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Abstract: Recent studies have shown that low-symmetry

conductors under static electric bias offer a pathway to real-

ize chiral gain, where the non-Hermitian optical response

of the material is controlled by the spin angular momen-

tum of the wave. In this work, we uncover the topological

nature of chiral gain and demonstrate how a static elec-

tric bias induces topological bandgaps that support uni-

directional edge states at the material boundaries. In our

system, these topological edge states consistently exhibit

dissipative properties. However, we show that, by oper-

ating outside the topological gap, the chiral gain can be

leveraged to engineer boundary-confined lasingmodeswith

orbital angular momentum locked to the orientation of the

applied electric field. Our results open new possibilities for

loss-compensated photonic waveguides, enabling advanced

functionalities such as unidirectional, lossless edge-wave

propagation and the generation of structured light with

intrinsic orbital angular momentum.

Keywords: non-Hermitian systems; topological materials;

chiral gain media; non-Hermitian electro-optic effect; Berry

dipole materials; optical gain

1 Introduction

Topological metamaterials have revolutionized our under-

standing of material properties across diverse fields, rang-

ing from condensed matter physics to photonics [1]–[9], by

introducing robust and resilient states that are immune to

local perturbations and to the influence of defects [10]–[13].
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In nonreciprocal photonic platforms, topological phases are

characterized by an integer number (the Chern number),

which is a topological invariant insensitive to weak pertur-

bations of the system’s Hamiltonian, ensuring robustness in

wave propagation and protection against disorder-induced

scattering. The topological classification of materials was

initially developed for Hermitian systems. More recently, it

was shown that non-Hermitian systems [14]–[26] – such as

those exhibiting material absorption or material gain – can

also display topological properties. Additionally, studies of

the dispersive nature of nonreciprocal photonic materials

have uncovered situations where traditional topological

methods break down and the Chern topology becomes ill-

defined [27], [28]. The Chern topological numbers are typi-

cally calculated using topological band theory. Alternatively,

the gap Chern number can be directly obtained from an

integral of the photonic Green’s function over a contour

in the complex-frequency plane that contains the relevant

band gap, avoiding the need for calculating the complete

photonic band-structure [9], [26]–[30].

Nontrivial Chern insulators require a broken time-

reversal symmetry, characteristic of nonreciprocal photonic

platforms. The simplest way to break time reversibility is

by incorporating into the system magneto-optic materials

(e.g., ferrites and iron garnets) biased with a static mag-

netic field [31], [32]. However, this approach requires bulky

external biasing circuits. In recent years, several methods

to achieve magnetless nonreciprocal responses have been

studied [33]–[45]. However, there are still no truly compet-

itive alternatives to the traditional magnetic bias solution,

particularly in the infrared and optical domains.

In a recent work [46], inspired by semiconductor

physics, it was demonstrated that the combination of mate-

rial nonlinearities with a static electric bias results in highly

nonreciprocal and non-Hermitian electromagnetic behav-

iors in low-symmetry materials. This approach may enable

the realization of bulk material responses qualitatively sim-

ilar to those observed in transistor devices but distributed

in space. Furthermore, a specific pathway to engineer these

transistor-like responses was recently introduced, relying

on a non-Hermitian electro-optic effect (NHEO) rooted in the

Berry curvature dipole [47], [48]. The Berry curvature dipole

is associated with a dipolar pattern of the electronic Berry

curvature in the vicinity of the Fermi surface [49]–[51]. The
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electronic Berry curvature originates an “anomalous” term

in the velocity of the Bloch electrons [49], [51], which leads to

a nonlinear coupling between the external electric field and

the quasi-momentum of the Bloch electrons. This nonlinear

mechanism underpins the NHEO effect [52].

Importantly, the presence of a significant Berry curva-

ture dipole necessitates the inversion symmetry breaking

and is only possible in metallic systems where electronic

bands are partially filled. This contrasts with insulating

systems where an electric bias fails to induce a drift cur-

rent crucial for unlocking non-Hermitian gain responses.

Applying a static electric bias modifies the optical conduc-

tivity, breaking electromagnetic reciprocity and producing

a non-Hermitian chiral-gain response [47], [48]. In fact, one

of the most remarkable features of the NHEO effect is that

the active or dissipative nature of the material response is

dependent on the spin-angular momentum of the electro-

magnetic wave, which is related to the handedness of the

polarization curve. For example, for waves polarized with a

certain handedness the response may be active (exhibiting

optical gain), while the opposite handedness results in a dis-

sipative response. Theoretical studies based on first princi-

ples functional density theory suggest that two-dimensional

(2D) conductive materials, such as strained twisted bilayer

graphene, or three-dimensional systems like trigonal tel-

lurium, may serve as suitable candidates for achieving non-

reciprocal and non-Hermitian transistor-like distributed

responses with chiral-gain [47], [48]. Furthermore, theoret-

ical and experimental studies have shown that applying

an electric bias to natural trigonal tellurium, with the bias

aligned along the trigonal axis, results in a gyrotropic nonre-

ciprocal response [48], [53], whichmanifests in the so-called

“kinetic” Faraday effect [54], [55]. Consequently, trigonal

tellurium, and more generally low-symmetry metallic-like

materials with a large Berry curvature dipole hold signifi-

cant potential for realizing electrically biased electromag-

netic isolators and inducing pronounced optical dichroism

[48].

Inspired by these recent developments, here we

explore the topological properties of chiral gainmedia engi-

neered through the NHEO effect. In particular, we calculate

the topological phases of Berry dipole materials, such as

natural trigonal tellurium, using Green’s function methods.

Our approach fully accounts for the material’s intrinsic

dispersion, dissipation mechanisms due to electron colli-

sions, and the effects of an applied electric bias. Additionally,

we characterize the dispersion of unidirectional edge-states

propagating at interfaces between the chiral gain material

and a trivial insulator. Finally, we demonstrate the potential

of Berry dipole materials to engineer lasing modes with

intrinsic orbital angular momentum, strictly locked to the

orientation of the applied electric bias.

