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Abstract

We propose a matheuristic for the traveling salesman problem with positional consistency constraints, where
we seek to generate a set of routes with minimum total cost, in which the nodes visited in more than one
route (consistent nodes) must occupy the same relative position in all routes. The matheuristic is an iterated
local search based algorithm that uses a restricted version of the problem under study, where the positions
of consistent nodes are fixed, to significantly improve the quality of local optima found by the local search.
Computational results show that, for instances with 48–171 nodes and 5 or 10 routes, the matheuristic can ob-
tain, in short computational times, significantly better solutions than an exact method in 10 hours, obtaining
optimal or near-optimal solutions for instances where the optimal solution is known.

Keywords: combinatorial optimization; traveling salesman problem; positional consistency; iterated local search

1. Introduction

COVID-19 lockdowns brought additional pressure on national healthcare systems. At that time,
while addressing urgent pandemic-related needs, it was also essential to maintain regular health-
care services for the general population. Additionally, minimizing patients’ time in health centers
was crucial to reduce the risk of contagion, so the goal was to create cost-efficient schedules for
teams of healthcare professionals working at the same health center. The working day is divided
into equal-length time slots (e.g., 30 minutes each), during which various tasks must be assigned.
These primarily involve attending to patients, but occasionally include team meetings. Meetings
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may be limited to doctors, nurses, or involve the entire team. Patient appointments also vary in
professional requirements: some require only a doctor (e.g., family planning), others only a nurse
(e.g., vaccinations), and some require both (e.g., pediatric care). When a patient needs multiple
professionals, they must be scheduled for the same time slot to avoid extended stays at the facil-
ity. The efficiency of a schedule can be assessed using the dissimilarity of tasks that are performed
consecutively, in the sense that it is more efficient to transition from a task to another one that uses
similar equipment, in opposition to another one that would take place in a different room. This
can be modeled as a routing problem, using a graph where each node represents a task assigned
to a healthcare professional, each route corresponds to a professional’s work shift, and relative
positions within the route represent time slots in that shift. Consistency must be enforced at the
time-slot level, meaning that tasks must align based on their relative positions.

In the context of multiple route optimization problems, synchronization can be described as
an interdependence between the different routes. One of the most fundamental examples of this
interdependence can be seen in the fact that in most applications customer nodes are visited by
one and only one route, and therefore the assignment of a client to a route results in the other
routes not being allowed to visit it. Another example of synchronization appears in problems that
allow transshipment. The amount to be transshipped depends on the capacity of the vehicle that
receives the load and the quantity of goods still available in both vehicles. In addition, the problem
might include the existence of limited resources to be shared among the different vehicles. One
such example can be found in Nolz et al. (2022), where vehicles are electric and there is a limited
number of charging stations, thus imposing an upper limit for the number of vehicles recharging
simultaneously. A review of vehicle routing problems (VRPs) with synchronization constraints was
carried out by Drexl (2012).

Consistency is a type of synchronization and can take many forms. Kovacs et al. (2014a) provide
a survey on the different types of consistency constraints, applications where such constraints are
relevant, and methodologies used to address the consistent traveling salesman problem (TSP) and
the consistent VRP. The authors consider three main different types of consistency: delivery consis-
tency, meaning that clients with several deliveries in the planning horizon receive roughly the same
amount of product in all deliveries, or that deliveries are regularly spaced within the planning hori-
zon; vehicle consistency, meaning that a customer will always be visited by the same vehicle; and
service consistency, meaning that a customer requiring several visits must be visited roughly at the
same time. Service consistency applies when the same customer must be visited in several time pe-
riods or when the customer must be visited by several vehicles in the same time period. In general,
consistency is desirable to improve the customer experience and efficiency. In fact, delivery con-
sistency results in a more predictable service, improving customer satisfaction; vehicle consistency
results in familiarity between the customer and the driver, which is beneficial both for efficiency
(more predictable routes for the driver) and customer satisfaction; and service consistency results
in a more personalized and predictable service. Consistency may also be a prerequisite in several
applications. For example, in the problem studied by Anderluh et al. (2017), where two types of
vehicles are considered (bicycles and vans), the transshipping points have no storage capacity and
therefore bicycles can receive only more goods to deliver if both the bicycle and the van are at the
transshipment point at the same time. This work will focus on service consistency, following up on
the TSP with positional consistency constraints (CTSP), as described by Gouveia et al. (2023).

© 2025 The Author(s).
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After choosing the type(s) of consistency to be incorporated in a formulation, several decisions
must be made regarding its enforcement.

Incorporating time. Because service consistency means that several vehicles must visit the same
client (roughly) at the same time, it is necessary to incorporate time into a formulation. The most
common approach is through a weight matrix, with the weights representing travel times, while
defining variables to represent the starting times for the tasks/visits (temporal consistency). Al-
though most of the works available in the literature focus on temporal consistency, Gouveia et al.
(2023) proposed an approach based on positional consistency, which is adequate if the transition
times are small or very similar and the service times are the same for all nodes. This approach con-
sists of dividing the working day into homogeneous time slots and using the relative position of
a node in a route to represent the allocation of that node to a time slot. In this case, the relative
positions are used to model consistency, and the authors showed that time-dependent formulations
(see, e.g., Picard and Queyranne, 1978) with consistency constraints that took advantage of their
position index were the most efficient to address the problem.

Measuring consistency. The two most common measures of temporal consistency are time slacks
(Groër et al., 2009) and time classes (Feillet et al., 2014). The former consists of the difference be-
tween the latest and the earliest arrival times for the same node requiring consistency. The smaller
the slack, the more consistent the routes are. The latter generates, for each node, the minimum num-
ber of time classes needed to cover all of the arrival times for the node, with two arrival times only
being allowed to belong to the same time class if their difference does not exceed a maximum bound
that is given as an input. The routes are considered the more consistent the fewer the time classes
needed to cover the arrival times for the consistent nodes. Note that time classes are not equivalent
to the time slots in the positional consistency approach proposed by Gouveia et al. (2023). Time
classes are associated with transition times (and service times, if applicable), whereas positional
consistency makes use of the relative position of the nodes in the routes. Only consistent nodes
need time classes, and more than one node from the same route may appear in the same time class
if transition times are small enough. However, all nodes are assigned time slots, and two nodes
on the same route cannot occupy the same time slot. Time classes are suitable when travel/service
times are relevant, and services may start at any moment in the planning horizon. Time slots start
and end at specific times, given as input, since they correspond to specific time intervals in a sched-
ule. Time classes may not cover the entire planning horizon, since they are generated as necessary,
and there may be moments of the planning horizon that are covered by several time classes. Time
slots, on the other hand, cover the whole planning horizon and do not intersect.

Hard or soft constraints. The way consistency is enforced depends on whether consistency is
merely a means to improve customer satisfaction or a prerequisite for the service. In the first case,
it is possible to consider consistency in the objective function, or in a multiobjective approach, by
penalizing differences in arrival times or deviations from ideal service times/soft time windows, or
even by minimizing the number of different time classes the same client is assigned to. In the second
case, consistency can be enforced through the definition of hard time windows, to be respected by
all of the vehicles that participate in the same task, or constraints imposing a limit to the time slack
or the number of different time classes that the same client can be served in. In extreme, we may aim
for total consistency, where a task is performed exactly at the same time by all the vehicles involved
in it. In the context of temporal consistency, this may be achieved by setting the time slack to zero,
which, however, may not be practical, especially if idle times are not allowed. On the other hand,
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total consistency is adequate in positional consistency, being modeled by constraints that state that
a task must be performed in the same relative position in all of the routes it appears in.

Idle times. Idle/waiting times can be incorporated into a formulation to obtain cheaper feasible
solutions or even to ensure that it is possible to obtain at least one feasible solution in applica-
tions where consistency constraints or hard time windows must be enforced. Several approaches
regarding waiting times can be found in the literature for routing problems with consistency con-
straints: (i) not allowing waiting times (Feillet et al., 2014); (ii) allowing flexible departure times,
but no waiting times in the middle of a route (Kovacs et al., 2015b); (iii) allowing waiting times in
the middle of a route, but only when needed to enforce time windows (Braekers et al., 2016); (iv)
fully allowing waiting times (Ioachim et al., 1999). Considering the application that inspired the
CTSP, unnecessary permanence of the health practitioners in the facility was heavily discouraged
and, therefore, idle positions/times are not allowed. Starting positions are flexible, in the sense that
different practitioners can start their work shifts at different times. However, if a shift (route) 1 starts
one hour after the facility opens, and each time slot is 30 minutes, then the first time slot of shift 1
corresponds to the third time slot of a shift, 2, which began at opening time. To maintain consis-
tency across different shift start times, all time slots in later-starting routes must be normalized by
adjusting for the delay.

