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Resumo 

 
O Value at Risk (VaR) é uma métrica de avaliação de risco utilizado para medir o Economic Capital 

(EC) que consiste no capital em risco relativo a atividades de investimento. As formulações de 

estratégias de risco são realizadas através de um limite máximo para o EC definido previamente. Esta 

dissertação estima e gere o VaR de uma carteira composta por ações e obrigações dos mercados 

Europeus, Canadianos, Americanos e Asiáticos com o objetivo de não ultrapassar o máximo pré-

definido. Através de backtest, foi analisada a performance de 10 modelos diferentes, dada a variedade 

de modelos existentes, tendo sido utilizado o modelo com melhores estimativas para a carteira em 

questão. Utilizando o modelo com melhor performance, o Var da carteira é medido diariamente e gerido 

através de uma estratégia de cobertura aplicada à exposição em ações para um período de um ano 

considerando limites individuais de contribuição de cada ativo para o risco total da carteira. O Return 

on Risk-Adjusted Capital (RORAC) é uma métrica de performance utilizada para a análise do resultado 

da estratégia de cobertura executada.  
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Abstract 

 
Value-at-Risk (VaR) is a risk measurement metric used to mensurate the Economic Capital (EC), which 

consists of the capital at risk derived from investment activities. The formulation of risk management 

strategies is done through a pre-defined maximum target value for the EC. This dissertation measures 

and manages the VaR of a portfolio composed of equities and bonds from the European, U.S., Canadian 

and Asian markets with the aim of not exceeding a pre-defined target. Through a Backtest process, given 

the range of VaR models, 10 different models are analyzed by their performance, to select the model 

that provides the most thorough estimates for the portfolio. Selecting the best performing model, the 

VaR of the portfolio is measured daily and managed by an equity exposure hedging strategy for a one-

year period, also capping the individual risk contribution of each asset for the total portfolio risk. Return 

on Risk-Adjusted Capital (RORAC) is a performance metric used to analyse the applied hedging strategy 

result.  
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Chapter 1  

INTRODUCTION   

 
During the last few years, the role of financial risk management has become more important for 

companies and financial institutions. Influential events, such as the 2008 financial crisis or the increased 

market volatility in the last 5 years due to the 2020 pandemic and macroeconomic tensions, strengthen 

the role of risk management. In addition, the growth of the financial derivatives markets with high 

leverage financial instruments and given the role of financial institutions in our system and economies, 

it is also a legal obligation to control financial risk. This control began in the late-1980s via introduction 

of the first Basel Accords (Shakdwipee & Mehta, 2017) where financial supervisors increased the 

minimum capital requirements with proper risk mensuration and reporting regulations towards the 

protection of the financial system stability. 

The goal of this Master Thesis is to measure and mitigate market risk, that can be defined as a 

measure of the uncertainty of future value of certain financial assets that arises from changes in market 

prices and unknown profit and loss (P&L) profiles. To do so, we need to use a risk metric. The Value-

at-Risk (VaR) is the industry standard market risk measurement metric, and as a statistical measure, it 

can be defined as the maximum expected loss we are confident will not be exceeded for a given 

significance level and over a given future time horizon (Alexander, 2009). Regarding the administration 

of financial institutions and the oversight of their internal financial operations, the Economic Capital 

(EC) consists of the desirable level of capital a firm would like to hold for insurance against its risks 

(Alexander, 2009). Hence, mathematically, the EC is equal to the VaR (Jorion, 2007), and for a specific 

pre-defined maximum value for the EC, it works as a benchmark in which the development of financial 

risk management strategies is based on. 

This dissertation objective is to assess and manage the VaR of a portfolio composed of equities and 

bonds from the U.S., Canadian, European and Asiatic markets during a test period of one year from 30 

January 2023 to 2 February 2024 such that the value does not exceed the pre-defined maximum for the 

EC. Also, measure and manage the individual risk contributions of each portfolio asset and make sure it 

does not surpass a maximum percentage of the total portfolio VaR. As the ultimate goal, we analyze the 

P&L profile for a one-year period and compare it with the P&L profile if we had not managed the VaR. 

The first question that arises when measuring VaR is which model should be used to complete this 

task. 1996 was the year that the necessity of having a risk measure was met. Thanks to the efforts from 

financial institutions and regulators, J.P. Morgan and Reuters, (1996) were able to introduce 

RiskMetrics (RM) VaR model. While the forerunner, the solution may not lie here, and thus we explore 

four distinct VaR models in this dissertation: Parametric Normal VaR, Skewed Generalized Student-t 

(SGSt), Historical VaR and Quantile Regression (QR) and a total of 12 different models are tested. Via
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a Backtest method, utilizing historical data, we calculate historical VaR estimates for each model using 

the portfolio composition on 30 January 2023. Sample wise, the series of historical VaR estimates for 

the Backtest spans over 11 years from 19 December 2011 to 27 January 2023 and we measure the 

performance of each model through the Unconditional Coverage (UC) test (Kupiec, 1995) and 

Berkowitz, Christoffersen and Pelletier (BCP) test (Berkowitz et al., 2011). 

Working with the best performing model and for a time span of a year, an equity exposure hedging 

strategy assesses and manages the VaR of the portfolio on a daily basis. Supported by historical data 

ranges, we define the daily EC to a maximum of €525 million, that corresponds to close to 3.9% of the 

portfolio value on 30 January 2023, a maximum individual contribution of each asset to the total risk of 

the portfolio of 12.5% and a maximum total currency risk of 10.5%. With this, the daily VaR estimate 

cannot exceed those boundaries. Therefore, we test the impacts on the one-year return of the portfolio 

after limiting the VaR and the individual exposure to each asset by using an equity exposure hedging 

strategy. 

For comparison reasons, we name the portfolio with the implemented hedging strategy as Hedged 

Portfolio and the same portfolio without the strategy as Unhedged Portfolio. 

This thesis is structured as follows: Chapter 2 covers the significant literature; Chapter 3 shows the 

data used, portfolio composition and time span; Chapter 4 defines the path forward and delves into the 

applied methodology; Chapter 5 discloses the outcomes of the backtesting and outlines the model 

selection process; Chapter 6 analyzes the hedging and portfolio rebalancing strategies and their impact 

on portfolio returns; Chapter 7 recaps the results of this thesis. 
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Chapter 2  

LITERATURE REVIEW 

 
Historically, distress in financial institutions has shown its potential to result in negative effects of great 

magnitude on both global economy and financial markets (Hoggarth et al., (2002) and Dell’Ariccia et 

al., (2008)). The massive financial crisis of 2008 works as a major example of such outcomes (Baur, 

2012). Given that many of these institutions operate in the private sector, the concept of regulation to 

safeguard financial stability naturally emerges (Dow, 1996). As a solution, financial regulators created 

the Basel Accords in 1988, being subsequently updated to revised versions in later years, targeting 

minimum capital requirements by rigorous risk measuring and reporting standards (Shakdwipee & 

Mehta, 2017). 

Although risk can normally be classified into market, credit, and operational risk (Allen et al., 

2004), this dissertation addresses market risk only, which refers to the uncertainty of the future value of 

financial assets due to fluctuations in market prices (Alexander, 2009). Efficient risk management starts 

with precise risk measurement. Despite its limitations (Krause, 2003), VaR is still the industry standard 

metric for measuring market risk. As a statistical model, VaR correspond to the maximum anticipated 

loss that is not expected to be exceeded, for a certain pre-defined confidence level and for a specific time 

span (Alexander, 2009). 

Minimum capital requirements, from a regulatory perspective, can be identified as regulatory risk 

capital (Alexander, 2009) and are computed using techniques established by financial regulators (Bank 

for International Settlements, 2023). Once financial institutions meet these regulatory risk capital 

requirements in line with the Basel Accords, they have the flexibility to allocate capital internally to 

various activities and in amounts they deem appropriate (Alexander, 2009). In this context, Economic 

Capital (EC) for a financial institution refers to the capital at risk due to its investment activities 

(Porteous & Tapadar, 2005). To ensure financial stability within the firm, the capital at risk from 

investment activities must not exceed the allocated EC limit and, as EC is measured by VaR, its value 

should be numerically equal to the VaR (Jorion, 2007). With a predefined EC limit, risk management 

strategies can be designed to align with this benchmark. 

The demand for a standardized metric to measure market risk emerged in the mid-1990s, driven by 

collaborative efforts between financial regulators and international banks. This led to the development 

of the RiskMetrics (RM) VaR model by J.P. Morgan and Reuters, 1996. The adoption of VaR as the 

official measure of market risk under the Basel II Accords, and in subsequent updates, marked a crucial 

turning point. The creation of RM played a key role in establishing economic capital-based metrics for 

defining minimum capital requirements (Allen et al., 2004).
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The RM VaR model lies into the parametric class of models. Moreover, this model can be known 

as Parametric Normal VaR because it accepts that returns follow a normal distribution for a defined 

testing period (J.P. Morgan and Reuters, 1996). This assumption does not respect the empirical data 

on financial returns that normally confirm both excess kurtosis and negative skewness as shown by 

Fama, (1965) and Peiro, (1994), which are characteristics of a non-normal distribution. This aspect is 

noteworthy because extreme losses are found in the left tail of a return distribution. The lower the 

significance level chosen for VaR, the further into the tail we assess. Therefore, if the actual distribution 

of returns deviates from the normal distribution, the VaR estimate achieved by the RM VaR model may 

be unsuccessful in capturing the risk incurred, possibly making the RM model unfitting. When 

estimating VaR at a 5% significance level, or a 95% confidence level, we are 95% confident that future 

losses will not exceed the VaR. Given that this configuration is generally used in the RM model, Pafka 

& Kondor, (2001) investigated possible flaws by analyzing the model's performance at significance 

levels below 5%. Using 4 years of financial data from the 30 stocks composing the Dow Jones Industrial 

Average index, the authors calculate the RM VaR for both 5% and 1% significance levels. Their findings 

indicate that at lower significance levels, such as 1%, where the analysis delves deeper into the left tail 

of the distribution, the non-normality of returns becomes clear. With this, the higher the level of 

significance chosen, the bigger the probability that VaR estimations are underestimated. 

A promising approach to tackle the non-normality of returns and the limitations of the RM model 

is the Skewed Generalized Student-t (SGSt) distribution (Theodossiou, 1998). McDonald & Newey, 

(1988) introduced this distribution as an extension of the classical Student-t distribution, allowing 

substantial flexibility in modelling the shape of both tails and central region of the distribution. The 

SGSt VaR also assumes a parametric distribution for returns but seeks to better fit the distribution shape 

to the empirical returns. This approach allows it to accommodate for the fat tails usually observed in 

financial return distributions. Lin & Shen, (2006) research compared the performance of SGSt VaR with 

RM VaR utilizing daily data from the S&P 500, NASDAQ, DAX, and FTSE 100 indices with a sample 

size of 3 years. As anticipated for equity returns, the normality assumption was strongly rejected for all 

indices by the Jarque-Bera test. The authors then estimated VaR for each index for a range of 

significance levels from 55% to 0.1%. Results show that while for a 55% significance level the RM 

model produces satisfactory results, for lower levels the performance begins to worsen. In contrast, the 

SGSt VaR maintains a robust performance as we decrease the significance level. The authors conclude 

that the SGSt VaR allows more accurate estimates for lower significance levels, making it, therefore, an 

ensuring alternative in the scope of the parametric VaR models. 

