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To the reader. If you exist, wow. Respect.
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Resumo

A Inteligência Artificial Explicável (XAI) procura tornar os sistemas de IA mais trans-
parentes, permitindo que os utilizadores compreendam e confiem nas suas decisões. A
capacidade de identificar previsões não confiáveis é crucial para aplicações em domínios
críticos como saúde, finanças e sistemas autónomos.

Uma metodologia recente, SVD-based Peephole, propõe uma forma de detetar
decisões ambíguas ao analisar as informações que passam por uma camada de rede neural.
Esta tese visa melhorar a explicabilidade em IA, extraindo peepholes baseados em SVD
das camadas de uma rede neural leve. O método combina redução de dimensionalidade
(SVD) e agrupamento não supervisionado para revelar padrões de ativação estruturados
na rede.

Investigamos como as representações internas evoluem nas camadas do MobileNetV2,
um modelo otimizado para eficiência, e como se relacionam com o processo de decisão.
Este trabalho estende técnicas de peephole, antes aplicadas a modelos maiores, adaptando-
as à arquitetura compacta e complexa do MobileNetV2.

Os resultados mostram que, mesmo em arquiteturas comprimidas, é possível alcançar
explicabilidade significativa. Ao rastrear conceitos relacionados a classes e visualizá-los
com conceptogramas, demonstramos como representações abstratas se desenvolvem ao
longo das camadas. Estas visualizações não apenas melhoram a compreensão do modelo,
mas também fornecem uma forma prática de avaliar a confiabilidade das suas previsões.
Assim, peepholes baseados em SVD tornam-se ferramentas explicativas e de diagnóstico,
contribuindo para sistemas de IA mais transparentes, confiáveis e responsáveis.

Palavras Chave: Inteligência Artificial explicável, Redes Neuronais, Interpretabili-
dade, Confiabilidade
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Abstract

Explainable Artificial Intelligence (XAI) seeks to make AI systems more transparent,
enabling users to understand and trust their decisions. The ability to identify untrust-
worthy predictions is particularly important for deploying AI in critical domains such as
healthcare, finance, and autonomous systems. A recently proposed methodology, SVD-
based Peephole, offers a novel way to detect ambiguous decisions by analyzing infor-
mation passing through a neural network layer.

This thesis aims to improve explainability in AI by extracting SVD-based peepholes
from the layers of a very lightweight neural network. The method combines dimensionality
reduction method (SVD) and unsupervised clustering to reveal structured activation pat-
terns within the network. We investigate how internal representations evolve across layers
of MobileNetV2 (a model optimized for efficiency) and how they relate to the decision
making process. This work extends previous peephole techniques, traditionally applied
to larger models, by adapting them to the more compact and complex architecture of
MobileNetV2.

Our findings show that even in compressed architectures like MobileNetV2, meaningful
explainability can be achieved. By tracing class-related concepts through the network
and visualizing them with conceptograms, we demonstrate how abstract representations
develop across layers. Importantly, these visualizations not only improve explainability
but also provide a practical way to assess the trustworthiness of model outputs. This
positions SVD-based peepholes as both an explanatory tool and a diagnostic method,
contributing to the broader goal of making AI systems more transparent, reliable, and
accountable.

Keywords: Explainable Artificial Intelligence, Neural Networks, Interpretability,
Trustworthiness
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Introduction

Artificial Intelligence (AI) has become an integral part of various fields, ranging from
healthcare and finance to autonomous systems and cybersecurity. As AI systems are
deployed in high-stakes and socially impactful domains, the need for transparency and
accountability has become more pressing than ever. The increasing reliance on AI models,
particularly deep neural networks, has raised concerns regarding their interpretability
and trustworthiness. Despite their impressive performance, many AI models are often
deployed as black-box systems, offering little insight into how decisions are made. This
lack of transparency raises serious concerns around interpretability and trust. [1].

Explainable Artificial Intelligence (XAI) has emerged as a crucial research area aimed
at making AI models more transparent and interpretable. The primary goal of XAI is to
provide human-understandable explanations for AI-driven decisions, allowing stakeholders
to assess model reliability, detect biases, and ensure compliance with ethical and legal
standards [2]. In particular, post-hoc explainability methods, which generate explanations
after model training without altering its architecture [3], have gained significant attention.
These approaches enable the use of high-performing models, including those developed
by third parties, without requiring access to their internals. In contrast, methods that
modify the model itself often demand retraining or architectural changes, which can be
computationally expensive and less broadly applicable.

The growing importance of explainability is also reflected in regulatory initiatives like
the Union’s Artificial Intelligence Act (AIA), which sets legal standards for transparency,
fairness, and accountability in AI systems [4]. Meeting these requirements calls for ex-
plainability methods that can offer meaningful insights into a model’s internal logic. In
this context, post-hoc approaches that analyze the information flow throughout the net-
work, rather than modifying the model itself, are particularly valuable, as they offer both
practical applicability and deeper structural interpretability.

Building on this foundation, recent research within post-hoc explainability, has ex-
plored methods to detect uncertainty in neural networks by analyzing information flow
within specific layers.

A methodology, SVD-based Peephole and Clustering [5], has demonstrated promis-
ing results in detecting ambiguous decisions by leveraging Singular Value Decomposition
(SVD) to extract low-dimensional representations of layer parameters. However, this ex-
isting approach mainly targets a single layer of a relatively simple model, which limits its
ability to reveal potential shortcomings and the broader applicability of the method.

1



This thesis builds upon that foundation by extending the analysis to multiple layers
within a lightweight network architecture: MobileNetV2. By integrating information from
different stages of input processing, the proposed method provides a comprehensive and
efficient analysis of the model’s internal dynamics, better aligned with the demands of
modern, resource-constrained AI applications.

In summary, this research is motivated by the urgent need for explainability in AI.
By refining and expanding existing methodologies, this thesis aspires to advance the field
of XAI and support the development of AI models that are not only powerful but also
interpretable and reliable.

Research Questions

Building on the SVD-based Peephole methodology and aiming to push forward ex-
plainable AI, this work is driven by the following essential research questions: To achieve
this, the following key research questions guide this work:

(1) Can we extract meaningful information from such a compact and
compressed network?

Lightweight architectures like MobileNetV2 are designed to minimize
redundancy and compress internal representations. This research investigates
whether these compact structures still retain enough organization and semantic
depth to allow for effective interpretability using the peephole method. In the
broader context of XAI, this question is crucial: if highly efficient models can
still provide interpretable insights into their decision-making processes, it
suggests that explainability does not have to come at the cost of efficiency.
Understanding how compressed architectures encode and organize information
contributes to advancing XAI by revealing whether interpretability methods
remain reliable and meaningful even under extreme model compression.

(2) How to choose the best layers to extract information from?
Extracting information from every single layer of a network would require

unnecessary amounts of computational power. Different layers encode different
types of information. Identifying which layers offer the most interpretable and
semantically rich representations is a key step toward effective peephole
extraction.

These questions guide the development and refinement of the proposed methodology,
helping to clearly define the objectives of this thesis.
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CHAPTER 1

Background

Building on the discussion in the previous chapter about the need for explainability
in AI and the challenges of interpreting deep neural networks, this chapter introduces
key concepts essential for understanding the methods explored in this thesis. It provides
an overview of explainability in AI and the Peephole methodology, which serve as the
foundation for the proposed approach.

1.1. Explainability

Explainability in artificial intelligence ensures that AI models and their decision-
making processes are comprehensible to human users. As AI systems grow in complexity,
they often function as black boxes, making it difficult to understand how predictions and
classifications are made. Explainability plays a key role in fostering trust, accountability,
and fairness in AI applications.

Trustworthiness, Explainability and Interpretability

Trustworthiness, explainability, and interpretability are closely connected in AI, each
playing a distinct role in ensuring reliable and transparent decision-making. Trustwor-
thiness refers to the degree to which an AI system can be relied upon to make fair, con-
sistent, and robust decisions, fostering user confidence and acceptance. Interpretability
pertains to how well a model’s internal mechanisms can be understood by humans, allow-
ing for an analysis of how and why specific predictions are made. While explainability
focuses on making AI decisions comprehensible, interpretability delves deeper into under-
standing the underlying computational processes [3]. This thesis primarily emphasizes
explainability, aiming to develop methods that enhance interpretability and provide
clearer insights into AI decision-making. However, it’s important to note that explainable
and interpretable systems tend to be perceived as trustworthy. Therefore, although this
work focuses on explainability, it also offers indirect insights into the trustworthiness of
the model, particularly in how confidently and transparently it reaches its decisions.

Post-hoc Explainability

Post-hoc explainability refers to methods that provide insights into an AI model’s
decision-making process after it has been trained. These methods do not modify the
model’s structure but instead analyze its internal workings. By not altering the original
AI model, they preserve its performance while enhancing interpretability [3]. Unlike in-
trinsically interpretable models, which often sacrifice accuracy for transparency, post-hoc
techniques can be applied to highly complex models, making them more practical for
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real-world applications.
The Singular Value Decomposition (SVD)-based Peephole approach falls under the cat-
egory of Concept-based explanation methods (C-XAI), which aim to interpret
model behavior through human-understandable concepts. These methods explain a pre-
diction, an entire class, or even the behavior of internal network components by refer-
encing patterns that align with semantically meaningful features. Such approaches focus
on understanding how deep neural networks make decisions using identifiable concepts,
and typically evaluated based on criteria such such as coherence, relevance to the pre-
dicted class, semantic clarity, and faithfulness to the actual computations of the model
[6]. The SVD-based Peephole method follows this paradigm by revealing concept-level
structures within the network’s layers that are both interpretable and grounded in the
model’s internal mechanisms.

