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ABSTRACT Supporting ultra-reliable and low-latency communication (URLLC) is a challenge in current
wireless systems. Channel codes that generate large codewords improve reliability but necessitate the use
of interleavers, which introduce undesirable latency. Only short codewords can eliminate the requirement
for interleaving and reduce decoding latency. This paper suggests a coding and decoding method which,
when combined with the high spectral efficiency of spatial multiplexing, can provide URLLC over a fading
channel. Random linear coding and modulation are used to transmit information over a massive multiple-
input multiple-output (mMIMO) uplink channel, followed by zero-forcing detection and guessing random
additive noise decoding (GRAND) at a receiver. This work considers symbol-level GRAND, which is
a variant of GRAND that was originally proposed for single-antenna systems employing square M -ary
quadrature amplitude modulation, and generalizes it to schemes that combine spatial multiplexing with
any M -ary modulation method. The paper studies the impact of the orthogonality defect of the underlying
mMIMO lattice on symbol-level GRAND, and proposes to leverage side-information that comes from
the mMIMO channel-state information and relates to the reliability of each receive antenna. Additionally,
a lightweight membership test is introduced to reduce the number of error patterns that undergo full
membership tests, by making use of a row in the parity-check matrix that eliminates candidate error
patterns. All proposals reduce the decoding speed without compromising the decoding performance. The
proposed decoder operating at the symbol level, when combined with antenna sorting and syndrome-
constrained decoding, has the potential to reduce complexity by 90% when compared to bit-level GRAND
in some of the tested configurations.

INDEX TERMS Antenna sorting, constrained decoding, guessing random additive noise decoding
(GRAND), massive multiple-input multiple-output (mMIMO), random linear codes (RLCs), symbol-level
decoding, ultra-reliable and low-latency communications (URLLC)

I. Introduction
In addition to other crucial requirements for the sixth gen-
eration (6G) of wireless networks, such as low energy con-
sumption, high scalability, stability, security, and ubiquitous
connectivity, the physical layer of wireless communications
will have to significantly contribute to the goal of ultra-
reliable and low-latency communications (URLLC). To meet

the important requirements of applications like the industrial
internet of things (IIoT), virtual reality, or self-driving cars,
URLLC’s main objectives are to reduce latency to 1 ms while
concurrently guaranteeing at least 99.999% dependability
[1]. Using error-correcting codes with short codewords is
one way of achieving the sought low-latency objective,
because that allows to discard the interleavers that are
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typically employed in wireless links to make the errors look
independent and identically distributed (i.i.d.) [2]. However,
developing codes with large codewords was prioritized in
pre-5G systems to reach Shannon’s capacity [3], [4]. An
interest in codes from the 1960s, such as Reed-Solomon and
BCH codes, was rekindled, aiming at URLLC applications
[5]. While these codes can have short codewords, they only
exist for a limited number of code rates. Contrary to that,
random linear codes (RLCs) can be constructed with any
code rate, even though decoding long RLCs is impractical
[6].

It was previously known that short RLCs could be decoded
using trellis decoding [7]–[14] or information set decoders
[15], however, given the historical emphasis on capacity-
achieving codes (with long codewords), that path of research
seems to have been abandoned by the coding community.
Recently, noise-guessing decoding has been proposed as
a universal decoding technique for codes with moderate
length or sufficiently high rate, which are particularly suited
for wireless URLLC [16]. The method, known as guessing
random additive noise decoding (GRAND) allows maxi-
mum likelihood (ML) decoding with a considerably reduced
complexity, chiefly because it focuses on “decoding the
noise” rather than the codewords, by taking advantage of the
entropy of the noise being much lower than the entropy of the
codewords. The sole requirement is that a code membership
test exists to decide whether some word is a valid codeword.
Consequently, GRAND can perform ML decoding of binary
or nonbinary linear block codes (such as polar codes [17],
[18], BCH codes [18], [19], or Hamming codes) without the
need to compute a trellis or store a large table.

Also, GRAND opened doors to using RLCs, known to
be capacity-achieving in the asymptotic regime (i.e., with
infinite length codewords) in the binary symmetric channel
(BSC) [3], [4], and they also reach capacity in the finite-
blocklength regime [16], [20], [21], which is the regime
of interest for URLLC applications. Several recent research
works have shown that RLCs supersede the performance of
polar codes of the same length and rate in the classical case
[22], [23]. Most importantly, while off-the-shelf nonrandom
codes, such as polar codes, do not exist for any desired pair
of code length and code rate, one has great flexibility of
choice regarding the length and code rate when employing
RLCs with GRAND [2], [16], [24]. For higher spectral
efficiency, GRAND has been proposed in combination with
massive multiple-input multiple-output (mMIMO) in [23].
The ideas behind GRAND have also been adapted to allow
the decoding of quantum random linear codes in a practical
manner [25], [26], and also to decode quantum stabilizer
codes with a given structure (i.e., nonrandom known codes)
[27].

Several works have recently proposed enhancements to
reduce the complexity of decoders based on guessing tech-
niques. Guessing codeword decoding (GCD) is an ML
decoding algorithm [28] that orders error patterns based on a

newly defined metric that serves as a “soft Hamming weight”
for each candidate error pattern, and that allows them to be
sorted in decreasing probability; moreover, the decoder only
tests error patterns that have a given structure associated with
the systematic form of the code (which is always available
via Gaussian elimination). The ordered reliability direct
error pattern testing (ORDEPT) decoder [29] introduced
a technique to test error patterns that are at a Hamming
distance-one of a currently tested error pattern. This early
tests will change the optimal order of testing error patterns
and may lead to finding a codewords that is not the ML
solution. To compensate, the authors proposed populating a
list of error candidates that lead to valid codewords and only
make a decision in the end. In doing that, ORDEPT attains
ML performance, and outperforms both the (sub-optimal)
ordered reliability bits GRAND (ORBGRAND) [18] and the
even more complex first soft GRAND decoder [30]. Soft-
output GRAND (SO-GRAND) [31] employs a list decoder,
which also keeps track of the probability of the correct
ML codeword being in the accumulated list of candidate
codewords at any given moment, allowing to dynamically
adjust the list size by defining a threshold for that probability.
Symbol-level GRAND has been recently proposed in [32]
for single-input single-output (SISO) block fading channels,
of which the additive Gaussian noise (AWGN) channel is
a special case. Symbol-level GRAND attains significantly
faster decoding than the original bit-level GRAND. In [2],
the authors have suggested modifying GRAND to use knowl-
edge about the adopted modulation scheme for channels with
memory. Symbol-level GRAND takes a different approach:
it relies on a closed-form expression for the probability that
the input stream of bits contains a specific combination of
bit strings representing various constellation symbols. These
constellation symbols have different numbers of nearest and
next-nearest neighbors. When the transmission is done over
a block fading channel, the expression allows to order the
error patterns according to their likelihood.

With the aim of attaining the URLLC objectives, this work
proposes a transmission scheme that integrates RLC encod-
ing and symbol-level GRAND, aided by antenna sorting, into
a mMIMO spatial multiplexing system. Both zero-forcing
(ZF) detection and minimum mean square error (MMSE)
detection are considered, however, as it would be expected
in mMIMO setups, MMSE provides no benefit regarding
performance or complexity reduction in respect to the ZF
detection filter. While RLCs cater for the sought-after high
reliability and GRAND offers reduced decoding complexity,
mMIMO techniques enable high spectral efficiency through
spatial multiplexing. We explain that symbol-level GRAND
can be directly extended to mMIMO, if strong channel
hardening (CH) conditions are assumed. Furthermore, we
show that the considered mMIMO system can cope with
adverse CH conditions, if the symbols at the output of
the linear detector are ordered according to their reliability,
which can be derived from channel state information (CSI).
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The optimized re-ordering of symbols can be seen as an
antenna sorting problem. Antenna sorting has been known to
greatly impact the detection performance of MIMO systems
that use a small number of spatial streams. Optimal antenna
sorting strategies that rely on the notion of the effective
signal-to-noise ratio (SNR) of a stream at the output of the
MIMO detector [33], [34] have been devised for different
MIMO detection methods. For example, antenna sorting was
used to increase the performance of V-BLAST detectors [34],
or to simultaneously improve the performance and reduce the
complexity of sphere decoders [35]. Any extra information
regarding the a priori probability of the error patterns should
be used, and that concept is at the core of the proposals
in this paper. In this paper, we use the effective SNR after
ZF or MMSE detection filters as a sorting metric akin to
the reliability of the QAM symbols, which carry the bit
strings that build up the codewords. The proposed antenna
sorting method further reduces the complexity of symbol-
level GRAND. Moreover, we introduce a constraint based on
a carefully selected row of the parity-check matrix to discard
incompatible error patterns. While related ideas appear in
[36], [37], our method offers a simpler and more easily
implementable alternative with minimal modification to the
decoder, which, combined with antenna sorting, can reduce
the complexity by more than 90% in some configurations
when compared to bit-level GRAND.

