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Abstract

As artificial intelligence (AI) technologies increasingly shape sustainability agendas, or-
ganizations face the strategic challenge of aligning Al-driven innovation with long-term
environmental and social goals. While academic interest in this intersection is growing,
research remains fragmented and often lacks actionable insights into the organizational
capabilities needed to operationalize sustainable Al innovation. This study addresses this
gap by exploring how knowledge-based organizational capabilities—such as absorptive
capacity, knowledge integration, organizational learning, and strategic leadership —sup-
port the alignment of Al initiatives with sustainability strategies. Grounded in the
knowledge-based view of the firm, we conduct a bibliometric and thematic analysis of 216
peer-reviewed articles to identify emerging conceptual domains at the nexus of Al, inno-
vation, and sustainability. The analysis reveals five dominant capability clusters: (1) data
governance and decision intelligence; (2) policy-driven innovation and green transi-
tions; (3) digital transformation through education and innovation; (4) collaborative
adoption for sustainable outcomes; and (5) Al for smart cities and climate action. These
clusters illuminate the multi-dimensional roles that knowledge management and organ-
izational capabilities play in enabling responsible, impactful, and context-sensitive Al
adoption. In addition to mapping the intellectual structure of the field, the study pro-
poses a set of strategic and policy-oriented recommendations for applying these capa-
bilities in practice. The findings offer both theoretical contributions and practical guid-
ance for firms, policymakers, and educators seeking to embed sustainability into Al-
driven transformation. This work advances the discourse on innovation and knowledge
management by providing a structured, capability-based perspective for designing and
implementing sustainable Al strategies.

Keywords: innovation management; knowledge management; artificial intelligence;
sustainability; organizational capabilities; Al-driven innovation; sustainable
development; strategic alignment
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1. Introduction

The pursuit of sustainability has become a strategic imperative for organizations nav-
igating an increasingly complex and resource-constrained global landscape. In parallel,
artificial intelligence (AI) technologies have emerged as powerful drivers of innovation,
enabling firms to optimize processes, enhance decision-making, and generate value across
environmental, social, and economic domains [1]. While Al holds transformative potential
for enhancing sustainability goals, its use often prioritizes operational efficiency —such as
optimizing inventory levels, transportation routing, and demand forecasting — potentially
sidelining the broader environmental and social considerations essential for long-term
strategic alignment [2].

This tension raises a fundamental challenge: how can organizations ensure that Al-
driven innovation meaningfully supports sustainability-oriented strategies? Addressing
this question requires moving beyond technical deployments and focusing instead on the
organizational capabilities that shape how technologies are selected, adapted, and inte-
grated with broader strategic aims [3].

In this context, knowledge-based organizational capabilities provide a valuable ana-
lytical lens. Grounded in the knowledge-based view of the firm, this perspective concep-
tualizes organizations as repositories and processors of knowledge, where competitive
advantage stems from their ability to create, integrate, and apply knowledge effectively
[4]. Capabilities such as absorptive capacity [5], knowledge integration [6], organizational
learning [7], and strategic leadership [8] are critical to enabling the translation of digital
innovations into sustainable outcomes.

These capabilities are not purely technological, but embedded in organizational rou-
tines, culture, and structures that facilitate knowledge flow and alignment between inno-
vation and strategy [9].

Recent developments in the AI-KM interface have sparked renewed debate on how
emerging technologies reshape the dynamics between explicit and tacit knowledge within
organizations. Building on Nonaka and Takeuchi’s SECI model (Socialization, External-
ization, Combination, Internalization), scholars have examined how Al— particularly gen-
erative Al—reshape the balance between explicit and tacit knowledge within firms. While
Al can accelerate the handling and recombination of explicit knowledge [10], the creation
and application of tacit knowledge remains largely dependent on human expertise, espe-
cially in contexts requiring social interaction, ethics, and judgment [11]. This reinforces
the need for hybrid, capability-driven approaches that combine the strengths of Al with
human sense-making in support of sustainability.

Despite growing interest in the use of Al for sustainability, the underlying organiza-
tional capability structures that enable its responsible and effective implementation re-
main underexplored [12]. Moreover, research at the intersection of Al, innovation man-
agement, and sustainability is fragmented, lacking an integrated framework that captures
how knowledge-based capabilities support the sustainable transformation of organiza-
tions [13].

To address this gap, this study investigates the knowledge-based capabilities that
enable the alignment of Al-driven innovation with sustainability strategies. Through a
bibliometric and thematic analysis of 216 peer-reviewed articles, the study identifies key
research trends and synthesizes five thematic clusters that together form a capability-
based framework for sustainable Al innovation. These clusters reflect diverse capability
domains, ranging from data governance and strategic leadership to collaboration, educa-
tion, and digital infrastructure.

Accordingly, the study addresses the following research question:
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What organizational capabilities are critical for aligning Al-driven innovation practices
with sustainability-oriented strategies?

In line with these questions, the study pursues the following objectives:

e Toidentify and categorize the organizational capabilities that support the alignment
of Al innovation with sustainability strategies;

e To articulate the role of knowledge management, leadership, and organizational
learning in enabling this alignment;

e To map and synthesize the main research trends and capability domains through
bibliometric analysis.

By addressing these objectives, the study contributes to the literature on knowledge
management, innovation, and sustainability by clarifying how knowledge-intensive ca-
pabilities serve as strategic enablers of responsible and impactful Al adoption. It further
offers a structured framework with practical relevance for organizations, policymakers,
and educators aiming to harness Al in support of sustainable transformation. Through the
application of VOSviewer and co-word analysis, this study not only maps the intellectual
contours of the field but also proposes strategic directions for research and practice.

2. Literature Review

In recent years, Al has emerged as a transformative force across industries and sec-
tors, offering unprecedented capabilities in data processing, automation, and decision-
making. Parallel to this technological acceleration, global concerns around sustainabil-
ity —encompassing environmental protection, social equity, and economic resilience—
have intensified, driven by the urgency of climate change, resource scarcity, and rising
inequality. The convergence of these two domains— Al and sustainability —presents both
immense opportunities and complex challenges. Grounded in the knowledge-based view
of the firm, this study assumes that organizations create value through their ability to ac-
quire, integrate, and apply knowledge. This theoretical perspective positions organiza-
tional capabilities—such as absorptive capacity, knowledge integration, and organiza-
tional learning—as critical enablers for aligning Al innovation with sustainability goals
[6].

The concept of Al sustainability-oriented strategies is gaining increasing attention,
reflecting efforts to explore how Al can contribute to sustainable development goals while
also considering the sustainability implications of Al itself. These strategies seek to lever-
age Al as a tool to support positive environmental and social outcomes and to promote
responsible design, deployment, and governance practices. Within this context, KM
emerges not just as a support mechanism, but as a central capability that enables organi-
zations to transform Al-generated data into meaningful strategic actions. Research
demonstrates that KM routines—such as knowledge codification, sharing, and applica-
tion—are key for embedding sustainability considerations across Al projects and enhanc-
ing green innovation performance [9].

Despite growing interest, the field remains relatively fragmented, characterized by
diverse conceptual frameworks, methodological approaches, and disciplinary perspec-
tives.

When viewed through a broad lens of sustainability, several key studies stand out
for their contributions to understanding its multifaceted dimensions. Bosi et al. [14] pro-
vide a comprehensive bibliometric review focused on the role of ESG factors in sustaina-
bility reporting, providing a detailed understanding of how environmental, social, and
governance considerations are embedded in organizational disclosures. One study [15]
presents a meta-synthesis of bibliometric reviews spanning the period from 1982 to 2019,
highlighting long-term trends that are essential for constructing robust definitions of
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sustainability. Meanwhile, Teh et al [16] adopt an accounting and governance perspective,
underscoring the relevance of institutional practices and regulatory frameworks.