1.2. SVD-based Peephole

The peephole mechanism is a technique used to analyze the internal activations of a
neural network, offering insights into how information flows through its layers. By exam-
ining activations at different stages, peephole methods help detect regions of uncertainty
and ambiguous decision-making. In the context of explainability, peephole analysis al-
lows researchers to gain a more detailed understanding of how and why a model arrives at
certain conclusions, facilitating better transparency and interpretability of deep learning
models.

Peephole analysis is particularly useful in neural networks where complex representa-
tions emerge at different layers. By systematically probing these activations, it is possible
to track how information transforms throughout the network. This method can highlight
discrepancies between layers and detect inconsistencies that may lead to misclassifications
or unreliable predictions.

One approach to implementing peephole analysis involves computing a dimensionality-
reduced representation of the neural network’s activations using SVD [5] which helps
highlight the most influential features that contribute to decision-making.

An advantage of peephole analysis is its ability to provide layer-wise insights without
requiring modifications to the model architecture. This makes it a non-intrusive technique
for post-hoc explainability, allowing researchers to retrospectively investigate neural net-
work behavior and improve interpretability without compromising model performance.

To provide a more rigorous foundation for the methodology, the concepts SVD (1.2),
Corevector (1.2) and Peephole (1.2) will formally defined in the following subsections.

Singular Value Decomposition

As previously discussed, one of the main uses of SVD is dimensionality reduction.
SVD decomposes the data matrix into three matrices [7].

A = UΣV T , (1.1)
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where:

• U : where the columns are the left singular vectors of A (capturing the relation-
ships between the rows of the original matrix)

• Σ: where the diagonal entries are the singular values of A (capturing the impor-
tance of each component of the original matrix)

• V T : the transpose of matrix V, containing the right singular vectors of A (cap-
turing the relationships between the columns of the original matrix)

In a layer of a deep neural network, with input x ∈ Rn and output y ∈ Rm:

y = f(Wx+ b) (1.2)

where:

• W ∈ Rm×n,

• b ∈ Rm,

• f() is the elementwise function[8].

• m is the number of outputs in the layer function

• n is the number of inputs per layer

In our case, A is the concatenation of the weight matrix Wj and the bias vector bj of a
specific layer j [5]:

A(j) = W (j) | b(j) (1.3)

By reducing the dimentionality of A, we can significantly reduce the computational
demands associated with processing the information that flows through the network’s
layers.
For fully connected layers, Wj is naturally a matrix, so applying SVD directly to A

(which includes Wj and bj) is straightforward.
However, convolutional layers have weight tensors

W ∈ RCout×Cin×k×k, (1.4)

representing Cout output channels, Cin input channels, and a kernel size of k × k

(assuming square kernels).
Unlike regular matrices, convolutional layers are defined by collections of k × k kernels
arranged across input and output channels (Cout × Cin). This structure cannot be
directly decomposed using standard SVD, which requires a matrix format, making it
necessary to first unroll the kernels into a compatible representation.
Therefore the convolutional kernel W is first unrolled into a large linear operator

W ∈ R(Cout·n2)×(Cin·n2)

that exactly represents the full convolution operation over the entire input space. This
operator W encodes how the convolution acts on vectorized inputs [9].
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Only once this linear operator W is constructed can SVD be applied to study the layer’s
structural properties. The procedure for constructing W is as follows:

(1) Zero-pad each kernel slice Wc,d (the k × k kernel for output channel c and input
channel d) to an n× n matrix Kc,d, ensuring convolution “wraps” on a torus
(circular padding).

(2) Construct
Bc,d = circ(Kc,d),

an n2 × n2 doubly-block-circulant matrix whose rows are circular shifts of Kc,d.
(3) Assemble the block matrix

W =

 B1,1 · · · B1,Cin
... . . . ...

BCout,1 · · · BCout,Cin

 .

Figure 1.1. Toeplitz method: W is a reshaped multiple embedding of the
weight tensor into a tensor space [10].

Other approaches to enroll convolutional weights for SVD exist, for example, explored in
[10]. We chose to adopt the Toeplitz unrolling approach (shown in Figure 1.1) it allows
for corevectors of arbitrary size, unlike the method in [10], where the resulting
corevectors depend on the activation size of each layer—an undesirable property for the
subsequent clustering step.

Corevector

In the Peephole methodology, SVD reduction is applied to A and then the right singular
vectors (V T ) are multiplied by the input of that layer. This allows the construction of
the corevector: an approximation of the original matrix A with k dimensions[11]:

νk(j) = V T
k hj (1.5)

where:

• V T
k : is the rank-k approximated V T , by the selection of the top k singular

vectors

• hj: is the input of layer j
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The resulting corevector represents a compressed encoding of the original activation
vector hj, expressed in terms of the most informative patterns identified within the layer.
These patterns captured in the top right singular vectors V T

k are derived from the
weight structure of the layer and represent dominant input directions that the layer is
most sensitive to. These directions are determined by the layer’s learned transformation.
They tell us how the layer is structured to act on inputs, rather than patterns from the
data distribution itself (so not sample-specific). When we multiply these fixed patterns
by the input activation hj, which is unique to each input sample, the result is a
corevector that reflects how that particular sample aligns with the principal patterns of
the layer. In essence, for a given sample, the corevector tells us which of these dominant
patterns are most “active” or relevant in a specific layer. This means that although a
corevector is sample-specific, we still capture the global behavior of the model by
multiplying our input by the right singular vectors.
By working with these corevectors instead of the full high-dimensional activations, we
enable an efficient analysis while preserving the essential structure needed for
interpretability. These corevectors serve as the foundation for constructing the layer’s
peepholes, which are then analyzed to reveal how the network organizes and processes
information internally.
The extracted corevectors are then analysed to form the samples’ peepholes.

Peephole

To construct a peephole for a given layer, we analyze its corevector through a two-step
process:

(1) Unsupervised Clustering of the corevector
To better understand how the network organizes its internal representations, we
apply unsupervised clustering to the corevectors extracted from each layer. As
it was said, a corevector represents how the network responds to a specific input
at a particular layer. These vectors are high-dimensional and encode features
the network has learned to recognize. Importantly, similar inputs tend to
produce similar corevectors, meaning that the network “reacts” in comparable
ways to related patterns or concepts.
Clustering these corevectors allows us to group together similar internal
responses. In essence, we’re identifying regions in the activation space where
the network consistently expresses a particular kind of response. The idea is
that if many vectors are close to each other in this space, they likely reflect a
shared underlying feature or concept the network has learned.
Through this process, we can uncover clusters of similar activations that may
correspond to meaningful visual patterns relevant to the network’s
decision-making. For example, one cluster might group activations triggered by
sharp edges and wheels, while another might correspond to features like white
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fur. These clusters give us insight into the types of internal categories the
network uses to interpret and classify images [12].
The clustering method chosen was Gaussian Mixture Model (GMM).This
method determines the probability of a data point belonging to a cluster. Unlike
hard clustering methods, GMM allow data points to belong to multiple clusters
with a certain probability, providing a more flexible and nuanced approach to
clustering, especially when dealing with overlapping or complex cluster shapes.
Mathematically, the clustering process of corevector v can be defined as the
following equation:

f(ν) =
C∑
c=1

ϕcN (ν | µc,Σc), (1.6)

Where:
• ϕc represents the probability that a data point belongs to cluster c

• N(ν|µc,Σc) the normal distribution of the probability of observing the
corevector ν in cluster c

• µc and Σc the mean and covariance matrix of cluster c, respectively
The result of this step is then a vector of probabilities of belonging to each
cluster, for a specific sample (image), which is called the Membership
Probability (MP) [11].

(2) Mapping the clusters to classes
Now we try to understand how the resulting clusters relate to the actual class
labels the neural network predicts, given a dataset. We do this by performing
an empirical posterior distribution over the training set as the following:

Θc×s = [prob(Φ(x) = l | max(f(ν)) = c)] | c ∈ {0, . . . , C − 1}, l ∈ {0, . . . , S − 1} (1.7)

Where:
• f(ν) is the Membership probability
• Φ(x) is the label assigned to input image x by the NN model Φ
• max(f(ν)) is the most likely cluster associated with the corevector ν at the

given layer .
• C the number of clusters
• S the number of classes in the dataset

In simple terms, is this step we try the answer the question "For each cluster,
what class does it typically represent?”
Consequently, the result of the empirical posterior a matrix composed of the
probability of corevectors belonging to a cluster (rows) to be associated with a
class (columns).
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Given the Membership probability vector and the empirical posterior matrix, we can
form the peephole for each layer of the model by multiplying them:

p = f(ν) ∗Θ (1.8)

So, the resulting peephole is a weighted average of the cluster-class distributions (Θ),
weighted by f(ν). As a result, we have a sample-specific vector with the size equal to
the number of classes of a particular layer. To be more precise, it shows how the
distribution of corevectors across clusters maps to a specific probability distribution over
a set of concepts (labels). While the function f captures how an input is distributed
among clusters, the peephole converts that distribution into class-level probabilities.
This allows us to see which concepts are most closely associated with a given input by
analyzing how the network organizes its internal representations, revealing how the
structure of activations within the network relates to its classification performance.
For this reason this “representation” was given the name peephole since it allows, by
peeking through a “small window”, to closely observe the network’s decision-making
process at a specific layer. Figure 1.2 illustrates the overall scheme of the peephole
extraction process

Figure 1.2. Peephole extraction and clustering scheme
[11]

Now that the fundamental concepts have been established, we can explore existing work
related to this methodology. The next chapter reviews relevant literature, examining
how different explainability approaches compare and how the SVD-based Peephole
method fits within the broader landscape of post-hoc XAI techniques.
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CHAPTER 2

Literature Review

This chapter explores the methodology taken for the systematic review and discusses
related work to provide a comprehensive foundation for this research.

