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“Horseness is the whatness of allhorse”

—James Joyce
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Resumo

O foco principal deste estudo é o uso de Redes Neuronais Convolucionais (CNNs) para previsdo do
mercado de a¢bes, com énfase nos tipos de varidveis usadas como inputs do modelo, no impacto da
replicacdo de condicdes especificas de mercado no desempenho do modelo e num extenso processo
de feature selection. Para estruturar o estudo, foi utilizada a metodologia CRISP-DM, que forneceu
uma framework que orientou a tese desde o business understanding a data understanding,
preparation, modelling, and evaluation. Para iniciar este estudo, foi efetuada uma revisdo exaustiva
da literatura para estabelecer o estado atual da arte. Apés a revisdo da literatura, o estudo envolveu a
anadlise das variaveis habitualmente utilizadas nas previsées do mercado a¢oes, incluindo indicadores
técnicos, macroeconémicos e fundamentais, bem como a investigacdo das estratégias de trading e do
sentimento das noticias em relagdo ao mercado de a¢des. Uma secc¢do critica da investigacdo foi o
processo de feature selection, que utilizou vdrios métodos diferentes, abrangendo abordagens de
filter, de wrapper e embedded. Foi realizada uma andlise de cross-selection entre estes métodos de
forma a identificar as varidveis mais representativas, garantindo um dataset robusto e optimizado. Em
seguida, foram estabelecidos trés datasets distintos, com diferentes varidveis target e variaveis
independentes derivadas das varias estratégias de trading. Para melhorar ainda mais a
interpretabilidade e o desempenho do modelo, os dados de séries temporais foram transformados em
imagens usando trés métodos diferentes: Gramian Angular Fields (GAF), Recurrence Plots (RP), e
Markov Transition Fields (MTF). O modelo Long Short-Term Memory Network (LSTM) de base e o
modelo CNN foram testados e optimizados nos varios datasets. Os resultados demonstraram a
superioridade do modelo CNN utilizando imagens GAF, alcancando melhorias significativas de accuracy
de 7-10% em relagdo a linha de base LSTM, particularmente nas estratégias de stock price direction e
MACD Crossover. Além disso, a utilizacdo de dados sintéticos revelou-se valiosa, apresentando uma

elevada fidelidade e desempenho.






Abstract

This Dissertation’s focus is using Convolutional Neural Networks (CNNs) for stock market prediction,
emphasizing the types of variables used as model inputs, the impact of replicating specific market
conditions on model performance, and an extensive feature selection process. To structure the study,
the CRISP-DM methodology was employed, providing a systematic framework that guided the
progression from business understanding to data understanding, preparation, modelling, and
evaluation. To begin this Dissertation, a comprehensive literature review was conducted to establish
the current state of the art. Following the literature review, the study involved analysing variables
commonly used in stock market predictions, including technical, macroeconomic, and fundamental
indicators, as well as investigating trading strategies and news sentiment. A critical section of the
research was the feature selection process, which employed various methods spanning filter, wrapper,
and embedded approaches. A cross-selection analysis was conducted across these methods to identify
the most representative variables, ensuring a robust and optimized input feature set. Following this,
three distinct datasets were established, featuring different target features and independent variables
derived from the various trading strategies. To further enhance model interpretability and
performance, time-series data were transformed into images using three different methods: Gramian
Angular Fields (GAF), Recurrence Plots (RP), and Markov Transition Fields (MTF). A baseline Long Short-
Term Memory Network (LSTM) and CNN architectures were tested and optimized on the various
datasets. Results demonstrated the superiority of the CNN model utilizing GAF images, achieving
significant accuracy improvements of 7-10% over the LSTM baseline, particularly in stock price
direction and MACD crossover strategies. In addition, the use of synthetic data proved valuable,

displaying high fidelity and contributing to enhanced model performance.
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Chapter 1

Introduction

In the last decades, Machine Learning (ML) has emerged as a popular tool in the field of financial
trading, as it assists in decision-making processes and facilitates the recognition of patterns in financial
data. There is a vast range of machine learning models that have been applied to financial trading, like
support vector machines (SVMs), decision trees, and deep learning approaches such as long short-term
memory (LSTM) networks (Kumbure et al., 2022). All of these algorithms have shown potential working
with financial data and have their own advantages and disadvantages depending on the specific

problem at hand.

The main focus of this Dissertation will be primarily on the use of convolutional neural networks
(CNNs) for stock price movement prediction. Initially developed for image recognition tasks, CNNs have

been successfully applied to various financial tasks, including stock price prediction.

Predicting the financial market is a challenging and complex task. Instead of focusing solely on
obtaining the highest accuracy, this Dissertation addresses the following research questions focused

on the use of CNNs for financial trading:

1. Which feature selection algorithms can improve stock market prediction?

2. How can CNNs be used to identify patterns in financial market data?

3. How do CNNs compare to other machine learning algorithms regarding predictive
performance and accuracy in financial trading?

4. How can Generative Adversarial Networks (GANs) generate synthetic data to

improve model performance?

Besides the literature review, the first step in this Dissertation is the data collection. With that in
mind, it is essential to know which variables impact the stock price movement the most, since using
different input variables can make the model perform completely differently. Thus, developing the

optimal model is an arduous task.

So, for this Dissertation, it was considered fundamental to conduct an in-depth analysis of the
variables used in stock market predictions, such as technical, macroeconomic, and fundamental

indicators.

According to the study by Tsai and Hsiao (2010), the most common analytical approaches to stock
price analysis are fundamental and technical analysis. For this work, since the target variables were

based on trading strategies, the focus was on technical analysis, which has been part of financial



practice for many decades, examining a stock's historical price and volume movements. In addition to

the technical indicators, sentiment from news is also used.

According to Chen et al. (2019), pre-processing data, usually leads to more effective predictions.
Considering that, it is fundamental to select which group of attributes should be chosen as input
variables. Performing feature selection is an important task in machine learning since it improves the
model performance and also enhances data visualization and understanding (Xue et al.,2016). In this

Dissertation, a vast collection of feature selection methods is applied to the datasets.

The main goal of the Dissertation is to enhance stock price movement prediction using CNNs. To
achieve this, it is essential to transform time series data into images, and in this Dissertation, three
different methods were selected: Gramian Angular Field (GAF), Recurrence Plot (RP), and Markov
Transition Field (MTF). These methods capture spatial dependencies between the various features in

the image. The images are then used as input for the 2D CNN.

The model used daily stock price data from Advanced Micro Devices (AMD), covering the period
from 1/1/2000 and 31/12/2023, and was evaluated across multiple datasets with different target
variables to assess its performance under various trading strategies, including the Stochastic Oscillator
and the Moving Average Convergence Divergence (MACD) Crossover. In addition, Generative
Adversarial Networks (GANs) were employed to generate synthetic data, replicating market conditions

to assess their potential in improving machine learning model performance.

This Dissertation offers a strong foundation for exploring the application of CNNs in financial
trading strategies and valuable insights for future research, particularly in developing hybrid models

with sentiment analysis and a wider use of synthetic data in different markets and contexts.

To summarize, this Dissertation is structured as follows: a literature review covering feature
selection methods, technical indicators, machine learning approaches for stock prediction, CNNs, and
the use of GANs for generating synthetic data; the methodology used for developing training data and
evaluating the model's performance; the presentation of the model's results and discussion; and

finally, the conclusions drawn from the findings, along with suggestions for future research directions.



Chapter 2

Literature Review

This chapter serves as the base for the proposed Dissertation, trying to answer some of the questions
mentioned in the introduction. In this literature review, a wide range of studies were examined related
to the application of machine learning techniques in financial trading, with a specific focus on the use
of Convolutional Neural Networks (CNNs) for stock market prediction. In addition, an in-depth analysis
of articles about the variables used in stock market predictions was also conducted, from technical
indicators to macroeconomic, fundamental indicators, and also new types of variables. Moreover, it is
provided an extensive assessment of feature selection methods used in stock market forecasting, since

selecting the best features for the model is a complex yet essential task (Peng et al.,2021).

Finally, it was also examined the use of Generative Adversarial Networks (GANs) to improve the
model's performance, since this technique has been used in financial applications, such as generating

synthetic financial time series data.

The literature review is structured as follows: first, the search strategy is defined, followed by the
search queries utilized, and then the inclusion and exclusion criteria for articles. Next, the methodology
is briefly described, followed by a discussion and presentation of the review's findings. Lastly,
conclusions are provided based on the results and discussion, along with potential directions for future

research.

2.1. Search Strategy

The search strategy for this literature review was designed to identify a suitable and relevant set of
studies to help answer the established research questions. The search process consisted of two stages.
In the first stage, a preliminary set of research papers, such as those by Jansen (2020), Henrique et al.
(2019), and Kumbure et al. (2022), were manually selected. In the second stage, the initial set of articles

was used to locate additional studies through a process called snowballing (Henrique et al., 2019).

2.1.1. Manual Search
The primary set of studies included some scientific articles, chapters of books, and other reviews, such
as Jansen (2020), Kumbure et al. (2022), Sezer and Ozbayoglu (2018), and Lu et al. (2021), among

others.

These articles were found through a manual search of the literature review on CNN for financial
trading, which included topics as data sources, feature selection, stock market prediction and deep

learning approaches.



The following phase was performing backward snowballing on this set of articles. In the backward
snowballing process, the first step was to look at the reference list of the initial set of articles and
include any studies that met the established inclusion and exclusion criteria. In this step, only the titles

of the articles were analysed.

After deciding which articles were relevant, it was done a further analysis of them, by reading the

abstract and other meaningful parts. The significant articles were included in the final set.

2.1.2. Automated Search

The search process was extended using an automated search to broaden the sample of relevant
studies. For this strategy, seven databases were used, namely: Google Scholar, IEEE Xplore, Science

Direct, ArXiv, Springer, Research Gate, and Scopus.

The process began by selecting the search queries and identifying relevant articles using the
inclusion and exclusion criteria. The abstracts (and other necessary parts) of the selected articles were

evaluated, and the articles that met the criteria were included in the final set.

2.2. Search Queries

The search queries were selected to reflect the aim of this literature review. To determine the relevant
terms, it was used the current understanding of the topic, as well as the information provided in the
titles, keywords, and abstracts of articles found through the manual search. The most used terms were

“Forecasting” and “Prediction”, although both were used separately for each data source.

In the search queries, the main objective was to seek articles that discussed “Machine Learning”,
“Stock Price”, “Trend Prediction”, “Convolutional Neural Networks”, “Feature Selection”, “Indicators”,
“Generative Adversarial Networks”, since it was expected to find articles that were based on

forecasting models for the stock market that employed machine learning techniques.

After some research, it was found that using machine learning aligned with the other terms

expanded the number of relevant articles retrieved.

2.3. Inclusion and Exclusion Criteria

For this literature review, inclusion and exclusion criteria were used to determine which articles were

considered significant.

Initially, it was determined that only articles from 2000 onward would be considered for the

literature review.



The second criterion for selecting articles for the literature review was to only include those that
had been published, such as in journals, theses, or book publications. Additionally, only articles written

in English were considered.

Finally, only articles that were available in full text were considered for inclusion in the literature
review, as it was deemed essential to have access to the complete texts in order to conduct a thorough
analysis. After combining the final sets of articles from the manual and automated searches and the

inclusion-exclusion criteria, 44 articles were selected.

2.4. Related Work

This section presents the findings of the analysis conducted on the literature review in relation to the

research questions established previously.

The review was conducted using information taken from 44 selected studies. The findings of this

review are presented and discussed in three subtopics:

1. Details about the studies, such as bibliographic information.
2. Information about the data used in the studies, mainly the type of indicators applied.
3. An overview of the machine learning methods used in the studies and developments

that were made in these methods.

2.4.1. Bibliographic information

In this subtopic, the selected articles were analysed based on the year of publication and the most

frequently used keywords.

This information can be found in the figures below (Figure 2.1 and Figure 2.2). Figure 2.1 shows
that more than 50% of the selected articles were published between 2017 and 2023. This suggests that
there has been a significant rise in the number of studies focused on forecasting stock markets using

machine learning, particularly CNN approaches.

Figure 2.2 presents the top 10 keywords used by an author in their work and the number of times
they were used. The figure shows that the keywords "Stock Market/Price Prediction," "Deep Learning,"
"Convolutional Neural Network" and "Feature Selection" are among the most used. Additionally, the
top keywords often include variations, such as synonyms and different forms of specific keywords,
such as "Convolutional Neural Networks" and "CNNs," indicating that keeping these distinctions in

mind may assist in searching for publications.
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Figure 2.2. Most used keywords in selected research articles.



2.4.2. Indicator Variables

The first step in the workflow of a stock market prediction model is data collection. Taking that into
account, the type of variables that have the most impact on the stock price movement were analysed

during this review.

Sedighi et al. (2019) selected the most essential technical indicators, 20, from different types, such
as: trend, volume, support and resistance, momentum and volatility. Furthermore, the chosen
indicators encompass all stock data, including indicators from the four classes: Oscillator, Index,
Overlay, and Cumulative. Examples of the indicators used in this Dissertation include the Absolute Price

Oscillator (APO), Fibonacci Fan, Commodity Channel Index (CCl), and Williams %R.

A work done by Chang and Wu (2014), adopted other technical indicators aside from the essential
ones, such as the differences of technical indices and the same indicators but with different

timeframes, for instance, a 6-day Relative Strength Index (RSI) and a 12-day RSI.