When examining Al sustainability-oriented strategies, it is possible to identify a con-
nection between broader sustainability objectives and the role of AL In particular, the im-
pact of Al across various sectors highlights its diverse sustainability applications in areas
such as construction, transport, agriculture, health, water, and manufacturing [17]. These
applications demonstrate Al's functional contributions—from environmental monitoring
to circular economy solutions—spanning multiple domains.

Tabbakh et al. [18] propose a comprehensive framework for the adoption of Green
Al outlining concrete strategies that include optimization techniques, energy-efficient al-
gorithms, and consideration of lifecycle impacts. Similarly, Zejjari et al [19] present a bib-
liometric analysis of the Al—sustainability research landscape, emphasizing the im-
portance of optimization-by-design, lifecycle transparency, and algorithmic efficiency as
foundational principles. While technologies like large language models (LLMs) and deep
learning architectures promise gains in sustainability applications, their effective use de-
pends on organizational capabilities to evaluate, absorb, and govern these tools responsi-
bly. This highlights the strategic importance of knowledge-based enablers that ensure
alignment between AI deployment and long-term sustainability goals [2]. Some studies
also highlight the role of Al to promote Sustainable development goals (SDGs). Leal Filho
et al. [20] argue that Al plays a central role in promoting sustainable cities (SDG 11), high-
lighting applications such as energy management, waste management, traffic optimiza-
tion, and environmental sustainability. Nonetheless, those authors caution that ethical,
inclusive, and privacy-preserving implementation is essential for its effective use.

Complementing these perspectives, Valencia-Arias et al. [21] explore recent trends in
the sustainable Al literature and define a dual-scope framework that addresses the envi-
ronmental, economic, and social dimensions of Al’s sustainability.

Based on the literature, Table 1 comprehends a curated keyword lexicon for sustain-
ability to be included in Scopus query.

Table 1. Keyword lexicon for sustainability.

Keyword Example Use in Literature
Sustainability is increasingly embedded in Al strategies at the organizational level, requiring ca-
e 1 pabilities that align AI development with environmental and social priorities. Firms need to inte-
Sustainability

Sustainable devel-
opment goals
(SDGs)

grate sustainability goals into their digital innovation capabilities to remain competitive and
compliant [22].

Organizational adoption of Al for SDG alignment depends on strategic leadership and institu-
tional capability to apply Al in sectors like clean energy, education, and smart infrastructure [20].

Green Innovation

Green innovation, enabled by Al, is amplified by organizational capabilities such as technologi-
cal readiness and absorptive capacity. Firms with strong Al and knowledge-sharing cultures
show greater performance in sustainable innovation outcomes [23].

Circular Economy

Environmental Sus-
tainability

The transition to circular economy models requires Al-driven data capabilities combined with
strategic foresight and organizational learning, allowing firms to optimize reuse, recycling, and
material efficiency [24].

Achieving environmental sustainability through Al involves internal capabilities for cross-func-
tional integration, energy analytics, and dynamic resource allocation—enabled by Al systems
trained on sustainable objectives [25].

Al supports environmental governance when embedded within organizational routines that em-

Environmental Gov-phasize transparency, auditability, and stakeholder accountability. Capabilities in responsible

ernance

data use, ethical oversight, and real-time monitoring are essential for aligning Al with govern-
ance goals [26].
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Green Al

Responsible Al

Green Al, which prioritizes energy-efficient and environmentally aware Al development, is ena-
bled by organizational capabilities in sustainable computing infrastructure, carbon-conscious de-
sign, and internal R&D governance [24].

The operationalization of responsible Al depends on capabilities for ethical governance, stake-
holder engagement, and cross-functional alignment. Organizations must cultivate cultural and
procedural mechanisms to ensure that Al innovation contributes to sustainability and social eq-
uity [26].

Energy Optimiza-
tion

Al-driven energy optimization requires firms to develop capabilities in real-time analytics, de-
mand forecasting, and digital infrastructure integration. These are critical for improving energy
efficiency in operations and reducing organizational carbon footprints [27].

Net Zero

Renewable Energy

Achieving net-zero emissions through Al requires strategic capabilities in emissions accounting,
cross-sectoral Al integration, and long-term innovation alignment. Firms that invest in these ca-
pabilities can leverage Al to support sustainable industrial transitions [28].

In the context of renewable energy deployment, Al capabilities such as intelligent forecasting,
system learning, and adaptive optimization must be supported by organizational digital ma-
turity and cross-sector collaboration [27].

The growing integration between innovation and Al has driven the development of
conceptual frameworks that aim to organize key terms, concepts, and practices emerging
from this interdisciplinary field. The use of a structured lexicon of innovation and Al not
only facilitates communication among researchers and professionals, but also enables
more precise analysis of trends, patterns, and impacts of these technologies across do-
mains. Recent studies have applied bibliometric and semantic approaches to map key-
words, thematic categories, and relationships among core concepts such as data-driven
innovation, Al-powered entrepreneurship, ethical regulation, open innovation, and ma-
chine learning [29].

Moreover, the practical application of keyword extraction techniques, such as in the
study by Wang [30], associates the use of Al technologies with indicators of technological
innovation, demonstrating the relevance of lexical analysis in understanding the adoption
and impact of these tools in organizations. Petrescu et al. [31] propose a conceptual frame-
work for Al-based innovation in B2B marketing, organizing the lexicon around four ana-
lytical dimensions: IT resource environment, innovative actors, marketing knowledge,
and communication relationships.

From an ethical and methodological standpoint, Sriram [32] highlights the im-
portance of establishing clear terminologies to discuss the impacts of Al on academic writ-
ing, addressing concepts such as academic integrity, Al disclosure, and plagiarism detec-
tion, thereby reinforcing the need for a shared normative and interpretive vocabulary.

Recent research underscores the importance of policy-level strategies that integrate
Al into educational programs, emphasizing the need for multidimensional approaches
and practical recommendations to redesign graduate curricula for fostering sustainability,
innovation, and the essential skills required in an increasingly Al-driven future [33].

Finally, the application of a structured lexicon also proves relevant in the educational
context. The contemporary Al lexicon now systematically includes the terms Al Agents
and Agentic Al, as articulated by Sapkota et al. [34]. These authors provide a detailed
conceptual taxonomy distinguishing the two paradigms: Al Agents are modular systems
guided by LLMs and designed for goal-directed task execution, whereas Agentic Al rep-
resents a paradigm shift involving multi-agent collaboration, persistent memory, and dy-
namic coordination to accomplish complex objectives [34].

Therefore, the systematic inclusion and use of an innovation and Al lexicon in aca-
demic research is not only justified but essential for ensuring conceptual coherence, ana-
lytical clarity, and the replicability of studies in this rapidly evolving field. Thus, the lexi-
con for Al and innovation comprehends the terms included in Table 2.
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Table 2. Keyword lexicon for Al and innovation.

Keyword

Example Use in Literature

Artificial Intelligence (AI)

Al is widely acknowledged as a transformative general-purpose technology with sig-
nificant implications for addressing complex sustainability challenges across environ-
mental, economic, and social dimensions [35].