2.1. Systematic Review

To ensure a systematic and thorough exploration of relevant literature, b-on and Google
Scholar as the primary search platforms. Additionally, specific theses closely aligned with
this research, including the foundational work SVD-based Peephole and Clustering to En-
hance Trustworthiness in DNN Classifiers, were provided by the ARCES department at
University of Bologna, where this thesis was being conducted. A total of 36 papers were
gathered for the development of this thesis, with some identified through keyword-based
searches using terms such as XAI, Explainability, Interpretability, Trustworthiness, Trans-
parency, and Deep Neural Networks. Search queries were constructed by combining these
terms (e.g., "Explainable AI OR XAI AND Trustworthiness OR Confidence OR Inter-
pretability OR Explainability AND Neural Network") to specifically target post-hoc XAI
methods and their applications. Additionally, the snowballing technique was employed,
where references from relevant papers led to the discovery of further literature. These
resources serve as a fundamental support for the extension of the existing methodology.

2.2. Related Work

There are various approaches to explainability in AI, such as Explaining with Surro-
gates (which involves building a simpler model that mimics the behavior of a complex
model, e.g., LIME [13]) or Explaining with Local Perturbations (which entails modify-
ing small parts of an input to observe how these changes affect the AI’s decision, e.g.,
Prediction Difference Analysis [14]), among others. But we want to focus on post-hoc
methods that remain faithful to the model’s actual decision-making process (rather than
relying on approximations such as surrogate models) and that avoid the potential artifacts
introduced by perturbation-based techniques, ensuring that explanations reflect how the
original input features influence predictions without modifying the input itself. Consid-
ering this, there’s some post-hoc methods that are somewhat comparable with the SVD
based Peephole:

For example, methods like Layer-wise Relevance Propagation[15] (along with
DeepSHAP[16], DeepLIFT[17] and others) focus on estimating the importance of input
features for a specific decision, making them well-suited for local explanations, that is,
they explain why a model made a particular prediction for a given input.[14]. LRP
specifically works by redistributing the model’s output backward through the network to
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determine which input features contributed most to a given decision. This is achieved by
propagating relevance scores layer by layer. Its core focus remains on analyzing how input
data influences the output rather than interpreting the network’s structural properties.
This makes it highly effective for local explanations.

However, while LRP and similar methods provide valuable insights into individual pre-
dictions, they do not offer a comprehensive view of how the model processes information
across layers or how learned representations evolve throughout the network. In contrast,
SVD-based Peephole goes beyond analyzing individual feature attributions by examining
layer-wise transformations and information compression within the model, allowing for a
more holistic understanding of its decision-making process.

There’s also Grad-CAM[18], which is a technique that generates visual explanations
by identifying which parts of an input were most influential in a model’s prediction. It
does this by analyzing gradient information from a selected layer to determine which
areas had the most impact. The result is a heatmap overlaid on the input, providing an
intuitive way to understand the model’s focus during decision-making [14].

However, while methods like Grad-CAM provides useful insights into how a model
processes specific inputs, its explanations remain local, focusing on individual predictions
rather than offering a broader understanding of the model’s behavior.

While feature attribution and saliency-based methods are valuable for highlighting
which input elements influence predictions, they often lack the ability to explain what
those patterns represent at a more abstract or semantic level. In image classification
there is a growing need to understand not just where the model is focusing, but what
kind of high-level concepts it has learned and how those concepts influence its decisions.
This brings us to a category of explainability techniques: concept-based methods.

Concept-based post-hoc methods

Peephole can be seen as a concept-based post-hoc method. Concept-based meth-
ods (C-XAI) are well-suited for image classification tasks among post-hoc explanation
techniques because they operate at a higher semantic level, offering explanations in terms
of human-understandable concepts rather than individual pixels or gradients. This aligns
with how humans interpret visual information and allows for intuitive insights into what
the model has learned. Additionally, concept-based methods can capture distributed pat-
terns (e.g., object parts, textures, or abstract features) that are often missed by saliency-
based or attribution methods. They also scale well to global explanations, enabling anal-
ysis across multiple inputs or classes.

By clustering corevectors, Peephole reveals internal concept-like structures that emerge
naturally during training. These structures correspond to patterns the network finds
relevant for distinguishing between classes. Through visual tools like conceptograms, the
method maps how these concepts evolve across layers and contribute to predictions.

Among concept-based methods, a primary distinction lies in whether they rely on
concept-annotated datasets (supervised) or operate without such labels (unsupervised).
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Supervised methods use symbolic concepts (predefined and human-labeled cate-
gories) to explain model behavior [6]. An example is Network Dissection[19], which
aims to understand the role of individual neurons by examining their activations across
a dataset and associating them with predefined human-labeled concepts (such as "cat,"
"dog," or "edge"). This is done by evaluating how strongly a neuron responds to specific
features in an input and mapping these responses to predefined visual or semantic con-
cepts.

In contrast, unsupervised methods discover latent concepts directly from the model’s
internal representations, forming a concept basis without human supervision. Both ap-
proaches are capable of generating visualizations of the extracted concepts, but their
focus differs. Supervised methods aim to link predictions to known, labeled concepts,
while unsupervised methods typically explore class-concept relationships and emphasize
the discovery and visualization of emergent internal patterns that the network has learned
[6].

This makes unsupervised concept-based methods particularly valuable in real-world
scenarios where annotated concept datasets are unavailable, impractical to collect, or
task-specific concepts are not clearly defined. By extracting concepts directly from the
model’s learned representations, these methods offer a flexible and scalable approach to
interpretability that adapts to the data and the task without prior semantic assumptions.

Moreover, unsupervised methods can reveal emergent internal structures that super-
vised approaches might overlook, highlighting patterns, intermediate abstractions, or vi-
sual features that the network uses internally but are not explicitly labeled. [6] This
allows for broader insight into the model’s behavior, especially in domains where mean-
ingful explanations may go beyond predefined human categories.

In this context, methods like the SVD-based Peephole offer a way to extract and
interpret these latent patterns, without relying on human-labeled concepts reducing the
dependence on external supervision.

Several concept-based explanation methods, like ours, use unsupervised approaches
tailored to image classification tasks:

• The Automatic Concept-based Explanations [20] (ACE) automatically dis-
covers concepts for a specific class without human supervision. It segments in-
put images at multiple resolutions (textures, parts, full objects), embeds these
segments in the network’s latent space, and clusters them to form candidate con-
cepts. Outliers are removed, and the relevance of each concept is measured using
the TCAV score, which estimates the influence of each concept on the class pre-
diction. While ACE captures a variety of patterns, it can produce incoherent or
meaningless concepts due to errors in segmentation, clustering, or scoring [6].

• Invertible Concept-based Explanation [21] (ICE) enhances ACE by replac-
ing K-means clustering with Non-Negative Matrix Factorization (NMF) for con-
cept extraction. Each NMF dimension reveals a distinct concept, and a model is
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trained on top to approximate the model’s predictions. The resulting classifier
weights indicate the importance of each concept, offering a more interpretable
and faithful explanation.

• Completeness-aware [22] improves on ACE by focusing on completeness (how
sufficient a set of concepts is for predicting a model’s outputs). It introduces a
completeness score, based on the accuracy achieved when predicting class labels
using only concept scores. A concept discovery algorithm is optimized to find
maximally complete concepts, while encouraging locality in concept representa-
tions (i.e., nearby patches should support similar concepts).

• Multi-dimensional Concept Discovery [23] (MCD) extends concept discov-
ery into multiple dimensions by allowing concepts to lie on hyperplanes in the
feature space. It uses Sparse Subspace Clustering (SSC) followed by PCA to
define concept bases. A model is trained to approximate the model’s outputs
using these concepts, enabling per-sample completeness scores. MCD provides
both concept relevance maps (importance per class) and concept activation maps
(visual representation), and demonstrates improved faithfulness and compactness
over ACE and ICE.

• DMA&IMA [24] focus on identifiability, the ability to provably recover the
underlying concepts in data. DMA assumes each concept affects disjoint input
regions and guarantees recovery even with correlated components. IMA relaxes
this assumption by requiring only orthogonal concept vectors. While DMA/IMA
do not generate explanations or visualizations, they evaluate which conceptual
structures can theoretically be extracted from neural representations.

The SVD-based Peephole method sets itself apart from these concept-based explana-
tion techniques in both its objective and its approach to interpretability. While
many existing methods focus on discovering human-interpretable concepts to explain in-
dividual predictions or class behavior, Peephole emphasizes understanding the internal
structure and information flow across layers of a neural network. Its goal is not only to
identify which concepts matter, but also to reveal how those concepts emerge, evolve, and
contribute to decision-making throughout the model.

Another key difference lies in the fact that Peephole does not rely on an auxiliary neural
network or autoencoder to generate explanations. Many modern explanation methods,
such as ICE, Completeness-aware, DMA & IMA , MCD, Deep Embedded Clustering[12]
and others, use additional models to process activations, discover latent structure, or
predict outputs. While these techniques can be powerful, they also introduce a problem
of redundancy: explaining a neural network by using another neural network. This not
only adds computational and architectural complexity, but also raises a concern: if the
explanation depends on another model, then doesn’t that model also need to be explained?
This creates a potential cycle of explanations that moves further away from the original
goal of clarity and transparency.
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In contrast, the Peephole method offers a more direct and mathematically grounded
alternative. It uses Singular Value Decomposition, a well-established linear algebra tech-
nique, to reduce high-dimensional activations into compact, structured representations
called corevectors. These are then clustered to uncover meaningful patterns, allowing for
the creation of interpretable visual tools like conceptograms. Importantly, every step in
the Peephole pipeline is transparent, interpretable, and grounded in geometric principles,
not learned heuristics. This makes the method not only easier to trust, but also easier to
analyze and verify.

