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Resumo 

O foco principal deste estudo é o uso de Redes Neuronais Convolucionais (CNNs) para previsão do 

mercado de ações, com ênfase nos tipos de variáveis usadas como inputs do modelo, no impacto da 

replicação de condições específicas de mercado no desempenho do modelo e num extenso processo 

de feature selection. Para estruturar o estudo, foi utilizada a metodologia CRISP-DM, que forneceu 

uma framework que orientou a tese desde o business understanding a data understanding, 

preparation, modelling, and evaluation. Para iniciar este estudo, foi efetuada uma revisão exaustiva 

da literatura para estabelecer o estado atual da arte. Após a revisão da literatura, o estudo envolveu a 

análise das variáveis habitualmente utilizadas nas previsões do mercado ações, incluindo indicadores 

técnicos, macroeconómicos e fundamentais, bem como a investigação das estratégias de trading e do 

sentimento das notícias em relação ao mercado de ações. Uma secção crítica da investigação foi o 

processo de feature selection, que utilizou vários métodos diferentes, abrangendo abordagens de 

filter, de wrapper e embedded. Foi realizada uma análise de cross-selection entre estes métodos de 

forma a identificar as variáveis mais representativas, garantindo um dataset robusto e optimizado. Em 

seguida, foram estabelecidos três datasets distintos, com diferentes variáveis target e variáveis 

independentes derivadas das várias estratégias de trading. Para melhorar ainda mais a 

interpretabilidade e o desempenho do modelo, os dados de séries temporais foram transformados em 

imagens usando três métodos diferentes: Gramian Angular Fields (GAF), Recurrence Plots (RP), e 

Markov Transition Fields (MTF). O modelo Long Short-Term Memory Network (LSTM) de base e o 

modelo CNN foram testados e optimizados nos vários datasets. Os resultados demonstraram a 

superioridade do modelo CNN utilizando imagens GAF, alcançando melhorias significativas de accuracy 

de 7-10% em relação à linha de base LSTM, particularmente nas estratégias de stock price direction e 

MACD Crossover. Além disso, a utilização de dados sintéticos revelou-se valiosa, apresentando uma 

elevada fidelidade e desempenho. 
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Abstract 

This Dissertation’s focus is using Convolutional Neural Networks (CNNs) for stock market prediction, 

emphasizing the types of variables used as model inputs, the impact of replicating specific market 

conditions on model performance, and an extensive feature selection process. To structure the study, 

the CRISP-DM methodology was employed, providing a systematic framework that guided the 

progression from business understanding to data understanding, preparation, modelling, and 

evaluation. To begin this Dissertation, a comprehensive literature review was conducted to establish 

the current state of the art. Following the literature review, the study involved analysing variables 

commonly used in stock market predictions, including technical, macroeconomic, and fundamental 

indicators, as well as investigating trading strategies and news sentiment. A critical section of the 

research was the feature selection process, which employed various methods spanning filter, wrapper, 

and embedded approaches. A cross-selection analysis was conducted across these methods to identify 

the most representative variables, ensuring a robust and optimized input feature set. Following this, 

three distinct datasets were established, featuring different target features and independent variables 

derived from the various trading strategies. To further enhance model interpretability and 

performance, time-series data were transformed into images using three different methods: Gramian 

Angular Fields (GAF), Recurrence Plots (RP), and Markov Transition Fields (MTF). A baseline Long Short-

Term Memory Network (LSTM) and CNN architectures were tested and optimized on the various 

datasets. Results demonstrated the superiority of the CNN model utilizing GAF images, achieving 

significant accuracy improvements of 7-10% over the LSTM baseline, particularly in stock price 

direction and MACD crossover strategies. In addition, the use of synthetic data proved valuable, 

displaying high fidelity and contributing to enhanced model performance. 
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Chapter 1 

Introduction 

In the last decades, Machine Learning (ML) has emerged as a popular tool in the field of financial 

trading, as it assists in decision-making processes and facilitates the recognition of patterns in financial 

data. There is a vast range of machine learning models that have been applied to financial trading, like 

support vector machines (SVMs), decision trees, and deep learning approaches such as long short-term 

memory (LSTM) networks (Kumbure et al., 2022). All of these algorithms have shown potential working 

with financial data and have their own advantages and disadvantages depending on the specific 

problem at hand.  

The main focus of this Dissertation will be primarily on the use of convolutional neural networks 

(CNNs) for stock price movement prediction. Initially developed for image recognition tasks, CNNs have 

been successfully applied to various financial tasks, including stock price prediction. 

Predicting the financial market is a challenging and complex task. Instead of focusing solely on 

obtaining the highest accuracy, this Dissertation addresses the following research questions focused 

on the use of CNNs for financial trading: 

1. Which feature selection algorithms can improve stock market prediction? 

2. How can CNNs be used to identify patterns in financial market data? 

3. How do CNNs compare to other machine learning algorithms regarding predictive 

performance and accuracy in financial trading?  

4. How can Generative Adversarial Networks (GANs) generate synthetic data to 

improve model performance? 

Besides the literature review, the first step in this Dissertation is the data collection. With that in 

mind, it is essential to know which variables impact the stock price movement the most, since using 

different input variables can make the model perform completely differently. Thus, developing the 

optimal model is an arduous task.  

So, for this Dissertation, it was considered fundamental to conduct an in-depth analysis of the 

variables used in stock market predictions, such as technical, macroeconomic, and fundamental 

indicators. 

According to the study by Tsai and Hsiao (2010), the most common analytical approaches to stock 

price analysis are fundamental and technical analysis. For this work, since the target variables were 

based on trading strategies, the focus was on technical analysis, which has been part of financial 
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practice for many decades, examining a stock's historical price and volume movements. In addition to 

the technical indicators, sentiment from news is also used. 

According to Chen et al. (2019), pre-processing data, usually leads to more effective predictions. 

Considering that, it is fundamental to select which group of attributes should be chosen as input 

variables. Performing feature selection is an important task in machine learning since it improves the 

model performance and also enhances data visualization and understanding (Xue et al.,2016). In this 

Dissertation, a vast collection of feature selection methods is applied to the datasets. 

The main goal of the Dissertation is to enhance stock price movement prediction using CNNs. To 

achieve this, it is essential to transform time series data into images, and in this Dissertation, three 

different methods were selected: Gramian Angular Field (GAF), Recurrence Plot (RP), and Markov 

Transition Field (MTF). These methods capture spatial dependencies between the various features in 

the image. The images are then used as input for the 2D CNN.  

The model used daily stock price data from Advanced Micro Devices (AMD), covering the period 

from 1/1/2000 and 31/12/2023, and was evaluated across multiple datasets with different target 

variables to assess its performance under various trading strategies, including the Stochastic Oscillator 

and the Moving Average Convergence Divergence (MACD) Crossover. In addition, Generative 

Adversarial Networks (GANs) were employed to generate synthetic data, replicating market conditions 

to assess their potential in improving machine learning model performance. 

This Dissertation offers a strong foundation for exploring the application of CNNs in financial 

trading strategies and valuable insights for future research, particularly in developing hybrid models 

with sentiment analysis and a wider use of synthetic data in different markets and contexts. 

To summarize, this Dissertation is structured as follows: a literature review covering feature 

selection methods, technical indicators, machine learning approaches for stock prediction, CNNs, and 

the use of GANs for generating synthetic data; the methodology used for developing training data and 

evaluating the model's performance; the presentation of the model's results and discussion; and 

finally, the conclusions drawn from the findings, along with suggestions for future research directions.  
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Chapter 2 

Literature Review 

This chapter serves as the base for the proposed Dissertation, trying to answer some of the questions 

mentioned in the introduction. In this literature review, a wide range of studies were examined related 

to the application of machine learning techniques in financial trading, with a specific focus on the use 

of Convolutional Neural Networks (CNNs) for stock market prediction. In addition, an in-depth analysis 

of articles about the variables used in stock market predictions was also conducted, from technical 

indicators to macroeconomic, fundamental indicators, and also new types of variables. Moreover, it is 

provided an extensive assessment of feature selection methods used in stock market forecasting, since 

selecting the best features for the model is a complex yet essential task (Peng et al.,2021).  

Finally, it was also examined the use of Generative Adversarial Networks (GANs) to improve the 

model's performance, since this technique has been used in financial applications, such as generating 

synthetic financial time series data. 

 The literature review is structured as follows: first, the search strategy is defined, followed by the 

search queries utilized, and then the inclusion and exclusion criteria for articles. Next, the methodology 

is briefly described, followed by a discussion and presentation of the review's findings. Lastly, 

conclusions are provided based on the results and discussion, along with potential directions for future 

research.  

2.1. Search Strategy 

The search strategy for this literature review was designed to identify a suitable and relevant set of 

studies to help answer the established research questions. The search process consisted of two stages. 

In the first stage, a preliminary set of research papers, such as those by Jansen (2020), Henrique et al. 

(2019), and Kumbure et al. (2022), were manually selected. In the second stage, the initial set of articles 

was used to locate additional studies through a process called snowballing (Henrique et al., 2019). 

2.1.1. Manual Search 

The primary set of studies included some scientific articles, chapters of books, and other reviews, such 

as Jansen (2020), Kumbure et al. (2022), Sezer and Ozbayoglu (2018), and Lu et al. (2021), among 

others. 

These articles were found through a manual search of the literature review on CNN for financial 

trading, which included topics as data sources, feature selection, stock market prediction and deep 

learning approaches. 
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The following phase was performing backward snowballing on this set of articles. In the backward 

snowballing process, the first step was to look at the reference list of the initial set of articles and 

include any studies that met the established inclusion and exclusion criteria. In this step, only the titles 

of the articles were analysed. 

After deciding which articles were relevant, it was done a further analysis of them, by reading the 

abstract and other meaningful parts. The significant articles were included in the final set. 

2.1.2. Automated Search 

The search process was extended using an automated search to broaden the sample of relevant 

studies. For this strategy, seven databases were used, namely: Google Scholar, IEEE Xplore, Science 

Direct, ArXiv, Springer, Research Gate, and Scopus. 

The process began by selecting the search queries and identifying relevant articles using the 

inclusion and exclusion criteria. The abstracts (and other necessary parts) of the selected articles were 

evaluated, and the articles that met the criteria were included in the final set. 

2.2. Search Queries 

The search queries were selected to reflect the aim of this literature review. To determine the relevant 

terms, it was used the current understanding of the topic, as well as the information provided in the 

titles, keywords, and abstracts of articles found through the manual search. The most used terms were 

“Forecasting” and “Prediction”, although both were used separately for each data source. 

In the search queries, the main objective was to seek articles that discussed “Machine Learning”, 

“Stock Price”, “Trend Prediction”, “Convolutional Neural Networks”, “Feature Selection”, “Indicators”, 

“Generative Adversarial Networks”, since it was expected to find articles that were based on 

forecasting models for the stock market that employed machine learning techniques. 

After some research, it was found that using machine learning aligned with the other terms 

expanded the number of relevant articles retrieved. 

2.3. Inclusion and Exclusion Criteria 

For this literature review, inclusion and exclusion criteria were used to determine which articles were 

considered significant. 

Initially, it was determined that only articles from 2000 onward would be considered for the 

literature review.  
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The second criterion for selecting articles for the literature review was to only include those that 

had been published, such as in journals, theses, or book publications. Additionally, only articles written 

in English were considered. 

Finally, only articles that were available in full text were considered for inclusion in the literature 

review, as it was deemed essential to have access to the complete texts in order to conduct a thorough 

analysis. After combining the final sets of articles from the manual and automated searches and the 

inclusion-exclusion criteria, 44 articles were selected. 

2.4. Related Work 

This section presents the findings of the analysis conducted on the literature review in relation to the 

research questions established previously. 

The review was conducted using information taken from 44 selected studies. The findings of this 

review are presented and discussed in three subtopics: 

1. Details about the studies, such as bibliographic information. 

2. Information about the data used in the studies, mainly the type of indicators applied. 

3. An overview of the machine learning methods used in the studies and developments 

that were made in these methods. 

2.4.1. Bibliographic information 

In this subtopic, the selected articles were analysed based on the year of publication and the most 

frequently used keywords. 

This information can be found in the figures below (Figure 2.1 and Figure 2.2). Figure 2.1 shows 

that more than 50% of the selected articles were published between 2017 and 2023. This suggests that 

there has been a significant rise in the number of studies focused on forecasting stock markets using 

machine learning, particularly CNN approaches. 

Figure 2.2 presents the top 10 keywords used by an author in their work and the number of times 

they were used. The figure shows that the keywords "Stock Market/Price Prediction," "Deep Learning," 

"Convolutional Neural Network" and "Feature Selection" are among the most used. Additionally, the 

top keywords often include variations, such as synonyms and different forms of specific keywords, 

such as "Convolutional Neural Networks" and "CNNs," indicating that keeping these distinctions in 

mind may assist in searching for publications. 
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2.4.2. Indicator Variables 

The first step in the workflow of a stock market prediction model is data collection. Taking that into 

account, the type of variables that have the most impact on the stock price movement were analysed 

during this review. 

Sedighi et al. (2019) selected the most essential technical indicators, 20, from different types, such 

as: trend, volume, support and resistance, momentum and volatility. Furthermore, the chosen 

indicators encompass all stock data, including indicators from the four classes: Oscillator, Index, 

Overlay, and Cumulative. Examples of the indicators used in this Dissertation include the Absolute Price 

Oscillator (APO), Fibonacci Fan, Commodity Channel Index (CCI), and Williams %R. 

A work done by Chang and Wu (2014), adopted other technical indicators aside from the essential 

ones, such as the differences of technical indices and the same indicators but with different 

timeframes, for instance, a 6-day Relative Strength Index (RSI) and a 12-day RSI. 

According to a study done by Peng et al. (2021), utilizing technical indicators compiled by the 

combination of other indices can be considered as a replacement of their constitute counterpart, since 

it lowers the levels of redundant information considered for the models and possibly produces better 

predictive results and asset allocation. Moreover, the technical indicators that were most frequently 

chosen by feature selection methods in recent studies between 2008 and 2019 were the Detrended 

Price Oscillator (DPO), Hull Moving Average (HMA), and Money Flow Multiplier (MFM). However, more 

traditional indicators, such as the Simple Moving Average (SMA) and Weighted Moving Average 

(WMA), were only selected a few times. 