Al-Driven Innovation

Al-driven innovation encompasses the application of artificial intelligence to accelerate
sustainable product, process, and service development through advanced analytics and
automation [36].

Machine Learning

Machine learning models enhance sustainability efforts by enabling real-time predictive
capabilities in climate risk assessment, energy efficiency, and environmental monitor-
ing [37].

dhimanDeep learning

Deep learning techniques contribute to sustainable innovation by enabling sophisti-
cated data-driven modeling for complex phenomena such as energy optimization and
climate simulations [38].

Neural networks

Artificial neural networks are employed for intelligent pattern recognition and predic-
tive analytics in sustainability applications, including emissions forecasting and smart
infrastructure design [38].

Big Data analytics

Big data analytics is a critical enabler of Al-based sustainability by facilitating high-vol-
ume data processing, enhancing environmental decision-making, and detecting green-
washing in ESG disclosures [39].

Predictive analytics

Predictive analytics supports sustainable strategies by forecasting energy demand, opti-
mizing supply chains, and improving ecological resource allocation through Al-driven
insights [40].

Smart systems

Smart systems, powered by Al and IoT, facilitate adaptive infrastructure for sustaina-
bility by dynamically managing resources such as energy, water, and waste in real time
[41].

Knowledge management

Integrating Al with organizational knowledge management enhances absorptive capac-
ity and amplifies the firm’s ability to innovate sustainably and respond to environmen-
tal complexity [35].

Digital transformation

Digital transformation encompasses the strategic integration of digital technologies, in-
cluding Al to drive sustainable value creation and systemic organizational change [42].

Al capability

Al capability refers to a firm'’s technological readiness and absorptive competencies to
develop, deploy, and scale Al solutions aligned with sustainability objectives [36].

Organizational learning ca-
pability

Organizational learning capability serves as a moderator that enables firms to fully lev-
erage Al technologies for enhanced innovation performance in sustainability-oriented
contexts [43].

Generative AI (GenAl)

Generative Al offers potential for sustainable innovation through design optimization
and simulation, but also poses environmental concerns due to the computational inten-
sity of large-scale models [44].

Large language models
(LLM)

LLMs enable scalable natural language processing for sustainability reporting and pol-
icy analysis, though concerns persist regarding their energy demands and carbon foot-
print [44].

Agentic AI & Al agents

Agentic Al refers to autonomous systems capable of goal-directed behavior with mini-
mal human input, increasingly used to enhance sustainability in sectors like energy, lo-
gistics, and infrastructure [45].

Computer vision

Computer vision techniques are applied in sustainable domains such as satellite-based
environmental surveillance, biodiversity monitoring, and energy-efficient architecture
[38].

Natural language processing
(NLP)

NLP enables the analysis of sustainability discourse, stakeholder sentiment, and regula-
tory trends; however, it remains resource-intensive and requires greener Al infrastruc-
ture [37].
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Al &Innovation Elicit’ search query

lexicon

3. Methodology

This study investigates how Al-driven innovation can be effectively aligned with sus-
tainability strategies by identifying the knowledge-based organizational capabilities that
enable this integration. To achieve this, we adopted a mixed-methods approach that com-
bines bibliometric mapping with thematic synthesis, allowing for both quantitative anal-
ysis of research trends and qualitative interpretation of conceptual structures. While the
bibliometric component reveals the intellectual landscape of the field, the qualitative anal-
ysis enables the identification of core capability clusters related to knowledge manage-
ment (KM), organizational learning, and strategic leadership.

As academic interest in Al and sustainability continues to expand, the volume and
diversity of related publications pose challenges to manual review processes, which often
result in inconsistency and limited coverage. To ensure rigor and scalability, we employed
automated bibliometric tools to uncover patterns, extract thematic clusters, and construct
a structured framework of capabilities supporting sustainable Al innovation. The full re-
search design is outlined in Figure 1.

DX
——

Sustainability lexicon

ELICIT academic Applying the search queries

%

papers

NS '
Bibliometric data from N VOSVI ewer
\A

216 articles

Descriptive statistics of > Thematic clusters based
bibliometric indicators on abstracts

Figure 1. Research strategy —Workflow outlining the steps from identifying articles with Elicit to
bibliometric and thematic analysis for synthesizing results.
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3.1. Data Collection

To identify and organize relevant literature, we used Elicit, an Al-powered research
assistant designed to streamline evidence synthesis. For open-access articles, Elicit uses
the full-text content retrieved from papers; for others, metadata and abstracts are used as
the primary sources of information. Elicit significantly enhanced the efficiency and rigor
of the review process by automating repetitive screening tasks and facilitating both struc-
tured data extraction and synthesis. As a recognized and increasingly adopted Al tool in
academic research workflows, Elicit exemplifies how language model-powered systems
can streamline evidence collection, accelerate analysis, and support more scalable and re-
producible scientific inquiry [46].

Using the lexicon listed in Tables 1 and 2, an Elicit search query can be constructed
to retrieve documents that address both Al/innovation and sustainability aspects. The
query uses an AND to join the two thematic groups of keywords, and OR within each
group to include synonyms and related terms. To ensure the specificity and thematic ac-
curacy of the dataset, a deliberate strategy was adopted regarding the inclusion of acro-
nyms and full terms. Acronyms with high semantic ambiguity, such as “NLP” (Natural
Language Processing) and “ML” (Machine Learning), were excluded from the query in
their abbreviated form to avoid retrieving documents from unrelated fields (e.g., “Neuro-
Linguistic Programming” or “Maximum Likelihood”). Instead, we used the full terms to
improve precision. Conversely, acronyms with high disciplinary specificity and estab-
lished use, such as “LLMs” (Large Language Models), were included alongside their full
counterparts, as their usage is semantically consistent within the Al literature. This deci-
sion balances completeness with topical relevance and aligns with best practices in bibli-
ometric keyword design. The full query is presented:

(“artificial intelligence” OR Al OR ”Al-driven innovation” OR “responsible AI” OR
“green AI” OR “machine learning” OR “deep learning” OR “neural network*” OR
“predictive analytics” OR “smart systems” OR “knowledge management” OR “digital
transformation” OR “Al capability” OR “big data analytics” OR “generative AI” OR
“large language models” OR “"LLMs” OR “agentic AI” OR “Al agent*” OR “computer
vision” OR “natural language processing”)

AND

(sustainab* OR “sustainable development” OR “Sustainable Development Goals” OR
SDGs OR “green innovation” OR “circular economy” OR “environmental sustaina-
bility” OR “environmental governance” OR “net zero” OR “renewable energy”)

A total of 216 peer-reviewed articles were systematically selected and reviewed, with
the sample restricted to publications in Q1-ranked journals to ensure a high standard of
scholarly quality and academic rigor, given the well-documented advantages of Q1 jour-
nals in terms of citation impact, research excellence, and visibility, as emphasized in bib-
liometric studies [47]. The analysis focused on core elements extracted via Elicit: main
findings and discussion presented by the authors.

3.2. Text Mining and Co-Word Analysis

This study applies text mining techniques to extract latent structures and thematic
patterns embedded within the document corpus. As outlined by Calheiros et al. [48] text
mining facilitates the detection of recurring concepts through the analysis of word fre-
quency and co-occurrence. To ensure analytical relevance, preprocessing steps such as
stemming and stop word removal were implemented. Stemming reduces words to their
morphological root (e.g., “learning” becomes “learn”), thereby grouping semantically re-
lated terms. Stop word removal excludes generic or contextually redundant terms—such
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as “paper”, “study”, or frequently occurring domain-specific phrases like “artificial intel-
ligence” or “Al—to mitigate noise and enhance the clarity of the extracted themes.

