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Abstract: Recent studies have shown that low-symmetry
conductors under static electric bias offer a pathway to real-
ize chiral gain, where the non-Hermitian optical response
of the material is controlled by the spin angular momen-
tum of the wave. In this work, we uncover the topological
nature of chiral gain and demonstrate how a static elec-
tric bias induces topological bandgaps that support uni-
directional edge states at the material boundaries. In our
system, these topological edge states consistently exhibit
dissipative properties. However, we show that, by oper-
ating outside the topological gap, the chiral gain can be
leveraged to engineer boundary-confined lasing modes with
orbital angular momentum locked to the orientation of the
applied electric field. Our results open new possibilities for
loss-compensated photonic waveguides, enabling advanced
functionalities such as unidirectional, lossless edge-wave
propagation and the generation of structured light with
intrinsic orbital angular momentum.

Keywords: non-Hermitian systems; topological materials;
chiral gain media; non-Hermitian electro-optic effect; Berry
dipole materials; optical gain

1 Introduction

Topological metamaterials have revolutionized our under-
standing of material properties across diverse fields, rang-
ing from condensed matter physics to photonics [1]-[9], by
introducing robust and resilient states that are immune to
local perturbations and to the influence of defects [10]-[13].
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In nonreciprocal photonic platforms, topological phases are
characterized by an integer number (the Chern number),
which is a topological invariant insensitive to weak pertur-
bations of the system’s Hamiltonian, ensuring robustness in
wave propagation and protection against disorder-induced
scattering. The topological classification of materials was
initially developed for Hermitian systems. More recently, it
was shown that non-Hermitian systems [14]-[26] — such as
those exhibiting material absorption or material gain — can
also display topological properties. Additionally, studies of
the dispersive nature of nonreciprocal photonic materials
have uncovered situations where traditional topological
methods break down and the Chern topology becomes ill-
defined [27], [28]. The Chern topological numbers are typi-
cally calculated using topological band theory. Alternatively,
the gap Chern number can be directly obtained from an
integral of the photonic Green’s function over a contour
in the complex-frequency plane that contains the relevant
band gap, avoiding the need for calculating the complete
photonic band-structure [9], [26]-[30].

Nontrivial Chern insulators require a broken time-
reversal symmetry, characteristic of nonreciprocal photonic
platforms. The simplest way to break time reversibility is
by incorporating into the system magneto-optic materials
(e.g., ferrites and iron garnets) biased with a static mag-
netic field [31], [32]. However, this approach requires bulky
external biasing circuits. In recent years, several methods
to achieve magnetless nonreciprocal responses have been
studied [33]-[45]. However, there are still no truly compet-
itive alternatives to the traditional magnetic bias solution,
particularly in the infrared and optical domains.

In a recent work [46], inspired by semiconductor
physics, it was demonstrated that the combination of mate-
rial nonlinearities with a static electric bias results in highly
nonreciprocal and non-Hermitian electromagnetic behav-
iors in low-symmetry materials. This approach may enable
the realization of bulk material responses qualitatively sim-
ilar to those observed in transistor devices but distributed
in space. Furthermore, a specific pathway to engineer these
transistor-like responses was recently introduced, relying
on anon-Hermitian electro-optic effect (NHEO) rooted in the
Berry curvature dipole [47], [48]. The Berry curvature dipole
is associated with a dipolar pattern of the electronic Berry
curvature in the vicinity of the Fermi surface [49]-[51]. The

8 Open Access. © 2025 the author(s), published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0 International License.


https://doi.org/10.1515/nanoph-2024-0681
mailto:filipa.prudencio@lx.it.pt
https://orcid.org/0000-0002-7073-0987
mailto:mario.silveirinha@tecnico.ulisboa.pt

3992 = F.R.Prudéncioand M. G. Silveirinha: Topological chiral-gain

electronic Berry curvature originates an “anomalous” term
in the velocity of the Bloch electrons [49], [51], which leads to
anonlinear coupling between the external electric field and
the quasi-momentum of the Bloch electrons. This nonlinear
mechanism underpins the NHEO effect [52].

Importantly, the presence of a significant Berry curva-
ture dipole necessitates the inversion symmetry breaking
and is only possible in metallic systems where electronic
bands are partially filled. This contrasts with insulating
systems where an electric bias fails to induce a drift cur-
rent crucial for unlocking non-Hermitian gain responses.
Applying a static electric bias modifies the optical conduc-
tivity, breaking electromagnetic reciprocity and producing
a non-Hermitian chiral-gain response [47], [48]. In fact, one
of the most remarkable features of the NHEO effect is that
the active or dissipative nature of the material response is
dependent on the spin-angular momentum of the electro-
magnetic wave, which is related to the handedness of the
polarization curve. For example, for waves polarized with a
certain handedness the response may be active (exhibiting
optical gain), while the opposite handedness results in a dis-
sipative response. Theoretical studies based on first princi-
ples functional density theory suggest that two-dimensional
(2D) conductive materials, such as strained twisted bilayer
graphene, or three-dimensional systems like trigonal tel-
lurium, may serve as suitable candidates for achieving non-
reciprocal and non-Hermitian transistor-like distributed
responses with chiral-gain [47], [48]. Furthermore, theoret-
ical and experimental studies have shown that applying
an electric bias to natural trigonal tellurium, with the bias
aligned along the trigonal axis, results in a gyrotropic nonre-
ciprocal response [48], [53], which manifests in the so-called
“kinetic” Faraday effect [54], [55]. Consequently, trigonal
tellurium, and more generally low-symmetry metallic-like
materials with a large Berry curvature dipole hold signifi-
cant potential for realizing electrically biased electromag-
netic isolators and inducing pronounced optical dichroism
[48].