As previously mentioned, feature selection methods tend to prefer indicators that combine 

multiple sources of information, such as the HMA, a combination of WMAs for different window sizes. 

The main disadvantage of using only technical indicators (technical analysis) is that it only 

considers the stock's price movement and ignores fundamental factors related to the company (Barak 

et al., 2017). 

In addition to the technical indicators, financial and macro-economic variables received 

substantial attention in the development of stock market studies, such as credit ratings, money supply 

levels, and T-bill rates. (Enke et al., 2011; Tsai et al., 2011; Zhong & Enke, 2017).   

The logic behind fundamental analysis is that if a company has strong fundamentals, then 

investing in its stock for the long-term will be more secure and stable (Barak et. Al, 2017). This work 

utilized fundamental indicators such as liquidity ratios, activity ratios, profit margins, growth rates, 

earnings per share (EPS), dividend per share (DPS), stock book value, etc.  
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As shown in Figures 2.3 and 2.4, most studies reviewed utilize data from various stock markets in 

the United States. However, there has been an increase in studies that predict stock performance using 

data from Asia, when compared to previous literature reviews (Henrique et al. ,2019; Kumar et al., 

2021). 

In addition, Figure 2.5 supports the trend of using technical indicators in stock market prediction 

research and also highlights an increase in the utilization of other variables, such as news and tweets. 

In conclusion, recent research on the stock market suggests that many factors are associated with 

future stock prices (Enke et al., 2011). However, it is crucial to use feature selection to identify the 

indicators that have the strongest forecasting capability, as using too many financial, technical and 

economic indicators can overburden the prediction system (Thawornwong et al., 2003).  
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2.4.3. Feature Selection 

Financial variables are hard to predict (Peng et al., 2021). Having that in mind, it is essential to select 

which group of attributes should be chosen as input variables.  

Feature selection is a challenging task primarily due to a large search space, where the overall 

number of potential solutions is 2𝑛 for a dataset with n features. (Dash & Liu, 1997). In recent years, 

this task has become even more difficult, as n is increasing in many fields due to advances in data 

collection techniques and the enhanced complexity of machine learning problems. (Xue et al., 2016) 

Although a range of search techniques have been applied to feature selection, such as complete 

search, heuristic search, random search and greedy search, most of them still suffer from stagnation 

in local optima or high computational cost (Too et al., 2019). Having that in mind, an efficient global 

search technique is required to better solve this type of problem. 

The feature selection community has widely acclaimed evolutionary computation (EC) techniques 

due to their global search ability and potential (Xue et al., 2016). The two most popular EC methods in 

feature selection are Genetic Algorithms (GAs) and particle swarm optimization (PSO).  

According to the evaluation criteria, feature selection algorithms can be divided into filter and 

wrapper approaches. The primary distinction between both is that wrapper approaches contain a 

classification/learning algorithm in the feature subset evaluation step (Guyon & Elisseeff, 2003).  

Another challenging aspect of feature selection is feature interaction. It happens frequently, and 

it can be a two-way, three-way, or a complex multiway interaction among features. For example, a 

feature that is almost irrelevant to the target variable by itself could improve the accuracy of the model 

if it is utilized with some complementary features. Hence, the two main factors in a feature selection 

approach are the search technique and the evaluation criteria (Xue et al., 2016). 

Concerning search techniques, in recent years, the EC techniques have been the most effective 

methods to solve feature selection problems, although they have some limitations such as scalability. 

Regarding the evaluation criteria, for wrapper feature selection approaches, the classification 

performance of the chosen features is the evaluation criteria. Filter feature selection, on the other 

hand, are independent of any classification algorithm and apply other scientific methods, such as 

information theory-based measures, distance measures, or even correlation measures (Dash & Liu, 

1997, Tareq et al., 2018). 

The most popular approach has recently been using EC algorithms such as GAs and Genetic 

Programming (GP) to address feature selection tasks with thousands of features, improving the 

representation and the classifiers (wrapper feature selection approach). Furthermore, combining 
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feature selection methods with feature extraction/construction can enhance the classification 

performance (Xue et al., 2016).   

In the study by Tsai and Hsiao (2010), the main goal was to combine different feature selection 

methods to identify more representative variables to better predict stock price movements. While 

Principal Component Analysis (PCA) and Genetic Algorithms (GA) are not strictly categorized as feature 

selection methods, they can be utilized as such to reduce dimensionality and optimize the selection of 

features. Alongside decision trees (CART), these methods were combined using three strategies: union, 

intersection, and multi-intersection. 

The results showed that the intersection of PCA and GA, as well as the multi-intersection of PCA, 

CART, and GA, attained the highest performance, with an accuracy of 79% and 78.98%, respectively. 

Furthermore, both approaches removed nearly 80% of unrepresentative features, highlighting their 

effectiveness in reducing data complexity for better predictive performance. 

Figure 2.6 supports the widespread use of Evolutionary Computation (EC) algorithms for selecting 

features in stock market prediction. 
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2.4.4. Machine Learning Approaches 

Machine learning approaches are crucial for stock market prediction as they enable the analysis of 

large amounts of data, identify complex patterns, and improve the accuracy of predictions. 

Before deep-diving into the CNN approaches, Zhong and Enke (2019) utilized a big data analytic 

process aligned with a DNN to forecast the daily price direction of the SPDR S&P 500 ETF, an exchange-

traded fund that replicates the performance of the S&P 500, based on 60 financial and economic 

features. The authors utilized the PCA to transform the data and construct a low-dimensional 

representation of the data while preserving the maximum variance and covariance shape. 

According to the authors, the DNN-based classification for the PCA-represented data set with 31 

principal components achieves the highest accuracy, and in general, the DNN classifiers outperform 

the ANN classifiers in predicting the SPDR S&P 500 ETF price movement. The authors also noted that 

a pattern regarding the classification accuracy appears while increasing the number of hidden layers, 

with the overfitting issue remaining under control. 

As mentioned above, the CNNs are another research focus on deep learning regarding financial 

trading, which has been applied widely in the field of image processing, speech recognition, and 

recently in time-series data (Kumbure et al., 2022). 

2.4.5. Convolutional Neural Networks 

As stated, CNNs have been used for time-series data and have been known to achieve state-of-the-art 

results on time-series classification. 

In the context of utilizing CNN architecture to create a financial trading model, there is a growing 

body of research that is studying the high potential of this approach and its limitations. 

For example, Gunduz et al. (2017), proposed a CNN approach to predict intra-day movements of 

the Borsa Istanbul 100 index. The researchers utilized feature correlations and hierarchical 

agglomerative clustering to order the input features and tested three techniques (L2 regularization, 

dropout, and early stopping) to prevent overfitting. They also compared the effectiveness of a CNN 

model using correlated features (CNN-corr) to a CNN model using randomly ordered features (CNN-

rand) and found that the CNN-corr model performed better. 

In 2019, Hoseinzade and Haratizadeh proposed a CNN approach to predict the price movement of 

five stock indices—S&P 500, NASDAQ, DJI, NYSE, and RUSSELL—using two different feature 

representation methods, 2D-CNN and a 3D-CNN, while emphasizing that the filter size should be 

defined based on the financial interpretation of features and their attributes. These CNNs have four 
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significant steps: input data representation, daily feature extraction, durational feature extraction, and 

final prediction.  

The remarkable part of this study is that the first layer of both frameworks is assigned to combine 

the daily features into higher-level features for representing each single day of the dataset. According 

to the authors, their model outperformed the benchmarks in all five indices by about 3% to 11% in 

terms of F1 score, which shows that the model not only accurately identifies positive instances but 

also minimizes false positives. 

In another study, Cao and Wang (2019) explored the use of CNNs for financial forecasting, showing 

that they can effectively handle both categorical and continuous variables and achieve strong 

prediction results. They tested two different models, a CNN and a CNN-SVM, to predict stock index 

prices and found that both models performed well.  

Methab et al. (2021) developed a CNN with a walk-forward validation to predict NIFTY 50 stock 

price movements in the National Stock Exchange of India. The authors developed three approaches, 

varying in the number of variables used in forecasting the price movements, the number of sub-

models, and the size of the input training data. 

According to the authors, the results show that CNN-based multivariate model is the most 

effective and accurate. This model consisted of two convolutional layers with 32 filter maps followed 

by a pooling layer, then again, another convolutional layer with 16 feature maps and pooling. It is 

essential to mention that this was a multi-step time series forecasting approach since it uses the prior 

time series data to forecast the values for the next week. This research also explored the power of 

Generative Adversarial Networks (GAN) to improve prediction performance. 

One of the more advanced deep learning algorithms is the LSTM, and according to the literature, 

Chen et al. (2019), created a stock price trend prediction model (TPM) that combines a CNN with an 

LSTM. The TPM consists of two phases. First, it uses a piece-wise linear regression method (PLR) to 

extract long-term temporal features and a CNN to extract short-term spatial market features. These 

two methods work together as a dual feature extraction method. In the second phase, an encoder-

decoder framework, which is formed by an LSTM, is employed to select and combine significant 

features and make trend predictions. The model differs from traditional methods since it can extract 

relevant features for mining the financial time series.  

A paper by Lu et al. (2021) went even further and proposed a CNN-BiLSTM-AM model to predict 

the Shanghai Composite Index stock closing price for the next day. As the acronym suggests, the model 

combines a Convolutional Neural Network, a Bi-directional Long Short-Term Memory (BiLSTM) and an 
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Attention Mechanism (AM). The CNN is utilized to extract features from the data, and then the BiLSTM 

applies those features to forecast the stock closing price of the following day. Finally, the AM, captures 

the impact of feature states on the stock closing price at various times in the past to enhance the 

accuracy of the model. This method achieved an RMSE of 0.31694 and 0.9804 𝑅2, which surpasses 

every benchmark. 

Sezer and Ozbayoglu (2018) proposed an innovative approach to CNN architectures by 

transforming time series data of alpha factors into a two-dimensional format, leveraging the model's 

ability to detect local patterns. The model proposed was a CNN-TA, which computes 15 technical 

indicators for different intervals and utilizes hierarchical clustering to find indicators with similar 

behaviour in a two-dimensional grid. The architecture was composed of nine layers: one input layer, 

two convolutional layers, a max pooling, two dropout layers (to prevent overfitting), fully connected 

MLP layers, and finally, an output layer. In this Dissertation, a 3x3 filter was utilized in the CNN, which 

helps capture more details of the images.  

The model was evaluated using two criterias: Computational Model Performance and Financial 

Evaluation. Regarding Computational Model Performance, it was verified that the recall values of the 

classes “Buy” and “Sell” were better compared with the “Hold” class.  Accuracy results were 0.58 for 

the Dow30 dataset, which consists of 30 major publicly traded U.S. companies that make up the Dow 

Jones Industrial Average (DJIA), a key benchmark for the U.S. stock market and 0.62 for the ETFs. 

Financially, the proposed model presented an average annualized return almost three times higher 

compared with average annualized return of the benchmark models. According to the authors (Sezer 

and Ozbayoglu, 2018), the proposed model could present better results if the structural parameters 

were optimized. They suggest boosting the data representation for “Buy”, “Sell” and “Hold” points for 

better trade signal creation performance, potentially via the use of GANs to boost trade signal creation. 

A similar study was done by Chandar (2022), which developed a stock trading model by combining 

Technical Indicators and a CNN (TI-CNN). The first step was obtaining ten technical indicators from 

historical data and taking them as feature vectors. Then, those feature vectors were transformed into 

an image using the Gramian Angular Field (GAF) method and were employed as input data for CNN.  

2.4.6. Generative Adversarial Networks 

GANs were created by Goodfellow et al. (2014), and in recent years, Yann LeCun et al. (2015) stated 

that these networks were the “most exciting idea in AI in the last ten years”. GANs, as mentioned by 

Stefan Jansen (2020), train two neural networks, called the generator and discriminator, in a 

competitive setting. The generator network produces samples until the discriminator network can’t 

differentiate it from a given training data class. The outcome is a generative model that can develop 
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synthetic samples of an individual class distribution without expense. Yoon and Jarret (2019) proposed 

a novel GAN architecture to model time-series data, the TimeGAN. 

The main difference between this novel approach and the other GAN architectures, is that 

TimeGAN proposes the concept of supervised loss, where the model depicts time conditional 

distribution within the data by applying the original dataset as supervision.  

The authors demonstrated the application of the TimeGAN models to financial data by using 15 

years of daily Google stock prices, targeting synthetic series with 24-time steps. The two autoencoder 

components and the generator element of the adversarial network, consisted of an RNN with three 

hidden layers and 24 Gated Recurrent Units (GRU) units. The supervisor component of RNN only differs 

in the number of hidden layers, which is 2. 

This novel model presented by the authors demonstrated consistent and significant 

improvements in terms of performance when compared to state-of-the-art benchmarks. 

In addition, Staffini (2022) presented a Deep Convolutional Generative Adversarial Network 

(DCGAN) architecture as a solution for forecasting stock prices. This architecture demonstrated 

improved performance in both single-step and multi-step forecasting when compared to standard 

methods. For the generator network, the author selected a CNN-BiLSTM architecture, which, according 

to Lu et al. (2021), achieves excellent results. On the other hand, for the discriminator network it was 

selected a simple CNN architecture.  

Lin et al. (2021) developed a stock prediction model that employs a GAN architecture. A GRU is 

utilized as the generator, which takes historical stock prices as input and generates predictions for 

future prices. A CNN is the discriminator, trained to distinguish between real and generated stock 

prices. In their study, the authors found that training with a 1D-CNN discriminator improves the 

performance of basic recurrent models in stock prediction. Additionally, using a GRU-based generator 

results in more stable training and better test performance. 

The noteworthy part of their study is the use of the loss function from the Wasserstein GAN with 

the Gradient Penalty (WGAN-GP) model as an alternative to a simple GAN, providing more stable and 

improved performance for multi-step ahead predictions. 