By avoiding reliance on neural networks to interpret other neural networks, the SVD-
based Peephole approach stays closer to the core values of explainable AI: clarity, sim-
plicity, and interpretability rooted in theory rather than yet another layer of abstraction.

SVD-based Peephole Method

It is essential to discuss the most significant recent methodology, introduced in SVD-
based Peephole and Clustering to Enhance Trustworthiness in DNN Classifiers [5], which
serves as the foundation for this thesis. This approach compares the model’s output with
the results of a clustering technique, offering a more transparent and intuitive decision-
making process. The clustering is applied to information passing through a specific net-
work layer, represented by low-dimensional vectors obtained through SVD applied to the
layer’s parameters.

Due to its reliance on SVD applied to layer parameters, it allows for a deeper under-
standing of how the network processes information across different layers, rather than just
interpreting individual predictions.

By clustering these low-dimensional representations, the method moves beyond local
explanations (which focus solely on specific input-output relationships) and instead pro-
vides a global perspective on how decision boundaries are formed within the network.
This enables a more comprehensive analysis of the model’s internal behavior, making it
possible to detect patterns, structural dependencies, and sources of ambiguity that influ-
ence multiple predictions rather than just a single classification instance.

This thesis aims to build upon and extend the SVD-based peephole by applying the
procedure across multiple layers of a very light neural network. In addition, this work
extends the peephole extraction process to convolutional layers, moving beyond the ap-
proach used in SVD-based Peephole and Clustering to Enhance Trustworthiness in DNN
Classifiers [5], which focused solely on fully connected layers. By integrating informa-
tion extracted from different stages of input processing, we seek to enhance explainability
at each layer, leading to a more comprehensive understanding of the model’s internal
decision-making process. This extension allows to explore the scope of adaptability and
capacity of this method applied in such a compact network.

This multi-layer interpretability across not only fully connected layers approach was
explored in Visual Transformer Conceptogram Through Intermediate Activation Analysis
[11], using the Vision Transformer (ViT) architecture.
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While ViT offers a clean and transparent structure that makes it useful for visualizing
and explaining interpretability methods, it presents several limitations for the peephole
extraction task. First, it is data-hungry and typically requires large-scale pretraining [25].
It is also highly demanding in terms of memory and computational resources [26], making
it a poor fit for the peephole framework, which already involves computationally intensive
operations such as large matrix manipulations. Given that efficiency is increasingly pri-
oritized in modern AI applications, a lighter and more practical architecture is preferred.

Second, despite its usefulness as a conceptual model, ViT doesn’t reflect the architec-
tures most commonly deployed in real-world systems today. Its simplicity, while helpful
for early-stage testing and explanation, limits its realism. This is part of what motivated
our choice to evaluate the peephole approach on a lightweight yet architecturally complex
model that better mirrors current trends in applied deep learning.

Summary

While many explainability techniques exist, they often lack scope, model faithfulness,
or a balance between structural and data-driven insights. Local methods like LRP and
Grad-CAM explain specific decisions but miss the broader network dynamics, while global
approaches like Network Dissection provide structural insights but may disconnect from
the data. Autoencoder-based methods add complexity by requiring another neural net-
work, reducing transparency.
The SVD-based Peephole method addresses these limitations by combining data-driven
and structural analysis, capturing both information flow and network transformations.
Unlike other methods, it provides a layer-wise, global, and mathematically grounded ex-
planation.
This thesis extends the original peephole approach by applying it across multiple layers of
a lightweight and structurally complex model: MobileNetV2. Unlike earlier work focused
on large models and fully connected layers, this study investigates whether meaningful
explanations can be extracted from compact, efficient architectures that better reflect
current trends in AI.
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CHAPTER 3

Setup

In this Section, we focus on three key aspects essential to setting up for the peephole
extraction process. First, we introduce the neural network architecture selected for this
methodology as well as its structural design and the efficiency-driven innovations that
make it suitable for our thesis. Second, we outline the training process used to prepare
the network for analysis, including the choice of optimizer, learning rate schedule, and
performance metrics. Finally, we detail the selection of layers for peephole extraction.
This involves analyzing the singular value of each layer and evaluating their empirical
posterior matrices to assess how well the clustered activations align with class labels.

3.1. Mobilenet

The neural network chosen for the task of peephole extraction was MobileNet v2.
Previously this peephole extraction method was tested in networks like VGG-16 and
ViT. But we wanted to explore a efficient lightweight network since this peephole task
is very computationally heavy (namely the large-scale matrix multiplications) and that
efficiency seems to become more prioritized in the industry throughout the years [27] [28].
Lightweight deep learning refers to the development of compact neural networks that
maintain high accuracy while requiring fewer computational resources, such as processing
power and memory, compared to traditional models [29]. Moreover, VGG-16 and ViT,
while useful for illustrating the mechanics of peephole extraction due to their simple
straightforward designs, do not perfectly reflect the kinds of architectures commonly used
in modern AI applications. MobileNetV2, on the other hand, incorporates a range of
nuanced design decisions and architectural complexities, making it a more realistic and
challenging benchmark for evaluating the capabilities and limitations of the peephole
approach.

Mobilenet efficiency innovations

MobileNet V2 is a convolutional neural network architecture designed for resource-
constrained environments. It’s a 53-layer deep model that prioritizes efficiency and per-
formance.

Unlike conventional deep networks that stack heavy convolutional blocks, MobileNetV2
builds its performance on a series of smart design choices that minimize computational
cost without significantly compromising its accuracy:
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• MobileNetV2 relies on depthwise separable convolutions. Instead of using full
convolutions across all channels, these are split into two steps: a depthwise con-
volution (one filter per input channel) followed by a pointwise (1×1) convolution
(shown in Figure 3.1)that mixes the outputs across channels. This drastically
reduces the number of parameters and operations compared to traditional con-
volutions [28].

Figure 3.1. Standart convolution and depthwise seperable convolution [30]

• MobileNetV2 uses batch normalization after each convolutional step to stabilize
training and allow the model to converge faster. Batch normalization works by
normalizing the inputs of each layer in a neural network, which helps to stabilize
the learning process and allows for the use of higher learning rates [31].

• A Bottleneck Residual Block (Figure 3.2) follows a wide–narrow–wide structure
to reduce computation by compressing features with 1×1 convolutions before
and after processing. MobileNetV2, on the other hand, uses an Inverted Residual
Block with a narrow–wide–narrow design: it first expands the input (Expansion
layer), processes it with depthwise convolutions to capture spatial patterns effi-
ciently (Depth-wise layer), and then then projects it back to a compact form (
Projection layer). This inverted structure works better in mobile and resource-
constrained settings because it avoids information loss during early compression
and takes full advantage of lightweight convolutions [28].

Figure 3.2. Residual block and inverted residual block [32]
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• Another defining feature of MobileNetV2 is its use of skip connections (Figure
3.3), which allow gradients to propagate more easily during training and help
retain low-level features throughout the network [28].

Figure 3.3. Skip connection in Mobilenet v2 (when Stride=1)

• The use of groups in MobileNet input channels also greatly impacts efficiency. In
a grouped convolution, the input channels are split into groups, and each group
is convolved independently with its own set of filters (illustrated in Figure 3.4).
This reduces both computation and number of parameters, at the expense of
connectivity across channels [28].

Figure 3.4. Standard vs. grouped convolutions: (a) In a standard con-
volution, each filter is convolved with all of the input’s channels; (b) In a
grouped convolution with two groups, half of the filters are applied to each
half of the input for a 2× reduction in parameters used. [33]

Together, these innovations make MobileNetV2 highly efficient: it achieves competitive
accuracy on benchmarks like ImageNet using a fraction of the parameters and compute
of larger models.
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This unconventional and light weight network makes MobileNetV2 an good candidate
for testing the peephole approach introduced in this thesis.

Mobilenet Architecture

Figure 3.5. Architecture of Mobilenet v2 [28] where t: expansion factor in
bottleneck blocks; c: Number of output channels for the block; n: Number
of times this block is repeated and s: Stride of the first block in this stage

Like illustrated in Figure 3.5, MobileNetV2 begins with a standard 2D convolution
layer that reduces the input image’s spatial resolution while expanding the channel depth
to 32. The main body of the network is made up of 7 bottleneck blocks, which are the key
to its efficiency and flexibility. Each bottleneck consists of three layers: an expansion
layer that increases the number of channels by a factor t, a depthwise convolution
that applies spatial filtering independently to each channel, and a projection layer that
compresses the result back to a lower-dimensional space with c output channels.

Residual connections are used when the input and output dimensions match and the
stride (s) is 1, helping to preserve information and stabilize training. For example, a block
with t = 6, c = 24, n = 2, and s = 2 takes a 16-channel input, expands it to 96 channels,
applies a depthwise convolution, and projects it down to 24 channels. After the sequence
of bottleneck blocks, a final 1×1 convolution increases the channel count to 1280. This is
followed by a global average pooling layer that reduces spatial dimensions to 1×1, and a
final 1×1 convolution that outputs k logits corresponding to the target classes.

Having chosen the neural network to perform the peephole extraction, the next step
is to choose a dataset and fine-tune it.

3.2. Training

The training process and choice of dataset play a central role in shaping a neural
network’s internal representations - the activation patterns that arise in response to input
images. In the context of the peephole framework, which interprets these patterns through
dimensionality reduction (producing corevectors) and unsupervised clustering (using
Gaussian Mixture Models), the training data effectively defines the kinds of structures
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that emerge. At the core of this interpretive process is the empirical posterior matrix,
which estimates the probability of a class label given a cluster activation in the reduced
space. This matrix links unsupervised cluster structure to supervised learning goals,
capturing how activation patterns relate to class labels. Its reliability, and by extension
the usefulness of the peephole surrogate model, depends on how well the training data
represents the task’s underlying categories and structure.