In summary, the contributions of the paper are as follows:

1) Symbol-level GRAND, introduced in [32] for RLCs
combined with Gray-coded square M -QAM for trans-
mission over SISO block Rayleigh fading channels, has
been abstracted into a generalized framework that can
be applied to any M -ary modulation scheme for which
a constellation can be defined.

2) Antenna sorting has been proposed as a simple tech-
nique that can be easily integrated into symbol-level
GRAND to make it fit for MIMO channels. The sorting
that results from MMSE detection is compared with the
one arising from ZF detection, and it is shown that ZF is
capable of offering equal performance and complexity
reduction at any SNR in mMIMO scenarios.

3) A general bit-level lightweight membership test has
been developed that can be applied to any GRAND
decoder. A study of this technique is presented that
leads to finding the rules that maximize the number
of eliminated error patterns to be tested. This proposal
is combined with symbol-level sorted GRAND to filter
out a large number of considered error patterns that
would have otherwise been subjected to the standard –
more computationally intensive – membership test, thus
reducing the overall computational requirements of the
noise-guessing decoder.

4) The model of a system, which encompasses a transmit-
ter employing RLC encoding, M -ary modulation and
spatial multiplexing, a mMIMO channel and a receiver
that uses ZF or MMSE detection and GRAND, has

been created. It is shown that block error rate (BLER)
measurements have been obtained for the case when
the GRAND algorithm is either bit-level GRAND [16]
or symbol-level GRAND [32], and is optionally com-
bined with antenna sorting. The ideal case of perfect
channel hardening (PCH) has been used as a lower-
bound benchmark. The impact of the chosen GRAND
algorithm on complexity has also been investigated.

The paper starts by describing the system model in detail
in Section II. Section III shows how symbol reliability can
be obtained from CSI and how antenna sorting should be
implemented. Section IV generalizes symbol-level GRAND
for any M -ary modulation scheme and integrates it with
antenna sorting. Section V introduces a lightweight mem-
bership test that constrains the number of error patterns
queried by symbol-level GRAND and, consequently, reduces
computational cost. Section VI describes how symbol-level
GRAND can be adapted to Gray-coded square M -QAM
in the case of PCH, and discusses memory requirements.
Section VII shows performance and complexity results of
the proposed scheme, and Section VIII summarizes key
conclusions.

II. System model for coded massive MIMO
A coded uplink massive MIMO system is considered, mak-
ing use of an RLC encoder at the transmitter and symbol-
level GRAND at the receiver. A block of k information bits
is mapped onto a n-bit codeword and sent “over the air” via
spatial multiplexing, as illustrated in Fig. 1. This process may
be repeated when transmitting longer information streams by
dividing the bit stream into blocks of size k.

A. RLC encoding and spatial multiplexing with mMIMO
A block a of k i.i.d. information bits is linearly encoded
into a codeword xb of length n using a systematic binary
RLC with rate R = k/n, denoted by RLC (n, k). The RLC
(n, k) defines a codebook C with 2k = 2nR codewords of
length n, which constitutes a linear subspace of the discrete
vector space Fn

2 . Although the minimum Hamming distance
between two codewords determines the error correction
capability of (random or nonrandom) linear block codes
(LBCs) at high-SNR, in very noisy conditions the minimum
distance is not as relevant in determining the performance
of long RLCs. In fact, when the objective is to approach
the Shannon limit, the code needs to decode beyond the
minimum distance [38, Ch.13]. This work focuses on the
finite blocklenght, using short RLCs. The RLC (n, k) is
described by a random binary generator matrix M ∈ Fk×n

2 ,
which acts as the basis matrix for the code subspace, such
that C =

{
xb = aM : a ∈ Fk

2

}
. The generator matrix of

a systematic RLC is of the form M = [ Ik | P ], where
P ∈ Fk×(n−k)

2 is a random binary matrix, and Ik is the
k × k identity matrix responsible for the systematic part of
the encoding. The corresponding parity-check matrix will
take the form C =

[
PT | In−k

]
∈ F(n−k)×n

2 .
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The n bits, b1, . . . , bn, of a codeword are input to a M -
ary constellation. The mapper divides the sequence of n bits
into L strings of log2(M) bits, that is, L = n/ log2(M),
and maps the L strings onto L complex-valued symbols,
s1, . . . , sL, taken from the alphabet A ∈ C of the M -
ary constellation. The cardinality of A is |A| = M . We
denote the n-bit codeword and the sequence of L modulated
symbols by xb = [b1, . . . , bn] and xs = [s1, . . . , sL]

T ,
respectively. Furthermore, we denote by S(si) the string of
log2(M) bits that has been mapped onto symbol si. Thus, the
codeword xb can also be written as xb = [S(s1), . . . ,S(sL)].
If Eb represents the energy per information bit, then (k/n)Eb

is the energy per codeword bit, and log2(M)(k/n)Eb is the
energy per string of log2(M) bits, which also corresponds
to the energy per symbol, E{|si|2}.

The system can be designed to allow the transmission of
Nc codewords in each MIMO channel used. This implies
that, when a specific cardinality M is employed for the
modulation, the number of transmit antennas is NT = NcL.
Without loss of generality, and to keep the notation simple,
we will describe the system for Nc = 1, where one
MIMO burst transmitted from the NT antennas contains
one codeword only (i.e., NT = L). Later, in subsection B,
the generalization for Nc > 1 will be commented on. A
system with Nc < 1 can also be made operational by adding
buffers both at the transmitter and at the receiver, hence
creating a full separation between the mMIMO physical
layer and channel coding and decoding such that symbol-
level GRAND only starts decoding when the L symbols
corresponding to a codeword have been received.

The coded signal xs is transmitted over a MIMO Rayleigh
fading channel, characterized by the matrix H ∈ CNT×NR ,
where NR ≫ NT is the number of antennas fitted at the
receiver. The received signal ys = [y1, ..., yNR

]T is given by

ys = Hxs + n, (1)

where n = [n1, ..., nNR
]T is the additive noise. The entries

in both H and n are i.i.d. random variables taken from
complex normal distributions: the ones in H are taken from
CN (0, 1), and those in n are taken from CN (0, σ2

n ). The
noise power at each receive antenna is σ2

n = N0, where N0

is the unilateral power spectral density of the noise. In this
framework, the ergodic SNR per transmit antenna (i.e., per
layer) at the receiver is

snr ≜
E{|si|2}

σ2
n

= log2(M) (k/n) (Eb/N0) . (2)

The symbols in A are normalized to unit average energy,
so that E{|si|2} = 1, and therefore snr = 1

σ2
n

. The NT ×NR

matrix H remains constant during the transmission of xs but
changes independently from channel use to channel use.

B. Linear detection and symbol-level GRAND
The ZF and MMSE linear detection schemes are considered
[34], [39]. The first amounts to applying the Moore-Penrose
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FIGURE 1. System model for coded mMIMO URLLC.

pseudo-inverse

WZF =
(
HHH

)−1
HH , (3)

while the MMSE filter is given by

WMMSE =

(
HHH+

1

snr
INT

)−1

HH . (4)

In the ZF case one obtains at the receiver

WZFys = INT
xs +WZFn︸ ︷︷ ︸

u

, (5)

where INT
is the NT × NT identity matrix, and u ∈ CNT

denotes the new (now correlated) noise vector after ZF
filtering. Although the performance of ZF detection is rather
poor in symmetric MIMO, where NR = NT , it attains
quasi-optimal performance in highly asymmetric MIMO, for
example, when NR >> NT in an uplink scenario [39]. In
this scenario, which is considered in our system model, the
instantaneous SNR for each channel realization approaches
its ergodic value at each received data stream after ZF
detection. At the same time, the large value of NR boosts
the receiver array gain.

After applying WZF in (3) or WMMSE in (4), which can
both be abstracted to W, a quantization operation Q(·) is
made to the M -ary constellation to obtain the sequence of
detected symbols x̃s = Q(Wys) = [s̃1, . . . , s̃L]

T , which is
an estimate of xs corrupted by noise. The detected symbols
s̃1, . . . , s̃L are demapped to bit strings S(s̃1), . . . ,S(s̃L) and
reconstruct a word of n bits, denoted by yb. The relationship
between the reconstructed word yb at the receiver and the
codeword xb at the transmitter is yb = xb ⊕ eb, where eb is
the error pattern that has corrupted the transmitted codeword.
The operation ⊕ denotes modulo-2 addition.