The main conclusion from these studies, is that although financial time series forecasting may 

benefit from using GANs, training this type of model remains a challenging task due to the need to 

adjust multiple hyperparameters while maintaining a balance between the generator and 

discriminator networks.  
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2.4.7. Review Summary  

The literature review for this Dissertation was essential in determining the direction and focus on stock 

market prediction models. It emphasized the value of leveraging diverse data sources, including 

technical indicators, fundamental analysis, and even sentiment data, to enhance predictive 

capabilities. For instance, it emphasised the effectiveness of using the same indicator across different 

timeframes to capture a broader range of patterns and the importance of incorporating additional 

variables, such as news sentiment, to improve model accuracy. 

The review also stressed the critical role of feature selection in optimizing model performance, 

exploring various techniques such as Genetic Algorithms (GAs) alongside traditional methods like 

embedded, wrapper, and filter approaches. These insights inspired the idea of combining feature 

selection techniques to minimize redundant information and prioritize the most representative 

variables, ultimately boosting the model's accuracy and efficiency. 

Moreover, the review deepened the understanding of advanced machine learning models, 

including CNNs and LSTM models, and their applications in time-series data. It showcased the CNNs 

ability to process financial features and integrate technical indicators while highlighting the potential 

of GANs for producing synthetic data to further enhance model performance. This initial knowledge 

was instrumental in guiding the development of the Dissertation, providing clarity on variable 

selection, the importance of feature selection, and the potential of both CNNs and GANs for financial 

data analysis. 
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Chapter 3 

Data Selection Methodology 

For this Dissertation, to guarantee a systematic approach and considering its focus on Data Science, 

the CRISP-DM (Cross-Industry Standard Process for Data Mining) framework will be employed. This 

widely used methodology in the industry provides a structured procedure for organizing the 

dissertation's workflow through its key stages: Business Understanding, Data Understanding, Data 

Preparation, Modelling and Evaluation.  

Given the emphasis placed on the data preparation phase in this Dissertation, particularly on 

feature engineering, feature selection and image generation, a detailed deep dive into the data 

preparation process will be presented in a separate section. Similarly, the modelling and evaluation 

stage will also be discussed in a separate section. This approach ensures that these critical steps are 

fully described. 

3.1. Business Understanding 

The Business Understanding phase is a central part of the Dissertation, laying the grounds for its 

structure. The first purpose of the study is to develop a novel algorithmic trading model using a CNN 

architecture to evaluate stock price movements. This architecture will utilize various trading strategies 

and assess its performance, aiming to top the effectiveness of benchmark models, such as an LSTM 

model.  

A second objective of this Dissertation is to improve the model performance by applying GANs, 

particularly the TimeGAN architecture. This method aims to generate synthetic data providing a more 

thorough assessment of the trading model's effectiveness. 

A selection process was conducted to adopt the stock utilized in the proposed method, analysing 

Global Industry Classification Standard (GICS) sector returns, volatility, trading volume, and other 

metrics. Although the detailed process and the selected stock will be stated in the next section, a brief 

overview is provided here for context. The preferred stock is Advanced Micro Devices, Inc. (AMD), an 

American semiconductor company founded in 1969 by Jerry Sanders. AMD operates globally, offering 

a variety of digital semiconductors, including microprocessors, graphics processing units (GPUs), data 

center solutions, embedded processors, and other graphics solutions for desktops, laptops, and 

gaming consoles. 

Recently, AMD has been focusing on expanding its AI and data center capabilities, leading hedge 

funds and analysts to keep a bullish position on its stock. The acquisition of Xilinx in 2022 has further 

diversified AMD's business, strengthening its position in key markets. It's also essential to mention that 
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the company faced significant challenges in the late 2000s and early 2010s, only recovering market 

share due to the success of its Ryzen processors. 

Finally, the company's financials in July 2024 reinforce the buy recommendations from various 

analysts. AMD reported a revenue of $22.8 billion, a net income of $1.12 billion, a profit margin of 

4.9%, and a debt-to-equity ratio of 5.34%. 

Moving to the construction of the model, the features of the proposed model are defined by 

producing a wide range of different technical indicators with distinct time intervals, daily news 

sentiment, previous logarithmic returns, and previous closing prices. Eleven feature selection methods 

are then employed, and cross-selection is performed to identify the most significant features for each 

strategy. 

The next step before using the CNN model is to generate images using techniques such as 

Recurrence Plots (RP), Gramian Angular Field (GAF) and Markov Transition Field (MTF). Afterward, the 

model is tested by different trading strategies, each utilizing various image generation methods. The 

final step involves generating synthetic data and assessing its fidelity to warrant its reliability and 

accuracy. 

To conclude, as shown in the figure below (Figure 3.1), the proposed workflow is divided into 

various steps: Data Extraction, Stock Selection, Feature Creation, Data Labelling, Feature Selection, 

Image Creation and Model Development. 

 

 

 

 

 

 

 

 

 

Figure 3.1. Proposed Workflow. 
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3.2. Data Understanding (Dataset Extraction and Stock Selection) 

For this Dissertation, the daily stock prices of S&P 500 stocks were selected for training and testing, 

between 1/1/2000 and 31/12/2023. Before extracting the daily prices of S&P 500 stocks from Yahoo 

Finance API, a stock selection process was carried out. 

Initially, the focus was on choosing the most liquid stocks within the S&P 500. This involved 

selecting stocks with the highest trading volume, ensuring they could be readily bought or sold without 

significantly impacting their market price. 

The subsequent stage involved choosing stocks that had experienced a substantial movement 

over the past year. More precisely, stocks with a price movement exceeding 100% over the past year 

were selected to identify those exhibiting significant growth. 

This stage starts by calculating the five-year (Appendix A) and one-year (Figure 3.2) returns for 

each stock in the S&P 500. The second step was to identify the GICS Sectors with the highest growth. 

As exhibited in the image below, the GICS Sectors with the highest average 1-year return are 

Information Technology and Consumer Discretionary. It is important to note that both these sectors 

were also in the top 3 in terms of the 5-year average return.  

 

 

 

 

 

 

 

 

 

 

The next step was to refine the list of stocks such that it only included those with a price movement 

exceeding 150% over 2023. This task was accomplished by computing the delta percent metric, which 

captures the relative change in stock prices between their highest and lowest points within the year of 

Figure 3.2. S&P 500 one-year sector returns. 
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2023. Although more volatile stocks could be more complicated to predict, it should help reduce the 

possibility of class imbalance and create more defined samples. The delta percent is defined as: 

𝐷𝑒𝑙𝑡𝑎 𝑃𝑒𝑟𝑐𝑒𝑛𝑡 =
𝐻𝑖𝑔ℎ − 𝐿𝑜𝑤

𝐿𝑜𝑤
× 100 

In parallel, another method for selecting stocks was developed. The most “momentum stocks” 

were selected, by choosing the top 5 stocks, sorted by average trading volume, with above-median 

cumulative returns and trading volume in the top 20% in the last semester of 2023. Ultimately, AMD, 

NVDA (Nvidia), and TSLA (Tesla) met all criteria, and AMD was chosen for this Dissertation. 

  

(3.1) 
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Chapter 4 

Data Preparation 

4.1. Stock Analysis 

After selecting the stock, it is essential to perform a time series analysis. In this case, analysing both 

the evolution of the stock's closing price and daily returns is crucial for evaluating trends, volatility, and 

potential trading opportunities. 

Regarding the stationarity of AMD's closing price, the Augmented Dickey-Fuller (ADF) test results 

indicate that the stock price is non-stationary, as the p-value of 0.99 is notably higher than the 0.05 

threshold. The ADF statistic of 0.76 also exceeds the critical values at the 1%, 5%, and 10% confidence 

levels, verifying that the null hypothesis (which says that a unit root is present) cannot be rejected. 

This indicates that AMD’s stock price follows a strong trend component and does not revert to a 

constant mean over time. Hence, traditional time series forecasting models like ARMA/ARIMA would 

not be suitable unless differencing or transformations are employed to achieve stationarity, an 

approach that will not be utilized in this Dissertation. 

The seasonal decomposition plot, presented in Figure 4.1, delivers additional insights into AMD's 

stock price behaviour. The trend component illustrates a long-term upward movement, particularly 

after 2016, which aligns with AMD’s significant growth during that period. The seasonality component 

shows a relatively regular range, suggesting the presence of short-term cyclic patterns in stock price 

movements. These patterns can be influenced by various factors, such as earnings reports, 

macroeconomic conditions, and market sentiment, which can be captured through technical indicators 

to recognize trading opportunities. 

The residual component reveals periods of increased volatility, predominantly in recent years, 

indicating increased price fluctuations Given this volatility, implementing trading strategies that 

capitalize on price fluctuations while minimizing risk could be advantageous. Additionally, 

incorporating technical indicators tailored to these market conditions could enhance the effectiveness 

of trading strategies. 
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Concerning the summary statistics of AMD’s closing price and daily returns, the data show that 

the stock has experienced high volatility, with a mean closing price of 25.43 and a standard deviation 

of 31.92, reflecting significant price fluctuations over the 23-year period. The minimum closing price 

of 1.62 and maximum of 161.91 further highlight the stock's wide trading range over time. The returns 

data also exhibit considerable variation, with a mean return of 0.0373%, a minimum of -39.16%, and a 

maximum of 42.06%, reinforcing the presence of both strong upward and downward price movements 

over this extended timeframe. The 25th percentile return (-1.87%) and 75th percentile return (1.98%) 

indicates that most daily returns fall within a relatively moderate range, while extreme values highlight 

occasional large price swings, presenting trading opportunities. 

To further analyse daily returns, two examples will be utilized: 2023 (Figure 4.2 and Table 4.1), 

representing a bull market scenario, and 2022 (Figure 4.3 and Table 4.2), illustrating a bear market 

scenario. 

In 2023, the AMD stock presented a change in price of 82.75$, an average return of 0.33% per day 

and a cumulative return of 127.98%. While in 2022, the scenario was the complete opposite, the stock 

presented showed a change in price of 71.93$, an average daily return of -0.32% and a cumulative 

return of -52.43%. 

 

 

Figure 4.1. AMD closing price seasonal 

decomposition. 
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Metric Value 

Change in Price ($) 82.75 

Average Daily Return (%) 0.33 

Cumulative Return (%) 127.98 

Figure 4.2. AMD stock performance in 2023. 

Table 4.1. AMD stock performance metrics in 2023. 

Figure 4.3. AMD stock performance in 2022. 
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4.2. Technical Indicators and Trading Strategies 

The next step in the data preparation process, is the addition of new features. During this step, 12 

different technical indicators were added, some with multiple timeframes and others with various 

features. This resulted in developing and adding 25 features to enhance the dataset (see Table 3). 

Since the moving averages-based strategies are highly favoured among investors, the first 

technical indicators added were the Simple Moving Average (SMA), Exponential Moving Average 

(EMA), and Weighted Moving Average (WMA) with various periods. 

Regarding the Moving Average (MA), the primary objective behind its calculation is to smooth the 

price data, by continually generating an updated average price. However, given the high volatility of 

the stock market, implementing trading rules solely based on a moving average is not advisable. This 

approach could lead to the generation of too many signals, some of which could be misleading. 

As a result, most studies and investors usually employ certain moving averages (MAs) when 

applying trading rules (Stanković et al., 2015). The EMA consists of a technical indicator that tracks how 

the price of an asset changes over time and unlike an SMA, the EMA gives more emphasis to recent 

data points. Like the EMA, the WMA also assigns greater significance to recent data points. However, 

unlike the exponential decrease in the EMA, the weights in WMA are designed to ensure that their 

sum totals 1. 

These indicators can be calculated using the subsequent formulas:  

𝑆𝑀𝐴𝑡 =  
1

𝑁
∑ 𝑃𝑡−𝑖

𝑁−1

𝑖=0

 

𝐸𝑀𝐴𝑡 = 𝑃𝑡 × (
2

𝑁 + 1
) + 𝐸𝑀𝐴𝑡−1 × (1 −

2

𝑁 + 1
) 

Metric Value 

Change in Price ($) -71.38 

Average Daily Return (%) -0.32 

Cumulative Return (%) -52.43 

Table 4.2. AMD stock performance metrics in 2022. 

(4.1) 

(4.2) 
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𝑊𝑀𝐴𝑡 =
∑ (𝑊𝑖 × 𝑃𝑡−𝑖)𝑁−1

𝑖=0

∑ 𝑊𝑖
𝑁−1
𝑖=0

 

In these formulas, N refers to the number of periods considered for the moving average 

calculation, P indicates the current price of the stock, W represents the weights assigned to past values 

in the WMA, and t denotes the current time index or period for which the moving average is being 

calculated. 

Furthermore, this Dissertation used more momentum indicators, such as the Moving average 

convergence divergence, a widely known trend-following indicator. This indicator calculates the 

difference between two EMAs of a stock’s price to show the connection between them. 

The Triple EMA, also rooted in the EMA, which is crafted to exhibit even quicker responsiveness 

to price fluctuations, effectively signalling short-term price movements, was also used in the proposed 

model. 

𝑇𝐸𝑀𝐴𝑡 = 3 × 𝐸𝑀𝐴𝑡 − 3 × 𝐸𝑀𝐴(𝐸𝑀𝐴𝑡) + 𝐸𝑀𝐴(𝐸𝑀𝐴(𝐸𝑀𝐴𝑡)) 

Additionally, in the Dissertation context, the parabolic SAR was also utilized. This indicator 

completes the goal of identifying potential trend reversals. Functioning as a trend following (lagging) 

indicator, it can establish trailing stop losses and make informed decisions about entry or exit points 

(Jansen, 2020). 

𝑆𝐴𝑅𝑡 = 𝑆𝐴𝑅𝑡−1 + 𝛼(𝐸𝑃 − 𝑆𝐴𝑅𝑡−1) 

According to the study by Kumbure et al. (2022), the Relative Strength Index (RSI) with a 14-period 

setting is the most frequently utilized technical indicator in machine learning studies. As a result, it was 

incorporated into the proposed model, alongside the Williams Percent Range (Williams %R) and 

Stochastic Oscillator %K, which are also considered momentum indicators. 

