DE GRUYTER

Nanophotonics 2023; 12(14): 3007-3017 a

Research Article

Filipa R. Prudéncio* and Mario G. Silveirinha

Replicating physical motion with Minkowskian
isorefractive spacetime crystals

https://doi.org/10.1515/nanoph-2023-0144
Received March 1, 2023; accepted May 4, 2023;
published online May 22, 2023

Abstract: Here, we show that isorefractive spacetime crys-
tals with a travelling-wave modulation may mimic rig-
orously the response of moving material systems. Unlike
generic spacetime crystals, which are characterized by a bi-
anisotropic coupling in the co-moving frame, isorefractive
crystals exhibit an observer-independent response, result-
ing in isotropic constitutive relations devoid of any bian-
isotropy. We show how to take advantage of this property in
the calculation of the band diagrams of isorefractive space-
time crystals in the laboratory frame and in the study of the
synthetic Fresnel drag. Furthermore, we discuss the impact
of considering either a Galilean or a Lorentz transforma-
tion in the homogenization of spacetime crystals, showing
that the effective response is independent of the considered
transformation.

Keywords: metamaterials; Minkowskian spacetime crys-
tals; photonic crystals; space-time modulation; synthetic
Fresnel drag; travelling-wave modulation.

1 Introduction

In recent years, time-varying material responses have
opened up many interesting opportunities in metama-
terials and in other light-based platforms [1-22]. Time
modulated materials may be useful to design magnetless
non-reciprocal systems, such as unidirectional guides and
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isolators [4-6, 9]. The wave phenomena in time-modulated
systems can be quite rich and peculiar [1-15].

A particular class of spacetime crystals has attracted
considerable attention due to the relative simplicity of
modeling and system design: the “travelling-wave” space-
time crystals [7, 8, 16—24]. In a travelling-wave crystal the
material parameters, let us say the permittivity, depend on
space and time as &(r, t) = e(r — vt), wherer = (x, y,z) is
a generic point of space and v is the modulation speed.
Remarkably, the travelling-wave modulation of the mate-
rial parameters may induce a synthetic Fresnel drag in the
long wavelength regime, such that waves propagating in the
spacetime crystal are dragged towards a preferred direction
of space, either parallel or anti-parallel to v [20]. Interest-
ingly, these effects may be conveniently described using
homogenization theory [19, 21, 23]. Specifically, a travelling-
wave crystal formed by layered dielectrics behaves effec-
tively as a bianisotropic nonreciprocal material in the long
wavelength limit. In the simplest case, where the crystal is
formed by simple isotropic materials, the magneto-electric
coupling tensor is anti-symmetric, corresponding to a stan-
dard “moving-medium” coupling [20, 21, 25]. Curiously, by
controlling the optical axes and the anisotropy of the mate-
rials that form the spacetime crystal, it is possible to engi-
neer nearly arbitrary (Hermitian) nonreciprocal couplings
[23]. For example, it was shown in Ref. [23] that anisotropic
spacetime crystals with a suitable glide-rotation symmetry
may exhibit an isotropic effective Tellegen (axion) response
in the long wavelength limit. Different from the moving
medium coupling, the Tellegen response is determined by
a “scalar”, which is the simplest example of a symmetric
magneto-electric tensor [26, 27]. Tellegen materials are non-
reciprocal and thereby can be potentially useful to realize
unidirectional devices [28, 29] and systems with nontrivial
topological properties [30, 31].

While previous works have shown that crystals with a
travelling-wave modulation can effectively mimic physical
motion [19-23], the analogy is imperfect in many ways and
typically only holds true in the long wavelength limit. For
example, the velocity of the equivalent moving medium v,
typically does not match the modulation speed of the crys-
tal v, and most puzzling the sign of the two velocities can
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be different [20]. In fact, a spacetime modulated dielectric
crystal is not equivalent to a moving dielectric crystal. The
reason will be developed in detail in the following sections,
but essentially boils down to the fact that in the co-moving
frame — where the material response is time-independent
— the response of a dielectric crystal is by definition free
of magneto-electric coupling, while the response of a space-
time crystal is bianisotropic.

Notwithstanding with the constraints discussed in the
previous paragraph, here we show that there is a particular
subclass of spacetime crystals that may replicate exactly
the response of moving material bodies for any frequency
of operation. Specifically, we show that isorefractive space-
time crystals — formed by materials with a constant refrac-
tive index, n = m = const. — have an electromagnetic
response identical to that of a moving dielectric crystal in a
suitable “vacuum” background. In particular, our analysis
unveils that isorefractive crystals may be the ideal plat-
forms to mimic physical motion using spacetime modula-
tions. Furthermore, we highlight how by using generalized
Lorentz transformations it is possible to determine in a
rather straightforward manner the dispersion properties of
spacetime modulated isorefractive crystals and character-
ize the synthetic Fresnel drag in the long wavelength limit.
Finally, we discuss the impact of using relativistic (Lorentz)
and non-relativistic (Galilean) transformations in the analy-
sis of spacetime crystals. It is demonstrated that while both
types of transformation predict the same physics and the
same effective response in the long wavelength limit, the use
of Lorentz transformations greatly simplifies the analysis in
the case of isorefractive crystals.