The most common method of decoding LBCs, including
RLCs, is syndrome decoding, which makes use of the parity-
check matrix C ∈ F(n−k)×n

2 to generate the syndrome
s = Cyb ∈ F(n−k)

2 . Since all codewords verify s = 0, this
can be used as a simple membership test. Syndrome decoding
achieves ML decoding, but a lookup table is required for the
storage of possible syndromes and respective coset leaders.
For example, suppose that we wish to correct received words
that contain up to a threshold of wth bit errors. The number
of error patterns that need to be considered is given by∑wth

t=0

(
n
t

)
. However, the number of all possible syndromes

is 2n−k. For large values of wth and high code rates, that is
R → 1 and thus n → k, the relationship

∑wth

t=0

(
n
t

)
≫ 2(n−k)

holds, therefore the error correction capability of the code
is limited because a wide variety of error patterns result in
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the same syndrome. Choosing the coset leader associated
with each particular syndrome depends on side information
regarding the a priori probability of each error pattern.
Over AWGN, the chosen coset leaders should be the error
patterns with the lowest Hamming weight, which leads to
ML decoding.

In the proposed transmission scheme, the word yb is input
to symbol-level GRAND, which attempts to estimate eb
and infer xb using x̂b = yb ⊕ êb, where x̂b and êb are
estimates of xb and eb, respectively. The first k of the n bits
of the estimated codeword x̂b form the block of decoded
information bits â, as shown in Fig. 1.

III. Symbol reliability and antenna sorting
A. Effective post-processing SNR
After a ZF or MMSE filter, the decisions made by the
quantizer Q(·) to obtain x̂s are perturbed by the modified
noise vector u that appears in (5). One can show that the
output SNR after ZF or MMSE detection of the NT incom-
ing signals streams depends on the instantaneous channel
realization H in the following manner [33] [34, sec. 3.1.3 –
3.1.4]:

snr(ZF)
i =

snr[
(HHH)

−1
]
ii

=
1

[G−1]ii
snr = gi snr, 1 ≤ i ≤ NT

(6)

snr(MMSE)
i =

snr

[
(
HHH+ 1

snrINT
)−1

]
ii

− 1, 1 ≤ i ≤ NT .

(7)
In the ZF case in (6), the gi are defined as the inverses

of the elements in the diagonal of G−1, for i = 1, . . . , NT .
Note that G = HHH is the Gram matrix of the lattice
spanned by the columns of H (e.g., [40]). The value of each
gi in (6) should be as large as possible. In the case of a
diagonal G, that maximization happens for a G with large
diagonal elements. If the energy spills over the diagonal,
the elements in the diagonal get smaller due to energy
conservation arguments. This corresponds to having the off-
diagonal elements of G no longer close to zero due to
non-orthogonality of the column vectors of H. Note that
a different definition of snr is used in [33], but that does not
change the relation in (6).

Expressions (6) and (7) provide soft information about
the reliability of each detected symbol, given the one-to-
one relation between symbols and antenna streams. This
information will be central to sorting the received symbols so
that symbol-level GRAND can perform its guesswork of the
transmitted symbols starting from the least reliable symbol to
the most reliable one. While both expressions provide the ab-
solute post-processing SNRs at each antenna, only the rela-
tive information about their magnitude ordering is required as
a side information to be passed to the symbol-level GRAND
decoder. It is known that in highly asymmetrical mMIMO
configurations, MMSE delivers the same performance as ZF,
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matches between the ordered vectors defined by the sorting of the
antennas when using ZF detection and when using MMSE detection
filters. Different cases are represented for the configurations with
NT = 32 transmit antennas and a variable number of receive antennas,
NR. Simulation results obtained considering 5000 channel realizations at
each SNR (computed at each integer value of the dB horizontal axis).

while having a slightly more complex implementation. In
our proposed receiver, it is important to determine whether
the sorting provided by (6) and (7) has an impact on the
symbol-level GRAND decoding complexity. At high snr, (6)
tends to (7), and therefore the orders resulting from both
should be equal. However, when snr decreases, the sorting
orders could differ. The proportion of instances in which the
ordered vectors produced by ZF matched those generated by
MMSE was obtained and is shown in Fig. 2. The ordering
vectors generated by sorting snr(ZF)

i and snr(MMSE)
i for the NT

antenna streams, by means of (6) and (7), were compared
using 5000 channel realizations. The cumulative distribution
function (CDF) shows that both resulting orders are the same
at high SNR. As the SNR lowers, the ordered vectors start to
differ. The cliff region of the CDF curves can be displaced
to lower SNRs by applying an increasing number of receive
antennas. The SNR range presented in Fig. 2, as well as the
range of values for NT and NR, are covered in Section VII.

The sorting orders resulting from (6) and (7) are trivially
the same as snr → ∞ because (7) tends to (6). To investigate
how sorting is impacted for snr → 0, let us write the
denominator in (7) as

(
G + 1

snrINT

)−1
=

(
1
snr

(
INT

+

snrG
))−1

= snr (INT
+snrG)−1. Therefore, the first term

in (7), the one responsible for the sorting order, is
snr[

(G+ 1
snrINT

)−1
]
ii

=
1[

(INT
+ snrG)−1

]
ii

.

By using the Neumann series (INT
−G)−1 =

∑∞
k=0 G

k, for
low snr, one has (INT

+snrG)−1 = INT
−snrG+O(snr2).

Consequently, when snr → 0, the first term in (7) tends to an
identity matrix, turning equal all diagonal indexes i. Hence,
at low SNR, the ZF sorting will be defined by the gi gains,
while the MMSE sorting becomes irrelevant. In the mMIMO
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scenario, given that G → INT
, the same effect will occur

in ZF, eliminating the need for antenna sorting regardless
of the linear detector used (see Section III.C). For a given
snr, a larger NR gives rise to a more orthogonal channel
and therefore to a Gram matrix G that is closer to a scaled
identity matrix. In that case, the denominators in (6) and
(7) are more similar, leading to an increasing matching, as
observed in the results in Fig. 2.

This section established that antenna sorting using ZF is
equivalent to MMSE in mMIMO systems. For this reason,
expression (6) will be used for the calculation of the SNR at
the output of each receive antenna under the assumption of
perfect CSI. A derivation of (6) is presented in Appendix A.
The impact of imperfect CSI on the SNR expression is briefly
explored and discussed in Appendix B.

B. Lattice geometry with a finite number of antennas
The geometry of ZF detection fully determines its detection
performance. For ZF to approach ML detection using the
Voronoi regions of the underlying real MIMO lattice, it is
necessary that the so-called ZF detection region matches the
Voronoi region with a low discrepancy (e.g., [34]). This is
the fundamental cause for ZF detection becoming optimal
as NR increases. When NR → ∞ the lattice spanned by
the columns of H would be a perfectly orthogonal lattice,
and ZF would be optimal. Analytically, this effect can be
captured by measuring the effect of the effective noise u in
(5). The effect of the ZF filter on that noise power can be
tracked by considering the autocorrelation matrix of the new
noise u = WZF + n, calculated as:

Ru = E
{
uuH

}
= E

{
(WZFn) (WZFn)

H
}

= E
{
(WZFn)

(
nH(WZF)

H
)}

= WZFE
{
nnH

}
(WZF)

H = σ2
nWZF(WZF)

H ,

(8)

where the autocorrelation of the original Gaussian noise,
E
{
nnH

}
= Rn = σ2

n INR
, has been used. Replacing the

Moore-Penrose pseudo-inverse from (3) in (8), and using
the definition of the Gram matrix, it is possible to obtain

Ru = σ2
n

(
HHH

)−1
= σ2

nG
−1. (9)

From both (6) and (9), one can see that ZF detection
always causes noise enhancement in the case of real-world
channels (with a finite NR). The noise amplification of ZF
detection can be geometrically interpreted using lattices. Let
G = Z+ iZ denote the set of Gaussian integers. A complex
lattice is defined as Λ = {Hz : z ∈ GNT×1}. For a lattice ba-
sis H ∈ CNR×NT , the lattice has rank NT , and lives in a NR-
dimensional space. The volume of the fundamental region of
the lattice is vol(Λ) =