The RSI is a momentum indicator used to detect overbought and oversold market conditions by 

measuring the speed and change of stock price movements. The Williams %R also helps identify entry 

and exit points in the stock market by determining overbought and oversold levels. It measures the 

difference, in percentage, between the current closing price and the highest price of a given period. 

The Stochastic Oscillator %K serves a similar purpose as Williams %R. It compares the most recent 

closing price to the range of prices over a particular period. 

Continuing with momentum indicators, the proposed model also incorporated the commodity 

channel index. This indicator determines the difference between the current price and the historical 

average price. The last momentum indicator used in the model was the Percentage Price Oscillator, 

(4.3) 

(4.4) 

(4.5) 
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which shows the relationship in percentage between two exponential moving averages (26–period and 

12–period). 

Moving to the volatility indicators, the most common one, according to Kumbure et al. (2022), is 

the Bollinger Bands. Bollinger Bands blend a moving average (MA) with upper and lower bands to 

represent the moving standard deviation (Jansen, 2020). 

Regarding volume and liquidity indicators, this Dissertation incorporated two factors: the 

accumulation/distribution (AD) and the on-balance volume (OBV). The first indicator helps measure 

the cumulative flow of money into and out of a stock. On the other hand, the OBV is a cumulative 

indicator that establishes a connection between volume and changes in price. 

Concerning Technical Indicators, the ones employed in this Dissertation are as follows. Table 4.3 

provides an overview of each indicator (a total of 12), along with their respective periods and specific 

types, ending in 25 unique features. The figures in Appendix B illustrate the performance of various 

technical indicators on AMD stock during the bullish period of 2023. 

 

 

Indicator Feature Descriptions & Periods Type 

Bollinger Bands Upper Band; Middle Band; 

Lower Band 

Volatility 

Stochastic Oscillator %K; %D Momentum 

Small Moving Average (SMA) SMA 20-days; SMA 50-days; 

SMA 150-days 

Trend 

Exponential Moving Average 

(EMA) 

EMA 20-days; EMA 50-days; 

EMA 150-days 

Trend 

Weighted Moving Average 

(WMA) 

WMA 20-days; WMA 50-days; 

WMA 150-days 

Trend 

Triple Exponential Moving 

Average (TEMA) 

TEMA 20-days; TEMA 50-days; 

TEMA 150-days 

Trend 

Relative Strength Index (RSI) RSI Momentum 

Williams %R Williamns %R Momentum 

Parabolic SAR (PSAR) PSAR Trend 

Acumulation/Distribution (AD) AD Volume 

On-Balance Volume (OBV) OBV Volume 

Moving Average Convergence 

Divergence (MACD) 

MACD; MACD Histogram; MACD 

Signal line 

Trend/Momentum 

Table 4.3. Technical indicators utilized. 
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4.3. Lagged Variables 

Although the primary objective was to use technical indicators as features for the Classifier, enhancing 

the proposed model with lagged returns was a must, given their consistent status as highly informative 

variables (Jansen, 2020), alongside technical indicators and news sentiment. 

To capture historical price trends over various time periods, returns were computed for lag 

intervals of 1, 2, 3, 4, 5, 21, and 63 trading days. Furthermore, these returns were converted into binary 

format to visually represent their directional movement, with a positive return represented as 1 and a 

negative return represented as -1. In addition to the lagged returns, lagged adjusted close prices were 

also computed for various intervals. 

4.4. News Sentiment 

The integration of news sentiment gains significance due to its perceived effectiveness among 

investors in explaining stock price movements. Moreover, the efficiency exhibited by the stock market 

in quickly processing information further emphasizes its importance. Therefore, incorporating this 

variable into the model aims to uncover its influence on investment decisions, contributing to a 

comprehensive understanding of its prediction ability. 

To get news sentiment, the FinBERT AI NLP model (Araci, 2019) was employed. This choice was 

motivated by the considerable challenge of conducting sentiment analysis in the financial domain, 

characterized by its unique language usage and limited availability of labelled data. The utilization of a 

pre-trained language model is pivotal in capturing stock sentiment accurately, given these 

complexities. 

Before conducting sentiment analysis, the initial step involved the extraction of daily financial 

news from the eodhistoricaldata.com API. This data collection process encompassed the period 

spanning from 2010 to 2023. 

To extract news from the API, a function, fetch_news(), was developed to fetch a maximum of 10 

news articles per day for the entire date range. Since the articles aren’t scattered consistently, some 

days may have no news, and others may have a lot. Figure 4.4 depicts a sample of news headlines 

extracted. When there was no news, a forward fill of the sentiment variable was applied after the 

sentiment analysis. 

 

 

 Figure 4.4. News example. 
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The following step was to write the functions that perform the concrete NLP sentiment analysis 

based on the article headlines retrieved. 

The sentiment analysis returned three variables: positive, neutral and negative. To simplify the 

sentiment analysis and reduce multicollinearity, the positive, neutral, and negative sentiment variables 

were combined into a single variable, "sentiment." This new variable provides a normalized overall 

sentiment regarding AMD stock. 

A “weekly sentiment” feature, resampled and aggregated every week, was also created in order 

to provide a more stable and thorough view of the stock market. 

The line plot shown in Figure 4.5 illustrates that, despite some volatility in the adjusted close price, 

the sentiment regarding AMD stock remained mainly positive. This positivity might be linked to the 

tech rally that began in early 2023. The linear correlation between the variables was approximately 

0.26, which is not a substantial (linear) relationship. This low correlation can be attributed to the 

previously mentioned bullish sentiment toward AI companies. In the scatter plot presented in Figure 

4.6, while the adjusted close price and sentiment show some clustering of points, indicating a potential 

positive association, the overall dispersion of the points highlights the variability in sentiment despite 

the price fluctuations. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5. Adj. Close Price vs. Sentiment line 
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4.5. Labelling Method 

After gathering the stock data and creating the necessary variables for the specified timeframe, the 

next step was to develop the target variables. The strategies adopted as benchmarks in this 

Dissertation for the labelling process, were five of the most common technical shift indicator 

strategies, along with a simple buy & hold strategy. 

The first labelling process categorizes daily adjusted closing prices as either "Buy" or "Sell" based 

on their respective daily returns, or in other words, whether the market is going “Up” or “Down”. A 

value of -1 denotes negative returns (downward movement), while 1 signifies positive returns (upward 

movement). This labelling method was chosen because alternative strategies, such as those based on 

technical indicators, may not consistently perform well across different market conditions. While this 

method presents a enormous challenge for accurate predictions, a correct forecast will always result 

in a profitable trade, making it a highly robust approach when successful. 

Moving on to the technical indicator strategies, four different methods were selected. In the short 

term, these strategies can be highly efficient. Creating multiple approaches to the labelling process, 

provides flexibility and adaptability for the proposed study.   

It is important to highlight that this binary labelling approach ("Buy" or "Sell") was chosen for all 

strategies, including the technical indicators strategies, for several key reasons. First, it simplifies 

decision-making by concentrating solely on actionable outcomes, decreasing the ambiguity linked with 

Figure 4.6. Adj. Close Price vs. Sentiment scatter 
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a "Hold" class. Second, it aligns with the Dissertation’s focus on a more active trading approach, 

prioritizing profitability from market movements over periods of stagnation. Third, excluding a "Hold" 

class minimizes noise, allowing the model to better identify significant trends.  

The methodologies, key indicators, and conditions for generating buy and sell conditions for the 

four selected technical indicator strategies are summarized below: 

• Exponential Moving Average (EMA) crossover:  

o Relies on two EMAs: a short-term EMA and a long-term EMA. 

o Buy signal: Triggered when the short-term EMA crosses above the long-term EMA, 

indicating an upward trend. 

o Sell signal: Triggered when the short-term EMA falls below the long-term EMA. 

The most common combination for a short-term EMA and long-term EMA is a 12-period and 26-

period, respectively (Stankovic et al. 2015). 

• Moving Average Convergence Divergence (MACD) Strategy: 

o Uses the MACD indicator and its 9-period EMA signal line. 

o Buy signal: Triggered when the MACD value is greater than the 9-period signal line. 

o Sell signal: Triggered when the MACD value falls below the 9-period signal line. 

• Stochastic Oscillator Strategy: 

o Based on the relationship between the %K and %D lines. 

o Buy signal: Triggered when the %K line crosses above the %D line, indicating upward 

momentum. 

o Sell signal: Triggered when the %K line crosses below the %D line, indicating 

downward momentum. 

• Mean Reversion Strategy: 

o Based on the premise that stock prices revert to their historical mean or average over 

time.  Utilizes Bollinger Bands to identify overbought and oversold conditions. 

o Buy signal: Triggered when the adjusted close price falls below the lower Bollinger 

Band (oversold). 

o Sell signal: Triggered when the adjusted close price rises above the upper Bollinger 

Band (overbought). 

To test the performance of the various strategies, two distinct periods were selected: a bullish 

period from the beginning of 2023 to the end of the first semester, and a bearish period from July 2022 

to the end of December 2022. Both scenarios compared the trading strategies to the market returns. 
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Regarding the bullish period, as expected, the market returns show a strong upward trend. Both 

the SMA Crossover strategy (yellow line in Figure 4.7) and the EMA Crossover strategy (green line in 

Figure 4.7) underperform compared to the market, ending with a cumulative return of -0.1 by June 

2023. The yellow line is not visible in the figure, as it overlaps with the green line, indicating that both 

strategies delivered identical results. The Stochastic Oscillator (red line in Figure 4.7) shows a moderate 

performance but is still well below the market performance. In contrast, the MACD Crossover strategy 

(purple line in Figure 4.7) demonstrates a solid performance, showing its effectiveness in this bullish 

period. Finally, although the Mean Reversion strategy (brown line in Figure 4.7) starts with a period of 

gains, it ends the semester with the worst performance out of all the strategies, which suggests that 

the Mean Reversion only works in shorter periods. 

 

 

 

 

 

 

 

 

 

The Sharpe Ratio is a measure used to evaluate an investment's performance, such as a trading 

strategy, relative to its risk. It is calculated by dividing the difference between the investment’s returns 

(𝑅𝑝) and the risk-free rate (𝑅𝑓), which for this case was selected the annual value of 5.48% (current 

yield on a 3-month US Treasury bill), by the standard deviation of the investment’s returns (𝜎𝑝). 

                                                       𝑆ℎ𝑎𝑟𝑝𝑒 𝑅𝑎𝑡𝑖𝑜 =
𝑅𝑝−𝑅𝑓

𝜎𝑝
 

In terms of results, the market outperformed all the trading strategies established, achieving a 

Sharpe ratio of 2.43. However, the MACD Crossover strategy also demonstrated strong performance 

with a high Sharpe ratio of 2.18, indicating effective risk management. The detailed metrics can be 

seen in Table 4.4. The remaining trading strategies present poor risk-adjusted performance compared 

to the market and the MACD Crossover strategy. 

(4.6) 

Figure 4.7. Market returns vs. Strategy returns in bullish period. 
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Contrary to the bullish period, the bearish period, shown in Figure 4.8, demonstrates all the 

trading strategies outperforming the market returns except the Mean Reversion strategy.  

This analysis highlights the challenges of achieving positive returns in bear market conditions and 

also the possibility of achieving brief periods of high returns with certain trading strategies such as the 

Stochastic Oscillator and Mean Reversion Strategy. Finally, the finding emphasizes the importance of 

finding robust strategies like the MACD Crossover that can adapt to market volatility and complex 

bearish market conditions. 

The Sharpe Ratio results, as shown in Table 4.5, highlight the difficulty of achieving positive risk-

adjusted returns during a bearish market period. The MACD Crossover strategy performed the best, 

with a Sharpe ratio of 2.49, followed by the Stochastic Oscillator strategy. 

  

 

 

 

 

 

 

 

 

Trading Strategy Sharpe Ratio 

Market 2.43 

Simple Moving Average -0.05 

Exponential Moving Average -0.05 

MACD Crossover 2.18 

Stochastic Oscillator 1.12 

Mean Reversion -1.11 

Figure 4.8. Market returns vs. Strategy returns in bearish period. 

Table 4.4. Trading strategy Sharpe ratio in bullish period. 
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After analysing both scenarios, it was apparent that the MACD Crossover strategy was the most 

robust, adapting well to both bullish and bearish conditions, and providing high cumulative returns. 

Even though the Stochastic Oscillator strategy lacked the resilience to sustain high gains over longer 

periods, it proved the potential for significant short-term gains. 

Considering these findings, both the MACD Crossover and Stochastic Oscillator strategies were 

selected as the target variables, along with price direction, to be tested in the CNN model. This 

selection aims to influence the robust performance of the MACD Crossover strategy and the short-

term effectiveness of the stochastic Oscillator strategy to augment the model's predictive accuracy. 

4.6. Feature Selection 

Selecting the right features for the proposed model is a challenging task but an essential aspect of any 

machine learning pipeline. As is often the case in many studies, including this one, some features are 

redundant. These redundant features can introduce noise, complicating the model's development and 

interpretation. It is essential to identify the relevant features for the problem at hand, ensuring that 

the model relies solely on high-quality inputs. 

The performance of a comprehensive range of feature selection methods was analysed, including 

filter, wrapper, and embedded techniques and Genetic Algorithms (GA). The goal was to cross-select 

the top 10 most frequently selected features across these methods. Figure 4.9 presents an overview 

of the methods and processes applied, highlighting the sequential flow of the methodology, starting 

from the initial datasets and progressing through various feature selection techniques to the final 

datasets containing the top selected features. 

Trading Strategy Sharpe Ratio 

Market -0.29 

Simple Moving Average 0.09 

Exponential Moving Average 0.09 

MACD Crossover 2.49 

Stochastic Oscillator 0.32 

Mean Reversion -1.62 

Table 4.5. Trading strategy Sharpe ratio in bearish period. 
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Before applying any feature selection methods, the target variable in each strategy (Price 

Direction, MACD Crossover, Stochastic Oscillator) was shifted backward by one day. This shift warrants 

that the model uses today's features to predict tomorrow's results, preserving a realistic predictive 

framework, causality and avoiding data leakage. 