Rather than imposing a specific returns structure via a parametric approach, as performed by the 

RM and SGSt models, a much straightforward alternative is presented: utilizing the empirical 

distribution of returns. This method accurately captures the empirical skewness and kurtosis of the 

return’s distribution, establishing the core of the Historical Simulation VaR, also referred to as Historical 
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VaR. However, this flexibility comes with some drawbacks. Since Historical VaR is based entirely on 

the empirical sample of past returns, the selection of the sample size is a subjective yet crucial factor. 

As Pritsker, (2006) discusses, a larger sample size broadens the diversity of possible outcomes but, 

simultaneously, with the growth of the sample size, the model might be less responsive to current market 

volatility conditions. To tackle this matter, Barone-Adesi et al., (1998) and Boudoukh et al., (1998)  

propose a refinement to the classical methodology by giving greater weight to later observations. This 

change outcomes in a sample in which recent data points hold more magnitude than those from the 

bygone years, in that way improving the model’s elasticity to changes in market conditions. Hull & 

White, (1998) propose a further refinement where past returns are adjusted through a volatility 

adjustment methodology in order to reflect current market volatility. This method changes the magnitude 

of past returns based on the market volatility conditions back then, adjusting them to current volatility. 

Hull & White, (1998) tested their model using approximately 9 years of daily financial data from 12 

distinct exchange rates and 5 different stock indices. Hull & White, (1998) compared their volatility-

adjusted approach with the standard Historical VaR, where the adjustment of the weight of observations 

does not occur, and with the Boudoukh et al., (1998) method, that adjusts the weights of later 

observations. As predictable, the results of this comparison indicate that the volatility adjustment 

methodology reached better overall results. Hull and White’s proposed volatility adjustment, when 

compared to the Boudoukh et al., (1998) methodology, delivers much better results specifically for the 

1% significance level. 

Continuing in the non-parametric framework, VaR can also be defined as a conditional quantile 

(Xiao et al., 2015). Koenker & Bassett Jr, (1978) introduced an alternative technique for estimating 

VaR known for using quantile regressions. The Quantile Regression (QR) VaR model is comparable to 

the Historical VaR in that it is based on empirical returns instead of assuming a given parametric 

distribution. One of the key advantages of QR VaR is the flexibility it offers in choosing explanatory 

variables, allowing for more fitted and hypothetically more precise risk estimations. Steen et al., (2015) 

assessed the performance of the RM and Historical VaR models versus the QR VaR by working with 

nearly 20 years of daily data for futures contracts of 19 distinct commodities. Their findings side with 

preceding results of other authors regarding the RM model’s performance: it produces reasonable results 

at the 5% significance level for most commodities. However, its performance weakens when tested at 

the 1% significance level. While the Historical VaR outperformed the RM model overall, it was 

nonetheless topped by the QR VaR, which outclassed both models throughout all confidence levels. 

Although the accuracy of QR VaR estimates depend on the configuration of the model it has the 

capability of delivering better results when compared with the RM model. Against the Historical VaR, 

the conclusions are similar with the QR VaR obtaining improved or at least similar estimates. For 

commodities in particular, QR VaR presents itself as a promising model because of its flexibility and 

improved performance. 
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Nevertheless, for two unique portfolios, the same VaR model will produce two completely different 

estimates as investigated by Alexander, (2009). This means that we need to test the performance for 

different models in order to choose the model that fits best our portfolio. That can be achieved through 

a Backtest model using historical data of portfolio returns and VaR estimates for the same period. The 

number of exceedances, a vastly used Backtest performance metric, consists of an event in which the 

VaR estimate is surpassed by the actual loss. In order to test the number of exceedances, we choose the 

UC test (Kupiec, 1995), for the time span under analysis. To make a comprehensive assessment, we also 

use the BCP test (Berkowitz et al., 2011) to check if the observed exceedances (if there is any) are 

autocorrelated. There is, it verifies if the exceedances are independent from each other or if they occur 

in clusters. This metric is important because its by testing the existence of clusters that we can verify the 

model’s ability to adjust for quick variations in market conditions. 

When measuring the VaR of a portfolio, efficient management and finding a good balance between 

returns and risk are two of the main objectives of a risk manager. Whilst EC exceeds VaR, we need to 

adjust the portfolio by using a risk management strategy. As a consequence, the risk profile of our 

portfolio changes alongside with its composition. Therefore, and as explored by Longley-Cook, (1998), 

we should try to achieve the highest return possible for the lowest level of VaR, creating different risk 

profiles along the way. 

With this in mind, a new metric emerges, the RORAC (Matten, 1996). This metric yields the ratio 

between returns and the risk incurred to accomplish them, connecting a non-adjusted return to a risk-

adjusted capital base (Matten, 1996). Hence, we can get a fair assessment regarding the returns of 

portfolios with different risk profiles by using the RORAC. 
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Chapter 3 

DATA 

 
The structure of this portfolio includes a mixture of equities and bonds, with allocations across U.S., 

Canadian, Asian and European markets. Euro (EUR) is defined as the local currency, while the U.S. 

Dollar (USD), Canadian Dollar (CAD), Great British Pound (GBP) and Japanese Yen (JPY), are treated 

as foreign currencies. 

The equity component consists of thirty-three stocks from the U.S., Canadian, Asian and European 

markets. The daily adjusted closing prices were downloaded from yahoo finance1, along with the 

correspondent exchange rates: USD/EUR, CAD/EUR, GBP/EUR and JPY/EUR. 

The fixed income component incorporates three fixed coupon government bonds with different 

maturities, yields and payment dates, and were issued by the U.S., Germany and Netherlands markets. 

The data for the bonds was taken from the Frankfurt Stock Exchange2 and the daily interest rates from 

the Federal Reserve3 for USD and from the European Central Bank (ECB)4 for EUR. In this dissertation 

we work with data between January 3rd of 2007 to February 2nd of 2024. 

Table 1 below has the composition of the portfolio used on this dissertation including the value 

disaggregation of each asset. 

 

 

 

 

 

 

 

 

 
1 https://finance.yahoo.com 
2 https://www.boerse-frankfurt.de/en 
3 https://www.federalreserve.gov/datadownload/Choose.aspx?rel=H15 
4 https://sdw.ecb.europa.eu/browseSelection.do?node=9689726 
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Asset Ticker/ISIN Currency
No. Shares / 
Face Value

Price Value (EUR) Allocation (%)

Microsoft Corporation MSFT USD 4 450 000 239.70 USDEUR 0.9198 981 162 746 € 7.42
Apple Inc. AAPL USD 8 000 000 141.83 USDEUR 0.9198 1 043 698 612 € 7.89
NVIDIA Corporation NVDA USD 6 300 000 191.53 USDEUR 0.9198 1 109 891 817 € 8.39
Amazon.com, Inc. AMZN USD 10 500 000 100.55 USDEUR 0.9198 971 144 105 € 7.35
Alphabet Inc. GOOGL USD 14 000 000 96.94 USDEUR 0.9198 1 248 370 080 € 9.44
UnitedHealth Group Incorporated UNH USD 1 200 000 476.71 USDEUR 0.9198 526 191 417 € 3.98
Mastercard Incorporated MA USD 1 600 000 368.38 USDEUR 0.9198 542 155 762 € 4.10
Salesforce, Inc. CRM USD 1 600 000 164.54 USDEUR 0.9198 242 153 517 € 1.83
Walmart Inc. WMT USD 2 400 000 46.35 USDEUR 0.9198 102 328 759 € 0.77
Thermo Ficher Scientific Inc. TMO USD 300 000 562.41 USDEUR 0.9198 155 199 268 € 1.17
Adobe Inc. ADBE USD 1 100 000 363.42 USDEUR 0.9198 367 717 091 € 2.78
Oracle Corporation ORCL USD 1 300 000 85.76 USDEUR 0.9198 102 545 624 € 0.78
Caterpillar Inc. CAT USD 950 000 255.36 USDEUR 0.9198 223 143 999 € 1.69
S&P Global Inc. SPGI USD 450 000 361.88 USDEUR 0.9198 149 791 231 € 1.13
Booking Holdings Inc. BKNG USD 200 000 2430.76 USDEUR 0.9198 447 181 968 € 3.38
Vertex Pharmaceuticals Incorporated VRTX USD 400 000 319.98 USDEUR 0.9198 117 732 165 € 0.89
Chipotle Mexican Grill, Inc. CMG USD 160 000 1609.86 USDEUR 0.9198 236 930 177 € 1.79
O'Reilly Automotive, Inc. ORLY USD 100 000 789.63 USDEUR 0.9198 72 633 326 € 0.55
The Hershey Company HSY USD 600 000 215.81 USDEUR 0.9198 119 104 818 € 0.90
LVMH Moet Hennesy - Louis Vuitton MC.PA EUR 770 000 786.37 - 1.0000 605 501 936 € 4.58
ASML Holding N.V. ASML EUR 1 300 000 641.46 - 1.0000 833 902 472 € 6.31
Christian Dior SE CDI.PA EUR 70 000 764.54 - 1.0000 53 517 863 € 0.40
Texas Pacific Land Corporation TPL USD 1 000 000 645.78 USDEUR 0.9198 594 018 513 € 4.49
Mitsui O.S.K. Lines, Ltd. 9104.T JPY 5 000 000 2805.89 JPYEUR 0.0071 99 398 623 € 0.75
Netflix, Inc. NFLX USD 850 000 353.11 USDEUR 0.9198 276 083 985 € 2.09
General Electric Company GE USD 1 000 000 64.15 USDEUR 0.9198 59 009 548 € 0.45
Moody's Corporation MCO USD 350 000 309.86 USDEUR 0.9198 99 759 125 € 0.75
Vulcan Materials Company VMC USD 450 000 176.24 USDEUR 0.9198 72 951 203 € 0.55
Shell plc SHEL.L GBP 4 000 000 22.31 GBPEUR 1.1405 101 751 027 € 0.77
Wells Fargo & Company WFC USD 2 500 000 44.32 USDEUR 0.9198 101 912 254 € 0.77
Canadian National Railway Company CNR.TO CAD 2 200 000 153.36 CADEUR 0.6914 233 264 100 € 1.76
McDonald's Corporation MCD USD 500 000 263.39 USDEUR 0.9198 121 140 315 € 0.92
JPMorgan Chase & Co. JPM USD 2 000 000 134.48 USDEUR 0.9198 247 404 228 € 1.87

Total Equity - - 12 258 691 677 € 92.72

German Bond 2033 DE000BU2Z015 EUR 500 000 000 103.48% - 1.0000 517 413 420 € 3.91

Dutch Bond 2030 NL0015001DQ7 USD 200 000 000 101.09% USDEUR 0.9198 202 181 159 € 1.53

U.S. Treasury Bond 2034 US91282CJZ59 EUR 250 000 000 97.28% - 1.0000 243 192 414 € 1.84

Total Bonds - - 962 786 992 € 7.28

Total Portfolio - - 13 221 478 669 € 100.00

Exchange Rate

Table 1. Portfolio composition on 30 January 2023. This table illustrates the assets that compose the portfolio 

used in this dissertation, along with the amount invested in each, converted from USD, GBP, CAD or JPY to EUR 

where appropriate. The correspondent exchange rates for each currency as of 30 January 2023 are 0.9198, 1.1405, 

0.6914 and 0.0071 respectively. Due to rounding, figures may not sum to the total. 
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Chapter 4 

METHODOLOGY 

 
This dissertation objective is to assess and manage the VaR of a portfolio. We will manage the portfolio 

over a one-year period starting from 30 January 2023, ensuring that it does not exceed pre-defined levels 

of Economic Capital and individual risk exposures from the constituents of the portfolio. 