The chosen dataset was CIFAR-100 which is a collection of 60,000 32x32 color images,
divided into 100 different classes, with 600 images per class. These 100 classes are further
organized into 20 broader "superclass" categories. The dataset is commonly used for
training and testing machine learning models, especially in the field of computer vision.

For this study, the model was fine-tuned on the 100 classes of CIFAR-100 using the
Adam optimizer. A ReduceLROnPlateau (rOp) learning rate scheduler was applied, start-
ing with a learning rate of 0.001, reducing it by a factor of 0.1 if the validation performance
plateaued for 5 consecutive epochs. These parameters were selected based on the overall
accuracy and the gap between training and validation accuracy, aiming to avoid overfitting
while maximizing performance. The best model achieved a Top-1 accuracy of 78.07% and
a Top-5 accuracy of 94.75%, meaning the correct class was among the top five predictions
nearly 95% of the time.

Figure 3.6 is a confusion matrix representing the classification performance of the
MobileNet V2 model fine-tuned on the 100 classes of CIFAR-100 dataset. The matrix
has been aggregated over the 20 superclasses of CIFAR-100 providing a high-level view
of how well the model distinguishes between broad semantic categories.

We can observe that there’s a strong diagonal line indicating an overall correct clas-
sification, which represents an accuracy of 87.80%, which is higher than the accuracy
obtained when considering all 100 individual classes. For example, we can see that Ve-
hicles_1, trees, non-insect invertebrates, and reptiles have strong diagonal dominance,
indicating high classification accuracy for these categories. On the other hand, Large
man-made outdoor things is confused with large natural outdoor scenes, likely due to
visual similarity in scene-level context. And Fruit and vegetables vs. flowers and food
containers shows some confusion which is understandable given texture/color similari-
ties.
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Figure 3.6. Confusion matrix of MobileNet fine tuned on Cifar-100: The
rows represent the true superclasses (truth labels) and the columns repre-
sent the predicted superclasses by the model. Each cell shows the number
of test samples truly from class i but predicted as class j.

With the training of the neural network completed, the missing setup step is choose
the layers to extract the peepholes.

3.3. Layer selection

This peephole method can be applied in both fully connected layers and convolution
layers. But to extract the peepholes of every single layer requires unecessary computa-
tional power since MobileNet has 51 convolutional layers and 1 fully connected. To clarify
the nomenclature and organization of the layers, we provide a detailed structural break-
down of MobileNet’s architecture in Appendix A.

For that reason in this Section we will explore the decision making process of choosing
the proper layers to analyse in this thesis.
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For this we analyse two properties:

• The singular values: For each layer, we analize the singular values present in the
sigma matrix resulted from the SVD decomposition method. These represent
"scale" or "strength" of the linear transformation represented by a matrix and
reveal important properties about how informative is each layer.

• The empirical posterior: We analize the empirical posterior of each layer which is
a matrix composed of the probability of corevectors belonging to a cluster (rows)
to be associated with a class (columns). Our objective is to see if the classes are
under-represented in our clustering

Singular Values

Singular values are non-negative numbers that represent the "scale" or "strength" of
the linear transformation represented by a matrix. Mathematically, they are the square
roots of the eigenvalues of ATA, where A is the activation matrix. When ordered and
placed along the diagonal of the Sigma matrix in the SVD factorization, they indicate
how strongly the transformation represented by the matrix acts along each corresponding
direction.

Figure 3.7. Singular vec-
tors of layer
features.5.conv.0.0

Figure 3.8. Singular vec-
tors of layer
features.9.conv.1.0

The plots 3.7 and 3.8 illustrate the first 300 singular values from the Σ (Sigma) matrix
resulting from the Singular Value Decomposition (SVD) of activation matrices from two
layers from different bottlenecks in MobileNetV2: Bottleneck 3 and Bottleneck 4. The
shape of the singular spectrum reveals fundamental properties about the structure and
informational richness of the layer’s activation. A decaying graph implies that most of
the variance is concentrated in a few principal directions. This means better clustering and
interpretability, as the data forms compact and structured representations. In contrast,
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a slow decay indicates that the data is spread across many dimensions, making it high-
dimensional and entangled, which complicates clustering and reduces the clarity of any
semantic structure inferred.

In essence, a curved or steeply descending spectrum is more ideal for unsupervised
clustering and for building a reliable empirical posterior matrix. A flatter spectrum implies
overlapping distributions in the latent space, weakening the ability to map clusters to class
behavior.

Looking at the two plots, we observe notable differences in the singular value decay
patterns of the layers features.5.conv.0.0 and features.9.conv.1.0, which have di-
rect implications for peephole extraction.

• In the left plot, representing features.5.conv.0.0, the singular values decay
slowly and almost linearly. There is no sharp drop in the early ranks, and the
values decrease gradually across all 300 components. This pattern suggests that
the layer’s activations are spread out across many dimensions, with no small
subset of directions clearly dominating the structure. As a result, the represen-
tation is likely high-dimensional and diffuse, making it harder to identify mean-
ingful groupings through clustering. Without strong geometric compression, the
corevectors extracted from this layer may be noisy and less aligned with semantic
concepts.

• In contrast, the second plot, corresponding to features.9.conv.1.0, shows a
much steeper initial drop in singular values. The first few components carry most
of the variance, and the curve flattens significantly after the early ranks. This
indicates that the layer’s activations are more compact and organized, with a
clear set of dominant directions capturing the majority of the information.

Peephole extraction is fundamentally about revealing structure, so choosing layers
with meaningful compression (as shown by curvature) improves our chance of finding
explainable patterns.

For this reason, the curvature of the singular values is a indicator of the layer’s com-
patability for peephole analysis. It tells you whether the layer naturally organizes infor-
mation along dominant semantic axes, which in turn helps the success of clustering and
posterior estimation. Thus, analyzing singular value decay is about choosing layers that
inherently structure information in a way that’s interpretable.

Choosing the top k-singular values

An additional practical consideration involves deciding how many singular values to
retain from each layer’s decomposition, that is, determining the cutoff index for the Σ

matrix (resulting from the SVD reduction method). While the final classification layer
naturally limits this to 100 components (equal to the number of classes), other layers
produce much larger matrices. For instance, the expansion layer of the last Bottleneck
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has dimensions of [47040 × 7840], and extracting all singular values from such a large
matrix would be prohibitively expensive in terms of computation and memory.

To balance interpretability with feasibility, we chose to retain the top 300 singular
values for most layers. This cutoff preserves a substantial portion of the layer’s structure
while keeping the computation feasable.

To better justify and understand this decision lets observe 2 layers of the last bottle-
neck with a much bigger cut (1000). This comparison helps illustrate how much repre-
sentational information is actually concentrated in the top components, and whether our
chosen cutoff adequately captures the meaningful structure of the layer

Figure 3.9. Singular
vectors of layer
features.5.conv.0.0
(1000 rank)

Figure 3.10. Singular
vectors of layer
features.9.conv.1.0
(1000 rank)

From Figures 3.9 and 3.10 we can see that the profile of the singular values only
changes slightly with a larger cut-off. Moreover, the Sigma matrix lists singular values
in descending order by definition, meaning the largest, most significant values always
appear first. As a result, the early portion of the spectrum captures the most informative
structure of the data, regardless of where the cutoff is applied. This means that each
additional singular value is contributing less and less unique or meaningful information.
We’re mostly capturing finer details or even noise, specially considering that we’re dealing
with such low values. So, cutting off at 300 would retain the dominant structure in the
data while discarding the tail-end values that contribute marginally.

Empirical Posterior

Another valuable step in evaluating layer suitability for peephole extraction is assessing
how well the clustering captures class-relevant information at each layer. To do this,
we compute the empirical posterior matrix, which reflects the relationship between the
unsupervised clusters formed from the corevectors and the supervised class labels.
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The empirical posterior is a probability matrix derived from applying GMM clustering
to the corevectors of a given layer. Each row in this matrix corresponds to a cluster, and
each column corresponds to a class. The value at position (i, j) represents the probability
that a sample in cluster i belongs to class j, essentially showing how frequently class j

appears within that cluster. In this way, the empirical posterior gives a direct measure of
how representative or class-specific each cluster is.

This analysis is performed using a baseline number of clusters equal to the number of
classes (n = 100).

For the purpose of explainability it is useful to set the number of clusters equal to
the number of classes since this one-to-one ratio creates a natural mapping that simplifies
interpretation. Ideally, each cluster can be associated with a dominant class, making it
easier to track which internal patterns the model uses to distinguish between categories.

By using number of clusters = number of classes, we aim for a direct and interpretable
alignment between internal representations (clusters) and output concepts (classes).

While the actual relationship is rarely perfectly one-to-one in practice, using an equal
number provides a baseline interpretability framework. It ensures each class has the op-
portunity to be represented by at least one dominant cluster, making it easier to assess
whether the network has developed distinct, class-specific internal representations. That
said, this mapping can be adjusted depending on the desired level of abstraction. Us-
ing fewer clusters may result in more general concepts, where each cluster captures
broader visual patterns shared across multiple classes. Alternatively, using more clusters
can uncover finer-grained distinctions within or between classes, highlighting subtle
patterns that the model uses for more nuanced discrimination. The choice of cluster count
ultimately depends on whether the goal is to capture global themes or detailed variations
in the network’s learned representations.