√
det (HHH) =

√
det(G). In the

case of square matrices, this simplifies to vol(Λ) = det(H).
In MIMO detection it is preferable to use the real-valued
equivalent lattice, defined as ΛR = {Hz : z ∈ Z2NT×1},
having rank 2NT , and living in 2NR dimensions. It uses the
equivalent real-valued basis H ∈ R2NR×2NT , constructed
from the complex basis H [34]. Noise amplification is
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FIGURE 3. Evolution of od(H) as a function of the number of receive
antennas. The blue dots indicate the operating points of the two systems
that will be assessed in Section VII that are closer to (but still far from) the
PCH regime. The shaded region corresponds to two standard deviations
of od.

reduced when a lattice’s fundamental region is closer to
orthogonal. To measure how orthogonal a lattice ΛR is, one
can use the so-called orthogonality defect (OD) [41], which
for a lattice spanned by a real basis H is defined as:

od(H) =

∏2NT

i=1 ∥H(:, i)∥
vol(ΛR)

. (10)

The value of od(H) is always greater than or equal to
one, and can only attain the unit if the columns of H
are orthogonal to one another. We now use this metric to
investigate how NR and NT influence the geometry of the
mMIMO lattice and, therefore, how far from optimal ZF
detection is. Fig. 3 shows how the OD evolves with NR, for
different values of NT . The figure shows the domain of NR

of more practical significance and an overlaid graph depicts
the OD asymptotic convergence to the unit value when the
number of receive antennas tends to infinity. The OD is
assessed by generating random samples of H, with its real
entries drawn from N (0, 1

2 ). This corresponds to generating
2NT random Gaussian vectors in a vector space of NR (real)
dimensions, with the dimension of the vector space being
much larger than the number of random vectors drawn (i.e.,
NR >> NT ). When this happens, those vectors are mutually
orthogonal with high probability. As expected, larger NT

necessitates having a larger NR in order to maintain the
same od(H) value, and as NR increases, the column vectors
of H tend to be mutually orthogonal.

C. Perfect channel hardening lower-bound
There is one specific (and ideal) circumstance in which noise
amplification is prevented: when all the column vectors in
H are mutually orthogonal. This occurs when NT is fixed
and NR → ∞, leading to the so-called channel hardening
effect [42]. For a geometric interpretation of this property,
one could consider NT random Gaussian vectors living in a
finite NR-dimensional space. With high probability any pair
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of the NT vectors will be orthogonal to each other. With
NR → ∞, this probability becomes 1. Let us consider a
finite NR and the special case of a channel matrix where
an ideal MIMO channel is formed, i.e., a case where all
columns of H are mutually orthogonal. In this case, the
Gram matrix, which comprises all inner products hH

i hj ,
i = 1, . . . NR, j = 1, . . . NT , becomes a diagonal matrix
of the form:

G =


∥h1||2 0

. . .

0 ∥hNT
||2

 = NRINT
, (11)

given that ∥hj ||2 =
∑NR

i=1 |hij |2 = NR, for all the NT vec-
tors. By replacing (11) in (8) one gets that the autocorrelation
of the noise after ZF, in the case of PCH, is

Ru =
σ2

n

NR
INT

, (12)

and the power of u comes as

∥u∥2 = Tr (Ru) =
σ2

nNT

NR
. (13)

It is now possible to establish the equivalent channel
model if the NT ×NR mMIMO configurations were to attain
PCH at those (finite) dimensions:

WZFys = INT
xs + u. (14)

In this scenario, one has NT independent parallel channels,
where the effective noise becomes again a vector of inde-
pendent Gaussian entries. Each of these NT components of
u has power |ui|2 =

σ2
n

NR
, shedding light on the benefit

of having a larger receiver array: with NR → ∞ there
is a regression to the mean, and the effective noise power
vanishes. Note that the snr in (14) is the input SNR, at each
receive antenna before any baseband processing takes place.
This asymptotic regime leads to a uniform post-processing
snr

(ZF )
i across the NT spatially multiplexed layers. In that

limit, the reliability of all symbols is equal, and therefore
sorting would bring no benefit.

IV. Generalized symbol-level GRAND with antenna
sorting
Symbol-level GRAND was originally proposed for a SISO
block Rayleigh fading channel [32], thus it cannot be directly
applied to a mMIMO system. Taking in consideration the
analysis made in the previous section, this section outlines
the principles of symbol-level GRAND, generalizes them for
any modulation scheme and describes how this method can
be integrated into the mMIMO setup by incorporating soft
information emanating from the ZF detector.

A. Sorting error patterns guided by the constellation
structure
As described in Section II, the n-bit codeword xb can be
expressed as a sequence of L strings, i.e., xb = [S(si)]Li=1,

where si is a symbol of the M -ary modulation scheme and
S(si) is the string of log2(M) bits that has been mapped
onto si. The demodulator outputs yb = [S(s̃i)]Li=1, where
the hard-detected symbols s̃1, . . . , s̃L are demapped onto
bit strings S(s̃1), . . . ,S(s̃L), respectively. The relationship
between S(s̃i) at the receiver and S(si) at the transmitter
is S(s̃i) = S(si) ⊕ ei, for i = 1, . . . , L, where ei is the
error string of length log2(M) that altered the i-th bit string
S(si). The received word yb assumes the form:

yb = [S(s̃i)]Li=1

= [S(si)⊕ ei]
L
i=1

= [S(si)]Li=1 ⊕ [ei]
L
i=1

= xb ⊕ eb, (15)

where eb = [ei]
L
i=1 is the error pattern that corrupted the

transmitted codeword xb. The objective of algorithms based
on GRAND is to obtain an estimate of eb, denoted by êb,
and then add it to yb to estimate xb, that is, x̂b = yb ⊕ êb
provided that x̂b ∈ C.

Bit-level GRAND [16] keeps generating error patterns êb
in descending order of likelihood until an error pattern that
satisfies the test yb ⊕ êb ∈ C is identified. The likelihood
of an error pattern is assumed to be a monotonically de-
creasing function of its Hamming weight. In order to reduce
complexity, bit-level GRAND introduced the notion of the
abandonment threshold wth. The generation of error patterns
is abandoned when all error patterns of weight less than or
equal to wth have been tested and a valid codeword has not
been found, i.e., yb ⊕ êb /∈ C for every ∥êb∥1 ≤ wth, where
∥êb∥1 denotes the Hamming weight of êb.

In symbol-level GRAND [32], the condition yb ⊕ êb ∈ C
is replaced by the equivalent expression [S(s̃i)⊕ êi]

L
i=1 ∈ C,

where êi is the i-th error string of the estimated error pat-
tern, i.e., êb = [êi]

L
i=1. Differently from bit-level GRAND,

symbol-level GRAND does not generate and verify every
realization of êb for increasing Hamming weight; instead, it
creates and tests only realizations of êb, which are composed
of error strings that are more likely to occur, as dictated by
the properties of the constellation diagram of the modulation
scheme and the method for mapping bit strings onto symbols.

The concept of symbol-level GRAND was introduced in
[32] through the lens of Gray-coded square M -QAM, as
the analysis and expressions therein were tailored to that
particular modulation scheme. In this section, we derive a
generalized expression for the probability of occurrence of
an error pattern when symbol-level GRAND is applied to any
M -ary modulation scheme. As in [32], we will initially study
the case where the L received symbols have been affected
by the same fading coefficient and, therefore, have the same
reliability. We will then present a simple add-on to symbol-
level GRAND to enable the decoding of symbols that have
different reliabilities, as in the considered mMIMO setup.

Let [L1 L2 . . . Lϑ] describe the structure of an error
pattern, where Lw denotes the number of error strings in the
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TABLE 1. Examples of error patterns with structure [L1 L2] for M = 16

and n = 16.

Structure
[L1 L2]

Examples of error patterns having structure
[L1 L2]

Weight
(L1 + 2L2)

[2 0]

Example 1: 0010− 1000− 0000− 0000

Example 2: 0000− 0001− 0001− 0000

Example 3: 0100− 0000− 0000− 0010

2

[0 1]

Example 1: 0000− 0011− 0000− 0000

Example 2: 0000− 0000− 1001− 0000

Example 3: 1100− 0000− 0000− 0000

2

[1 1]

Example 1: 0101− 0001− 0000− 0000

Example 2: 0100− 0000− 0000− 1100

Example 3: 0000− 0000− 0110− 1000

3

[2 1]

Example 1: 0000− 1000− 0011− 0100

Example 2: 0110− 0001− 0001− 0000

Example 3: 0010− 0000− 0100− 1010

4

error pattern that have Hamming weight w, for w = 1, . . . , ϑ,
1 ≤ ϑ ≤ log2(M) and

∑ϑ
w=1 Lw ≤ L. The Hamming

weight of the error pattern is given by
∑ϑ

w=1 wLw. Table 1
shows examples of error patterns of length n = 16 composed
of L = 4 error strings, each having length log2(M) = 4. For
clarity, error strings in an error pattern have been separated
by dashes. Error strings of weight up to ϑ = 2 are considered
in Table 1, thus the structure of an error pattern can be
summarized by [L1 L2]. For example, the three error patterns
listed at the bottom of Table 1 have structure [L1 L2] = [2 1],
i.e., each error pattern consists of L1 = 2 error strings of
weight 1 (displayed using blue typeface) and L2 = 1 error
string of weight 2 (rendered in red lettering). In all three
cases, the weight of the error pattern is L1 + 2L2 = 4.