Considering the several VaR Models available, to decide which one to use we measure the 

performance and the accuracy of those VaR models with a process called Backtesting. This can be 

achieved by using historical data and today’s portfolio composition. We will assume that our portfolio 

existed in the past and will compute a historical series of daily VaR estimates from 19 December 2011 

to 27 January 2023. We are going to assess four different models: Parametric Normal VaR 

(RiskMetrics), SGSt VaR, Historical VaR and QR VaR.  Inward these models, we explore several 

assumptions of each one to conclude which one is the better fit to our portfolio. We do that by analyzing 

the results of known statistical tests that measure the performance of the models. Despite their 

differences, all four models share one critical input for their calculations: portfolio volatility. 

After choosing the VaR Model to apply, we measure the VaR of our portfolio for a period of one 

year going forward, through a hedging strategy we manage it according to our pre-defined risk 

boundaries. To evaluate the results of the hedging strategy we compute a performance metric named 

Return on Risk-Adjusted Capital for both portfolios and analyse the results. 

 

4.1. Risk Factor Mapping 

Risk factors are the underlying variables that are responsible for changes in the value of assets within a 

portfolio. The first step in risk analysis is to identify these factors and quantify the portfolio's exposure 

to them. This process, referred to as risk factor mapping, involves assigning each portfolio position to 

its corresponding risk factor exposure. The specific risk factors associated with an asset depend on its 

type, as different asset classes are affected by different variables. 

To estimate VaR in EUR - our local currency - all exposures must be stated in EUR. This requires 

the conversion of all foreign currency exposures at the relevant exchange rate on the backtesting date, 

which in this case is 27 January 2023. In the following subsections, we explain the methodology for 

mapping exposures for each asset class in our portfolio. At the end of this section, Table 2 summarizes 

the exposures to each risk factor resulting from the risk factor mapping process. 
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4.1.1. Bonds 

A bond is a financial instrument that generates a series of cash flows. Its fair value depends on 

discounting these future cash flows back to the present, making the interest rate the predominant risk 

factor. When interest rates rise, the bond value drops, and when interest rates fall, the bond value rises. 

As interest rates fluctuate with market conditions, quantifying the sensitivity of bond positions to 

changes in interest rates is critical to risk measurement and management. 

For a fixed coupon bond, the future cash flows include periodic coupon payments over the bond’s 

lifetime and the final principal repayment at maturity. The coupon payment is calculated as follows: 

 𝐶𝑜𝑢𝑝𝑜𝑛 = 𝑁 ×
𝑐𝑛

𝑛
,                                       (1) 

where N is the monetary amount invested in the bond (face value), 𝑐𝑛 is the annual coupon rate (annual 

interest paid by the bond until the maturity date) and 𝑛 is the coupon frequency (the number of coupon 

payments per year until maturity). 

The final payment at the bond’s maturity consists of the redemption of the face value along with the 

last coupon payment and is given by: 

 𝐶𝑚 = 𝑁 × (1 +
𝑐𝑛

𝑛
)                                       (2) 

 

Let 𝐶𝑇 denote a future cash flow, 𝑇 the time in years from now until the maturity date of the cash 

flow and 𝑟𝑇 the continuously compounding interest rate for the period between now and 𝑇. It follows 

that the present value (𝑃𝑉) of the cash flow 𝐶𝑇 is: 

 

 𝑃𝑉𝐶𝑇 ,𝑟𝑇
= 𝐶𝑇 × 𝑒−𝑟𝑇×𝑇                                          (3) 

The present value of a basis point (PV01) quantifies the sensitivity of a given cash flow’s present 

value to a one basis point decrease in the interest rate 𝑟𝑇. It is approximated using a first-order Taylor 

expansion as: 

 

 𝑃𝑉01𝐶𝑇 ,𝑟𝑇
≈ 

𝜕𝑃𝑉𝐶𝑇,𝑟𝑇

𝜕𝑟𝑇
× (−0.01%)  =

 𝑇 × 𝑃𝑉𝐶𝑇 ,𝑟𝑇
× 0.01%  

 

                     (4) 

where 𝑇 is the maturity of the cash flow. 

Consequently, the first-order approximation of the change in the present value of a cash flow, 

representing its P&L, can be expressed as a function of 𝑃𝑉01 as follows: 
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∆𝑃𝑉𝐶𝑇 ,𝑟𝑇

= − 𝑃𝑉01𝐶𝑇
×

∆𝑟𝑇
0.01%

, 
                            (5) 

where 
∆𝑟𝑇

0.01%
 is the absolute change in interest rate converted to basis points. 

Therefore, for cash flow 𝐶𝑇, its P&L is defined by the sensitivity of the cash flow to a one basis 

point increase in the interest rate (− 𝑃𝑉01𝐶𝑇
) and the actual variation in the interest rate (∆𝑟𝑇). If the 

interest rate increases (positive change), the P&L is negative, while if the interest rate decreases 

(negative change), the P&L is positive. For a bond with 𝑛 cash flows, the total P&L is the sum of the 

individual P&Ls calculated by using Equation 5 for each cash flow. 

However, a bond with 𝑛 cash flows will have 𝑛 different interest rates as risk factors, with each rate 

corresponding to the maturity of a particular cash flow. In a portfolio of many bonds, this can rapidly 

become unmanageable. A further challenge arises when a future cash flow falls on a date for which there 

is no data for the corresponding interest rate 𝑟𝑇. Without an adequate interest rate, it is impossible to 

accurately discount the cash flow to the present and thus calculate its 𝑃𝑉01. 

To address these concerns, and following Alexander, (2008), we adopt a vertex mapping approach. 

This consists of mapping non-standard maturity cash flows to a set of standard maturity interest rates 

for which data is available. In this cash flow mapping process, a vertex refers to a standard maturity for 

which interest rate data exist. The mapping method we use is the PV+PV01 invariant mapping, which 

ensures that both the present value 𝑃𝑉 and 𝑃𝑉01 of the original non-standard maturity cash flow are 

preserved. 

Let 𝑃𝑉𝐶𝑇
 be the present value of the original cash flow with maturity 𝑇 and let 𝑇1 and 𝑇2 be the 

standard maturity vertices immediately below and above 𝑇, respectively, for which interest rate data are 

available. Let 𝑥1 and 𝑥2 denote the proportions of 𝑃𝑉𝐶𝑇
 assigned to vertices 𝑇1 and 𝑇2 respectively. To 

preserve the 𝑃𝑉 of the original cash flow, we apply the following condition: 

 𝑥𝑇1
+ 𝑥𝑇2

= 𝑃𝑉𝐶𝑇
, 

 

                            (6) 

where 𝑥𝑇1
 is the 𝑃𝑉 mapped to vertex 𝑇1 and 𝑥𝑇2

 the 𝑃𝑉 mapped to vertex 𝑇2. 

For 𝑃𝑉01 invariant mapping, the sum of the 𝑃𝑉01 of the mapped cash flows is equal to the 𝑃𝑉01 

of the original cash flow. This ensures that the total 𝑃𝑉01 of the two mapped cash flows is equivalent 

to the 𝑃𝑉01 of the original cash flow after a parallel shift of one basis point5 in the yield curve. To 

maintain the 𝑃𝑉01 of the original cash flow, we apply the following condition: 

 

 𝑇1𝑥𝑇1
+ 𝑇2𝑥𝑇2

= 𝑇 𝑃𝑉𝐶𝑇
                             (7) 

 
5 when the interest rate curve shifts by one basis point it means all spot rates shift by 0.01%. 
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Finally, we preserve the 𝑃𝑉 and 𝑃𝑉01 conditions at the same time by combining equations 6 and 

7. We get the values for 𝑥𝑇1
 and 𝑥𝑇2

 that meet both requirements simultaneously as: 

 

 
𝑥𝑇1

=
𝑇2 − 𝑇1

𝑇2 − 𝑇1
× 𝑃𝑉𝐶𝑇

 
                              (8) 

and 

 
𝑥𝑇2

= 1 −
𝑇2 − 𝑇1

𝑇2 − 𝑇1
× 𝑃𝑉𝐶𝑇

 
                              (9) 

 

We repeat the PV+PV01 mapping for each cash flow and each bond in our portfolio, and in terms 

of exposure, each mapped standard maturity cash flow is sensitive to changes in its corresponding 

standard maturity interest rate, which is given by its 𝑃𝑉01. 

Recalling Equation 5, in the scope of risk factor mapping, each standard maturity interest rate 

(vertex) serves as a risk factor. The exposure to each risk factor is the sum of all 𝑃𝑉01s mapped to that 

maturity multiplied by -1. For bonds in the US market where cash flows are denominated in USD, we 

convert the  −𝑃𝑉01 exposures to EUR using the exchange rate on 27 January 2023. 

 

4.1.2. Equity 

The value of an investment in a stock is dependent on the number of shares held and the stock market 

price. Consequently, the risk factor for any stock in our portfolio is the change in its market price. In 

terms of risk factor mapping, the exposure to the price change of each stock is the amount of capital 

invested in it, and for each stock we obtain the amount of capital invested by multiplying the number of 

shares by the current market price: 

 𝑆𝑖𝑡 = 𝑁𝑖𝑡 × 𝑃𝑖𝑡 × 𝐹 𝑋𝑡                               (10) 

where 𝐹 𝑋𝑡 is the exchange rate on 27 January 2023 used to convert the exposure to local currency. 