Sequential consistency. Sequential consistency states that if clients i and j require consistency,
they must be visited in the same order in all of the routes they appear simultaneously in. Sev-
eral approaches, with or without sequential consistency, can be found in the literature for routing
problems with consistency constraints. For example, the constraints used by Subramanyam and
Gounaris (2016) to enforce temporal consistency indicate that it is possible to have two paths con-
taining two nodes, i and j, one starting in i and ending in j in one route, and one starting in j and
ending in i in another route, as long as the differences between arrival times do not exceed a given
limit. However, the enforcement of sequential consistency is a prerequisite in all heuristics using the
so-called template approach (see, e.g., Groër et al., 2009; Kovacs et al., 2014b), which will be relevant
for the methodologies presented in this work. Sequential consistency is implied by total consistency.

Table 1 summarizes several works available in the literature, which address routing and/or
scheduling problems with service consistency. For each paper, the table indicates whether total
consistency and idle times are allowed, how consistency is enforced, and the main methodologies
proposed for the problem. Regarding the latter, it can be seen that, due to the complexity of prob-
lems with consistency constraints, the majority of the methodologies proposed to address them are
metaheuristics and matheuristics, specifically local search based heuristics. Following this trend,
and to address larger instances than the ones solved by Gouveia et al. (2023), this study proposes
an iterated local search (ILS) based matheuristic for the TSP with positional consistency.

The contributions of this paper are as follows: (i) We define a restricted version of the CTSP,
where the positions of the consistent nodes are known and fixed, and free nodes and empty posi-
tions are allowed to vary, which can be solved to optimality in few seconds, even for relatively large
instances. (ii) We present an ILS-based matheuristic that uses the restricted version of the CTSP
to significantly improve the quality of local optima found by the local search. (iii) We carry out
a computational experiment to assess the performance of the matheuristic, comparing it with the
performance of an ILS algorithm that uses the same constructive heuristic, local search algorithm,
and perturbation as the matheuristic, and also comparing the solutions from the matheuristic with
the best solutions obtained from an exact method after 10 hours. (iv) We present a new set of

© 2025 The Author(s).
International Transactions in Operational Research published by John Wiley & Sons Ltd on behalf of International Federation
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relatively large-sized test instances for the CTSP, ranging from 48 to 171 nodes, with 5 and 10
routes, which are available online.

Section 2 provides a formal definition for the TSP with positional consistency constraints. Sec-
tion 3 is focused on the restricted CTSP (rCTSP) and provides the integer linear programming
(ILP) formulation that was incorporated into the matheuristic. Section 4 provides details on the
matheuristic, namely how the initial solution is obtained, how the local search is performed, which
perturbation is applied to local optima, and how the ILP formulation is incorporated into the al-
gorithm, followed by Section 5, which details the computational experiment carried out to evaluate
the performance of the algorithm. Section 6 presents the main conclusions of this study, along with
possible future research lines.

2. The traveling salesman problem with positional consistency

The TSP with total positional consistency (CTSP) is defined in a complete graph, G = (V, A), where
V is the set of nodes, n = |V |, and A is the set of arcs. Node 1 is the depot (representing inactivity),
whereas the subset V \ {1} defines the set of client nodes (the tasks for the health practitioners),
which is divided into nondisjoint subsets m, Vl , l = 1, . . . , m. For each arc (i, j), the cost of traveling
from node i to node j, Ci j , is known. The purpose of the problem is to define a minimum cost set
of m routes, each route l starting and finishing at the depot while visiting all the client nodes in V l ,
each node occupying one and only one relative position. Clients served on more than one route
require total positional consistency. A node requiring total positional consistency is visited in the
same relative position in all routes in which it is included.

Different routes can have different sizes, which must be taken into account in the definition of
consistency. For simplicity, we will assume that there are as many available positions as client nodes
in the largest route (T ). Smaller routes are allowed to start “later” and/or finish “earlier” than the
largest route, as long as they start in position 1 or later, finish in position T or earlier, and do not
have empty positions between positions that are occupied by nodes. Figure 1 uses a small example
to illustrate the need to allow flexible start times. Consider two healthcare professionals who, for the
next work shift, share two tasks. Practitioner H1 was assigned tasks t1, t2, t3, t4, t5, and t6, while
practitioner H2 was assigned tasks t1, t2, t7, and t8. Since task t1 is common to both practitioners,
it requires consistency and must be assigned to the same time slot by both. The same is true for task
t2. Figure 1c shows a graph representation of a solution for the CTSP. The natural interpretation
of the solution is to attribute to each task the relative position it occupies on the route, as shown
in solution S1. This is not a feasible solution because consistent nodes occupy different time slots
for different practitioners. For example, t2 occupies the time slot TS2 for practitioner H1, but is the
first task in the route relating to H2. However, it is possible to obtain a feasible solution by allowing
the route of H2 to start later, as shown in solution S2. In the application to healthcare services, this
corresponds to having (if, for instance, each time slot consists of 30 minutes) practitioner H1 start
working as soon as the facility opens at 8:00 a.m., while practitioner H2 starts working at 8:30 a.m.

Therefore, we define local position as the relative position that a node occupies on a route, when
that route is taken independently of the others. The global position is the position that a node
occupies on a route when taking into account whether that route starts in the same position as the
largest route. In fact, for a route that starts later, the node in the first local position may occupy the
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Luís Gouveia et al. / Intl. Trans. in Op. Res. 0 (2025) 1–30 9

Fig. 1. Solution S1 is not feasible for the problem, since tasks t1 and t2 require consistency but have been assigned to
different time slots. However, a feasible solution S2 can be obtained from these sequences of tasks by allowing

practitioner H2 to start working in time slot 2. Both solutions are represented by the same set of routes.

Fig. 2. Solutions for the CTSP are represented using solution matrices, where each line represents a route and each
column represents a position. Entries with value 0 indicate positions that are empty in a route. Solution 1 is not feasible
because nodes 2, 3, 4, and 6 are visited in several routes but do not satisfy consistency. Comparing route 3 with route 1,
the consistent nodes occupy the same local position, but not the same global position, because route 3 starts later than
route 1. In route 2, the consistent nodes do not occupy the same position they occupy in other routes (neither local nor

global). It is possible to obtain a feasible solution by maintaining the sequence of nodes in each route while making
route 3 start earlier and allowing route 2 to start later, as illustrated in Solution 2.

kth (k > 1) global position, as illustrated in Fig. 2. Consistency constraints will be written in terms
of global positions, so hereinafter, a node’s global position will be referred to simply as “position.”

As shown in Fig. 2, CTSP solutions are represented using a matrix m × T , msol , where each
line represents a route and each column represents a global position. For a given k and l , an entry
msol (l, k) can take value 0, indicating that position k is empty on route l , or i ∈ V l , which means
that the client node i occupies position k on route l . Since idle times are not allowed per the appli-
cation, entries with a 0 may appear at the beginning and/or end of a route, but not between entries
occupied by client nodes; that is, the positions occupied by the nodes are consecutive.

If we remove the consistency constraints, the CTSP reduces to m TSPs, one for each period.
Because the TSP is an NP-hard problem, we can conclude that the CTSP is also NP-hard.
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Several formulations were proposed by Gouveia et al. (2023) for the CTSP. The computational
experiments reported in that article indicate that the two most efficient formulations to solve CTSP
are the Picard and Queyranne formulation (PQ), an adaptation of a formulation proposed by
Picard and Queyranne (1978) with additional consistency constraints, and the Aggregated Picard
and Queyranne formulation (APQ), a new formulation that can be viewed as an aggregation of the
PQ formulation, with the APQ model outperforming the PQ model in many cases. However, even
for these more efficient formulations, instances with 5 routes and 44 nodes proved to be challenging,
with some of them not being solved to optimality by any of the formulations within a time limit of
three hours.

To address larger instances, both in terms of the number of nodes and the number of routes, we
propose a matheuristic for the CTSP, which has the usual structure of an ILS algorithm, but, in
some iterations, solves an rCTSP induced by the final solution of the local search.