If the fading coefficient of the channel is constant over a
block of L symbols, error patterns that have the same struc-
ture [L1 L2 . . . Lϑ], have the same probability of occurrence
denoted by P (L1, L2, . . . , Lϑ). Symbol-level GRAND relies
on an expression for P (L1, L2, . . . , Lϑ) to calculate the
likelihood of every possible structure – or every structure that
satisfies

∑ϑ
w=1 wLw ≤ wth if we wish to bound from above

the Hamming weight of the considered error patterns. Error
patterns are then generated and tested for each structure,
from the most likely structure to the least likely structure.

The error strings ê1, . . . , êL that compose an error pattern
do not take values uniformly at random, but depend on the
transmitted symbols s1, . . . , sL and the noise power that led
to the detection of symbols s̃1, . . . , s̃L at the receiver, given
that êi = S(si) ⊕ S(s̃i) for i = 1, . . . , L. To facilitate the
derivation of an expression for P (L1, L2, . . . , Lϑ), we:

• Define B neighborhoods for each symbol. Members of
a neighborhood of a symbol are other symbols of the
constellation diagram that are adjacent to that symbol
and have the same Euclidean distance from it.

• Define T types, whereby symbols of the same type
share the same neighborhood characteristics in terms of
size, Euclidean distance, and also Hamming distance.

Fig. 4 shows examples of neighborhoods and symbol types
for the 16-ary regular triangular QAM (TQAM) [43], [44],
also referred to as regular hexagonal QAM [45], and for
Gray-coded square 16-QAM. In the case of 16-ary regular
TQAM, the nearest neighbors of a symbol are equidistant
from that symbol and surround it, thus forming a single
neighborhood for that symbol (B = 1). Notice that if si
is transmitted and the detected symbol s̃i is in the neighbor-
hood of si, the Hamming distance between S(si) and S(s̃i)
corresponds to the Hamming weight of the error string êi.
Depending on the size of a neighborhood and the Hamming
distance between a symbol and each of its neighbors, the
16 symbols can be classified into T = 6 types. If each
type is arbitrarily assigned a unique number j ∈ {1, . . . , T},
then tj denotes the number of symbols of type j, where∑T

j=1 tj = M . For 16-ary regular TQAM, we have t1 = 2,
t2 = 2, t3 = 4, t4 = 2, t5 = 2 and t6 = 4. In the case of
Gray-coded square 16-QAM, the symbols that surround each
symbol can be divided into B = 2 neighborhoods based on
their Euclidean distance from that symbol. Each symbol can
then be categorized into one of T = 3 types, where t1 = 4,
t2 = 8 and t3 = 4, as illustrated in Fig. 4(b).

Using the concepts of neighborhoods and types, the prob-
ability that an error pattern or, equivalently, a sequence of L
error strings has structure [L1 L2 . . . Lϑ] can be expressed as
a function of the probability that L symbols classed into T
types are selected uniformly at random for transmission, L′

of them are received incorrectly, where L′ =
∑ϑ

w=1 Lw, and
the remaining L − L′ symbols are received without errors.
More specifically, we can write:

P (L1, L2, . . . , Lϑ) =

=
1

ML

∑
∑T

j=1 ℓj=L

{(
L

ℓ1, . . . , ℓT

) T∏
j=1

t
ℓj
j ×

×
∑

∑T
j=1 ℓ′j,0=L−L′∑T
j=1 ℓ′j,w=Lw

∀w∈{1,...,ϑ−1}

[
T∏

j=1

(
ℓj

ℓ′j,0, . . . , ℓ
′
j,ϑ

) ϑ∏
w=0

p
ℓ′j,w
j,w

]}
. (16)

The second line of (16) determines the fraction of se-
quences of L symbols, from a total of ML possible se-
quences, that contain ℓj symbols of type j, for j = 1, . . . , T .
Each of the ℓj positions in the sequence can be occupied by
any of the tj symbols of that type, resulting in t

ℓj
j possible

outcomes. The third line of (16) enumerates all possible ways
that ℓ′j,w error strings of weight w can change any ℓ′j,w of the
ℓj transmitted symbols of type j into a neighboring symbol
with probability p

ℓ′j,w
j,w , for j = 1, . . . , T and w = 0, . . . , ϑ.

An error string of weight 0 leaves a transmitted symbol
unchanged, thus the first condition

∑T
w=1 ℓ

′
j,0 = L − L′
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FIGURE 4. Constellation diagrams of (a) 16-ary regular TQAM and (b) Gray-coded square 16-QAM. In each case, every symbol has been classified into a
type based on the number of adjacent symbols, their Euclidean distance and their Hamming distance from that symbol. Symbols located at the same
Euclidean distance from a symbol compose a neighborhood for that symbol. Symbols connected by a single line are separated by a Hamming distance
of 1. The Hamming distance between symbols linked by a double line is 2. If a symbol is transmitted and a neighboring symbol is received, the
Hamming weight of the error string that altered the binary value of the transmitted symbol is equal to the Hamming distance of the two symbols.

ensures that the number of weight-0 error strings matches the
number of correctly received symbols. The second condition
requires that all error strings of weight w add up to Lw for
0 < w ≤ ϑ−1. Given the values of ℓ′j,0, . . . , ℓ

′
j,ϑ−1, the value

of ℓ′j,ϑ can be derived from ℓ′j,ϑ = ℓj − ℓ′j,0 − . . .− ℓ′j,ϑ−1.
Expressions for pj,w depend on the M -ary modulation
scheme. Section VI applies (16) to the case of Gray-coded
square M -QAM and provides expressions for pj,w.

Derivation of (16) assumed that received symbols have
the same reliability, which is the case when symbols are
transmitted over a SISO block Rayleigh fading channel. The
following section explains how CSI could guide symbol-level
GRAND in prioritizing error patterns of the same structure
when received symbols have different reliabilities, as in the
considered mMIMO scenario.

B. Sorting error patterns guided by CSI
In a non-ideal mMIMO scenario with od(H) > 1, the relia-
bility of spatial streams could vary significantly among them.
At the receiver, a first processing block should implement the
antenna sorting, as previously discussed in Section III.

Without loss of generality, we will discuss the case
with Nc = 1. This can be accomplished by inserting a
permutation matrix Π, which is a binary matrix whose
columns are all columns of the identity I but placed in a
different order. As it is well known, a permutation matrix is
always an orthogonal matrix, and its inverse is its transpose:
Π−1 = ΠT . These two matrices can be added before and
after symbol-level GRAND, as presented in Fig. 5. The
g1, . . . , gNT

gains in (6) are sorted in ascending order of
magnitude, and the corresponding permutation matrix Π is
created. The permuted symbols x̃

(Π)
s = x̃sΠ are fed to

symbol-level GRAND, which will now not assume that error
patterns of the same structure are equiprobable and test them

Error pattern
generation

Test




if
query next error pattern 




output

 

if

error pattern 

(a)

Error pattern
generation

Test




if

query next 

error pattern 




if
output

 (b)

FIGURE 5. Types of symbol-level GRAND: (a) symbol-level GRAND
proposed in [32], and (b) symbol-level GRAND with antenna sorting.

in an arbitrary order, as was the case in the previous section,
but will test them in decreasing order of likelihood.

In the general case with Nc > 1 codewords per MIMO
transmission, the set of the gi, for i = 1, · · · , NT = NcL, is
partitioned in Nc subsets and an independent sorting process
is applied to each one of those subsets. Note that, for a
faster overall decoding time, these sorting processes can be
implemented in parallel. Afterwards, each subset of L sorted
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Membership test

Compute list of [L1 L2  . . .  L  ]
symbol error structure as in (16)

Generate table of symbol error patterns

Yes

Replace         associated to
 the symbol error patterns

 
No 

 

(1:k)

No and  all structures 
[L1 L2  . . .  L  ] tested

       Sort         according to (6) or (7)

  

FIGURE 6. Symbol-level GRAND with antenna sorting after the
demodulation and detection stages. (The final output of the algorithm
makes use of MATLAB notation.)

symbols is passed on to the symbol-level GRAND, which
independently decode each one of these Nc codewords. Like-
wise the sorting procedures, the decoding of each codeword
can be performed in parallel, if further reduction of decoding
latency is paramount. This may be done at the cost of having
multiple symbol-level GRAND processors.