 

4.1.3. Currency 

As our local currency is EUR and the portfolio under analysis contains positions in assets from foreign 

markets, these positions are not only exposed to the risk factors of the respective assets, but also to the 

exchange rate between the foreign currency and local currency. In our case, assets denominated in USD, 

JPY and GBP are additionally exposed to the USD/EUR, JPY/EUR, GBP/EUR and CAD/EUR 

exchange rates, respectively. Regarding the mapping, the exposure to each foreign currency is the total 

amount of capital invested in assets, both bonds and equity, denominated in that specific currency 

converted to EUR. Again, we use the exchange rates on 27 January 2023. 
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4.1.4. Portfolio Exposures 

Below, Table 2 shows the risk factors and the corresponding mapped exposures as of 27 January 2023. 

For bonds, the risk factors are the standard maturity interest rates and the exposure to each standard 

maturity interest rate is the sum of all −𝑃𝑉01𝑠 mapped to that maturity. We obtain the −𝑃𝑉01 via 

methodology illustrated in subsection 1.1.. For equities, we compute the exposures presented in the table 

using the methodology described in subsection 1.2. of this chapter. For currency, we get the exposures 

to the USDEUR, JPYEUR, GBPEUR and CADEUR exchange rates by using the methodology 

expressed in subsection 1.3.. 

 

 

Table 2. Risk factor exposures map in EUR on 27 January 2023.

Risk 

Factor

Exposure 

(EUR)

Risk 

Factor

Exposure 

(EUR)

Risk 

Factor

Exposure 

(EUR)

9104.T 99 160 123 € EUR3M 0 € USDEUR 10 767 175 685 €
AAPL 1 062 837 108 € EUR6M -595 € JPYEUR 99 160 123 €
ADBE 374 302 171 € EUR1Y -1 160 € GBPEUR 101 474 523 €
AMZN 985 383 989 € EUR2Y -3 427 € CADEUR 232 933 303 €
ASML 855 804 425 € EUR3Y -7 495 €
BKNG 451 279 888 € EUR5Y -17 440 €
CAT 225 262 007 € EUR7Y -141 305 €
CDI.PA 53 722 390 € EUR10Y -374 943 €
CMG 237 006 190 € EUR15Y -66 239 €
CNR.TO 232 933 303 € EUR20Y 0 €
CRM 241 305 444 € USD3M -205 €
GE 60 633 509 € USD6M -19 €
GOOGL 1 276 964 161 € USD1Y -654 €
HSY 116 494 536 € USD2Y -1 691 €
JPM 248 994 044 € USD3Y -3 643 €
MA 545 254 472 € USD5Y -7 676 €
MC.PA 607 169 579 € USD7Y -12 427 €
MCD 121 585 418 € USD10Y -157 494 €
MCO 101 253 261 € USD20Y -33 913 €
MSFT 1 001 078 848 €
NFLX 281 478 157 €
NVDA 1 177 083 556 €
ORCL 104 250 586 €
ORLY 70 785 693 €
SHEL.L 101 474 523 €
SPGI 152 435 094 €
TMO 157 435 352 €
TPL 610 308 932 €
UNH 525 362 631 €
VMC 72 846 330 €
VRTX 118 023 586 €
WFC 101 323 826 €
WMT 102 939 016 €

Equity Bonds Currency
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4.2. Returns 

For the equities in our portfolio, if the invested capital (𝑀𝑆𝑡𝑜𝑐𝑘) remains unchanged, the P&L is obtained 

from the change in the market price of its risk factor, i.e., the share price, and is given by: 

 

 
𝑃&𝐿𝑆𝑡𝑜𝑐𝑘𝑡

= 𝑀𝑆𝑡𝑜𝑐𝑘 × (
𝑃𝑡

𝑃𝑡−1
− 1) 

 

                        (11) 

When investing in a bond, each cash flow is exposed to a different interest rate and subsequently to 

movements in that interest rate. In our portfolio, on the assumption that the invested capital and −𝑃𝑉01 

values stay unchanged, the total P&L is calculated as the sum of the P&Ls of all the cash flows mapped, 

as shown in equation 5: 

 

 
𝑃&𝐿𝐵𝑜𝑛𝑑𝑠𝑡

= ∑−𝑃𝑉01𝑇𝑖
× (

∆𝑟𝑇𝑖

0.01%
)

𝑛

𝑖=1

 

 

        (12) 

An allocation to an asset valued in a foreign currency implies an exposure not solely to the specific 

risk factor of the asset, but also an indirect exposure to fluctuations in the exchange rate between the 

foreign currency and the local currency. In other words, investing in equities and bonds denominated in 

a foreign currency gives rise to an exchange rate exposure equal to the value of the investment 

(𝑀𝐶𝑢𝑟𝑟𝑒𝑛𝑐𝑦). Since the underlying risk factor is the foreign exchange (FX) rate, the P&L resulting from 

currency exposure is obtained by: 

 

                                 
𝑃&𝐿𝐶𝑢𝑟𝑟𝑒𝑛𝑐𝑦𝑡

= 𝑀𝐶𝑢𝑟𝑟𝑒𝑛𝑐𝑦 × (
𝐹𝑋𝑡

𝐹𝑋𝑡−1
− 1) 

 

  (13) 

Given a series of daily equity prices, spot interest rates and foreign exchange rates, we use the above 

equations together with the mapped exposures to each risk factor as of 27 January 2023 to calculate the 

historical time series of daily P&Ls for the portfolio structure at that date. In vector form, this is denoted 

by: 

 

𝑃&𝐿𝑃𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜𝑡
=

[
 
 
 
 
 
 

𝑀𝑆𝑡𝑜𝑐𝑘𝑖

⋮

−𝑃𝑉01𝑇𝑖

⋮

𝑀𝐶𝑢𝑟𝑟𝑒𝑛𝑐𝑦]
 
 
 
 
 
 
𝑻

×

[
 
 
 
 
 
 
 
 (

𝑃𝑖𝑡

𝑃𝑖𝑡−1

− 1)

⋮
∆𝑟𝑇𝑖

0.01%
⋮

(
𝐹𝑋𝑡

𝐹𝑋𝑡−1
− 1)

]
 
 
 
 
 
 
 
 

 

 

         (14) 

where the first vector transposed is constant and represents the exposure to each risk factor, and the 

second vector reflects the change in the corresponding risk factor. 
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We get the portfolio P&L as a percentage return via: 

 

 
𝑅𝑡(%) = (

𝑃&𝐿𝑃𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜𝑡

𝑃𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜 𝑉𝑎𝑙𝑢𝑒
), 

 

                         (15) 

where the denominator is the portfolio value on 27 January 2023. 

 

4.3. Volatility 

At the beginning of this chapter, we highlighted the two key components required for successful 

backtesting: portfolio returns and portfolio volatility modelling to compute the VaR models under 

assessment. In Section 1, we reviewed the procedure for determining the appropriate risk factors for 

each asset class and the quantification of the portfolio's sensitivity to these risk factors. Having achieved 

this, we have taken the portfolio exposures for the portfolio composition on 27 January 2023 (see Table 

2) and holding them unchanged, we simulated historical returns using equations 14 and 15, we are left 

with a series of historical returns for our portfolio. 

The next step in computing the VaR models is volatility modeling. Volatility, 𝜎, is the standard 

deviation of returns. The straightforward method to estimating it implies selecting a historical sample of 

past returns and computing their standard deviation. This methodology assumes that all observations in 

the sample carry the same weight, regardless of how recent they are. This may be unfitting since σ is 

equally influenced by older observations, which may have less relevance to current market conditions, 

as it is by more recent ones. 

As VaR is a forward-looking measure, data from the distant past may be of reduced relevance. The 

Exponential Weighted Moving Average (EWMA) volatility model deals with this by giving more 

emphasis to more recent observations, which better capture current market conditions. The weighting 

factor, 𝜆, ranges from 0 to 1, with lower values giving more weight to recent data. Whilst the choice of 

𝜆 is subjective, according to the results of the RiskMetrics technical paper produced by J.P. Morgan 

and Reuters, (1996), a 𝜆 of 0.94 proved to be the best overall fit when handling daily returns, so we will 

be using this from now on. 

Based on the historical daily returns, we recursively estimate the variance of the EWMA as follows: 

                                  

𝜎̂𝑡
2 = (1 − 𝜆)𝑟𝑡−1

2 + 𝜆𝜎̂𝑡−1
2  

 

          

          (16) 

where 𝜎̂𝑡
2 is the variance estimated for day 𝑡 on day 𝑡 − 1, 𝑟𝑡−1 is the return observed on day 𝑡 − 1 and 

𝜆 ∈ (0, 1)  is the smoothing factor. 

 

 



 

16 

 

4.4. Value-at-Risk Models 

VaR can be defined as the maximum expected loss over a future time horizon ℎ at a given significance 

level 𝛼. We assume a significance level of 𝛼 = 1, equivalent to a 99% confidence level, and a one-day 

time horizon (ℎ = 1). This implies that, while holding the current portfolio, we are 99% confident that 

the observed loss over the next day will not exceed the estimated VaR. 

Officially, the h-day 100𝛼% VaR (𝑉𝑎𝑅ℎ,𝛼) is defined as the negative α-quantile of the h-day return 

distribution. As Alexander, (2009) states, for any 0 < 𝛼 < 1, the α-quantile of the h-day distribution of 

a continuous random variable 𝑋 is a real number (𝑥𝛼) such that: 

 

                                 𝑃(𝑋 < 𝑥𝛼) = 𝛼, 

 

  (17) 

this means that the probability of observing a loss greater than 𝑥𝛼 is 1 − 𝛼. 

If the distribution function of 𝑋 is defined, then the α-quantile (𝑥𝛼) for any chosen value of 𝛼 is 

denoted by: 

                                 𝑥𝛼 = 𝐹−1(𝛼), 

 

  (18) 

where 𝐹−1 is the inverse cumulative distribution function of 𝑋. 

The α-quantile value reached (𝑥𝛼) is the maximum loss that we expect to be exceeded with 

probability 𝛼. Since VaR is a measure of potential loss, it is conventionally stated in absolute terms as: 

                                 𝑉𝑎𝑅ℎ,𝛼 = − 𝐹−1(𝛼)    (19) 

This safeguards that the VaR value is always positive, illustrating the magnitude of the potential 

loss. The subsequent subsections discuss the methodologies needed to build the four models referred to 

above. 

 

4.4.1. Parametric Normal VaR 

Let 𝑋 denote a continuous random variable which represents portfolio returns. The core assumption of 

the Parametric Normal VaR model is that it assumes returns follow a normal distribution, that is, 𝑋ℎ =

𝑁~(𝜇ℎ , 𝜎ℎ), where 𝜇ℎ and 𝜎ℎ are the estimated mean and standard deviation, correspondingly. 