The optimal solution for the rCTSP is feasible for the original CTSP. The main reason for using
this restricted version in the ILS algorithm is that larger instances can be solved in short compu-
tational times. In fact, instances for the rCTSP with up to 76 nodes distributed among 5 routes,
as well as with up to 170 nodes distributed among 10 routes, can be solved to optimality in a few
seconds. The rCTSP is described in the next section.

3. The restricted CTSP

The rCTSP is a restricted version of the CTSP where the positions of the consistent nodes are
known (and therefore fixed) a priori, whereas the positions of the free nodes and the empty positions
(if applicable) are allowed to vary, as long as two nodes from the same route do not occupy the same
position and there are no empty positions in the middle of a route. For a more clear explanation of
the rCTSP, we now present the ILP formulation that was selected and incorporated into the hybrid
ILS heuristic:

min
n∑

i=1

n∑

j=1

T∑

k=1

m∑

l=1

Ci jzkl
i j (1)

n∑

i=1

T∑

k=1

zkl
i j = Sl

j; ∀ j = 1, . . . , n; ∀l = 1, . . . , m (2)

n∑

i=1

zkl
i j =

n∑

i=1

zk+1,l
ji ; ∀ j = 2, . . . , n; ∀k = 1, . . . , T − 1; ∀l = 1, . . . , m (3)

pposi
i = 1, ∀i ∈ V cons (4)

T−1∑

k=1

pk
j = 1; ∀ j = 2, . . . , n (5)

n∑

j=2

Sl
j p

k
j ≤ 1; ∀l = 1, . . . , m; ∀k = 1, . . . , T − 1 (6)
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Sl
j p

k
j =

n∑

i=1

zkl
i j ; ∀ j = 2, . . . , n; ∀k = 1, . . . , T − 1; ∀l = 1, . . . , m (7)

z1l
i j = 0; ∀i = 2, . . . , n; ∀ j = 1, . . . , n; ∀l = 1, . . . , m (8)

zT l
i j = 0; ∀i = 1, . . . , n; ∀ j = 2, . . . , n; ∀l = 1, . . . , m (9)

zkl
1 j = 0, ∀ j = 2, . . . , n, l = 1, . . . , m, k = T − Nl + 2, . . . , T (10)

zkl
i1 = 0, ∀i = 2, . . . , n, l = 1, . . . , m, k = 1, . . . , Nl − 1 (11)

pk
i ∈ {0; 1}; ∀i = 2, . . . , n; ∀k = 1, . . . , T − 1 (12)

zkl
i j ∈ {0; 1}; ∀i = 1, . . . , n; ∀ j = 1, . . . , n; ∀k = 1, . . . , T ; ∀l = 1, . . . , m. (13)

This formulation is an adaptation of one of the variants of the PQ formulation, presented in
Gouveia et al. (2023). The formulation uses binary variables zkl

i j , which take the value 1 if the arc
(i, j) occupies position k in route l , 0 otherwise, and pk

i , i = 2, . . . , n, k = 1, . . . , T − 1, which take
the value 1 if node i occupies position k in the solution and 0 otherwise. The objective function
(1) states that the total cost of the set of routes must be minimized. Also, if node j must be visited
on route l , then on that route there must be an arc entering j, as stated by constraints (2). Flow
conservation constraints (3) state that if there is an arc entering node j at position k in route l ,
then there must be an arc leaving j at position k + 1 on that same route. Constraints (4) allow us
to fix the positions of consistent nodes. If V cons is the set of consistent nodes, i ∈ V cons and posi
is the position that node i occupies in the input solution, then i must occupy position posi (in all
the routes it is visited in). Consistency is modeled through constraints (5)–(7): The first set states
that each client node occupies one and only one position, the second set states that two nodes that
are visited on the same route cannot occupy the same position, and the third set links the two sets
of decision variables, stating that if there is an arc entering node j in position k in route l , then
j occupies position k. Constraints (8) indicate that an arc in position 1 cannot leave from a node
other than the depot, while Equations (9) state that an arc in position T can enter only the depot.
Constraints (10) and (11) further remove arcs leaving the depot too “late” and arcs entering the
depot too “early” for it to be possible for all nodes of the route to occupy consecutive positions.
These constraints are not necessary for the model to be valid, but result in a stronger LP relaxation.
Finally, the decision variables are binary (constraints (12) and (13)).

4. The iterated local search based matheuristic

The matheuristic proposed for the CTSP is an ILS-based algorithm. The ILS approach iteratively
applies local search to build sequences of solutions, where the first solution of a sequence is ob-
tained by applying a perturbation to the last solution of a previous sequence. Four main modules
define this methodology: the initial solution, the local search algorithm, the perturbation, and the
acceptance criterion. The initial solution is usually obtained through a constructive heuristic and
constitutes the starting point for the ILS algorithm. The second module, referred to as local search
for simplicity, is the improvement heuristic applied to the initial solution, to try and obtain a better
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12 Luís Gouveia et al. / Intl. Trans. in Op. Res. 0 (2025) 1–30

solution, and does not necessarily have to be a simple local search algorithm (alternatives such as
tabu search and simulated annealing, for instance, would also be valid). To escape local optima,
the initial solution for a new sequence is obtained by applying a transformation (perturbation) to
the last solution of a previous sequence, guaranteeing, through randomization, that diversity in the
search is maintained. Finally, the acceptance criterion is the rule used to decide which solution a
perturbation should be applied to in each iteration of the algorithm, which also regulates diversity
in the search. The extreme case of diversification occurs when the perturbation is always applied
to the last solution of the current iteration, regardless of its cost. The (opposite) extreme case of
intensification occurs when the perturbation is always applied to the best solution found so far in
the search. An in-depth explanation of this metaheuristic is given, for example, in Lourenço et al.
(2003).

These four modules of the ILS algorithm, as well as the way the ILP formulation for the rCTSP
is incorporated into the matheuristic, are detailed in Sections 4.1–4.4, followed by an overview of
the whole algorithm, in Section 4.5.

4.1. Initial solution

This section explains how the initial solution is obtained for the ILS. A simple procedure, inspired
by the template approach proposed by Groër et al. (2009), was developed to generate feasible solu-
tions for the CTSP. The template approach uses permutations of nodes, referred to as the template,
to indicate the order of the nodes in the routes. In the original approach, templates include only
consistent nodes. To obtain a route from a template, the consistent nodes not visited on the route are
removed, and the free nodes are heuristically inserted. However, subsequent versions of the method-
ology (see, for instance, Xu and Cai, 2018) were proposed using template vectors with all nodes. In
this case, a route is obtained by removing from the template all the nodes that are not visited in
it. The constructive heuristic proposed for the CTSP, detailed in Algorithm 1, follows these latter
approaches, by considering a permutation of all client nodes. However, due to the characteristics of
the CTSP (namely total consistency and the fact that idle times/positions are not allowed), the way
these permutations are used to generate solutions differs from what can be found in the literature.
The constructive heuristic developed for the CTSP (Algorithm 1) iteratively tries to construct a
feasible solution, repeating two phases—the first to define which positions are empty in each route,
the second to assign positions to the nodes—until at least one feasible solution is generated.

In the first phase, the distribution of the 0 values in the solution matrix (i.e., the empty po-
sitions on the routes) is encoded by an integer value, hereinafter referred to as type. For a
given CTSP instance, there are Ntype = ∏m

l=1(T − Nl + 1) different types, where Nl = #V l and
T = maxl=1,...,m{Nl}. For simplicity, we consider that the types range between 0 and Ntype − 1,
where 0 is the default type, in which there are 0 empty positions before the start of the routes, while
in type Ntype − 1 all routes visit their last client node at position T (all empty positions occur
before the start of the routes).

After the empty positions are distributed according to a type in the first phase, the second phase
consists of inserting client nodes in the first position available for them in the solution matrix,
following the order in a random permutation/template. Position k is not available for node i if at
least one of two conditions is verified: (i) at least one route l , with Sl

i = 1 (i.e., i must be visited in
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Algorithm 1. Constructive heuristic

l) is already occupied by another node, j, in position k; (ii) at least one route l , with Sl
i = 1 has

msol (l, k) = 0, that is, position k must remain empty according to the type considered. Therefore,
the order of the nodes in the permutation indicates the order in which the nodes are inserted into the
solution. However, because consistent nodes occupy the same position in the routes they are part
of and empty positions are distributed before the nodes are inserted, the precedence relations that
are verified in the permutation may not be verified in the solution matrix. For example, if route 1
starts in position 1, route 2 starts in position 2 and the first node in the permutation is (consistent)
node i, visited on both routes, then i is inserted in position 2, while position 1 in route 1 will be
occupied by a free node that follows i in the permutation. That is to say, unlike the traditional
template approaches, in the CTSP, nodes in a given route in the solution matrix do not necessarily
come in the same order as they appear in the permutation/template.