This article is organized as follows. In Section 2, we

briefly review the NHEO effect and the electro-optical

response of generic low-symmetry conductive systems,with

a focus on materials from the 32 point group, such as trigo-

nal tellurium. We calculate the complex band structure of

the bulk modes and examine the stability of the material

as a function of the electric bias strength. In Section 3, we

investigate the topological phases of Berry dipole materials,

demonstrating that a nontrivial bias opens a topological

bandgap. Furthermore, we characterize the unidirectional

edge-states that propagate at interfaces between the Berry

dipole material and a trivial insulator. In Section 4, we char-

acterize the lasing modes of a cavity formed by the Berry

dipole material enclosed by metallic walls. We demonstrate

that it is possible to engineer lasing modes confined to the

cavity walls, with the propagation direction determined by

the electric bias orientation. Finally, Section 5 summarizes

the main findings of this work.

2 Non-Hermitian linear

electro-optic effect

In this Section, we study electro-optic effects in low-

symmetry metallic-type materials. As outlined in the Intro-

duction, a static electric bias canmodify the optical response

of materials with a nontrivial Berry curvature dipole. This

effect arises due to the so-called anomalous velocity of Bloch

electrons which depends on the geometry of the electronic

bands and on the electric field [49], [51]. As reviewed in

Appendix A, the electron transport in low-symmetry metal-

lic materials is governed by a (dimensionless) tensor D,

whose structure is dictated by the material’s symmetry

group.

For simplicity, here we focus on materials belonging to

the 32 point group, e.g., trigonal tellurium [53]. Tellurium

(Te) is a nonmagnetic chiral semiconductor that crystallizes

in two mirror-image structures with space groups P3121

and P3221 [53]. The basic unit cell comprises three atoms

arranged along a helical chain that spirals clockwise for the

space group P3121 and counterclockwise for the space group

P3221, with these chains forming a hexagonal lattice. The

Berry curvature dipole tensor for Te and other materials

belonging to the 32 point group is of the form [48], [53]:

D =
⎛⎜⎜⎜⎝
D 0 0

0 D 0

0 0 −2D

⎞⎟⎟⎟⎠
. (1)
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Figure 1: Sketch of the bias circuit and of the geometry of an edge-type

waveguide. (a) Berry dipole material biased with a static electric field E0
aligned with the z direction. (b) Interface between the Berry dipole

material (y > 0) and a metal (y < 0).

Throughout the article,we assume that the trigonal axis

is alignedwith the z-direction and that the static electric bias

is applied along the trigonal axis, E0 = E0ẑ (see Figure 1a).

In these conditions, the optical response of the material has

the following gyrotropic-type structure [48]:

𝜀 =
⎛⎜⎜⎜⎝

𝜀D −i𝜀EO 0

+i𝜀EO 𝜀D 0

0 0 𝜀D

⎞⎟⎟⎟⎠
. (2)

The diagonal terms (𝜀D) determine the response of the

material without the electric-bias. For simplicity, we neglect

anisotropic effects and natural optical activity, which may

occur in low-symmetry materials. On the other hand,

the non-diagonal terms (𝜀EO) represent the electro-optic

response and arise due to the static bias. The two terms can

be written explicitly as:

𝜀D = 1− 1

𝜔

𝜔2
p

𝜔+ iΓ , 𝜀EO = Γ𝜔c

𝜔

(
2

Γ + i𝜔+ Γ
Γ2 +𝜔2

)
. (3)

In the above, 𝜔p is the plasma frequency and Γ is the

collision frequency. Furthermore,𝛚c = − e3

𝜀0ℏ
2𝜔2

p

(
DT ⋅ E0

)
=

2𝜔cẑ is an equivalent oriented cyclotron frequency gov-

erned by the Berry dipole tensor. The scalar 𝜔c is given

by 𝜔c = e3

𝜀0ℏ
2ΓDE0, with 𝜀0 the permittivity of vacuum, c

the speed of light and ℏ the reduced Planck constant [48].

The magnetic response of the material is assumed trivial

(𝜇 = 𝜇013×3). It is worth to underline that the electrically

induced gyrotropic optical response of tellurium was pre-

viously experimentally verified in Refs. [54], [55]. For tel-

lurium, both 𝜔p and Γ lie in the terahertz range.

The permittivity component 𝜀EO comprises two distinct

contributions: one arising from conservative interactions

(the first term in brackets in Eq. (3)), while the other stems

from a non-Hermitian electrooptic response characterized

by its non-conservative nature (second term in brackets)

[48]. In tellurium, both terms contribute to the gyrotropic

nonreciprocal response.

2.1 Band structure and bulk stability

In this article, we focus on the propagation in the plane per-

pendicular to the trigonal axis of the material (xoy plane).

The planewavemodes supported by thematerial are decou-

pled into transverse electric (TE) waves, with Ez ≠ 0, and

transverse magnetic (TM) waves, with Hz ≠ 0. Evidently,

only the TMwaves (E = Exx̂ + Eyŷ,H = Hzẑ, and 𝜕∕𝜕z = 0)

are sensitive to the electrically induced gyrotropy. There-

fore, our analysis is centered on this case. The disper-

sion of these waves is governed by the characteristic

equation [9]:

k
2 = 𝜀ef

(
𝜔

c

)2
, (4)

being k = kxx̂ + kyŷ the wave vector, k ⋅ k = k2 = k2
x
+ k2

y

and 𝜀ef =
(
𝜀2
D
− 𝜀2

EO

)
∕𝜀D.

To evaluate the impact of the electric bias on the

material’s band structure and the stability of its optical

response, we next examine the projected band structure

for wave propagation in the xoy plane. The projected band

structure represents the complex eigenfrequencies of the

bulk modes for real-valued wave vectors. These eigenfre-

quencies are determined by solving Eq. (4) with respect to

𝜔 = 𝜔′ + i𝜔
′′.

In the first example, in Figure 2a we plot the pro-

jected band structure for the case where there is no bias

(𝜔c = 0) corresponding to a material described by a dis-

sipative Drude metal, with Γ = 0.5𝜔p. Due to the dissipa-

tion effects, the complex spectrum is completely confined

in the lower-half frequency plane (𝜔′′ < 0). Note that we

represent both the positive (𝜔′ > 0) and negative (𝜔′ < 0)

parts of the frequency spectrum, which are linked by the

particle-hole symmetry 𝜔→ −𝜔∗. Additionally, a quasi-

static branch of modes appears along the imaginary axis

(𝜔′ = 0).

