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Resumo

O Value at Risk (VaR) ¢ uma métrica de avaliagdo de risco utilizado para medir o Economic Capital
(EC) que consiste no capital em risco relativo a atividades de investimento. As formulagdes de
estratégias de risco sdo realizadas através de um limite maximo para o EC definido previamente. Esta
dissertacdo estima e gere o VaR de uma carteira composta por agdes e obrigacdes dos mercados
Europeus, Canadianos, Americanos e Asiaticos com o objetivo de ndo ultrapassar o maximo pré-
definido. Através de backtest, foi analisada a performance de 10 modelos diferentes, dada a variedade
de modelos existentes, tendo sido utilizado o modelo com melhores estimativas para a carteira em
questdo. Utilizando o modelo com melhor performance, o Var da carteira ¢ medido diariamente e gerido
através de uma estratégia de cobertura aplicada a exposi¢cao em agdes para um periodo de um ano
considerando limites individuais de contribuicao de cada ativo para o risco total da carteira. O Return
on Risk-Adjusted Capital (RORAC) ¢ uma métrica de performance utilizada para a analise do resultado

da estratégia de cobertura executada.

Palavras Chave: Economic Capital, Value-at-Risk, Backtest, Cobertura, Return on Risk-Adjusted
Capital






Abstract

Value-at-Risk (VaR) is a risk measurement metric used to mensurate the Economic Capital (EC), which
consists of the capital at risk derived from investment activities. The formulation of risk management
strategies is done through a pre-defined maximum target value for the EC. This dissertation measures
and manages the VaR of a portfolio composed of equities and bonds from the European, U.S., Canadian
and Asian markets with the aim of not exceeding a pre-defined target. Through a Backtest process, given
the range of VaR models, 10 different models are analyzed by their performance, to select the model
that provides the most thorough estimates for the portfolio. Selecting the best performing model, the
VaR of the portfolio is measured daily and managed by an equity exposure hedging strategy for a one-
year period, also capping the individual risk contribution of each asset for the total portfolio risk. Return
on Risk-Adjusted Capital (RORAC) is a performance metric used to analyse the applied hedging strategy

result.

Keywords: Economic Capital, Value-at-Risk, Backtest, Hedging, Return on Risk-Adjusted Capital
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Chapter 1

INTRODUCTION

During the last few years, the role of financial risk management has become more important for
companies and financial institutions. Influential events, such as the 2008 financial crisis or the increased
market volatility in the last 5 years due to the 2020 pandemic and macroeconomic tensions, strengthen
the role of risk management. In addition, the growth of the financial derivatives markets with high
leverage financial instruments and given the role of financial institutions in our system and economies,
it is also a legal obligation to control financial risk. This control began in the late-1980s via introduction
of the first Basel Accords (Shakdwipee & Mehta, 2017) where financial supervisors increased the
minimum capital requirements with proper risk mensuration and reporting regulations towards the
protection of the financial system stability.

The goal of this Master Thesis is to measure and mitigate market risk, that can be defined as a
measure of the uncertainty of future value of certain financial assets that arises from changes in market
prices and unknown profit and loss (P&L) profiles. To do so, we need to use a risk metric. The Value-
at-Risk (VaR) is the industry standard market risk measurement metric, and as a statistical measure, it
can be defined as the maximum expected loss we are confident will not be exceeded for a given
significance level and over a given future time horizon (4lexander, 2009). Regarding the administration
of financial institutions and the oversight of their internal financial operations, the Economic Capital
(EC) consists of the desirable level of capital a firm would like to hold for insurance against its risks
(Alexander, 2009). Hence, mathematically, the EC is equal to the VaR (Jorion, 2007), and for a specific
pre-defined maximum value for the EC, it works as a benchmark in which the development of financial
risk management strategies is based on.

This dissertation objective is to assess and manage the VaR of a portfolio composed of equities and
bonds from the U.S., Canadian, European and Asiatic markets during a test period of one year from 30
January 2023 to 2 February 2024 such that the value does not exceed the pre-defined maximum for the
EC. Also, measure and manage the individual risk contributions of each portfolio asset and make sure it
does not surpass a maximum percentage of the total portfolio VaR. As the ultimate goal, we analyze the
P&L profile for a one-year period and compare it with the P&L profile if we had not managed the VaR.