The refined corpus formed the basis for a co-word analysis, a technique that identifies
semantic linkages between terms by examining their co-occurrence within the same doc-
ument, and organizes them into clusters to reveal conceptual structures. This analysis was
conducted using VOSviewer version 1.6.20 (released October 2023), which incorporates
recent algorithmic refinements while maintaining methodological principles detailed by
Eck and Waltman [49]. Several software tools are available for bibliometric and thematic
analysis, including Bibliometrix, CiteSpace, and SciMAT, each with distinct strengths in
data processing, visualization, and topic evolution mapping. In this study, we selected
VOSviewer because it offers robust algorithms for co-occurrence analysis and network
visualization, is widely adopted in the literature for mapping conceptual structures, and
allows for parameter fine-tuning (e.g., occurrence thresholds, relevance scores) that aligns
with our research objectives [50]. Alternative techniques such as Latent Dirichlet Alloca-
tion (LDA) or BERTopic offer probabilistic and transformer-based topic modeling, respec-
tively [51]. However, these models identify abstract topics rather than relational term net-
works. Since our objective was to map conceptual structures linked to capability domains,
VOSviewer’s co-occurrence clustering was considered more appropriate. While future
studies could benefit from triangulating these approaches, the present analysis achieved
sufficient granularity and interpretive clarity through VOSviewer alone.

3.3. Thematic Cluster Identification

VOSviewer employs natural language processing techniques—specifically leverag-
ing the Apache OpenNLP library —to construct network visualizations that map the co-
occurrence relationships among terms within the corpus. These network maps reveal clus-
ters of frequently co-occurring words, each representing a distinct thematic domain
within the broader research field. As highlighted by Eck and Waltman [49], this method
provides a more refined perspective on the structure of scientific literature compared to
traditional clustering approaches, capturing the complexity and interconnectedness of
topics.

In this study, we considered terms with a minimum frequency of seven occurrences
within the corpus. This threshold was selected to ensure the inclusion of conceptually
meaningful but potentially less frequent terms, particularly given that the corpus was de-
rived from the distilled content of each article, i.e., the main findings and author discus-
sions. Since these sections are inherently more concise than full texts, a lower frequency
threshold allowed for a more representative capture of relevant vocabulary without com-
promising analytical validity.

To further focus the analysis on the most significant terms, we restricted the co-oc-
currence mapping to the top 60% of terms ranked by relevance. This threshold follows the
default configuration and practical recommendations by the VOSviewer developers, who
suggest that selecting approximately 60% of noun phrases typically yields a meaningful
balance between relevance and coverage [52]. This empirical approach helps to filter out
overly generic terms while retaining the most informative ones for the field under study.
This filtering strategy ensured that the resulting network emphasized the most salient lin-
guistic patterns while maintaining a comprehensive view of the thematic landscape.
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4. Results and Critical Analysis
4.1. Insights from Bibliometric Analyses

The bibliometric analysis provides additional insights into the temporal evolution
and authorship patterns of the 216 articles included in the dataset, covering the period
from 2017 to early 2025.

The volume of publications in the field has grown steadily since 2017. The earliest
records in the dataset date from 2017 and 2018, with only one publication each year. A
first notable increase occurred in 2020, when output rose to 25 articles, followed by a con-
tinued upward trajectory. The year 2024 marked the highest number of publications, with
62 articles, representing a nearly 24-fold increase compared to 2017. The dataset also in-
cludes 10 articles published in the first months of 2025, indicating that scholarly interest
remains strong.

The analysis of source titles reveals that a limited number of journals concentrate a
significant portion of the publications. Specifically, seven journals account for more than
three articles each, together representing 100 of the 216 papers included in the dataset.
The journal Sustainability leads with 63 publications, followed by the Journal of Cleaner
Production (9 articles), Sustainable Development (8 articles), and Business Strategy and
the Environment (7 articles). Other relevant outlets are Technological Forecasting and So-
cial Change (5 articles), Heliyon (4 articles), and Energies (4 articles). This concentration
indicates that almost half of the research in the field is published in a small group of in-
terdisciplinary and sustainability-oriented journals, underscoring their role as central ven-
ues for debates on AL innovation, and sustainability.

The analysis shows that most publications were the result of collaborative research.
Out of the 216 articles, 183 (84.7%) were multi-authored, while only 33 (15.3%) were writ-
ten by a single author. Collaboration has been the dominant pattern across all years, with
its prevalence increasing over time. For instance, in 2020, single-authored articles repre-
sented 44% of publications, whereas in 2023 and 2024, they accounted for less than 10%.

The temporal distribution of authorship patterns reveals a shift towards larger re-
search teams in recent years. This suggests that collaboration has become an increasingly
important strategy for producing impactful work in the domain of Al-driven innovation
and sustainability. The sustained dominance of multi-authored papers aligns with
broader trends in interdisciplinary research, where complex topics often require diverse
expertise.

When considering citation impact, five journals stand out with more than 500 cita-
tions each within the analyzed dataset. Sustainability is the most cited outlet, with a total
of 3271 citations, confirming its prominence as both the most productive and most influ-
ential journal in this field. Nature Communications follows with 1674 citations, despite
having fewer articles in the dataset, reflecting the high visibility and citation impact of this
multidisciplinary journal. The Journal of Cleaner Production (1071 citations), Business
Strategy and the Environment (836 citations), and Technological Forecasting and Social
Change (787 citations) also show strong influence, underscoring the relevance of sustain-
ability, environmental management, and foresight studies in shaping the research agenda
at the intersection of Al and innovation for sustainability. Together, these journals demon-
strate that impact is not only concentrated in specialized sustainability outlets but also
spans highly ranked interdisciplinary platforms.

4.2. Thematic Clusters

The five thematic clusters identified form the conceptual foundation of a capability-
based framework for aligning Al-driven innovation with sustainability strategies. Each
cluster reflects a distinct yet interrelated set of organizational capabilities, offering insight
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sustainable manufacturing

social sustainability

smai city

into how firms operationalize knowledge, leadership, governance, and collaboration in
sustainable digital transformation (Figure 2).
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Figure 2. VOSviewer network visualization of ten thematic clusters in Al-driven environmental re-

search.

To support the interpretation of the thematic clusters identified through the co-oc-
currence analysis, a detailed characterization of each cluster was conducted based on the
most frequent terms. Table 3 presents the key terms associated with each thematic cluster,
along with their frequency of occurrence in the dataset. This allows for a clearer under-
standing of the conceptual focus of each cluster.

Table 3. Clusters’ characterisation.

Cluster Most Frequent Terms Number of Occurrences
data 37
governance 33
efficiency 27
decision making 17
1—Data governance and decision in- risk 16
telligence (in red) healthcare 15
blockchain 15
machine learning 14
potential 12
environmental impact 10
benefit 23
2 —Policy-driven innovation and policy 20
green transitions (in green) transparency 14
ai development 13
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energy consumption 13
ai model 12
energy transition 9
circular economy 9
education 37
transformation 26
3—Digital transformation through dlgltal. transfo.r mation 21
education and innovation (in blue) green innovation 19
agriculture 18
positive impact 11
government 10
adoption 33
digital technology 33
4—Collaborative adoption for sus- coll.aboratlon 32
tainable outcomes (in yellow) pohcymak.e%‘ 15
energy efficiency 11
country 10
social sustainability 10
SDG 33
IoT 26
energy 25
5— Al for smart cities and climate ac- smart city 13
tion (in purple) ai application 12
sustainable city 10
transportation 7
climate action 7

The first cluster, in red, (“Data governance and decision intelligence”) centers on data
management, decision-making efficiency, and risk governance. This cluster emphasizes
the critical role of organizational capabilities related to data management, operational ef-
ficiency, and informed decision-making in sustainability-oriented Al strategies. The five
most frequently occurring terms—data, governance, efficiency, decision making, and
risk —collectively unveiling a narrative: that aligning Al innovation with sustainability
depends not only on technological tools but also on the institutional capacity to manage
and govern information effectively. This is consistent with the knowledge-based view,
which emphasizes that dynamic capabilities such as knowledge integration and strategic
sensing are essential for navigating uncertainty and supporting data-driven strategic
alignment [53].