In Figure 2b and c, we illustrate the impact of the

bias on the band structure of the material, for a weak and

strong bias, respectively. The bias induces the opening of

a band gap, as indicated by the two vertical pink-shaded

strips. Specifically, the bias separates the original positive-

frequency branch of the Drudemodel into two distinct com-

ponents. In the limit of aweak bias,𝜔c → 0 the twobranches

become the standard transverse and longitudinal bands of

the unbiased plasma. The limiting points of each branch are

marked in the dispersion curves with blue dots (k = 0) and

black dots (k→∞). Note that for a trivial bias (Figure 2a),

some of the blue and black dots coincide because the longi-

tudinal plasmons have a dispersion independent of k. The

topological charge of the band gap will be characterized in

the next section.
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Figure 2: Projected band structure of the Berry-dipole material under the influence of an applied static electric field. The plots show a parametric

representation of the complex-frequencies𝜔 = 𝜔′ + i𝜔′′ as a function of the real-valued wave vector in the xoy plane. The collision frequency is

Γ = 0.5𝜔p. The black dots represent the limiting points for k→∞, while the blue dots represent the limiting points for k = 0. (a)𝜔c = 0 (without

the applied static electric field). (b)𝜔c = 0.1𝜔p, (c)𝜔c = 𝜔c,th ≈ 0.5𝜔p. The shaded vertical strip represents the relevant band gap, with gap Chern

number−1.

Next, we investigate the conditions required to ensure

a stable bulk response for wave propagation in the xoy

plane. The material response is stable when the natural

modes are in the lower-half of the complex frequency plane

𝜔 = 𝜔′ + i𝜔
′′. We employ an approach similar to that used

in Ref. [48], which analyzed the stability for propagation

along the trigonal axis.

Specifically, we note that at the instability thresh-

old, 𝜔c,th, there must be an eigenmode with real valued

frequency 𝜔 and real-valued wave vector k. In other

words, the band structure must “touch” the real-frequency

axis. Thereby from Eq. (4), it follows that Im{𝜀ef(𝜔)} = 0.

Solving this equation with respect to 𝜔c we find that:

||𝜔c(𝜔)
|| =

√√√√√√−
𝜔6
p +

(
Γ2 − 2𝜔2

p

)
𝜔2
p
𝜔2 +𝜔2

p
𝜔4

9Γ2
𝜔2
p
+
(
8𝜔2

p
− 6Γ2

)
𝜔2 − 4𝜔4

. (5)

The above formula gives the required bias strength so

that the dispersion diagram intersects the real-frequency

axis at frequency𝜔. The instability threshold𝜔c,th, is found

by minimizing Eq. (5) with respect to 𝜔. Differentiating

Eq. (5) with respect to 𝜔 and setting the result to zero, one

finds that:

𝜔 ≡ 𝜔las =

√
9𝜔2

p

2
+
2𝜔4

p

Γ2
+ 1

2Γ2

√
18Γ6

𝜔
2
p
+ 16𝜔8

p
+ 57Γ4

𝜔
4
p
+ 56Γ2

𝜔
6
p
. (6)

The frequency 𝜔las gives the lasing frequency of the

bulk material at the instability threshold. Figure 3a repre-

sents the bias strength (Eq. (5)) required to have an inter-

section at the frequency𝜔. The minimum of the plot occurs

at the lasing frequency 𝜔las. The plot assumes Γ = 0.5𝜔p.

For relatively small Γ∕𝜔p, the lasing frequency is roughly

𝜔las ≈ 𝜔p

√
9

2
+ 4𝜔2

p

Γ2 > 2.12𝜔p. Thus, the optical gain always

arises near a frequency where the material behaves as a

dielectric (Re{𝜀D} > 0).

Evidently, the minimum of 𝜔c occurs for 𝜔c,th =|||𝜔c

(
𝜔las

)|||. Substituting Eq. (6) into (5), we find that:

𝜔c,th = 𝜔p

√√√√√4𝜔4
p
− Γ2

𝜔2
p
+ 3Γ4 +

(
4𝜔3

p
+ 3Γ2

𝜔p

)√
𝜔2
p
+ 2Γ2

32𝜔4
p
+ 24Γ2

𝜔2
p
+ 18Γ4

.

(7)

The material response is stable provided ||𝜔c
|| < 𝜔c,th.

It is clear from the previous equation that for small Γ∕𝜔p,

the equivalent cyclotron frequency at the instability thresh-

old is 𝜔c,th ≃ 0.5𝜔p. As shown in Figure 3b, this esti-

mate remains quite accurate even for fairly large values

of Γ∕𝜔p.

Figure 3c shows the projected band diagram of the

material, for the cases of a stable bulk response (||𝜔c
|| =

0.5𝜔c,th), at the instability threshold (||𝜔c
|| = 𝜔c,th), and for

an unstable response (||𝜔c
|| = 1.5𝜔c,th), for the normalized

collision frequency Γ = 0.5𝜔p. As seen, the response is sta-

ble for ||𝜔c
|| ≤ 𝜔c,th and the dispersion diagram crosses the

real frequency axis nearby the lasing frequency𝜔las (orange

points).