Inspired by these recent developments, here we
explore the topological properties of chiral gain media engi-
neered through the NHEO effect. In particular, we calculate
the topological phases of Berry dipole materials, such as
natural trigonal tellurium, using Green’s function methods.
Our approach fully accounts for the material’s intrinsic
dispersion, dissipation mechanisms due to electron colli-
sions, and the effects of an applied electric bias. Additionally,
we characterize the dispersion of unidirectional edge-states
propagating at interfaces between the chiral gain material
and a trivial insulator. Finally, we demonstrate the potential
of Berry dipole materials to engineer lasing modes with
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intrinsic orbital angular momentum, strictly locked to the
orientation of the applied electric bias.

This article is organized as follows. In Section 2, we
briefly review the NHEO effect and the electro-optical
response of generic low-symmetry conductive systems, with
a focus on materials from the 32 point group, such as trigo-
nal tellurium. We calculate the complex band structure of
the bulk modes and examine the stability of the material
as a function of the electric bias strength. In Section 3, we
investigate the topological phases of Berry dipole materials,
demonstrating that a nontrivial bias opens a topological
bandgap. Furthermore, we characterize the unidirectional
edge-states that propagate at interfaces between the Berry
dipole material and a trivial insulator. In Section 4, we char-
acterize the lasing modes of a cavity formed by the Berry
dipole material enclosed by metallic walls. We demonstrate
that it is possible to engineer lasing modes confined to the
cavity walls, with the propagation direction determined by
the electric bias orientation. Finally, Section 5 summarizes
the main findings of this work.

2 Non-Hermitian linear
electro-optic effect

In this Section, we study electro-optic effects in low-
symmetry metallic-type materials. As outlined in the Intro-
duction, a static electric bias can modify the optical response
of materials with a nontrivial Berry curvature dipole. This
effect arises due to the so-called anomalous velocity of Bloch
electrons which depends on the geometry of the electronic
bands and on the electric field [49], [51]. As reviewed in
Appendix A, the electron transport in low-symmetry metal-
lic materials is governed by a (dimensionless) tensor D,
whose structure is dictated by the material’s symmetry
group.

For simplicity, here we focus on materials belonging to
the 32 point group, e.g., trigonal tellurium [53]. Tellurium
(Te) is a nonmagnetic chiral semiconductor that crystallizes
in two mirror-image structures with space groups P3,21
and P3,21 [53]. The basic unit cell comprises three atoms
arranged along a helical chain that spirals clockwise for the
space group P3,21 and counterclockwise for the space group
P3,21, with these chains forming a hexagonal lattice. The
Berry curvature dipole tensor for Te and other materials
belonging to the 32 point group is of the form [48], [53]:

DO 0
D=|o D 0 )
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Figure 1: Sketch of the bias circuit and of the geometry of an edge-type
waveguide. (a) Berry dipole material biased with a static electric field £,
aligned with the z direction. (b) Interface between the Berry dipole
material (y > 0) and a metal (y < 0).

Throughout the article, we assume that the trigonal axis
is aligned with the z-direction and that the static electric bias
is applied along the trigonal axis, E, = E,Z (see Figure 1a).
In these conditions, the optical response of the material has
the following gyrotropic-type structure [48]:

gy —iggg 0
E=|+iega € 0 V)
0 0 £p

The diagonal terms (e;,) determine the response of the
material without the electric-bias. For simplicity, we neglect
anisotropic effects and natural optical activity, which may
occur in low-symmetry materials. On the other hand,
the non-diagonal terms (eg,) represent the electro-optic
response and arise due to the static bias. The two terms can
be written explicitly as:

). 3

__1 w? _Fa)c<2 iw+T
In the above, w,, is the plasma frequency and I" is the

£p = —, £po = =
b oo+l 7 o \I' P+ae?

. s 3 =
collision frequency. Furthermore, ®, = — ;zwz (DT . EO> =
07" ®p

2w.Z is an equivalent oriented cyclotron frequency gov-
erned by the Berry dipole tensor. The scalar w, is given
by w, = EOEWDEO’ with g, the permittivity of vacuum, c
the speed of light and 7 the reduced Planck constant [48].
The magnetic response of the material is assumed trivial
(1 = pylsys). It is worth to underline that the electrically
induced gyrotropic optical response of tellurium was pre-
viously experimentally verified in Refs. [54], [55]. For tel-
lurium, both w, and I lie in the terahertz range.

The permittivity component e, comprises two distinct
contributions: one arising from conservative interactions
(the first term in brackets in Eq. (3)), while the other stems
from a non-Hermitian electrooptic response characterized
by its non-conservative nature (second term in brackets)
[48]. In tellurium, both terms contribute to the gyrotropic
nonreciprocal response.
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2.1 Band structure and bulk stability

In this article, we focus on the propagation in the plane per-
pendicular to the trigonal axis of the material (xoy plane).
The plane wave modes supported by the material are decou-
pled into transverse electric (TE) waves, with E, # 0, and
transverse magnetic (TM) waves, with H, # 0. Evidently,
only the TM waves (E = E, X + Eyi), H=H,z and0/0z = 0)
are sensitive to the electrically induced gyrotropy. There-
fore, our analysis is centered on this case. The disper-
sion of these waves is governed by the characteristic
equation [9]:

K= 5ef<%>z,

@

being k = kX + k9 the wave vector, k-k=k* =kl + K}
and £, = (€2 — €2,) /£p.