2 Isorefractive spacetime crystals

2.1 Coordinate transformations and
constitutive relations of a spacetime
crystal

We are interested in spacetime crystals with a travelling-
wave modulation characterized by isotropic constitutive
relations,

D(r,t) = g4e(r — vt) E(r, 1),

B(r, t) = pou(r — vt) H(r, t). @

We shall assume without loss of generality that the
modulation speed is along the x-direction, v = vX, so that
€(r — vt) stands for a function of the type £(x — vt, y,z),
determined by only three independent degrees of freedom.
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Evidently, the material response is time-independent
in an inertial (co-moving) frame that moves with speed v
with respect to the laboratory frame. In this article, we link
the coordinates of the two frames through a generalized
Lorentz transformation of the type:

X =yx—vt), vV=y, 7=z (2a)

¢ =y<t—x”>,
%

with y = (1 - ¢? /cg)_l/ 2 the Lorentz factor. Here, ¢ is a
free positive parameter with unities of velocity. If ¢, is taken
identical to the speed of light in vacuum, ¢, we recover the
standard Lorentz transformation, whereas if ¢, = co we get
a simple Galilean coordinate transformation.

The structure of the Maxwell’s equations is preserved
by any generalized Lorentz transformation, provided the
electromagnetic fields are transformed in the usual manner
[25, 32]:

(2b)

E| =y(E, +VXB), Bl:y(Bl—ClzvxE) (3b)
0

and
D, =D, H| =H, (4a)

Dl=y<Dl+;VXH>’ H| =y(H,-vxD). (4b)
0

Here || and L represent the field components parallel
and perpendicular to the velocity. Evidently, the primed
fields have a strong physical meaning when ¢, =c, as
in that case they coincide with the physical fields eval-
uated in the relevant inertial frame. When ¢, # ¢, the
primed fields should be simply regarded as auxiliary fields
that are introduced to simplify the mathematical treat-
ment of the wave propagation problem in the spacetime
crystal.

As shown in previous works [21, 23], the generalized
Lorentz transformation leads to the following constitutive
relations for the primed fields (compare with Eq. (1)):

<D,> o %? (E,>

] T 1= I |

B =& i H
c

where the transformed permittivity, permeability and

magneto-electric tensors satisfy:

(5a)

- 1 (v/cy)
£=€(1-X®@X)+'XQ%, el =¢'— "2, (5h)
1— (v/vy)
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W=p(1-XQR) + WX QX, Mt:,/i/co)z’
1- (U/Ud)
(5¢)
5_'= Iz 1_(CO/Ud) X1, 5d)

and vy = c/+/€' ' is the velocity of the relevant dielectric
in the laboratory frame. In the previous formulas €', '
stand for &’ = &(x’/y,y',2') and y’ = pu(x' [y, y’,2') with
the functions in the right-hand side defined as in Eq. (1).
Thereby, the material parameters are independent of time
in the new coordinates. For a finite c,, the y-factor is greater
than one, and hence all the lengths along the direction of
motion in the lab frame are shorter than in the co-moving
frame (the “rest” frame), due to the Lorentz-Fitzgerald
length contraction [32]. Due to this reason, for a finite ¢, the
geometry of the spacetime crystal in the laboratory frame
is a contracted version of the geometry in the co-moving
frame.

From Eq. (5) one sees that the constitutive rela-
tions in the co-moving frame are characterized by a
bianisotropic coupling, described by the tensors &=
—E. As further discussed in the next subsection, this
property is at odds with the response of moving isotropic
dielectrics. Indeed, a moving dielectric has a response free
of magneto-electric coupling in the rest frame (co-moving
frame) and a bianisotropic response in any other inertial
frame.

2.2 Moving dielectric crystal

It is relevant to contrast the response of a spacetime crystal
with that of the corresponding moving photonic crystal.
To do this, consider a time independent dielectric photonic
crystal at rest in some inertial frame. In this frame (primed
coordinates), the dielectric photonic crystal is characterized
by standard constitutive relations:

B/ (X.t') = o (¥ Y2 ) H (x'. 1), (©)

On the other hand, in a (laboratory) inertial frame that
moves with speed —vx with respect to the rest frame the
transformed fields are related as [25] (here we use the stan-
dard Lorentz transformation with ¢, = ¢):

()i [
B) (1

(7a)
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where the relevant tensors are now given by:

1—(v/c)’
E=¢(1-X®X) +eXQX, e,=e———"—"—, (7h)
1- (v/vy)
2
— 1-
H=pu(1-XQX)+ ux @x, ,ut=,uic)2, (7c)
1- (v/vq)
2
e ULV 99 (7d)
1—(v/vg)" €

where vy =c¢/ \/s’_,u’ . The parameters €, u are linked to
e, Wase=¢(yx—vt),y,z)and u = p' (y(x — vt), y,2),
so that the response in the laboratory frame is time depen-
dent and has also a “travelling-wave” structure. Comparing
Eqs. (D) and (7) and Eqs. (5) and (6), the difference between
a moving dielectric crystal and spacetime modulated dielec-
tric crystal becomes evident: the responses in the co-moving
frame (where the constitutive relations are time indepen-
dent in both problems) and in the laboratory frame (where
the constitutive relations are time dependent) are swapped
in the two problems. In particular, a moving photonic crystal
is bianisotropic in the laboratory frame, while the corre-
sponding spacetime crystal has a purely isotropic response
in the laboratory frame. Clearly, the two types of crystals are
generically rather different from an electromagnetic point
of view.

2.3 Isorefractive crystals and Minkowskian
isotropic materials

Let us now consider an isorefractive crystal such that vy
is independent of space. In other words, the speed of light
is identical in all the materials. This type of crystals was
considered in Ref. [33], where the authors analyzed the
peculiar dispersion properties of light waves near the tran-
sition between the subluminal and superluminal regimes.
Furthermore, time independent isorefractive systems have
been previously discussed in the literature in different con-
texts [34-36].

Consider first the ideal case vy = ¢, so that the speed
of light in the materials is identical to the speed of light
in vacuum. It should be noted that in realistic materials
U4 < ¢, asthelight-matter interactions slow down the wave
propagation with respect to the vacuum case. We will not
worry with such a constraint for now; the requirement
vq = ¢ will be relaxed below.

Using vy = ¢ and a standard Lorentz transformation
(¢, = ©) in Egs. (D), (5)-(7), one readily finds that both for
the spacetime crystal problem and for the moving photonic
crystal problem the constitutive relations in the co-moving
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frame are of the type: D'(r,t') = goe’ (X', ¥/, 2/ )E' (1, t)
and B'(r',t') =g/ (X',y',2)H (x',t). Furthermore,
when vy = ¢ = ¢, the constitutive relations are preserved
by the Lorentz transformation, ie. they are frame
independent. In a generic inertial frame, let us say
the laboratory frame, they are of the form: D = £,¢’E,
B=¢yu'H. Note that in the laboratory frame the
constitutive relations are time-dependent due to the
moving material interfaces.

The enunciated results can be better understood noting
that the standard Lorentz transformation preserves the con-
stitutive relations of the electromagnetic vacuum, i.e., the
vacuum is a “fixed point” of the Lorentz transformation. It
has been previously noted [37] that there is a wider set of
fixed points formed by all the isotropic “materials” with the
same refractive index as the vacuum. Such class of materials
is known as Minkowskian isotropic media.

The above discussion reveals that an arbitrary crys-
tal formed by Minkowskian isotropic media (vg =c¢) is
described by constitutive relations that are observer inde-
pendent. Furthermore, it proves that a hypothetical moving
photonic crystal formed by Minkowskian isotropic media
has an electromagnetic response strictly equivalent to the
response of the corresponding spacetime modulated crys-
tal. Thereby, Minkowskian isotropic spacetime crystals may
perfectly mimic the physical motion of some material body
at any frequency. This is the first key result of the article.
Evidently, this result holds true only for idealized materi-
als that respond instantaneously to the applied fields. The
bandwidth of practical systems is constrained by material
dispersion. It is relevant to note that frequency dispersive
materials cannot be invariant under a Lorentz transforma-
tion. In fact, due to the Doppler transformation a frequency
dispersive material becomes spatially dispersive in the lab-
oratory frame.

Asnoted before, itis certainly challenging to implement
Minkowskian spacetime crystals with vy = c. However, one
may relax the constraint v4 = ¢ so that it becomes vy = ¢,
where ¢, is now some arbitrary velocity, if desired much
less than the speed of light in vacuum. Even though the
response of such a spacetime crystal with vy = ¢, is not
strictly equivalent to that of a physical moving medium, in
practice the two mathematical structures are rather similar.
In fact, it should be obvious that an isorefractive spacetime
crystal with vg = ¢, effectively emulates a moving physical
body in a fictitious “universe” where the speed of light is ¢,
rather than c.

Indeed, from Eq. (5) the isorefractive materials char-
acterized by a given velocity v, are “fixed points” of the
generalized Lorentz transformation with ¢, = vy. In other
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words, the generalized Lorentz transformation with ¢, = vy
enables one to switch to a set of coordinates where the
constitutive relations of the spacetime crystal remain pre-
cisely the same (i.e., described by a scalar permittivity and
by a scalar permeability as in Eq. (1)), but time invariant.
Thus, the electrodynamics of a generic isorefractive space-
time crystal is strictly determined by the electrodynamics
of a standard time-independent photonic crystal through a
generalized Lorentz transformation. This is the second key
result of the article.