According to a study done by Peng et al. (2021), utilizing technical indicators compiled by the
combination of other indices can be considered as a replacement of their constitute counterpart, since
it lowers the levels of redundant information considered for the models and possibly produces better
predictive results and asset allocation. Moreover, the technical indicators that were most frequently
chosen by feature selection methods in recent studies between 2008 and 2019 were the Detrended
Price Oscillator (DPO), Hull Moving Average (HMA), and Money Flow Multiplier (MFM). However, more
traditional indicators, such as the Simple Moving Average (SMA) and Weighted Moving Average

(WMA), were only selected a few times.

As previously mentioned, feature selection methods tend to prefer indicators that combine

multiple sources of information, such as the HMA, a combination of WMAs for different window sizes.

The main disadvantage of using only technical indicators (technical analysis) is that it only
considers the stock's price movement and ignores fundamental factors related to the company (Barak

et al, 2017).

In addition to the technical indicators, financial and macro-economic variables received
substantial attention in the development of stock market studies, such as credit ratings, money supply

levels, and T-bill rates. (Enke et al., 2011; Tsai et al., 2011; Zhong & Enke, 2017).

The logic behind fundamental analysis is that if a company has strong fundamentals, then
investing in its stock for the long-term will be more secure and stable (Barak et. Al, 2017). This work
utilized fundamental indicators such as liquidity ratios, activity ratios, profit margins, growth rates,

earnings per share (EPS), dividend per share (DPS), stock book value, etc.



As shown in Figures 2.3 and 2.4, most studies reviewed utilize data from various stock markets in
the United States. However, there has been an increase in studies that predict stock performance using
data from Asia, when compared to previous literature reviews (Henrique et al. ,2019; Kumar et al.,

2021).

In addition, Figure 2.5 supports the trend of using technical indicators in stock market prediction

research and also highlights an increase in the utilization of other variables, such as news and tweets.

In conclusion, recent research on the stock market suggests that many factors are associated with
future stock prices (Enke et al., 2011). However, it is crucial to use feature selection to identify the
indicators that have the strongest forecasting capability, as using too many financial, technical and

economic indicators can overburden the prediction system (Thawornwong et al., 2003).
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Figure 2.5. Types of variables in the selected articles.



2.4.3. Feature Selection

Financial variables are hard to predict (Peng et al., 2021). Having that in mind, it is essential to select

which group of attributes should be chosen as input variables.

Feature selection is a challenging task primarily due to a large search space, where the overall
number of potential solutions is 2™ for a dataset with n features. (Dash & Liu, 1997). In recent years,
this task has become even more difficult, as n is increasing in many fields due to advances in data

collection techniques and the enhanced complexity of machine learning problems. (Xue et al., 2016)

Although a range of search techniques have been applied to feature selection, such as complete
search, heuristic search, random search and greedy search, most of them still suffer from stagnation
in local optima or high computational cost (Too et al., 2019). Having that in mind, an efficient global

search technique is required to better solve this type of problem.

The feature selection community has widely acclaimed evolutionary computation (EC) techniques
due to their global search ability and potential (Xue et al., 2016). The two most popular EC methods in

feature selection are Genetic Algorithms (GAs) and particle swarm optimization (PSO).

According to the evaluation criteria, feature selection algorithms can be divided into filter and
wrapper approaches. The primary distinction between both is that wrapper approaches contain a

classification/learning algorithm in the feature subset evaluation step (Guyon & Elisseeff, 2003).

Another challenging aspect of feature selection is feature interaction. It happens frequently, and
it can be a two-way, three-way, or a complex multiway interaction among features. For example, a
feature that is almost irrelevant to the target variable by itself could improve the accuracy of the model
if it is utilized with some complementary features. Hence, the two main factors in a feature selection

approach are the search technique and the evaluation criteria (Xue et al., 2016).

Concerning search techniques, in recent years, the EC techniques have been the most effective
methods to solve feature selection problems, although they have some limitations such as scalability.
Regarding the evaluation criteria, for wrapper feature selection approaches, the classification
performance of the chosen features is the evaluation criteria. Filter feature selection, on the other
hand, are independent of any classification algorithm and apply other scientific methods, such as
information theory-based measures, distance measures, or even correlation measures (Dash & Liu,

1997, Tareq et al., 2018).

The most popular approach has recently been using EC algorithms such as GAs and Genetic
Programming (GP) to address feature selection tasks with thousands of features, improving the

representation and the classifiers (wrapper feature selection approach). Furthermore, combining
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feature selection methods with feature extraction/construction can enhance the classification

performance (Xue et al., 2016).

In the study by Tsai and Hsiao (2010), the main goal was to combine different feature selection
methods to identify more representative variables to better predict stock price movements. While
Principal Component Analysis (PCA) and Genetic Algorithms (GA) are not strictly categorized as feature
selection methods, they can be utilized as such to reduce dimensionality and optimize the selection of
features. Alongside decision trees (CART), these methods were combined using three strategies: union,

intersection, and multi-intersection.

The results showed that the intersection of PCA and GA, as well as the multi-intersection of PCA,
CART, and GA, attained the highest performance, with an accuracy of 79% and 78.98%, respectively.
Furthermore, both approaches removed nearly 80% of unrepresentative features, highlighting their

effectiveness in reducing data complexity for better predictive performance.

Figure 2.6 supports the widespread use of Evolutionary Computation (EC) algorithms for selecting

features in stock market prediction.

Genetic Algorithms PCA
M Chi-Square M Hierarchical clustering

B Combination of Feature Selection methods

Figure 2.6. Types of Feature Selection Methods present in articles.
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2.4.4. Machine Learning Approaches

Machine learning approaches are crucial for stock market prediction as they enable the analysis of

large amounts of data, identify complex patterns, and improve the accuracy of predictions.

Before deep-diving into the CNN approaches, Zhong and Enke (2019) utilized a big data analytic
process aligned with a DNN to forecast the daily price direction of the SPDR S&P 500 ETF, an exchange-
traded fund that replicates the performance of the S&P 500, based on 60 financial and economic
features. The authors utilized the PCA to transform the data and construct a low-dimensional

representation of the data while preserving the maximum variance and covariance shape.

According to the authors, the DNN-based classification for the PCA-represented data set with 31
principal components achieves the highest accuracy, and in general, the DNN classifiers outperform
the ANN classifiers in predicting the SPDR S&P 500 ETF price movement. The authors also noted that
a pattern regarding the classification accuracy appears while increasing the number of hidden layers,

with the overfitting issue remaining under control.

As mentioned above, the CNNs are another research focus on deep learning regarding financial
trading, which has been applied widely in the field of image processing, speech recognition, and

recently in time-series data (Kumbure et al., 2022).

2.4.5. Convolutional Neural Networks

As stated, CNNs have been used for time-series data and have been known to achieve state-of-the-art

results on time-series classification.

In the context of utilizing CNN architecture to create a financial trading model, there is a growing

body of research that is studying the high potential of this approach and its limitations.

For example, Gunduz et al. (2017), proposed a CNN approach to predict intra-day movements of
the Borsa Istanbul 100 index. The researchers utilized feature correlations and hierarchical
agglomerative clustering to order the input features and tested three techniques (L2 regularization,
dropout, and early stopping) to prevent overfitting. They also compared the effectiveness of a CNN
model using correlated features (CNN-corr) to a CNN model using randomly ordered features (CNN-

rand) and found that the CNN-corr model performed better.

In 2019, Hoseinzade and Haratizadeh proposed a CNN approach to predict the price movement of
five stock indices—S&P 500, NASDAQ, DIJI, NYSE, and RUSSELL—using two different feature
representation methods, 2D-CNN and a 3D-CNN, while emphasizing that the filter size should be

defined based on the financial interpretation of features and their attributes. These CNNs have four
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significant steps: input data representation, daily feature extraction, durational feature extraction, and

final prediction.

The remarkable part of this study is that the first layer of both frameworks is assigned to combine
the daily features into higher-level features for representing each single day of the dataset. According
to the authors, their model outperformed the benchmarks in all five indices by about 3% to 11% in
terms of F1 score, which shows that the model not only accurately identifies positive instances but

also minimizes false positives.

In another study, Cao and Wang (2019) explored the use of CNNs for financial forecasting, showing
that they can effectively handle both categorical and continuous variables and achieve strong
prediction results. They tested two different models, a CNN and a CNN-SVM, to predict stock index

prices and found that both models performed well.

Methab et al. (2021) developed a CNN with a walk-forward validation to predict NIFTY 50 stock
price movements in the National Stock Exchange of India. The authors developed three approaches,
varying in the number of variables used in forecasting the price movements, the number of sub-

models, and the size of the input training data.

According to the authors, the results show that CNN-based multivariate model is the most
effective and accurate. This model consisted of two convolutional layers with 32 filter maps followed
by a pooling layer, then again, another convolutional layer with 16 feature maps and pooling. It is
essential to mention that this was a multi-step time series forecasting approach since it uses the prior
time series data to forecast the values for the next week. This research also explored the power of

Generative Adversarial Networks (GAN) to improve prediction performance.

One of the more advanced deep learning algorithms is the LSTM, and according to the literature,
Chen et al. (2019), created a stock price trend prediction model (TPM) that combines a CNN with an
LSTM. The TPM consists of two phases. First, it uses a piece-wise linear regression method (PLR) to
extract long-term temporal features and a CNN to extract short-term spatial market features. These
two methods work together as a dual feature extraction method. In the second phase, an encoder-
decoder framework, which is formed by an LSTM, is employed to select and combine significant
features and make trend predictions. The model differs from traditional methods since it can extract

relevant features for mining the financial time series.

A paper by Lu et al. (2021) went even further and proposed a CNN-BiLSTM-AM model to predict
the Shanghai Composite Index stock closing price for the next day. As the acronym suggests, the model

combines a Convolutional Neural Network, a Bi-directional Long Short-Term Memory (BiLSTM) and an
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Attention Mechanism (AM). The CNN is utilized to extract features from the data, and then the BiLSTM
applies those features to forecast the stock closing price of the following day. Finally, the AM, captures
the impact of feature states on the stock closing price at various times in the past to enhance the
accuracy of the model. This method achieved an RMSE of 0.31694 and 0.9804 R?, which surpasses

every benchmark.

Sezer and Ozbayoglu (2018) proposed an innovative approach to CNN architectures by
transforming time series data of alpha factors into a two-dimensional format, leveraging the model's
ability to detect local patterns. The model proposed was a CNN-TA, which computes 15 technical
indicators for different intervals and utilizes hierarchical clustering to find indicators with similar
behaviour in a two-dimensional grid. The architecture was composed of nine layers: one input layer,
two convolutional layers, a max pooling, two dropout layers (to prevent overfitting), fully connected
MLP layers, and finally, an output layer. In this Dissertation, a 3x3 filter was utilized in the CNN, which

helps capture more details of the images.

The model was evaluated using two criterias: Computational Model Performance and Financial
Evaluation. Regarding Computational Model Performance, it was verified that the recall values of the
classes “Buy” and “Sell” were better compared with the “Hold” class. Accuracy results were 0.58 for
the Dow30 dataset, which consists of 30 major publicly traded U.S. companies that make up the Dow
Jones Industrial Average (DJIA), a key benchmark for the U.S. stock market and 0.62 for the ETFs.
Financially, the proposed model presented an average annualized return almost three times higher
compared with average annualized return of the benchmark models. According to the authors (Sezer
and Ozbayoglu, 2018), the proposed model could present better results if the structural parameters
were optimized. They suggest boosting the data representation for “Buy”, “Sell” and “Hold” points for

better trade signal creation performance, potentially via the use of GANs to boost trade signal creation.

A similar study was done by Chandar (2022), which developed a stock trading model by combining
Technical Indicators and a CNN (TI-CNN). The first step was obtaining ten technical indicators from
historical data and taking them as feature vectors. Then, those feature vectors were transformed into

an image using the Gramian Angular Field (GAF) method and were employed as input data for CNN.

2.4.6. Generative Adversarial Networks

GANs were created by Goodfellow et al. (2014), and in recent years, Yann LeCun et al. (2015) stated
that these networks were the “most exciting idea in Al in the last ten years”. GANs, as mentioned by
Stefan Jansen (2020), train two neural networks, called the generator and discriminator, in a
competitive setting. The generator network produces samples until the discriminator network can’t

differentiate it from a given training data class. The outcome is a generative model that can develop
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synthetic samples of an individual class distribution without expense. Yoon and Jarret (2019) proposed

a novel GAN architecture to model time-series data, the TimeGAN.

The main difference between this novel approach and the other GAN architectures, is that
TimeGAN proposes the concept of supervised loss, where the model depicts time conditional

distribution within the data by applying the original dataset as supervision.

The authors demonstrated the application of the TimeGAN models to financial data by using 15
years of daily Google stock prices, targeting synthetic series with 24-time steps. The two autoencoder
components and the generator element of the adversarial network, consisted of an RNN with three
hidden layers and 24 Gated Recurrent Units (GRU) units. The supervisor component of RNN only differs

in the number of hidden layers, which is 2.

This novel model presented by the authors demonstrated consistent and significant

improvements in terms of performance when compared to state-of-the-art benchmarks.

In addition, Staffini (2022) presented a Deep Convolutional Generative Adversarial Network
(DCGAN) architecture as a solution for forecasting stock prices. This architecture demonstrated
improved performance in both single-step and multi-step forecasting when compared to standard
methods. For the generator network, the author selected a CNN-BiLSTM architecture, which, according
to Lu et al. (2021), achieves excellent results. On the other hand, for the discriminator network it was

selected a simple CNN architecture.

