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ABSTRACT

The proliferation of internet-enabled edge devices in the last decade
and the introduction of 5G mobile networks have expanded the
demand for network functions deployed in resource-constrained
computational environments. Traditionally, this functionality was
deployed using dedicated ASICs. However, ASIC-based approaches
have low flexibility: they offer limited support to adopt updated
routing algorithms, fix security vulnerabilities, or adapt to a spe-
cific user or application. With the emergence of 6G, we expect this
issue to be exacerbated since best practices for new features such
as traffic prioritization are still unknown. Therefore, the embed-
ded networking solutions of the future will likely include some
combination of ASICs and FPGAs.

In this paper, we propose a novel FPGA-based solution for de-
tecting anomalous or malicious network traffic on edge devices.
While prior work in this domain is based on conventional deep neu-
ral networks (DNNs), we incorporate a weightless neural network
(WNN), a table lookup-based model which learns sophisticated
nonlinear behaviors. This allows us to achieve accuracy far supe-
rior to prior work at a very small fraction of the model footprint,
enabling deployment on even the smallest FPGAs. We achieve a
prediction accuracy of 98.9% on the UNSW-NB15 dataset with a
total model parameter size of just 192 bytes, reducing error by 7.9x
and model size by 262x vs. the prior work. Implemented on an
FPGA, we demonstrate a 59x reduction in LUT usage with a 1.6x
increase in throughput. Our model accuracy comes within 0.6%
of the best-reported result in literature, a model many orders of
magnitude larger, while actually achieving a superior false negative
rate. Our results make it clear that WNN’s are worth exploring in the
emerging domain of edge routing solutions, and show that FPGAs
are capable of providing the extreme throughput needed.
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1 INTRODUCTION

It is estimated that there are 14.6 billion Internet-of-Things (IoT)
devices in the world today, and this number is expected to more than
double by 2027 [17]. Although this proliferation has the potential to
enrich the lives of consumers, it also has concerning implications
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due to IoT devices’ notoriously poor security. For instance, in 2016,
the Mirai malware was able to recruit hundreds of thousands of
devices into vast botnets, launching distributed denial-of-service
attacks with up to 1.1 Tbps of traffic [10]. The predicted sharp
increase in the number of network-enabled edge devices threatens
to significantly increase the attack surface.

Meanwhile, IoT devices have increasingly adopted fifth-generation
(5G) mobile networking technologies such as NB-IoT and Cat-
M [17], and sixth-generation solutions are in development. The
introduction of Multi-access Edge Computing (MEC) [6] environ-
ments will allow us to deploy advanced network functions (NFs)
such as IDS, IPS, and traffic prioritization in the vicinity of the mo-
bile user using resource-constrained computational systems [9, 16].
This contrasts with present-day approaches, which leverage ded-
icated high-performance appliances with ASIC acceleration. We
need novel mechanisms to fully realize the benefit of moving these
NFs closer to the mobile user.

FPGAs are a promising technology that we can leverage to ad-
dress some of these concerns. The FPGAs-based approach differs
from traditional ASIC solutions due to its increased flexibility, which
allows the mobile operator to update routing algorithms, fix security
vulnerabilities, or adapt to a specific user or application. However,
FPGAs are inferior to ASICs in terms of area, cost, and energy
efficiency, and have therefore seen limited adoption in consumer
devices beyond a few specialized accelerator cards [12]. A purely
FPGA-based approach to mobile networking is likely infeasible; we
envision future embedded networking solutions will use some com-
bination of ASICs and FPGAs, leveraging the respective efficiency
and flexibility of the two technologies. Crucially, FPGA-based ac-
celerators must have as small of an area as possible in order to
minimize broader system impact, while still providing sufficient
throughput for high-speed networking.

In this paper, we propose and demonstrate a novel FPGA-based
solution for detecting anomalous or malicious network traffic on
edge devices. Unlike prior work in this domain, which was based on
deep neural networks (DNNs), we take a fundamentally different
approach based on weightless neural networks (WNNs). WNNss are
composed of RAM nodes, neural units which perform computation
using lookup tables (LUTs). Unlike the neurons of a DNN, RAM
nodes can learn nonlinear functions of their inputs, allowing WNNs
to learn sophisticated behaviors with very small model sizes. This
enables the deployment of our model on even the smallest of FP-
GAs, allowing it to fit in resource-constrained shared infrastructure
as the gNB or the future 6G Node-B [7]. We demonstrate binary
classification on the UNSW-NB15 dataset with 98.5% accuracy with
a model parameter size of just 192 bytes, coming within 1% of
the accuracy of the most accurate results in the literature (Edge-
Detect [15]) with more than 3000x reduction in parameter size.
Compared to a recent FPGA-based model for this dataset proposed
in LogicNets [18], our weightless model improves test accuracy
from 91.3% to 98.9% on a balanced variant of the dataset, reduces
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FPGA LUT usage by more than 98%, and demonstrates the potential
to achieve superior throughput and energy efficiency.