In Figure 3.12 we can see that, for example, the cluster 99 is almost solely class 57
(lawn_mower). This means that the clustering is capturing a pattern in the activations of
a concept or feature in class 57. We can also see that for example cluster 95 is half class 13
(bottle) and class 16 (bus), which means that features common in both classes are captured
by this cluster. This means that, for our purpose (extracting meaningful, interpretable
concepts that closely align with the CIFAR-100 classes), the ideal empirical posterior
heatmap would display a clear, structured pattern: one bright (yellow) square per row
and one per column. In other words, each cluster should correspond predominantly to
a single class, and each class should be primarily captured by one cluster. This one-
to-one mapping ensures that the internal representations learned by the network can be
clearly linked to specific semantic categories, which is the core goal of concept-based
interpretability. This assumption holds when the number of clusters is set equal to the
number of classes (e.g., n = 100 in CIFAR-100). However, the same framework can be
adapted to different levels of abstraction. For example, if we choose n = 20 clusters
instead, and we’re working with the 20 CIFAR superclasses, each cluster would ideally
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Figure 3.11. Empirical posterior heatmap for layer features.5.conv.0.0

Figure 3.12. Empirical posterior heatmap for layer features.9.conv.1.0

represent a broader concept grouping around 5 fine-grained classes. In this case, the
clusters reflect more general, higher-level concepts rather than specific categories. This
flexibility in cluster count allows the method to scale concept granularity depending on
the interpretability goal: whether the focus is on precise class-specific patterns or broader
semantic groupings.

From the two empirical posterior heatmaps shown, we can clearly observe a difference
in how representative each layer is in terms of class-conditional clustering behavior.

27



• In the heatmap 3.11, corresponding to features.5.conv.0.0, the posterior dis-
tribution is very diffuse. Most values are low, and there are very few yellow
squares (values close to 1). The matrix lacks localized bright regions. This sug-
gests that the activations at this layer do not form well-separated, semantically
meaningful representations. The clustering likely groups noisy or overlapping
patterns, and the lack of dominant associations between clusters and class labels
confirms that this layer is not very useful for peephole extraction or interpreta-
tion.

• In contrast, the heatmap 3.12, corresponding to features.9.conv.1.0, shows a
much more structured and informative pattern. There are several bright, local-
ized regions, indicating strong and confident associations between certain clusters
and specific classes. This is a key property we want from layers used in peephole
extraction: clear mappings between unsupervised clusters and supervised labels.
The presence of well-separated, high-probability regions implies that this layer
encodes class-relevant structure in a way that is interpretable. Rather than rely-
ing solely on visual inspection of the empirical posterior heatmaps to assess layer
quality, we introduce a more objective, quantifiable approach by calculating two
key metrics: class coverage and cluster coverage.

Rather than relying solely on visual inspection of the empirical posterior heatmaps to
assess layer quality, we introduce a more objective, quantifiable approach by calculating
two key metrics: class coverage and cluster coverage. Class coverage measures the per-
centage of classes that are meaningfully represented by at least one cluster, while cluster
coverage measures the percentage of clusters that are meaningfully associated with at
least one class. These metrics are critical for interpretability: if a class is not represented
by any cluster, or if a cluster does not correspond to any class, it indicates a gap in the
model’s internal representation that undermines the goal of extracting meaningful, class-
aligned concepts.

To determine whether a cluster or class is "represented," we apply a probability thresh-
old of 0.8. Specifically, if no entry in a given cluster row of the empirical posterior exceeds
0.8, we consider that cluster non-representative. Likewise, if no entry in a given class
column reaches the 0.8 threshold, we conclude that the class is not being represented.
This criterion ensures that only strong, confident associations are counted, providing a
clearer and more rigorous basis for selecting layers suitable for peephole analysis.

We can observe interesting things on graph 3.13: On average depth-wise layers are
more representative in general than projection and expansion layers. This is not surpris-
ing, given their roles in the MobileNetV2 architecture.

Depthwise layers use a 3×3 kernel to slide over each channel, detecting local patterns
(edges, textures, etc.) in the H×W plane. Expansion/projection are 1×1 convolutions,
they only mix information across channels at a single spatial location and have no “reach”
into neighboring pixels.
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Figure 3.13. Class and cluster coverage of each layer in Mobilenet v2
(Using GMM with numberofclusters = 100)

Moreover, after expanding the channel count, depth-wise conv applies ReLU6 sepa-
rately within each channel so you get spatial feature extraction plus non-linearity per
channel. Expansion layer also has a ReLU6 after but only acts on the channel-pooled
activations at each pixel; projection skips non-linearity entirely to preserve information
[28].

This distinct roles of each layer within the bottleneck structure could likely explain
why depthwise layers tend to produce more class-relevant representations.

As we can see from Figure 3.13, the layer being close to the classifier does not mean
it’s necessairly more meaninful. MobileNetV2 is designed for efficiency, not just accuracy
which can lead to behaviors that differ from more conventional networks. This is why
MobileNetV2 presents a compelling test case for peephole analysis, as it evaluates whether
explainability methods can uncover meaningful representations in a model optimized for
doing more with less.

We can observe that middle layers are way less representative in comparison to early
layers and late layers. A possible explanation is the fact that small adjustments in lower
layers cause bigger effects than similar changes in higher layers. That’s because deeper
layers magnify alterations that happen early in the network, making lower-layer parame-
ters more influential in shaping the final output [34].

On the other hand, the closer you get to the classifier, the more specific and class-
discriminative the concepts become [35][36].

This helps possibly explain why the final few layers, particularly the last three or four,
are the most representative: they consolidate and refine the high-level features learned
throughout the network, aligning them closely with the output classes. These layers are
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where abstract patterns are translated into concrete decisions, making them especially
valuable for interpretability and concept-based analysis.

Moreover, interstingly, a layer’s coverage tends to align with its SVD profile. For
instance, the layer features.5.conv.0.0 displays a singular value spectrum indicative
of highly dispersed activations across many dimensions, an undesirable trait for peephole
extraction, as discussed in the 3.3 Subsection. Consistent with this, its empirical posterior
shows 0% coverage. In contrast, features.9.conv.1.0, which exhibited a more favorable
and concentrated SVD profile, achieves an average coverage of 27.5% (25% class coverage
and 30% cluster coverage), suggesting that its internal representations are more structured
and class-relevant.

Based on the coverage percentage of each layer, we exclude the ones with less than
5% average coverage. Leaving us with the layers of Table 3.1:

B1 features.1.conv.1
B2 features.2.conv.0.0, features.2.conv.1.0, features.2.conv.2,

features.3.conv.0.0, features.3.conv.1.0, features.3.conv.2
B3 features.4.conv.1.0, features.5.conv.1.0, features.6.conv.1.0
B4 features.7.conv.0.0, features.8.conv.1.0, features.9.conv.1.0,

features.10.conv.1.0
B5 features.11.conv.0.0, features.11.conv.2,

features.13.conv.0.0, features.13.conv.1.0
B6 features.14.conv.1.0, features.14.conv.2,

features.15.conv.0.0, features.15.conv.1.0,
features.15.conv.2, features.16.conv.0.0,
features.16.conv.1.0, features.16.conv.2

B7 features.17.conv.0.0, features.17.conv.1.0, features.17.conv.2
Last Conv features.18.0
Fully connected classifier.1

Table 3.1. Selected layers for peephole extraction (organized by Bottleneck)

So we selected 14 depth-wise layers, 8 expansion layers, 7 projection layers, the last
convolutional and the fully connected layer.

Now that we decided which layers we will perform the svd-based and the dimension,
its time for the next step: forming the peepholes.
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CHAPTER 4

Experimental Results

In this Section, we evaluate how conceptograms and superconceptograms behave un-
der different prediction scenarios. Using the CIFAR-100 dataset, we conduct experiments
at both the class level (100 classes) and superclass level (20 groups). The goal is to un-
derstand how the visual patterns in conceptograms reflect the network’s internal decision
process across varying conditions.

4.1. Conceptogram

We will now vizualize peepholes by experimenting with conceptograms: a diagram
where you can vizualize the concepts of each class that the network is capturing in its
layers when a certain sample is fed into the NN.

In our case, as shown in Figure 4.1, the y-axis represents the output classes of CIFAR-
100, while the x-axis corresponds to selected layers from MobileNetV2, with each column
representing a peephole: a compact representation of a neural network layer, formed by
clustering its reduced activation patterns. The colored regions indicate the strength of
association between each peephole and each class, based on the empirical posterior prob-
abilities. In simple terms, each rectangle shows how much that layer “lights up” for a
certain class. We also highlight the top-5 most activated classes, which are determined
by summing the peephole values across all layers for each class; the classes with the high-
est totals — the most “yellow” rows — reflect the ones most strongly activated by the
network, regardless of the final output. On the far right, a bar shows the final output
probabilities produced by the neural network’s softmax layer. To begin, we present an ex-
ample that illustrates how the conceptogram reveals the internal decision-making process
of the network. The visualization in Figure 4.1 shows how different layers of MobileNetV2
contribute to the classification of an image labeled as woman. The network correctly pre-
dicts the class woman with a high confidence of 95.66%, and the conceptogram helps us
trace how that decision is built layer by layer.

From left to right, the conceptogram shows the progression of activations across se-
lected layers, with each column representing a peephole (a compressed encoding of the
layer’s corevectors). The rows correspond to class concepts, highlighting how strongly
each concept is activated at each layer.
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Figure 4.1. Example of conceptogram of class woman and the correspond-
ing final outputs of the network
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One of the most important observations is that early layers in the network exhibit
relatively sparse and diffuse activations. These layers do not clearly differentiate the class
woman from other classes. This aligns with the known behavior of convolutional neural
networks: early layers tend to extract general-purpose features like edges and textures,
which are not highly class-specific.

As we move deeper into the network, we begin to see stronger and more focused acti-
vations, particularly in the final convolutional blocks and the classifier layer. In these late
layers, the woman class emerges as the dominant concept, with clear and concentrated
activations. This suggests that the network refines its understanding of the image pro-
gressively, arriving at a class-specific representation only near the output.