2.4 Dispersion diagrams, generalized
Doppler transformation, and addition
of velocities

From the previous subsection, the electrodynamics of isore-
fractive spacetime crystals can be conveniently studied
in the co-moving frame where the constitutive relations
of the material are isotropic and time-invariant. Note
that this result holds true even for three-dimensional
crystals.

Clearly, the electromagnetic modes in the co-moving
frame coordinates are Bloch waves with a spacetime
variation of the type: e=@'!'e+k'r' The dispersion of the
Bloch waves @’ versus kK’ in the co-moving frame may
be found with standard numerical methods. By applying
an inverse generalized Lorentz transformation, one can
obtain the modes in the original (unprimed) frame. The
fields in the unprimed frame have a structure of the type
F,(r — vt)e" e+ T with F, a periodic function in the three
spatial coordinates. The dispersion in the laboratory frame
is easily determined by a (generalized) Doppler transforma-
tion [32]:

’ o'
k, = y(kx + UC%) k, = k;, k, = k.. (8a)

w=y(& +kv). (8b)

It is interesting to relate the wave velocities in the co-
moving and laboratory frames. For simplicity, we restrict
our discussion to the case of Bloch modes that propagate
along the x-direction (i.e., along the direction parallel to v) in
thelong wavelength limit. Clearly, as in the co-moving frame
the system is a conventional reciprocal photonic crystal, the
velocities of the waves that propagate along the +x and —x
directions differ by a minus sign: v/* = —v/"". The velocities
are determined by the slopes v/* = @’ /k/* evaluated in the
long wavelength limit.

The wave velocities in the laboratory frame (vf =
w/k¥) can be readily determined using the (generalized)
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formula for the relativistic addition of velocities [32]:

/+
VE 4D

v —w
1+uvtv/c

t = 9

Clearly, |0 | > |v, | in the subluminal regime (Jv| < ¢,
and |v/ | < cy) and thereby the synthetic motion always
induces a “positive” Fresnel drag effect, such that the waves
in the laboratory frame propagate faster along the direc-
tion determined by the synthetic motion (+x-direction). It
is underscored that different from previous works [20, 21],
here the Fresnel drag effect is determined by a relativis-
tic velocity-addition formula, due to the rigorous analogy
between the isorefractive spacetime crystal and a moving
crystal. The velocity of the equivalent moving crystal is
identical to the modulation speed.

2.5 Numerical examples

In order to illustrate the ideas of the previous subsec-
tions, next we present two numerical examples. In the first
example, the spacetime crystal in the co-moving frame is
formed by an isorefractive honeycomb array of dielectric
cylinders with radius R’ (Figure 1a). For simplicity, we con-
sider the case of Minkowskian isotropic crystals, so that the
background region is air and the cylinders have permittivity
A

€/ and permeability x) constrained by n’, = =1(in

Co-moving Laboratory

frame

(b)
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the numerical simulations we take ¢, =5, u) =1/€}). The
distance between nearest neighbors is a’.

We consider waves with transverse electric (TE) polar-
ization (E' = E/Zz) and propagation in the xoy plane, so that
E! = E!(x,y’). The band structure in the co-moving frame
can be found by solving the secular equation:

~0e (et =
: (10)

x’,y’)

2
(2.

L 5 F

-0, ﬂ’(X’,yl) Y=z

Vi

where x’, y', z’ are the spatial coordinates in the co-moving
frame. The Bloch theorem can be used in the co-moving
frame because of the spatial periodicity of the crystal. The
Bloch modes are calculated using the plane wave method
[38]. The electromagnetic fields in the laboratory frame can
be calculated from the Bloch modes in the co-moving frame
with the help of Egs. (3) and (4).

The numerically calculated band diagram is plotted in
Figure 2ai for the parameters e}, =5, u) =1/¢),R' = 0.4d'
and a modulation speed v = 0.2c. It should be noted that
due to the Lorentz-Fitzgerald contraction the cross-section
of the cylinders in the laboratory frame coordinates is ellip-
soidal rather than circular (inset of Figure 1a). Furthermore,
the original honeycomb lattice is slightly contracted for the
same reason. For simplicity, we restrict our attention to the