Firstly, the performance of filter methods was analysed, including Variance Threshold, Correlation 

Coefficients and Univariate Selection.  

The Variance Threshold, as the name suggests, is a feature selection method that removes 

features that present low variance. In this Dissertation, a variance threshold of 0.3 was selected, 

resulting in the selection of 57 out of 99 features for each strategy. The 99 features include the 

technical indicators developed specifically for this Dissertation, as well as lagged returns, lagged 

adjusted close prices, standard stock variables (such as volume and open prices), and, finally, news 

sentiment data. 

The subsequent method chosen was the Pearson correlation coefficient, which is used to assess 

the linear relationship between features and target variables. For this Dissertation, features with a 

correlation of 0.2 or greater with the target variables were selected, focusing solely on continuous 

variables. 

In the dataset with stock price direction as the target variable, no variables were selected, likely 

due to the complex and non-linear relationship between the features and the target. For the dataset 

based on the Stochastic Oscillator strategy, 3 variables were identified as relevant, while the MACD 

Figure 4.9. Overview of the feature selection process 
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Crossover strategy dataset yielded 11 relevant variables. The correlation matrices for the Stochastic 

Oscillator and the MACD Crossover strategy are presented in Appendix C. 

The last filter method applied was the Univariate feature selection, which evaluates each feature 

independently to test its relationship with the target variables. This method utilizes the ANOVA F-test 

to assess if the means of the target variables vary substantially across the values of a feature. After the 

test, the features are ranked based on their significance with the target variable, in this case, the top 

10 features for each dataset. The features selected for each dataset are displayed in Appendix B. 

Next, the wrapper methods were tested. Recursive Feature Elimination (RFE) was applied using 

Logistic Regression and a Decision Tree Classifier as estimators. RFE is a method that selects the most 

relevant features by recursively considering smaller sets of features and applying an estimator to 

assess the importance of each feature. In this Dissertation, for each estimator, the RFE selected the 

top 10 features based on their importance. 

Next, backward and forward selections were applied. These are standard techniques used in 

feature selection for developing predictive models. They are types of stepwise regression methods 

that help determine the most relevant features for a model.  

Forward selection is an iterative method that starts with no features and increases them one at a 

time based on the accuracy of the logistic regression classifier. This process continues until adding new 

features no longer significantly improves the model's performance. In contrast, the backward 

elimination, starts with all available features and removes them one at a time based on the model’s 

accuracy.  

For this Dissertation, both methods were employed to leverage their specific benefits. Backward 

elimination is beneficial for large datasets as it effectively reduces features, while forward selection 

incrementally builds the model, warranting that each added feature contributes to improved accuracy. 

In both methods, the top 10 features were selected based on their influence. 

The final wrapper method implemented was a genetic algorithm with a decision tree classifier. As 

mentioned in the literature review by Xue et al., (2016), genetic algorithms have gained widespread 

acclaim in the feature selection community. Genetic algorithms are optimization methods inspired by 

natural selection and genetics. The features selected by the Genetic Algorithm for each dataset are 

displayed in Appendix C. 

To begin, a population of possible solutions (individuals) is generated; in this Dissertation, the 

population size was set to 100. Each individual is evaluated using a fitness function, which in this 

context is the accuracy of the decision tree classifier. Fitter solutions, those with higher accuracy, have 
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a higher likelihood of being chosen for the next generation, ensuring that better solutions propagate. 

The next step is crossover, which involves mixing pairs of selected solutions to exchange parts of their 

genetic information and establish new individuals. In this Dissertation, a crossover probability of 0.5 

was chosen. Additionally, random mutations are introduced to some of the newly created individuals 

with a mutation probability of 0.2. This helps preserve genetic diversity within the population and 

allows the algorithm to explore new areas of the solution space.  

These steps are repeated for many generations. In this Dissertation, the algorithm was set to stop 

if there was no improvement for 20 consecutive generations. The features selected by the Genetic 

Algorithm for each dataset are displayed in Appendix C. 

The last type of feature selection technique tested for the considered datasets was the embedded 

methods. Unlike wrapper methods, which evaluate combinations of features using a predictive model, 

embedded methods integrate feature selection straight into the model training process.  

The Lasso Regression (L1 Regularization) was the first embedded method applied to the datasets 

to identify the most relevant features. This technique adds a penalty equivalent to the absolute value 

of the magnitude of coefficients, reducing some of them to zero. By applying that penalty, the Lasso 

Regression not only does regularization but also feature selection, keeping only the features with non-

zero coefficients.  

The last two techniques applied before cross-feature selection were Random Forest and XGBoost 

feature importance. Random Forest, although it is a machine learning method, intrinsically performs 

feature selection by evaluating the importance of each feature. The XGBoost is another ML method 

that utilizes decision trees. The main difference between both learning methods is that Random Forest 

uses mean decrease in impurity and accuracy to determine feature importance. And the XGBoost 

utilizes metrics like gain, frequency, and cover to estimate feature importance. The results of both 

methods for each dataset, along with the others, are presented in Appendix C. 

After applying 11 feature selection methods, the next phase was to perform a cross-selection of 

features. The aim is to determine and select the top 10 features most frequently chosen by each 

feature selection method for each dataset. This approach warrants that the most consistently 

significant features across different methods are identified and employed in the image creation. 

The final version of each dataset is displayed in Table 4.6. The selected variables for the Stock Price 

Direction dataset emphasize volume, price and momentum indicators to identify market activity and 

its direction. Features like volume, Accumulation/Distribution Line (AD), and On-Balance Volume (OBV) 



 

37 
 

are significant in understanding trading activity and historical price movements, essential for predicting 

future market direction.  

In the Stochastic Oscillator dataset, while there is still certain emphasis on volume-related 

variables such as the AD and OBV, the primary focus shifts to momentum indicators, such as the %K, 

%D and Williams %R, which are essential for analysing price direction and generating buy and sell 

signals. To conclude, the MACD Crossover dataset strongly relies on MACD-related features and 

momentum indicators to detect trading opportunities. The MACD histogram, %K, %D, and the MACD 

signal line are fundamental in identifying trend strength and changes, enabling the detection of bullish 

and bearish market conditions. 

 

 

4.7. Image Creation 

After selecting the most important features in each dataset, employing the 2D-CNN is essential for 

transforming the time-series data into image. To perform this transformation, three different 

approaches were explored and performed. 

The approaches explored were the Gramian Angular Field (GAF), Recurrence Plots (RP) and 

Markov Transition Field (MTF). As seen in the literature review, by converting time series data into 

images, these CNN models can accomplish effective results when utilized for various financial tasks, 

including stock price prediction. 

Features Stock Price Direction 

Dataset 

Stochastic Oscillator 

Dataset 

MACD Crossover Dataset 

1 Volume %D MACD Histogram 

2 AD 

(Accumulation/Distribution Line) 

Williams %R %K 

3 OBV (On-Balance Volume) %K %D 

4 Lagged Adjusted Close day 2 Returns Williams %R 

5 Lagged Return Day 1 Volume Returns 

6 Lagged Return Day 2 PPO (Percentage Price 

Oscillator) 

Lagged Return Day 1 

7 Close AD 

(Accumulation/Distribution Line) 

Volume 

8 Adjusted Close OBV (On-Balance Volume) OBV (On-Balance Volume) 

9 %D MACD Histogram MACD Signal Line 

10 TEMA 20-day (Triple 

Exponential Moving Average) 

Lagged Return Day 1 PPO (Percentage Price 

Oscillator) 

Table 4.6. Final version of each dataset. 
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The first approach employed was the GAF. In recent years, this method has become a widespread 

technique for converting time series data into images to leverage the advantages of CNNs for time 

series prediction. Proposed by Wang and Oates (2015), this time series encoding method nets the 

temporal relationships between each time point within the data by normalizing the time series and 

representing its values as coordinates in a polar coordinate system. 

Applying this base, the Gramian Angular Summation Field (GASF) and Gramian Angular Difference 

Field (GADF) matrices can be established.  

Xu et al. (2023) explain that GASF and GADF matrices capture the correlations between time series 

values at various periods using cosine and sine operations, creating an image representation of the 

temporal signal. However, this operation may risk losing some information. The main difference 

between the two matrices is that GASF highlights cumulative patterns, while GADF emphasizes 

variations, resulting in different representations of the time series. 

For this Dissertation, it was decided to generate multivariate GADF images with overlapping 

windows from the AMD stock data. It was proposed a window of 22 days, considering a swing trader's 

perspective, which is a style of trading that attempts to capture short to medium term gains using 

mainly technical indicators. Selecting a 22-day overlap with a step size of 1 ensures that maximum 

overlap is achieved, facilitating CNN in recognizing patterns and trends that occur over longer periods. 

Additionally, with this overlap, the model is probably better equipped to detect subtle shifts and 

anomalies and grant more accurate and robust predictions for future time windows. This continuity 

permits CNNs to use the shared information across overlapping windows to reinforce learning and 

improve their capacity to generalize across different periods. 

The core distinction between classical GAF generation and the method proposed in this 

Dissertation is that the GAFs will be multivariate. This is accomplished by creating individual GAF 

images for each variable and combining them into multichannel images. Creating a multivariate image 

allows the CNN model to learn from the relationships between different variables, increasing its ability 

to capture complex patterns and dependencies within the data.  

With the proposed method, each generated image produces a distinct representation of the time 

series, visualizing the progression of different variables up to the 22nd day. This thorough visualization 

allows the model to analyse the multivariate relationships and trends, ultimately predicting a more 

robust trading decision for the next day.  
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The images generated for each dataset, representing the first variable in the first segment, are 

displayed below in Figure 4.10. The three images reflect the effectiveness of the GAF in capturing 

intricate details from the time series data. 

Both the images for the Stochastic Oscillator dataset and the MACD Crossover dataset show clear 

patterns with well-defined regions, highlighting the GAF’s capability to capture temporal dependencies 

effectively. In contrast, the image corresponding to the stock price direction dataset reveals a more 

complex pattern, which is naturally more challenging to predict. This complexity is anticipated, as the 

Stochastic Oscillator and MACD Crossover datasets include variables that are more directly correlated 

with the target variable, enhancing the GAF's ability to identify and represent these temporal 

relationships. 

 

 

 

 

 

 

The following method for encoding time series data into images is recurrence plots. Introduced 

by Eckmann et al. in 1987, recurrence plots provide a way to visualize the recurrences of a dynamical 

system. This method offers a simple and easily estimable approach to characterize the system's 

dynamics. Initially, it was based solely on the measured time series and was intended to complement 

other contemporary methods. 

Over the years, as highlighted by Goswami (2019), the use of recurrence plots has increased 

significantly due to their intuitive visual appeal and the growing interest in nonlinear time series 

analysis. Recurrence plot-based methods have been applied to a wide range of problems, including 

finance, which is the focus of this Dissertation, to detect and visualize recurring patterns. The ability of 

recurrence plots to provide a detailed visual representation of temporal relationships makes them a 

valuable tool in time series prediction. 

For this Dissertation, similar to the approach used for generating GAF, the aim was to develop 

multivariate recurrence plots to capture the temporal dynamics of various variables within the time 

series data. Following the methodology used for Gramian Angular Fields (GAFs), we proposed using an 

Figure 4.10. GAF Images for each dataset. 
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overlapping window of 22 days with a step size of 1 day. Consequently, each new window overlaps the 

previous one by 21 days. Combining each variable recurrence plot into a multichannel recurrence plot 

makes it possible to capture the complex relationships among the variables over time, while 

maintaining continuity with the overlapping window. 

For this approach, a threshold method was set to 'point', and a percentage of 20 was selected. 

This mechanism establishes the points in the phase space that are believed to be recurrent by 

measuring the distances between them and picking the top 20% closest pairs. This allows the 

recurrence plots to highlight significant recurrences by filtering out noise. 

Figure 4.11 displays the images generated for each dataset, representing the ninth variable in the 

ninth segment. For the recurrence plot of the Stochastic Oscillator dataset, the structured pattern with 

a diagonal cross indicates regular and predictable recurrence. The recurrence plot for the MACD 

Crossover dataset also reinforces the idea of predictability. Strong diagonal bands suggest a significant 

amount of periodic behaviour, indicating that the ninth variable in this segment presents regular and 

recurring patterns over time. On the other hand, the recurrence plot for the Stock Price Direction 

dataset, although it has some periodic behaviour, still exhibits complex and non-linear dynamics. 

 

 

 

 

 

 

The Markov Transition Field (MTF) was the final image generation method. As noted by Lu et al. 

(2018), the MTF enhances the Markov matrix by aligning each probability according to the temporal 

order of the time series. While the Markov matrix encodes the dynamical transition statistics, it does 

not account for the conditional relationships and temporal dependencies between time steps. The 

MTF, as described by Wang and Oates (2015), sequentially represents the Markov transition 

probabilities to maintain information within the time domain. In addition, Wang and Oates (2015) 

demonstrated that the MTF method produces highly competitive results compared to other time 

series classification approaches. 

This Dissertation closely followed the parameters selected from the approaches above. Once 

again, the aim was to generate multivariate images, specifically multivariate MTF images, using a 22-

Figure 4.11. RP Images for each dataset. 
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day overlapping window with a step size 1. Each window captures the transition dynamics of the time 

series over 22 days, and the overlapping ensures that temporal dependencies are preserved.  

Figure 4.12 exhibits the images generated for each dataset, representing the third variable in the 

third segment. For the MTF of the Stochastic Oscillator dataset, the image displays a mix of structured 

and random transitions, indicating some predictability and some volatility. The MTF matrix of the 

MACD Crossover demonstrates more predictable patterns, such as some high-probability transitions 

(yellow region), which ensures higher consistency for time series prediction. Lastly, the MTF matrix for 

the Stock Price Direction dataset, exhibits the most complex and structured patterns, which suggests 

strong temporal dependencies with high probability transitions (yellow and green regions). 