The first question that arises when measuring VaR is which model should be used to complete this
task. 1996 was the year that the necessity of having a risk measure was met. Thanks to the efforts from
financial institutions and regulators, J.P. Morgan and Reuters, (1996) were able to introduce
RiskMetrics (RM) VaR model. While the forerunner, the solution may not lie here, and thus we explore
four distinct VaR models in this dissertation: Parametric Normal VaR, Skewed Generalized Student-t

(SGSt), Historical VaR and Quantile Regression (QR) and a total of 12 different models are tested. Via



a Backtest method, utilizing historical data, we calculate historical VaR estimates for each model using
the portfolio composition on 30 January 2023. Sample wise, the series of historical VaR estimates for
the Backtest spans over 11 years from 19 December 2011 to 27 January 2023 and we measure the
performance of each model through the Unconditional Coverage (UC) test (Kupiec, 1995) and
Berkowitz, Christoffersen and Pelletier (BCP) test (Berkowitz et al., 2011).

Working with the best performing model and for a time span of a year, an equity exposure hedging
strategy assesses and manages the VaR of the portfolio on a daily basis. Supported by historical data
ranges, we define the daily EC to a maximum of €525 million, that corresponds to close to 3.9% of the
portfolio value on 30 January 2023, a maximum individual contribution of each asset to the total risk of
the portfolio of 12.5% and a maximum total currency risk of 10.5%. With this, the daily VaR estimate
cannot exceed those boundaries. Therefore, we test the impacts on the one-year return of the portfolio
after limiting the VaR and the individual exposure to each asset by using an equity exposure hedging
strategy.

For comparison reasons, we name the portfolio with the implemented hedging strategy as Hedged
Portfolio and the same portfolio without the strategy as Unhedged Portfolio.

This thesis is structured as follows: Chapter 2 covers the significant literature; Chapter 3 shows the
data used, portfolio composition and time span; Chapter 4 defines the path forward and delves into the
applied methodology; Chapter 5 discloses the outcomes of the backtesting and outlines the model
selection process; Chapter 6 analyzes the hedging and portfolio rebalancing strategies and their impact

on portfolio returns; Chapter 7 recaps the results of this thesis.



Chapter 2

LITERATURE REVIEW

Historically, distress in financial institutions has shown its potential to result in negative effects of great
magnitude on both global economy and financial markets (Hoggarth et al., (2002) and Dell’Ariccia et
al., (2008)). The massive financial crisis of 2008 works as a major example of such outcomes (Baur,
2012). Given that many of these institutions operate in the private sector, the concept of regulation to
safeguard financial stability naturally emerges (Dow, 1996). As a solution, financial regulators created
the Basel Accords in 1988, being subsequently updated to revised versions in later years, targeting
minimum capital requirements by rigorous risk measuring and reporting standards (Shakdwipee &

Mehta, 2017).

Although risk can normally be classified into market, credit, and operational risk (Allen et al.,
2004), this dissertation addresses market risk only, which refers to the uncertainty of the future value of
financial assets due to fluctuations in market prices (4lexander, 2009). Efficient risk management starts
with precise risk measurement. Despite its limitations (Krause, 2003), VaR is still the industry standard
metric for measuring market risk. As a statistical model, VaR correspond to the maximum anticipated
loss that is not expected to be exceeded, for a certain pre-defined confidence level and for a specific time

span (Alexander, 2009).

Minimum capital requirements, from a regulatory perspective, can be identified as regulatory risk
capital (Alexander, 2009) and are computed using techniques established by financial regulators (Bank
for International Settlements, 2023). Once financial institutions meet these regulatory risk capital
requirements in line with the Basel Accords, they have the flexibility to allocate capital internally to
various activities and in amounts they deem appropriate (Alexander, 2009). In this context, Economic
Capital (EC) for a financial institution refers to the capital at risk due to its investment activities
(Porteous & Tapadar, 2005). To ensure financial stability within the firm, the capital at risk from
investment activities must not exceed the allocated EC limit and, as EC is measured by VaR, its value
should be numerically equal to the VaR (Jorion, 2007). With a predefined EC limit, risk management

strategies can be designed to align with this benchmark.

The demand for a standardized metric to measure market risk emerged in the mid-1990s, driven by
collaborative efforts between financial regulators and international banks. This led to the development
of the RiskMetrics (RM) VaR model by J.P. Morgan and Reuters, 1996. The adoption of VaR as the
official measure of market risk under the Basel Il Accords, and in subsequent updates, marked a crucial
turning point. The creation of RM played a key role in establishing economic capital-based metrics for

defining minimum capital requirements (Allen et al., 2004).