Figure 1: Geometry of two isorefractive spacetime crystals with a travelling-wave modulation. The modulation speed is v = vX. The arrow indicates
how the material parameters vary in time in the laboratory frame. (a) Co-moving frame geometry of a honeycomb array of dielectric scatterers with

radius R and permittivity and permeability €}, 4, embedded in air, with n

\/€4H, = 1. The direct lattice primitive vectors are a] = a’/2(3, —\/5)

and a) = a’/2(3, \/§>, where @' is the distance between nearest neighbors. The inset illustrates the Lorentz contraction of the unit cell, showing that
the circular cross-section of the scatterers becomes slightly elliptical in the laboratory frame. The nearest neighbors distance is also shortened
according to a = d’' /. (b) Stratified isorefractive spacetime crystal formed by two isotropic layers with material parameters €,, u, and €, i, such

that /e,y = 1= /€, uy. The lattice period in the co-moving frame is o’
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Figure 2: Dispersion of the isorefractive spacetime honeycomb crystal (Figure 1a). (a) Exact dispersion diagram for €, =5, u, = 1/¢, for a
modulation speed v = 0.2c calculated in the (ai) co-moving frame, and (aii) laboratory frame. (aiii) Long wavelength limit wave velocities in the
laboratory frame v}, v, as a function of the modulation speed v/c. The horizontal line represents the wave velocity in the co-moving frame
|v!,] = |v%|. In the dashed part of the red curve, v, is positive and the propagation is unidirectional.

x’-axis and to the segment of the Brillouin zone —M’ — I’ —
M’ (corresponding to the vertical dashed lines in Figure 2ai).
Here, I", M’ are the standard high-symmetry points of the
honeycomb array. In the long wavelength limit, the pho-
tonic crystal dispersion can be approximated by two lines
depicted in Figure 2ai with the dashed black style, whose
slopes determine the wave velocities v/* = ' /k/* along
the +x’-axis. As already mentioned, due to Lorentz reci-
procity the two slopes are identical in the co-moving frame:
o] = 7| = 0

The band diagram in the laboratory frame (Figure 2aii)
is found with the help of the relativistic Doppler transfor-
mation (Eq. (8)). Due to the Doppler shift, the band struc-
ture in the laboratory frame is tilted with respect to the
co-moving frame. The synthetic motion creates an evident
spectral asymmetry, o (k, ) # @(—k, ). In particular, there is
a synthetic Fresnel drag such that the wave velocities in the
long wavelength limit obey the order relation: |v,, | < v <
B!

Figure 2aiii depicts the velocities in the laboratory
frame |0 | as a function of the modulation speed. The plot is
obtained using the relativistic addition of velocities (Eq. (9)).
Note that the crystal geometry in the co-moving frame is
assumed independent of the modulation speed. As seen, the
asymmetry between the velocities of counter-propagating
waves becomes more pronounced as the modulation speed
increases. Interestingly, for v = v/ = |v/*|, the velocity of
the counter-propagating wave (v;) becomes exactly zero.
Furthermore, for v > v:U the signs of the velocities of the
two waves Ui become identical. Thus, the velocity v = U:U
marks the transition between the usual bi-directional prop-
agation regime (v} and v, have opposite signs) and a unidi-
rectional propagation regime (v and v, have both positive
signs), in agreement with the findings of Ref. [33]. As the
modulation speed approaches the superluminal threshold
(v - ¢), both v;ﬁj approach +c.

The velocity v = v/, may be regarded as the Cherenkov
threshold in the homogenization limit. In fact, a static point
charge in the laboratory frame, behaves effectively as a
moving charge with velocity v in the co-moving frame. The
velocity of the charge in the co-moving frame exceeds the
velocity of the wave when v > v/ . Thus, for v > v/, the
synthetic motion may enable the emission of Cherenkov-
type radiation from the static charge (see also Ref. [39]). The
emitted radiation is coupled to the low frequency electro-
magnetic modes.

As a second example, we consider a 1D-type photonic
crystal formed by a periodic stack of isorefractive dielectric
layers with period a’in the co-moving frame (Figure 1b).
The material parameters are taken as &/, =2, u), =1/2
and €, =1/4, uy =4, such that the refractive indexes,
are n, = ny = 1. The band diagrams calculated in the co-
moving and laboratory frames are shown in Figure 3ai and
aii, respectively, for the modulation velocities v = 0.1c and
v = 0.35¢. Similar to the previous example, the spectral sym-
metry is broken in the laboratory frame (w(k,) # w(—k,))
due to the synthetic motion.