The flowchart of the proposed symbol-level GRAND with
antenna sorting is presented in Fig. 6 (for the Nc = 1 case).
The membership test creates a computational bottleneck
in the estimation process that can be remedied by the
introduction of a preliminary lightweight test, as explained
in the following section.

V. Lightweight membership test
Upon reception of yb, symbol-level GRAND with antenna
sorting generates error patterns in descending order of like-
lihood and, in theory, selects the first error pattern eb that
satisfies yb ⊕ êb ∈ C. In practice, yb ⊕ êb is not compared
against every codeword in C. Instead, the decoder calculates
the syndrome vector s = Cyb using C, i.e., the (n− k)×n
parity-check matrix of the (n, k) RLC. The algorithm in Fig.
6 keeps generating error patterns until an error pattern êb
that meets Cêb = s is found, which implies that yb ⊕ êb
is a member of C. In this section, we propose a lightweight
test, which requires the multiplication of a considered error
pattern with just one of the n−k rows of C. Only if this test
is passed, the product Cêb is calculated, thus constraining
the number of error patterns that are multiplied with every
row of C.

The proposed refinement takes advantage of the positions
of the non-zero elements in the syndrome. The positions in
s holding ones are referred to as flagged positions, which
correspond to the support of s, denoted by supp (s), and

𝐍red =

𝐧𝑢
𝑇

1 1 1 1 1 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 1 1 1 1 1 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 1 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 1 0 0 1 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

1 1 1 1 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

1 1 1 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

𝐍red =

1 1 1 1 1 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 1 1 1 1 1 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 1 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 1 0 0 1 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

1 1 1 1 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

1 1 1 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

1 1 1 1 1 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 1 1 1 1 1 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 0 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 0 0 1 1 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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||s||1 = 7 

Cred =

(b)

FIGURE 7. Example of the application of the lightweight membership test.
(a) Full parity-check matrix C with the syndrome’s flagged positions
marked by red arrows, associated to the flagged rows of C. (b) Reduced
parity-check matrix Cred, where row u = 5 is the most unbalanced row,
with |S(5)1 | = 4 and |S(5)0 | = 26.

their count is the Hamming weight ∥s∥1. The rows of C
corresponding to these flagged positions are extracted to
form a reduced matrix Cred. We use MATLAB notation to
denote the i-th row of Cred as Cred(i, :), for 1 ≤ i ≤ ||s||1,
and we define the set of ones, as the set of positions that
contain ones is the support of that row:

S
(i)
1 = supp (Cred(i, :)) . (17)

The weight of each row of Cred is ||Cred(i, :)||1 = |S(i)1 |. The
remaining positions in Cred(i, :), i.e., its positions containing
zeros, form the set of zeros of that row, denoted as S(i)0 . Note
that the union S

(i)
1 ∪ S

(i)
0 corresponds to all n positions.

Fig. 7 depicts an example, whereby an error pattern êb
produces the pre-computed syndrome s upon multiplication
with the parity-check matrix C, i.e., the error pattern êb
satisfies the membership test s = Cêb in Fig. 6 and will be
selected for the estimation of the transmitted codeword. The
red arrows in Fig. 7(a) identify the ||s||1 flagged positions in
s, which point to ||s||1 rows in the (n− k)×n parity-check
matrix C. These ||s||1 rows in C can be stacked to form the
||s||1×n matrix Cred, as shown in Fig. 7(b). In this example,
k = 10, n = 30 and ||s||1 = 7.

Let cTu = Cred(u, :) denote an arbitrarily selected row
of Cred. Based on the definition of Cred, if a candidate error
pattern êb satisfies the equality s = Cêb, the product Cred êb
will give the ||s||1 × 1 all-ones vector, hence the equality
cTu êb = 1 will also be satisfied. Conversely, if êb does not
satisfy cTu êb = 1 and, instead, results in cTu êb = 0, then it
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will fail the membership test s = Cêb. Therefore, the con-
straint cTu êb = 1 can be used as a lightweight test; only error
patterns that meet the constraint and pass the lightweight
test will be subjected to the membership test, whereas all
other error patterns will be filtered out. In the latter case,
the proposed constraint reduces the complexity associated
with the computation of Cêb from O((n − k)n) = O(n2)
to O(n), as multiplication is limited to a single row of C.

The search space of all error patterns of weight ||êb||1 that
will be considered for the membership test has size

(
n

||êb||1

)
.

Let α0 be the number of error patterns that result in cTu êb = 0
and will thus be eliminated by the lightweight test. On the
other hand, let α1 be the number of error patterns that
meet the condition cTu êb = 1 and, therefore, will pass
the lightweight test and undergo the membership test. The
relationship between α0, α1 and the size of the unconstrained
search space of all vectors of weight ||êb||1 is

α0 + α1 =

(
n

||êb||1

)
. (18)

To derive an expression for α0 and α1, the conditions for
cTu êb being 0 or 1, respectively, need to be first determined.

If we shift our attention back to Fig. 7(b), we will notice
that the product of the selected row cTu and the error pattern
êb is 1 because only one of the two positions in êb that
hold non-zero elements is in S

(u)
1 = {2, 3, 9, 22}. If the two

non-zero elements of êb occupied positions that were both
members of S(u)1 , or they both occupied any of the remaining
n − |S(u)1 | = 26 positions, the product would have been 0
and the lightweight test would have failed.

In general, an error pattern of weight ||êb||1 will fail
the lightweight test and will be eliminated from the search
space of the membership test, if an even number of non-zero
elements in the error pattern occupy any of the |S(u)1 | posi-
tions listed in S

(u)
1 , while the rest of the non-zero elements

occupy the remaining n − |S(u)1 | = |S(u)0 | positions. Hence,
the total number of error patterns that will be eliminated by
the lightweight test is given by

α0 =

ρup∑
ρ=ρlo

(
|S(u)1 |
2ρ

)(
n− |S(u)1 |
||êb||1 − 2ρ

)
. (19)

Expressions for the lower and upper bounds of the summa-
tion, i.e., ρlo and ρup, can be deduced from the conditions
0 ≤ 2ρ ≤ |S(u)1 | and 0 ≤

(
||êb||1 − 2ρ

)
≤ n− |S(u)1 | that the

two binomial coefficients in (19) are subject to. The upper
bound is defined by having no more ones to distribute among
the positions in S

(u)
1 or because there are no more empty

positions in S
(u)
1 to fill in with ones. Conversely, the lower

bound is related with the situation when very few ones are
placed in S

(u)
1 and the remaining ones exceed the number

of existing positions in the S
(u)
0 set. The interval where the

two ranges overlap determines the domain [ρlo, ρup] of ρ.

1 4 7 10 13 16 19 22 25 28 31
10
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Obtained through exhaustive search

Calculated using (16)

FIGURE 8. Number of error patterns that are eliminated by the lightweight
test, as a function of the weight of the selected row cT

u . Error patterns of
length n = 32 and weight 1 ≤ ||êb||1 ≤ 8 have been considered. Markers
(×) correspond to values obtained through an exhaustive search,
whereas solid lines ( ) correspond to values obtained from (19).

We obtain

ρlo = max

{
0,

⌈
|S(u)1 |+ ||êb||1 − n

2

⌉}
and

ρup = min

{⌊
|S(u)1 |
2

⌋
,

⌊
||êb||1
2

⌋}
,

where ⌈t⌉ and ⌊t⌋ are operators that round t up or down,
respectively, to the nearest integer.

Expression (19) has been plotted in Fig. 8 in terms of
|S(u)1 |, for 1 ≤ ||êb||1 ≤ 8 and n = 32. Similar trends emerge
for different values of n. An exhaustive search has also been
carried out to count all error patterns that do not satisfy
cTu êb=1, and compare the total with the value of α0 obtained
from (19) to visually confirm the validity of (19) in Fig. 8.
We can infer from the plotted curves that selecting a row
cTu out of the ||s||1 rows of Cred – not arbitrarily but based
on its weight – could maximize the value of α0. As shown
in Fig. 8, for even values of ||êb||1, choosing the row of
Cred with either the lowest or the highest weight, i.e., with
the greatest imbalance in the number of zero and non-zero
elements, will maximize the number of error patterns that
the lightweight test eliminates. The index u of this row can
be determined from

u = argmin
1≤i≤||s||1

{
|S(i)1 |, |S(i)0 |

}
= argmin

1≤i≤||s||1

{
|S(i)1 |, n− |S(i)1 |

}
, for ||êb||1 even.