The RM VaR model lies into the parametric class of models. Moreover, this model can be known
as Parametric Normal VaR because it accepts that returns follow a normal distribution for a defined
testing period (J.P. Morgan and Reuters, 1996). This assumption does not respect the empirical data
on financial returns that normally confirm both excess kurtosis and negative skewness as shown by
Fama, (1965) and Peiro, (1994), which are characteristics of a non-normal distribution. This aspect is
noteworthy because extreme losses are found in the left tail of a return distribution. The lower the
significance level chosen for VaR, the further into the tail we assess. Therefore, if the actual distribution
of returns deviates from the normal distribution, the VaR estimate achieved by the RM VaR model may
be unsuccessful in capturing the risk incurred, possibly making the RM model unfitting. When
estimating VaR at a 5% significance level, or a 95% confidence level, we are 95% confident that future
losses will not exceed the VaR. Given that this configuration is generally used in the RM model, Pafka
& Kondor, (2001) investigated possible flaws by analyzing the model's performance at significance
levels below 5%. Using 4 years of financial data from the 30 stocks composing the Dow Jones Industrial
Average index, the authors calculate the RM VaR for both 5% and 1% significance levels. Their findings
indicate that at lower significance levels, such as 1%, where the analysis delves deeper into the left tail
of the distribution, the non-normality of returns becomes clear. With this, the higher the level of

significance chosen, the bigger the probability that VaR estimations are underestimated.

A promising approach to tackle the non-normality of returns and the limitations of the RM model
is the Skewed Generalized Student-t (SGSt) distribution (Theodossiou, 1998). McDonald & Newey,
(1988) introduced this distribution as an extension of the classical Student-t distribution, allowing
substantial flexibility in modelling the shape of both tails and central region of the distribution. The
SGSt VaR also assumes a parametric distribution for returns but seeks to better fit the distribution shape
to the empirical returns. This approach allows it to accommodate for the fat tails usually observed in
financial return distributions. Lin & Shen, (2006) research compared the performance of SGSt VaR with
RM VaR utilizing daily data from the S&P 500, NASDAQ, DAX, and FTSE 100 indices with a sample
size of 3 years. As anticipated for equity returns, the normality assumption was strongly rejected for all
indices by the Jarque-Bera test. The authors then estimated VaR for each index for a range of
significance levels from 55% to 0.1%. Results show that while for a 55% significance level the RM
model produces satisfactory results, for lower levels the performance begins to worsen. In contrast, the
SGSt VaR maintains a robust performance as we decrease the significance level. The authors conclude
that the SGSt VaR allows more accurate estimates for lower significance levels, making it, therefore, an

ensuring alternative in the scope of the parametric VaR models.

Rather than imposing a specific returns structure via a parametric approach, as performed by the
RM and SGSt models, a much straightforward alternative is presented: utilizing the empirical
distribution of returns. This method accurately captures the empirical skewness and kurtosis of the

return’s distribution, establishing the core of the Historical Simulation VaR, also referred to as Historical
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VaR. However, this flexibility comes with some drawbacks. Since Historical VaR is based entirely on
the empirical sample of past returns, the selection of the sample size is a subjective yet crucial factor.
As Pritsker, (2006) discusses, a larger sample size broadens the diversity of possible outcomes but,
simultaneously, with the growth of the sample size, the model might be less responsive to current market
volatility conditions. To tackle this matter, Barone-Adesi et al., (1998) and Boudoukh et al., (1998)
propose a refinement to the classical methodology by giving greater weight to later observations. This
change outcomes in a sample in which recent data points hold more magnitude than those from the
bygone years, in that way improving the model’s elasticity to changes in market conditions. Hull &
White, (1998) propose a further refinement where past returns are adjusted through a volatility
adjustment methodology in order to reflect current market volatility. This method changes the magnitude
of past returns based on the market volatility conditions back then, adjusting them to current volatility.
Hull & White, (1998) tested their model using approximately 9 years of daily financial data from 12
distinct exchange rates and 5 different stock indices. Hull & White, (1998) compared their volatility-
adjusted approach with the standard Historical VaR, where the adjustment of the weight of observations
does not occur, and with the Boudoukh et al., (1998) method, that adjusts the weights of later
observations. As predictable, the results of this comparison indicate that the volatility adjustment
methodology reached better overall results. Hull and White’s proposed volatility adjustment, when
compared to the Boudoukh et al., (1998) methodology, delivers much better results specifically for the

1% significance level.