Lin et al. (2021) developed a stock prediction model that employs a GAN architecture. A GRU is
utilized as the generator, which takes historical stock prices as input and generates predictions for
future prices. A CNN is the discriminator, trained to distinguish between real and generated stock
prices. In their study, the authors found that training with a 1D-CNN discriminator improves the
performance of basic recurrent models in stock prediction. Additionally, using a GRU-based generator

results in more stable training and better test performance.

The noteworthy part of their study is the use of the loss function from the Wasserstein GAN with
the Gradient Penalty (WGAN-GP) model as an alternative to a simple GAN, providing more stable and

improved performance for multi-step ahead predictions.

The main conclusion from these studies, is that although financial time series forecasting may
benefit from using GANs, training this type of model remains a challenging task due to the need to
adjust multiple hyperparameters while maintaining a balance between the generator and

discriminator networks.
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2.4.7. Review Summary

The literature review for this Dissertation was essential in determining the direction and focus on stock
market prediction models. It emphasized the value of leveraging diverse data sources, including
technical indicators, fundamental analysis, and even sentiment data, to enhance predictive
capabilities. For instance, it emphasised the effectiveness of using the same indicator across different
timeframes to capture a broader range of patterns and the importance of incorporating additional

variables, such as news sentiment, to improve model accuracy.

The review also stressed the critical role of feature selection in optimizing model performance,
exploring various techniques such as Genetic Algorithms (GAs) alongside traditional methods like
embedded, wrapper, and filter approaches. These insights inspired the idea of combining feature
selection techniques to minimize redundant information and prioritize the most representative

variables, ultimately boosting the model's accuracy and efficiency.

Moreover, the review deepened the understanding of advanced machine learning models,
including CNNs and LSTM models, and their applications in time-series data. It showcased the CNNs
ability to process financial features and integrate technical indicators while highlighting the potential
of GANs for producing synthetic data to further enhance model performance. This initial knowledge
was instrumental in guiding the development of the Dissertation, providing clarity on variable
selection, the importance of feature selection, and the potential of both CNNs and GANs for financial

data analysis.
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Chapter 3

Data Selection Methodology

For this Dissertation, to guarantee a systematic approach and considering its focus on Data Science,
the CRISP-DM (Cross-Industry Standard Process for Data Mining) framework will be employed. This
widely used methodology in the industry provides a structured procedure for organizing the
dissertation's workflow through its key stages: Business Understanding, Data Understanding, Data

Preparation, Modelling and Evaluation.

Given the emphasis placed on the data preparation phase in this Dissertation, particularly on
feature engineering, feature selection and image generation, a detailed deep dive into the data
preparation process will be presented in a separate section. Similarly, the modelling and evaluation
stage will also be discussed in a separate section. This approach ensures that these critical steps are

fully described.

3.1. Business Understanding

The Business Understanding phase is a central part of the Dissertation, laying the grounds for its
structure. The first purpose of the study is to develop a novel algorithmic trading model using a CNN
architecture to evaluate stock price movements. This architecture will utilize various trading strategies
and assess its performance, aiming to top the effectiveness of benchmark models, such as an LSTM

model.

A second objective of this Dissertation is to improve the model performance by applying GANs,
particularly the TimeGAN architecture. This method aims to generate synthetic data providing a more

thorough assessment of the trading model's effectiveness.

A selection process was conducted to adopt the stock utilized in the proposed method, analysing
Global Industry Classification Standard (GICS) sector returns, volatility, trading volume, and other
metrics. Although the detailed process and the selected stock will be stated in the next section, a brief
overview is provided here for context. The preferred stock is Advanced Micro Devices, Inc. (AMD), an
American semiconductor company founded in 1969 by Jerry Sanders. AMD operates globally, offering
a variety of digital semiconductors, including microprocessors, graphics processing units (GPUs), data
center solutions, embedded processors, and other graphics solutions for desktops, laptops, and

gaming consoles.

Recently, AMD has been focusing on expanding its Al and data center capabilities, leading hedge
funds and analysts to keep a bullish position on its stock. The acquisition of Xilinx in 2022 has further

diversified AMD's business, strengthening its position in key markets. It's also essential to mention that
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the company faced significant challenges in the late 2000s and early 2010s, only recovering market

share due to the success of its Ryzen processors.

Finally, the company's financials in July 2024 reinforce the buy recommendations from various
analysts. AMD reported a revenue of $22.8 billion, a net income of $1.12 billion, a profit margin of

4.9%, and a debt-to-equity ratio of 5.34%.

Moving to the construction of the model, the features of the proposed model are defined by
producing a wide range of different technical indicators with distinct time intervals, daily news
sentiment, previous logarithmic returns, and previous closing prices. Eleven feature selection methods
are then employed, and cross-selection is performed to identify the most significant features for each

strategy.

The next step before using the CNN model is to generate images using techniques such as
Recurrence Plots (RP), Gramian Angular Field (GAF) and Markov Transition Field (MTF). Afterward, the
model is tested by different trading strategies, each utilizing various image generation methods. The
final step involves generating synthetic data and assessing its fidelity to warrant its reliability and

accuracy.

To conclude, as shown in the figure below (Figure 3.1), the proposed workflow is divided into
various steps: Data Extraction, Stock Selection, Feature Creation, Data Labelling, Feature Selection,

Image Creation and Model Development.
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Figure 3.1. Proposed Workflow.
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3.2. Data Understanding (Dataset Extraction and Stock Selection)
For this Dissertation, the daily stock prices of S&P 500 stocks were selected for training and testing,
between 1/1/2000 and 31/12/2023. Before extracting the daily prices of S&P 500 stocks from Yahoo

Finance API, a stock selection process was carried out.

Initially, the focus was on choosing the most liquid stocks within the S&P 500. This involved
selecting stocks with the highest trading volume, ensuring they could be readily bought or sold without

significantly impacting their market price.

The subsequent stage involved choosing stocks that had experienced a substantial movement
over the past year. More precisely, stocks with a price movement exceeding 100% over the past year

were selected to identify those exhibiting significant growth.

This stage starts by calculating the five-year (Appendix A) and one-year (Figure 3.2) returns for
each stock in the S&P 500. The second step was to identify the GICS Sectors with the highest growth.
As exhibited in the image below, the GICS Sectors with the highest average 1-year return are
Information Technology and Consumer Discretionary. It is important to note that both these sectors

were also in the top 3 in terms of the 5-year average return.
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Figure 3.2. S&P 500 one-year sector returns.

The next step was to refine the list of stocks such that it only included those with a price movement
exceeding 150% over 2023. This task was accomplished by computing the delta percent metric, which

captures the relative change in stock prices between their highest and lowest points within the year of
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2023. Although more volatile stocks could be more complicated to predict, it should help reduce the

possibility of class imbalance and create more defined samples. The delta percent is defined as:

High — Low
Delta Percent = ———  x 100 (3.1)
Low

In parallel, another method for selecting stocks was developed. The most “momentum stocks”
were selected, by choosing the top 5 stocks, sorted by average trading volume, with above-median
cumulative returns and trading volume in the top 20% in the last semester of 2023. Ultimately, AMD,

NVDA (Nvidia), and TSLA (Tesla) met all criteria, and AMD was chosen for this Dissertation.
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Chapter 4
Data Preparation

4.1. Stock Analysis

After selecting the stock, it is essential to perform a time series analysis. In this case, analysing both
the evolution of the stock's closing price and daily returns is crucial for evaluating trends, volatility, and

potential trading opportunities.

Regarding the stationarity of AMD's closing price, the Augmented Dickey-Fuller (ADF) test results
indicate that the stock price is non-stationary, as the p-value of 0.99 is notably higher than the 0.05
threshold. The ADF statistic of 0.76 also exceeds the critical values at the 1%, 5%, and 10% confidence
levels, verifying that the null hypothesis (which says that a unit root is present) cannot be rejected.
This indicates that AMD’s stock price follows a strong trend component and does not revert to a
constant mean over time. Hence, traditional time series forecasting models like ARMA/ARIMA would
not be suitable unless differencing or transformations are employed to achieve stationarity, an

approach that will not be utilized in this Dissertation.

The seasonal decomposition plot, presented in Figure 4.1, delivers additional insights into AMD's
stock price behaviour. The trend component illustrates a long-term upward movement, particularly
after 2016, which aligns with AMD’s significant growth during that period. The seasonality component
shows a relatively regular range, suggesting the presence of short-term cyclic patterns in stock price
movements. These patterns can be influenced by various factors, such as earnings reports,
macroeconomic conditions, and market sentiment, which can be captured through technical indicators

to recognize trading opportunities.

The residual component reveals periods of increased volatility, predominantly in recent years,
indicating increased price fluctuations Given this volatility, implementing trading strategies that
capitalize on price fluctuations while minimizing risk could be advantageous. Additionally,
incorporating technical indicators tailored to these market conditions could enhance the effectiveness

of trading strategies.
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AMD Stock Price Decomposition - Trend, Seasonality & Residuals
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Figure 4.1. AMD closing price seasonal

Concerning the summary statistics of AMD’s closing price and daily returns, the data show that
the stock has experienced high volatility, with a mean closing price of 25.43 and a standard deviation
of 31.92, reflecting significant price fluctuations over the 23-year period. The minimum closing price
of 1.62 and maximum of 161.91 further highlight the stock's wide trading range over time. The returns
data also exhibit considerable variation, with a mean return of 0.0373%, a minimum of -39.16%, and a
maximum of 42.06%, reinforcing the presence of both strong upward and downward price movements
over this extended timeframe. The 25th percentile return (-1.87%) and 75th percentile return (1.98%)
indicates that most daily returns fall within a relatively moderate range, while extreme values highlight

occasional large price swings, presenting trading opportunities.

To further analyse daily returns, two examples will be utilized: 2023 (Figure 4.2 and Table 4.1),
representing a bull market scenario, and 2022 (Figure 4.3 and Table 4.2), illustrating a bear market

scenario.

In 2023, the AMD stock presented a change in price of 82.75S, an average return of 0.33% per day
and a cumulative return of 127.98%. While in 2022, the scenario was the complete opposite, the stock
presented showed a change in price of 71.93$, an average daily return of -0.32% and a cumulative

return of -52.43%.
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Figure 4.2. AMD stock performance in 2023.

Table 4.1. AMD stock performance metrics in 2023.

Metric Value

Returns

Change in Price (S) 82.75

Average Daily Return (%) 0.33

Cumulative Return (%) 127.98
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Figure 4.3. AMD stock performance in 2022.
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Table 4.2. AMD stock performance metrics in 2022.

Metric Value

Change in Price (S) -71.38
Average Daily Return (%) -0.32
Cumulative Return (%) -52.43

4.2. Technical Indicators and Trading Strategies
The next step in the data preparation process, is the addition of new features. During this step, 12
different technical indicators were added, some with multiple timeframes and others with various

features. This resulted in developing and adding 25 features to enhance the dataset (see Table 3).

Since the moving averages-based strategies are highly favoured among investors, the first
technical indicators added were the Simple Moving Average (SMA), Exponential Moving Average

(EMA), and Weighted Moving Average (WMA) with various periods.

Regarding the Moving Average (MA), the primary objective behind its calculation is to smooth the
price data, by continually generating an updated average price. However, given the high volatility of
the stock market, implementing trading rules solely based on a moving average is not advisable. This

approach could lead to the generation of too many signals, some of which could be misleading.

As a result, most studies and investors usually employ certain moving averages (MAs) when
applying trading rules (Stankovic et al., 2015). The EMA consists of a technical indicator that tracks how
the price of an asset changes over time and unlike an SMA, the EMA gives more emphasis to recent
data points. Like the EMA, the WMA also assigns greater significance to recent data points. However,
unlike the exponential decrease in the EMA, the weights in WMA are designed to ensure that their

sum totals 1.

These indicators can be calculated using the subsequent formulas:

1 N-1
SMAt = Nz Pt—i (41)
i=0
_ 2 2
EMAt = Pt X (N n 1) + EMAt_l X (1 - N_-I-l) (42)
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In these formulas, N refers to the number of periods considered for the moving average
calculation, P indicates the current price of the stock, W represents the weights assigned to past values
in the WMA, and t denotes the current time index or period for which the moving average is being

calculated.

Furthermore, this Dissertation used more momentum indicators, such as the Moving average
convergence divergence, a widely known trend-following indicator. This indicator calculates the

difference between two EMAs of a stock’s price to show the connection between them.

The Triple EMA, also rooted in the EMA, which is crafted to exhibit even quicker responsiveness
to price fluctuations, effectively signalling short-term price movements, was also used in the proposed

model.
TEMA; = 3 X EMA; —3 X EMA(EMA;) + EMA(EMA(EMA,)) (4.4)

Additionally, in the Dissertation context, the parabolic SAR was also utilized. This indicator
completes the goal of identifying potential trend reversals. Functioning as a trend following (lagging)
indicator, it can establish trailing stop losses and make informed decisions about entry or exit points

(Jansen, 2020).
SAR; = SAR;_, + a(EP — SAR;_,) (4.5)

According to the study by Kumbure et al. (2022), the Relative Strength Index (RSI) with a 14-period
setting is the most frequently utilized technical indicator in machine learning studies. As a result, it was
incorporated into the proposed model, alongside the Williams Percent Range (Williams %R) and

Stochastic Oscillator %K, which are also considered momentum indicators.