(20)

If multiple rows have the same weight, a value for u is
selected at random from the tied candidates. On the other
hand, for odd values of ||êb||1, choosing the row of Cred
with the lowest weight has the potential to maximize the
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value of α0. In this case, the index u can be obtained from

u = argmin
1≤i≤||s||1

{
|S(i)1 |

}
, for ||êb||1 odd. (21)

The size of the constrained and, thus, reduced search space
of error patterns of weight ||êb||1 for the full membership test
can be derived from (18), if we solve for α1 and substitute
α0 with the sum in (19). Note that in the case of systematic
codes, due to the existence of n − k − 1 zeros in the In−k

submatrix in C, the most unbalanced row selected by (20)
often ends up corresponding to the row with the fewest ones,
selected by (21).

VI. Analysis in the perfect channel hardening limit
The system model considered in this paper and presented in
Section II focuses on Gray-coded square M -QAM. Symbol-
level GRAND with antenna sorting tests error patterns of
structure [L1 L2] and weight L1+2L2 ≤ wth. An expression
for the likelihood of a structure [L1 L2], which will be used
to order all structures prior to the generation and testing of
error patterns, can be obtained from (16) for ϑ = 2, T = 3,
t1 = 4, t2 = 4(

√
M−2), t3 = (

√
M−2)2 and L′ = L1+L2,

as follows:

P (L1, L2) ≈
1

ML

∑
ℓ1+ℓ2+ℓ3=L

{(
L

ℓ1, ℓ2, ℓ3

)
4ℓ1+ℓ2

(√
M − 2

)ℓ2+2ℓ3

×
∑

ℓ′1,0 + ℓ′2,0 + ℓ′3,0 = L−L′

ℓ′1,1 + ℓ′2,1 + ℓ′3,1 = L1

[
3∏

j=1

(
ℓj

ℓ′j,0, ℓ
′
j,1, ℓ

′
j,2

)
×

×
2∏

w=0

p
ℓ′j,w
j,w

]}
, (22)

which is in agreement with the expression derived in [32].
Exact and approximate expressions for pj,w in (22), for
j = 1, 2, 3 and w = 0, 1, 2, have been included in [32]
but are also listed in Table 2 for the sake of completeness.
They are all functions of the halfway Euclidean distance d′

between any two adjacent points along one dimension of the
constellation diagram at the receiver.

As explained in Section III, PCH is achieved when NT is
fixed and NR → ∞, which essentially reduces the mMIMO
channel into an equivalent non-fading AWGN channel. In
this case, the ergodic SNR is given in (2) and the noise
variance per dimension is σ2

n/2. Therefore, d′ assumes the
form:

d′ = d

√
snr√
0.5

= d
√
2 snr =

√
3 snr

M − 1
, (23)

where d =
√

3/ (2 (M − 1)) is the halfway distance be-
tween adjacent points along one dimension of the M -QAM
constellation diagram at the transmitter [46], [47].

Fig. 9 provides an example that demonstrates the memory
requirements of symbol-level GRAND. Lookup tables are
presented side by side for snr values ranging from 9 dB

TABLE 2. Expressions for the probability terms in (22). Function Q(z) ≜

(1/
√
2π)

∫ ∞
z

exp
(
−t2/2

)
dt is the tail distribution of the standard normal

distribution. Variable d′ is given by d′ =
√

3 snr/(M − 1).

p1,0 = (1−Q (d′))2

p2,0 = (1−Q (d′)) (1− 2Q (d′))

p3,0 = (1− 2Q (d′))2

p1,1 = 2 (1−Q (d′))Q (d′)

p2,1 ≈ [2 (1−Q (d′))Q (d′) + (1− 2Q (d′))Q (d′)]

p3,1 ≈ 4 (1− 2Q (d′))Q (d′)

p1,2 = Q2 (d′)

p2,2 ≈ 2Q2 (d′)

p3,2 ≈ 4Q2 (d′)
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FIGURE 9. Evolution of the ranking of the error structures, based on (22),
for NR → ∞, wth = 4 and an increasing value of snr.

to 27 dB in steps of 1 dB. Each lookup table contains all
possible structures for wth = 4, arranged in descending order
of likelihood as determined by (22). One lookup table is
required for each snr value in the range, since the ordering
of the error structures depends on snr. In this example, the
ordering of the error structures does not change for snr
values greater than 18 dB, therefore lookup tables beyond
18 dB can be omitted. Observe in Fig. 9 that 0 ≤ L1 ≤ 4
and 0 ≤ L2 ≤ 2, hence L1 and L2 can be represented by
3 bits and 2 bits, respectively. A structure [L1 L2] occupies
λ = 3 + 2 = 5 bits, each lookup table contains v = 8
structures, and a total of τ = 10 lookup tables are needed to
cover the range between 9 dB and 18 dB in steps of 1 dB.
Therefore, symbol-level GRAND will reserve λvτ = 400
bits of memory space in this example.

VII. Results
The performance and the decoding complexity of the con-
sidered system were evaluated through numerical simula-
tions. The number of codewords per MIMO channel use,
previously defined in Section II, is here set to Nc = 1.
In this setup, each codeword of n bits is transmitted in
“one shot”, using Gray-coded M -QAM over a mMIMO
channel with NT = n/log2(M) transmit antennas. Both
ZF and MMSE detectors have been assessed, using (3) and
(4) for filtering and (6) and (7) for antenna sorting. In
all considered system configurations, the curves obtained
using MMSE detection perfectly matched those obtained
using ZF detection, showing no advantage of MMSE over
ZF. In the high-SNR regime, both (4) and (7) converge
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with NT = 32 and NR = 100, and 16-QAM. The corresponding PCH lower bounds are also plotted.

respectively to (3) and (6). In the low-SNR regime, as seen
in Fig. 2, the different filters lead to different antenna sorting
orders. However, for a large number of errors in a codeword,
the error correction capability of the short codes does not
suffice to provide any complexity reduction. Consequently,
as MMSE does not offer an advantage over ZF in the
considered system model, only results for ZF detection are
presented in this section. Note that after the ZF detector,
antenna sorting involves the arrangement of the set of gi,
for i = 1, · · · , NT , in ascending order.

Two constellations were considered: 16-QAM and 64-
QAM. As the M -arity of the modulation grows, the number

of transmit antennas NT is decreased to accommodate the
same payload of n bits. The number of antennas was set to
NT = 32 for 16-QAM with a RLC (128, 103), and NT = 22
for 64-QAM with a RLC (132, 106), such that the code rate
R = k/n = 0.8 is kept constant. Three different values
for NR were tested for each M -arity: NR = 50, 100 and
200 for 16-QAM, and NR = 38, 69 and 138 for 64-QAM.
To make the comparison between 16-QAM and 64-QAM
fair, the number of receive antennas NR in each configura-
tion was chosen to yield similar load factors NR/NT , i.e.,
50/32 ≈ 38/22, 100/32 ≈ 69/22 and 200/32 ≈ 138/22.
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FIGURE 13. BLER performance (left) and decoding complexity (right) for different thresholds wth = 2, 3, for different decoders, using RLC (132,106),
with NT = 22 and NR = 34, and 64-QAM. The corresponding PCH lower bounds are also plotted.

The antenna sorting preprocessing can be used to improve
the decoding speed of symbol-level GRAND but also of
bit-level GRAND. After arranging the bit-stings S(s̃i) in
ascending order of likelihood, one can also apply the original
bit-level GRAND using its default flipping order for each bit.
However, this leads to sub-optimal performance, given that
the probability of the strings of log2(M) bits is being used
rather than the probability of the individual bits. We refer
to this decoding method as sorted-bit-level decoding. While
sub-optimal, this ordering performs a step toward optimal
bit ordering, and therefore reduces decoding complexity in
comparison to standard unsorted bit-level GRAND. After-

ward, decoding can be further accelerated by using the row
of the parity-check matrix conveying most information about
the errors’ location as a filter on the candidate error patterns
coming from the previous decoding steps as described in
Section V.