Interestingly, some related classes such as man, girl, boy, and baby, show moderate
activations in certain layers. These activations indicate shared visual features among these
classes, likely due to common facial or human characteristics. However, these signals are
eventually suppressed or overridden in the final decision, demonstrating that the model
is able to resolve the subtle differences that distinguish woman from these semantically
similar categories.

Overall, this visualization reinforces the notion that class-specific representations are
formed late in the network. It also illustrates the utility of SVD-based peepholes in in-
terpreting how individual layers contribute to a prediction. The conceptogram effectively
shows that while early layers provide general visual information, the decision-making
power of the network lies predominantly in its later stages, where abstract, high-level
features are assembled into a confident and correct classification.

Layer Selection and Its Impact on Interpretability

Next, we present two conceptograms: one only with the selected layers and another
with all layers of MobileNetV2. The goal is to assess whether removing certain lay-
ers (those with low representation) affects the interpretability of the network’s decision-
making process.

By comparing the two figures, we observe that the conceptogram with the selected
layers still captures the decision-making process effectively. The information lost from
the omitted layers appears to be minimal, and the overall interpretability remains intact.
The observation of this conceptogram and many others suggest that the removal of layers
with weak or diffuse representations may have been a sound choice, helping simplify the
visualization and preserving efficiency in our analysis.
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Figure 4.2. Conceptogram of the selected layers

34



Figure 4.3. Conceptogram of all layers of MobileNet

Conceptogram Analysis of High-Accuracy Superclass

In this experiment, we will select the superclass that the trained model predicts most
accurately, as indicated by the confusion matrix in Figure 3.6 of the Setup Section. No-
tably, the superclass tree is correctly predicted 429 times out of 500, representing the
highest accuracy among all superclasses.

We found it valuable to compare a correctly classified sample with a misclassified one
from this class to observe how the network’s internal representations differ in each case.

Despite both inputs belonging to the same high-accuracy class (trees), their internal
processing paths and final predictions diverge in informative ways.
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Figure 4.4. Conceptogram of a correctly predicted label of superclass trees

• In the conceptogram 4.4 (true label: palm_tree, predicted label: palm_tree), we
observe a strong and focused activation for the correct class beginning in the later
middle layers and becoming especially pronounced in the final layers. The most
dominant class concept (palm_tree) is clearly emphasized in one band of layers,
which appears to stabilize and solidify the correct prediction. The alignment of
this internal representation with the class label is consistent and almost no other
class concept competes significantly in terms of activation strength. This con-
ceptogram suggests that the internal features required to recognize a palm_tree
are clearly formed and resolved in the network.
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Figure 4.5. Conceptogram of a incorrectly predicted label of superclass trees

• In contrast, the conceptogram 4.5 (true label: oak_tree, predicted label: pine_tree)
shows a more dispersed pattern of activation. The activation patterns are more
distributed, possibly indicating less distinctive features in the sample itself, which
may have led the network to conflate it with another tree category. Despite
oak_tree being ranked first among the top 5 concepts based on internal ac-
tivations suggesting that it is the most prominent class within the layer-wise
concept distribution, the network ultimately predicts pine_tree with high confi-
dence (95.05%). This apparent contradiction highlights a subtle but important
aspect of how the peephole mechanism interacts with the network’s final decision
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logic. The conceptogram shows that oak_tree concepts are active across several
layers, particularly in the middle stages, yet the pine_tree concept becomes more
dominant and sustained in the later layers, especially as the output vector is
formed. This implies, in this particular case, that the network’s final output is
disproportionately influenced by late-layer features, which seem to confuse the
oak_tree sample for a pine_tree due to possibly overlapping visual characteris-
tics.

From these two examples, we can observe that correct predictions are associated more
with localized concept activation (a more distinctive continuous row), while misclassifica-
tions often result from overlapping representations that fail to distinguish the target class
cleanly (several distinctive non-continuous rows).

As a next experiment we will see how the network behaves in a low-confidence predic-
tion:

• The conceptogram 4.6, which has only 48.29% confidence, shows a much more
dispersed pattern compared to the higher confidence conceptograms. The acti-
vations are faint and scattered across many layers, and there is no clear cluster
of layers where the network consistently detects strong features. Additionally,
several other tree-related classes (forest, maple_tree and pine_tree) also have
moderate activation levels. This suggests that the network is not confident in
distinguishing the specific features that characterize a willow tree. Instead, it
activates a broader set of concepts that seem to overlap with other similar cate-
gories.

The key conclusion from these visualizations is that strong, localized, and class-specific
concept activations correlate with confident and interpretable predictions. Meanwhile,
scattered and ambiguous activations across multiple classes reflect uncertainty and se-
mantic overlap, revealing the challenge of fine-grained classification within the same su-
perclass.

4.1.1. Conceptogram Analysis of Low-Accuracy Superclass

As it was previously done, we will analyse 3 different conceptograms: a correctly and
incorrectly predicted sample’ conceptogram and a low-confidence predicted conceptogram.
But this time for the class that the networks get wrong more often. As indicated by the
confusion matrix in Figure 3.6 of the Setup section, the superclass “flower” is correctly
predicted 344 times out of 500, representing the lowest accuracy among all superclasses.

Once again we can observe a very clear difference between the correctly predicted
conceptogram and the incorrectly predicted.
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Figure 4.6. Conceptogram of a sample predicted with low confidence

• In conceptogram 4.7 (true label: sunflower, predicted label: sunflower), we see
a strong and focused activation for the correct class since very early layers, be-
coming especially pronounced in the final layers. The internal features required
to recognize a sunflower are clearly formed and resolved throughout the network.
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Figure 4.7. Conceptogram of a correctly predicted label of superclass flowers

• In conceptogram 4.8 (true label: rose, predicted label: orchid), the activation
patterns are more distributed between visually similar classes (where 4/5 corre-
spond to the same superclass). Comparing to the incorrectly predicted oak_tree,
it seems that the network is catching more similarities in low-level features (for
example curves or color pallet) while in the oak_tree case it has the rows more
highlighted in the mid to late layers suggesting that was confusing with other
classes because of more detailed concepts (like the type of leaf).

Now for the low-confidence prediction:
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Figure 4.8. Conceptogram of a incorrectly predicted label of superclass flowers

• The conceptogram in Figure 4.9 (true label: sunflower, predicted label: sun-
flower) with only 27.81% confidence, reveals a faint and scattered activation
profile. Notably, sunflower isn’t in the top-1 classes with the strongest concept
activations (1º: lobster), suggesting that the network is highly uncertain and
confused in this decision. In this case, MobileNetV2 appears unreliable, as the
internal representation offers little insight into how the model arrived at its pre-
diction, making the decision making process untrustworthy.
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Figure 4.9. Conceptogram of a low-confidence prediction of superclass flowers

Visualizing the highest and lowest accuracy superclasses allowed us to observe how
the network behaves under different conditions. These conceptograms revealed distinct
patterns in how information is represented and clarified how internal activations shift
across correct, incorrect, and uncertain predictions, highlighting useful behaviors that
support deeper interpretability. But what if, instead of analyzing the network across all
100 fine-grained classes, we looked at how it behaves over a broader, more abstract level?
In the next chapter, we introduce superconceptograms, based on the 20 superclasses
of CIFAR-100, to explore how the network organizes higher-level semantic categories.
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4.2. Superconceptogram

Building on the conceptogram analysis, we now extend our investigation to supercon-
ceptograms, which aggregate activations at the level of CIFAR-100’s 20 superclasses. This
broader view allows us to explore how the network organizes and represents more gen-
eral, high-level categories, and whether meaningful patterns still emerge when class-level
details are grouped.

Figure 4.10. Superconceptogram of superclass people using 20 clusters

• The superconceptogram 4.10 corresponds to peepholes created with 20 super-
classes rather than 100 fine-grained categories. This means that during the clus-
tering stage, the number of clusters used to build the empirical posterior was set
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to 20 rather than 100. Each cluster is therefore expected to capture broader,
more general patterns that align with these superclass categories.
Here, the network assigns the image to people with an even higher confidence of
99.71%, compared with conceptogram C. Here we can see a single more distin-
guishable line in the concept people. However, the global internal structure of
the activations is visibly more diffuse (more “colorful”). This blurring is likely
a reflection of the reduced cluster granularity. Each cluster now represents a
broader concept like people instead of woman, man, etc. These broader clusters
tend to overlap with more patterns in the data, and as a result, more regions of
the activation space may map to them.

The comparison reveals that reducing the number of clusters from 100 to 20 simplifies
the concept structure captured by the network. With 100 clusters, the representations
are sharper and more class-specific, enabling more refined understanding of the internal
decision-making. However, with 20 superclasses, the network seems to generalize more
confidently but at the expense of finer distinctions. This demonstrates a clear trade-off
between granularity and abstraction in Peephole’s interpretability pipeline: more clusters
lead to finer semantic resolution, while fewer clusters yield coarser but broader concepts.

4.2.1. Conceptogram Analysis of High-Accuracy Class

In this experiment, we will compare the conceptograms 4.4, 4.5 and 4.6 with their
respective superconceptograms and try to observe and interprete the difference of be-
haviour.

In the case of the palm tree, we observe a distinct difference in activation timing
compared to the respective 100-classes conceptogram.

• In the conceptogram 4.4, the concept of palm_tree becomes active relatively early,
around feature.13. Since palm _tree is a specific and narrow class, the network
could be relying on distinctive mid-to-deep features to trigger that concept with
a focused and early response. However, in the superconceptogram 4.11, where
palm_tree is grouped under the broader superclass trees, the activation occurs
much later in the network, around features.17. In this case, the concept only
becomes prominent in the final layers. This delay suggests that the network defers
the decision to classify an image as a generic tree until deeper layers where more
global and abstract features (like overall structure or silhouette) are aggregated.
In other words, when the network is asked to recognize a specific object like a
palm tree, it could make that decision earlier based on distinctive visual cues.
But when asked to classify something as broadly defined as tree, it may require
more contextual and complete information, which only becomes available in the
deeper layers of the network.