The RSl is a momentum indicator used to detect overbought and oversold market conditions by
measuring the speed and change of stock price movements. The Williams %R also helps identify entry
and exit points in the stock market by determining overbought and oversold levels. It measures the
difference, in percentage, between the current closing price and the highest price of a given period.
The Stochastic Oscillator %K serves a similar purpose as Williams %R. It compares the most recent

closing price to the range of prices over a particular period.

Continuing with momentum indicators, the proposed model also incorporated the commodity
channel index. This indicator determines the difference between the current price and the historical

average price. The last momentum indicator used in the model was the Percentage Price Oscillator,
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which shows the relationship in percentage between two exponential moving averages (26—period and

12—period).

Moving to the volatility indicators, the most common one, according to Kumbure et al. (2022), is
the Bollinger Bands. Bollinger Bands blend a moving average (MA) with upper and lower bands to

represent the moving standard deviation (Jansen, 2020).

Regarding volume and liquidity indicators, this Dissertation incorporated two factors: the
accumulation/distribution (AD) and the on-balance volume (OBV). The first indicator helps measure
the cumulative flow of money into and out of a stock. On the other hand, the OBV is a cumulative

indicator that establishes a connection between volume and changes in price.

Concerning Technical Indicators, the ones employed in this Dissertation are as follows. Table 4.3
provides an overview of each indicator (a total of 12), along with their respective periods and specific
types, ending in 25 unique features. The figures in Appendix B illustrate the performance of various

technical indicators on AMD stock during the bullish period of 2023.

Table 4.3. Technical indicators utilized.

Indicator Feature Descriptions & Periods Type
Bollinger Bands Upper Band; Middle Band; Volatility
Lower Band
Stochastic Oscillator %K; %D Momentum
Small Moving Average (SMA) SMA 20-days; SMA 50-days; Trend
SMA 150-days
Exponential Moving Average EMA 20-days; EMA 50-days; Trend
(EMA) EMA 150-days
Weighted Moving Average WMA 20-days; WMA 50-days; Trend
(WMA) WMA 150-days
Triple Exponential Moving TEMA 20-days; TEMA 50-days; Trend
Average (TEMA) TEMA 150-days
Relative Strength Index (RSI) RSI Momentum
Williams %R Williamns %R Momentum
Parabolic SAR (PSAR) PSAR Trend
Acumulation/Distribution (AD) AD Volume
On-Balance Volume (OBV) OBV Volume
Moving Average Convergence MACD; MACD Histogram; MACD Trend/Momentum
Divergence (MACD) Signal line
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4.3. Lagged Variables
Although the primary objective was to use technical indicators as features for the Classifier, enhancing
the proposed model with lagged returns was a must, given their consistent status as highly informative

variables (Jansen, 2020), alongside technical indicators and news sentiment.

To capture historical price trends over various time periods, returns were computed for lag
intervalsof 1, 2, 3,4, 5, 21, and 63 trading days. Furthermore, these returns were converted into binary
format to visually represent their directional movement, with a positive return represented as 1 and a
negative return represented as -1. In addition to the lagged returns, lagged adjusted close prices were

also computed for various intervals.

4.4. News Sentiment

The integration of news sentiment gains significance due to its perceived effectiveness among
investors in explaining stock price movements. Moreover, the efficiency exhibited by the stock market
in quickly processing information further emphasizes its importance. Therefore, incorporating this
variable into the model aims to uncover its influence on investment decisions, contributing to a

comprehensive understanding of its prediction ability.

To get news sentiment, the FInBERT Al NLP model (Araci, 2019) was employed. This choice was
motivated by the considerable challenge of conducting sentiment analysis in the financial domain,
characterized by its unique language usage and limited availability of labelled data. The utilization of a
pre-trained language model is pivotal in capturing stock sentiment accurately, given these

complexities.

Before conducting sentiment analysis, the initial step involved the extraction of daily financial
news from the eodhistoricaldata.com API. This data collection process encompassed the period

spanning from 2010 to 2023.

To extract news from the API, a function, fetch_news(), was developed to fetch a maximum of 10
news articles per day for the entire date range. Since the articles aren’t scattered consistently, some
days may have no news, and others may have a lot. Figure 4.4 depicts a sample of news headlines
extracted. When there was no news, a forward fill of the sentiment variable was applied after the

sentiment analysis.

AMD Launches Its Best High-end Graphics Card in years

Iz This the Best Thing to Happen to AMD Investors?

18 18Ch SToCKS TO BUuy NOW ACCOrdlng To sllllonalre >Tewe Conen
Millennial, Gen Z Inwvestors Favor Gareen Energy, EV Stocks In Q3
12 semiconducter Stocks to Buy on the Dip

£ I I ]

Figure 4.4. News example.
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The following step was to write the functions that perform the concrete NLP sentiment analysis

based on the article headlines retrieved.

The sentiment analysis returned three variables: positive, neutral and negative. To simplify the
sentiment analysis and reduce multicollinearity, the positive, neutral, and negative sentiment variables
were combined into a single variable, "sentiment." This new variable provides a normalized overall

sentiment regarding AMD stock.

A “weekly sentiment” feature, resampled and aggregated every week, was also created in order

to provide a more stable and thorough view of the stock market.

The line plot shown in Figure 4.5 illustrates that, despite some volatility in the adjusted close price,
the sentiment regarding AMD stock remained mainly positive. This positivity might be linked to the
tech rally that began in early 2023. The linear correlation between the variables was approximately
0.26, which is not a substantial (linear) relationship. This low correlation can be attributed to the
previously mentioned bullish sentiment toward Al companies. In the scatter plot presented in Figure
4.6, while the adjusted close price and sentiment show some clustering of points, indicating a potential
positive association, the overall dispersion of the points highlights the variability in sentiment despite

the price fluctuations.

Adj Close Price and Sentiment Over Time (2023)

2023-01 202303 2023-05 2023-07 2023-09 202311 2024-01
Date

Figure 4.5. Adj. Close Price vs. Sentiment line
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Scatter Plot of Adj Close Price vs Sentiment (2023)
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Figure 4.6. Adj. Close Price vs. Sentiment scatter

4.5. Labelling Method

After gathering the stock data and creating the necessary variables for the specified timeframe, the
next step was to develop the target variables. The strategies adopted as benchmarks in this
Dissertation for the labelling process, were five of the most common technical shift indicator

strategies, along with a simple buy & hold strategy.

The first labelling process categorizes daily adjusted closing prices as either "Buy" or "Sell" based
on their respective daily returns, or in other words, whether the market is going “Up” or “Down”. A
value of -1 denotes negative returns (downward movement), while 1 signifies positive returns (upward
movement). This labelling method was chosen because alternative strategies, such as those based on
technical indicators, may not consistently perform well across different market conditions. While this
method presents a enormous challenge for accurate predictions, a correct forecast will always result

in a profitable trade, making it a highly robust approach when successful.

Moving on to the technical indicator strategies, four different methods were selected. In the short
term, these strategies can be highly efficient. Creating multiple approaches to the labelling process,

provides flexibility and adaptability for the proposed study.

It is important to highlight that this binary labelling approach ("Buy" or "Sell") was chosen for all
strategies, including the technical indicators strategies, for several key reasons. First, it simplifies

decision-making by concentrating solely on actionable outcomes, decreasing the ambiguity linked with

29



a "Hold" class. Second, it aligns with the Dissertation’s focus on a more active trading approach,
prioritizing profitability from market movements over periods of stagnation. Third, excluding a "Hold"

class minimizes noise, allowing the model to better identify significant trends.

The methodologies, key indicators, and conditions for generating buy and sell conditions for the

four selected technical indicator strategies are summarized below:

e Exponential Moving Average (EMA) crossover:
o Relies on two EMAs: a short-term EMA and a long-term EMA.
o Buy signal: Triggered when the short-term EMA crosses above the long-term EMA,
indicating an upward trend.

o Sell signal: Triggered when the short-term EMA falls below the long-term EMA.

The most common combination for a short-term EMA and long-term EMA is a 12-period and 26-

period, respectively (Stankovic et al. 2015).

e Moving Average Convergence Divergence (MACD) Strategy:
o Uses the MACD indicator and its 9-period EMA signal line.
o Buysignal: Triggered when the MACD value is greater than the 9-period signal line.
o Sell signal: Triggered when the MACD value falls below the 9-period signal line.
e Stochastic Oscillator Strategy:
o Based on the relationship between the %K and %D lines.
o Buy signal: Triggered when the %K line crosses above the %D line, indicating upward
momentum.
o Sell signal: Triggered when the %K line crosses below the %D line, indicating
downward momentum.
e Mean Reversion Strategy:
o Based on the premise that stock prices revert to their historical mean or average over
time. Utilizes Bollinger Bands to identify overbought and oversold conditions.
o Buy signal: Triggered when the adjusted close price falls below the lower Bollinger
Band (oversold).
o Sell signal: Triggered when the adjusted close price rises above the upper Bollinger

Band (overbought).

To test the performance of the various strategies, two distinct periods were selected: a bullish
period from the beginning of 2023 to the end of the first semester, and a bearish period from July 2022

to the end of December 2022. Both scenarios compared the trading strategies to the market returns.
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Regarding the bullish period, as expected, the market returns show a strong upward trend. Both
the SMA Crossover strategy (yellow line in Figure 4.7) and the EMA Crossover strategy (green line in
Figure 4.7) underperform compared to the market, ending with a cumulative return of -0.1 by June
2023. The yellow line is not visible in the figure, as it overlaps with the green line, indicating that both
strategies delivered identical results. The Stochastic Oscillator (red line in Figure 4.7) shows a moderate
performance but is still well below the market performance. In contrast, the MACD Crossover strategy
(purple line in Figure 4.7) demonstrates a solid performance, showing its effectiveness in this bullish
period. Finally, although the Mean Reversion strategy (brown line in Figure 4.7) starts with a period of
gains, it ends the semester with the worst performance out of all the strategies, which suggests that

the Mean Reversion only works in shorter periods.

Comparison of Market Returns vs. Strategy Returns in a Bullish Period
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Figure 4.7. Market returns vs. Strategy returns in bullish period.

The Sharpe Ratio is a measure used to evaluate an investment's performance, such as a trading
strategy, relative to its risk. It is calculated by dividing the difference between the investment’s returns
(Rp) and the risk-free rate (Rr), which for this case was selected the annual value of 5.48% (current
yield on a 3-month US Treasury bill), by the standard deviation of the investment’s returns (a,,).

Sharpe Ratio = @ (4.6)
p

In terms of results, the market outperformed all the trading strategies established, achieving a
Sharpe ratio of 2.43. However, the MACD Crossover strategy also demonstrated strong performance
with a high Sharpe ratio of 2.18, indicating effective risk management. The detailed metrics can be
seen in Table 4.4. The remaining trading strategies present poor risk-adjusted performance compared

to the market and the MACD Crossover strategy.
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Table 4.4. Trading strategy Sharpe ratio in bullish period.

Trading Strategy Sharpe Ratio
Market 2.43
Simple Moving Average -0.05
Exponential Moving Average -0.05
MACD Crossover 2.18
Stochastic Oscillator 1.12
Mean Reversion -1.11

Contrary to the bullish period, the bearish period, shown in Figure 4.8, demonstrates all the

trading strategies outperforming the market returns except the Mean Reversion strategy.

This analysis highlights the challenges of achieving positive returns in bear market conditions and
also the possibility of achieving brief periods of high returns with certain trading strategies such as the
Stochastic Oscillator and Mean Reversion Strategy. Finally, the finding emphasizes the importance of
finding robust strategies like the MACD Crossover that can adapt to market volatility and complex

bearish market conditions.

The Sharpe Ratio results, as shown in Table 4.5, highlight the difficulty of achieving positive risk-
adjusted returns during a bearish market period. The MACD Crossover strategy performed the best,

with a Sharpe ratio of 2.49, followed by the Stochastic Oscillator strategy.

Comparison of Market Returns vs. Strategy Returns in a Bearish Period
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Figure 4.8. Market returns vs. Strategy returns in bearish period.
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Table 4.5. Trading strategy Sharpe ratio in bearish period.

Trading Strategy Sharpe Ratio
Market -0.29
Simple Moving Average 0.09
Exponential Moving Average 0.09
MACD Crossover 2.49
Stochastic Oscillator 0.32
Mean Reversion -1.62

After analysing both scenarios, it was apparent that the MACD Crossover strategy was the most
robust, adapting well to both bullish and bearish conditions, and providing high cumulative returns.
Even though the Stochastic Oscillator strategy lacked the resilience to sustain high gains over longer

periods, it proved the potential for significant short-term gains.

Considering these findings, both the MACD Crossover and Stochastic Oscillator strategies were
selected as the target variables, along with price direction, to be tested in the CNN model. This
selection aims to influence the robust performance of the MACD Crossover strategy and the short-

term effectiveness of the stochastic Oscillator strategy to augment the model's predictive accuracy.

4.6. Feature Selection

Selecting the right features for the proposed model is a challenging task but an essential aspect of any
machine learning pipeline. As is often the case in many studies, including this one, some features are
redundant. These redundant features can introduce noise, complicating the model's development and
interpretation. It is essential to identify the relevant features for the problem at hand, ensuring that

the model relies solely on high-quality inputs.

The performance of a comprehensive range of feature selection methods was analysed, including
filter, wrapper, and embedded techniques and Genetic Algorithms (GA). The goal was to cross-select
the top 10 most frequently selected features across these methods. Figure 4.9 presents an overview
of the methods and processes applied, highlighting the sequential flow of the methodology, starting
from the initial datasets and progressing through various feature selection techniques to the final

datasets containing the top selected features.
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Figure 4.9. Overview of the feature selection process

Before applying any feature selection methods, the target variable in each strategy (Price
Direction, MACD Crossover, Stochastic Oscillator) was shifted backward by one day. This shift warrants
that the model uses today's features to predict tomorrow's results, preserving a realistic predictive

framework, causality and avoiding data leakage.