We take note of Equation 19 and, given that we are working with a normal distribution, it follows 

that: 

                                 𝑉𝑎𝑅ℎ,𝑎 = −ϕ−1(𝛼) × 𝜎ℎ − 𝜇ℎ,          (20) 

where  ϕ−1(𝛼) denotes the α-quantile of the standard normal distribution
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With regards to 𝜇ℎ, Alexander, (2009) implies applying 𝜇ℎ = 0 for small time horizons, and as we 

are working with daily data and, hence daily VaR estimates (ℎ = 1), this happens to be a sensible 

assumption. With this, we adjust the equation above and calculate the h-day 100α% Parametric Normal 

VaR as: 

 𝑉𝑎𝑅ℎ,𝛼 = −ϕ−1(𝛼)  × 𝜎ℎ 

 

                        (21) 

where 𝜎ℎ is estimated using the EWMA volatility model via Equation 16. 

 

4.4.2. Skewed Generalized Student-t VaR 

As previously noted, the distribution of returns on financial assets frequently deviates from the normal 

distribution by displaying thicker tails. As a result, the normal distribution may underestimate the 

probability of sharp negative returns. Therefore, by assuming a normal distribution, there is a significant 

likelihood that VaR will be underestimated at low levels of significance (e.g., 1%). 

The shape of the standardized SGSt distribution (Theodossiou, 1998) seeks to represent the 

deviations from normality and its density function 𝑇0,1,𝜆,𝑝,𝑞 is conditional on the parameters 𝜆, 𝑝 and 

𝑞: 𝜆 ∈ (−1, 1) defines the skewness (if 𝜆 = 0, the distribution is symmetric, if 𝜆 > 0 or 𝜆 < 0, the 

distribution is positively or negatively skewed, respectively), 𝑝 > 0 controls the shape of the central 

region of the distribution and 𝑞 > 0 controls the shape of the tail of the distribution. 

We use maximum likelihood to estimate these parameters so that the resulting SGSt distribution is 

as close as possible to the actual return distribution of our portfolio. To ensure that the model reflects 

current market conditions, we re-estimate the parameters each trading month and compute three different 

SGSt VaR series, each differing in the size of the rolling sample of portfolio returns used for 

parameterization: 250, 600 and 800 daily observations. 

Officially, we compute the h-day 100α% SGSt VaR as: 

 

 𝑉𝑎𝑅ℎ,𝛼 = −𝑇−1
0,1,𝜆,𝑝,𝑞(𝛼) × 𝜎ℎ − 𝜇ℎ 

 

                    (22) 

where 𝑇−1
0,1,𝜆,𝑝,𝑞(𝛼) represents the α-quantile of the standard SGSt distribution. Homogenously to  the 

Paramentric Normal VaR, we adopt 𝜇ℎ = 0 and estimate 𝜎ℎ by the EWMA volatility model and we 

adjust the previous equation to: 

 

 

 

𝑉𝑎𝑅ℎ,𝑎 = −𝑇−1
0,1,𝜆,𝑝,𝑞(α) × 𝜎ℎ 

 

 

 

                    (23) 
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4.4.3. Volatility-Adjusted Historical VaR 

In the RM and SGSt VaR models examined so far, we assume that the portfolio returns comply with a 

specific defined distribution, which may prove to be unrealistic or, as in the case of the SGSt VaR, 

computationally complex. Leaving the parametric world behind, Historical VaR offers a more 

straightforward approach: it uses the empirical distribution of returns directly and relies on the α-quantile 

of this distribution to estimate the VaR. 

We estimate historical VaR by the next steps. First, we select the sample size 𝑛, which defines the 

historical time frame used to estimate VaR. We then calculate the h-day past empirical returns, holding 

constant the current portfolio exposure to the risk factors over the entire sample horizon. This guarantees 

that we are simulating how the current portfolio would have performed in past market conditions. Having 

determined the historical returns, we sort them in ascending order from worst to best. Once sorted, we 

start accumulating probability from the worst return upwards, where each observation has a probability 

of   
1

𝑛
. Finally, the VaR at significance level 𝛼 is given by minus the return with 𝛼 cumulative probability. 

As noted in Chapter 2, the selection of the sample size is critical, as a largest sample size increases 

the diversity of returns, but at the same time, the greater the sample size, the less it reflects current market 

conditions. This is the major problem with simple historical VaR, as each observation has the same 

weight, so the current volatility of returns has the same impact as the volatility of the oldest returns in 

the sample. The volatility-adjusted historical VaR proposed by Hull & White, (1998) attempts to 

overcome this shortcoming by adjusting the volatility of the entire series of returns, while still giving 

each observation the same weight. In this way, the entire sample mirrors current market conditions. To 

do this, we first get a series of volatility estimates 𝜎̂𝑡 and then adjust the series of returns as: 

 

 𝑟̂𝑡 =
𝑟𝑡
𝜎̂𝑡

𝜎̂𝑇 ,                    (24) 

 

where  𝑟̂𝑡 is the adjusted return, 𝑇 is the VaR date and  𝑡 < 𝑇. We classify this model as the T volatility-

adjusted Historical VaR. 

Bearing in mind the relevance of sample size for historical VaR, we compute three different VaR 

series where the only two distinctions between them are the sample size of the volatility-adjusted returns 

and if the volatility adjustment is performed or not. These variants use 250, 750 and 1000 daily 

observations, enabling us to analyze how the selection of sample size impacts the VaR estimates and 

their sensitivity to market conditions over different time horizons. 

Officially, we compute the h-day 100α% volatility-adjusted Historical VaR as minus the α-quantile 

of the sample of volatility-adjusted returns. 



 

19 

 

4.4.4. Quantile Regression VaR 

The Quantile Regression VaR is an advanced risk assessment model that estimates potential portfolio 

losses under different scenarios, focusing on specific quantiles of the return distribution (Koenker & 

Bassett Jr, 1978). 

This VaR model uses quantile regression to estimate conditional percentiles of the return 

distribution, based on explanatory variables like volatility or economic conditions (Steen et al., 2015). 

Unlike ordinary least squares (OLS), which minimizes the sum of squared residuals to capture the 

average relationship between predictors and response, quantile regression focuses on specific percentiles 

by minimizing a weighted sum of residuals—using different weights depending on whether observations 

fall above or below the target quantile. 

The α-quantile is the value below which a part of alpha of the distribution falls. The quantile 

regression achieves this by minimizing the asymmetric loss function: 

 

 𝑞̂𝛼 = arg min
𝑞𝛼

∑ 𝛼(𝑦𝑖 − 𝑞𝛼)𝑛
𝑖=1 𝐼𝑦𝑖−𝑞𝛼>0 + (𝛼 − 1)(𝑦𝑖 − 𝑞𝛼)𝐼𝑦𝑖−𝑞𝛼<0, 

 

              (25) 

where 𝛼(𝑦𝑖 − 𝑞𝛼)𝐼𝑦𝑖−𝑞𝛼>0 are the observations above the quantile, 𝛼(𝑦𝑖 − 𝑞𝛼)𝐼𝑦𝑖−𝑞𝛼<0 are the 

observations below the quantile and 𝐼𝑦𝑖−𝑞𝛼<0 is an indicator function that takes the value 1 if 𝑦𝑖 < 𝑞𝛼 

and 0 else. Similarly, 𝐼𝑦𝑖−𝑞𝛼>0 takes a value of 1 if 𝑦𝑖 > 𝑞𝛼 and 0 else. 

For a quantile regression model on a portfolio’s returns, if 𝑦 represents the portfolio returns and 𝑥 

an explanatory variable, in this case the volatility, the quantile regression model becomes: 

where 𝛼 and 𝑏 are parameters estimated by minimizing the quantile-specific loss function. The estimated 

quantile regression equation for a quantile 𝑞𝛼,𝑦 is: 

 

Hence, the α-QR VaR can be calculated as: 

 

 

 

 

𝑉𝑎𝑅ℎ,𝑎 = −𝑞𝛼,𝑦 = −(𝑎̂ + 𝑏̂𝑥)                    (28) 

 𝑦 = 𝛼 + 𝑏𝑥 + 𝜀,                    (26) 

 𝑞𝛼,𝑦 = 𝛼̂ + 𝑏̂𝑥                    (27) 
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1 Parametric Normal VaR
2 SGSt with a rolling sample of 250 observations
3 SGSt with a rolling sample of 600 observations
4 SGSt with a rolling sample of 800 observations
5 Historical with a rolling sample of 250 observations & without Volatility Adjustment
6 Historical with a rolling sample of 750 observations & with Volatility Adjustment
7 Historical with a rolling sample of 1000 observations & without Volatility Adjustment
8 QR with a rolling sample of 1000 observations, with constant & 2 explanatory variables
9 QR with a rolling sample of 1000 observations, with constant & 1 explanatory variables

10 QR with a rolling sample of 1000 observations, without constant & 1 explanatory variables

Model ID Description

Table 3. Model numbers and respective description. With the exception of model 8 that has two 

explanatory variables and for that reason has two 𝜆, that is 𝜆 = 0.94 for variable 1 and 𝜆 = 0.85 for 

variable 2, the remaining models considered use a EWMA volatility model with 𝜆 = 0.94 for each 

volatility estimates. The rolling samples on the SGSt and QR models are the sample of returns used to 

estimate the models’ parameters. 



 

21 

 

Chapter 5  

BACKTEST AND MODEL SELECTION 

 
On Chapter 4 we explained the methods utilized to estimate all the models considered for use in our 

portfolio. In total, we calculated 10 different models with diverse settings and for each we obtained a 

time series of daily historical VaR estimates over 11 years, between 19 December 2011 and 27 January 

2023. We refer to this test period as the global period. The next step is to evaluate the performance of 

each model and select the best one to use for the next year. 

The key performance metric considered for this purpose is the number of exceedances, and since 

we are working with daily data, we identify an exceedance as an occurrence where the actual return for 

the day is worse than the VaR estimate for that same day. To assess these exceedances, we use two 

inference tests: the UC (Kupiec, 1995) and the BCP (Berkowitz et al., 2011), where the former measures 

the number of exceedances and the latter assesses the autocorrelation between exceedances. 

While both tests evaluate model performance from distinct standpoints, our main decision criterion 

is the UC test results. The BCP test is used as a secondary measure to distinguish between models with 

similar UC test performance. We took this approach because a model with a low number of exceedances 

might still fail the BCP test if those exceedances are clustered or occur over a short period of time, 

depending on the test lag. Inversely, a model with a higher number of exceedances may be able to pass 

the BCP test if those exceedances are more widespread over time. 

We perform the UC and BCP tests not only over the entire global period, but also, where relevant, 

for each individual year within that period. Evaluating model performance over specific time periods 

allows us to analyze how a model behaves under certain market conditions or to predict its performance 

if similar conditions occur in the future. Nevertheless, our final decision is based predominantly on the 

results for the global period, as this provides a more uniform and complete picture.  

With this in mind, we have tried to optimize the settings of each model to maximize the results of 

the UC for the global period. 