A feasible solution is found if all client nodes are inserted in the solution matrix. However, it
is not always possible to do so and therefore several types are explored for the same template.
Although ideally all types should be explored, some test instances for the CTSP (namely instances
with 10 routes) result in problems with several millions of types, and exploring them all would
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Fig. 3. Solution 2 from Fig. 2 can be obtained from the permutation vector in (a). By rearranging the nodes so that
consistent nodes come before free nodes and precedence relations between consistent nodes and between free nodes are

maintained, we obtain the sorted permutation vector in (b). In this example, both the unsorted and the sorted
permutation vector can be decoded into the same solution matrix. However, this is not always the case.

result in prohibitive computational times. Therefore, a threshold, max, represents the number of
types that we are willing to explore for the same permutation. If Ntype < max, then all types are
explored. Otherwise, a random sample of the types, with dimension max, is explored. If, for a
given template, at least one feasible solution is generated, the best solution found is presented as an
output. Otherwise, the algorithm restarts with a new random permutation. After fine-tuning, the
number of types to explore for a given template was set as max = 50.

Finally, imposing a limit on the number of types we are willing to assess in each iteration may not
be enough to guarantee the algorithm’s efficiency. In fact, in more complex cases it was verified that
the constructive heuristic was time consuming, regardless of the value of max. For small values,
although few types were explored in each iteration, a very large number of iterations was needed
to find a feasible solution. For large values, many types were explored in each iteration, and, still,
several iterations were needed to generate a feasible solution. To address this issue, sorted random
permutations are used. Unlike fully random permutations, in sorted permutations, both consistent
and free nodes are in a random order, but free nodes come after all of the consistent nodes. The idea
is to insert the consistent nodes first, since they should occupy the same position in more than one
route, and use the (more flexible) free nodes to populate the positions that are not occupied by con-
sistent nodes, thus increasing the probability of obtaining a feasible solution in few or even one try,
even if few types are explored. Preliminary tests showed that the use of sorted permutation allows
for a significant improvement of computational times, without negatively affecting the quality of
the solutions obtained with the ILS algorithm overall (even resulting, in many cases, in better final
solutions). For the sake of implementation, sorted permutations are obtained from fully random
permutations by moving consistent nodes to the beginning of the permutation, while maintaining
all precedences between consistent nodes and between free nodes, as illustrated in Fig. 3.

4.2. Local search

This section describes the improvement heuristic iterated in the main step of the ILS. For the CTSP,
a variable neighborhood search algorithm is proposed considering four different neighborhoods.
The first three neighborhoods are searched in the solution matrix space, with only one of them
allowing the type to change. The fourth neighborhood uses the template representation to further
explore different solution types.

The Pos-pos neighborhood: A solution s′ belongs to the Pos-pos neighborhood of solution s, Pos-
pos(s), if it is obtained from s by swapping the nodes that occupy position k with all the nodes that
occupy a different position, h in all routes. A move in this neighborhood is feasible if neither k nor
h is empty on any route, or if both positions are empty on the same routes.
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Luís Gouveia et al. / Intl. Trans. in Op. Res. 0 (2025) 1–30 15

In the Pos-pos neighborhood, all nodes in position k are moved to position h and vice versa.
However, it is also worth exploring moves in which not all routes are changed. This is done in the
next neighborhood.

The Node-pos neighborhood: A solution s′ belongs to the Node-pos neighborhood of solution
s, Node-pos(s), if it is obtained from s by moving node i from position k to another position h.
Observe that if i is a consistent node, then all nodes that occupy position h on the routes where i
requires service must be moved to k. This means that a move in the Node-pos neighborhood can
consist of swapping two nodes (if they are visited exactly on the same routes) or a node with several
other nodes. To move node i to position h, two conditions must be verified: (i) position h is not
empty on any route that visits i and (ii) for every node j that occupies position h before move, if i
and j are both visited on at least one route, j cannot be visited on any route that does not visit i.
Moves that do not satisfy these conditions might result either in the loss of total consistency or in
empty positions between positions that are occupied, leading, therefore, to nonfeasible solutions.

Neither the Node-pos nor the Pos-pos neighborhood explores changes in the distribution of
empty positions in the routes. This situation does not arise when all routes have the same length.
However, when this is not the case, different types should be explored in the local search. Therefore,
we propose the Type neighborhood.

The Type neighborhood: A solution s′ belongs to the Type neighborhood of solution s, Type(s), if
it is obtained from s by moving node i, visited in route l , from position ps(l ) to position p f (l ) + 1
in all routes it is visited in, or from position p f (l ) to position ps(l ) − 1 in all routes it is visited in,
where ps(l ) is the first position occupied in route l , and p f (l ) is the last position in route l occupied
by a client node. If i is moved from position ps(l ) to position p f (l ) + 1, the move is feasible if all
routes in which i is visited start at position ps(l ) and finish at position p f (l ), and if p f (l ) < T
(i.e., there are empty positions after position p f (l )). If i is moved from position p f (l ) to position
ps(l ) − 1, the move is feasible if all routes in which i is visited start on position ps(l ) and finish
in position p f (l ), and if ps(l ) > 1 (i.e., there are empty positions before position ps(l )). For the
sake of clarity, Fig. 4 provides an example of a Pos-pos neighbor, a Node-pos neighbor and a Type
neighbor for a given solution.

For a move in the Type neighborhood to be feasible, all routes that visit the node being moved
must start in the same position, finish in the same position, and have at least one empty posi-
tion before the beginning (or after the end) of the route, raising concern regarding the effective-
ness of the neighborhood. Preliminary tests show that, for most of the test instances, on aver-
age one or more solutions in the Type neighborhood are accepted per iteration of the ILS al-
gorithm (meaning that not only there is at least one feasible Type neighbor of the local opti-
mum obtained after applying the Node-pos and Pos-pos neighborhoods, but also there is at least
one Type neighbor with a smaller cost than that local optimum). Still, it can be argued that the
three neighborhoods described above ensure that the solutions searched are always feasible, at the
cost of the search becoming more rigid. To allow for a more flexible search, another neighbor-
hood was considered, the Type-template neighborhood, to explore solutions with different types
while maintaining as many precedence relations between nodes as possible. This neighborhood
is too large to be completely explored, and so at most a predefined number of neighbors will be
considered.

The Type-template neighborhood: A solution s′ belongs to the Type-template neighborhood of
solution s, Type-temp(s), if it can be decoded from the template obtained from sorting a template
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16 Luís Gouveia et al. / Intl. Trans. in Op. Res. 0 (2025) 1–30

Fig. 4. Starting from solution 2 from Fig. 2, it is possible to illustrate the three different neighborhoods. The Pos-pos
neighbor in (b) is obtained from Solution 2 by swapping all nodes in position 2 with all nodes in position 4. A Node-pos
neighbor can be obtained by swapping two nodes that occupy the same routes (4 and 6, for instance) or one node with

several other nodes. The solution in (c) corresponds to this latter case, having been obtained from Solution 2 by
swapping node 3 with nodes 5 and 8. The solution in (d) is the only feasible Type neighbor for Solution 2, having been
obtained by moving node 8 from the end to the beginning of the second route. Node 5 cannot be moved because there
are no empty positions before the start of route 1. For similar reasons, node 6 cannot be moved, since although there is

an empty position at the end of route 3, route 1 already finishes at the last available position.

that represents s so that consistent nodes appear before the free ones and such that the type of s′ is
different from the type of s.

The permutation/template used to search this neighborhood is constructed from the current so-
lution, which is a local optimum for the Node-pos, Pos-pos, and Type neighborhoods. The template
is initialized with all its entries empty, and a grid search is applied to the solution matrix, following
the order of the routes and the order of the positions (only moving to the next position after all
routes have been checked at the current position). When a node not yet in the template is found
in the solution matrix, it is inserted into the first empty entry of the template. This procedure is
repeated until all nodes have been inserted. The resulting template verifies all precedence relation-
ships in the solution matrix and is guaranteed to be decoded into the solution matrix from which
it was constructed. To illustrate, the template in Fig. 3a, was obtained from the solution matrix in
Fig. 2c. Similar to what is done in the constructive heuristic in Section 4.1, the template is sorted so
that consistent nodes appear before free nodes, and then up to max types are considered to generate
new solutions from the sorted template. If several feasible solutions are generated, the best one is
chosen and, if it is better than the current solution, it will substitute it, allowing the local search
to continue.