Firstly, the performance of filter methods was analysed, including Variance Threshold, Correlation

Coefficients and Univariate Selection.

The Variance Threshold, as the name suggests, is a feature selection method that removes
features that present low variance. In this Dissertation, a variance threshold of 0.3 was selected,
resulting in the selection of 57 out of 99 features for each strategy. The 99 features include the
technical indicators developed specifically for this Dissertation, as well as lagged returns, lagged
adjusted close prices, standard stock variables (such as volume and open prices), and, finally, news

sentiment data.

The subsequent method chosen was the Pearson correlation coefficient, which is used to assess
the linear relationship between features and target variables. For this Dissertation, features with a
correlation of 0.2 or greater with the target variables were selected, focusing solely on continuous

variables.

In the dataset with stock price direction as the target variable, no variables were selected, likely
due to the complex and non-linear relationship between the features and the target. For the dataset

based on the Stochastic Oscillator strategy, 3 variables were identified as relevant, while the MACD
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Crossover strategy dataset yielded 11 relevant variables. The correlation matrices for the Stochastic

Oscillator and the MACD Crossover strategy are presented in Appendix C.

The last filter method applied was the Univariate feature selection, which evaluates each feature
independently to test its relationship with the target variables. This method utilizes the ANOVA F-test
to assess if the means of the target variables vary substantially across the values of a feature. After the
test, the features are ranked based on their significance with the target variable, in this case, the top

10 features for each dataset. The features selected for each dataset are displayed in Appendix B.

Next, the wrapper methods were tested. Recursive Feature Elimination (RFE) was applied using
Logistic Regression and a Decision Tree Classifier as estimators. RFE is a method that selects the most
relevant features by recursively considering smaller sets of features and applying an estimator to
assess the importance of each feature. In this Dissertation, for each estimator, the RFE selected the

top 10 features based on their importance.

Next, backward and forward selections were applied. These are standard techniques used in
feature selection for developing predictive models. They are types of stepwise regression methods

that help determine the most relevant features for a model.

Forward selection is an iterative method that starts with no features and increases them one at a
time based on the accuracy of the logistic regression classifier. This process continues until adding new
features no longer significantly improves the model's performance. In contrast, the backward
elimination, starts with all available features and removes them one at a time based on the model’s

accuracy.

For this Dissertation, both methods were employed to leverage their specific benefits. Backward
elimination is beneficial for large datasets as it effectively reduces features, while forward selection
incrementally builds the model, warranting that each added feature contributes to improved accuracy.

In both methods, the top 10 features were selected based on their influence.

The final wrapper method implemented was a genetic algorithm with a decision tree classifier. As
mentioned in the literature review by Xue et al., (2016), genetic algorithms have gained widespread
acclaim in the feature selection community. Genetic algorithms are optimization methods inspired by
natural selection and genetics. The features selected by the Genetic Algorithm for each dataset are

displayed in Appendix C.

To begin, a population of possible solutions (individuals) is generated; in this Dissertation, the
population size was set to 100. Each individual is evaluated using a fitness function, which in this

context is the accuracy of the decision tree classifier. Fitter solutions, those with higher accuracy, have
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a higher likelihood of being chosen for the next generation, ensuring that better solutions propagate.
The next step is crossover, which involves mixing pairs of selected solutions to exchange parts of their
genetic information and establish new individuals. In this Dissertation, a crossover probability of 0.5
was chosen. Additionally, random mutations are introduced to some of the newly created individuals
with a mutation probability of 0.2. This helps preserve genetic diversity within the population and

allows the algorithm to explore new areas of the solution space.

These steps are repeated for many generations. In this Dissertation, the algorithm was set to stop
if there was no improvement for 20 consecutive generations. The features selected by the Genetic

Algorithm for each dataset are displayed in Appendix C.

The last type of feature selection technique tested for the considered datasets was the embedded
methods. Unlike wrapper methods, which evaluate combinations of features using a predictive model,

embedded methods integrate feature selection straight into the model training process.

The Lasso Regression (L1 Regularization) was the first embedded method applied to the datasets
to identify the most relevant features. This technique adds a penalty equivalent to the absolute value
of the magnitude of coefficients, reducing some of them to zero. By applying that penalty, the Lasso
Regression not only does regularization but also feature selection, keeping only the features with non-

zero coefficients.

The last two techniques applied before cross-feature selection were Random Forest and XGBoost
feature importance. Random Forest, although it is a machine learning method, intrinsically performs
feature selection by evaluating the importance of each feature. The XGBoost is another ML method
that utilizes decision trees. The main difference between both learning methods is that Random Forest
uses mean decrease in impurity and accuracy to determine feature importance. And the XGBoost
utilizes metrics like gain, frequency, and cover to estimate feature importance. The results of both

methods for each dataset, along with the others, are presented in Appendix C.

After applying 11 feature selection methods, the next phase was to perform a cross-selection of
features. The aim is to determine and select the top 10 features most frequently chosen by each
feature selection method for each dataset. This approach warrants that the most consistently

significant features across different methods are identified and employed in the image creation.

The final version of each dataset is displayed in Table 4.6. The selected variables for the Stock Price
Direction dataset emphasize volume, price and momentum indicators to identify market activity and

its direction. Features like volume, Accumulation/Distribution Line (AD), and On-Balance Volume (OBV)
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are significant in understanding trading activity and historical price movements, essential for predicting

future market direction.

In the Stochastic Oscillator dataset, while there is still certain emphasis on volume-related
variables such as the AD and OBV, the primary focus shifts to momentum indicators, such as the %K,
%D and Williams %R, which are essential for analysing price direction and generating buy and sell
signals. To conclude, the MACD Crossover dataset strongly relies on MACD-related features and
momentum indicators to detect trading opportunities. The MACD histogram, %K, %D, and the MACD
signal line are fundamental in identifying trend strength and changes, enabling the detection of bullish

and bearish market conditions.

Table 4.6. Final version of each dataset.

Features Stock Price Direction Stochastic Oscillator MACD Crossover Dataset
Dataset Dataset
1 Volume %D MACD Histogram
2 AD Williams %R %K
(Accumulation/Distribution Line)
3 OBV (On-Balance Volume) %K %D
4 Lagged Adjusted Close day 2 Returns Williams %R
5 Lagged Return Day 1 Volume Returns
6 Lagged Return Day 2 PPO (Percentage Price Lagged Return Day 1
Oscillator)
7 Close AD Volume
(Accumulation/Distribution Line)
8 Adjusted Close OBV (On-Balance Volume) OBV (On-Balance Volume)
9 %D MACD Histogram MACD Signal Line
10 TEMA 20-day (Triple Lagged Return Day 1 PPO (Percentage Price
Exponential Moving Average) Oscillator)

4.7. Image Creation
After selecting the most important features in each dataset, employing the 2D-CNN is essential for
transforming the time-series data into image. To perform this transformation, three different

approaches were explored and performed.

The approaches explored were the Gramian Angular Field (GAF), Recurrence Plots (RP) and
Markov Transition Field (MTF). As seen in the literature review, by converting time series data into
images, these CNN models can accomplish effective results when utilized for various financial tasks,

including stock price prediction.
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The first approach employed was the GAF. In recent years, this method has become a widespread
technique for converting time series data into images to leverage the advantages of CNNs for time
series prediction. Proposed by Wang and Oates (2015), this time series encoding method nets the
temporal relationships between each time point within the data by normalizing the time series and

representing its values as coordinates in a polar coordinate system.

Applying this base, the Gramian Angular Summation Field (GASF) and Gramian Angular Difference
Field (GADF) matrices can be established.

Xu et al. (2023) explain that GASF and GADF matrices capture the correlations between time series
values at various periods using cosine and sine operations, creating an image representation of the
temporal signal. However, this operation may risk losing some information. The main difference
between the two matrices is that GASF highlights cumulative patterns, while GADF emphasizes

variations, resulting in different representations of the time series.

For this Dissertation, it was decided to generate multivariate GADF images with overlapping
windows from the AMD stock data. It was proposed a window of 22 days, considering a swing trader's
perspective, which is a style of trading that attempts to capture short to medium term gains using
mainly technical indicators. Selecting a 22-day overlap with a step size of 1 ensures that maximum
overlap is achieved, facilitating CNN in recognizing patterns and trends that occur over longer periods.
Additionally, with this overlap, the model is probably better equipped to detect subtle shifts and
anomalies and grant more accurate and robust predictions for future time windows. This continuity
permits CNNs to use the shared information across overlapping windows to reinforce learning and

improve their capacity to generalize across different periods.

The core distinction between classical GAF generation and the method proposed in this
Dissertation is that the GAFs will be multivariate. This is accomplished by creating individual GAF
images for each variable and combining them into multichannel images. Creating a multivariate image
allows the CNN model to learn from the relationships between different variables, increasing its ability

to capture complex patterns and dependencies within the data.

With the proposed method, each generated image produces a distinct representation of the time
series, visualizing the progression of different variables up to the 22" day. This thorough visualization
allows the model to analyse the multivariate relationships and trends, ultimately predicting a more

robust trading decision for the next day.
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The images generated for each dataset, representing the first variable in the first segment, are
displayed below in Figure 4.10. The three images reflect the effectiveness of the GAF in capturing

intricate details from the time series data.

Both the images for the Stochastic Oscillator dataset and the MACD Crossover dataset show clear
patterns with well-defined regions, highlighting the GAF’s capability to capture temporal dependencies
effectively. In contrast, the image corresponding to the stock price direction dataset reveals a more
complex pattern, which is naturally more challenging to predict. This complexity is anticipated, as the
Stochastic Oscillator and MACD Crossover datasets include variables that are more directly correlated
with the target variable, enhancing the GAF's ability to identify and represent these temporal

relationships.

GAF of the First Variable in the First Segment for stock_SO GAF of the First Variable in the First Segment for stock_ MACD GAF of the First Variable in the First Segment for stock_direction
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Figure 4.10. GAF Images for each dataset.

The following method for encoding time series data into images is recurrence plots. Introduced
by Eckmann et al. in 1987, recurrence plots provide a way to visualize the recurrences of a dynamical
system. This method offers a simple and easily estimable approach to characterize the system's
dynamics. Initially, it was based solely on the measured time series and was intended to complement

other contemporary methods.

Over the years, as highlighted by Goswami (2019), the use of recurrence plots has increased
significantly due to their intuitive visual appeal and the growing interest in nonlinear time series
analysis. Recurrence plot-based methods have been applied to a wide range of problems, including
finance, which is the focus of this Dissertation, to detect and visualize recurring patterns. The ability of
recurrence plots to provide a detailed visual representation of temporal relationships makes them a

valuable tool in time series prediction.

For this Dissertation, similar to the approach used for generating GAF, the aim was to develop
multivariate recurrence plots to capture the temporal dynamics of various variables within the time

series data. Following the methodology used for Gramian Angular Fields (GAFs), we proposed using an
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overlapping window of 22 days with a step size of 1 day. Consequently, each new window overlaps the
previous one by 21 days. Combining each variable recurrence plot into a multichannel recurrence plot
makes it possible to capture the complex relationships among the variables over time, while

maintaining continuity with the overlapping window.

For this approach, a threshold method was set to 'point', and a percentage of 20 was selected.
This mechanism establishes the points in the phase space that are believed to be recurrent by
measuring the distances between them and picking the top 20% closest pairs. This allows the

recurrence plots to highlight significant recurrences by filtering out noise.

Figure 4.11 displays the images generated for each dataset, representing the ninth variable in the
ninth segment. For the recurrence plot of the Stochastic Oscillator dataset, the structured pattern with
a diagonal cross indicates regular and predictable recurrence. The recurrence plot for the MACD
Crossover dataset also reinforces the idea of predictability. Strong diagonal bands suggest a significant
amount of periodic behaviour, indicating that the ninth variable in this segment presents regular and
recurring patterns over time. On the other hand, the recurrence plot for the Stock Price Direction

dataset, although it has some periodic behaviour, still exhibits complex and non-linear dynamics.

Recurrence Plot of the Ninth Variable in the Ninth Segment for stock_SO  Recurrence Plot of the Ninth Variable in the Ninth Segment for stock_MACD Recurrence Plot of the Ninth Variable in the Ninth Segment for stock_direction
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Figure 4.11. RP Images for each dataset.

The Markov Transition Field (MTF) was the final image generation method. As noted by Lu et al.
(2018), the MTF enhances the Markov matrix by aligning each probability according to the temporal
order of the time series. While the Markov matrix encodes the dynamical transition statistics, it does
not account for the conditional relationships and temporal dependencies between time steps. The
MTF, as described by Wang and Oates (2015), sequentially represents the Markov transition
probabilities to maintain information within the time domain. In addition, Wang and Oates (2015)
demonstrated that the MTF method produces highly competitive results compared to other time

series classification approaches.

This Dissertation closely followed the parameters selected from the approaches above. Once

again, the aim was to generate multivariate images, specifically multivariate MTF images, using a 22-
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day overlapping window with a step size 1. Each window captures the transition dynamics of the time

series over 22 days, and the overlapping ensures that temporal dependencies are preserved.