 

5.1. Unconditional Coverage Test 

The UC test is well specified if the number of exceedances is within the significance level α of the VaR 

model (Alexander, 2009). If we recall VaR’s definition, there is an α probability that the loss will be 

worse than the VaR. Since we are estimating the VaR at the 99% confidence level (𝛼 = 1%), we expect 

a number of exceedances of 1% the sample used to compute the VaR (𝑒𝑥. 500 observations × 1% =

5 expected exceedances).
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Officially, for a sample of n observations, we specify an exceedance for each observation via an 

indicator function as: 

 
𝐼𝛼,𝑡 = {

1, 𝑖𝑓 𝑟𝑡  <  −𝑉𝑎𝑅1,𝛼,𝑡

0, otherwise 
, 

                   (29) 

 

where 𝑟𝑡 is the return at day 𝑡 and 𝑉𝑎𝑅1,𝛼,𝑡 is the VaR estimated at day 𝑡. We are thus left with a series 

of n observations, each of which is either 1 or 0, dependent on the indicator function above. 

Specifically, we test whether the null hypothesis that the indicator function, that is assumed to 

conform to an i.i.d. Bernoulli process, has a probability equal to α of the VaR model (Alexander, 2009). 

The formulation of the null and alternative hypotheses for the UC test is as follows: 

 

 𝐻0 ∶  𝜋𝑜𝑏𝑠 ≡ 𝜋𝑒𝑥𝑝 ≡ 𝛼

𝐻1 ∶  𝜋𝑜𝑏𝑠 ≠ 𝜋𝑒𝑥𝑝,
 

                   (30) 

 

where 𝜋𝑜𝑏𝑠 and 𝜋𝑒𝑥𝑝 are the observed and expected exceedance rates, correspondingly. 

 The test statistic is defined as: 

 
𝐿𝑅𝑈𝐶  =  (

𝜋𝑒𝑥𝑝 

𝜋𝑜𝑏𝑠
)
𝑛1

(
1 − 𝜋𝑒𝑥𝑝 

1 − 𝜋𝑜𝑏𝑠
)
𝑛0

, 
                (31) 

where 𝑛1 and 𝑛0 = 𝑛 − 𝑛1 are the number of exceedances and non-exceedances. 

This test under the null hypothesis follows a chi-squared distribution with one degree of freedom: 

−2 ln(𝐿 𝑅𝑈𝐶)~𝑋1
2. 

 

5.2. BCP Test 

The BCP test is well specified when the exceedances are independent from each other (Berkowitz et al., 

2011), this means that we are unable to predict when the following exceedance will occur by looking at 

an exceedance that has previously incurred. That is, for all lags, autocorrelation must be 0. The BCP is 

useful when, for instance, we estimate VaR on a daily basis and have an exceedance during a period 

where we observe a spike on market volatility. This event might lead to further exceedances over the 

next trading days, a so-called exceedance clustering, and suggest that the model is not fast enough in 

adapting to recent volatility increases. The BCP test signals this type of market events. 

The formulation of the null and alternative hypotheses for the BCP test is as follows: 

 

 𝐻0: 𝜌̂𝑘  =  0, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑘 ∈  {1, . . . , 𝐾}

𝐻1: ∃𝑘 ∈ {1, . . . , 𝐾} 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝜌̂𝑘 ≠ 0,
 

                   (32) 
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where 𝜌̂𝑘 is the lag k autocorrelation of the series of n observations where each observation is either 1 

or 0, specified by the indicator function of the UC test and 𝐾 is the maximum autocorrelation lag 

accounted for in the test. 

The test statistic is defined as: 

 

𝐵𝐶𝑃 (𝐾) =  𝑛(𝑛 + 2) ∑
𝜌̂𝑘

2

𝑛 −  𝑘
,

𝐾

𝑘=1

 

                (33) 

where n is the sample size of the test. 

This test under the null hypothesis follows a chi-squared distribution with 𝐾 degrees of freedom: 

𝐵𝐶𝑃 (𝐾)~𝑋𝐾
2 . We have the freedom to pick the lag 𝐾, but it is essential to understand the implications 

of opting for a larger or smaller 𝐾. A larger 𝐾 gives information about higher order autocorrelations. 

Nevertheless, because the test statistic under the null hypothesis follows a chi-squared distribution with 

𝐾 degrees of freedom, an increase in 𝐾 leads to an upward shift in the critical value, which makes it 

more difficult to reject the null hypothesis. By contrast, choosing a smaller 𝐾 increases the sensitivity 

of the test, but ignores autocorrelations for lags larger than 𝐾. Recognizing these tradeoffs, we compute 

the BCP test for 𝐾 = 1 up to 𝐾 = 10, which allows us to detect autocorrelations up to the 10th lag while 

preserving an acceptable level of sensitivity. 

 

5.3. Backtest Results 

In this section we evaluate the performance of each model for the global period of 11 years from 19 

December 2011 and 27 January 2023 and sub-periods when relevant, using the UC and BCP tests 

described earlier and considering the different characteristics of each model mentioned on Chapter 4. 

With this, we will conclude which model to use for our current portfolio composition. 

For the chosen global period we have 𝑛 = 2900 observations, which means that for a VaR model 

with a significance level of 𝛼 = 1%, we expect 2900 × 1% = 29 exceedances. In statistics, normally 

we reject the null hypothesis when the p-value is below 5%, with that, both the UC and BCP tests are 

accepted when the null hypothesis is not rejected, that is, when the p-value is above 5%. 
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Table 4 presents the results of the UC test for each model considered for the global period. 

 

 

Table 4. UC Test results for each model. The bold models pass the test (p-value > 5%). 

 
Through Table 4, we can, not surprisingly, reject the Parametric Normal model. Its wrong 

assumption of a normal distribution of returns is the reason for the high number of exceedances. The 

UC Test also rejects Model 2, which assumes a T-distribution with a rolling window of only 250 

observations, and Model 6, which uses the historical empirical distribution with the volatility adjustment 

with a rolling window of 750 observations. 

Looking at the other models, we can see that Model 9 (QR VaR with constant and 1 explanatory 

variable) clearly outperforms the others, by presenting a similar number of exceedances to the predicted 

ones and lower than the other models. 

We are now going to confirm the choice of model by looking at the results of the BCP test: 

 

 

 

Table 5. BCP Test Results. The bold value has a p-value superior to 5% and indicates which model passes the 

BCP Test. 

 

By looking at Table 5, we can clearly see that all models performed poorly, except for Model 8 that 

managed to pass the test from Lag 5 to Lag 9. With this, we feel that, to make the best decision, we need 

to analyze the results of each sub-period of the UC Test. 

 

No. of Exceedances Exc. Rate (%) p-value (%)

Parametric Normal 1 59 2.03% 0.00%
2 71 2.45% 0.00%
3 33 1.14% 46.51%
4 33 1.14% 46.51%
5 35 1.21% 27.81%
6 54 1.86% 0.00%
7 34 1.17% 36.37%
8 37 1.28% 15.22%
9 28 0.97% 85.11%

10 34 1.17% 36.37%

SGSt

Historical

Quantile 
Regression

Global Period
Model Model ID

Lag 1 Lag 2 Lag 3 Lag 4 Lag 5 Lag 6 Lag 7 Lag 8 Lag 9 Lag 10
3 0.00% 0.00% 0.02% 0.03% 0.06% 0.09% 0.16% 0.28% 0.35% 0.04%
4 0.00% 0.00% 0.02% 0.04% 0.08% 0.12% 0.21% 0.36% 0.45% 0.06%
5 0.01% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
7 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
8 0.34% 0.68% 1.61% 3.08% 5.15% 5.42% 7.94% 7.94% 7.88% 0.74%
9 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

10 0.00% 0.01% 0.03% 0.06% 0.12% 0.23% 0.39% 0.64% 0.81% 0.13%

p-value (%)
Model Model ID

SGSt

Historical

Quantile 
Regression
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As we can clearly see in Table 6, the different models exhibit similar behavior, but there is an 

outperformance of consistency over the different time periods by Model 10, being the only one that 

successfully passes the UC test for all periods. Therefore, Model 10 (QR VaR with a rolling sample of 

1000 observations, without constant and 1 explanatory variable) is the VaR Model chosen for our 

portfolio. 

 

 

 

 

 

 

 

 

 

 

 

 

Exc. p-value Exc. p-value Exc. p-value Exc. p-value Exc. p-value Exc. p-value

3 0.4% 25.4% 1.2% 80.8% 1.9% 18.4% 1.2% 80.8% 1.5% 41.9% 0.8% 69.7%
4 0.4% 25.4% 1.2% 80.8% 1.9% 18.4% 1.2% 80.8% 1.9% 18.4% 0.8% 69.7%
5 2.7% 2.3% 0.4% 25.4% 1.9% 18.4% 0.0% 2.2% 2.3% 7.0% 0.8% 69.7%
7 1.2% 80.8% 0.0% 2.2% 3.5% 0.2% 0.4% 25.4% 3.1% 0.7% 0.8% 69.7%
8 0.8% 69.7% 0.4% 25.4% 2.3% 7.0% 0.4% 25.4% 2.3% 7.0% 0.4% 25.4%
9 0.4% 25.4% 0.0% 2.2% 1.5% 41.9% 0.8% 69.7% 2.7% 2.3% 0.8% 69.7%

10 0.4% 25.4% 0.8% 69.7% 1.5% 41.9% 1.2% 80.8% 1.5% 41.9% 0.8% 69.7%

Exc. p-value Exc. p-value Exc. p-value Exc. p-value Exc. p-value
3 0.8% 69.7% 1.9% 18.4% 1.9% 18.4% 1.2% 80.8% 0.0% 2.2%
4 0.8% 69.7% 1.9% 18.4% 1.2% 80.8% 1.5% 41.9% 0.0% 2.2%
5 0.4% 25.4% 1.5% 41.9% 1.9% 18.4% 1.2% 80.8% 0.4% 25.4%
7 0.8% 69.7% 3.1% 0.7% 0.4% 25.4% 0.0% 2.2% 0.0% 2.2%
8 0.8% 69.7% 2.7% 2.3% 1.2% 80.8% 0.8% 69.7% 0.0% 2.2%
9 0.8% 69.7% 1.9% 18.4% 1.5% 41.9% 0.4% 25.4% 0.0% 2.2%

10 0.8% 69.7% 1.9% 18.4% 1.9% 18.4% 1.5% 41.9% 0.8% 69.7%

2018-20172022-2021 2021-2020 2020-2019 2019-2018

Model ID
2013-2012

Model ID
2023-2022

2017-2016 2016-2015 2015-2014 2014-2013

Table 6. UC test results for each annual sub-period. The bold entries in the dates column indicate the 

tests that pass that specific sub-period, while the bold entries in the models column indicate the tests that 

pass all of the sub-periods considered. 
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On Figure 1 we can observe the daily VaR estimates for model 10 compared to the portfolio’s daily 

P&L for the global period of Backtest. 

 

 

Figure 1. QR VaR Backtesting Performance. The red dots correspond to the exceedances of the model across 

the global period of backtesting. 