The variable neighborhood search procedure: Algorithm 2 summarizes the variable neighbor-
hood search algorithm with the four neighborhoods described above. The four neighborhoods
are explored in sequence—first the Node-pos, then Pos-pos, followed by Type and finally Type-
template—and in each one, the neighbor selected to continue the search is found following the best
improvement rule. Each of the first three neighborhoods is explored until it reaches a local opti-
mum or the best solution is updated. If the best solution is updated, the algorithm returns to search
the Node-pos neighborhood from this solution. If a local optimum is reached without updating
the best solution, the current solution becomes the starting point of the next neighborhood. The

© 2025 The Author(s).
International Transactions in Operational Research published by John Wiley & Sons Ltd on behalf of International Federation
of Operational Research Societies.

 14753995, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/itor.70125 by C

ochrane Portugal, W
iley O

nline L
ibrary on [02/12/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Luís Gouveia et al. / Intl. Trans. in Op. Res. 0 (2025) 1–30 17

Algorithm 2. Variable neighborhood search algorithm

Type-template neighborhood is explored when the algorithm finds a solution that is simultaneously
a local optimum for the Node-pos, Pos-pos, and Type neighborhoods. If the Type-template neigh-
borhood can produce a better solution than the local optimum, the local search proceeds from
this new solution, starting again from the Node-pos neighborhood. Otherwise, the local search
stops.

To assess the relevance of the Type-template neighborhood, a simpler version of the variable
neighborhood search is proposed, similar to Algorithm 2, but stopping as soon as a local optimum
is found for the Type neighborhood. To distinguish the two cases, let matheuristic (template) refer
to the matheuristic that considers a variable neighborhood search with all four neighborhoods, and
matheuristic refer to the matheuristic that uses the simpler variable neighborhood search, with only
the Node-pos, Pos-pos, and Type neighborhoods.
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4.3. Perturbation

A perturbation is a transformation applied to the last solution of an iteration of the ILS algorithm
to obtain the first solution of the next iteration. For a better performance of the heuristic overall,
perturbations should not be too deterministic or too random, and there should also be a balance
about the extent to which the solution is changed. Too small or deterministic perturbations may
result in cycles in the search. In contrast, perturbations that are too large or random would be
equivalent to random restarts of the local search.

Two different perturbations were proposed for the matheuristic. Both perturbations consist of
destroy and repair operators applied to the template vector. In other words, both operators consist
of generating a template from the current solution, removing the p nodes from the template, and
reinserting them in random order while the other n − p − 1 nodes remain unchanged. The differ-
ence between the two operators lies in the rule used to choose the nodes that are removed from the
template. In the random perturbation, the p nodes are chosen randomly, and all nodes have the same
probability of being chosen. In the greedy perturbation, the impact of each node in the solution is
computed by summing the cost of all arcs entering or leaving the node. Observe that if the same arc
is used in several routes, its cost is multiplied by the total number of times that the arc is used in
the solution.

After the p nodes are removed and reinserted, the resulting template is sorted and up to max
different types are examined to try and generate new solutions. If it is possible to generate one or
several new solutions, then the best solution is selected to become the first solution of the next
iteration. Otherwise, a random restart is needed, that is, the constructive heuristic described in
Section 4.1 is applied until a feasible solution is generated, in order to start the next iteration.

To try and make significant but not too large changes in the solutions, parameter p was defined
as the integer number closest to n/4, the number of nodes divided by 4.

Some preliminary tests regarding these two operators in the context of a nonhybrid ILS algo-
rithm can be found in Ponte (2023). The results show that, should only one perturbation be used,
the random perturbation is the one that achieves better results. However, these results can be im-
proved by randomly choosing between the two perturbations in each iteration of the algorithm. The
tests were carried out for pr ∈ {0.4, 0.5, 0.6}, with pr being the probability of choosing the random
perturbation (i.e., the probability of choosing the greedy perturbation is 1 − pr). The best results
were obtained for pr = 0.4.

4.4. Acceptance criterion and free node optimization

The acceptance criterion refers to the solution to which the perturbation is applied in each iteration
and can be used to regulate the diversification of the algorithm. For clarity, let si be the solution to
which the perturbation was applied at the end of iteration i and si+1 the final solution at iteration i +
1. In the extreme case of diversification, si+1 is always accepted, that is, the perturbation is applied
to si+1, regardless of its cost. In the (opposite) extreme case of intensification, si+1 is accepted only
if its cost is less than the cost of si. Otherwise, the perturbation is applied to si.

One of the conclusions of the preliminary tests found in Ponte (2023) is that the ILS algorithm
performs better when the random perturbation is used (either alone or, with even better results,
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Fig. 5. Relationship between the gap of the input solution for free node optimization and the final solution after free
node optimization.

when combined with the greedy perturbation). This suggests that the need to ensure feasibility
results in a local search that does not explore large areas of the search space, thus benefiting from
the introduction of randomness. Therefore, the acceptance criterion chosen for the ILS algorithm
for the CTSP is the extreme diversification case. Consequently, it is necessary to keep a memory of
the best solution found, which is the final output of the algorithm.

This issue also motivates the introduction of what will hereinafter be called free node optimiza-
tion, the step that characterizes the algorithm under study as a matheuristic. The idea is to use
an ILP formulation (in this case, the PQ model, as presented in Section 3) to solve an instance of
rCTSP generated from the final solution of an iteration of the ILS algorithm. Since both the se-
quence of nodes and the distribution of empty positions are allowed to vary simultaneously, free
node optimization quickly explores more than one neighborhood structure at the same time.

The optimal solution of an instance of the rCTSP is always feasible for the original CTSP prob-
lem, and, in many cases, it is significantly better than the input solution used to generate the rCTSP
instance. However, applying free node optimization, even if using the most efficient formulation, to
the final solution of every iteration of the ILS would result in prohibitive CPU times, due to the
large number of iterations of the algorithm. Therefore, some further computational experiments
were carried out to help decide in which situations free node optimization should be used.

Figure 5 provides a comparison between the gap of the input solution before free node optimiza-
tion and the gap of the corresponding final solution after free node optimization. In this experiment
a total of 984 pairs of solutions, distributed among the seven variants of test instances used on the
computational experiment, were considered. The scatterplot in Fig. 5 shows a high correlation
between the two gaps (in fact, the Pearson correlation coefficient between the two gaps is approxi-
mately 0.96), suggesting that worse initial solutions tend to result in worse final solutions. In other
words, the quality of a solution seems to be more influenced by the distribution of consistent nodes,
rather than by the distribution of free nodes.

Consequently, free node optimization should only be applied to promising input solutions. How-
ever, the question of how to identify promising solutions arises. Initially, the matheuristic was tested
using free node optimization only when the best solution was updated. In other words, let s∗ be the
best solution and s′ be the current solution at the end of an iteration. If the cost of s′ is lower than
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the cost of s∗, then free node optimization is applied using s′ as input, to obtain solution s′′, with
a cost that is not greater than the cost of s′. The solution s′′ becomes the best solution found so
far, substituting s∗, as well as the current solution to which the perturbation is applied. Following
this procedure resulted in an ILS algorithm that required short computational times but converged
prematurely—because solutions obtained after free node optimization quickly become noncompa-
rable with solutions obtained by local search, free node optimization was used very few times, and
only in the initial iterations. To deal with this, the ILS algorithm was adapted to keep the memory
of the best solution before free node optimization, s∗, and the best solution after free node opti-
mization, s∗∗. If the current solution at the end of an iteration, s′, has a lower cost than s∗, then s′

substitutes s∗ and is used as an input for free node optimization, resulting in the output solution s′′,
which becomes the new current solution and substitutes s∗∗ if the cost of s∗∗ is higher. Following this
new procedure, the CPU time required by the algorithm increased slightly due to free node opti-
mization being used more frequently, but the quality of the solutions provided by the heuristic also
increased significantly. In both cases, it is important to note that solutions obtained through free
node optimization usually cannot be further improved by local search, therefore, a perturbation is
still applied before starting a new iteration.