Figure 4.12 exhibits the images generated for each dataset, representing the third variable in the
third segment. For the MTF of the Stochastic Oscillator dataset, the image displays a mix of structured
and random transitions, indicating some predictability and some volatility. The MTF matrix of the
MACD Crossover demonstrates more predictable patterns, such as some high-probability transitions
(yellow region), which ensures higher consistency for time series prediction. Lastly, the MTF matrix for
the Stock Price Direction dataset, exhibits the most complex and structured patterns, which suggests
strong temporal dependencies with high probability transitions (yellow and green regions).

MTF of the Third Variable in the Third Segment for stock 50

MTF of the Third Variable in the Third Segment for stock_MACD MTF of the Third Variable in the Third Segment for stock_direction
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Figure 4.12. MTF Images for each dataset.

The generated images in all approaches (GAF, Recurrence Plot, MTF) exhibit the potential of these
methods in capturing structured patterns and powerful temporal dependencies, indicating high
predictability. However, they also reveal that some variables and specific time windows can be less
clear, making predictions more challenging. This is due to the inherent volatility and randomness of
the stock market. By using multivariate images, some images may compensate for others, thus

enhancing overall predictability.

41



42



Chapter 5

Modelling and Evaluation

The next phase in the CRISP-DM methodology is modelling. For this Dissertation, three models were
employed, all utilizing Deep Learning techniques. The first model used was an LSTM, which served as
the baseline for the study. Next, a CNN model was applied to the various image techniques previously
developed and finally, to enhance the accuracy of the CNN model, a GAN architecture, the TimeGAN,
was employed to generate data simulating different market scenarios. Each of these models was
applied to the created datasets: Stock Price Direction dataset, MACD Crossover strategy dataset and

Stochastic Oscillator strategy dataset.

5.1. Train-Test Splitting and Performance Evaluation Metrics

Before applying any model, it was essential to define the train and test sets and the metrics for
evaluating and comparing the model’s performance. For all models tested, two train-test split methods
were performed on the three datasets. Additionally, a validation set was included during training to

monitor the model's performance on unseen data.

The validation set was created by splitting 10% of the training data, guaranteeing that it remained
separate from the training and test sets. This set granted an intermediary checkpoint to evaluate the
model’s generalization ability after each epoch. The validation loss was closely monitored, and early
stopping was employed to prevent overfitting. Training was halted if no improvement in validation loss
was observed for 20 consecutive epochs, and the best-performing model weights were restored. This
process warranted that the model did not overtrain on the training data while maintaining optimal
performance on unseen data. Including the validation set was fundamental for fine-tuning the model

and ensuring good generalization.

The datasets contained complete data without missing values from July 6, 2015, to December 28,
2023. However, data prior to July 6, 2015, had missing values due to the generation of features such

as technical indicators and sentiment data, which needed historical data for calculation.

In the first approach, a train-test split of 90/10 was performed on all datasets. Given the
unpredictable nature of stock data and the focus on short-term predictions, this split was considered
suitable. For the tabular and image data, the split resulted in 1903 training samples and 212 test

samples, which can be regarded as not a high volume of data.

Regarding the second approach, shown in Figure 5.1, to accomplish a more robust evaluation, a

Rolling Cross-Validation was applied to the datasets. Rolling Cross-Validation is a technique that

43



maintains the temporal order of the data, which is fundamental for time series data, avoiding data

leakage and over-optimistic performances.

This approach involves multiple evaluations, four in this Dissertation, offering a more
comprehensive understanding of the model’s performance across different market scenarios and
assessing its stability. In each fold, the training set includes the start of the dataset up to a specific time
t, and the validation set incorporates data points immediately after t. The process is repeated four
times, moving the split point forward in each fold. For instance, in the first fold, the model trains data
until t; and tested on data from t; + 1 to £,. In the second fold, the train data include observations up

to t,, and the validation data ranges from t, + 1 to t3, and so on, until the last fold.

In conclusion, Rolling Cross-Validation allows for a better evaluation of the model’s robustness
and reliability, by closely simulating how the model will be used in practice. In the case of the time-
series data converted in images, a walk-forward validation was used, which is almost identical to the

Rolling Cross-Validation but is suited for image-like data.

[ Data ]

[ Train I Test ] ]
+

[ Train I Test ] ]
Y

[ ]

[

Train I Test ]

Train [ Test ]

Figure 5.1. Rolling Cross-Validation/Walk-Forward Validation.

Regarding the metrics selected to evaluate the model’s performance, several generally used
classification metrics were picked. The first metric is accuracy, which is the ratio of correctly predicted

observations to the total observations.

True Positives (TP) + True Negatives(TN)

5.1
TP + TN + False Postives (FP) + False Negatives(FN) 5.1)

Accuracy =

Next were Precision and Recall (Sensitivity). Precision measures the ratio of correctly predicted
positive instances to the total predicted positives. Recall, on the other hand, measures the ratio of

correctly predicted positive instances to all the instances in the actual class.

Precision = " 5.2
recision = TP + FP (5.2)
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Recall = — %
= TP Y EN (5:3)

Lastly, the metric Area Under the ROC Curve (AUC-ROC) was chosen. This metric helps understand
the trade-offs between the true positive rate and false positive rate at different levels, indicating how
well the model can distinguish between classes. A higher AUC means the model better distinguishes
between positive (Buy) and negative (Sell) classes. This metric is valuable as it helps assess the model's

performance in different market scenarios.

5.2. Long Short-Term Memory (LSTM) Baseline Model

The first model developed for this Dissertation was an LSTM model, which served as the baseline. LSTM
neural networks are a specialized architecture of recurrent neural networks (RNNs), which are
designed to better capture long-term dependencies in sequential data. While traditional RNNs can
theoretically use information from long sequences, they often struggle with long-term dependencies
in practice. This difficulty surfaces from the problem of gradient vanishing or exploding during

backpropagation over many time steps, as highlighted by Jansen (2020).

Multiple RNN design techniques have been developed to address this challenge, with the most
successful ones employing gates trained to control how much past information is preserved in the
current state and when to reset this information. The LSTM is the most popular example of this
approach. It uses input, output, and forget gates to manage dependencies between elements in the
input sequence, allowing recurrent decisions. Precisely, the forget gate controls how much of the cell's
state should be discarded, the input gate updates the cell state based on the current input and previous
hidden state, and the output gate filters the updated cell state to produce the final output, as explained
by Jansen (2020). This gated mechanism allows LSTMs to successfully handle long-term dependencies,

making them fit for stock price prediction.

Since the LSTM was not the primary focus of this Dissertation, hyperparameter tuning for this

model was not emphasized; its primary role was to provide a baseline performance.

The LSTM model for all datasets was constructed using the Sequential APl from Keras, featuring a
simple architecture containing a single LSTM layer with 50 units and a ReLU activation function. This
was followed by a dense layer with a sigmoid activation function to create binary classification outputs.
The model was compiled with the Adam optimizer and binary cross-entropy loss, with accuracy tracked
as a performance metric. To prevent overfitting, early stopping was employed, monitoring the

validation loss with a patience of 10 epochs.
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The training process involved fitting the model to the training data of all the datasets for 200
epochs with a batch size of 32. A validation set compromising 10% of the data was used to validate the

model during training.

5.3. Convolutional Neural Network (CNN)

As mentioned in the beginning of this Dissertation, CNNs were initially developed to process image
data and in computer vision has achieved exceptional performance. As noted by Jansen (2020), time-
series data has a grid-like structure very alike to that of images. With that in mind, CNNs have been
successfully applied to one-, two- and three-dimensional representations of temporal data. In this
Dissertation, to take advantage of the grid-like structure of multivariate time-series data, where each
time series is a channel, a 2D CNN was developed to leverage its ability to detect local patterns and

relationships between the different channels.

Regarding the theory behind the CNNs, as explained by Jansen (2020), these networks are a
specialized type of neural networks that excel at learning spatial hierarchies in data, making them
effective at image and sequence data tasks. Remarkably similar to feedforward neural networks (NNs),
CNNs consist of units with weights and biases as parameters, which are adjusted during the training

process to optimize the network's output for a specific input.

In the time-series context, as stated above, CNNs leverage the assumption that local patterns
(could be represented as autocorrelation or other non-linear relationships at relevant intervals) are

essential to predict the outcome.

In this Dissertation, a 2D CNN architecture was utilized to leverage its capability to capture local
patterns in stock data, such as technical indicators, and compare its performance with the baseline
model (LSTM) and various image generation techniques. Each stock dataset (Stock Price Direction,
MACD crossover strategy, Stochastic Oscillator strategy) was used to train and test the 2D CNN. For
each stock dataset, the relevant features, already transformed into GAFs, RPs or MTF, were selected,
and the number of channels was defined based on these features used to generate the images (10
channels). The CNN model was developed utilizing the Sequential APl from Keras, with two

convolutional layers followed by pooling layers, a flattening layer, and, finally, dense layers.

The original CNN architecture consisted of a first convolutional layers with 32 filters, a kernel size
of 3x3, followed by a max pooling layer of 2x2. The second convolutional layer had 64 filters, kernel
size of 3x3, and a max pooling layer of 2x2. The input matrices for the CNN had dimensions of 22 x 22
x 10, representing 22 time-steps, 22 windows, and 10 features. The model constructed incorporated a

flattening layer, a dense layer with 64 units, and a final dense layer with a sigmoid function to deliver
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binary classification outputs. Then, the model was compiled utilizing the Adam optimizer, binary cross-
entropy loss function, and accuracy as the selected performance metric. Lastly, during the training
process, the CNN was fitted to the training data for 200 epochs with a validation split of 10%. Table 5.1

provides the parameters selected for the initial CNN:

Table 5.1. Parameters for the initial approach of the CNN model.

Layer Type Parameters Activation Function
Convolutional Layer 1 32 filters, kernel size RelLU
3x3
Max Pooling Layer 1 Pool size 2x2 -
Convolutional Layer 2 Galfilters kernel size RelLU
3x3
Max Pooling Layer 2 Pool size 2x2 -
Flattening Layer - -
Dense Layer 64 units RelLU
Output Dense Layer 1 unit Sigmoid
Compilation Optimizer: Adam, )
Loss: Binary Cross-Entropy
Training Epochs: 200, -
Validation Split: 10%

In the initial approach, the model exhibited significant overfitting, especially with the Stock Price
Direction dataset and the Stochastic Oscillator strategy dataset. In order to resolve this issue, a more

sophisticated CNN architecture was developed.

This second approach was given special focus in the study, requiring careful attention to achieve
optimal results. The initial CNN’s tendency to easily overfit to two of three datasets showed how critical

is hyperparameter tuning to guarantee the best possible performance across all datasets.

To mitigate overfitting and improve model’s generalization capacity, several adjustments were
made. Batch normalization layers were included after each convolutional layer to soothe the learning
process and reduce sensitivity to initialization. In addition, dropout layers were also employed to
randomly drop units during the training process, helping to reduce overfitting. Finally, an early
stopping callback was applied to monitor the validation loss and stop training if it did not improve for

20 consecutive epochs, thus preventing overfitting.

This enhanced approach conducted multiple experiments with various hyperparameters,

including a grid search employing the Keras Classifier form TensorFlow. The model architecture
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featured two convolutional layers with diverse combinations of filters (16 and 32, 32 and 64, 64 and
128) to capture different levels of feature complexity. Regarding the kernel size in each convolutional
layer, three kernel sizes were tested (2x2;3x3;5x5). Each convolutional layer was followed by a max
pooling layer with a pool size of 2x2, batch normalization layers of 16, 32 or 64 units, and a dropout
layer with rates of 0.1, 0.25 or 0.5 to observe their influence on the training process. Identical to the
initial approach, both convolutional layers used a RelLU activation function and were followed by a
flattening layer to convert the 2D matrix into a vector. Before the final dense layer, an additional batch

normalization and dropout layers were employed with various rates.

To conclude, the model was built and trained with the same optimizer and loss function as the
initial approach. Two hundred epochs were used for training, but due to the employment of early
stopping, training was halted earlier when no improvement in validation loss was observed for 20
consecutive epochs, as previously mentioned. By realizing extensive experiments with a vast range of
hyperparameters, it was possible to optimize the model's performance. Table 5.2 provides the

parameters selected for the CNN model constructed.

Table 5.2. Parameters for the final approach of the CNN model.

Layer Type Parameters Activation Function

Convolutional Layer 1 Filters: 16,32,64 RelU

Kernel size: 2x2,3x3.5x5

Max Pooling Layer 1 Pool size: 2x2 -

Convolutional Layer 2 Filters: 32,64,128 RelLU

Kernel size: 2x2,3x3.5x5

Max Pooling Layer 2 Pool size: 2x2 -
Batch Normalization Units: 16,32,64
Dropout Layer Rates:0.1,0.25,0.5

Flattening Layer - -

Dense Layer Units: 64 RelLU
Output Dense Layer Units: 1 Sigmoid
Compilation -

Optimizer: Adam, Loss: Binary

Cross-Entropy
Training Epochs: 200 -
Validation Split: 10%
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5.4. Generative Adversarial Network (TimeGAN)

This model was constructed to generate synthetic data to improve the CNN’s model accuracy and to
produce data realistic enough to simulate various market scenarios. As mentioned in the literature
review, in 2019, Yoon and Jarret proposed a novel GAN architecture to model time-series data, the
TimeGAN. This approach allows to generate data that capture the various datasets feature

distributions within each time-point and catch the complicated dynamics of those features across time.