To evaluate the impact of the electric bias on the
material’s band structure and the stability of its optical
response, we next examine the projected band structure
for wave propagation in the xoy plane. The projected band
structure represents the complex eigenfrequencies of the
bulk modes for real-valued wave vectors. These eigenfre-
quencies are determined by solving Eq. (4) with respect to
o=0o+iv".

In the first example, in Figure 2a we plot the pro-
jected band structure for the case where there is no bias
(w. = 0) corresponding to a material described by a dis-
sipative Drude metal, with " = O.Sa)p. Due to the dissipa-
tion effects, the complex spectrum is completely confined
in the lower-half frequency plane (w” < 0). Note that we
represent both the positive (@’ > 0) and negative (@’ < 0)
parts of the frequency spectrum, which are linked by the
particle-hole symmetry w — —@*. Additionally, a quasi-
static branch of modes appears along the imaginary axis
(@' =0).

In Figure 2b and c, we illustrate the impact of the
bias on the band structure of the material, for a weak and
strong bias, respectively. The bias induces the opening of
a band gap, as indicated by the two vertical pink-shaded
strips. Specifically, the bias separates the original positive-
frequency branch of the Drude model into two distinct com-
ponents. In the limit of a weak bias, w, — 0 the two branches
become the standard transverse and longitudinal bands of
the unbiased plasma. The limiting points of each branch are
marked in the dispersion curves with blue dots (k = 0) and
black dots (k — o0). Note that for a trivial bias (Figure 2a),
some of the blue and black dots coincide because the longi-
tudinal plasmons have a dispersion independent of k. The
topological charge of the band gap will be characterized in
the next section.
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Figure 2: Projected band structure of the Berry-dipole material under the influence of an applied static electric field. The plots show a parametric
representation of the complex-frequencies w = @’ + i@’ as a function of the real-valued wave vector in the xoy plane. The collision frequency is
I' = 0.5w,. The black dots represent the limiting points for k — oo, while the blue dots represent the limiting points for k = 0. (a) . = 0 (without
the applied static electric field). (b) w. = 0.1, (€) @, = @, ~ 0.5, The shaded vertical strip represents the relevant band gap, with gap Chern

number —1.

Next, we investigate the conditions required to ensure
a stable bulk response for wave propagation in the xoy
plane. The material response is stable when the natural
modes are in the lower-half of the complex frequency plane
® = @' + iw"'. We employ an approach similar to that used
in Ref. [48], which analyzed the stability for propagation
along the trigonal axis.

Specifically, we note that at the instability thresh-
old, @y, there must be an eigenmode with real valued
frequency @ and real-valued wave vector k. In other
words, the band structure must “touch” the real-frequency
axis. Thereby from Eq. (4), it follows that Im{e (@)} = 0.

Solving this equation with respect to @, we find that:

)
91“20)12) + (80)12) - GFZ)a)Z — 4o

6 2 _ 0 2\ 202 2 4
cop+<F Za)p)a)a) +a)pa)

)

o ()| =

The above formula gives the required bias strength so
that the dispersion diagram intersects the real-frequency
axis at frequency w. The instability threshold ey, is found
by minimizing Eq. (5) with respect to w. Differentiating
Eq. (5) with respect to w and setting the result to zero, one
finds that:

2 4
9a)p pr

W = W = 2 2

The frequency wy,, gives the lasing frequency of the
bulk material at the instability threshold. Figure 3a repre-
sents the bias strength (Eq. (5)) required to have an inter-
section at the frequency o. The minimum of the plot occurs
at the lasing frequency wy,. The plot assumes I' = 0.5w,,.
For relatively small I'/w,, the lasing frequency is roughly

D5 R Op\/ g + 4%%’ > 212w, Thus, the optical gain always
arises near a frequency where the material behaves as a
dielectric (Re{ep } > 0).

Evidently, the minimum of @, occurs for w.y =

|coC (@) ) |- Substituting Eq. (6) into (5), we find that:
2 2 4 3 2 2
o —w 4a)é—pr+3F +<4wp+3pr>,/a)%+2F
oth = 320} + 2472 + 18T '

@)

The material response is stable provided | | < @, g,
It is clear from the previous equation that for small I'/w,,

1 6 2 8 44 2 6
+ F\/181“ @ + 160 + 5T o} + 5612,

(6)

the equivalent cyclotron frequency at the instability thresh-
old is @,y =~ 0.5w,. As shown in Figure 3b, this esti-
mate remains quite accurate even for fairly large values
of I'/wy,.

Figure 3c shows the projected band diagram of the
material, for the cases of a stable bulk response (|a)c| =
0.5w, ), at the instability threshold (|w,| = @ g), and for
an unstable response (|@,| = 1.5e,,), for the normalized
collision frequency I' = 0.5w,,. As seen, the response is sta-
ble for |@,| < ., and the dispersion diagram crosses the
real frequency axis nearby the lasing frequency w,,, (orange
points).