4.5. Algorithm overview

Algorithm 3 provides an overview of the matheuristic. The initial solution is obtained through
the constructive heuristic described in Section 4.1, that is, a template is randomly generated and
decoded for at least a subset of the types, to generate one or several feasible solutions. If more
than one solution is generated, the solution with the lowest cost, s, is selected. Local search is
applied to s, as detailed in Section 4.2, resulting in final solution s∗. In the first iteration, s∗ is
saved as the best solution before optimization, bsol , and used as input for free node optimization.
In subsequent iterations, free node optimization is used only when bsol is updated, that is, when
the final solution of the local search, s∗, is better than bsol . The output solution of the free node
optimization, s∗∗, is saved as the best solution after optimization, opt_sol , in the first iteration. In
other iterations, opt_sol is updated only when free node optimization obtains a better solution.
If the current iteration is not the last, a perturbation must be applied to the current solution. If
free node optimization was applied, the current solution is s∗∗. Otherwise, the current solution is
s∗. The choice between the two perturbations follows a Bernoulli distribution, where the random
perturbation is selected with 40% probability. If the perturbation results in a feasible solution, it is
used as the initial solution in the next iteration. Otherwise, the constructive heuristic must be used
to obtain a new initial solution.

As mentioned before, to improve the algorithm’s efficiency, sorted permutations (in the sense
that consistent nodes appear before the free nodes) are used in every step that requires a template—
the constructive heuristic, the Type-template neighborhood, and the perturbation. An attempt to
further increase diversity was made by switching off template sorting for instances with just one
solution type since, for those, two of the neighborhoods explored in the local search become irrele-
vant. For instances with one solution type and five routes, this allowed us to obtain better solutions
without a significant increase of the computational times. For instances with one type and 10 routes,
however, computational times doubled and solution quality did not increase. Due to these results,
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Algorithm 3. The matheuristic

the matheuristic applies template sorting, except when solving instances with five routes and only
one solution type. The number of types explored for the same template is max = 50.

To assess the impact of free node optimization on the performance of the matheuristic, an ILS al-
gorithm that results from omitting the free node optimization step in Algorithm 3 was also tested.
For completeness, and similar to what was proposed for the matheuristic in Section 4.2, compu-
tational results will also be shown for an ILS algorithm where the variable neighborhood search
includes all four neighborhoods (ILS (template)) and an ILS algorithm where the Type-template
neighborhood is omitted (ILS).

5. Computational experiment

To assess the performance of the ILP formulations for the CTSP, Gouveia et al. (2023) pro-
posed a set of test instances ranging from 33 to 45 nodes, distributed among two, three, or five
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Table 2
Generating 10-route test instances - gr96. To illustrate how to generate a 10-route test instance from a 5-route instance,
consider cost matrix att48 (48 nodes) and variant v1. In this instance, originally, there are 12 consistent nodes, which are
visited in all five routes, and each route has 7 free nodes that are unique for that route. The 10-route instance will have the
double of the consistent nodes and the double of the free nodes. This is obtained by keeping 7 free nodes per route while
considering a new total of 24 consistent nodes. Of the consistent nodes, six nodes are visited by the first five routes and
six nodes are visited by the final five routes. To ensure that there is still interdependence between the routes (i.e., to avoid
dividing the 10 routes into two independent groups of 5 routes each), six consistent nodes are visited by the first two and
the final three routes, while the last six consistent nodes are visited by the remaining routes {3, 4, 5, 6, 7}.
Set 5 Routes 10 Routes

{1, 2, 3, 4, 5} 12 Nodes 6 Nodes
{6, 7, 8, 9, 10} — 6 Nodes
{1, 2, 8, 9, 10} — 6 Nodes
{3, 4, 5, 6, 7} — 6 Nodes
Single routes 7 Free nodes/route 7 Free nodes/route

routes. In a first experiment, test instances used subjective costs, and the distribution of nodes
across routes was customized to fit the application. A second, more generalized experiment was
also performed using cost matrices adapted from the TSPLIB dataset (http://elib.zib.de/pub/mp-
testdata/tsp/tsplib/tsplib.html), which included seven variants to represent different node distribu-
tions: one variant (v7) corresponded to the original application, while the other six variants (v1–v6)
represented varying levels of interdependence between routes. The framework of this second experi-
ment was followed to assess the performance of the matheuristic, now considering larger instances,
namely asymmetric matrices ftv47, ftv55, ftv64, and ftv70, as well as symmetric matrices att48,
brazil58, st70, and eil76, for the tests with five routes. Some additional tests were carried out con-
sidering instances with 10 routes, again with 7 variants. These new instances are obtained from the
ones with five routes in the following way:

1. Consider the number of (free) nodes that visit only route 1 in the instance with five routes, n1.
In the instance with 10 routes, all routes will have n1 free nodes.

2. For each subset of the five original routes, S, let ns be the number of consistent nodes that are
visited on all routes of S (and no routes outside of S). Consider also the set S′ = {l + 5 : l ∈ S}.
The instances with 10 routes have a total of 2ns consistent nodes. Of those nodes, ns

2 are visited
by the routes in S and ns

2 are visited by the routes in S′. To distribute the remaining consistent
nodes, sets S and S′ are both divided in half, with ns

2 nodes being visited by the first half of S
and the second half of S′, and ns

2 nodes being visited by the second half of S and the first half
of S′.

3. Adjustments are made (either by adding/removing up to two consistent nodes or by
adding/removing up to two free nodes from each route) so that the total number of nodes
fits the instances available in the TSPLIB.

Table 2 illustrates this procedure, for instance att48, variant v1. After Steps 1 and 2, we obtain a
preliminary distribution of 95 nodes in total (94 client nodes plus the depot). By adding an extra
free node to route 1 we obtain a total of 96 nodes, which fits instance gr96.
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Therefore, the cost matrices considered for the experiment with the 10 routes were the asymmetric
matrices kro124p and ftv170 and the symmetric matrices gr96, gr120, pr144, and u159. All the test
instances can be accessed online (https://sites.google.com/view/constsp/home). The tests were
carried out using the Concert Technology from CPLEX, version 12.9.0.0., in a computer with an
Intel® CoreTM i7-4790 CPU @ 3.60GHz processor, with 8GB of RAM.

Before presenting the results of the computational experiment, Section 5.1 provides some details
on parameter tuning made to improve the efficiency of the free node optimization. The compu-
tational results are presented in Sections 5.2 and 5.3, with the former providing a more general
comparison of the performances of the ILS and the matheuristic, with and without strong search,
while the latter provides a more in-depth view of the performance of the best methodologies, by
focusing on the test instances for which the optimal solution value (or a relatively good approxima-
tion) is known.

5.1. Parameter tuning

Despite the efficiency of the restricted PQ model, this methodology can be used several times
throughout the ILS algorithm, with each run of the free node optimization taking between less
than a second and several seconds, depending on the size of the instance and the quality of the
initial solution. After preliminary testing, some fine-tuning was done to further reduce CPU times,
namely: (i) Making the formulation as compact as possible. In particular, constraints (8)–(11) were
not introduced as constraints in the model; instead, the variables that should have their value fixed
at 0 are not generated. Variables referring to arcs in the form (i, i) are also not generated. (ii) The
initial solution used to decide which position each consistent node must occupy is feasible for the
rCTSP. Therefore, it is given to CPLEX as an input. (iii) The variable selection option was set to
the reduced costs rule. (iv) Since the goal of using free node optimization is to quickly improve the
local optima found in the ILS, the parameter absolute MIP gap tolerance was set to 0.01. Other
CPLEX parameters kept their default values.