TimeGAN differs from other GAN architectures because it introduces the concept of supervised
loss, meaning that the model is incentivized to catch time conditional distribution within the data by
utilizing the original data as supervision. Additionally, the presence of an embedding network reduces
the adversarial learning space dimensionality. Another benefit of utilizing the TimeGAN architecture is

its lower sensitivity to hyperparameter changes and greater stability during training.

The TimeGAN consists of four main network components: the embedding function, the recovery
function, the sequence generator, and the sequence discriminator. The first two components, known
as the autoencoding components, are trained together with the latter two, known as the adversarial,
as part of the overall architecture. This process allows the TimeGAN to simultaneously learn to encode
features, generate representations, and iterate across time, as explained by Yoon and Jarret (2019). In
addition, the embedding network supports the latent space, the adversarial network works within this
space, and the latent dynamics of both real and synthetic data are synchronized through a supervised

loss.

In this Dissertation, the TimeGAN was utilized solely to simulate the bull run using data from 2023.
This scenario was chosen to ensure consistency, as the same data used in the CNN model was also
employed for the TimeGAN simulation. This dataset was scaled using the Min-Max Scaler to ensure

consistency and reliability in the simulation.

To simulate this scenario, the YData Fabric platform was utilized to generate precise and realistic

synthetic data (YData, n.d.). The parameters from the model are shown in Table 5.3.
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Table 5.3. Parameters for the TimeGAN.

Parameter Value
Sequence Length 22
Number of Sequences 11
Hidden Dimension 22
Gamma Value 1
Noise Dimension 32
Layer Dimension 128
Batch Size 128
Learning Rate S5e~*
Number of Epochs 500
Samples Generated 250




Chapter 6
Results and Discussion

6.1. Baseline LSTM

In this chapter, the results from the proposed models are analysed and discussed. A total of 11 models
were evaluated, considering various frameworks and datasets. Starting with the baseline model, the
LSTM, all datasets were tested using this architecture. The model was tested using two different

approaches: a standard train-test split of 90/10 and Rolling Cross-Validation.

In the first approach, the Stochastic Oscillator strategy presented an accuracy of 66% on the test
set. While this may not seem very high, it is a reasonable performance given the natural difficulty and

unpredictability of the stock market.

Regarding the recall metric, the LSTM exhibited a higher recall for class 0 (71%), indicating better
performance in identifying sell or no-buy signals. Precision was balanced between the classes, with an
overall score of 65%. The AUC-ROC score was 66%, indicating that the model is reasonably capable of

distinguishing between buy and sell signals.

When using the Rolling Cross Validation, the Stock Oscillator strategy achieved an overall accuracy
of 59%, gradually improving accuracy until the final fold. The recall and AUC-ROC metrics followed a
similar trend, reaching a value of 67% and 63%, respectively, in the last fold. Regardless of this
performance in the final fold, the average recall was 50% and the average AUC-ROC was 59%. For the
precision metric, the overall performance was 62%, with the best performance happening in the

second fold at 70%.

Although the Rolling Cross-Validation technique achieved moderate performance, with the overall
metrics hovering around 60%, it still shows the inherent difficulty of predicting stock strategy
movements and achieved a worse performance than the train-test split approach. This performance
difference can be credited to the fact that in Rolling Cross-Validation, each fold progressively raises the
amount of training data, but the initial folds have less data to train on compared to the train-test split.

Another factor is the strong temporal dependencies in stock market data.

In conclusion, while the Rolling Cross-Validation is a good technique to measure the model
robustness and performance across multiple subsets of data, the complexity and variability of stock
market data in this case, may benefit more from a stable, consistent, and longer training approach

such as the train-test split. Table 6.1 displays the results for the Stochastic Oscillator strategy.
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Table 6.1. LSTM Stochastic Oscillator strategy results.

Stochastic Oscillator Strategy

Metrics Train-Test Split Rolling CV Last Rolling CV
Fold Overall
Accuracy 66% 63% 59%
Precision 65% 60% 62%
Recall 60% 67% 50%
AUC-ROC 66% 63% 59%

In the case of dataset of MACD Crossover strategy, the Rolling Cross-Validation approach achieved
an accuracy of 83%, which is two percentage points higher than the 81% accuracy obtained from the
train-test split approach. Although the metrics are very similar in both methods, the difference in
accuracy can be primarily justified by the difference in recall. In the train-test split approach, the model
had a recall of 68% for identifying buy signals, while the Rolling Cross-Validation approach attained a

recall of 90% in the last fold.

In general, the model for the MACD Crossover strategy presents a strong performance with a high
precision for buy signals, which are essential for trading strategies. Even though the model presents a
substantial AUC-ROC value, there is room to improve the recall to guarantee it identifies more actual

buying opportunities. The metrics for the MACD Crossover strategy are shown in Table 6.2.
Table 6.2. LSTM MACD Crossover strategy results.

MACD Crossover Strategy

Metrics Train-Test Split Rolling CV Last Rolling CV
Fold Overall
Accuracy 81% 87% 83%
Precision 93% 86% 88%
Recall 68% 90% 77%
AUC-ROC 81% 87% 83%
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The improvement with the Rolling Cross-Validation can be clarified by the progressive increase in
training data with each fold, allowing the model to learn more effectively from a larger dataset over
time. Unlike the Stochastic Oscillator strategy, where the train-test split was the more effective
approach, the greater performance of the MACD Crossover strategy with Rolling Cross-Validation can
be credited to the nature of the MACD signals. MACD signals are more stable and predictable, with
less variation, specifically in their ability to accurately recall buy signals. This allows the MACD
Crossover strategy to perform well even from the initial folds. This underlines the importance of

selecting the appropriate validation approach for each strategy.

The last strategy tested was the Stock Price Direction, which by default is the hardest to predict
due to the inherent variability of the stock price market and because it is based solely on stock returns

rather than any technical strategy.

As expected, this strategy achieved the worst performance. The accuracy in either approach didn’t
go beyond the 53% mark. However, the Rolling Cross-Validation approach presented a much better
performance in terms of recall. With the train-test split technique, the model achieved a recall of only
12%, indicating that it missed many actual buy signals, making it ineffective at capturing buy signals.

Additionally, the train-test split presented an accuracy of 49%, which is lower than random guessing.

Overall, the Rolling Cross-Validation demonstrated a modest improvement in the Stock Price
Direction strategy, likely by allowing the model to learn from a more varied dataset. Regardless of
these improvements and the inherent complexity of stock price direction classification, the results are
inadequate. With the use of CNNs, different image generation techniques, and synthetic data, the
study aims to achieve more reliable predictions. The metrics supporting these results for the Stock

Price Direction strategy are stated in Table 6.3.

Table 6.3. LSTM Stock Price Direction strategy results.

Stock Price Direction Strategy

Metrics Train-Test Rolling CV Last Rolling CV
Split Fold Overall
Accuracy 49% 52% 53%
Precision 58% 52% 55%
Recall 12% 47% 58%
AUC-ROC 51% 52% 52%
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6.2. CNN

Regarding the performance of the CNN model across multiple strategies, two architectures were
tested. The initial architecture exhibited signs of overfitting, particularly with the Stock Price Direction
dataset and the Stochastic Oscillator strategy dataset. To mitigate this issue, a more refined
architecture was implemented. The results analysed and discussed in this section refer to the

performance of this improved model.

For the improved CNN, two testing approaches were employed: a standard 90/10 train-test split
and walk-forward validation. Furthermore, all developed image generation techniques were applied
and tested using this model (GAF, RP, MTF). To optimize the performance of the best-performing

image generation method, a grid search was conducted to fine-tune the hyperparameters.

6.2.1. CNN-GAF

Firstly, this model was applied to the GAF generated images for each trading strategy. In the train-test
split approach, the Stochastic Oscillator strategy accomplished an accuracy of 58% on the test set,
which is lower when compared to the baseline LSTM model. Other metrics, such as precision, recall,
and AUC-ROC, underperformed relative to the LSTM baseline, suggesting that classifying buy and sell

signals in GAF image data using the Stochastic Oscillator strategy is more challenging.

Nevertheless, this idea turns when analysing the results from the walk-forward validation, where
the strategy accomplished an accuracy of 67%, very similar to the best result from the LSTM baseline.
The major improvement was in the AUC-ROC, which reached nearly 70%, indicating the model's strong

ability to differentiate between buy and sell signals.

Overall, the rest of the metrics were on par with the LSTM baseline. The use of GAF images applied
to the CNN model did not show a significant improvement when compared to LSTM. This could be
related to the Stochastic Oscillator strategy's high volatility, with frequent buy and sell signals during
the 22-day intervals captured in the images, making it more difficult for the model to discover spatial
patterns successfully. The Stochastic Oscillator strategy is known to have frequent fluctuations since it
reacts to short-term price movements, creating noisy data, which makes it harder for the model to

identify clear patterns.

Although there is no improvement compared to the LSTM baseline, it is still a solid performance
for the trading classification model. The metrics for the Stochastic oscillator strategy are shown in

Table 6.4.
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Table 6.4. CNN-GAF Stochastic Oscillator strategy results.

Stochastic Oscillator Strategy

Metrics Train-Test Walk Forward Walk Forward
Split Last Fold Overall
Accuracy 58% 67% 57%
Precision 51% 65% 57%
Recall 65% 58% 59%
AUC-ROC 61% 69% 63%

Regarding the second strategy, the MACD Crossover strategy, all approaches yielded strong
results, consistently achieving at least 90% accuracy on the test set. Furthermore, the CNN-GAF model
revealed high precision, with a median of 91%, showcasing its ability to identify true buy signals while

minimizing false positives.

Across all metrics, the CNN model reliably outperformed the baseline LSTM, mainly excelling in

recall (95%) and AUC-ROC (98%).

The CNN-GAF, especially in the last fold of the walk-forward validation, significantly shined,
meaning it successfully captured nearly all true buy signals, making it a highly reliable model for trading
decisions. However, the biggest improvement was in the AUC-ROC, where the model showed a near-

perfect performance, indicating exceptional capability to distinguish between buy and sell signals.

These results not only highlight the model’s ability in interpreting GAF images but also in precisely
understanding the market dynamics inherent in the MACD Crossover strategy. The improvement in
performance compared to the Stochastic Oscillator strategy can be attributed to the fact that MACD
Crossover strategy usually produces fewer but more reliable buy and sell signals. This reduces noise in
the data and enables the CNN to capture cleaner and more structured patterns. The MACD strategy’s
more consistent signals align with the CNN's strength in identifying spatial patterns, leading to better

overall results.

In conclusion, the CNN-GAF excelled with the MACD Crossover strategy, identifying almost all buy
and sell signals and consistently outperforming the baseline LSTM model. The metrics supporting these

results for the MACD crossover strategy are presented in Table 6.5.
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Table 6.5. CNN-GAF MACD Crossover strategy results.

MACD Crossover Strategy

Metrics Train-Test Walk Forward Walk Forward
Split Last Fold Overall
Accuracy 91% 92% 90%
Precision 89% 91% 91%
Recall 94% 95% 90%
AUC-ROC 98% 98% 96%

The final dataset tested with the CNN-GAF model was the stock price direction, which is inherently
the most difficult due to the strategy’s dependence on the price movement of the prior day. As
anticipated, the stock price direction strategy performed the worst of the three assessed strategies
but still outperformed the baseline LSTM model across all metrics. Particularly, the CNN-GAF model
achieved a 57% accuracy and a 77% recall in the walk-forward validation, emphasizing its strength in
identifying true buy signals and more trading chances, which is fundamental to maximizing profit

opportunities.

The AUC-ROC was also moderately better when compared to the LSTM baseline, with the best
value reaching 57%. While this suggests that the model has some difficulty distinguishing between buy
and sell signals, this level of performance is appropriate in the context of the stock market, where price

direction prediction is particularly difficult.

Across the validation approaches, the CNN-GAF model showed consistent performance, a marked
contrast to the LSTM model, which presented more significant variability. This stability further

supports the case for CNN-GAF as a more reliable and robust model for stock price prediction.

Overall, the CNN-GAF model’s ability to capture market trends makes it a significantly better
candidate for trading strategies than the LSTM baseline. Table 6.6 shows the results for the stock price

direction strategy.
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Table 6.6. CNN-GAF Stock Price Direction strategy results.

Stock Price Direction Strategy

Metrics Train-Test Walk Forward Walk Forward
Split Last Fold Overall
Accuracy 57% 57% 51%
Precision 57% 59% 53%
Recall 60% 77% 60%
AUC-ROC 57% 54% 51%

6.2.2. CNN-RP

Next, the CNN model was tested with Recurrence Plots across all strategies (datasets). The CNN-RP

model consistently showed worse performance compared to the GAF images.

In the Stochastic Oscillator strategy, as detailed in Table 6.7, the CNN-RP model struggled to
exceed 50% accuracy in each evaluation method. Although the model attained high recall in the Walk
Forward Last Fold, this came at the cost of low precision, revealing that while the model identified
many true positives, it also created many false positives. Despite numerous adjustments, the model
tended to overfit the training data, which was apparent from the inadequate generalization. The AUC-
ROC varied between 49%-54%, indicating the CNN-RP's ability to distinguish between buy and sell

signals was only slightly better than random guessing.

A similar trend was observed in the Stock Price Direction dataset, as shown in Table 6.9, where
the CNN-RP model performed worse than the CNN-GAF. The high recall observed in the Train-Test Split
possibly resulted from overfitting, as it dropped sharply in Walk Forward Validation, confirming the
model's difficulty in generalizing to test data. In this strategy, the CNN-GAF was demonstrated to be a
more reliable model, offering better generalization and capturing more true buy signals, which is

essential in a stock trading model.