44



Figure 4.11. Superconceptogram of palm_tree

• In contrast, for superconceptogram 4.5, the model begins to associate the image
with the trees superclass at the same time or even earlier in the network, com-
pared with the respective conceptogram. This could be because oak trees have
a more archetypal tree shape and overall silhouette that’s more aligned with the
model’s general tree features learned during training. As a result, intermediate
feature maps already begin aligning with the trees superclass before the final
layers refine the prediction.

To summarize, the difference in recognition timing is likely due to oak trees resembling
the statistical average of trees more than palm trees do.
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Figure 4.12. Superconceptogram of oak_tree

The superconceptogram 4.13 exhibits a strong, coherent activation band across the
later layers of the model, with a much higher confidence (75% compared to 48%). In the
respective conceptogram, the model struggles to pinpoint subclass-specific patterns, and
the heatmap’s sparse highlights reflect uncertainty about which detailed characteristics
distinguish a willow. In contrast, in the superconceptogram, the network’s representation
of trees remains clear and consistent, suggesting that the model has learned a broadly
applicable, high-level concept of what constitutes a tree. This reveal that abstraction into
superclasses not only raised model confidence but also helped produce more interpretable,
stable representations; detailed subclasses, while potentially valuable for nuanced analysis,
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Figure 4.13. Superconceptogram of willow_tree

may remain diffuse and under-confident unless the network develops sufficiently special-
ized feature detectors.

These different experiments contrast highlights how the level of class granularity and
different visual features can affects both the timing and specificity of concept activation
within the network.

Superconceptogram Analysis of Low-Accuracy Class

Once again, we will compare the conceptograms 4.7, 4.8 and 4.9 with their respective
superconceptograms to observe and try interprete the difference of behaviour.
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Figure 4.14. Superconceptogram of sunflower

• In superconceptogram 4.14, we can see a similar behaviour to the palm_tree
case: Only the latest layers get really bright compared with the conceptogram
4.7 where the network brights up much earlier, around features.14. This can
indicate that the network also requires more contextual and complete informa-
tion to classify this image as flowers, which only becomes available in the deeper
layers, where more global and abstract features are captured.
Moreover, we can see that creates more colorful “confused” patches in several
other classes since collapsing to 20 superclasses probably distributs the model’s
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Figure 4.15. Superconceptogram of rose

attention among a few broad, overlapping concepts, as it was also observed previ-
ously in other cases. This could be the result of peepholes sharing its probability
mass among fewer overlapping classes.

• In superconceptogram 4.15, the concept flower is catched in early-mid layers
much more than in the corresponding conceptogram. This could be due to the
same reason explained earlier: it relies on general visual features that are shared
across many flower types. In the conceptogram 4.8, the network needs to extract
precise and detailed patterns to confidently distinguish it from similar classes like
rose or poppy.
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Figure 4.16. Superconceptogram of sunflower (low confidence case)

• In superconceptogram 4.16 we can easily observe a more distinct lighter line in
row flowers. Even tho the network gets the prediction wrong in the end, flowers
is the classes with the strongest concept activations, sugesting that the network is
capturing much more clear concepts related to flower compared with the respec-
tive conceptogram (Figure 4.9). This is another example of how transitioning to
20 broader concepts could help the network express its internal reasoning more
clearly and making it more robust. This reinforces the idea that superconcept-
level analysis can provide a more forgiving and interpretable view of the model’s
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internal state, especially in cases where class-specific distinctions are subtle or
easily confused.

This simplification from 100 classes to 20 superclasses led to more confident and clearer
concept activations, suggesting that peepholes become easier to interpret when aligned
with broader, more general categories.

To conclude the experimental results section, the conceptogram visualizations provided
valuable insights into the behavior of the network across different scenarios. However,
it’s important to emphasize that these observations represent possible interpretations,
not definitive explanations. In the field of explainable AI, there is an ongoing effort to
understand why models behave the way they do, but achieving complete certainty remains
out of reach. Explainability is ultimately about uncovering patterns, building intuition,
and visualizing the internal workings of a model as clearly as possible, even if we can
never fully explain every decision with absolute certainty. This is also why our thesis
contributes not only to explainability but to identifying potential untrustworthiness in
neural networks. When a model’s internal reasoning cannot be clearly understood (when
conceptograms fail to reveal how the network went from input to prediction) it raises
legitimate concerns about the reliability of its decisions. In such cases, as illustrated in
Conceptogram 4.9, the lack of interpretable structure makes it difficult to trust in the
model’s output. Therefore, conceptograms serve as a tool not just for interpreting neural
behavior, but for assessing the trustworthiness of the model itself.
That said, it’s important to recognize that the conceptograms shown in this chapter
represent only a subset of the network’s possible behaviors. Given the wide range of
classes, samples, and layer interactions, it’s not feasible to explore every individual case.
The examples presented here should be understood as illustrative cases and they are not
meant to generalize across all scenarios. As such, they offer a starting point for deeper
investigation, not a complete map of the network’s internal logic.
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Conclusion and Future Work

4.3. Conclusion

This thesis set out to explore whether meaningful interpretability could be achieved in
compact neural networks, using MobileNetV2 as a test case for the SVD-based Peephole
method. We focused on two main research questions: (1) Can we extract meaningful
information from such a compressed architecture? ; (2) How to choose the best layers to
extract information from?

In response to the first research question, our experiments showed that even in a
lightweight model like MobileNetV2, it is possible to extract meaningful, interpretable
insights into the network’s internal decision-making process. By analyzing the layer-
wise flow of class-related concepts, we could trace how abstract representations evolve
throughout the network.

These layer-wise compressed informations, or peepholes, were visualized using a tool
called conceptograms. Conceptograms proved effective in revealing how well each layer
captured concepts linked to specific output classes. We found that diffuse, scattered acti-
vations were often associated with low-confidence or incorrect predictions, while focused
and class-specific conceptograms tended to reflect high-confidence, correct predictions.

Further, we explored aggregating the 100 CIFAR-100 classes into 20 superclasses,
creating what is referred as superconceptograms. This simplification led to more confident
and clearer concept activations, suggesting that peepholes become easier to interpret when
aligned with more general categories.

Ultimately, beyond interpretability, conceptograms offer a means of assessing trust-
worthiness. If a conceptogram fails to reveal any coherent structure (if no meaningful
concept can be traced across layers) it signals that the model’s decision process is ef-
fectively a black box for that input. This lack of transparency undermines trust in the
model’s output. In this way, conceptograms not only provide insight but serve as a di-
agnostic tool for identifying untrustworthy or opaque predictions, aligning directly with
the goals of Explainable AI. This is particularly relevant for compliance with regulatory
frameworks such as the AIA, which emphasizes the need for transparency and account-
ability in high-risk AI systems. Methods like conceptograms help provide the type of
traceability and justification required by such legal standards.

To address the second question, we developed a strategy for layer selection based on
the Singular values profile and the empirical posterior matrix, which measures how well
each layer’s activations correspond to class-relevant structures. This analysis showed that
depthwise layers and layers near the classifier or early in the network tended to be the
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most representative in MobileNet V2. This likely a product of their unique role in the
Inverted Residual Block, compared to expansion and projection layers, which serve more
structural functions.

4.4. Future Works

While this thesis demonstrates the usefulness of conceptograms for interpreting neural
network behavior, several directions remain open for future exploration and improvement:

• The current evaluation relies heavily on visual inspection of individual concep-
tograms. While this offers valuable intuition, it is inherently subjective and does
not scale well. A promising next step would be to develop quantitative met-
rics for scoring or ranking conceptograms based on properties such as focus,
sparsity, class alignment, or consistency across samples. Such metrics would en-
able more rigorous comparisons across layers, architectures, or datasets.

• The current framework limits itself to class-based concepts, that is, concepts
tied to output classes or superclasses. While this provides a structured way to
interpret decision-making, it may overlook meaningful internal patterns that are
not necessarly aligned with classes. Future work could explore expanding
the analysis to include more abstract concepts which would allow for a richer
and more flexible framework, potentially revealing new insights into what the
network is really learning.

• Another important area for future research involves testing the robustness of
conceptograms under adversarial conditions. It would be interesting to study how
concept activations shift in the presence of adversarial attacks, and whether
conceptograms can help detect or defend against it.

In summary, future work should aim to move from interpretation to evaluation, broaden
the concept space beyond class labels, and investigate how this interpretability framework
behaves under adversarial stress, ultimately bringing concept-based explanations closer
to practical, trustworthy AI systems.
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APPENDIX A

Mobilenet Layer Organization

For simplicity the following tables demonstrate an organized view of every layer of
Mobilenet v2:

Bottleneck Repeats Inverted Residual Block name
B1 1 features.1
B2 2 features.2, features.3
B3 3 features.4, features.5, features.6
B4 4 features.7, features.8, features.9, features.10
B5 3 features.11, features.12, features.13
B6 3 features.14, features.15, features.16
B7 1 features.17
conv - features.18.0
fc - classifier.1

Table A.1. Inverted Residual Block Configuration: as in Figure 3.5,
Mobilenet has 7 bottlenecks (some of them are repteated several times), a
final convolutional layer and a fully conected layer.

Layer Name Layer Type Role
features.X.conv.0.0 Conv2d (1×1) Expansion Conv
features.X.conv.1.0 Conv2d (3×3) Depthwise Conv
features.X.conv.2 Conv2d (1×1) Projection Conv

Table A.2. Inverted residual block: composed by an expansion
layer, a depth wise layer and a projection layer. For example:
features.13.conv.1.0 is a depth wise layer in bottleneck 5.
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