 

 

 

 

 

 

 

 

The generated images in all approaches (GAF, Recurrence Plot, MTF) exhibit the potential of these 

methods in capturing structured patterns and powerful temporal dependencies, indicating high 

predictability. However, they also reveal that some variables and specific time windows can be less 

clear, making predictions more challenging. This is due to the inherent volatility and randomness of 

the stock market. By using multivariate images, some images may compensate for others, thus 

enhancing overall predictability.  

Figure 4.12. MTF Images for each dataset. 
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Chapter 5 

Modelling and Evaluation 

The next phase in the CRISP-DM methodology is modelling. For this Dissertation, three models were 

employed, all utilizing Deep Learning techniques. The first model used was an LSTM, which served as 

the baseline for the study. Next, a CNN model was applied to the various image techniques previously 

developed and finally, to enhance the accuracy of the CNN model, a GAN architecture, the TimeGAN, 

was employed to generate data simulating different market scenarios. Each of these models was 

applied to the created datasets: Stock Price Direction dataset, MACD Crossover strategy dataset and 

Stochastic Oscillator strategy dataset. 

5.1. Train-Test Splitting and Performance Evaluation Metrics 

Before applying any model, it was essential to define the train and test sets and the metrics for 

evaluating and comparing the model’s performance. For all models tested, two train-test split methods 

were performed on the three datasets. Additionally, a validation set was included during training to 

monitor the model's performance on unseen data. 

The validation set was created by splitting 10% of the training data, guaranteeing that it remained 

separate from the training and test sets. This set granted an intermediary checkpoint to evaluate the 

model’s generalization ability after each epoch. The validation loss was closely monitored, and early 

stopping was employed to prevent overfitting. Training was halted if no improvement in validation loss 

was observed for 20 consecutive epochs, and the best-performing model weights were restored. This 

process warranted that the model did not overtrain on the training data while maintaining optimal 

performance on unseen data. Including the validation set was fundamental for fine-tuning the model 

and ensuring good generalization. 

The datasets contained complete data without missing values from July 6, 2015, to December 28, 

2023. However, data prior to July 6, 2015, had missing values due to the generation of features such 

as technical indicators and sentiment data, which needed historical data for calculation. 

In the first approach, a train-test split of 90/10 was performed on all datasets. Given the 

unpredictable nature of stock data and the focus on short-term predictions, this split was considered 

suitable. For the tabular and image data, the split resulted in 1903 training samples and 212 test 

samples, which can be regarded as not a high volume of data. 

Regarding the second approach, shown in Figure 5.1, to accomplish a more robust evaluation, a 

Rolling Cross-Validation was applied to the datasets. Rolling Cross-Validation is a technique that 
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maintains the temporal order of the data, which is fundamental for time series data, avoiding data 

leakage and over-optimistic performances.  

This approach involves multiple evaluations, four in this Dissertation, offering a more 

comprehensive understanding of the model’s performance across different market scenarios and 

assessing its stability. In each fold, the training set includes the start of the dataset up to a specific time 

t, and the validation set incorporates data points immediately after t. The process is repeated four 

times, moving the split point forward in each fold. For instance, in the first fold, the model trains data 

until 𝑡1 and tested on data from 𝑡1 + 1 to 𝑡2. In the second fold, the train data include observations up 

to 𝑡2, and the validation data ranges from 𝑡2 + 1 to 𝑡3, and so on, until the last fold. 

In conclusion, Rolling Cross-Validation allows for a better evaluation of the model’s robustness 

and reliability, by closely simulating how the model will be used in practice. In the case of the time-

series data converted in images, a walk-forward validation was used, which is almost identical to the 

Rolling Cross-Validation but is suited for image-like data. 

 

 

 

 

 

 

 

Regarding the metrics selected to evaluate the model’s performance, several generally used 

classification metrics were picked. The first metric is accuracy, which is the ratio of correctly predicted 

observations to the total observations.  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (𝑇𝑃) + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠(𝑇𝑁)

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑡𝑖𝑣𝑒𝑠 (𝐹𝑃) + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠(𝐹𝑁)
 

Next were Precision and Recall (Sensitivity). Precision measures the ratio of correctly predicted 

positive instances to the total predicted positives. Recall, on the other hand, measures the ratio of 

correctly predicted positive instances to all the instances in the actual class. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

Figure 5.1. Rolling Cross-Validation/Walk-Forward Validation. 

(5.1) 

(5.2) 



 

45 
 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

Lastly, the metric Area Under the ROC Curve (AUC-ROC) was chosen. This metric helps understand 

the trade-offs between the true positive rate and false positive rate at different levels, indicating how 

well the model can distinguish between classes. A higher AUC means the model better distinguishes 

between positive (Buy) and negative (Sell) classes. This metric is valuable as it helps assess the model's 

performance in different market scenarios. 

5.2. Long Short-Term Memory (LSTM) Baseline Model 

The first model developed for this Dissertation was an LSTM model, which served as the baseline. LSTM 

neural networks are a specialized architecture of recurrent neural networks (RNNs), which are 

designed to better capture long-term dependencies in sequential data. While traditional RNNs can 

theoretically use information from long sequences, they often struggle with long-term dependencies 

in practice. This difficulty surfaces from the problem of gradient vanishing or exploding during 

backpropagation over many time steps, as highlighted by Jansen (2020). 

Multiple RNN design techniques have been developed to address this challenge, with the most 

successful ones employing gates trained to control how much past information is preserved in the 

current state and when to reset this information. The LSTM is the most popular example of this 

approach.  It uses input, output, and forget gates to manage dependencies between elements in the 

input sequence, allowing recurrent decisions. Precisely, the forget gate controls how much of the cell's 

state should be discarded, the input gate updates the cell state based on the current input and previous 

hidden state, and the output gate filters the updated cell state to produce the final output, as explained 

by Jansen (2020). This gated mechanism allows LSTMs to successfully handle long-term dependencies, 

making them fit for stock price prediction. 

Since the LSTM was not the primary focus of this Dissertation, hyperparameter tuning for this 

model was not emphasized; its primary role was to provide a baseline performance. 

The LSTM model for all datasets was constructed using the Sequential API from Keras, featuring a 

simple architecture containing a single LSTM layer with 50 units and a ReLU activation function. This 

was followed by a dense layer with a sigmoid activation function to create binary classification outputs. 

The model was compiled with the Adam optimizer and binary cross-entropy loss, with accuracy tracked 

as a performance metric. To prevent overfitting, early stopping was employed, monitoring the 

validation loss with a patience of 10 epochs. 

(5.3) 
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The training process involved fitting the model to the training data of all the datasets for 200 

epochs with a batch size of 32. A validation set compromising 10% of the data was used to validate the 

model during training. 

5.3. Convolutional Neural Network (CNN) 

As mentioned in the beginning of this Dissertation, CNNs were initially developed to process image 

data and in computer vision has achieved exceptional performance. As noted by Jansen (2020), time-

series data has a grid-like structure very alike to that of images. With that in mind, CNNs have been 

successfully applied to one-, two- and three-dimensional representations of temporal data. In this 

Dissertation, to take advantage of the grid-like structure of multivariate time-series data, where each 

time series is a channel, a 2D CNN was developed to leverage its ability to detect local patterns and 

relationships between the different channels. 

Regarding the theory behind the CNNs, as explained by Jansen (2020), these networks are a 

specialized type of neural networks that excel at learning spatial hierarchies in data, making them 

effective at image and sequence data tasks. Remarkably similar to feedforward neural networks (NNs), 

CNNs consist of units with weights and biases as parameters, which are adjusted during the training 

process to optimize the network's output for a specific input. 

In the time-series context, as stated above, CNNs leverage the assumption that local patterns 

(could be represented as autocorrelation or other non-linear relationships at relevant intervals) are 

essential to predict the outcome. 

In this Dissertation, a 2D CNN architecture was utilized to leverage its capability to capture local 

patterns in stock data, such as technical indicators, and compare its performance with the baseline 

model (LSTM) and various image generation techniques. Each stock dataset (Stock Price Direction, 

MACD crossover strategy, Stochastic Oscillator strategy) was used to train and test the 2D CNN. For 

each stock dataset, the relevant features, already transformed into GAFs, RPs or MTF, were selected, 

and the number of channels was defined based on these features used to generate the images (10 

channels). The CNN model was developed utilizing the Sequential API from Keras, with two 

convolutional layers followed by pooling layers, a flattening layer, and, finally, dense layers. 

The original CNN architecture consisted of a first convolutional layers with 32 filters, a kernel size 

of 3x3, followed by a max pooling layer of 2x2. The second convolutional layer had 64 filters, kernel 

size of 3x3, and a max pooling layer of 2x2. The input matrices for the CNN had dimensions of 22 × 22 

× 10, representing 22 time-steps, 22 windows, and 10 features. The model constructed incorporated a 

flattening layer, a dense layer with 64 units, and a final dense layer with a sigmoid function to deliver 
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binary classification outputs. Then, the model was compiled utilizing the Adam optimizer, binary cross-

entropy loss function, and accuracy as the selected performance metric. Lastly, during the training 

process, the CNN was fitted to the training data for 200 epochs with a validation split of 10%. Table 5.1 

provides the parameters selected for the initial CNN: 

 

 

 

 

 

 

 

 

 

 

 

In the initial approach, the model exhibited significant overfitting, especially with the Stock Price 

Direction dataset and the Stochastic Oscillator strategy dataset. In order to resolve this issue, a more 

sophisticated CNN architecture was developed. 

This second approach was given special focus in the study, requiring careful attention to achieve 

optimal results. The initial CNN’s tendency to easily overfit to two of three datasets showed how critical 

is hyperparameter tuning to guarantee the best possible performance across all datasets. 

To mitigate overfitting and improve model’s generalization capacity, several adjustments were 

made. Batch normalization layers were included after each convolutional layer to soothe the learning 

process and reduce sensitivity to initialization. In addition, dropout layers were also employed to 

randomly drop units during the training process, helping to reduce overfitting. Finally, an early 

stopping callback was applied to monitor the validation loss and stop training if it did not improve for 

20 consecutive epochs, thus preventing overfitting. 

This enhanced approach conducted multiple experiments with various hyperparameters, 

including a grid search employing the Keras Classifier form TensorFlow. The model architecture 

Layer Type Parameters Activation Function 

Convolutional Layer 1 
 
32 filters, kernel size 

3x3 

ReLU 

Max Pooling Layer 1 Pool size 2x2 - 

Convolutional Layer 2 
 
64 filters, kernel size 

3x3 
 

 

ReLU 

Max Pooling Layer 2 Pool size 2x2 - 

Flattening Layer - - 

Dense Layer 64 units ReLU 

Output Dense Layer 1 unit Sigmoid 

Compilation 
 

Optimizer: Adam, 
Loss: Binary Cross-Entropy 

- 

Training Epochs: 200, 
Validation Split: 10% 

- 

Table 5.1. Parameters for the initial approach of the CNN model. 
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featured two convolutional layers with diverse combinations of filters (16 and 32, 32 and 64, 64 and 

128) to capture different levels of feature complexity. Regarding the kernel size in each convolutional 

layer, three kernel sizes were tested (2x2;3x3;5x5).  Each convolutional layer was followed by a max 

pooling layer with a pool size of 2x2, batch normalization layers of 16, 32 or 64 units, and a dropout 

layer with rates of 0.1, 0.25 or 0.5 to observe their influence on the training process. Identical to the 

initial approach, both convolutional layers used a ReLU activation function and were followed by a 

flattening layer to convert the 2D matrix into a vector. Before the final dense layer, an additional batch 

normalization and dropout layers were employed with various rates. 

To conclude, the model was built and trained with the same optimizer and loss function as the 

initial approach. Two hundred epochs were used for training, but due to the employment of early 

stopping, training was halted earlier when no improvement in validation loss was observed for 20 

consecutive epochs, as previously mentioned. By realizing extensive experiments with a vast range of 

hyperparameters, it was possible to optimize the model's performance. Table 5.2 provides the 

parameters selected for the CNN model constructed. 

 

 

Layer Type Parameters Activation Function 

Convolutional Layer 1 
 

Filters: 16,32,64 

Kernel size: 2x2,3x3.5x5 

ReLU 

Max Pooling Layer 1 Pool size: 2x2 - 

Convolutional Layer 2 
Filters: 32,64,128 

Kernel size: 2x2,3x3.5x5 
 

ReLU 

Max Pooling Layer 2 Pool size: 2x2 - 

Batch Normalization Units: 16,32,64  

Dropout Layer Rates:0.1,0.25,0.5  

Flattening Layer - - 

Dense Layer Units: 64 ReLU 

Output Dense Layer Units: 1 Sigmoid 

Compilation 
 
Optimizer: Adam, Loss: Binary 

Cross-Entropy 

- 

Training Epochs: 200 

Validation Split: 10% 

- 

Table 5.2. Parameters for the final approach of the CNN model. 
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5.4. Generative Adversarial Network (TimeGAN) 

This model was constructed to generate synthetic data to improve the CNN’s model accuracy and to 

produce data realistic enough to simulate various market scenarios. As mentioned in the literature 

review, in 2019, Yoon and Jarret proposed a novel GAN architecture to model time-series data, the 

TimeGAN. This approach allows to generate data that capture the various datasets feature 

distributions within each time-point and catch the complicated dynamics of those features across time. 

TimeGAN differs from other GAN architectures because it introduces the concept of supervised 

loss, meaning that the model is incentivized to catch time conditional distribution within the data by 

utilizing the original data as supervision. Additionally, the presence of an embedding network reduces 

the adversarial learning space dimensionality. Another benefit of utilizing the TimeGAN architecture is 

its lower sensitivity to hyperparameter changes and greater stability during training. 

The TimeGAN consists of four main network components: the embedding function, the recovery 

function, the sequence generator, and the sequence discriminator. The first two components, known 

as the autoencoding components, are trained together with the latter two, known as the adversarial, 

as part of the overall architecture. This process allows the TimeGAN to simultaneously learn to encode 

features, generate representations, and iterate across time, as explained by Yoon and Jarret (2019). In 

addition, the embedding network supports the latent space, the adversarial network works within this 

space, and the latent dynamics of both real and synthetic data are synchronized through a supervised 

loss. 