5.2. Computational results

This section provides a general comparison of four methodologies, namely the matheuristic as de-
scribed in Algorithm 3, with and without the Type-template neighborhood (respectively, matheuris-
tic (template) and matheuristic) and an ILS heuristic that results from omitting the free node op-
timization in Algorithm 3, again with and without the Type-template neighborhood (respectively,
ILS (template) and ILS). The four methodologies are compared using three indicators—the com-
putational time, measured in seconds, and two gaps, computed as follows:

lgap = Heuristic value − Lower limit
Lower limit

× 100, ugap = Heuristic value − Upper limit
Upper limit

× 100

where heuristic value is the solution value provided by the heuristic method under assessment, lower
limit is the optimal solution value, if known, otherwise it is given by the lower limit provided by the
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Table 3
Computational times (seconds) and gaps concerning upper and lower limits (%)—averages per cost matrix

Matrix
ILS ILS (template) Matheuristic Matheuristic (template)

Time
(seconds)

lgap
(%)

ugap
(%)

Time
(seconds)

lgap
(%)

ugap
(%)

Time
(seconds)

lgap
(%)

ugap
(%)

Time
(seconds)

lgap
(%)

ugap
(%)

ftv47 12 4.84 1.44 16 4.80 1.40 13 4.06 0.69 18 4.03 0.66
ftv55 15 15.25 1.11 22 14.90 0.78 18 13.30 −0.60 24 13.49 −0.43
ftv64 20 20.79 −1.47 28 20.79 −1.47 26 17.44 −4.23 33 17.32 −4.31
ftv70 24 21.21 0.25 35 21.09 0.16 32 18.03 −2.37 42 17.90 −2.49
att48 16 11.38 −0.45 18 11.45 −0.39 16 11.28 −0.53 19 11.24 −0.57
brazil58 25 17.42 −2.79 29 17.44 −2.77 25 17.00 −3.12 29 17.09 −3.06
st70 38 32.41 −10.01 45 33.12 −9.49 41 31.09 −10.84 50 31.02 −10.88
eil76 45 31.67 −12.36 51 31.54 −12.43 52 29.68 −13.68 61 29.70 −13.64
kro124p 79 36.64 −6.70 89 36.67 −7.01 82 34.82 −7.74 97 34.77 −8.04
ftv170 197 48.92 −7.01 220 48.85 −7.02 300 35.72 −15.14 344 35.14 −15.24
gr96 62 22.29 −4.23 77 22.28 −4.24 65 21.67 −4.76 84 21.57 −4.82
gr120 123 44.10 −24.97 136 44.27 −25.34 130 40.53 −26.35 148 40.34 −26.51
pr144 193 59.45 −10.52 213 59.33 −10.59 271 53.30 −13.97 306 54.61 −13.25
u159 220 33.84 −8.39 240 32.90 −9.04 320 30.53 −10.66 352 30.03 −11.02
Average 76 28.59 −4.96 87 28.53 −5.04 99 25.60 −6.71 115 25.59 −6.71

APQ model at the end of 10 hours, and upper limit is the optimal solution value, if known (in which
case lgap = ugap), otherwise given by the best feasible solution value found by the APQ model in
10 hours, if any solution was found within the time limit. Both gaps are measured in percentages,
with lgap taking nonnegative values, whereas ugap can take negative values if the solution provided
by the heuristic is better than the solution provided by model APQ after 10 hours.

The computational experiment included 14 cost matrices, 7 variants for each matrix, and repe-
titions for 5 different seeds, totaling 490 runs for each methodology under assessment. Therefore,
and for clarity, results are represented through averages.

Table 3 shows the average results per cost matrix. Each line represents the average results across
the 5 runs of each variant (totaling 35 runs). As expected, it is possible to see that the computa-
tional times increase both with the number of nodes and the number of routes. Also, Gouveia et al.
(2023) reported that symmetric cost matrices generate instances that are more difficult to solve
for the exact methods, and this also seems to be the case for the heuristic methods developed in
this study—computational times are significantly larger for matrix att48 when compared to ftv47,
matrix st70 when compared to ftv70, matrix gr120 when compared to kro124p, and even matrix
u159 when compared to ftv170. The lgaps also tend to increase with the number of nodes, and
the number of routes, as well as in instances with symmetric cost matrices, although with some
exceptions—the average lgap for matrix eil76 is slightly smaller than for matrix st70, and the aver-
age lgap for matrix u159 is significantly smaller than for matrices pr144 and gr120. This behavior
is not unexpected, since larger instances are more difficult to solve, and therefore the lower gaps
provided by CPLEX tend to be worse. For similar reasons, smaller (more negative) values for ugaps
in larger instances also reflect worse feasible solutions (upper limits) found by CPLEX in 10 hours.
Still, these gaps allow us to compare the performance of the different methodologies. In particu-
lar, it can be seen that the introduction of the free node optimization allowed to improve, in many

© 2025 The Author(s).
International Transactions in Operational Research published by John Wiley & Sons Ltd on behalf of International Federation
of Operational Research Societies.

 14753995, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/itor.70125 by C

ochrane Portugal, W
iley O

nline L
ibrary on [02/12/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Luís Gouveia et al. / Intl. Trans. in Op. Res. 0 (2025) 1–30 25

Table 4
Computational times (seconds) and gaps concerning upper and lower limits (%)—averages per variant

Variant
ILS ILS (template) Matheuristic Matheuristic (template)

Time
(seconds)

lgap
(%)

ugap
(%)

Time
(seconds)

lgap
(%)

ugap
(%)

Time
(seconds)

lgap
(%)

ugap
(%)

Time
(seconds)

lgap
(%)

ugap
(%)

v1 83 25.40 −13.03 87 25.57 −12.87 98 23.51 −14.20 105 23.46 −14.22
v2 77 31.29 −5.54 93 31.24 −5.66 99 28.86 −6.90 119 28.54 −6.97
v3 77 32.24 −3.13 96 32.60 −3.04 100 29.24 −4.85 119 29.44 −4.72
v4 73 31.76 −2.23 89 31.44 −2.49 103 28.34 −4.09 125 28.47 −3.94
v5 79 31.26 −3.63 82 30.96 −3.90 112 26.95 −5.84 124 26.47 −6.13
v6 84 34.02 −6.32 91 33.97 −6.34 115 29.87 −8.99 132 30.39 −8.71
v7 62 14.13 0.29 71 13.94 0.11 69 12.45 −1.15 80 12.34 −1.25
Average 76 28.59 −4.96 87 28.53 −5.04 99 25.60 −6.71 115 25.59 −6.71

cases significantly, both the lgaps and the ugaps from the ILS to the matheuristic and from the
ILS (template) to the matheuristic (template), albeit with a clear increase in computational times.
On the other hand, the introduction of the Type-template neighborhood slightly increases compu-
tational times but does not seem to improve the quality of the solutions significantly. This is not
surprising for the matheuristic, since the free node optimization includes exploring different types.
Still, it also happens for the ILS algorithm, thus suggesting that this neighborhood does not add
much to the type exploration already achieved in the constructive heuristic, perturbation, and Type
neighborhood. Note that there are cost matrices for which the solution value found by a heuristic
with the Type-template neighborhood is, on average, worse than the solution value found by the
same methodology without this neighborhood, and this seems more recurrent for symmetric cost
matrices (for the ILS, this fourth neighborhood decreases the quality of the final solution for 1

6
of the asymmetric cost matrices and 1

2 of the symmetric cost matrices, while for the matheuristic
it decreases the quality of the final solution for 1

6 of the asymmetric cost matrices and 3
8 of the

symmetric cost matrices). In most of the cost matrices, the heuristic methods outperform the APQ
model in terms of quality of solutions (as shown by the negative average values for the ugaps). In
particular, the matheuristic on average finds a better solution value (in several cases significantly
better) than the APQ model in 10 hours in all cost matrices except for the smallest and easiest to
solve matrix, ftv47.

Table 4 shows the average results per variant. Each line represents the average results across
the 5 runs of each cost matrix (totaling 70 runs per method). To compare the performance of the
heuristic methods on different variants, it is important to note that variant v1 is the one where
the routes individually tend to visit more nodes and are more interdependent, while having few,
or even just one solution type, variant v7 also has few or just one type, with the smallest and less
interdependent routes across all variants, and variant v6 is the one where there are more solution
types (Ponte, 2023, provides a more in-depth explanation of the variants, along with an analysis on
the variation of the number of types across different variants). Accordingly, variant v7 and mostly
variant v1 are the ones that require the smallest computational time, whereas variant v6 is mostly
the one that requires the largest computational time. Variant v7 is also the one where the lgaps are
smaller and the upper gaps are larger, which is justified by the fact that these instances tend to be
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Table 5
Computational times (seconds) and gaps concerning upper and lower limits (%)—averages per seed

Seed ILS ILS (template) Matheuristic Matheuristic (template)

Time
(seconds)

lgap
(%)

ugap
(%)

Time
(seconds)

lgap
(%)

ugap
(%)

Time
(seconds)

lgap
(%)

ugap
(%)

Time
(seconds)

lgap
(%)

ugap
(%)

1 76 28.66 −4.94 87 28.65 −4.97 102 25.80 −6.58 120 25.57 −6.75
2 77 28.71 −4.92 87 28.58 −5.08 99 25.89 −6.54 114 25.68 −6.70
3 76 28.63 −4.92 87 28.54 −5.01 97 25.67 −6.74 115 25.54 −6.72
4 76 28.53 −4.95 87 28.42 −5.10 98 25.43 −6.80 114 25.72 −6.60
5 76 28.41 −5.08 87 28.46 −5.03 101 25.24 −6.91 110 25.41 −6.76
Average 76 28.59 −4.96 87 28.53 −5.04 99 25.60 −6.71 115 25.59 −6.71

easier to solve for the exact methods, and thus these can provide better upper and lower bounds. On
the other hand, variants v1 and v6 are the ones where the heuristic methods outperform model APQ
more significantly, which is possibly due to the larger routes in the former and the largest number of
types in the latter, both contributing to these instances being more challenging for exact methods.