The remainder of this paper is laid out as follows: In Section
2, we provide some additional background on weightless neural
networks, the UNSW-NB15 dataset, and the prior work. In Section
3 we provide an overview of our experimental methodology and
FPGA implementation. In Section 4, we compare our model against
prior work and demonstrate its viability in a resource-constrained
environment. Lastly, in Section 5, we discuss future work and con-
clude.

Contributions

2 BACKGROUND

2.1 Weightless Neural Networks

The distinguishing feature of WNNs is that they primarily use
table lookups to perform computation, as opposed to the multiply-
accumulate operations typical of DNNs or the XNOR-and-popcount
operations used in binary NNs. The RAM nodes of a WNN are tra-
ditionally n-input, 2"-entry lookup tables with binary inputs and
outputs, and are therefore capable of representing any of the 22"
possible Boolean functions of their inputs. One challenge imposed
by this structure is that, as the size of a RAM node grows expo-
nentially with its number of inputs, it is infeasible to provide all
inputs to each node in non-trivial models. While the WNN we use
in this paper is in the family of models descended from the WiSARD
classifier, there are other approaches to WNNs as well, though they
frequently have complications such as randomized behavior which
make them difficult to implement in practice; refer to [11] for a
more comprehensive overview.

WiSARD (Wilkie, Stoneham and Aleksander’s Recognition De-
vice) [1] is an early WNN from which many subsequent models are
derived, in much the same way as the Perceptron laid the ground-
work for modern DNNs. As shown in Figure 1, WiSARD is com-
posed of submodels known as discriminators, which are each special-
ized to learn a single output class. Inputs are partitioned between
the RAM nodes of a discriminator using a mapping function, which
is typically shared between discriminators. (1a) During inference,
RAM nodes emit the table entries corresponding to their input
patterns, and a popcount is performed for the outputs of the nodes
in each discriminator to determine a response score. (1b) The class
corresponding to the discriminator with the strongest response is
taken to be the network’s prediction.

A crucial hyperparameter in the specification of a WiSARD
model is the number of inputs to each RAM node, n. Small values
of n prevent the model from learning complex input behaviors,
which usually results in unsatisfactory performance. On the other
hand, an excessively large value of n may cause overfitting, as
the model memorizes spurious patterns associated with particu-
lar inputs. Model size also grows exponentially with n, posing an
additional constraint.

Many improvements to the baseline WiSARD architecture have
been proposed, of which two are relevant to our discussion. In
Bloom WiSARD [5], it was observed that the RAM nodes of a
WiSARD model with a large choice of n are highly sparse, and
can therefore be replaced with hash-based data structures such as
Bloom filters with a minimal loss of accuracy.
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Figure 1: WiSARD, an early WNN for classification tasks.
WiSARD trains discriminators for each output class, which
are in turn composed of RAM nodes.

Inputs to WiSARD are typically expressed using a single bit
per feature by comparing features against their mean values in
the training data. Thermometer encoding is a form of multi-bit
unary encoding where features are instead compared against a
set of increasing thresholds. Thermometer encodings have been
demonstrated to significantly increase the accuracy of WNNS, at a
cost to model size [8].

2.2 UNSW-NB15

The UNSW-NB15 dataset [13] is a network intrusion dataset which
can be used for binary or multi-class classification tasks. Each
sample consists of 47 features representing an aspect of network
activity, as well as either a label of normal network activity or an
attack category. Most works using this dataset, including this paper,
focus on the binary classification problem, where the goal is to
identify whether or not a sample represents an attack, rather than
which category an attack belongs to.

While USNW-NB15 is not specifically targeted for IoT threats,
other common network intrusion datasets, such as KDD98, KDD-
CUP99, and NSLKDD, are based on data that is now more than 20
years old, and are therefore no longer necessarily representative of
the modern threat landscape.

2.3 Prior Work

3 METHODOLOGY

As discussed previously, our objective is to deploy a WNN-based
model for the UNSW-NB15 dataset on an FPGA-based inference
accelerator. In this section, we will discuss how we prepared the
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dataset, created and trained the model in software, and implemented
and evaluated the hardware model.