It is relevant to discuss the homogenization and long
wavelength limit response of the Minkowskian spacetime
crystal [19, 21, 23]. As is well-known, for stratified structures,
the effective response in the co-moving frame can be found
with simple spatial averaging of the material parameters.
For layers with identical thickness the effective permittivity
and permeability are:

e\ +ep

A

' '
g = o _ Hy + Hy
efL — 2 ’ .

efL — 2 an

The effective parameters describe the response of the
crystal to transverse waves that propagate along the direc-
tion of motion. The important point is that even though
the two material layers are isorefractive (), = nj, = 1), the
effective medium has typically a different refractive index:

/€L Mg # 1. This implies that the effective medium is
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Figure 3: Dispersion and effective parameters of the isorefractive stratified spacetime crystal (Figure 1b). (a) Exact dispersion diagrams of a crystal
formed by two dielectric layers with parameters £, =2, u, =1/2and e, =1/4, uj, = 4,for the modulation speeds v = 0.1c and v = 0.35c. (ai)
Co-moving frame diagrams, (aii) laboratory frame diagrams. (b) Effective parameters as a function of the modulation speed. (bi) s;fL, u. & inthe

efL> PefL

co-moving frame. (bii) €4, #es. Ee i the laboratory frame. Note that the response in the co-moving frame is free of magneto-electric coupling
(&, = 0). The vertical dashed line marks the transition between the subluminal and superluminal regimes.

not a “fixed point” of the Lorentz transformation, different
from the materials A and B. In fact, the effective material
parameters in the lab frame can be readily found with the
help of Eq. (7) using the substitution vy — Vg = ——=

[ 1
gef,L”ef,L

For waves polarized in the yoz plane the effective response
is determined by:

Eef = €. 1= w/e) (U/CO)Z
e ef,L1 _ (U/Ud’ef)z’
2
1-(v/¢
Het = Hygy (v/a)

1- (U/Ud,ef)z’

_1- (Co/Ud,ef)2 cv

- 1- (U/Ud,ef)2 CS

with ¢, = v4. The parameter &, determines the effective
magneto-electric tensor E= —£,X %1 in the laboratory
frame. In the previous discussion, it is implicit that ¢, = c,
but the above formula remains valid for an arbitrary value
of ¢y = vy.

Figure 3bi and bii depict the effective parameters of
the 1D spacetime crystal in the co-moving and laboratory
frames as a function of the modulation speed. Again, it is
assumed that the geometry of the photonic crystal in the
co-moving frame is independent of v. As seen in Figure 3bii,

Eer , (12)

the effective parameters in the laboratory frame depend on

the modulation speed v due to 4 /! €L ., ¢ # 1. In particular,
the magneto-electric parameter &, diverges and switches
sign for v = vy < ¢, consistent with Eq. (12). The effec-
tive permittivity and permeability €., p¢ exhibit a simi-
lar behavior, so that all the effective parameters are reso-
nant within the subluminal range. This resonance marks
the transition between the bi-directional and the unidirec-
tional propagation regimes, already discussed in the first
example.

It is important to underline that the previous analy-
sis can be readily generalized to the homogenization of
2D and 3D isorefractive spacetime crystals. In fact, for
any effective medium model developed in the co-moving
frame (e.g., relying on standard mixing formulas such as the
Maxwell-Garnett formula, or others), the corresponding
effective parameters in the laboratory frame can be readily
determined with the help of Eq. (12).

3 Comparison of Galilean
and Lorentz transformations

In recent works, the response of spacetime crystals was
studied with a Galilean transformation of coordinates,
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such that r' =r—vt and t' =t eg, [21, 23]. The key
property of the Galilean transformation is that it preserves
the structure of the Maxwell’s equations so that in the
co-moving frame coordinates one has V' XE = —9,B/,
V! xH' = +0,D/, similar to the Maxwell’s equations in the
laboratory frame V X E = —0,B, V X H = +9,D. The fields
in the co-moving frame are linked by bianisotropic con-
stitutive relations that are time-independent (Eq. (5) with
Cy = ).

The Galilean transformation is rather convenient from
a computational standpoint as it does not mix the time
and space coordinates. In particular, the geometry of the
problem isidentical in the laboratory and co-moving frames
due to the absence of the Lorentz-Fitzgerald length contrac-
tion. Furthermore, the Galilean transformation is particu-
larly useful in the superluminal range, where the Lorentz
transformation breaks down and the y-factor becomes
purely imaginary. Evidently, the fields associated with the
Galilean transformation [defined by Eq. (3) with ¢, = o0]
are deprived of having an immediate physical meaning,
and should be simply regarded as auxiliary fields that are
introduced to find the physical fields in the laboratory
frame.

More generally, it is possible to study the electrody-
namics of a travelling-wave spacetime crystal using any
of the Lorentz transformations defined by Eq. (2). While
the fields, the constitutive relations, the band diagrams,
etc., in the co-moving frame typically depend on the con-
sidered c,, the corresponding quantities in the laboratory
frame are independent of c,, if the inverse transformation
is correctly applied. The fields in the co-moving frame coin-
cide with the physical fields in the corresponding inertial
frame only when ¢, = c. A relativistic Lorentz transforma-
tion with ¢, = vy is particularly useful in the case of isore-
fractive (Minkowskian) spacetime crystals as it leads to sim-
ple observer-independent isotropic constitutive relations,
different from the Galilean transformation which leads to
a bianisotropic response.