Indeed, the prominence of terms like data and governance within this cluster under-
scores the critical need for robust institutional structures capable of ensuring ethical data
use, regulatory compliance, and transparency —core principles for sustaining trust in Al
systems. This interpretation is reinforced by academics [54], which highlights how evolv-
ing data governance frameworks are essential for embedding Al into sustainability policy,
particularly through mechanisms that promote accountability and institutional oversight.

Closely related are the terms efficiency and decision-making, which reflect the in-
creasing use of Al to optimize organizational performance and responsiveness. For exam-
ple, Fan et al. [55] provide evidence of how Al and deep learning contribute to system-
wide efficiency and proactive risk mitigation, notably in areas such as healthcare and en-
vironmental monitoring. These applications are enabled by integrated data infrastruc-
tures and algorithmic decision-support systems that simultaneously enhance perfor-
mance and ethical stewardship. This dual benefit has also been highlighted in literature
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on Al-enabled decision intelligence, where performance optimization is linked with in-
creased agility and sustainability metrics [56].

Moreover, the inclusion of risk in this cluster signals a growing emphasis on resili-
ence-oriented planning and predictive analytics within sustainability contexts. Raman et
al. [57] illustrates this dynamic in the renewable energy sector, where real-time data flows
and Al-driven decision-making are essential to support adaptive learning and long-term
transitions. Together, these studies affirm the centrality of data governance, algorithmic
efficiency, and risk-awareness as interdependent enablers of sustainable Al deployment.

The second cluster in green, referred to as Policy-driven innovation and green tran-
sitions, underscores the strategic role of regulatory frameworks, technological develop-
ment, and environmental policy in shaping the application of Al for sustainability. The
five most frequently occurring terms in this cluster —benefit, policy, transparency, Al de-
velopment, and energy consumption—reveal a strong orientation toward institutional
structures and macro-level enablers that influence how organizations leverage Al to sup-
port sustainable transitions.

The emphasis on policy and transparency in this cluster highlights that organiza-
tional alignment with sustainability goals is deeply embedded in broader governance
structures and public accountability. Rather than occurring in isolation, sustainable Al
implementation depends on transparent, inclusive policy-making processes that define
the boundaries and incentives for innovation. Empirical evidence supports this argument,
showing that transparency mechanisms and Al policy co-design with stakeholders signif-
icantly improve both ethical compliance and long-term legitimacy of digital transitions
[58].

This is clearly articulated by Kulkov et al. [54], which review how regulatory frame-
works shape Al development for sustainability, particularly in high-impact sectors like
energy and transportation, where Al can serve as both an enabler and a risk.

Terms such as Al development and energy consumption point to growing awareness
of the environmental costs associated with digital technologies. Studies [59] responds to
this concern by proposing the concept of Green Al, which advocates for the design of
models that minimize energy use and computational demand. The study emphasizes that
embedding energy efficiency at the design stage requires not only technical innovations
but also strong policy support and cross-sectoral coordination. These efforts are especially
urgent given rising critiques of Al's environmental footprint, with calls for Green Al par-
adigms that integrate carbon accounting into AI model development and lifecycle evalu-
ation [60].

Meanwhile, the presence of the term benefit signals a shift toward pragmatic, out-
come-oriented thinking —where the integration of Al must deliver measurable economic,
environmental, or social gains. This logic is well illustrated in literature [61], which exam-
ines the interplay between circular economy strategies and Al deployment. The paper
shows how regulatory instruments and public incentives can unlock Al’s potential to gen-
erate concrete sustainability benefits across complex industrial value chains. Together,
these studies underscore how Al’s contribution to sustainability is contingent on robust
policy frameworks, environmental awareness, and a results-driven mindset.

The third cluster in blue, designated “Digital transformation through education and
innovation”, focuses on the enabling role of education, digital literacy, and green innova-
tion in promoting sustainability, particularly in sectors such as agriculture and supply
chains. The five most frequent terms in this cluster—education, transformation, digital
transformation, green innovation, and agriculture—reveal how knowledge-oriented and
sector-driven capabilities serve as fundamental levers for organizational alignment be-
tween Al and sustainable development goals. The prominence of education and digital
transformation within this cluster suggests that sustainable Al strategies extend beyond
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technical capacity —they require deep institutional and cultural commitments to continu-
ous learning and capability development. This view is supported by academics [62] which
emphasize that Al’s societal benefits —such as raising environmental awareness or foster-
ing responsible digital behavior—depend heavily on inclusive educational reforms and
inter-sectoral knowledge exchange. In particular, those authors highlight that sustainabil-
ity literacy and critical thinking must be embedded in education systems to guide ethical
engagement with Al technologies. This aligns with theories of organizational learning that
position education as a strategic lever for digital innovation and sustainability-oriented
adaptation.

In applied contexts like agriculture, the role of digital capability becomes even more
apparent. Studies [63] demonstrates that while Al offers pathways for greener farming
practices, its success is contingent on the institutional learning required to support local
adoption. Likewise, Mana et al. [63] find that Al-driven innovation in rural development
is most effective when accompanied by targeted educational programs that address struc-
tural barriers such as skill shortages and limited access to technology.

The cluster also reveals the importance of green innovation, reflecting the need for
organizations to align digital transformation with environmental performance. Guandal-
ini [64] supports this perspective by identifying education, innovation readiness, and
leadership as foundational elements in public and private sector efforts to integrate Al
into sustainability transitions.

Finally, the concept of transformation captures the broader systemic shifts—techno-
logical, social, and organizational —necessary to embed Al into long-term sustainability
strategies. As these studies show, institutions that invest in human capital, promote digital
literacy, and build innovation ecosystems are better equipped to drive the socio-technical
change that sustainable Al implementation demands.

The fourth cluster in yellow, “Collaborative adoption for sustainable outcomes”, em-
phasizes multi-stakeholder collaboration, technology adoption, and policymaker engage-
ment as key drivers of sustainability. The five most frequent terms—adoption, digital
technology, collaboration, policymaker, and energy efficiency —reflect a multidimen-
sional understanding of how organizational and cross-organizational capabilities enable
the successful deployment of Al in sustainability-oriented contexts. The prominence of
adoption and digital technology in this cluster highlights the pivotal role of absorptive
capacity and digital readiness as prerequisites for effective Al deployment. These organi-
zational capabilities determine the extent to which new technologies can be internalized,
contextualized, and scaled. Nti et al. [65] emphasize that successful digital adoption in
urban systems relies not only on infrastructure but also on participatory governance and
collaborative innovation ecosystems—factors that enable organizations to adapt Al solu-
tions to complex local realities. Such collaborative approaches are reflected in smart gov-
ernance models, where co-creation among actors leads to more resilient and context-sen-
sitive Al deployments [66].