Continuing in the non-parametric framework, VaR can also be defined as a conditional quantile
(Xiao et al., 2015). Koenker & Bassett Jr, (1978) introduced an alternative technique for estimating
VaR known for using quantile regressions. The Quantile Regression (QR) VaR model is comparable to
the Historical VaR in that it is based on empirical returns instead of assuming a given parametric
distribution. One of the key advantages of QR VaR is the flexibility it offers in choosing explanatory
variables, allowing for more fitted and hypothetically more precise risk estimations. Steen et al., (2015)
assessed the performance of the RM and Historical VaR models versus the QR VaR by working with
nearly 20 years of daily data for futures contracts of 19 distinct commodities. Their findings side with
preceding results of other authors regarding the RM model’s performance: it produces reasonable results
at the 5% significance level for most commodities. However, its performance weakens when tested at
the 1% significance level. While the Historical VaR outperformed the RM model overall, it was
nonetheless topped by the QR VaR, which outclassed both models throughout all confidence levels.
Although the accuracy of QR VaR estimates depend on the configuration of the model it has the
capability of delivering better results when compared with the RM model. Against the Historical VaR,
the conclusions are similar with the QR VaR obtaining improved or at least similar estimates. For
commodities in particular, QR VaR presents itself as a promising model because of its flexibility and

improved performance.



Nevertheless, for two unique portfolios, the same VaR model will produce two completely different
estimates as investigated by Alexander, (2009). This means that we need to test the performance for
different models in order to choose the model that fits best our portfolio. That can be achieved through
a Backtest model using historical data of portfolio returns and VaR estimates for the same period. The
number of exceedances, a vastly used Backtest performance metric, consists of an event in which the
VaR estimate is surpassed by the actual loss. In order to test the number of exceedances, we choose the
UC test (Kupiec, 1995), for the time span under analysis. To make a comprehensive assessment, we also
use the BCP test (Berkowitz et al., 2011) to check if the observed exceedances (if there is any) are
autocorrelated. There is, it verifies if the exceedances are independent from each other or if they occur
in clusters. This metric is important because its by testing the existence of clusters that we can verify the

model’s ability to adjust for quick variations in market conditions.

When measuring the VaR of a portfolio, efficient management and finding a good balance between
returns and risk are two of the main objectives of a risk manager. Whilst EC exceeds VaR, we need to
adjust the portfolio by using a risk management strategy. As a consequence, the risk profile of our
portfolio changes alongside with its composition. Therefore, and as explored by Longley-Cook, (1998),
we should try to achieve the highest return possible for the lowest level of VaR, creating different risk

profiles along the way.

With this in mind, a new metric emerges, the RORAC (Matten, 1996). This metric yields the ratio
between returns and the risk incurred to accomplish them, connecting a non-adjusted return to a risk-
adjusted capital base (Matten, 1996). Hence, we can get a fair assessment regarding the returns of

portfolios with different risk profiles by using the RORAC.



Chapter 3

DATA

The structure of this portfolio includes a mixture of equities and bonds, with allocations across U.S.,
Canadian, Asian and European markets. Euro (EUR) is defined as the local currency, while the U.S.
Dollar (USD), Canadian Dollar (CAD), Great British Pound (GBP) and Japanese Yen (JPY), are treated

as foreign currencies.

The equity component consists of thirty-three stocks from the U.S., Canadian, Asian and European
markets. The daily adjusted closing prices were downloaded from yahoo finance!, along with the

correspondent exchange rates: USD/EUR, CAD/EUR, GBP/EUR and JPY/EUR.

The fixed income component incorporates three fixed coupon government bonds with different
maturities, yields and payment dates, and were issued by the U.S., Germany and Netherlands markets.
The data for the bonds was taken from the Frankfurt Stock Exchange? and the daily interest rates from
the Federal Reserve® for USD and from the European Central Bank (ECB)* for EUR. In this dissertation
we work with data between January 3™ of 2007 to February 2™ of 2024.

Table 1 below has the composition of the portfolio used on this dissertation including the value

disaggregation of each asset.