 
We can conclude that overall, the exceedances are decently spread across the observations apart 

from the last quarter of 2014, the first quarter of 2018 and the third quarter of 2021 where the model 

underperforms with several exceedances happening within a low number of days. On Table 7 we can 

get a more detailed overview of the exceedances of the backtesting period. 

 

 

 

 

 

 

 

 

 

 

-2 500.00 €

-2 000.00 €

-1 500.00 €

-1 000.00 €

-500.00 €

0.00 €

500.00 €

1 000.00 €

1 500.00 €

2011-12-19 2013-12-19 2015-12-19 2017-12-19 2019-12-19 2021-12-19

V
a

lu
e 

in
 E

u
ro

s

M
ill

io
ns

P&L Total QR VaR Exceedance



 

27 

 

Table 7. QR VaR (Model 10) backtesting period exceedance details. 

 
We can observe that in 2014, 2015 and 2018 several exceedances occur within only a few days of 

distance, which is captured by the BCP test. 

 

 

 

 

 

 

 

 

2022-09-13 -552 002 198 € -721 367 099 € -169 364 901 € 30.68%

2021-09-28 -337 288 709 € -347 881 579 € -10 592 870 € 3.14%

2021-02-25 -419 414 953 € -422 738 934 € -3 323 980 € 0.79%
2021-01-27 -372 848 420 € -375 612 590 € -2 764 170 € 0.74%

2020-06-11 -605 966 863 € -715 587 303 € -109 620 440 € 18.09%

2020-03-09 -961 959 599 € -1 165 218 939 € -203 259 340 € 21.13%
2020-02-24 -379 919 053 € -593 806 062 € -213 887 009 € 56.30%

2020-01-27 -216 591 191 € -265 946 349 € -49 355 158 € 22.79%

2019-08-05 -316 013 375 € -474 990 989 € -158 977 613 € 50.31%

2019-05-13 -322 178 540 € -425 542 992 € -103 364 451 € 32.08%

2018-10-24 -554 932 948 € -597 300 648 € -42 367 700 € 7.63%

2018-10-10 -306 570 486 € -649 367 920 € -342 797 434 € 111.82%

2018-06-25 -328 619 570 € -369 768 605 € -41 149 035 € 12.52%

2018-02-05 -397 160 642 € -458 861 883 € -61 701 241 € 15.54%
2018-02-02 -292 560 190 € -358 658 372 € -66 098 182 € 22.59%

2017-05-17 -251 559 035 € -457 662 471 € -206 103 436 € 81.93%

2016-09-09 -218 900 712 € -390 976 716 € -172 076 004 € 78.61%

2016-06-24 -251 833 805 € -529 410 429 € -277 576 624 € 110.22%

2016-02-05 -485 639 886 € -597 204 936 € -111 565 050 € 22.97%

2016-01-07 -296 871 848 € -356 718 917 € -59 847 068 € 20.16%
2015-08-24 -515 568 759 € -615 105 367 € -99 536 608 € 19.31%

2015-08-21 -387 697 356 € -565 096 559 € -177 399 204 € 45.76%
2015-08-20 -291 659 970 € -429 578 679 € -137 918 708 € 47.29%

2014-12-10 -272 504 554 € -322 113 192 € -49 608 638 € 18.20%
2014-10-07 -243 913 172 € -347 955 137 € -104 041 965 € 42.66%

2014-07-31 -238 911 479 € -249 601 003 € -10 689 523 € 4.47%

2014-07-25 -201 536 000 € -214 827 858 € -13 291 858 € 6.60%

2014-04-10 -286 794 081 € -330 487 539 € -43 693 458 € 15.24%

2014-01-24 -218 039 597 € -357 995 204 € -139 955 607 € 64.19%

2014-01-13 -172 227 636 € -193 152 577 € -20 924 941 € 12.15%

2013-11-07 -248 245 759 € -260 677 700 € -12 431 941 € 5.01%

2013-08-27 -224 786 815 € -226 882 967 € -2 096 151 € 0.93%

2012-11-07 -283 760 260 € -287 500 983 € -3 740 723 € 1.32%
2012-06-01 -330 704 978 € -335 301 853 € -4 596 875 € 1.39%

Date of 
Exceedance

Exceedance (% of 
VaR)

VaR € P&L € Exceedance €
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Chapter 6   

VALUE-AT-RISK MANAGEMENT 

 
Risk managers define EC as the portion of capital exposed to potential loss based on the portfolio’s 

behavior over a specific time frame and confidence level. Since VaR quantifies this exposure, EC and 

VaR hold the same numerical value. By setting a target EC for the portfolio, firms can proactively shape 

their risk management strategies around that benchmark. 

Going forward we measure the VaR with model 10 chosen in Chapter 5 that is: QR VaR with a 

rolling sample of 1000 observations, without constant and 1 explanatory variable (EWMA with 𝜆 =

0.94). Considering the latest 10 observations before 30 January 2023 the VaR estimates were in the 

range between €500 million and €600 million, so, if we consider a daily EC below €525 million, it 

corresponds to 3.91% of the initial portfolio value which will be the percentage of VaR of the total 

portfolio that we will aim for. Additionally, since we actively manage our portfolio, we also impose 

limits of contribution to the VaR estimate of 12.5% per asset and 10.5% of currency risk. 

In order to comply with the EC target we adopt the following procedure: each day, just before 

markets close, we assess the portfolio’s current composition to estimate the next day’s VaR. If this 

estimate exceeds 3.91% of portfolio value, we immediately adjust the portfolio using a predefined 

strategy to bring the new VaR below the threshold. We repeat this process daily from 30 January 2023 

through 2 February 2024, continuously monitoring and modifying the portfolio to maintain risk within 

the set limit. 

When it comes to the individual risk limits, using the Marginal VaR, which is the decomposition of 

the VaR into individual contributions, we can verify if the violation is from currency risk, if so, we adopt 

a hedging strategy. If the issue comes from an individual asset, we rebalance our portfolio by selling a 

percentage of that asset and investing the same amount into another asset. Both strategies decrease the 

total risk of the portfolio, reducing the VaR estimation. 

Section 1 presents the marginal VaR decomposition methodology. 

 

6.1. VaR Decomposition and Management Strategy 

We define the gradient vector ∇ to capture how the portfolio’s VaR responds to small shifts in each of 

the n risk factor exposures, starting from their current values, denoted by Θ. The decomposition vector 

𝑆 reflects the portfolio’s present exposure to each individual risk factor 𝜃𝑖 tailored to the decomposition 

method we’ve chosen. To calculate the first sensitivity in ∇, we introduce a small perturbation 𝜀 (e.g. 

€1). We then slightly adjust only the first risk factor exposure 𝜃𝑖 by 𝜀 as follows:
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Θ1 =

[
 
 
 
 
 
𝜃1 + 𝜀

𝜃2

⋮

𝜃𝑛 ]
 
 
 
 
 

 , 

 

         (34) 

with this we generate the return time series for the perturbed portfolio Θ1, which reflects the 𝜀-adjusted 

exposure to the first risk factor. We then compute the new VaR, denoted 𝑉𝑎𝑅Θ1
. The first sensitivity 

component in the gradient vector ∇ is calculated as:  
𝑉𝑎𝑅Θ1−𝑉𝑎𝑅Θ

𝜀
. We repeat this procedure for each 

exposure Θ𝑖 perturbing one factor at a time until we derive the full set of sensitivities across all n risk 

factors. 

Finally, we obtain the marginal VaR as: 

 

 𝑀𝑎𝑟𝑔𝑖𝑛𝑎𝑙𝑉𝑎𝑅 = 𝑆𝑇∇ 

 

 (35) 

The decomposition done is up to the analyst and in our case, we will first decompose the VaR 

estimate by asset class. 

 

 

Table 8. VaR decomposition by asset class. This table illustrates each asset class contribution to the VaR 

estimate for 2 February 2024. 

 
We observe that equity exposure is the main contributor to a higher VaR which is in line with the 

portfolio composition showcased before. With this, and since we have individual limits, we will 

disaggregate the contribution of each asset for the total VaR and the currency risk factor. 

 

 

 

 

 

 

 

 

Equity Bonds

VaR (%) 2.57 0.00 2.57

VaR (EUR) 507 961 442 242 969 508 204 411

VaR Decomposition (%) 99.95 0.05 100.00

Description
Asset Class

Total
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Table 9. VaR decomposition by asset and currency risk factor. This table illustrates each individual asset 

contribution and the currency risk factor contribution to the VaR estimate for 2 February 2024. 

 
Given the above, we can conclude that, although the VaR limit is not exceeded, we have breaches 

of individual contributions on NVDA and GOOGL. We will tackle this issue by rebalancing the 

portfolio, that is, by selling a certain number of shares of those companies and reinvesting that amount 

in different assets. If the currency limit is also breached, we can solve both problems with two trades if 

MSFT 41 969 154 8.26%

AAPL 27 917 364 5.49%

NVDA 155 784 854 30.65%

AMZN 46 811 015 9.21%

GOOGL 70 115 097 13.80%

UNH -4 846 388 -0.95%

MA 9 447 789 1.86%
CRM 11 704 732 2.30%

WMT 1 331 650 0.26%

TMO 4 065 095 0.80%

ADBE 18 648 729 3.67%

ORCL 3 711 451 0.73%

CAT 5 919 361 1.16%
SPGI 3 164 310 0.62%

BKNG 13 854 574 2.73%
VRTX 1 693 853 0.33%

CMG 6 590 711 1.30%
ORLY 1 669 366 0.33%

HSY 1 683 113 0.33%

MC.PA 9 099 405 1.79%

ASML 42 456 295 8.35%

CDI.PA 875 730 0.17%

TPL 5 284 686 1.04%

9104.T 477 814 0.09%

NFLX 13 806 109 2.72%

GE 1 776 609 0.35%
MCO 2 391 888 0.47%
VMC 2 006 369 0.39%
SHEL.L 935 930 0.18%
WFC 987 162 0.19%
CNR.TO 1 793 293 0.35%
MCD 1 981 958 0.39%
JPM 2 852 364 0.56%

NL0015001DQ7 -132 804 -0.03%
US91282CJZ59 958 965 0.19%
DE000BU2Z015 -583 192 -0.11%

Currency 47 450 837 9.34%

Total (excl currency) 508 204 411 100%

Asset
Contribution 

(EUR)
Contribution %
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we reinvest in an asset quoted in EUR. This way we reduce both the individual exposure to those 

companies and currency risk. 

 On the other hand, if we only have a non-compliant exposure to currency risk, we will add short 

positions on FX futures contracts to hedge and bring both the portfolio risk and currency risk down. 

 Finally, whenever the VaR estimate for the next trading day is above €525 million (or 3.91% of the 

total portfolio value) we can use both strategies defined above depending on the size of the exceedance. 