It is less obvious if the spacetime crystal homogeniza-
tion via a Galilean transformation, as presented in Refs. [21,
23], necessarily agrees with the homogenization achieved
through a relativistic transformation. The objective of the
rest of this section is to show that indeed the two types of
transformations yield identical effective parameters in the
laboratory frame. The following analysis is not restricted to
isorefractive materials.

The homogenization methodology follows the same
steps as in Section 2.5 (see Refs. [21, 23] for more details).
First, using a Galilean or a Lorentz transformation we
switch to a co-moving frame where the material parameters
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are independent of time. For stratified crystals the effec-
tive parameters in the co-moving frame are determined
by the spatial average of the co-moving frame parame-
ters [21, 23]. Finally, the response in the laboratory frame
is determined using an inverse Galilean or Lorentz trans-
formation. Different from Section 2, in the following the
geometry of the crystal is fixed in the laboratory frame,
rather than in the Lorentz co-moving frame. Thus, the thick-
ness of the material layers is now fixed in the laboratory
frame.

Applying the outlined procedure to a bi-layer crystal
formed by dielectric slabs A and B with the same thickness
(Figure 1b), one finds that with a Lorentz transformation
(Eq. (5) with ¢y, = ¢) the effective parameters in the co-
moving frame are:

2
P _ vyl €p £g
5ef,L—<1 Cz)z<1_n2v2+1_nzvz>’
A c2

B 2
2
o v)\1 Ha Hz
= (-0 e )
¢ cj2\1-n% 1-n%
, _lv( n—1 N né—l) 13b)
efL ~ 9 ~ 9 12 P
2e\1-mg 1-mg

! !
where Eqep Mepr

ability in the Lorentz co-moving frame, respectively, &

are the effective permittivity and perme-
/
ef L

is the moving medium parameter such that é_éf =-— é f’L)? X
1L, n= \/ﬁ (i = A, B) are the refractive indices of the
layers A and B. Remarkably, the effective parameters in
Eq. (13) do not depend on the Lorentz factor y. When n, =
ng =1 the above formula reduces to Eq. (11) and there
is no magneto-electric coupling in the co-moving frame
(€l =0

On the other hand, using a Galilean transformation
(Eq. (5) with ¢, = o0) one finds that the corresponding effec-
tive parameters are:

e —1< Er 4 %8 )
efG T 9 2 2 2t )
1 n 1 Ny

/ 1 Ha Hp
Pt = ( oot rral L (14a)
2 :l—rl.AC*2 :l_n.BC*2
10 n2 n
éém=< bt —2 ) (14b)
5 20 20
Ze\1-ni% 1-n2%

Clearly, the effective parameters in the two co-moving
frames are different. Curiously, the effective permittiv-
. de P .
ity and permeability Eqppo Mgy, 1N the Lorentz co-moving
frame can be written in terms of the parameters in

the Galilean co-moving frame as /., = <1 - ”—z)e’ and

c2 ef,G
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H, (L = <1 - ’g)ué (o 1t is relevant to note that in the
Galilean framework the magneto-electric coupling param-
eter & tG does not vanish for isorefractive crystals.

Using either Eq. (13) combined with ¢, = ¢ or Eq. (14)
combined with ¢, = oo, one can calculate the effective
parameters in laboratory frame with Eqgs. (3b) and (4b).
Importantly, it turns out that the effective parameters in the
laboratory frame are independent of ¢, i.e., are indepen-
dentif one uses a Lorentz or a Galilean transformation. They
can be written explicitly as:

2
_eateg—epgp(HptHp) G

Eof =
) 2_%(£A+£B)(MA+/"B)%§

>

2

<

p _ Ha py = papg(€n +Ep)

£ =

‘ 2_%(£A+£B)(MA+/4B)

£ _ v (8A_£B)(MA_”B)

o7 2cg_ 1 [N
2~ (ea+ep)(Hatmp)

c2

For an isorefractive system, vg =1/+/extta = 1/+/€gpp,
the above formulas reduce to Eq. (12).

) (15a)

2| %ol

C

(15b)

—=v=0.lc =v=0.3c
N

F. R. Prudéncio and M. G. Silveirinha: Minkowskian isorefractive spacetime crystals = 3015

To illustrate the discussion, we represent in Figure 4a,
the dispersion diagram of a bi-layer spacetime crystal in the
laboratory frame and in the Galilean and Lorentz co-moving
frames for the modulation speeds v = 0.1c and v = 0.3c.
The dispersion diagram is calculated using the formalism
of the Appendix. As seen, the dispersion diagrams in the
co-moving Lorentz and Galilean frames do not coincide.
However, when the inverse Doppler shift is applied to the
diagrams one obtains a consistent result, so that the disper-
sion in the laboratory frame is independent of the transfor-
mation, as it should be.