In this Dissertation, the TimeGAN was utilized solely to simulate the bull run using data from 2023. 

This scenario was chosen to ensure consistency, as the same data used in the CNN model was also 

employed for the TimeGAN simulation. This dataset was scaled using the Min-Max Scaler to ensure 

consistency and reliability in the simulation. 

To simulate this scenario, the YData Fabric platform was utilized to generate precise and realistic 

synthetic data (YData, n.d.). The parameters from the model are shown in Table 5.3. 
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Parameter Value 

Sequence Length 22 

Number of Sequences 11 

Hidden Dimension 22 

Gamma Value 1 

Noise Dimension 32 

Layer Dimension 128 

Batch Size 128 

Learning Rate 5𝑒−4 

Number of Epochs 500 

Samples Generated 250  

Table 5.3. Parameters for the TimeGAN. 
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Chapter 6 

Results and Discussion 

6.1. Baseline LSTM 

In this chapter, the results from the proposed models are analysed and discussed. A total of 11 models 

were evaluated, considering various frameworks and datasets. Starting with the baseline model, the 

LSTM, all datasets were tested using this architecture. The model was tested using two different 

approaches: a standard train-test split of 90/10 and Rolling Cross-Validation.  

In the first approach, the Stochastic Oscillator strategy presented an accuracy of 66% on the test 

set. While this may not seem very high, it is a reasonable performance given the natural difficulty and 

unpredictability of the stock market. 

Regarding the recall metric, the LSTM exhibited a higher recall for class 0 (71%), indicating better 

performance in identifying sell or no-buy signals. Precision was balanced between the classes, with an 

overall score of 65%. The AUC-ROC score was 66%, indicating that the model is reasonably capable of 

distinguishing between buy and sell signals. 

When using the Rolling Cross Validation, the Stock Oscillator strategy achieved an overall accuracy 

of 59%, gradually improving accuracy until the final fold. The recall and AUC-ROC metrics followed a 

similar trend, reaching a value of 67% and 63%, respectively, in the last fold. Regardless of this 

performance in the final fold, the average recall was 50% and the average AUC-ROC was 59%. For the 

precision metric, the overall performance was 62%, with the best performance happening in the 

second fold at 70%. 

Although the Rolling Cross-Validation technique achieved moderate performance, with the overall 

metrics hovering around 60%, it still shows the inherent difficulty of predicting stock strategy 

movements and achieved a worse performance than the train-test split approach. This performance 

difference can be credited to the fact that in Rolling Cross-Validation, each fold progressively raises the 

amount of training data, but the initial folds have less data to train on compared to the train-test split. 

Another factor is the strong temporal dependencies in stock market data.  

In conclusion, while the Rolling Cross-Validation is a good technique to measure the model 

robustness and performance across multiple subsets of data, the complexity and variability of stock 

market data in this case, may benefit more from a stable, consistent, and longer training approach 

such as the train-test split. Table 6.1 displays the results for the Stochastic Oscillator strategy. 
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In the case of dataset of MACD Crossover strategy, the Rolling Cross-Validation approach achieved 

an accuracy of 83%, which is two percentage points higher than the 81% accuracy obtained from the 

train-test split approach. Although the metrics are very similar in both methods, the difference in 

accuracy can be primarily justified by the difference in recall. In the train-test split approach, the model 

had a recall of 68% for identifying buy signals, while the Rolling Cross-Validation approach attained a 

recall of 90% in the last fold. 

In general, the model for the MACD Crossover strategy presents a strong performance with a high 

precision for buy signals, which are essential for trading strategies. Even though the model presents a 

substantial AUC-ROC value, there is room to improve the recall to guarantee it identifies more actual 

buying opportunities. The metrics for the MACD Crossover strategy are shown in Table 6.2. 

 

 

 

 Stochastic Oscillator Strategy 

Metrics Train-Test Split Rolling CV Last 

Fold 

Rolling CV 

Overall 

Accuracy 66% 63% 59% 

Precision 65% 60% 62% 

Recall 60% 67% 50% 

AUC-ROC 66% 63% 59% 

 MACD Crossover Strategy 

Metrics Train-Test Split Rolling CV Last 

Fold 

Rolling CV 

Overall 

Accuracy 81% 87% 83% 

Precision 93% 86% 88% 

Recall 68% 90% 77% 

AUC-ROC 81% 87% 83% 

Table 6.1. LSTM Stochastic Oscillator strategy results. 

Table 6.2. LSTM MACD Crossover strategy results. 
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The improvement with the Rolling Cross-Validation can be clarified by the progressive increase in 

training data with each fold, allowing the model to learn more effectively from a larger dataset over 

time. Unlike the Stochastic Oscillator strategy, where the train-test split was the more effective 

approach, the greater performance of the MACD Crossover strategy with Rolling Cross-Validation can 

be credited to the nature of the MACD signals. MACD signals are more stable and predictable, with 

less variation, specifically in their ability to accurately recall buy signals. This allows the MACD 

Crossover strategy to perform well even from the initial folds. This underlines the importance of 

selecting the appropriate validation approach for each strategy. 

The last strategy tested was the Stock Price Direction, which by default is the hardest to predict 

due to the inherent variability of the stock price market and because it is based solely on stock returns 

rather than any technical strategy.  

As expected, this strategy achieved the worst performance. The accuracy in either approach didn’t 

go beyond the 53% mark. However, the Rolling Cross-Validation approach presented a much better 

performance in terms of recall. With the train-test split technique, the model achieved a recall of only 

12%, indicating that it missed many actual buy signals, making it ineffective at capturing buy signals. 

Additionally, the train-test split presented an accuracy of 49%, which is lower than random guessing. 

Overall, the Rolling Cross-Validation demonstrated a modest improvement in the Stock Price 

Direction strategy, likely by allowing the model to learn from a more varied dataset. Regardless of 

these improvements and the inherent complexity of stock price direction classification, the results are 

inadequate. With the use of CNNs, different image generation techniques, and synthetic data, the 

study aims to achieve more reliable predictions. The metrics supporting these results for the Stock 

Price Direction strategy are stated in Table 6.3. 

 

 

 

 

 

 

 

 Stock Price Direction Strategy 

Metrics Train-Test 

Split 

Rolling CV Last 

Fold 

Rolling CV 

Overall 

Accuracy 49% 52% 53% 

Precision 58% 52% 55% 

Recall 12% 47% 58% 

AUC-ROC 51% 52% 52% 

Table 6.3. LSTM Stock Price Direction strategy results. 
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6.2. CNN 

Regarding the performance of the CNN model across multiple strategies, two architectures were 

tested. The initial architecture exhibited signs of overfitting, particularly with the Stock Price Direction 

dataset and the Stochastic Oscillator strategy dataset. To mitigate this issue, a more refined 

architecture was implemented. The results analysed and discussed in this section refer to the 

performance of this improved model. 

For the improved CNN, two testing approaches were employed: a standard 90/10 train-test split 

and walk-forward validation. Furthermore, all developed image generation techniques were applied 

and tested using this model (GAF, RP, MTF). To optimize the performance of the best-performing 

image generation method, a grid search was conducted to fine-tune the hyperparameters. 

6.2.1. CNN-GAF 

Firstly, this model was applied to the GAF generated images for each trading strategy. In the train-test 

split approach, the Stochastic Oscillator strategy accomplished an accuracy of 58% on the test set, 

which is lower when compared to the baseline LSTM model. Other metrics, such as precision, recall, 

and AUC-ROC, underperformed relative to the LSTM baseline, suggesting that classifying buy and sell 

signals in GAF image data using the Stochastic Oscillator strategy is more challenging. 

Nevertheless, this idea turns when analysing the results from the walk-forward validation, where 

the strategy accomplished an accuracy of 67%, very similar to the best result from the LSTM baseline. 

The major improvement was in the AUC-ROC, which reached nearly 70%, indicating the model's strong 

ability to differentiate between buy and sell signals. 

Overall, the rest of the metrics were on par with the LSTM baseline. The use of GAF images applied 

to the CNN model did not show a significant improvement when compared to LSTM. This could be 

related to the Stochastic Oscillator strategy's high volatility, with frequent buy and sell signals during 

the 22-day intervals captured in the images, making it more difficult for the model to discover spatial 

patterns successfully. The Stochastic Oscillator strategy is known to have frequent fluctuations since it 

reacts to short-term price movements, creating noisy data, which makes it harder for the model to 

identify clear patterns. 

 Although there is no improvement compared to the LSTM baseline, it is still a solid performance 

for the trading classification model. The metrics for the Stochastic oscillator strategy are shown in 

Table 6.4. 
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Regarding the second strategy, the MACD Crossover strategy, all approaches yielded strong 

results, consistently achieving at least 90% accuracy on the test set. Furthermore, the CNN-GAF model 

revealed high precision, with a median of 91%, showcasing its ability to identify true buy signals while 

minimizing false positives. 

Across all metrics, the CNN model reliably outperformed the baseline LSTM, mainly excelling in 

recall (95%) and AUC-ROC (98%). 

The CNN-GAF, especially in the last fold of the walk-forward validation, significantly shined, 

meaning it successfully captured nearly all true buy signals, making it a highly reliable model for trading 

decisions. However, the biggest improvement was in the AUC-ROC, where the model showed a near-

perfect performance, indicating exceptional capability to distinguish between buy and sell signals. 

These results not only highlight the model’s ability in interpreting GAF images but also in precisely 

understanding the market dynamics inherent in the MACD Crossover strategy. The improvement in 

performance compared to the Stochastic Oscillator strategy can be attributed to the fact that MACD 

Crossover strategy usually produces fewer but more reliable buy and sell signals. This reduces noise in 

the data and enables the CNN to capture cleaner and more structured patterns. The MACD strategy’s 

more consistent signals align with the CNN's strength in identifying spatial patterns, leading to better 

overall results. 

In conclusion, the CNN-GAF excelled with the MACD Crossover strategy, identifying almost all buy 

and sell signals and consistently outperforming the baseline LSTM model. The metrics supporting these 

results for the MACD crossover strategy are presented in Table 6.5. 

 

 

 Stochastic Oscillator Strategy 

Metrics Train-Test 

Split 

Walk Forward 

Last Fold 

Walk Forward 

Overall 

Accuracy 58% 67% 57% 

Precision 51% 65% 57% 

Recall 65% 58% 59% 

AUC-ROC 61% 69% 63% 

Table 6.4. CNN-GAF Stochastic Oscillator strategy results. 
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The final dataset tested with the CNN-GAF model was the stock price direction, which is inherently 

the most difficult due to the strategy’s dependence on the price movement of the prior day. As 

anticipated, the stock price direction strategy performed the worst of the three assessed strategies 

but still outperformed the baseline LSTM model across all metrics. Particularly, the CNN-GAF model 

achieved a 57% accuracy and a 77% recall in the walk-forward validation, emphasizing its strength in 

identifying true buy signals and more trading chances, which is fundamental to maximizing profit 

opportunities. 

The AUC-ROC was also moderately better when compared to the LSTM baseline, with the best 

value reaching 57%. While this suggests that the model has some difficulty distinguishing between buy 

and sell signals, this level of performance is appropriate in the context of the stock market, where price 

direction prediction is particularly difficult. 

Across the validation approaches, the CNN-GAF model showed consistent performance, a marked 

contrast to the LSTM model, which presented more significant variability. This stability further 

supports the case for CNN-GAF as a more reliable and robust model for stock price prediction. 

Overall, the CNN-GAF model’s ability to capture market trends makes it a significantly better 

candidate for trading strategies than the LSTM baseline. Table 6.6 shows the results for the stock price 

direction strategy. 

 

 

 MACD Crossover Strategy 

Metrics Train-Test 

Split 

Walk Forward 

Last Fold 

Walk Forward 

Overall 

Accuracy 91% 92% 90% 

Precision 89% 91% 91% 

Recall 94% 95% 90% 

AUC-ROC 98% 98% 96% 

Table 6.5. CNN-GAF MACD Crossover strategy results. 
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6.2.2. CNN-RP 

Next, the CNN model was tested with Recurrence Plots across all strategies (datasets). The CNN-RP 

model consistently showed worse performance compared to the GAF images. 

In the Stochastic Oscillator strategy, as detailed in Table 6.7, the CNN-RP model struggled to 

exceed 50% accuracy in each evaluation method. Although the model attained high recall in the Walk 

Forward Last Fold, this came at the cost of low precision, revealing that while the model identified 

many true positives, it also created many false positives. Despite numerous adjustments, the model 

tended to overfit the training data, which was apparent from the inadequate generalization. The AUC-

ROC varied between 49%-54%, indicating the CNN-RP's ability to distinguish between buy and sell 

signals was only slightly better than random guessing. 

A similar trend was observed in the Stock Price Direction dataset, as shown in Table 6.9, where 

the CNN-RP model performed worse than the CNN-GAF. The high recall observed in the Train-Test Split 

possibly resulted from overfitting, as it dropped sharply in Walk Forward Validation, confirming the 

model's difficulty in generalizing to test data. In this strategy, the CNN-GAF was demonstrated to be a 

more reliable model, offering better generalization and capturing more true buy signals, which is 

essential in a stock trading model. 

In the case of MACD Crossover strategy, since it creates more precise signals and with less noise 

in data, as shown in Table 6.8, the CNN-RP presented a good performance but also was below the CNN-

GAF only achieving an accuracy of 80% but with a very good AUC-ROC, indicating that the model was 

highly effective at distinguishing between buy and sell signals. 

To conclude, the inferior performance of recurrence plots compared to GAF can be attributed to 

GAF’s strength in translating both the direction and magnitude of changes into a visual representation. 

