 m. In terms of the Mean Absolute Error
in the Plane (MAE-P), the proposed method achieves a precision error of 0.024 m, reaching
the level of manual operation (0.023 m). Additionally, the proposed method reduces the
average operation time by 0.68 s compared to manual operations.

Table 3. Experimental results of the detection accuracy of container horizontal deviation.

Methods
Mean Absolute Deviation, MAD

MAD-P (m) Average Operation Time (s)
MADX (m) MADX (m)

Manual operation 0.013 0.016 0.023 9.36
Ours 0.012 0.018 0.024 8.68

4.2.3. The Detection Accuracy of Container Rotational Deviation

To verify the accuracy of container deflection angle calculation, this paper con-
ducted comparative experiments between the proposed three-dimensional container pose-
measurement method and traditional manual measurement results through a quayside
crane operation cycle. The comparison was established using the Mean Absolute Error of
Rotation Angle (MAE-θ) as the angular error evaluation metric. Figure 16 is the schematic
diagram of deflection angles.
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From the comparative experimental results between the proposed method and manual
operations in Table 4, it can be observed that the proposed method achieves a MAE-θ
of 0.11◦, outperforming the manual operation’s average error of 0.15◦. Additionally, it
demonstrates superior average operation time by 1.15 s compared to manual operations.
The smaller MAE-θ indicates higher alignment precision, while manual operations tend to
rely on spreader guide plates sliding into containers. Therefore, the proposed method not
only saves operation time but also potentially reduces wear between spreader guide plates
and containers to some extent.

Figure 16. Schematic diagram of deflection angles.

Table 4. Experimental results of container deflection angle-detection accuracy.

Methods MAE-θ (◦) Average Operation Time (s)

Manual Operation 0.15 9.86
OURS 0.11 8.71

5. Conclusions
As the core equipment for efficient container handling operations, the dual-trolley

quayside container crane relies on its critical connecting component—the container-transfer
platform—to perform essential container-transfer functions between the main trolley and
gantry trolley. To address the technical challenge of container pose measurement on the
transfer platform, this study proposes a high-precision vision-based measurement system.
The hardware system integrates fixed cameras with edge computing modules. An adaptive
image-enhancement preprocessing algorithm enhances image feature robustness under
complex illumination conditions. A multi-scale adaptive frequency object-detection frame-
work is developed based on YOLO11, achieving significant improvement in multi-scale
lockhole keypoint-detection accuracy through dynamic balance of high–low frequency
features and adjustable deformable convolution kernels in perspective-distortion scenarios.
An improved EPnP optimization algorithm incorporating lockhole coplanarity constraints
establishes a 2D–3D coordinate transformation model, reducing pose solution errors to
millimeter-level positional accuracy and sub-degree angular precision. Experimental val-
idation confirms the effectiveness of this algorithm for container pose measurement on
dual-trolley quayside container crane-transfer platforms. This method provides auto-
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mated ports with an efficient and cost-effective solution for container pose measurement,
effectively reducing spreader adjustment time and mechanical wear while enhancing oper-
ational efficiency and safety of dual-trolley quayside container cranes. The demonstrated
practicality and effectiveness highlight its engineering application value.
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