2.2 Non-Hermitian response

For non-conservative materials, it is useful to decom-
pose the permittivity tensor as £ = €’ + i€/, where €’ =
(€+€")/2 and €’ = (€ —€")/Qi) are both Hermitian
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Figure 3: Study of the stability of the optical response. (a) Bias strength |, | required to have a crossing at the real frequency e (Eq. (5)). The collision
frequency isT" = 0.5w,,. The black dot marks the lasing frequency @, for |, | = ., (Eq. (6)). (b) Cyclotron frequency at the stability threshold

as a function of the collision frequency I'. (c) Projected band structure for a material with I" = 0.5w, and (i) @, = +0.5@y,, (i) ©. = @, and (iii)
. = +1.5w,,. The orange points mark the lasing frequency wy,, at the instability threshold. (d) Eigenvalues of the non-Hermitian part of the material

response £” = (€ —&") /(2i), for w, = 0, w, = 0.25w,, and w_ = 0.75w,,.

tensors. The tensor £’ governs the conservative part of
the material response and determines the isofrequency
contours of the bulk modes. In contrast, £” describes the
power dissipation in the material per unit of volume,
given by p; = %weoE* -¢” -E. In conventional systems,
the light-matter interactions are invariably dissipative,
meaning that py > 0. In this case, the tensor £’ must be
positive definite, with strictly positive eigenvalues. How-
ever, in systems with optical gain, the power p, can be
negative because the material can supply energy to the
wave.

A straightforward analysis shows that, for the optical
response defined by Egs. (2) and (3), the eigenvalues of the
tensor €” take the form:

e = Fa’% + Tow, " _ F(UIZ) _ oo,
o+ Po+od o+ Do+od

®)

The corresponding eigenvectors are the two circular
polarizations &, = % (X+1iy)ande_ = 7 (X — ). There
is also an additional eigenvector & ~ Z, corresponding to an
electric field oriented along the z-axis, but it is omitted here
as we focus on TM waves, where the electric field is confined
to the xoy plane.

As seen from Eq. (8), in the absence of the static electric
bias (w. = 0), the two eigenvalues are coincident and pos-

itive (blue line in Figure 3d), typical of a passive response.

As usual, the dissipation is rooted in the collisions of free-
electrons with the ionic lattice.

Interestingly, under a nontrivial static bias (w, # 0),
the eigenvalues €'/, €” acquire an additional contribution.
This corresponds to the second terms in Eq. (8), which
arise from the linear electrooptic effect, and have oppo-
site signs. Thereby, as the static bias strength increases,
one of the circular polarizations experiences greater dis-
sipation, while the opposite-handed circular polarization
experiences reduced dissipation (see Figure 3d, case @, =
0.25w;). Remarkably, for a strong enough bias one of the
eigenvalues can become negative, corresponding to a sit-
uation where the material can experience gain. This is
illustrated in Figure 3d, for w, = 0.75w,. In this case, one
of the eigenvalues (¢””) becomes negative (dashed black
curve) while the other one (¢)) remains positive (solid black
curve). This means that one of the circular polarizations
(é,) originates dissipation, while the circular polarization
with opposite handedness (é_) originates gain. This effect
defines the material as a chiral gain medium. It is relevant to
note that when the static bias is flipped, so that o, becomes
negative, the eigenpolarizations that activate the gain and
dissipation are interchanged. It is important to emphasize
that eigenpolarizations &, are intrinsic properties of the
bulk material and bias, independent of the specific elec-
tromagnetic field distribution, how it is generated, or the
direction of propagation. Excitations or material geome-
tries that favor fields with circular polarizations lead to the
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strongest non-Hermitian effects, such as enhanced gain (or
dissipation) in the case of &_(e, ).

It is useful to introduce the spin angular momentum
of the electric field, defined as 6 = i(E X E*) / |E|? [56]. The
spin angular momentum is controlled by the handedness of
the polarization curve. The spin angular momentum of the
e, eigenfunctions is ¢ = +2.

The part of the dissipated power p, associated with the
non-Hermitian linear electrooptic effect can be written in
terms of ¢ as:

ol .

1 2 . _
—ia)£0|E| Q, -6, with Q, = —mz.

9

Paro =

We refer to the dimensionless vector €, as the “gain
vector”. The formula above indicates that gain (or dissipa-
tive) interactions occur when the spin angular momentum
of the wave is parallel (or anti-parallel) to the gain vector.
This result generalizes the findings reported in Ref. [57] for
dispersionless systems.

From Eq. (8), it is evident that for a chiral-chain config-
uration, where the eigenvalues ¢/, €”” have opposite signs,
the bias strength must satisfy |w, | > w}z) /w within a certain
frequency range. This condition is fully compatible with
the requirement for bulk stability (|, | < @), because for
large frequencies wg /o can be arbitrarily small.

3 Topological properties
of the chiral gain medium

In this section, we compute the topological invariants of the
Berry dipole material with chiral gain, and characterize the
corresponding topological edge states.

3.1 Topological charge

The spectrum of a system with a continuous translational
symmetry is parameterized by a wave vector that “resides”
on a plane. As a result, continuous systems without intrinsic
periodicity generally lack a well-defined topological classi-
fication [9]. However, it has been shown that the response
of such systems can always be regularized by introducing
a high-spatial frequency cutoff, which suppresses nonrecip-
rocal effects at short wavelengths (k — oo) [9]. Therefore,
since the Berry dipole material is nonreciprocal, its regular-
ized response can be associated with nontrivial topological
phases.

The simplest way to account for material dispersion
and non-Hermitian effects is to formulate the electromag-
netic problem in a manner that explicitly incorporates the
relevant physical degrees of freedom responsible for the
dispersive response. In Appendix A, this is done for our
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system using a phenomenological transport equation that
effectively describes how the material’s free electrons are
influenced by the external electric field and by the anoma-
lous velocity term arising from the geometry of the elec-
tronic bands via the Berry dipole. This approach reduces the
spectral problem to the canonical form L, - Q = %Q, where
Qisastate vector defined in Appendix A and L, is the matrix
operator in Eq. (A5).