2.2 Non-Hermitian response

For non-conservative materials, it is useful to decom-

pose the permittivity tensor as 𝜀 = 𝜀′ + i𝜀′′, where 𝜀′ =(
𝜀+ 𝜀†

)
∕2 and 𝜀′′ =

(
𝜀− 𝜀†

)
∕(2i) are both Hermitian
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Figure 3: Study of the stability of the optical response. (a) Bias strength ||𝜔c
|| required to have a crossing at the real frequency𝜔 (Eq. (5)). The collision

frequency is Γ = 0.5𝜔p. The black dot marks the lasing frequency𝜔las for
||𝜔c

|| = 𝜔c,th (Eq. (6)). (b) Cyclotron frequency at the stability threshold

as a function of the collision frequency Γ. (c) Projected band structure for a material with Γ = 0.5𝜔p and (i)𝜔c = ±0.5𝜔c,th, (ii)𝜔c = ±𝜔c,th, and (iii)

𝜔c = ±1.5𝜔c,th. The orange points mark the lasing frequency𝜔las at the instability threshold. (d) Eigenvalues of the non-Hermitian part of the material

response 𝜀′′ =
(
𝜀− 𝜀†

)
∕(2i), for𝜔c = 0,𝜔c = 0.25𝜔p, and𝜔c = 0.75𝜔p.

tensors. The tensor 𝜀′ governs the conservative part of

the material response and determines the isofrequency

contours of the bulk modes. In contrast, 𝜀′′ describes the

power dissipation in the material per unit of volume,

given by pd = 1

2
𝜔𝜀0E

∗ ⋅ 𝜀′′ ⋅ E. In conventional systems,

the light–matter interactions are invariably dissipative,

meaning that pd > 0. In this case, the tensor 𝜀′′ must be

positive definite, with strictly positive eigenvalues. How-

ever, in systems with optical gain, the power pd can be

negative because the material can supply energy to the

wave.

A straightforward analysis shows that, for the optical

response defined by Eqs. (2) and (3), the eigenvalues of the

tensor 𝜀′′ take the form:

𝜀
′′
+ =

Γ𝜔2
p

Γ2
𝜔+𝜔3

+ Γ𝜔𝜔c

Γ2
𝜔+𝜔3

, 𝜀
′′
− =

Γ𝜔2
p

Γ2
𝜔+𝜔3

− Γ𝜔𝜔c

Γ2
𝜔+𝜔3

.

(8)

The corresponding eigenvectors are the two circular

polarizations ê+ = 1√
2

(
x̂ + iŷ

)
and ê− = 1√

2

(
x̂ − iŷ

)
. There

is also an additional eigenvector ê ∼ ẑ, corresponding to an

electric field oriented along the z-axis, but it is omitted here

aswe focus on TMwaves, where the electric field is confined

to the xoy plane.

As seen from Eq. (8), in the absence of the static electric

bias (𝜔c = 0), the two eigenvalues are coincident and pos-

itive (blue line in Figure 3d), typical of a passive response.

As usual, the dissipation is rooted in the collisions of free-

electrons with the ionic lattice.

Interestingly, under a nontrivial static bias (𝜔c ≠ 0),

the eigenvalues 𝜀′′+, 𝜀
′′
− acquire an additional contribution.

This corresponds to the second terms in Eq. (8), which

arise from the linear electrooptic effect, and have oppo-

site signs. Thereby, as the static bias strength increases,

one of the circular polarizations experiences greater dis-

sipation, while the opposite-handed circular polarization

experiences reduced dissipation (see Figure 3d, case 𝜔c =
0.25𝜔p). Remarkably, for a strong enough bias one of the

eigenvalues can become negative, corresponding to a sit-

uation where the material can experience gain. This is

illustrated in Figure 3d, for 𝜔c = 0.75𝜔p. In this case, one

of the eigenvalues (𝜀′′−) becomes negative (dashed black

curve) while the other one (𝜀′′+) remains positive (solid black

curve). This means that one of the circular polarizations

(ê+) originates dissipation, while the circular polarization

with opposite handedness (ê−) originates gain. This effect

defines thematerial as a chiral gainmedium. It is relevant to

note that when the static bias is flipped, so that𝜔c becomes

negative, the eigenpolarizations that activate the gain and

dissipation are interchanged. It is important to emphasize

that eigenpolarizations ê± are intrinsic properties of the

bulk material and bias, independent of the specific elec-

tromagnetic field distribution, how it is generated, or the

direction of propagation. Excitations or material geome-

tries that favor fields with circular polarizations lead to the
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strongest non-Hermitian effects, such as enhanced gain (or

dissipation) in the case of ê−
(
ê+

)
.

It is useful to introduce the spin angular momentum

of the electric field, defined as 𝛔 = i
(
E × E

∗)∕|E|2 [56]. The
spin angular momentum is controlled by the handedness of

the polarization curve. The spin angular momentum of the

ê± eigenfunctions is 𝛔 = ±ẑ.

The part of the dissipated power pd associated with the

non-Hermitian linear electrooptic effect can be written in

terms of 𝛔 as:

pd,EO = − 1

2
𝜔𝜀0|E|2𝛀𝜔 ⋅ 𝛔, with 𝛀𝜔 = − 𝜔cΓ

Γ2 +𝜔2
ẑ. (9)

We refer to the dimensionless vector 𝛀𝜔 as the “gain

vector”. The formula above indicates that gain (or dissipa-

tive) interactions occur when the spin angular momentum

of the wave is parallel (or anti-parallel) to the gain vector.

This result generalizes the findings reported in Ref. [57] for

dispersionless systems.

From Eq. (8), it is evident that for a chiral-chain config-

uration, where the eigenvalues 𝜀′′+, 𝜀
′′
− have opposite signs,

the bias strength must satisfy ||𝜔c
|| > 𝜔2

p
∕𝜔within a certain

frequency range. This condition is fully compatible with

the requirement for bulk stability (||𝜔c
|| ≤ 𝜔c,th), because for

large frequencies 𝜔2
p
∕𝜔 can be arbitrarily small.

3 Topological properties

of the chiral gain medium

In this section, we compute the topological invariants of the

Berry dipole material with chiral gain, and characterize the

corresponding topological edge states.

3.1 Topological charge

The spectrum of a system with a continuous translational

symmetry is parameterized by a wave vector that “resides”

on a plane. As a result, continuous systemswithout intrinsic

periodicity generally lack a well-defined topological classi-

fication [9]. However, it has been shown that the response

of such systems can always be regularized by introducing

a high-spatial frequency cutoff, which suppresses nonrecip-

rocal effects at short wavelengths (k→∞) [9]. Therefore,

since the Berry dipole material is nonreciprocal, its regular-

ized response can be associated with nontrivial topological

phases.