This perspective is deepened by the recurring presence of collaboration and policy-
maker, which reflects the inherently relational nature of sustainability transitions. Rather
than emerging in isolation, Al innovations are shaped by coordinated efforts across gov-
ernments, businesses, and civil society. Vinuesa et al. [67] exemplify this by showing that
realizing Al's potential across 134 SDG targets hinges on strategic alliances between poli-
cymakers, researchers, and industry actors. Similarly, studies [20] underscore that regula-
tory coherence and shared long-term visions between developers and policy actors are
essential to scaling Al in domains such as energy, mobility, and infrastructure.

The inclusion of energy efficiency further grounds this cluster in measurable opera-
tional outcomes. Nti et al. [65] illustrate that gains in energy performance are maximized
when Al implementation is co-designed and continuously monitored by multiple
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stakeholders. Blasi et al. [68] reinforce this operational logic, showing that successful Al
uptake in low-carbon manufacturing depends on public—private co-investment and col-
laborative governance structures.

Moreover, Bibri et al. [69] highlight how collaboration in circular economy initiatives,
supported by shared data ecosystems, enhances both adoption rates and equity in sus-
tainability outcomes. Collectively, these findings suggest that Al-driven sustainability is
not just about technology—it is about building the institutional conditions for shared
ownership, responsive policy alignment, and multi-actor value creation. This cluster thus
foregrounds a capability set rooted in strategic collaboration, institutional coordination,
and inclusive governance as enablers of responsible and impactful Al adoption.

Finally, the fifth cluster, Al for smart cities and climate action, explores how Al ap-
plications —particularly in combination with Internet of Things (IoT)—are shaping sus-
tainable urban development, energy management, and climate-related interventions. The
five most frequent terms—SDG, IoT, energy, smart city, and Al application—highlight the
growing role of Al in transforming infrastructure, urban governance, and environmental
monitoring systems in pursuit of the SDGs. The prominence of SDG and smart city in this
cluster reflects a globalized sustainability orientation, where Al is not merely a technical
tool but a strategic enabler of long-term transformation at urban and regional levels. This
interpretation aligns with previous studies [67], which maps Al’s potential contribution
to 134 sustainability targets across the SDG framework —many of which are embedded in
urban infrastructure, transport, and energy systems. The study positions Al as a founda-
tional digital infrastructure layer capable of responding to complex sustainability chal-
lenges with data-driven precision.

The frequent co-occurrence of IoT and Al application points to the technological con-
vergence driving modern urban systems. Studies [70] provide empirical grounding for
this by showing how real-time data from interconnected devices enhances urban respon-
siveness —optimizing traffic flow, improving resilience, and reducing emissions in smart
city initiatives. However, the authors also stress that these technological benefits are fully
realized only when supported by institutional capacity and community engagement, re-
inforcing the importance of inclusive governance.

The presence of the term energy brings attention to Al’s dual role in optimizing con-
sumption and managing renewable energy sources. Academics [71] demonstrate how Al-
enabled energy management systems in buildings and utilities can predict demand, detect
inefficiencies, and significantly reduce energy waste and carbon output. Complementing
this, Singh et al. [72] examine AI’s role in urban mobility, emphasizing how intelligent
transport systems support low-carbon transitions by improving accessibility and reduc-
ing emissions across dense urban corridors. This reflects a broader movement toward Al-
augmented smart infrastructures where energy management systems serve as critical in-
struments for operational decarbonization [73].

Finally, Nahar [74] contributes a governance perspective by advocating for inclusive,
equitable AI design in smart cities. The study underscores that technological integration
must be paired with frameworks that ensure broad participation and climate justice, par-
ticularly in vulnerable communities.

Altogether, this cluster identifies a capability set centered on urban digital infrastruc-
ture, technological integration, and adaptive governance. Cities and organizations that
excel in deploying Al within smart city frameworks are those that combine real-time de-
cision-making with institutional coordination and alignment with global sustainability
goals—positioning themselves as leaders in digitally enabled, climate-resilient transfor-
mation.



Information 2025, 16, 987

16 of 26

Taken together, these five thematic clusters form a capability-based framework that
captures how organizational knowledge, leadership, collaboration, and governance inter-
act to support sustainable Al innovation.

4.3. Capability-Based Framework and Strategic Implications

Building on the thematic clusters identified through co-occurrence analysis, this sec-
tion synthesizes the conceptual insights into a capability-based framework that explains
how organizations can align Al-driven innovation with sustainability-oriented strategies.
While the preceding analysis mapped the intellectual landscape of the field, this section
translates these findings into a more actionable structure by categorizing key organiza-
tional capabilities and connecting them to strategic roles, themes, and practical implica-
tions.

Table 4 presents a synthesized overview of the five capability domains identified,
each representing a distinct cluster of organizational competencies that underpin the in-
tegration of Al and sustainability. The mapping between clusters and capability domains
was conducted through qualitative interpretation of the terms and thematic content of
each cluster. This interpretive analysis was grounded in the theoretical framework of or-
ganizational capabilities and aimed to synthesize how the identified themes align with
distinct capability areas discussed in the literature. These domains are not mutually ex-
clusive; rather, they form a mutually reinforcing system of capabilities. For instance, ca-
pabilities in data governance are complemented by those in collaborative innovation or
policy alignment, enabling a holistic and adaptive approach to digital sustainability trans-
formation.

The table also links each domain to its dominant capabilities (e.g., knowledge inte-
gration, absorptive capacity, strategic leadership), core strategic functions (e.g., risk miti-
gation, legitimacy building, policy responsiveness), and recurring thematic foci (e.g., ed-
ucation, smart cities, green transitions). This categorization helps clarify how different
types of capabilities contribute to innovation outcomes that are both technologically ad-
vanced and sustainability-aligned.

Table 4. Capability domains and their strategic implications for sustainable Al innovation.
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Taken together, these capability domains suggest that sustainable Al innovation is
not driven solely by technical infrastructure or algorithmic sophistication, but by the dy-
namic orchestration of knowledge-based, strategic, and relational competencies. These ca-
pabilities enable organizations to engage with uncertainty, align technological innovation
with institutional logics, and embed sustainability principles into everyday decision-mak-
ing.

Importantly, the findings imply that capability-building should be seen as a multi-
level endeavor —requiring investment not only in digital infrastructure, but also in edu-
cation, leadership development, policy alignment, and inter-organizational collaboration.
Organizations must thus shift from isolated technological experimentation to systemic in-
novation models grounded in absorptive capacity, strategic foresight, and collaborative
governance.

This integrative framework offers a conceptual bridge between the bibliometric find-
ings and practical recommendations, helping both scholars and practitioners to better un-
derstand where, how, and why specific organizational capabilities matter in the pursuit
of sustainable, Al-enabled innovation.

5. Practical and Policy Recommendations

This section translates the capability-based framework into a roadmap of practical
and policy recommendations. Rather than remaining at the conceptual level, the roadmap
organizes the findings into concrete steps that organizations and ecosystems can follow
to guide the responsible and sustainability-oriented adoption of AL

5.1. Practical Recommendations for Organizations and Ecosystems

The capability-based clusters identified in this study yield critical insights into how
organizations can pragmatically align AI deployment with sustainability objectives. Be-
yond technological investment, firms must develop human, relational, and institutional
capabilities that support ethical, adaptive, and collaborative innovation.