The topological charge of a band gap can be
expressed in terms of the system Green’s function
G = i(Lk - %1) 1) through an integral in the complex
plane, taken over a line within the band gap that runs from
Dgap — 100 10 Wy, + 100 [26]-[30]. Here, w,,, represents a
frequency within the gap. The relevant gap in our system
is shaded in pink in Figure 2b and c, and takes the form
Dgap, < O < Ogap y With 0y = /@02 — (F/Z)Z.Another
low-frequency gap is visible in the figure, but this gap is
closed in the presence of a finite wave vector cutoff and,
therefore, holds no topological significance (not shown).

Using the Green’s function approach, we have deter-
mined that the high-frequency band gap is topological, char-
acterized by the gap Chern number:

C

wap = — 58N (. ) = —sgn(E,D). (10)

Thus, the sign of the topological charge is strictly tied to the
sign of the product of the Berry dipole and to the orienta-
tion of the electric bias. By reversing the orientation of the
electric bias, a topological phase transition can be triggered,
causing the Chern number to reverse its sign.

3.2 Topological edge-states

In Hermitian systems, the “bulk-edge correspondence”
establishes a precise link between the gap Chern numbers
of two topological materials and the net number of
unidirectional edge states supported by a material
interface [10]-[13]. In non-Hermitian systems, most
notably in systems with gain, it has been shown that this
correspondence may break down due to a phenomenon
known as the “non-Hermitian skin effect” [19]-[22].
This effect occurs when the bulk spectrum undergoes a
dramatic shift as the system transitions from periodic
boundary conditions to “opaque” boundaries, commonly
referred to as “open boundaries” in electronic systems.
In systems exhibiting the non-Hermitian skin effect, bulk
states tend to be exponentially localized at the boundary.
To our knowledge, the non-Hermitian skin effect only
occurs in systems with gain, with the bulk spectrum of
the relevant operator spanning both the lower and upper
halves of the frequency plane [23], [24]. In particular,
for systems with a spectrum confined to the lower-half
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frequency plane, the bulk-edge correspondence may
remain valid.

To investigate the correlation between the gap Chern
number and the emergence of topological edge states, we
characterized the dispersion of boundary modes when the
chiral-gain medium (region y > 0) is paired with a metal
with permittivity e, (region y < 0), as shown in Figure 1b.
The dispersion equation of the TM-polarized edge modes is
described by [9]:

2 2
ﬂ}’m + epy = epok,-
Em

(11

Here, k, is the propagation constant of the edge state,
€p, Egp are the diagonal and anti-diagonal elements of the
permittivity tensor of the Berry dipole material (Eq. (3)),

7=k -elt) o=\ —ea()

are the attenuation constants of the Berry dipole
material and metal, respectively, along the y-axis, and
Eer = (€, — €50) /€n-

For simplicity, in this section, we consider the metal
as a perfect electric conductor (PEC), corresponding to
&g, = —oo. In this case, the edge-state dispersion equation
simplifies to ey = eok,. Squaring both sides, some alge-
bra reveals that the solutions of this equation must also

and

satisfy €y, ( % )2 = k)z(. However, the reverse is not true; some
solutions of the simplified equation do not satisfy the origi-
nal dispersion. Interestingly, since €, is independent of the
bias in our problem, we find that the edge-state dispersion
is also independent of !

Figure 4a represents a parametric plot of the complex
eigenfrequencies o’ + iw” of the edge-states as a function
of k, real-valued. This dispersion models an edge waveg-
uide that is closed on itself in the form of a loop. When
. > 0, the solutions with Re{w} > 0 are linked to k, > 0,

(@)

——Bulk = Edge-states
0.1

=——Bulk = Edge-states
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indicating that the edge modes are unidirectional and prop-
agate along the +x-axis. The edge state has a finite lifetime
(Im{w} < 0) because of the material absorption. As shown
in Figure 4a, the edge states dispersion is gapless (green
curve) and connects the two bulk bands, in accordance with
the bulk-edge correspondence. Moreover, the propagation
direction for the edge state (along +x) is also consistent with
the sign of the gap Chern number (C,,, = —1), as predicted
by the bulk edge correspondence for Hermitian systems [13].
Note that, similar to the bulk case, there exists a branch
of static-like edge-state solutions confined to the imaginary
axis.

A few observations are in order. First, for simplicity,
we neglect the effect of the high-frequency spatial cutoff in
the calculation of the edge states. This could be accounted
for using an approach similar to that described in Ref. [12],
which involves additional boundary conditions at the PEC
interface, specifically the vanishing of the electric current
density j defined in Appendix A. The second observation
pertains to the limit w. — 0. As mentioned, the edge-state
dispersion is independent of bias strength but depends on
the sign of w,.. For positive (negative) @, allowed edge states
with Re{w} > 0 exhibit k, > 0 (k, < 0), implying a discon-
tinuous transition at w, = 0. This behavior arises because
the linearized model of the material response assumes a
static bias much stronger than the dynamical signal [48],
making the model ill-defined in the limit @, — 0. A final
observation is that, since the edge states for a PEC interface
are insensitive to the bias strength, it follows that even if
the bulk material is unstable, the dispersion of the topo-
logical edge state always lies in the lower-half frequency
plane. Thus, for this configuration, it is impossible to exploit
the gain properties of the Berry dipole material to induce
amplifying unidirectional edge states.