The simplest way to account for material dispersion

and non-Hermitian effects is to formulate the electromag-

netic problem in a manner that explicitly incorporates the

relevant physical degrees of freedom responsible for the

dispersive response. In Appendix A, this is done for our

system using a phenomenological transport equation that

effectively describes how the material’s free electrons are

influenced by the external electric field and by the anoma-

lous velocity term arising from the geometry of the elec-

tronic bands via the Berry dipole. This approach reduces the

spectral problem to the canonical form L
k
⋅ Q = 𝜔

c
Q, where

Q is a state vector defined inAppendixA andL
k
is thematrix

operator in Eq. (A5).

The topological charge of a band gap can be

expressed in terms of the system Green’s function

(
k
= i

(
L
k
− 𝜔

c
1

)−1
) through an integral in the complex

plane, taken over a line within the band gap that runs from

𝜔gap − i∞ to 𝜔gap + i∞ [26]–[30]. Here, 𝜔gap represents a

frequency within the gap. The relevant gap in our system

is shaded in pink in Figure 2b and c, and takes the form

𝜔gap,L < 𝜔′ < 𝜔gap,H with𝜔gap,L =
√
𝜔2
p
−
(
Γ∕2

)2
. Another

low-frequency gap is visible in the figure, but this gap is

closed in the presence of a finite wave vector cutoff and,

therefore, holds no topological significance (not shown).

Using the Green’s function approach, we have deter-

mined that the high-frequency band gap is topological, char-

acterized by the gap Chern number:

Cgap = − sgn
(
𝜔c

)
= − sgn

(
E0D

)
. (10)

Thus, the sign of the topological charge is strictly tied to the

sign of the product of the Berry dipole and to the orienta-

tion of the electric bias. By reversing the orientation of the

electric bias, a topological phase transition can be triggered,

causing the Chern number to reverse its sign.

3.2 Topological edge-states

In Hermitian systems, the “bulk-edge correspondence”

establishes a precise link between the gap Chern numbers

of two topological materials and the net number of

unidirectional edge states supported by a material

interface [10]–[13]. In non-Hermitian systems, most

notably in systems with gain, it has been shown that this

correspondence may break down due to a phenomenon

known as the “non-Hermitian skin effect” [19]–[22].

This effect occurs when the bulk spectrum undergoes a

dramatic shift as the system transitions from periodic

boundary conditions to “opaque” boundaries, commonly

referred to as “open boundaries” in electronic systems.

In systems exhibiting the non-Hermitian skin effect, bulk

states tend to be exponentially localized at the boundary.

To our knowledge, the non-Hermitian skin effect only

occurs in systems with gain, with the bulk spectrum of

the relevant operator spanning both the lower and upper

halves of the frequency plane [23], [24]. In particular,

for systems with a spectrum confined to the lower-half
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frequency plane, the bulk-edge correspondence may

remain valid.

To investigate the correlation between the gap Chern

number and the emergence of topological edge states, we

characterized the dispersion of boundary modes when the

chiral-gain medium (region y > 0) is paired with a metal

with permittivity 𝜀m (region y < 0), as shown in Figure 1b.

The dispersion equation of the TM-polarized edge modes is

described by [9]:

𝜀2
D
− 𝜀2

EO

𝜀m
𝛾m + 𝜀D𝛾 = 𝜀EOkx . (11)

Here, kx is the propagation constant of the edge state,

𝜀D, 𝜀EO are the diagonal and anti-diagonal elements of the

permittivity tensor of the Berry dipole material (Eq. (3)),

𝛾 =
√
k2
x
− 𝜀ef

(
𝜔

c

)2
and 𝛾m =

√
k2
x
− 𝜀m

(
𝜔

c

)2
are the attenuation constants of the Berry dipole

material and metal, respectively, along the y-axis, and

𝜀ef =
(
𝜀2
D
− 𝜀2

EO

)
∕𝜀D.

For simplicity, in this section, we consider the metal

as a perfect electric conductor (PEC), corresponding to

𝜀m = −∞. In this case, the edge-state dispersion equation

simplifies to 𝜀D𝛾 = 𝜀EOkx . Squaring both sides, some alge-

bra reveals that the solutions of this equation must also

satisfy 𝜀D

(
𝜔

c

)2
= k2

x
. However, the reverse is not true; some

solutions of the simplified equation do not satisfy the origi-

nal dispersion. Interestingly, since 𝜀D is independent of the

bias in our problem, we find that the edge-state dispersion

is also independent of 𝜔c!

Figure 4a represents a parametric plot of the complex

eigenfrequencies 𝜔′ + i𝜔
′′ of the edge-states as a function

of kx real-valued. This dispersion models an edge waveg-

uide that is closed on itself in the form of a loop. When

𝜔c > 0, the solutions with Re{𝜔} > 0 are linked to kx > 0,

indicating that the edge modes are unidirectional and prop-

agate along the +x-axis. The edge state has a finite lifetime
(Im{𝜔} < 0) because of the material absorption. As shown

in Figure 4a, the edge states dispersion is gapless (green

curve) and connects the two bulk bands, in accordance with

the bulk-edge correspondence. Moreover, the propagation

direction for the edge state (along+x) is also consistent with
the sign of the gap Chern number (Cgap = −1), as predicted
by the bulk edge correspondence forHermitian systems [13].

Note that, similar to the bulk case, there exists a branch

of static-like edge-state solutions confined to the imaginary

axis.

A few observations are in order. First, for simplicity,

we neglect the effect of the high-frequency spatial cutoff in

the calculation of the edge states. This could be accounted

for using an approach similar to that described in Ref. [12],

which involves additional boundary conditions at the PEC

interface, specifically the vanishing of the electric current

density j defined in Appendix A. The second observation

pertains to the limit 𝜔c → 0. As mentioned, the edge-state

dispersion is independent of bias strength but depends on

the sign of𝜔c. For positive (negative)𝜔c, allowed edge states

with Re{𝜔} > 0 exhibit kx > 0 (kx < 0), implying a discon-

tinuous transition at 𝜔c = 0. This behavior arises because

the linearized model of the material response assumes a

static bias much stronger than the dynamical signal [48],

making the model ill-defined in the limit 𝜔c → 0. A final

observation is that, since the edge states for a PEC interface

are insensitive to the bias strength, it follows that even if

the bulk material is unstable, the dispersion of the topo-

logical edge state always lies in the lower-half frequency

plane. Thus, for this configuration, it is impossible to exploit

the gain properties of the Berry dipole material to induce

amplifying unidirectional edge states.