For instance, Cluster 1 highlights the strategic importance of robust data governance,
risk-informed decision-making, and ethical Al deployment. These capabilities are essen-
tial for high-stakes sectors such as healthcare, energy, and logistics, where both opera-
tional performance and reputational risk are tightly coupled with data integrity and algo-
rithmic transparency.

Cluster 2 illustrates that policy literacy, regulatory foresight, and institutional trans-
parency are necessary conditions for sustainable AI development. Organizations must not
only comply with existing frameworks but also co-evolve with them. This calls for public-
private co-creation mechanisms and adaptive regulatory models that balance innovation
with social accountability.

Cluster 3 emphasizes the role of organizational learning and multi-actor innovation
ecosystems. Universities, professional training institutions, and employers must collabo-
rate to foster Al readiness, sustainability literacy, and green innovation. This is especially
relevant in sectors like agriculture, supply chains, and public services, where AI can un-
lock sustainability gains but also risks reinforcing existing inequalities if skills gaps per-
sist.

Cluster 4 shows that strategic collaboration and stakeholder alignment are key ena-
blers of sustainable Al adoption. Institutions must cultivate the relational capacity to op-
erate within complex innovation ecosystems, establishing trust-based partnerships across
sectors and governance levels. Co-creation and participatory design processes emerge as
necessary conditions for context-aware deployment.

Finally, Cluster 5 calls attention to the infrastructure-level capabilities required for
Al integration in smart cities, climate action, and energy management. This includes not
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only technological integration (e.g., IoT, real-time data) but also cross-departmental coor-
dination, real-time monitoring, and alignment with global SDGs.

To support systemic transformation, a cycle of capability-building interventions is
proposed, emphasizing both organizational and ecosystem-level action (Figure 3).

Launch challenge grants

—

Governments initiate funding for Al projects with climate impact

Upskill workforce

Enhance digital and sustainability skills through training

Establish living labs

Create collaborative spaces for Al experimentation

Implement Al literacy programs

Build community awareness and engagement with Al

Conduct digital audits

Assess digital maturity and resource efficiency for SMEs

Develop Al testbeds

Provide safe environments for Al model testing

Integrate Al criteria

Prioritize climate-aligned Al in government contracts

NN Y N Y D

Figure 3. Strategic interventions for Al integration in sustainability transitions.

First, governments should launch challenge grants that prioritize Al projects with
measurable climate impact, particularly in sectors like energy, transport, and agriculture.
These funding schemes can incentivize responsible Al development and accelerate sus-
tainability transitions. Second, it is essential to upskill the workforce by enhancing digital
and sustainability-related competencies. This involves expanding access to training in
green Al, data governance, and ethical technology use —especially through micro-creden-
tials and voucher-based programs delivered in partnership with universities and profes-
sional bodies.

Third, organizations should establish living labs within academic institutions and
local innovation ecosystems. These collaborative spaces facilitate joint experimentation
among students, researchers, public agencies, and companies, enabling real-time learning
and feedback in Al deployment for sustainability. Fourth, Al literacy programs should be
implemented at the community level to build awareness and engagement around Al ap-
plications. These initiatives must focus on accessibility and relevance, targeting educators,
public servants, and underserved communities, and promoting responsible use of Al in
daily life. Fifth, digital audits should be conducted to help SMEs assess their digital ma-
turity and identify opportunities for resource efficiency through Al These audits can be
coordinated through national services and delivered with the support of students and re-
gional innovation agencies.

Sixth, Al testbeds must be developed to provide safe environments for experimenta-
tion in high-impact sectors. These controlled spaces allow for the testing of Al models in
real-world conditions, supporting regulatory innovation, public—private data sharing,
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and sectoral adaptation. Finally, it is crucial to integrate Al criteria into public procure-
ment frameworks, ensuring that climate-aligned, transparent, and energy-efficient Al sys-
tems are prioritized in government contracts—particularly in areas such as infrastructure,
mobility, and urban planning.

5.2. Policy Recommendations for Sustainable Al Innovation

The findings of this study carry significant implications for the design and govern-
ance of national and international policy frameworks aimed at aligning Al with sustaina-
bility transitions. The evidence suggests that Al should not be treated merely as a techno-
logical domain requiring digital regulation, but as a systemic enabler of cross-sectoral
transformation —implicating environmental, educational, and economic dimensions (Ta-

ble 5).

Table 5. Policy implications and strategic actions by thematic cluster.

Thematic Cluster

Policy Recommendation Recommended Strategic Actions

1. Data governance and
decision intelligence

2. Policy-driven innovation and

green transitions

3. Education and digital transfor-

mation

Need for ethical data policies, risk Develop national data governance guidelines;
management, and Al accountabil- enforce algorithmic transparency; embed risk

ity frameworks. metrics in Al evaluation.

Al policy must be integrated with Create anticipatory policy sandboxes; align
sustainability goals and energy ef- Green Al principles with regulatory instruments;
ficiency mandates. incentivize circular AL

Requires education reform and up-Launch micro-credential programs in green Al;
skilling to build Al readiness and invest in educator training; embed Al ethics in
sustainability literacy. STEM curricula.

4. Collaborative adoption and  Necessitates cross-sectoral govern- Establish regional Al innovation hubs; fund pub-

multi-stakeholder
engagement

5. Smart cities and climate
action

ance, co-creation, and participatorylic-private partnership models; promote collabo-
policymaking. rative policymaking labs.

Al should be embedded into urbanDevelop smart infrastructure frameworks; inte-
planning and climate adaptation ~grate Al into SDG-aligned urban policies; incen-
policies. tivize climate—Al integration.

First, the cross-cluster capabilities identified in this study highlight the necessity of
integrated policy approaches that bridge traditional silos between digital innovation, sus-
tainability strategy, and industrial policy. As Al becomes more embedded in core societal
systems—such as energy, mobility, agriculture, and education—policymakers must de-
velop governance structures that support multi-domain coordination and long-term mis-
sion orientation. This means moving beyond reactive regulation toward anticipatory gov-
ernance models that align innovation incentives with measurable sustainability outcomes.

Second, the results emphasize the importance of regulatory foresight and dynamic
institutional learning. Governments and multilateral organizations must create conditions
for adaptive governance that evolves in parallel with technological innovation. This re-
quires a strategic mix of regulatory experimentation (e.g., Al sandboxes, sectoral testbeds),
targeted public investment (e.g., green Al challenge grants), and capacity-building mech-
anisms (e.g., national digital academies, Al literacy campaigns) that foster distributed
learning without stifling responsible risk-taking.

Third, this study reinforces the argument that sustainable Al innovation is funda-
mentally a capability-building endeavor. Rather than relying solely on technological dif-
fusion, effective policy should target the development of complementary capabilities—
including data governance, ethical oversight, absorptive capacity, and collaborative infra-
structure. These capabilities are necessary to embed sustainability principles into both
public administration and industrial ecosystems. In particular, policy should focus on
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equipping SMEs, municipalities, and educational institutions with the tools and
knowledge to co-create, adopt, and govern Al solutions that are inclusive, transparent,
and climate-aligned.

Finally, the findings call for distributed, multi-level governance models capable of
supporting place-based experimentation and transnational coordination. National gov-
ernments, regional authorities, universities, and civil society organizations must work to-
gether to co-design Al solutions tailored to local sustainability challenges while contrib-
uting to global climate and development goals. This includes fostering institutional trust,
enabling citizen participation, and ensuring that Al systems deployed in the public inter-
est meet standards of transparency, fairness, and environmental responsibility.