(bll) 0'0273ulk —Edge-svtz?tes‘ ,
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Figure 4: Complex dispersion of the edge-states (green and cyan lines) at the interface between the chiral-gain medium and a trivial medium (metal).
The chiral gain medium is characterized by I' = 0.5w,,. The black triangles mark the short-wavelength solutions (k, — +00) obtained with the quasi-
static approximation. The black arrows indicate the direction of increasing |k, | along each branch of the edge-state dispersion curve. The purple lines
represent the bulk modes. (a) Interface between a chiral gain medium with . = 0.5w,, and a PEC. (bi) Interface between a chiral gain medium with
o, = 0.50, and a low-loss metal with plasma frequency w,,, = 8w,,. (bii) Close-up of the dispersion of the edge-states depicted in panel (bi).

In all the panels, for @’ > 0, the green lines are associated with edge states with a positive k,, whereas the cyan lines are associated with edge states

with a negative k.
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4 Boundary-confined lasing modes

In the following, we explore the potential of using the Berry
dipole medium to realize boundary-confined lasing modes.
The idea is to leverage the chiral-gain properties of the
medium to excite amplifying edge states propagating along
its boundary, while maintaining a stable bulk response
(see Figure 5a). As discussed in Sect. IIILB, this cannot be
achieved by enclosing the material with a PEC wall. Next, we
demonstrate that a plasmonic boundary can achieve this,
enabling the excitation of unidirectional edge states with
gain.

4.1 Gain momentum locking

It is well-known that surface plasmons in metals possess
an intrinsic spin determined by their direction of propa-
gation [56], [58], [59]. Specifically, the direction of the spin
angular momentum ¢ of the surface plasmons is deter-
mined by the cross product of the momentum (k) and the
attenuation direction (y). This property, known as spin-
momentum locking [56], [58], [59], implies that plasmons
propagating in the counter-clockwise direction with respect
to the z-axis have their spin angular momentum pointing
along the positive z axis, while those propagating clockwise
direction have their spin angular momentum oriented along
the —z axis.

Interestingly, as discussed in Section 2.2, in a chiral gain
medium, one spin state is associated with material dissipa-
tion (Figure 5bi), whereas the opposite spin state leads to
material gain (Figure 5bii). It was recently shown in Ref.
[57] that the interplay between spin-momentum locking and
chiral gain results in gain-momentum locking: plasmons
with a propagation direction such that the spin angular
momentum is parallel to the gain vector Q, are amplified
within the medium (Figure 5bi), while those with opposite
propagation direction experience absorption (Figure 5bii).
The analysis in Ref. [57] relies on a simplified, nondisper-
sive permittivity model for the chiral-gain medium. Building

(a) E
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on these findings, we now explore how, in more realistic
dispersive systems, the interplay between spin and gain can
be leveraged to engineer edge states with amplification.

It is important to note that for w, > 0, the gap Chern
number is negative, meaning that if there is a single topo-
logical state, the bulk-edge correspondence dictates it must
propagate in the counterclockwise direction within the cav-
ity geometry [13]. However, from Eq. (9), we see that for
. > 0, the gain vector is directed along the -z axis, i.e,,
anti-parallel to the plasmon spin angular momentum. Thus,
in this system, the topological state is necessarily associ-
ated with dissipation. This offers a new perspective on the
findings in Section 3.2 and further explains why the single
topological state supported by the chiral-gain medium and
a PEC wall is unaffected by optical gain.

4.2 Unidirectional edge-states with optical
gain

From the previous subsection, it is clear that for the consid-
ered dispersion model of the Berry dipole material, optical
gain can only be observed in a spectral region outside the
topological bandgap. Additionally, the cavity walls cannot
be perfectly conducting. Taking this into account, we now
assume the cavity walls follow a dispersive Drude model
described by the permittivity e, (w) =1 — ? /w* where
@y, is the plasma frequency of the metal. For simplicity, we
assume that the dissipation in the cavity walls is negligible
in this analysis.

Furthermore, similar to previous examples, we assume
that the Berry dipole material is characterized by I' =
0.50,, and we suppose that the bias strength is slightly
below the instability threshold w4 ~ 0.5w, to maximize
the gain effect. It should be noted that for the case of p-doped
tellurium this bias strength is about 100 times larger than
what has been considered in experiments [48]. This problem
can be alleviated by using n-doped tellurium or other engi-
neered material with a much stronger Berry dipole [48]. The
metal is characterized by o, = 8cw,,.

(bii) °
lﬁf € + Afx
1
L2
Q
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Figure 5: Illustration of gain-momentum locking. (a) Chiral-gain medium cavity with metallic (plasmonic) walls. (bi) A surface plasmon propagating
along the clockwise direction around the cavity walls has an intrinsic spin angular momentum ¢ directed along the -z axis. For w. > 0, ¢ is parallel to
the gain vector Q, resulting in optical gain. (bii) Similar to (bi) but for a surface plasmon propagating in the counterclockwise direction. In this case,

6 is anti-parallel to the gain vector Q_, resulting in increased dissipation.

w?
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The calculated edge-state dispersion (computed from
Eq. (11) is depicted in Figure 4bi (green and cyan lines).
It corresponds to a parametric plot of the complex eigen-
frequencies @’ +iw” as a function of k, real-valued.
The purple lines in Figure 4bi represent the bulk dis-
persion, which is totally confined to the lower-half fre-
quency plane. As seen, now there are two branches
of edge states with @’ > 0. The black triangles mark
the short-wavelength solutions (k, — +o0), which are
obtained using a quasi-static formalism described in
Appendix B.