! https://finance.yahoo.com

2 https://www.boerse-frankfurt.de/en

3 https://www.federalreserve.gov/datadownload/Choose.aspx?rel=H15
4 https://sdw.ecb.europa.eu/browseSelection.do?node=9689726



No. Shares /

Asset Ticker/ISIN Currency Price Exchange Rate Value (EUR) Allocation (%)
Face Value
Microsoft Corporation MSFT usb 4450 000 239.70 USDEUR  0.9198 981162746 € 7.42
Apple Inc. AAPL usD 8000 000 141.83 USDEUR  0.9198 1043698612 € 7.89
NVIDIA Corporation NVDA usb 6300 000 191.53 USDEUR  0.9198 1109891817€ 8.39
Amazon.com, Inc. AMZN usD 10 500 000 100.55 USDEUR  0.9198 971144 105€ 7.35
AlphabetInc. GOOGL UusD 14 000 000 96.94 USDEUR  0.9198 1248370080 € 9.44
UnitedHealth Group Incorporated UNH usD 1200 000 476.71 USDEUR  0.9198 526191417 € 3.98
Mastercard Incorporated MA usD 1600 000 368.38 USDEUR  0.9198 542155762 € 4.10
Salesforce, Inc. CRM usD 1600 000 164.54 USDEUR  0.9198 242153517 € 1.83
WalmartInc. WMT usD 2400 000 46.35 USDEUR  0.9198 102328759 € 0.77
Thermo Ficher Scientific Inc. T™O usb 300 000 562.41 USDEUR  0.9198 155199 268 € 117
Adobe Inc. ADBE usD 1100 000 363.42 USDEUR  0.9198 367717091 € 2.78
Oracle Corporation ORCL usD 1300 000 85.76 USDEUR  0.9198 102545624 € 0.78
Caterpillar Inc. CAT usD 950 000 255.36 USDEUR  0.9198 223143999 € 1.69
S&P Global Inc. SPGI usD 450 000 361.88 USDEUR  0.9198 149791231€ 1.13
Booking Holdings Inc. BKNG usD 200000  2430.76 USDEUR  0.9198 447 181968 € 3.38
Vertex Pharmaceuticals Incorporated VRTX usb 400 000 319.98 USDEUR  0.9198 117732 165€ 0.89
Chipotle Mexican Grill, Inc. CMG usD 160000  1609.86 USDEUR  0.9198 236930177 € 1.79
O'Reilly Automotive, Inc. ORLY usD 100 000 789.63 USDEUR  0.9198 72633326 € 0.55
The Hershey Company HSY usD 600 000 215.81 USDEUR  0.9198 119104 818€ 0.90
LVMH Moet Hennesy - Louis Vuitton MC.PA EUR 770 000 786.37 - 1.0000 605501936 € 4.58
ASML Holding N.V. ASML EUR 1300 000 641.46 - 1.0000 833902472€ 6.31
Christian Dior SE CDI.PA EUR 70000 764.54 - 1.0000 53517863 € 0.40
Texas Pacific Land Corporation TPL usb 1000 000 645.78 USDEUR  0.9198 594 018 513 € 4.49
Mitsui O.S.K. Lines, Ltd. 9104.T JPY 5000000  2805.89 JPYEUR  0.0071 99398623 € 0.75
Netflix, Inc. NFLX usD 850 000 353.11 USDEUR  0.9198 276083985 € 2.09
General Electric Company GE usD 1000 000 64.15 USDEUR  0.9198 59009548 € 0.45
Moody's Corporation MCO usD 350 000 309.86 USDEUR  0.9198 99759 125€ 0.75
Vulcan Materials Company VMC usD 450 000 176.24 USDEUR  0.9198 72951203 € 0.55
Shell plc SHEL.L GBP 4000 000 22.31 GBPEUR  1.1405 101751027 € 0.77
Wells Fargo & Company WFC usD 2500 000 44.32 USDEUR  0.9198 101912254 € 0.77
Canadian National Railway Company CNR.TO CAD 2200 000 153.36 CADEUR  0.6914 233264100 € 1.76
McDonald's Corporation MCD usD 500 000 263.39 USDEUR  0.9198 121140315€ 0.92
JPMorgan Chase & Co. JPM UsD 2000 000 134.48 USDEUR  0.9198 247 404228 € 1.87
Total Equity - - 12258 691677 € 92.72
German Bond 2033 DE000BU2Z015 EUR 500000000 103.48% - 1.0000 517413420€ 3.91
Dutch Bond 2030 NL0015001DQ7 usD 200000000 101.09% USDEUR 0.9198 202181159¢€ 1.53
U.S. Treasury Bond 2034 US91282C)Z59 EUR 250 000 000 97.28% - 1.0000 243192414 € 1.84
Total Bonds - - 962786992 € 7.28
Total Portfolio - - 13221478669 € 100.00

Table 1. Portfolio composition on 30 January 2023. This table illustrates the assets that compose the portfolio

used in this dissertation, along with the amount invested in each, converted from USD, GBP, CAD or JPY to EUR

where appropriate. The correspondent exchange rates for each currency as of 30 January 2023 are 0.9198, 1.1405,

0.6914 and 0.0071 respectively. Due to rounding, figures may not sum to the total.