3.1 Dataset Preparation

Before we use the UNSW-NB15 dataset to train a model, we perform
some basic preprocessing steps. Samples in the dataset contains
several non-numeric features, including source IP addresses and
transaction protocols. Prior work [14, 18] experimented with one-
hot encoding these features, but we found that this provided no
benefit to accuracy, while increasing model size. Therefore, we
remove these features entirely.

A small number (~0.01%) of samples are malformed in some way
and are culled. A further 19.4% of samples are duplicates, and are
removed to avoid data leakage (the appearance of the same samples
in the training and test data). After this step, we are left with 205k
samples, of which 4.3% belong to the “attack” category. We perform
a 9:1 train/test split on this data.

Training with severely imbalanced datasets is known to be a
difficult problem [19]. To rectify the ~23:1 imbalance in the training
data, we randomly oversample the minority (“attack”) class by
selecting entries multiple times until the dataset is at a 1:1 ratio.

3.2 Software Model

In Section 2.1, we introduced the WiSARD WNN architecture and
discussed some subsequent improvements to this baseline. Bloom
filters and thermometer encoding are complementary techniques,
and we incorporate both into our model. To determine the thresh-
olds for the thermometer encoding, we determine the means and
standard deviations of the features in the training data and pick
thresholds which divide the Gaussian into equally probable inter-
vals. We ensure that thresholds are at least as large as the second-
smallest vale of the feature, and not larger than the largest value;
this prevents them from going out of range for e.g. binary-valued
features.

One significant deviation of our model from prior work lies in
our training approach. WiSARD and derived models are typically
trained with a one-shot approach, where RAM nodes become sen-
sitive to patterns seen during training (either once or some thresh-
old number of times [3]). While this technique is computationally
efficient, it is unable to incorporate feedback. We instead use a
backpropagation-based technique inspired by the process used for
training binary neural networks [4]. At training time, RAM node
(Bloom filter) entries are treated as floating point numbers between
-1.0 and 1.0. During the forward pass, these values are binarized
using the unit step function. However, during backpropagation, the
unit step is ignored and gradients pass by it unchanged, a process
known as the straight-through estimator [21]. After training is com-
plete, floating-point entries can be permanently binarized, so there
is no overhead to inference.

Once the model is trained, we perform pruning by eliminating
the RAM nodes which contribute least to overall model accuracy,
effectively replacing them with a constant 0 or 1.

We implemented this model using custom extensions to the
PyTorch machine learning library, which allowed us to leverage
GPU acceleration for training.
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3.3 FPGA Implementation

Our accelerator model is written using the Mako [2] template library
to generate SystemVerilog. This allows us to automatically converta
pretrained model into an RTL implementation with a user-specified
bus width.

We consider two contexts for the deployment of our solution:
as part of a larger FPGA-based solution, or independently on a
very small FPGA. For the former context, we use the Xilinx xcvu9p-
flgh2104-2-1 FPGA, which was also used for LogicNets. We perform
synthesis in out-of-context mode with a 160b input width, which is
equal to the encoded size of a single sample. For the small FPGA,
we use the Xilinx xc7s6csga225-2. Synthesis for this board is not
performed in out-of-context mode. We consider both an 80b input
width, which allows an input to be read in two cycles, and a 64b
input width, which is a more typical interface width for system-on-
chip solutions. All synthesis runs are performed using Vivado with
the Flow_PerfOptimized_high strategy, which instructs synthesis
to prioritize timing over power and area.

Power and area numbers for our design were derived from post-
implementation Vivado reports. We assume the default (15%) toggle
rate. While LogicNets provides area, clock, frequency, and through-
put values, it does not discuss power or energy. Therefore, we ap-
proximated these values using Xilinx Power Estimator (XPE) [20],
a spreadsheet-based analytical model. Edge-Detect does not pro-
pose an FPGA or ASIC implementation or provide any performance
figures, so we use it for model comparison only.

4 RESULTS

4.1 Model Selection

We identified Bloom filters with 10 inputs and 64 entries as striking
a good balance between model size and accuracy when used as
RAM nodes. The number of hash functions k associated with a
Bloom filter impacts its false positive rate and therefore classifi-
cation accuracy. Associating more hash functions also increases
the number of hash computations which need to be performed at
runtime. For this particular model, we did not see any benefit to
using more than k = 1 hash functions per Bloom filter, but this
is not true of Bloom filter-based WNNs in general. Input features
were encoded using a 4-bit unary thermometer encoding.