Finally, Table 5 shows the average results per seed, with each line representing the average results
across the 7 variants of each cost matrix (total of 98 runs per method). None of the methodolo-
gies shows significant fluctuations in the gaps, suggesting that the four methods are robust. The
matheuristics (with and without the Type-template neighborhood) seem to have a slightly larger
variation in the average computational times, when compared to the ILS algorithm, which can be
explained by the fact that, depending on the quality of the initial solution, the time spent on one
run of free node optimization can vary significantly, even for the same test instance.

Some additional insights obtained from the computational experiment include the following.

• The heuristic methods tend to update the best local optimum on average 8–12 times (this means
that, on average, the ILS heuristic updates the best found solution 8–12 times and free node
optimization is used the same number of times in the matheuristic). This behavior is quite robust
for the five tested seeds and does not change from variant to variant.

• The last time the best local optimum is updated (with resulting free node optimization, if using the
matheuristic) tends to occur, on average, between iterations 8000 and 14,000, with the matheuris-
tic usually converging on earlier iterations than the ILS, although not significantly. This suggests
that 25,000 iterations are sufficient for the algorithm to converge (and possibly could be reduced
to decrease computational times without affecting the quality of the solutions). Unsurprisingly,
the variants with more solution types (v4, v5, and v6) are the ones where the methodologies tend
to converge in later iterations. Again, the number of iterations until convergence does not vary
much from seed to seed.

• Regarding the matheuristic, the best solution value (after free node optimization) is found, on
average, between iterations 5000 and 10,000, suggesting that in several cases the final solution is
found in a significantly earlier iteration than the last free node optimization. More precisely, the
final solution of the matheuristic is obtained in the last free node optimization in about 55% of
all runs with the Type-template neighborhood and 58% of all runs without this neighborhood.
In the remaining cases, the differences between the iteration in which the final solution was found
and the iteration in which the last free node optimization was performed are usually significant.
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Table 6
Computational times and gaps for matheuristic and matheuristic (template)—in-depth analysis

Instance Matheuristic Matheuristic (template)

Time (seconds) lgap (%) ugap (%) Time (seconds) lgap (%) ugap (%)

ftv47v1 14 0.00 0.00 19 0.00 0.00
ftv47v2 14 0.48 0.48 18 0.22 0.22
ftv47v3 14 4.45 −0.06 19 4.40 −0.52
ftv47v4 13 3.01 3.01 19 3.23 3.23
ftv47v7 12 1.38 1.38 15 1.24 1.24
ftv55v7 15 0.59 0.59 20 1.18 1.18
att48v2 17 6.51 0.00 20 6.51 0.00
att48v7 14 0.06 0.05 17 0.10 0.09
gr96v7 57 0.01 0.00 72 0.01 0.00

This behavior does not contradict Fig. 5, since it generally arises from one of the following two
situations: (i) The solution obtained from the last free node optimization is not the final solution.
In this case, the solution after the last free node optimization is usually not significantly worse
than the final solution, and the latter tends to be found in one of the last runs of the free node
optimization. However, as the algorithm progresses and updates the best solution, it becomes
increasingly more difficult to find even better solutions, thus the number of iterations between
the final runs of free node optimization can be quite large. (ii) The solution obtained from the
last free node optimization is the final solution, but the same solution had already been obtained
from an earlier run of free node optimization, from a different input solution.

The results show that free node optimization has a significant positive impact on the perfor-
mance of the matheuristic, although at the cost of an increase in computational times, whereas the
Type-template neighborhood does not seem to have a significant impact on the performance of the
methodology. Section 5.3 provides a more in-depth analysis of the matheuristic and the matheuris-
tic (template), focusing on test instances for which the optimal solution value (or a relatively good
approximation) is known.

5.3. In-depth analysis

Table 6 shows more detailed results for the matheuristic, focusing on the instances for which the
APQ model was able to find the optimal solution value (or a good approximation) in 10 hours,
namely most of the variants of matrix ftv47, variant v7 of matrices ftv55, att48, and gr96, and
variant v2 of matrix att48. In each line, results are presented as averages across the five runs of
an instance (one for each seed). The instances for which the optimal solution value is known are
the ones where lgap equals ugap, that is, ftv47v1, ftv47v2, ftv47v4, ftv47v7, and ftv55v7. For these
instances, the matheuristic was able to find good solutions, even consistently obtaining the optimal
solution for ftv47v1, in every seed. The optimal solution for instance ftv47v3 is not known yet, but
the lower limit provided by CPLEX allows us to conclude that the gap between the heuristic value
and the optimal value is at most 4.5%, with the heuristic obtaining slightly better solutions than the

© 2025 The Author(s).
International Transactions in Operational Research published by John Wiley & Sons Ltd on behalf of International Federation

of Operational Research Societies.

 14753995, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/itor.70125 by C

ochrane Portugal, W
iley O

nline L
ibrary on [02/12/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



28 Luís Gouveia et al. / Intl. Trans. in Op. Res. 0 (2025) 1–30

APQ model at the end of 10 hours. Similarly, for instance att48v2, it is possible to conclude that the
gap between the heuristic value and the optimal value is at most 6, 51%, with the matheuristic con-
sistently obtaining the same solution as model APQ, in every seed. Finally, the solutions obtained
by the heuristic for instances att48v7 and gr96v7 are very close to optimality, if not optimal.

6. Conclusions

This study focused on the development of a matheuristic for the TSP with positional consistency
constraints. To this effect, an ILS-based matheuristic was developed and implemented, which in-
cludes a constructive heuristic that tries to generate solutions with different types from a random
permutation of the nodes and, if able to generate several feasible solutions, returns the one with the
smallest cost; a variable neighborhood search algorithm with four different neighborhoods: three
of them making changes in the solution matrix space, the fourth one using a template represen-
tation to explore solutions with different types; and a formulation for a restricted version of the
CTSP, where the positions for consistent nodes are known and fixed, while free nodes and empty
positions are allowed to vary. Preliminary tests showed that applying this formulation using a local
optimum from the variable neighborhood search as input allowed to obtain output solutions with
significantly better quality and that the linear correlation between the quality of the input solution
and the quality of the output solution is very strong, which motivated the decision of applying the
model only when the best local optimum is updated, thus avoiding prohibitive computational times.

A computational experiment was carried out to assess the performance of the matheuristic, con-
sidering a set of test instances, ranging from 48 to 171 nodes, with 5 or 10 routes. The matheuristic
was shown to perform well in these tests, being able to find, on average, in around 100 seconds
better solutions (in many cases considerably better) than the ones obtained by the APQ model pro-
posed by Gouveia et al. (2023), in 10 hours. The free node optimization step (using a local optimum
as input for the model for the rCTSP) was shown to positively impact, also significantly, the qual-
ity of the final solution for the heuristic (when compared to an ILS algorithm that uses the same
constructive heuristic, the same variable neighborhood search algorithm and the same perturba-
tion as the matheuristic), whereas the additional type-template neighborhood was shown to not
affect significantly the performance of the algorithms under assessment. Finally, for the subset of
instances for which the optimal solution is known, the matheuristic was able to obtain optimal or
near-optimal solutions in most cases.

Future lines of research may include the study of other forms of synchronization that are rel-
evant for healthcare services applications, namely, evaluating whether current methodologies for
the CTSP can be adapted to address such forms of synchronization and, if so, how they affect the
performance of the methodologies. Some possibilities include limiting the number of routes that
can assign the same node (or “similar” nodes) to the same position, to model space or equipment
scarcity; idle times/positions; precedence relationships (for instance, a doctor can only examine a
patient after he has been seen by the nurse), consistency constraints where the distribution of the
nodes among the routes is not (completely) known, to model patients that have not been affected
to a specific family practitioner; or even cases where a node/set of nodes must be covered by at
least one route in every position to model, for instance, situations where at least one healthcare
professional must be available to serve walk-ins.
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