Similar, to the example of Section 3.2, one of the edge-
state branches (colored in green) represents the gapless
topological modes. In agreement with previous consider-
ations, it is fully contained in the lower-half frequency
plane. Remarkably, in the frequency window 3w, < @’ <
Ga)p, there is an additional branch (colored in cyan) that
is partially contained in the upper-half frequency plane
(w" > 0)resulting in optical gain (see a zoom in Figure 4bii).
In agreement with the gain-momentum locking principle,
this branch of edge states is associated with plasmons that
propagate in the clockwise direction (—x axis for the inter-
face y = 0 in Figure 1b). In the frequency window, 3w, <
o' < 6w, one of the eigenvalues of €” is negative (see
Figure 3d), confirming that the Berry dipole material has a
chiral gain response.

It should be noted that amplifying edge states can
only be excited when the Berry dipole material is paired
with a material with negative permittivity, as considered
here. Indeed, as discussed in Section 2.1, the Berry dipole
material exhibits gain only when Re{ep} > 0, and, as is

(ai) 04F

02}
ya
2 oo}
c
_02 L
~0.4h . . . .
-4 -3 ) —1 0
x@, /c
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well known, the excitation of edge states requires that
Re{e JRe{ep} < 0.

Remarkably, the orbital angular momentum of the las-
ing mode is intrinsically linked to the orientation of the
bias electric field. This makes the proposed system use-
ful for generating structured light with inherent orbital
angular momentum. Moreover, reversing the direction of
the bias electric field E,, causes the lasing mode to prop-
agate in the opposite direction. Lasing relying on bulk
modes in Berry dipole materials was previously discussed in
Refs. [60], [61].

To further illustrate these ideas, we calculated the fields
associated with the edge states for the interface y = 0
(Figure 1b). The magnetic field complex amplitude is given

by:

ey, y>0,

H,(x,y) = Hye" 12)

etmy y<O0.

Figure 6b represents a time snapshot of the field profile of
the two edge states with w/w,, = 4, for the same material
parameters as in Figure 4b. Here, we assume open boundary
conditions so that w is taken as real-valued, whereas the
propagation constant of the edge state k, is complex-valued.
Consistent with the chiral gain response of the material and
with the gain momentum locking, plasmons that propagate
along the —x direction have a spin that matches the eigenpo-
larization that activates the gain resulting in amplification
(Figure 6bi). On the other hand, plasmons that propagate
along the +x direction activate dissipation in the material
resulting in absorption (Figure 6bii).

(aii) 0.4F
02f
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Figure 6: Density plot of the magnetic field associated with the boundary modes for the interface y = 0. The black arrows indicate the direction of
propagation of the edge state. (ai) Plasmon propagating in the —x direction resulting in amplification. (aii) Plasmon propagating in the +x direction

resulting in attenuation.
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5 Conclusions

In this work, we uncovered the topological origin of the non-
Hermitian linear electro-optic effect in systems with chiral-
gain. For metallic-type materials from the 32 point group,
such as trigonal tellurium, we demonstrated that applying
an electric bias induces an equivalent cyclotron frequency,
which opens a topological bandgap. Using a Green’s func-
tion approach, we numerically calculated the gap Chern
numbers, confirming the system’s nontrivial topology.

We also investigated the dispersion of edge states at the
interface between the Berry dipole material and a metal.
Interestingly, our findings show that topological edge states
in this system invariably exhibit dissipative properties — a
characteristic that appears intrinsic to the model. However,
by operating outside the topological gap, we were able to
engineer unidirectional edge states with optical gain while
maintaining stable bulk mode conditions. These edge states
hold potential for designing lasing modes confined to mate-
rial boundaries, producing structured light with intrinsic
orbital angular momentum.

While in our system, a nontrivial topology is always
associated with dissipative edge states, this raises an intrigu-
ing question: Is this property universal, or could other dis-
persive models, particularly those based on materials from
different symmetry groups, generate topological edge states
that take advantage of chiral gain without the same dissipa-
tion? This opens interesting avenues for future research.

In terms of practical implementation, the required bias
strength to achieve boundary-confined lasing modes may be
challenging for tellurium. However, other engineered mate-
rials with stronger Berry dipole effects could significantly
reduce the necessary bias. Furthermore, for the excitation
of edge modes, the bias only needs to be applied along
the footprint of surface plasmons, which is essentially a
line — making this approach more feasible in real-world
applications. If available, these systems could enable the
development of loss-compensated waveguides for terahertz
and far-infrared frequencies, potentially offering transfor-
mative advances in photonics.
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Appendix A: Transport equation
for Berry dipole materials

To characterize the topology of the dispersive optical mate-
rial, it is useful to employ a Schrédinger-type dynamical
evolution. This is mostly convenient done using the phe-
nomenological model introduced in Ref. [52]. Specifically, it
has been shown that the electrodynamics of a Berry dipole
material can be effectively described by the following trans-
port equation:

d—p+Fp=qE,

it (Ala)

Here, g = —e is the electron charge, I' is the collision fre-
quency, p represents the (dynamical) “quasi-momentum” of
the free-electrons and E is the (dynamical) electrical field.
Unlike in conventional materials, where the electron veloc-
ity v is dictated by the curvature of the energy dispersion
through the effective mass m*, in low-symmetry crystals, an
additional velocity contribution arises from the interaction
between the Bloch electrons and the crystal lattice. This
interaction, known as the anomalous velocity, is propor-
tional to the electric field [49], [51]. The linearized effective
velocity of the Bloch electrons can be described by [52]:

v=%+%<z-po>xE+ %(E-p)xEo. (Alb)

The last two terms represent the linearized anomalous
velocity contribution. Here, E; is the static-electric bias,
P, = qE, /I is the quasi-momentum for the static case, and
the tensor E is proportional to the Berry curvature dipole,
E = %BT, where n is the free-electron density.