We found that we could eliminate 30% of RAM nodes via pruning
without any significant decrease in model accuracy. This process
reduced the size of the model from 272 to 192 bytes. After pruning,
two of the 42 numeric features in UNSW-NB15 were entirely unused
by the model (sloss and ct_ftp_cmd). Eliminating these features
reduced the encoded size of an input to 160b.

4.2 Model Evaluation

Our weightless model achieves an accuracy of 98.5% on the unbal-
anced UNSW-NB15 test set, or 98.9% on the 2:1 normal to “attack”
split used in LogicNets. Comparative results, including false pos-
itive and negative rates where available, are shown in Table 1.
The WNN is substantially more accurate than LogicNets, the prior
FPGA-based model, reducing test error by a factor of 7.9x. While
Edge-Detect’s state-of-the-art accuracy is significantly better than



Conference acronym °XX, June 03-05, 2018, Woodstock, NY

our own, as Figure 2 shows, this comes at an increase in parameter
size of more than four orders of magnitude.

Table 1: Accuracies for LogicNets, Edge-Detect, and our
weightless model on the UNSWNB-15 dataset with a 2:1 nor-
mal to “attack” split. FPR and FNR for Edge-Detect are calcu-
lated from published accuracy, precision, and recall values.

Model Name Accuracy | False Pos. Rate | False Neg. Rate
LogicNets [18] 91.3% N/D N/D
Edge-Detect [15] | 99.5% 0.57% 0.25%
WNN 98.9% 1.57% 0.10%

Test Accuracy (%)
Model Size (KB)

LogicNetsEdge-Detect WNN

LogicNetsEdge-Detect WNN

Figure 2: Comparison of test accuracies and model parameter
sizes for LogicNets, Edge-Detect, and our weightless model.

Figure 3 shows the receiver operating characteristic (ROC) curve
of the weightless model. The ROC is a common figure of merit
for binary classifiers, obtained by biasing the classification and
recording the resulting true and false positive rates. We accomplish
this by adding a constant value to the output of the discriminator
corresponding to the “attack” class. The area under the ROC is 0.994,
compared to 0.5 for a random classifier or 1.0 for a hypothetical
perfect classifier.

From the ROC, we see that by biasing the prediction towards
the “attack” class, we can effectively eliminate false negatives while
only increasing the false positive rate to ~2%. However, we would
suggest caution in interpreting this result too broadly - the UNSW-
NB15 dataset generates these samples using synthetic data, and
certainly can not be expected to cover all possible cases. The very
low false negative rate of our design - 0.10% - is attractive in an
edge context where positive detections can be sent to a larger, less
efficient model or a central server for verification.

4.3 FPGA Implementation Results

Results for the FPGA implementations of the WNN model, along
with results for LogicNets, are show in table 2. Compared to Logic-
Nets on the larger (xevu9p-flgb2104-2-i) FPGA, our model improves
throughput by 1.6x, reduces dynamic energy per inference by 9.0x,
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Figure 3: Receiver operating characteristic curve for the WNN
model; dashed line is ROC curve for a random classifier

and decreases LUT and FF usage by 59x and 2.4x respectively. While
the energy value for LogicNets (which was generated using XPE) is
less accurate than the values for our models, it still suffices to show
a clear advantage for the WNN .

The dramatic decrease in area can be attributed to two factors.
First, LogicNets uses a much larger encoding of the UNSW-NB15
dataset, require 593 bits per input versus the 160-bit encoding used
in our model. Additionally, as mentioned previously, unlike DNNs,
the individual RAM nodes within a WNN can learn non-linear
functions of their inputs. This provides a significant efficiency ad-
vantage to WNNs, as DNNs need multiple layers to capture the
same behavior.

The implementations of the weightless model on the smaller
FPGA require multiple cycles to read in a single sample due to bus
width limitations. The deserialization logic required for these imple-
mentations also introduces significant LUT and energy overheads.
The smaller FPGA is also built on a much larger process node (28nm
vs. 14/16nm), introducing additional energy overhead.

Overall, our weightless model introduces very little area over-
head as part of a larger FPGA-based design, while providing a
throughput of up to 740 million samples per second, sufficient for
even demanding networking applications. As a stand-alone model,
it can easily fit on a small, low-cost commercial FPGA while still
providing considerable throughput, and can easily be updated or
replaced with a new model as the threat landscape changes.

5 CONCLUSION
Code
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