In the case of MACD Crossover strategy, since it creates more precise signals and with less noise
in data, as shown in Table 6.8, the CNN-RP presented a good performance but also was below the CNN-
GAF only achieving an accuracy of 80% but with a very good AUC-ROC, indicating that the model was

highly effective at distinguishing between buy and sell signals-

To conclude, the inferior performance of recurrence plots compared to GAF can be attributed to

GAF’s strength in translating both the direction and magnitude of changes into a visual representation.
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This capability is fundamental in volatile and complex environments like the stock market, where even
slight price variations can cause significant changes. GAF’s ability to identify trends over time and
angular relationships aligns well with CNN architectures, allowing them to detect more meaningful and

evident patterns.

On the other hand, recurrence plots excel at capturing periodicity and repeated patterns, which
may not be as effective in the non-repetitive and volatile nature of stock market data. Sudden changes,
outliers, and trends in the market frequently do not follow cyclical patterns, reducing the effectiveness
of recurrence plots in this domain. While these characteristics are beneficial in other contexts, it is
clear that for predicting buy and sell signals in the stock market, the CNN-GAF consistently
outperformed the CNN-RP. As mentioned in the text, the results for each strategy are shown in Tables

6.7, 6.8, and 6.9.

Table 6.7. CNN-RP Stochastic Oscillator strategy results.

Stochastic Oscillator Strategy

Metrics Train-Test Walk Forward Walk Forward
Split Last Fold Overall
Accuracy 50% 48% 53%
Precision 43% 47% 49%
Recall 45% 97% 59%
AUC-ROC 54% 49% 54%

Table 6.8. CNN-RP MACD Crossover strategy results.

MACD Crossover Strategy

Metrics Train-Test Walk Forward Walk Forward
Split Last Fold Overall
Accuracy 82% 82% 80%
Precision 80% 82% 85%
Recall 87% 84% 78%
AUC-ROC 87% 92% 89%
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Table 6.9. CNN-RP Stock Price Direction strategy results.

Stock Price Direction Strategy

Metrics Train-Test Walk Forward Walk Forward
Split Last Fold Overall
Accuracy 51% 53% 53%
Precision 51% 52% 54%
Recall 99% 45% 65%
AUC-ROC 55% 52% 52%

6.2.3. CNN-MTF

Lastly, the CNN model was tested with MTF images across all strategies, and once again, the CNN-GAF
was demonstrated to be the most reliable model for stock price prediction due to its ability to identify
both short-term fluctuations and long-term trends. The drop in performance of the CNN-MTF model
can be attributed to the fact that MTF captures transitions between states, which is not an ideal
representation for stock price movements. Stock prices are usually less about distinct "state
transitions" and more about continuous trends or momentum shifts. As a result, MTF fails to capture

key details that GAF images effectively retain.

In the Stochastic Oscillator strategy, the CNN-MTF model struggled considerably to capture the
short-term fluctuations and long-term trends of the AMD stock. This resulted in low AUC-ROC scores
across both evaluation methods, varying from 47%-55%, which indicates the model was only

marginally better than random guessing when distinguishing between buy and sell signals.

For the MACD Crossover strategy, there was also a noticeable drop in performance for the CNN-
MTF, especially when compared to the CNN-RP model. This decline is likely appointed to the
recurrence plot’s ability to capture recurrence, which is more effective in detecting the patterns
involved in the MACD Crossover strategy. The CNN-RP achieved 80% accuracy, while the CNN-MTF

only reached the mid-60% range.

Finally, in the stock price direction strategy, the CNN-MTF model faced the same challenges as in
the other strategies, being outperformed by both the CNN-GAF and CNN-RP models. Accuracy for CNN-
MTF hovered between 47% and 51%, which is close to random guessing and shows a lack of

generalization.
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Reiterating, the MTF performed worse primarily because of its inherent design, which focuses on
capturing transitions between discrete states. This approach works well when transitions are clearly
defined, but such clarity is sporadic in the volatile and complex nature of the stock market. In financial
markets, prices tend to move in continuous trends, and the MTF’s emphasis on state transitions causes
the model to miss crucial details about the direction, momentum, and magnitude of price movements.
This leads to the model’s inability to effectively distinguish between potential buy and sell signals. On
the other hand, GAF not only captures angular relationships but also preserves the magnitude of
changes, making it much better suited for stock price prediction. The results supporting these findings

for each strategy can be seen in Tables 6.10, 6.11, and 6.12.

Table 6.10. CNN-MTF Stochastic Oscillator strategy results.

Stochastic Oscillator Strategy

Metrics Train-Test Walk Forward Walk Forward
Split Last Fold Overall
Accuracy 57% 55% 49%
Precision 0% 51% 48%
Recall 0% 52% 75%
AUC-ROC 47% 55% 51%

Table 6.11. CNN-MTF MACD Crossover strategy results.

MACD Crossover Strategy

Metrics Train-Test Walk Forward Walk Forward
Split Last Fold Overall
Accuracy 62% 65% 63%
Precision 63% 62% 63%
Recall 64% 91% 76%
AUC-ROC 66% 76% 69%
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Table 6.12. CNN-MTF Stock Price Direction strategy results.

Stock Price Direction Strategy

Metrics Train-Test Walk Forward Walk Forward
Split Last Fold Overall
Accuracy 45% 49% 51%
Precision 45% 49% 52%
Recall 44% 100% 63%
AUC-ROC 47% 54% 54%

6.3. Synthetic Data

The last step in this Dissertation was to generate synthetic data to enhance the predictive power of
the CNN model. As mentioned before, the YData Fabric platform was utilized to generate the synthetic
dataset. For this step in the study, only the stock direction dataset was used since it was the strategy

that would need to be improved.

Regarding the sample, only data from the year 2023 was considered to generate additional

synthetic data that simulated the bull run in the information technology sector during that year.

After configuring the parameters for synthetic data generation and completing the data creation
process, the fidelity of the generated data was assessed using two key metrics: correlation similarity
and distance distribution. Furthermore, the Qscore was used to measure the utility of the synthetic

data.

The first metric, the correlation similarity, measures how similar the correlation matrices of the
synthetic data are to those of the original dataset. The score varies between 0 and 1, and the higher
the value, the higher the fidelity. In this case, the synthetic data achieved a perfect score of 1.0, which
means that the relationships between features in the synthetic data mirror those in the original

dataset.

The Distance distribution measures the similarity between the feature distributions between both
datasets. A value close to 1 indicates that the synthetic data follows the same distribution patterns as
the actual data. Once again, the synthetic data achieved a near perfect score, indicating that the

feature distributions closely resemble those in the original dataset.
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Lastly, the QScore evaluates the utility of the synthetic data by comparing the results of random
aggregation queries performed on both the synthetic and original datasets. A score above 0.8 indicates
that future queries on the synthetic data will maintain the same statistical characteristics as those
conducted on the original dataset, ensuring high data fidelity. Table 6.13 presents the metrics for

synthetic data generated.

Table 6.13. Synthetic data profiling.

Synthetic data profiling

Metrics Train-Test Split
Correlation Similarity 1.00
Distance Distribution 0.99

QScore 0.83

After evaluating the various metrics, a Principal Component Analysis (PCA) algorithm was applied
to reduce the dimensionality of both datasets. The first two principal eigenvectors together accounted
for approximately 71% of the total variance in the data. In the dimensionality plot below (Figure 6.1),

it is evident how closely the distribution of the synthetic dataset mirrors that of the original dataset.

- real
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Figure 6.1. Dimensionality plot comparing real data vs. synthetic data.

The final metric evaluated using YData Fabric was the Train Synthetic Test Real, which accesses

the AUC-ROC score across different estimators. The average AUC-ROC score was 67%, ranging from
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59% to 73%. This exhibits a clear improvement over the AUC-ROC results achieved in both the CNN
and LSTM models using only real data, emphasizing the significant potential of synthetic data in

improving machine learning model performance and robustness.

All performance measures evaluated point to the leading value of synthetic data generation in
enhancing machine learning model accuracy. By generating high-fidelity synthetic datasets that
capture the distribution and relationships of the actual data, synthetic data allows models to be trained
on more precise and additional signals. This is particularly valuable in volatile and complex
environments such as the stock market, where data may be noisy or sparse. Synthetic data can be
designed to simulate specific market scenarios, ensuring that models are trained on a more diverse

dataset and are more representative of real-world market dynamics.
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Chapter 7

Conclusion

This Dissertation aimed to study the use of Convolutional Neural Networks for stock market price
prediction, integrating technical indicators, sentiment analysis, image-based time-series

transformations, and synthetic data generation.

Several achievements were made during the course of this Dissertation. As the primary objective,
a CNN model was developed for price movement prediction using various image generation
techniques (GAF, RP, MTF) to convert time-series data into visual representations. As a secondary
objective, a broad set of technical indicators with diverse time frames and sentiment variables derived
from financial news using the FinBERT library were created. This provided valuable insights into how
sentiment could be leveraged as a predictive variable, although its effective integration proved to be

challenging.

Another key goal was to develop and analyse trading strategies capable of withstanding short-
term fluctuations under different market conditions. Among the strategies tested, the MACD
Crossover and the Stochastic Oscillator proved robust across backtesting scenarios. Additionally,
TimeGAN, implemented using the YData platform, was used to generate synthetic stock market data

that mimicked real market behaviour.

The findings of this study underscore the importance of a thorough feature selection process. The
extensive analysis significantly improved data input quality and predictive performance. This allowed
for a deeper understanding of various selection techniques and confirmed that combining multiple
methods can enhance variable selection, as suggested by Tsai and Hsiao (2010), ultimately improving

stock prediction by identifying the most relevant financial indicators.

Among the models tested, the CNN-GAF combination proved to be the most effective. GAF’s
ability to capture angular trends and temporal relationships aligned well with CNN’s strengths and the
dynamic nature of stock market data. The use of synthetic data was also validated. In line with the
findings of Lin et al. (2021) and Yoon and Jarrett (2019), TimeGAN was able to generate high-fidelity
data, reinforcing the potential of synthetic data as a tool for simulating diverse market scenarios and

improving model training.

Nonetheless, this Dissertation presents several limitations. Only two trading strategies were
implemented, which may have limited the ability to capture more complex market behaviour or
achieve stronger predictive signals. The analysis focused primarily on technical indicators, while

fundamental indicators were excluded due to their complexity and limited availability. Although
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sentiment analysis was initially considered, it was excluded from the final model during feature
selection, reducing the opportunity to evaluate its true contribution. The model’s performance was
also limited by the specific market conditions under which it was tested, namely a bull market, raising
concerns about its ability to generalize across different time periods and market scenarios without

ongoing recalibration.

Future research should aim to explore a wider and more dynamic set of trading strategies, develop
hybrid models that combine CNN-GAF architectures with sentiment analysis, and validate model
performance across different markets and economic environments. Additional studies should consider
ensemble learning approaches or attention-based models, which may better adapt to the complexity
of financial data. Evaluating these models under varied market conditions, using both real and
synthetic data, will be essential to assess their robustness and to explore the full potential of synthetic

data in stock price movement prediction.

In summary, this Dissertation establishes a strong foundation for understanding the potential of
CNNs in financial trading strategies. When combined with appropriate image encoding methods such
as GAF, CNNs show a strong capacity to identify patterns and relationships within financial time series.
Moreover, synthetic data offers great value to stock market prediction, providing a way to simulate

specific market scenarios and reduce dependence on historical datasets.
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Appendix A
Figure of S&P 500 Sector Returns
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Figure A.1. S&P 500 five-year sector returns.
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Figure B.1. Moving Average Plot.
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Figure B.4. Bollinger Bands Plot.
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Figure B.5. Stochastic Oscillator Plot.
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Appendix C

Figures of Results from Feature Selection Methods Applied
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Figure C.1. Highly correlated features with the Stochastic Oscillator and MACD

Crossover strategies.

75



Top 10 Feature Importance for stock data SO
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Figure C.2. Top 10 features selected using Univariate Feature Selection for

the Stochastic Oscillator, MACD Crossover, and Price Direction strategies.
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Figure C.3. Features selected using GA for the Stochastic Oscillator,

MACD Crossover, and Price Direction strategies.
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Figure C.4. Features selected using Lasso Regression for the Stochastic
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Feature Importances in Random Forest Model for stock_data_SO
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Figure C.5. Top 10 features selected using Random Forest for the

Stochastic Oscillator, MACD Crossover, and Price Direction strategies.



XGBoost Feature Importance (gain) for stock_data_SO
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Figure C.6. Top 10 features selected using XGBoost for the Stochastic

Oscillator, MACD Crossover, and Price Direction strategies.
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Appendix D

Figures of Results from the various models

D.1. Confusion Matrices for the LSTM Baseline Model
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Figure D.1. Confusion matrix for the train-test split and the final fold of the rolling CV for

the Stochastic Oscillator strategy.
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Figure D.2. Confusion matrix for the train-test split and the final fold of the rolling CV for

the MACD Crossover strategy.
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D.2. Confusion Matrices for the CNN-GAF model
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Figure D.3. Confusion matrix for the train-test split and the final fold of the rolling CV for
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Figure D.4. Confusion matrix for the train-test split and the final fold of the rolling CV for
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the Stochastic Oscillator strategy.
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Figure D.5. Confusion matrix for the train-test split and the final fold of the rolling CV for

the MACD Crossover strategy.
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Figure D.6. Confusion matrix for the train-test split and the final fold of the rolling CV for

the Price Direction strategy.
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