Figure 4b represents the effective parameters of the
same spacetime crystal calculated using Egs. (13) and (14) as
a function of the modulation speed. For large modulation
speeds, there is an evident difference between the effective
parameters in the Galilean and Lorentz co-moving frames
(see Figure 4bi and bii). In both co-moving frames, the
effective parameters diverge at the luminal transitions v =
¢/n, and v = ¢/ng. In contrast, in the laboratory frame the
effective parameters diverge inside the transluminal region
(c/ny, < v <c/np).
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Figure 4: Comparison between the dispersion diagrams and effective parameters in the Lorentz and Galilean co-moving frames. (a) Dispersion
diagrams of a spacetime crystal (Figure 1b) formed by two isotropic dielectric layers with parameters e, = 4, y, =1.5and e = 2, yg =1.2.The
dispersion diagrams are calculated for the modulation speeds v = 0.1¢ (blue lines) and v = 0.3c (black lines) in the (ai) Galilean co-moving frame, (aii)
Lorentz co-moving frame, and (aiii) in the laboratory frame. (b) Effective parameters of the spacetime crystal as a function of the modulation speed.
(bi) Permittivity and permeability in the Galilean and Lorentz co-moving frames, (bii) magneto-electric coupling parameter in the Galilean and Lorentz
co-moving frames, (biii) effective parameters in the laboratory frame. The shaded region in the plots represents the transluminal region

(¢/n, < v < c/ng) that separates the subluminal and superluminal regimes.
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4 Conclusions

In summary, we introduced the concept of Minkowskian
isorefractive spacetime crystals, as time-variant systems
described by constitutive relations that are observer inde-
pendent. It was shown that ideal Minkowskian spacetime
crystals with an instantaneous response and vy = ¢ can
replicate exactly the response of a moving dielectric pho-
tonic crystal for any frequency of operation. The velocity of
the equivalent moving crystal is identical to the modulation
speed. In particular, the band diagram of a Minkowskian
crystal may be calculated with standard numerical meth-
ods and a relativistic Doppler transformation. In addi-
tion, the synthetic Fresnel drag can be rigorously charac-
terized with the relativistic velocity-addition addition for-
mula. More generally, it was shown that the more practical
class of isorefractive spacetime crystals with vy =¢, <c¢
has a mathematical structure rather similar to that of
Minkowskian crystals, albeit they are not exact analogues of
physical moving systems. Thereby, such crystals can be ana-
lyzed and studied using essentially the same mathematical
tools. We applied the theory to one-dimensional and two-
dimensional isorefractive crystals, showing that it greatly
simplifies the analysis and the understanding of the phys-
ical response of such systems. Furthermore, we discussed
the impact of using relativistic and non-relativistic trans-
formation of coordinates in the analysis of travelling-wave
spacetime crystals. It was highlighted that relativistic and
non-relativistic transformations predict exactly the same
results for the band diagrams and effective response in the
laboratory frame. We believe that isorefractive spacetime
crystals provide an ideal platform to mimic physical motion
across a wide frequency range.
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Appendix: Band structure
in the Lorentz and Galilean
co-moving frames

In this Appendix, we briefly explain how to calculate the
band structure of a generic stratified spacetime crystal in
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the Galilean and Lorentz co-moving frames. We consider
transverse electromagnetic waves propagating along the x’-
direction. Following Ref. [23], the Maxwell’s equations in the
Galilean or Lorentz co-moving frames can be rewritten in a
4 X 4 matrix form as:

d Ei) R <Ei)
— =-iwe6-M, -
dx’ (Hi H',
0 0 -1
G=< e ] ) and =( ) (A2)
_I 02><2 1 0

T T
/ / / / / /
Here, B = (E, E/) and H, = (H, H) are the
transverse fields in the relevant co-moving frame. The

primed material matrix in the co-moving frame M’l is
defined by [23]

(A1)

with

M,l = I:LELZUG =+ MJ_] . [14><4 + UG - Ml]_l, (A3a)

0
where ¢, = c or ¢, = oo for the Lorentz and Galilean cases,
respectively. In the above, M, is the transverse material
matrix in the laboratory frame, defined in terms of the
permittivity and permeability [23]:

M, = <50512x2 0, ; )
05,5 Moty
Following Ref. [23], for a two-phase crystal with layers
A and B of identical thickness (half-lattice constant, a’/2)

the dispersion @’ versus k/ in the co-moving frame is deter-
mined by

! Al
det(exp (_iwza G- Ml,B)

'a’' Sl ot
oexp<—iw2a G- Mj_’A) — el 14><4> =0, (Ad)

(A3b)

where Mj_,i is the (transverse) material matrix for layer
i = A, B and exp(...) stands for the exponential of a
matrix. Note that the lattice constant in the co-moving
frame is related to the lattice constant in the laboratory
frame as a’ = ya. The dispersion w versus k, in the labora-
tory frame can be found using the Doppler transformation
(8.
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