Figure 4: Complex dispersion of the edge-states (green and cyan lines) at the interface between the chiral-gain medium and a trivial medium (metal).

The chiral gain medium is characterized by Γ = 0.5𝜔p. The black triangles mark the short-wavelength solutions (kx →±∞) obtained with the quasi-

static approximation. The black arrows indicate the direction of increasing ||kx|| along each branch of the edge-state dispersion curve. The purple lines
represent the bulk modes. (a) Interface between a chiral gain medium with𝜔c = 0.5𝜔p and a PEC. (bi) Interface between a chiral gain medium with

𝜔c = 0.5𝜔p and a low-loss metal with plasma frequency𝜔m = 8𝜔p. (bii) Close-up of the dispersion of the edge-states depicted in panel (bi).

In all the panels, for𝜔′ > 0, the green lines are associated with edge states with a positive kx , whereas the cyan lines are associated with edge states

with a negative kx .
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4 Boundary-confined lasing modes

In the following, we explore the potential of using the Berry

dipole medium to realize boundary-confined lasing modes.

The idea is to leverage the chiral-gain properties of the

medium to excite amplifying edge states propagating along

its boundary, while maintaining a stable bulk response

(see Figure 5a). As discussed in Sect. IIII.B, this cannot be

achieved by enclosing thematerial with a PECwall. Next, we

demonstrate that a plasmonic boundary can achieve this,

enabling the excitation of unidirectional edge states with

gain.

4.1 Gain momentum locking

It is well-known that surface plasmons in metals possess

an intrinsic spin determined by their direction of propa-

gation [56], [58], [59]. Specifically, the direction of the spin

angular momentum 𝛔 of the surface plasmons is deter-

mined by the cross product of the momentum (k) and the

attenuation direction (𝛄). This property, known as spin-

momentum locking [56], [58], [59], implies that plasmons

propagating in the counter-clockwise direction with respect

to the z-axis have their spin angular momentum pointing

along the positive z axis, while those propagating clockwise

directionhave their spin angularmomentumoriented along

the –z axis.

Interestingly, as discussed in Section 2.2, in a chiral gain

medium, one spin state is associated with material dissipa-

tion (Figure 5bi), whereas the opposite spin state leads to

material gain (Figure 5bii). It was recently shown in Ref.

[57] that the interplay between spin-momentum locking and

chiral gain results in gain-momentum locking: plasmons

with a propagation direction such that the spin angular

momentum is parallel to the gain vector 𝛀𝜔 are amplified

within the medium (Figure 5bi), while those with opposite

propagation direction experience absorption (Figure 5bii).

The analysis in Ref. [57] relies on a simplified, nondisper-

sive permittivitymodel for the chiral-gainmedium. Building

on these findings, we now explore how, in more realistic

dispersive systems, the interplay between spin and gain can

be leveraged to engineer edge states with amplification.

It is important to note that for 𝜔c > 0, the gap Chern

number is negative, meaning that if there is a single topo-

logical state, the bulk-edge correspondence dictates it must

propagate in the counterclockwise direction within the cav-

ity geometry [13]. However, from Eq. (9), we see that for

𝜔c > 0, the gain vector is directed along the –z axis, i.e.,

anti-parallel to the plasmon spin angular momentum. Thus,

in this system, the topological state is necessarily associ-

ated with dissipation. This offers a new perspective on the

findings in Section 3.2 and further explains why the single

topological state supported by the chiral-gain medium and

a PEC wall is unaffected by optical gain.

4.2 Unidirectional edge-states with optical
gain

From the previous subsection, it is clear that for the consid-

ered dispersion model of the Berry dipole material, optical

gain can only be observed in a spectral region outside the

topological bandgap. Additionally, the cavity walls cannot

be perfectly conducting. Taking this into account, we now

assume the cavity walls follow a dispersive Drude model

described by the permittivity 𝜀m(𝜔) = 1−𝜔2
m
∕𝜔2 where

𝜔m is the plasma frequency of the metal. For simplicity, we

assume that the dissipation in the cavity walls is negligible

in this analysis.

Furthermore, similar to previous examples, we assume

that the Berry dipole material is characterized by Γ =
0.5𝜔p, and we suppose that the bias strength is slightly

below the instability threshold 𝜔c,th ≈ 0.5𝜔p to maximize

the gain effect. It should be noted that for the case of p-doped

tellurium this bias strength is about 100 times larger than

what has been considered in experiments [48]. This problem

can be alleviated by using n-doped tellurium or other engi-

neeredmaterial with amuch stronger Berry dipole [48]. The

metal is characterized by 𝜔m = 8𝜔p.

Figure 5: Illustration of gain-momentum locking. (a) Chiral-gain medium cavity with metallic (plasmonic) walls. (bi) A surface plasmon propagating

along the clockwise direction around the cavity walls has an intrinsic spin angular momentum 𝛔 directed along the –z axis. For𝜔c > 0, 𝛔 is parallel to
the gain vector𝛀𝜔 resulting in optical gain. (bii) Similar to (bi) but for a surface plasmon propagating in the counterclockwise direction. In this case,

𝛔 is anti-parallel to the gain vector𝛀𝜔, resulting in increased dissipation.
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The calculated edge-state dispersion (computed from

Eq. (11)) is depicted in Figure 4bi (green and cyan lines).

It corresponds to a parametric plot of the complex eigen-

frequencies 𝜔′ + i𝜔
′′ as a function of kx real-valued.

The purple lines in Figure 4bi represent the bulk dis-

persion, which is totally confined to the lower-half fre-

quency plane. As seen, now there are two branches

of edge states with 𝜔′ > 0. The black triangles mark

the short-wavelength solutions (kx → ±∞), which are

obtained using a quasi-static formalism described in

Appendix B.