6. Summary of Main Findings

This study systematically examined how knowledge-based organizational capabili-
ties support the alignment of Al with sustainability strategies. Based on the bibliometric
and thematic analysis of 216 peer-reviewed articles, the findings reveal five dominant
clusters that represent distinct yet interconnected capability domains.

Cluster 1 reveals that organizational capabilities in data governance, decision intelli-
gence, and risk-based thinking form a foundational layer in the alignment of Al-driven
innovation with sustainability strategies. These capabilities not only enhance operational
performance but also contribute to the resilience and legitimacy of Al applications within
complex socio-environmental systems. Similar emphases on responsible data governance
and efficiency have been observed in recent reviews that highlight the role of data-centric
Al applications in sustainability contexts (e.g., [54,55]).

Cluster 2 reflects a set of organizational capabilities focused on regulatory respon-
siveness, ethical innovation, and sustainability foresight. This resonates with bibliometric
analyses emphasizing the importance of aligning technological trajectories with evolving
policy frameworks and sustainability mandates (e.g., [17,20]). Institutions that can inter-
pret and adapt to policy environments, engage in transparent reporting, and align their
technological development cycles with sustainability imperatives are therefore better po-
sitioned to deliver socially legitimate and environmentally responsible Al-driven innova-
tions.

Cluster 3 emphasizes the enabling role of learning, innovation ecosystems, and sec-
tor-specific digital capacities in aligning Al with sustainability. This finding is consistent
with studies highlighting the role of digital transformation and organizational learning as
key enablers of sustainable practices across industries (e.g., [36,64]). Cluster 4 highlights
the pivotal role of stakeholder coordination, technological adoption, and policy engage-
ment in driving sustainability through Al This aligns with previous works on collabora-
tion and multi-stakeholder governance, which show that strong networks and partner-
ships are essential for translating technological capabilities into sustainable outcomes
(e.g., [65-67]).

Finally, Cluster 5 brings together research that focuses on the application of Al tech-
nologies—particularly when combined with IoT—in urban environments and climate
mitigation strategies. This corresponds to recent studies emphasizing the transformative
potential of Al for sustainable cities and climate action (e.g., [67,70,72]).

The bibliometric mapping conducted with VOSviewer provides empirical validation
of these clusters, as illustrated in the network visualization (Figure 2). Table 3 further char-
acterizes the most salient terms within each cluster, confirming the presence of recurring
thematic domains across the literature. The structured synthesis presented in Table 4 con-
solidates these results into four overarching capability domains: knowledge and learning
capabilities, governance and ethical infrastructure, collaborative and institutional capabil-
ities, and technological integration capabilities. Together, these domains offer a
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comprehensive framework that connects organizational routines, leadership practices,
and institutional contexts to the operationalization of sustainable innovation.

Importantly, the study demonstrates that sustainable adoption of Al is not driven
solely by technological sophistication, but by the dynamic orchestration of knowledge-
based, relational, and institutional capabilities. The central contribution of this research
lies in providing an integrated capability-based framework that both advances theoretical
inquiry and offers practical guidance. By translating dispersed insights into a structured
model, the study highlights how firms, policymakers, and educators can design strategies
that balance innovation with ethical accountability, regulatory alignment, and environ-
mental responsibility.

7. Limitations and Future Research

While these findings offer a compelling foundation, the research also presents several
limitations and opportunities for future exploration. As with any research using biblio-
metric and text mining techniques, this study presents a number of methodological
boundaries that should be acknowledged —though they do not compromise the validity
of the results. First, while co-word analysis using VOSviewer enables the identification of
latent thematic structures, it is inherently dependent on term frequency and co-occurrence
patterns. As such, more nuanced or emergent ideas that appear with lower frequency may
not be as prominently represented. This is a recognized trade-off in bibliometric research
that privileges scope and structure over depth of individual case analysis. Additionally,
future research could also integrate alternative text-mining and topic modeling tech-
niques, such as LDA or BERTopic, to complement co-occurrence network analysis. While
VOSviewer offers a robust and widely adopted approach for mapping conceptual struc-
tures through co-occurrence clustering, LDA and BERTopic apply fundamentally differ-
ent algorithms to identify latent topics in large corpora. Combining these approaches in
future studies could enhance methodological triangulation, validate thematic clusters
from multiple analytical perspectives, and potentially uncover additional emerging
themes not detected through co-occurrence mapping alone. Additionally, methods such
as Term frequency-Inverse document frequency (TF-IDF) could further enhance thematic
extraction in future studies. TF-IDF identifies terms that are not just frequent, but also
distinctive within individual documents, helping to surface specific concepts that may be
diluted in broader co-occurrence patterns. This could be particularly useful for uncover-
ing less prominent yet highly relevant insights that standard co-word techniques might
overlook.

Second, the use of Al-powered tools, such as Elicit, to support the literature review
process introduces both benefits and constraints. While Elicit streamlined the identifica-
tion and organization of relevant papers—enhancing consistency and coverage—it relies
on metadata and abstracts, which may not fully capture the theoretical richness or practi-
cal detail present in full-text documents. Nonetheless, given the large volume of literature
and the structured nature of the research design, this approach was appropriate and al-
lowed for scalable, reproducible analysis.

Third, our inclusion criteria prioritized peer-reviewed journal articles published in
English and indexed in Q1-ranked journals. This ensured a high level of academic rigor
but may have excluded relevant insights from practitioner literature, policy documents,
or non-English academic work. Future research could expand this scope to capture a more
diverse set of perspectives.

Another limitation relates to the keyword strategy adopted in the construction of the
search query. While the exclusion of ambiguous acronyms (e.g., NLP, ML) helped to re-
duce false positives and improve thematic relevance, it may also have resulted in the omis-
sion of relevant studies that use these acronyms in disambiguated contexts. This reflects
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a broader trade-off in bibliometric data collection between recall and precision. Future
research could triangulate different search strategies or use semantic expansion tech-
niques to evaluate the impact of acronym inclusion on dataset coverage.

Finally, the study is cross-sectional by design and does not explore the temporal evo-
lution of capabilities or sectoral variations. Future work could adopt a longitudinal lens
to investigate how capability development unfolds over time, particularly in response to
regulatory change, technological advancement, or shifts in sustainability priorities.

8. Conclusions

This study investigated how knowledge-based organizational capabilities enable the
alignment of artificial intelligence with sustainability strategies. Drawing on a biblio-
metric and thematic analysis of 216 peer-reviewed articles, the research combined quan-
titative mapping with qualitative synthesis to identify five capability clusters and inte-
grate them into a structured framework.

The results show that sustainable Al adoption depends not only on technological so-
phistication but on the interplay of knowledge integration, organizational learning, ethi-
cal governance, and collaborative capacity. By consolidating dispersed insights into a co-
herent capability-based framework, this study makes a distinct theoretical contribution: it
clarifies the foundations of sustainable digital transformation and provides a model that
can be applied across diverse sectors.

In practice, the framework offers organizations a roadmap for embedding sustaina-
bility principles into Al deployment and supports policymakers in designing adaptive
governance mechanisms that foster responsible innovation. These contributions reinforce
the academic value of this research while enhancing its practical relevance for firms, edu-
cators, and public institutions.

In conclusion, advancing sustainable Al innovation requires more than efficiency or
technical performance. It demands organizational readiness, institutional alignment, and
cross-sector collaboration. By emphasizing these enabling conditions, this study provides
both a foundation for further academic inquiry and a set of actionable insights for stake-
holders seeking to align artificial intelligence with the goals of sustainable development.
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