Both options are managed and adjusted daily so that, if a short position is not needed, we will remove 

it. We repeat this process daily until 2 February 2024. 

 

6.2. VaR Management 

For evaluation reasons, we define the portfolio with the hedging strategy implemented as Hedged 

Portfolio and the same portfolio without the strategy as Unhedged Portfolio. 

 Figure 2 below illustrates the daily VaR estimates for both the Unhedged and Hedged portfolios 

for estimation period. 

 

 

Figure 2. Daily VaR estimates in euros for both portfolios. 
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In Figure 3 below we can observe the hedging positions we took throughout the year to reduce FX 

risk. 

 

 

Figure 3. Currency risk hedging positions 

 

 
Figure 4 below displays the maximum daily Marginal VaR from all risk factors across the 

estimation period. 

 

 

Figure 4. Maximum daily Marginal VaR as a percentage of the Total VaR for both portfolios across the estimation 

period. 
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Table 10 illustrates the rebalancing trades of the Hedged portfolio during the period. 

 

 

Table 10. Rebalancing trades. 

We observe from Figures 2 and 3 and from Table 10 that whenever the VaR exceeds the target of 

€525 million, a short position on the pair EUR/USD is opened or a portfolio rebalancing is done. Due 

to this combined strategy, the VaR of the Hedged portfolio is kept at a maximum of €525 million and 

the individual contributions to the VaR inside the pre-established boundaries of 12.5% per stock and 

10.5% of currency risk. 

From Figure 4 we can conclude that the combined strategy was clearly successful in reducing the 

individual risk contributions of each risk factor and maintaining the values inside the boundaries. 

Figure 5 below presents the daily P&L for both portfolios for the one year period. Figures 6 and 7 

illustrate the Unhedged and Hedged VaR (as a loss) performance for the period. 

 

 

 

Date Ticker
Trade 
Signal

No. of 
Shares

New 
Positions

Trade 
Signal

No. of 
Shares

ORCL 1 300 000
VRTX 400 000
GE 1 000 000
MCD 500 000
SHEL.L 6 388 334
WFC 3 217 562
MCO 451 160
VMC 627 765

GOOGL -2 677 117 MC.PA 1 057 308
MSFT -1 155 930 MA 1 858 339
AMZN -2 559 625 CDI.PA 364 813

NVIDIA -592 566 WMT 6 837 054
9-Feb GOOGL Sell -2 137 454 AMZN Buy 9 784 360

24-Feb NVDA Sell -568 472 MSFT Buy 3 767 964
27-Apr AMZN Sell -1 877 204 ADBE Buy 2 000 724
28-Apr MSFT Sell -193 594 VRTX Buy 934 128
8-May AAPL Sell -1 178 257 GE Buy 5 011 855

26-May NVDA Sell -1 082 605 GOOGL Buy 10 007 512
29-May ASML Sell -76 859 ORCL Buy 3 255 820
27-Jul MSFT Sell -172 178 AMZN Buy 8 275 907
31-Jul MSFT Sell -189 597 CRM Buy 1 834 400
7-Aug AMZN Sell -1 969 989 ORCL Buy 5 280 653
3-Oct GOOGL Sell -1 843 693 CMG Buy 278 689

26-Oct GOOGL Sell -1 261 303 GE Buy 6 606 163
25-Jan ASML Sell -436 612 GE Buy 9 626 106

Sell Buy-2 946 932

Sell

Sell

-2 054 526 Buy

Buy

30-Jan NVDA

1-Feb GOOGL

3-Feb
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Figure 5. Daily P&L of both portfolios for the one year period. 

 

 

Figure 6. VaR Performance for the Unhedged portfolio. 

 

 
Figure 7. VaR Performance for the Hedged portfolio. 
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We observe from Figure 5 that the Unhedged portfolio has more volatility on its daily P&Ls than 

the Hedged Portfolio (see Appendix B for the 22-day rolling volatility process plot). This discrepancy 

is more obvious for periods with larger short positions or portfolio rebalancing, for instance between 

April 2023 and July 2023. 

From Figures 6 and 7 we can conclude that, for the estimation period, both Unhedged and Hedged 

VaR models did not have any exceedance, indicating that model was effective in capturing the risk of 

both portfolios. 

Figure 8 below shows the daily cumulative P&L for both portfolios for the one year period. 

 

 

Figure 8. Cumulative P&L of both portfolios. 

 

We can see from Figure 8 that both portfolios return a profit for the year. However, the profit for 

the Unhedged was higher than the Hedged. This can be explained by the reduction of exposure to certain 

assets on the Hedged portfolio through the portfolio rebalancing to comply with the individual exposure 

limits and increase diversification. This indicates that, for the bull market in question, the Unhedged 

portfolio has a higher profit than the Hedged portfolio, although it has a higher risk profile. 

Table 11 below illustrates the returns for both portfolios. 

 

 

Table 11. Returns in euros and in % for both portfolios. 

 
We can conclude that the Hedged portfolio underperformed the Unhedged portfolio as previously 

shown by Table 11. Nevertheless, both annualized volatility and max drawdown (see Appendix B.1.) 
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illustrate that both portfolios have different risk profiles with the Unhedged portfolio being riskier than 

the Hedged portfolio, as it should. This states the necessity for a risk-adjusted performance metric to 

make this comparison fair. 

The RORAC (Matten, 1996) compares the performance with the risk incurred to attain it. We 

compute the RORAC as: 

 
𝑅𝑂𝑅𝐴𝐶 =

𝑃&𝐿

𝐸𝐶
 , 

 

        (36) 

where P&L is the P&L for the estimation period, in our case, one year, and EC is the sum of the daily 

EC (measured by the VaR) throughout the year. 

Table 12 below shows the RORAC for the estimation year for both Unhedged and Hedged 

portfolios. 

 

Table 12. RORAC for the one year period. 

 

We can conclude that the Unhedged portfolio, although it has a riskier profile, proved to be more 

efficient than the Hedged portfolio due to the bullish market conditions during the estimation period, 

presenting a difference in performance of 0.92% against the latter. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Unhedged Hedged

P&L (€M) 6 324 € 3 894 €

EC(€M) 123 941 € 93 015 €
RORAC % 5.10% 4.19%

Portfolio
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Chapter 7 

CONCLUSION 

 
This thesis aimed to actively monitor and control the daily VaR of the portfolio over a one year period 

- from 30 January 2023 to 2 February 2024. The core objective was to keep VaR within a predetermined 

limit while also managing the individual risk contributions from each component within the portfolio. 

The portfolio studied was composed of part equities and part bonds from U.S., European and Asian 

markets. To measure the market risk there are several classes of VaR models, so, to define the better 

suited model to our portfolio, we computed four different models: Parametric Normal VaR, SGSt, 

Historical and QR. Inside these classes, we calculated 10 different models so that we had a broad range 

to analyze and choose from. We evaluated each model’s performance using a backtesting procedure that 

incorporated both the UC and BCP tests. 

 The Backtest analysis using the portfolio composition on 30 January 2023 presented expected 

results. We computed the VaR at the 1% significance level and the Parametric Normal VaR, which 

assumes returns follow a normal distribution, failed the Backtest, indicating that the returns of our 

portfolio were not normally distributed and that the model is unfit. Still in the parametric world, the 

SGSt VaR model aims to solve the limitations of the Parametric Normal model, passed the Backtest and 

became one of the possible models to suit our portfolio. Out of the parametric landscape, the Historical 

VaR models passed the Backtest but did not impress, so they were not considered. Finally, the QR VaR 

models passed the Backtest and presented solid results for our portfolio and, similarly to the SGSt 

Models, was considered for our portfolio. After extra analysis, we decided on the QR VaR due to its 

more flexible adaptation to market conditions, something useful for our rebalancing strategy. With this, 

we used the QR VaR with a rolling sample of 1000 observations, without constant and 1 explanatory 

variable model. 

 To manage the VaR, based on more recent observations, we chose a daily limit of €525 million and 

individual contributions limits of 12.5% per asset and 10.5% of currency risk. From 30 January 2023, 

every time the VaR or the assets surpassed those limits, a hedging strategy would be applied to the 

portfolio. 

 The first time one of those boundaries was crossed was on the first date, 30 January 2023, where 

we performed a portfolio rebalancing by selling an individual asset and reinvesting the same amount in 

other assets to solve that exposure limit, increase diversification and reduce the risk profile of our 

portfolio. The other hedging strategy used, when needed, was shorting the EUR/USD pair every time 

the VaR surpassed the €525 million limit. The latter was revised daily and, if not necessary, removed 

entirely. This methodology was repeated daily for the whole one year period and, for comparison
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purposes, we defined the portfolio without the hedging strategy as Unhedged portfolio and the one with 

the strategy as Hedged portfolio. 

 Results displayed that the hedging strategy was successful in keeping the VaR at a maximum of 

€525 million and the individual contribution per asset and the currency risk below 12.5% and 10.5% 

respectively throughout the year. If the hedging strategy was not applied, all the pre-established limits 

would have been broken several times across the estimation period. Finally, to be able to fairly compare 

the returns from both portfolios, we used the RORAC risk-adjusted performance metric that allowed us 

to conclude that while the hedging strategy was able to reduce the risk profile of the portfolio, the 

Unhedged portfolio was more efficient given the bullish market conditions, generating a difference in 

performance of 0.92% against the Hedged portfolio. 
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Appendix A  

Cash Reinvestments 

 
In the table below we present the reinvestments of each bond cash flows that matured across the one 

year period. 

 

 

Table 13. Cash reinvestments. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Date Stock Number of Shares
16-Jan-23 ASML 7 070
17-Feb-23 UNH 8 916
16-Aug-23 MC.PA 16 295
18-Aug-23 SPGI 11 042
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Appendix B  

Additional Risk Indicators 

 
Figure 9 shows a 22 day rolling volatility process for both Unhedged and Hedged portfolios across the 

one year period. This delivers further information on the risk profile of each portfolio and if the hedging 

strategy successfully reduced the risk of the Hedged portfolio. 

 

 

Figure 9. Rolling Volatility process for both portfolios. 

 

B.1. Annualized Volatility and Max Drawdown 

 

With the same purpose, Table 14 presents the annualized volatility and the max drawdown for both 

portfolios to verify the effectiveness of the hedging strategy and the difference of risk incurred between 

both portfolios. 

 

 

Table 14. Annualized Volatility and Max Drawdown for both portfolios across the estimation period.
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Appendix C 

VaR vs Pre-defined Economic Capital Limit 

 
In Figures 10 and 11 we can observe the VaR behaviour for both Unhedged and Hedged portfolios 

compared to the pre-defined EC. With this we can conclude that the hedging strategy successfully 

maintains the VaR below the pre-defined EC limit for the Hedged portfolio. 

 

 

Figure 10. Unhedged Portfolio: Daily Total VaR vs EC Limit. 

 

 

Figure 11. Hedged Portfolio: Daily Total VaR vs EC Limit. 
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