Similar, to the example of Section 3.2, one of the edge-

state branches (colored in green) represents the gapless

topological modes. In agreement with previous consider-

ations, it is fully contained in the lower-half frequency

plane. Remarkably, in the frequency window 3𝜔p ≤ 𝜔′ ≤

6𝜔p, there is an additional branch (colored in cyan) that

is partially contained in the upper-half frequency plane

(𝜔′′ > 0) resulting in optical gain (see a zoom in Figure 4bii).

In agreement with the gain-momentum locking principle,

this branch of edge states is associated with plasmons that

propagate in the clockwise direction (–x axis for the inter-

face y = 0 in Figure 1b). In the frequency window, 3𝜔p ≤

𝜔′ ≤ 6𝜔p, one of the eigenvalues of 𝜀′′ is negative (see

Figure 3d), confirming that the Berry dipole material has a

chiral gain response.

It should be noted that amplifying edge states can

only be excited when the Berry dipole material is paired

with a material with negative permittivity, as considered

here. Indeed, as discussed in Section 2.1, the Berry dipole

material exhibits gain only when Re{𝜀D} > 0, and, as is

well known, the excitation of edge states requires that

Re{𝜀m}Re{𝜀D} < 0.

Remarkably, the orbital angular momentum of the las-

ing mode is intrinsically linked to the orientation of the

bias electric field. This makes the proposed system use-

ful for generating structured light with inherent orbital

angular momentum. Moreover, reversing the direction of

the bias electric field E0, causes the lasing mode to prop-

agate in the opposite direction. Lasing relying on bulk

modes in Berry dipolematerialswas previously discussed in

Refs. [60], [61].

To further illustrate these ideas, we calculated the fields

associated with the edge states for the interface y = 0

(Figure 1b). The magnetic field complex amplitude is given

by:

Hz

(
x, y

)
= H0e

ikxx

⎧⎪⎨⎪⎩
e
−𝛾 y

, y > 0,

e
+𝛾m y, y < 0.

(12)

Figure 6b represents a time snapshot of the field profile of

the two edge states with 𝜔∕𝜔p = 4, for the same material

parameters as in Figure 4b.Here,we assumeopenboundary

conditions so that 𝜔 is taken as real-valued, whereas the

propagation constant of the edge state kx is complex-valued.

Consistent with the chiral gain response of the material and

with the gain momentum locking, plasmons that propagate

along the –x direction have a spin thatmatches the eigenpo-

larization that activates the gain resulting in amplification

(Figure 6bi). On the other hand, plasmons that propagate

along the +x direction activate dissipation in the material

resulting in absorption (Figure 6bii).

Figure 6: Density plot of the magnetic field associated with the boundary modes for the interface y= 0. The black arrows indicate the direction of

propagation of the edge state. (ai) Plasmon propagating in the−x direction resulting in amplification. (aii) Plasmon propagating in the+x direction
resulting in attenuation.
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5 Conclusions

In thiswork, we uncovered the topological origin of the non-

Hermitian linear electro-optic effect in systems with chiral-

gain. For metallic-type materials from the 32 point group,

such as trigonal tellurium, we demonstrated that applying

an electric bias induces an equivalent cyclotron frequency,

which opens a topological bandgap. Using a Green’s func-

tion approach, we numerically calculated the gap Chern

numbers, confirming the system’s nontrivial topology.

We also investigated the dispersion of edge states at the

interface between the Berry dipole material and a metal.

Interestingly, our findings show that topological edge states

in this system invariably exhibit dissipative properties – a

characteristic that appears intrinsic to the model. However,

by operating outside the topological gap, we were able to

engineer unidirectional edge states with optical gain while

maintaining stable bulk mode conditions. These edge states

hold potential for designing lasing modes confined to mate-

rial boundaries, producing structured light with intrinsic

orbital angular momentum.

While in our system, a nontrivial topology is always

associatedwith dissipative edge states, this raises an intrigu-

ing question: Is this property universal, or could other dis-

persive models, particularly those based on materials from

different symmetry groups, generate topological edge states

that take advantage of chiral gain without the same dissipa-

tion? This opens interesting avenues for future research.

In terms of practical implementation, the required bias

strength to achieve boundary-confined lasingmodesmay be

challenging for tellurium. However, other engineered mate-

rials with stronger Berry dipole effects could significantly

reduce the necessary bias. Furthermore, for the excitation

of edge modes, the bias only needs to be applied along

the footprint of surface plasmons, which is essentially a

line – making this approach more feasible in real-world

applications. If available, these systems could enable the

development of loss-compensated waveguides for terahertz

and far-infrared frequencies, potentially offering transfor-

mative advances in photonics.
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Appendix A: Transport equation

for Berry dipole materials

To characterize the topology of the dispersive optical mate-

rial, it is useful to employ a Schrödinger-type dynamical

evolution. This is mostly convenient done using the phe-

nomenological model introduced in Ref. [52]. Specifically, it

has been shown that the electrodynamics of a Berry dipole

material can be effectively described by the following trans-

port equation:
dp

dt
+ Γp = qE, (A1a)

Here, q = −e is the electron charge, Γ is the collision fre-

quency, p represents the (dynamical) “quasi-momentum” of

the free-electrons and E is the (dynamical) electrical field.

Unlike in conventional materials, where the electron veloc-

ity v is dictated by the curvature of the energy dispersion

through the effectivemassm∗, in low-symmetry crystals, an

additional velocity contribution arises from the interaction

between the Bloch electrons and the crystal lattice. This

interaction, known as the anomalous velocity, is propor-

tional to the electric field [49], [51]. The linearized effective

velocity of the Bloch electrons can be described by [52]:

v = p

m∗ + 1

m∗

(
𝛇 ⋅ p0

)
× E+ 1

m∗

(
𝛇 ⋅ p

)
× E0. (A1b)

The last two terms represent the linearized anomalous

velocity contribution. Here, E0 is the static-electric bias,

p0 = qE0∕Γ is the quasi-momentum for the static case, and

the tensor 𝛇 is proportional to the Berry curvature dipole,
𝛇 = qm∗

nℏ2
D
T , where n is the free-electron density.