This transport equation is coupled to the Maxwell’s
equations in the usual manner:

VXE=—u,0H, VXH=j+¢g,0,E, (Alc)
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where j = nqv is the current density. The electrodynamics
predicted by this model is fully consistent with Ref. [48].

Let us now consider a two-dimensional scenario
(0/0z = 0), with H = H,Z and the remaining fields in the
xoy plane (E = E X+ Eyj), etc.). Furthermore, we suppose
that the electric bias is along the z direction (E, = E;2)
and that the Berry curvature dipole is as in Eq. (1). Then,
a straightforward analysis shows that the electric current
density can be expressed as:

Jx = 50w}2)ﬁx - C‘)cgol—‘i)y —20.£,Ey,
, (A2)

Jy = @&l Dy + £y,

Py + 20.&(E,,

e

thzrDEO) a)lzj = % and i)x = px/q and IN)y =
py/q. Plugging the above formulas into the Maxwell’s
equations (Eq. (Alc)) and using the transport equation (Ala),
one finds that the system dynamics reduces to:

where @, =

L.Q=%w&. (A3)
0 2iw,
1+ KK
—2iw, 0
L, = 1+ k’z/kIZnaX

—ck, ck,
i 0
0 i

Appendix B: Quasi-static
approximation

In this Appendix, we derive a quasi-static approximation for
the dispersion of the edge states at an interface between
the Berry dipole material and a metal. It is well-known
that quasi-static approximations apply in scenarios where
the retardation effects are negligible, allowing the speed
of light to be considered effectively infinite (¢ — o0). These
approximations can be particularly accurate in processes
dominated by near-field interactions and evanescent waves.

In the quasi-static limit the electric and magnetic fields
are effectively decoupled, thereby simplifying Maxwell’s
equations. In such a context, the electric field can be written
as a gradient of an electric potential ¢:

E=-V¢. (B1)
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T
with Q = [EX E, nyH, Py f)y] a state vector formed

by the electromagnetic fields and the normalized
quasi-momentum distribution, with #, the vacuum

impedance. In the above, L represents the differential
operator:

0 20, €0, —colzJ o J
20, 0 -, -ol -
L=il cd, -—co, 0 0 0 | (A9)
1 0 0 I 0
0 1 0 0 I

where 0, and d,, are the spatial derivatives.

The above theory can be easily modified to take into
account the effect of a high-spatial frequency cutoff [9].
Specifically, this can be done by replacing the electric cur-
rent density in the Maxwell’s equations (Eq. (Alc)) as j —
(1-v?/ kfnax)_lj where k,,,, determines the spatial cut-off.
This leads to following operator in the spectral domain (V —
ik):

2

—ky 1 +;<;7liz 1+ i;;c/l;z
-/ Fmax / max
cky 1 —lgocl; _;wpz
+ K/ 1+ KK (A5)
0 0 0
0 —i 0
0 0 —i

From Gauss’ law V - D = 0 and from the constitutive
relation D = g,¢ - E, it follows that the electric potential is
constrained as:

V-(e-Vo)=0. (B2)
We use the following ansatz for the electric potential,
o leTTs Yy >0,
b = Py’ Y (B3)

e+}’m,QS y, y < 0’

to describe a surface wave propagating at the interface (y =
0) between the Berry dipole material and a metal (Figure 1b).
Here, y g, ¥ m,qs T€Present the attenuation constants along
the direction perpendicular to the interface, and k, is the
propagation constant of the surface wave (plasmons). Note
that the ansatz ensures that the electric potential is contin-
uous at the interface.
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In order to determine yqs, ¥y s, We note that from (6]
Gauss’ law (Eq. (B2)), the dispersion of a plane wave in a bulk

region (¢ ~ e*e’»Y) reduces to: -

k-g-k=0. (B4)
[8]

As the anti-symmetric part of the permittivity does not
contribute to the scalar k- € - k, it can be readily shown
using the above equation that both attenuation constants
are identical and independent of the permittivity tensor: [9]

Yos = Ymgs = K- (B5) 0]

Enforcing now the continuity of the normal component  [11]
of the electric displacement vectory - D(0%) =y - D(07), we
obtain the quasi-static dispersion of the edge modes:

(2]
— epok, — eplky| = €Ky (B6)
EO™x D| xl ml x| [13]
Plugging the expressions of &,¢&gg, €y into the above
equation, one obtains the following cubic equation: [14]
w? 2
@ + 0*(sw, + 1) + o ——L — P ingwc
I
- leIZn =0, (B7)
(el
with s = sgn(k, ).
The quasi-static solutions of Eq. (B7) give the asymptotic
(7]

values of the edge states dispersion when k, — oo, specif-
ically, wosedge = liMy o @exace (Ky). The quasi-static solu-
tions are marked in Figure 4 with black triangular points, [1g]
and match precisely the solutions of the exact dispersion
(Eq. (11)) in the short-wavelength limit. There are a total of

six solutions because the parameter s can take the values (9]
s = +1. In the PEC limit (w,, — o0), the only finite quasi-
static solution is w = —iI". [20]
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