For clarity and completeness, Table 3 summarizes all the
labels that appear in the legends of the simulation figures.
Fig. 10, Fig. 11 and Fig. 12 illustrate the performance and de-
coding complexity results for 16-QAM, and Fig. 13, Fig. 14
and Fig. 15 show the performance and decoding complexity
results for 64-QAM. The block error rate (BLER) has been
used to evaluate the system’s performance as a function of
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Eb/N0, as it is commonly used in recent works evaluating
GRAND. The decoding complexity has been expressed in
terms of the expected number of membership tests needed
at each Eb/N0. All figures include the curves for uncoded
transmission, bit-level GRAND decoding, sorted-bit-level
decoding, symbol-level GRAND decoding, sorted-symbol-
level decoding, and sorted-symbol-level decoding with extra
“filtering” provided by the application of the lightweight
membership test. Each system configuration is assessed with
two different thresholds for the number of bits in error
in the error pattern, wth = 2, 3. The figures also include
performance and complexity results when using symbol-

level GRAND for PCH. Recall that, in the ideal scenario of
PCH, antenna sorting prior to GRAND has no impact on the
overall decoding complexity because all streams experience
the same SNR after ZF detection, as seen in (14).

As expected, the BLER performance greatly improves
as one tests error patterns with larger weights, but this is
achieved at the cost of a considerably larger number of
membership tests. When considering a given wth threshold,
the worst-case upper bound on the number of membership
tests occurs in the case of bit-level GRAND, which is∑wth

w=0

(
n
w

)
. The upper-bound value for wth = 2, 3 has been

plotted in the figures that show complexity results. The
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TABLE 3. Summary of the simulation curves presented in the figures.

Legend Description
Uncoded Baseline case without channel coding. Per-

formance reflects only MIMO detection.
Bit Conventional bit-level GRAND decoding

combined with ZF detection. The test error
patterns are generated at the bit level.

Bit, sorted Bit-level GRAND decoding assisted by an-
tenna sorting.

Symbol Symbol-level GRAND decoding (no sort-
ing). The test error patterns are generated
at the symbol level (i.e. strings of length
log2(M)).

Symbol, sorted Symbol-level GRAND with test error pat-
terns guided by the antenna sorting order.

Symbol, sorted, cTu Constrained symbol-level GRAND (sorted)
with the proposed lightweight membership
test based on the optimized row cTu .

Symbol, PCH Lower bound under perfect channel hard-
ening (PCH) assumption, where all spatial
streams are equally reliable and antenna
sorting brings no benefit.

results show that the average number of membership tests
is much lower than the upper bound for M = 16 with
NR = 200 and M = 64 with NR = 138. Nevertheless,
when the noise is too large, the decoding complexity can
get close to the upper bound due to the sheer number of
erroneous symbols. As one would expect, when the noise
vanishes, the average number of membership tests always
tends to be one; in that case, all the received words are valid
codewords and the only membership test performed is to
check, and confirm that the error pattern is êb = 0.

One should note that the BLER performance results
for bit-level GRAND, symbol-level GRAND, sorted-bit-
level, sorted-symbol-level, and sorted-constrained-symbol-
level decoding for the analyzed range of Eb/N0 are all
the same (all four curves overlap). However, the complexity
comparison illustrates that the sorting antenna schemes and
then symbol-level sorted with the lightweight test involving
hT
u remarkably outperform bit-level GRAND. The extra

complexity reduction added by the sorting preprocessing
becomes more significant when NR becomes smaller. This
is due to a less strong channel hardening effect so that the
equivalent SNR at each of the NT streams becomes more
uneven. As seen in the complexity results, the decoding time
is reduced by ≈ 80% when M = 16, and by ≈ 90% in the
system with 64-QAM.

VIII. Conclusion
This paper proposes a coded mMIMO transmission scheme
for high-throughput, high-reliability, and low-latency, in ac-
cordance to the URLLC desiderata. This is accomplished
using RLCs and ordered reliability symbol-level GRAND.
Symbol-level GRAND has been generalized from M -QAM
to any M -ary modulation scheme, and extended from SISO
channels to mMIMO channels.

When the channel conditions are far from ideal, the paper
shows that linear detectors can provide a soft-metric for
the reliability of each spatial stream, which in the proposed
setup corresponds to a symbol reliability. The orthogonality
defect of the mMIMO lattice is related to the variance of
the reliability of the symbols. The disparity between the
reliability of the symbols gets larger when NR decreases;
in that case, the proposed antenna sorting can provide a
significant reduction of the decoding complexity.

The results show that symbol-level GRAND provides
much faster decoding than the bit-level GRAND counterpart
in the same mMIMO setup, throughout the SNR range of
interest. The proposed antenna sorting mechanism further
speeds up the decoding process in scenarios where channel-
hardening is far from perfect. Furthermore, the error patterns
generated by the symbol-level decoder with antenna sorting
decoding stages undergo a “filtering” constraint based on a
partial membership test. This proposed lightweight member-
ship test employs a linear complexity constraint O(n), rather
than the quadratic one, O(n2), involved in a full membership
test. This technique has been optimized to maximize the
number of discarded error patterns. In the worst scenario
of “filtering” with a balanced row, half of the error patterns
are discarded.

Without performance degradation, the number of mem-
bership tests can be dramatically reduced when comparing
the results of the GRAND receiver combining symbol-level
GRAND, antenna sorting and the lightweight membership
test, with the results of using conventional bit-level GRAND.

Appendix: Antenna SNR with perfect and imperfect CSI
This appendix explores the impact of imperfect CSI on the
output SNR at each antenna stream for ZF. For a clearer
and more streamlined presentation, the derivation of (6) for
perfect CSI is first presented and a similar line of thought
is then followed to obtain an expression for the output SNR
in the case of imperfect CSI.

A. Perfect CSI
While the case with perfect CSI is well-known (e.g., [33]),
we start by deriving (6) with the aim of obtaining useful
equalities for the following subsection. Let us consider the
model in (5). After applying (3) (and dropping the ZF
notation), one gets Wy = x+Wn. The post-detection noise
covariance matrix is

Rn = E
[
WnnHWH

]
= WE

[
nnH

]︸ ︷︷ ︸
=σ2

n I

WH = σ2
nWWH . (24)

It is possible to show that, using (3),

WWH =
(
HHH

)−1
, (25)
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and therefore, considering E{|si|2} = 1, the resulting SNR
for the i-th stream is

snr(perfect CSI)
i =

1

σ2
n

[
(HHH)

−1
]
ii

=
snr

[G−1]ii
= gi snr.

(26)

B. Imperfect CSI
In the case of imperfect CSI, the estimated channel matrix
can be modeled as

Ĥ = H+Hε, (27)

where the elements of Hε are i.i.d. CN (0, σ2
ε). The received

signal can be written as

y =
(
Ĥ−Hε

)
x+ n. (28)

The detection filter constructed at the receiver will then be

Ŵ =
(
ĤHĤ

)−1

ĤH . (29)

Hence, the detected signal is

Ŵy =
(
ĤHĤ

)−1

ĤH
(
Ĥ−Hε

)
x+ Ŵn

= x− ŴHεx+ Ŵn. (30)

One has now to compute the power of the two noise terms,
starting by obtaining the correlation matrices

Rε = E
[
ŴHεH

H
ε ŴH

]
= ŴE

[
HεH

H
ε

]︸ ︷︷ ︸
=σ2

εI

ŴH

= σ2
εŴŴH = σ2

ε

(
ĤHĤ

)−1

, (31)

where the last equality uses (25). The covariance matrix of
the Ŵn noise term is obtained similarly to (24) and (25)

Rn̂ = E
[
ŴnnHŴH

]
(32)

= σ2
nŴŴH = σ2

n

(
ĤHĤ

)−1

. (33)

Therefore, the SNR for the i-th stream under imperfect
CSI is

snr(imperfect CSI)
i =

1[(
ĤHĤ

)−1

(σ2
ε + σ2

n )

]
ii

=

1
σ2

n

ĝ−1
i

(
1 +

σ2
ε

σ2
n

)
=

snr

ĝ−1
i (1 + σ2

εsnr)
, (34)

where snr = 1
σ2

n
. Also, ĝi = [Ĝ]ii, and Ĝ = ĤHĤ stands

for the imperfectly estimated Gram matrix.
Note that when σ2

ε = 0, one recovers (6), as in that case
ĝi = gi. The impact of a small σ2

ε on the ordering of the
antennas will be negligible, however for large perturbations
of the channel estimate, with σ2

ε ≫ σ2
n , the estimates in

(34) are defined by the random variables ĝi. While under
perfect CSI, the sorting order is deterministically obtained
from H, when only a very poor estimate of the channel is
available, the sorting becomes random. For near-perfect CSI,
the sorting order should be nearly identical or even equal
to the optimal order. The evaluation of how the decoding
performance is affected and how robust the complexity
reduction remains for a given level of CSI uncertainty is
suggested for future work.
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