This transport equation is coupled to the Maxwell’s

equations in the usual manner:

∇× E = −𝜇0𝜕tH, ∇× H = j+ 𝜀0𝜕tE, (A1c)
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where j = nqv is the current density. The electrodynamics

predicted by this model is fully consistent with Ref. [48].

Let us now consider a two-dimensional scenario

(𝜕∕𝜕z = 0), with H = Hzẑ and the remaining fields in the

xoy plane (E = Exx̂ + Eyŷ, etc.). Furthermore, we suppose

that the electric bias is along the z direction (E0 = E0ẑ)

and that the Berry curvature dipole is as in Eq. (1). Then,

a straightforward analysis shows that the electric current

density can be expressed as:

jx = 𝜀0𝜔
2
p
p̃x −𝜔c𝜀0Γp̃y − 2𝜔c𝜀0Ey,

jy = 𝜔c𝜀0Γp̃x + 𝜀0𝜔
2
p
p̃y + 2𝜔c𝜀0Ex,

(A2)

where 𝜔c = e3

𝜀0ℏ
2ΓDE0, 𝜔

2
p
= e2n

𝜀0m
∗ and p̃x = px∕q and p̃y =

py∕q. Plugging the above formulas into the Maxwell’s

equations (Eq. (A1c)) and using the transport equation (A1a),

one finds that the system dynamics reduces to:

L ⋅ Q = 1

c
i𝜕tQ. (A3)

with Q =
[
Ex Ey 𝜂0Hz p̃x p̃y

]T
a state vector formed

by the electromagnetic fields and the normalized
quasi-momentum distribution, with 𝜂0 the vacuum

impedance. In the above, L represents the differential

operator:

L = i

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 2𝜔c c𝜕y −𝜔2
p

𝜔cΓ
−2𝜔c 0 −c𝜕x −𝜔cΓ −𝜔2

p

c𝜕y −c𝜕x 0 0 0

1 0 0 −Γ 0

0 1 0 0 −Γ

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, (A4)

where 𝜕x and 𝜕y are the spatial derivatives.

The above theory can be easily modified to take into

account the effect of a high-spatial frequency cutoff [9].

Specifically, this can be done by replacing the electric cur-

rent density in the Maxwell’s equations (Eq. (A1c)) as j→(
1−∇2∕k2

max

)−1
jwhere kmax determines the spatial cut-off.

This leads to following operator in the spectral domain (∇→

ik):

L
k
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
2i𝜔c

1+ k2∕k2
max

−cky
−i𝜔2

p

1+ k2∕k2
max

i𝜔cΓ
1+ k2∕k2

max

−2i𝜔c

1+ k2∕k2
max

0 ckx
−i𝜔cΓ

1+ k2∕k2
max

−i𝜔2
p

1+ k2∕k2
max

−cky ckx 0 0 0

i 0 0 −iΓ 0

0 i 0 0 −iΓ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A5)

Appendix B: Quasi-static

approximation

In this Appendix, we derive a quasi-static approximation for

the dispersion of the edge states at an interface between

the Berry dipole material and a metal. It is well-known

that quasi-static approximations apply in scenarios where

the retardation effects are negligible, allowing the speed

of light to be considered effectively infinite (c→∞). These

approximations can be particularly accurate in processes

dominated by near-field interactions and evanescentwaves.

In the quasi-static limit the electric and magnetic fields

are effectively decoupled, thereby simplifying Maxwell’s

equations. In such a context, the electric field can bewritten

as a gradient of an electric potential 𝜙:

E = −∇𝜙. (B1)

From Gauss’ law ∇ ⋅ D = 0 and from the constitutive

relation D = 𝜀0𝜀 ⋅ E, it follows that the electric potential is
constrained as:

∇ ⋅
(
𝜀 ⋅∇𝜙

)
= 0. (B2)

We use the following ansatz for the electric potential,

𝜙 = 𝜙0e
ikxx

⎧⎪⎨⎪⎩
e
−𝛾QS y

, y > 0,

e
+𝛾m,QS y

, y < 0,
(B3)

to describe a surface wave propagating at the interface (y =
0) between theBerry dipolematerial and ametal (Figure 1b).

Here, 𝛾QS, 𝛾m,QS represent the attenuation constants along

the direction perpendicular to the interface, and kx is the

propagation constant of the surface wave (plasmons). Note

that the ansatz ensures that the electric potential is contin-

uous at the interface.
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In order to determine 𝛾QS, 𝛾m,QS, we note that from

Gauss’ law (Eq. (B2)), the dispersion of a planewave in a bulk

region (𝜙 ∼ eikxxe
iky y) reduces to:

k ⋅ 𝜀 ⋅ k = 0. (B4)

As the anti-symmetric part of the permittivity does not

contribute to the scalar k ⋅ 𝜀 ⋅ k, it can be readily shown

using the above equation that both attenuation constants

are identical and independent of the permittivity tensor:

𝛾QS = 𝛾m,QS = ||kx||. (B5)

Enforcing now the continuity of the normal component

of the electric displacement vector ŷ ⋅ D
(
0+

)
= ŷ ⋅ D(0−), we

obtain the quasi-static dispersion of the edge modes:

− 𝜀EOkx − 𝜀D
||kx|| = 𝜀m

||kx||. (B6)

Plugging the expressions of 𝜀m, 𝜀EO, 𝜀D into the above

equation, one obtains the following cubic equation:

𝜔
3 +𝜔

2
(
s𝜔c + iΓ

)
+𝜔

(
−
𝜔2
p

2
− 𝜔2

m

2
+ i

3

2
Γs𝜔c

)

− i
Γ
2
𝜔
2
m
= 0, (B7)

with s = sgn
(
kx

)
.

The quasi-static solutions of Eq. (B7) give the asymptotic

values of the edge states dispersion when kx →∞, specif-

ically, 𝜔QS,edge = limkx→∞𝜔exact

(
kx

)
. The quasi-static solu-

tions are marked in Figure 4 with black triangular points,

and match precisely the solutions of the exact dispersion

(Eq. (11)) in the short-wavelength limit. There are a total of

six solutions because the parameter s can take the values

s = ±1. In the PEC limit (𝜔m →∞), the only finite quasi-

static solution is 𝜔 = −iΓ.
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