 Stock Price Direction Strategy 

Metrics Train-Test 

Split 

Walk Forward  

Last Fold 

Walk Forward 

Overall 

Accuracy 57% 57% 51% 

Precision 57% 59% 53% 

Recall 60% 77% 60% 

AUC-ROC 57% 54% 51% 

Table 6.6. CNN-GAF Stock Price Direction strategy results. 
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This capability is fundamental in volatile and complex environments like the stock market, where even 

slight price variations can cause significant changes. GAF’s ability to identify trends over time and 

angular relationships aligns well with CNN architectures, allowing them to detect more meaningful and 

evident patterns. 

On the other hand, recurrence plots excel at capturing periodicity and repeated patterns, which 

may not be as effective in the non-repetitive and volatile nature of stock market data. Sudden changes, 

outliers, and trends in the market frequently do not follow cyclical patterns, reducing the effectiveness 

of recurrence plots in this domain. While these characteristics are beneficial in other contexts, it is 

clear that for predicting buy and sell signals in the stock market, the CNN-GAF consistently 

outperformed the CNN-RP. As mentioned in the text, the results for each strategy are shown in Tables 

6.7, 6.8, and 6.9. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Stochastic Oscillator Strategy 

Metrics Train-Test 

Split 

Walk Forward 

Last Fold 

Walk Forward 

Overall 

Accuracy 50% 48% 53% 

Precision 43% 47% 49% 

Recall 45% 97% 59% 

AUC-ROC 54% 49% 54% 

 MACD Crossover Strategy 

Metrics Train-Test 

Split 

Walk Forward 

Last Fold 

Walk Forward 

Overall 

Accuracy 82% 82% 80% 

Precision 80% 82% 85% 

Recall 87% 84% 78% 

AUC-ROC 87% 92% 89% 

Table 6.7. CNN-RP Stochastic Oscillator strategy results. 

Table 6.8. CNN-RP MACD Crossover strategy results. 
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6.2.3. CNN-MTF 

Lastly, the CNN model was tested with MTF images across all strategies, and once again, the CNN-GAF 

was demonstrated to be the most reliable model for stock price prediction due to its ability to identify 

both short-term fluctuations and long-term trends. The drop in performance of the CNN-MTF model 

can be attributed to the fact that MTF captures transitions between states, which is not an ideal 

representation for stock price movements. Stock prices are usually less about distinct "state 

transitions" and more about continuous trends or momentum shifts. As a result, MTF fails to capture 

key details that GAF images effectively retain. 

In the Stochastic Oscillator strategy, the CNN-MTF model struggled considerably to capture the 

short-term fluctuations and long-term trends of the AMD stock. This resulted in low AUC-ROC scores 

across both evaluation methods, varying from 47%-55%, which indicates the model was only 

marginally better than random guessing when distinguishing between buy and sell signals.  

For the MACD Crossover strategy, there was also a noticeable drop in performance for the CNN-

MTF, especially when compared to the CNN-RP model. This decline is likely appointed to the 

recurrence plot’s ability to capture recurrence, which is more effective in detecting the patterns 

involved in the MACD Crossover strategy. The CNN-RP achieved 80% accuracy, while the CNN-MTF 

only reached the mid-60% range.  

Finally, in the stock price direction strategy, the CNN-MTF model faced the same challenges as in 

the other strategies, being outperformed by both the CNN-GAF and CNN-RP models. Accuracy for CNN-

MTF hovered between 47% and 51%, which is close to random guessing and shows a lack of 

generalization. 

 Stock Price Direction Strategy 

Metrics Train-Test 

Split 

Walk Forward 

Last Fold 

Walk Forward 

Overall 

Accuracy 51% 53% 53% 

Precision 51% 52% 54% 

Recall 99% 45% 65% 

AUC-ROC 55% 52% 52% 

Table 6.9. CNN-RP Stock Price Direction strategy results. 
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Reiterating, the MTF performed worse primarily because of its inherent design, which focuses on 

capturing transitions between discrete states. This approach works well when transitions are clearly 

defined, but such clarity is sporadic in the volatile and complex nature of the stock market. In financial 

markets, prices tend to move in continuous trends, and the MTF’s emphasis on state transitions causes 

the model to miss crucial details about the direction, momentum, and magnitude of price movements. 

This leads to the model’s inability to effectively distinguish between potential buy and sell signals. On 

the other hand, GAF not only captures angular relationships but also preserves the magnitude of 

changes, making it much better suited for stock price prediction. The results supporting these findings 

for each strategy can be seen in Tables 6.10, 6.11, and 6.12. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Stochastic Oscillator Strategy 

Metrics Train-Test 

Split 

Walk Forward 

Last Fold 

Walk Forward 

Overall 

Accuracy 57% 55% 49% 

Precision 0% 51% 48% 

Recall 0% 52% 75% 

AUC-ROC 47% 55% 51% 

 MACD Crossover Strategy 

Metrics Train-Test 

Split 

Walk Forward 

Last Fold 

Walk Forward 

Overall 

Accuracy 62% 65% 63% 

Precision 63% 62% 63% 

Recall 64% 91% 76% 

AUC-ROC 66% 76% 69% 

Table 6.11. CNN-MTF MACD Crossover strategy results. 

Table 6.10. CNN-MTF Stochastic Oscillator strategy results. 
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6.3. Synthetic Data 

The last step in this Dissertation was to generate synthetic data to enhance the predictive power of 

the CNN model. As mentioned before, the YData Fabric platform was utilized to generate the synthetic 

dataset. For this step in the study, only the stock direction dataset was used since it was the strategy 

that would need to be improved. 

Regarding the sample, only data from the year 2023 was considered to generate additional 

synthetic data that simulated the bull run in the information technology sector during that year. 

After configuring the parameters for synthetic data generation and completing the data creation 

process, the fidelity of the generated data was assessed using two key metrics: correlation similarity 

and distance distribution. Furthermore, the Qscore was used to measure the utility of the synthetic 

data. 

The first metric, the correlation similarity, measures how similar the correlation matrices of the 

synthetic data are to those of the original dataset. The score varies between 0 and 1, and the higher 

the value, the higher the fidelity. In this case, the synthetic data achieved a perfect score of 1.0, which 

means that the relationships between features in the synthetic data mirror those in the original 

dataset. 

The Distance distribution measures the similarity between the feature distributions between both 

datasets. A value close to 1 indicates that the synthetic data follows the same distribution patterns as 

the actual data. Once again, the synthetic data achieved a near perfect score, indicating that the 

feature distributions closely resemble those in the original dataset. 

 Stock Price Direction Strategy 

Metrics Train-Test 

Split 

Walk Forward 

Last Fold 

Walk Forward 

Overall 

Accuracy 45% 49% 51% 

Precision 45% 49% 52% 

Recall 44% 100% 63% 

AUC-ROC 47% 54% 54% 

Table 6.12. CNN-MTF Stock Price Direction strategy results. 
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Lastly, the QScore evaluates the utility of the synthetic data by comparing the results of random 

aggregation queries performed on both the synthetic and original datasets. A score above 0.8 indicates 

that future queries on the synthetic data will maintain the same statistical characteristics as those 

conducted on the original dataset, ensuring high data fidelity. Table 6.13 presents the metrics for 

synthetic data generated. 

 

 

 

 

 

 

 

After evaluating the various metrics, a Principal Component Analysis (PCA) algorithm was applied 

to reduce the dimensionality of both datasets. The first two principal eigenvectors together accounted 

for approximately 71% of the total variance in the data. In the dimensionality plot below (Figure 6.1), 

it is evident how closely the distribution of the synthetic dataset mirrors that of the original dataset. 

 

 

 

 

 

 

 

 

 

 

The final metric evaluated using YData Fabric was the Train Synthetic Test Real, which accesses 

the AUC-ROC score across different estimators. The average AUC-ROC score was 67%, ranging from 

Synthetic data profiling 

Metrics Train-Test Split 

Correlation Similarity 1.00 

Distance Distribution 0.99 

QScore 0.83 

Figure 6.1. Dimensionality plot comparing real data vs. synthetic data. 

Table 6.13. Synthetic data profiling. 
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59% to 73%. This exhibits a clear improvement over the AUC-ROC results achieved in both the CNN 

and LSTM models using only real data, emphasizing the significant potential of synthetic data in 

improving machine learning model performance and robustness. 

All performance measures evaluated point to the leading value of synthetic data generation in 

enhancing machine learning model accuracy. By generating high-fidelity synthetic datasets that 

capture the distribution and relationships of the actual data, synthetic data allows models to be trained 

on more precise and additional signals. This is particularly valuable in volatile and complex 

environments such as the stock market, where data may be noisy or sparse. Synthetic data can be 

designed to simulate specific market scenarios, ensuring that models are trained on a more diverse 

dataset and are more representative of real-world market dynamics. 
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Chapter 7 

Conclusion 

This Dissertation aimed to study the use of Convolutional Neural Networks for stock market price 

prediction, integrating technical indicators, sentiment analysis, image-based time-series 

transformations, and synthetic data generation. 

Several achievements were made during the course of this Dissertation. As the primary objective, 

a CNN model was developed for price movement prediction using various image generation 

techniques (GAF, RP, MTF) to convert time-series data into visual representations. As a secondary 

objective, a broad set of technical indicators with diverse time frames and sentiment variables derived 

from financial news using the FinBERT library were created. This provided valuable insights into how 

sentiment could be leveraged as a predictive variable, although its effective integration proved to be 

challenging. 

Another key goal was to develop and analyse trading strategies capable of withstanding short-

term fluctuations under different market conditions. Among the strategies tested, the MACD 

Crossover and the Stochastic Oscillator proved robust across backtesting scenarios. Additionally, 

TimeGAN, implemented using the YData platform, was used to generate synthetic stock market data 

that mimicked real market behaviour. 

The findings of this study underscore the importance of a thorough feature selection process. The 

extensive analysis significantly improved data input quality and predictive performance. This allowed 

for a deeper understanding of various selection techniques and confirmed that combining multiple 

methods can enhance variable selection, as suggested by Tsai and Hsiao (2010), ultimately improving 

stock prediction by identifying the most relevant financial indicators. 

Among the models tested, the CNN-GAF combination proved to be the most effective. GAF’s 

ability to capture angular trends and temporal relationships aligned well with CNN’s strengths and the 

dynamic nature of stock market data. The use of synthetic data was also validated. In line with the 

findings of Lin et al. (2021) and Yoon and Jarrett (2019), TimeGAN was able to generate high-fidelity 

data, reinforcing the potential of synthetic data as a tool for simulating diverse market scenarios and 

improving model training. 

Nonetheless, this Dissertation presents several limitations. Only two trading strategies were 

implemented, which may have limited the ability to capture more complex market behaviour or 

achieve stronger predictive signals. The analysis focused primarily on technical indicators, while 

fundamental indicators were excluded due to their complexity and limited availability. Although 



66 
 

sentiment analysis was initially considered, it was excluded from the final model during feature 

selection, reducing the opportunity to evaluate its true contribution. The model’s performance was 

also limited by the specific market conditions under which it was tested, namely a bull market, raising 

concerns about its ability to generalize across different time periods and market scenarios without 

ongoing recalibration. 

Future research should aim to explore a wider and more dynamic set of trading strategies, develop 

hybrid models that combine CNN-GAF architectures with sentiment analysis, and validate model 

performance across different markets and economic environments. Additional studies should consider 

ensemble learning approaches or attention-based models, which may better adapt to the complexity 

of financial data. Evaluating these models under varied market conditions, using both real and 

synthetic data, will be essential to assess their robustness and to explore the full potential of synthetic 

data in stock price movement prediction. 

In summary, this Dissertation establishes a strong foundation for understanding the potential of 

CNNs in financial trading strategies. When combined with appropriate image encoding methods such 

as GAF, CNNs show a strong capacity to identify patterns and relationships within financial time series. 

Moreover, synthetic data offers great value to stock market prediction, providing a way to simulate 

specific market scenarios and reduce dependence on historical datasets. 
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Appendix A 

Figure of S&P 500 Sector Returns 

 

Appendix B 

Figures of Technical Indicators Performance on the AMD Stock 

 

 

 

 

 

 

 

 

 

Figure B.1. Moving Average Plot. 

Figure A.1. S&P 500 five-year sector returns. 
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Figure B.2. MACD Plot. 

Figure B.3. RSI Plot. 
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Figure B.4. Bollinger Bands Plot. 

Figure B.5. Stochastic Oscillator Plot. 
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Appendix C 

Figures of Results from Feature Selection Methods Applied 

 

 

 

Figure C.1. Highly correlated features with the Stochastic Oscillator and MACD 

Crossover strategies. 
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Figure C.2. Top 10 features selected using Univariate Feature Selection for 

the Stochastic Oscillator, MACD Crossover, and Price Direction strategies. 
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Figure C.3. Features selected using GA for the Stochastic Oscillator, 

MACD Crossover, and Price Direction strategies. 
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Figure C.4. Features selected using Lasso Regression for the Stochastic 

Oscillator, MACD Crossover, and Price Direction strategies. 
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Figure C.5. Top 10 features selected using Random Forest for the 

Stochastic Oscillator, MACD Crossover, and Price Direction strategies. 
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Figure C.6. Top 10 features selected using XGBoost for the Stochastic 

Oscillator, MACD Crossover, and Price Direction strategies. 
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Appendix D 

Figures of Results from the various models 

D.1. Confusion Matrices for the LSTM Baseline Model 

 

 

Figure D.1. Confusion matrix for the train-test split and the final fold of the rolling CV for 

the Stochastic Oscillator strategy. 

Figure D.2. Confusion matrix for the train-test split and the final fold of the rolling CV for 

the MACD Crossover strategy. 



82 
 

 

 

D.2. Confusion Matrices for the CNN-GAF model 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure D.4. Confusion matrix for the train-test split and the final fold of the rolling CV for 

the Stochastic Oscillator strategy. 

Figure D.3. Confusion matrix for the train-test split and the final fold of the rolling CV for 

the Price Direction strategy. 
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Figure D.5. Confusion matrix for the train-test split and the final fold of the rolling CV for 

the MACD Crossover strategy. 

Figure D.6. Confusion matrix for the train-test split and the final fold of the rolling CV for 

the Price Direction strategy. 