Chapter 4

METHODOLOGY

This dissertation objective is to assess and manage the VaR of a portfolio. We will manage the portfolio
over a one-year period starting from 30 January 2023, ensuring that it does not exceed pre-defined levels

of Economic Capital and individual risk exposures from the constituents of the portfolio.

Considering the several VaR Models available, to decide which one to use we measure the
performance and the accuracy of those VaR models with a process called Backtesting. This can be
achieved by using historical data and today’s portfolio composition. We will assume that our portfolio
existed in the past and will compute a historical series of daily VaR estimates from 19 December 2011
to 27 January 2023. We are going to assess four different models: Parametric Normal VaR
(RiskMetrics), SGSt VaR, Historical VaR and QR VaR. Inward these models, we explore several
assumptions of each one to conclude which one is the better fit to our portfolio. We do that by analyzing
the results of known statistical tests that measure the performance of the models. Despite their

differences, all four models share one critical input for their calculations: portfolio volatility.

After choosing the VaR Model to apply, we measure the VaR of our portfolio for a period of one
year going forward, through a hedging strategy we manage it according to our pre-defined risk
boundaries. To evaluate the results of the hedging strategy we compute a performance metric named

Return on Risk-Adjusted Capital for both portfolios and analyse the results.

4.1. Risk Factor Mapping

Risk factors are the underlying variables that are responsible for changes in the value of assets within a
portfolio. The first step in risk analysis is to identify these factors and quantify the portfolio's exposure
to them. This process, referred to as risk factor mapping, involves assigning each portfolio position to
its corresponding risk factor exposure. The specific risk factors associated with an asset depend on its
type, as different asset classes are affected by different variables.

To estimate VaR in EUR - our local currency - all exposures must be stated in EUR. This requires
the conversion of all foreign currency exposures at the relevant exchange rate on the backtesting date,
which in this case is 27 January 2023. In the following subsections, we explain the methodology for
mapping exposures for each asset class in our portfolio. At the end of this section, Table 2 summarizes

the exposures to each risk factor resulting from the risk factor mapping process.



4.1.1. Bonds

A bond is a financial instrument that generates a series of cash flows. Its fair value depends on
discounting these future cash flows back to the present, making the interest rate the predominant risk
factor. When interest rates rise, the bond value drops, and when interest rates fall, the bond value rises.
As interest rates fluctuate with market conditions, quantifying the sensitivity of bond positions to
changes in interest rates is critical to risk measurement and management.

For a fixed coupon bond, the future cash flows include periodic coupon payments over the bond’s

lifetime and the final principal repayment at maturity. The coupon payment is calculated as follows:

c
Coupon = N x 7" ()

where N is the monetary amount invested in the bond (face value), c,, is the annual coupon rate (annual
interest paid by the bond until the maturity date) and n is the coupon frequency (the number of coupon
payments per year until maturity).

The final payment at the bond’s maturity consists of the redemption of the face value along with the

last coupon payment and is given by:

Cn =N x(1+2) 2

Let Cr denote a future cash flow, T the time in years from now until the maturity date of the cash
flow and r; the continuously compounding interest rate for the period between now and T. It follows

that the present value (PV) of the cash flow Cr is:

PVg, rn = Cp X e771%T 3)

The present value of a basis point (PVO01) quantifies the sensitivity of a given cash flow’s present
value to a one basis point decrease in the interest rate ry. It is approximated using a first-order Taylor

expansion as:

aPVe.
P01y, % =52 X (<0.01%) = )

T X PVg, . X 0.01%

where T is the maturity of the cash flow.
Consequently, the first-order approximation of the change in the present value of a cash flow,

representing its P&L, can be expressed as a function of PV01 as follows:
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APVCT,rT = - PVO]-CT X m,

ATT
0.01%

where is the absolute change in interest rate converted to basis points.

Therefore, for cash flow Cr, its P&L is defined by the sensitivity of the cash flow to a one basis
point increase in the interest rate (— PV01c,) and the actual variation in the interest rate (Arr). If the
interest rate increases (positive change), the P&L is negative, while if the interest rate decreases
(negative change), the P&L is positive. For a bond with n cash flows, the total P&L is the sum of the
individual P&Ls calculated by using Equation 5 for each cash flow.

However, a bond with n cash flows will have n different interest rates as risk factors, with each rate
corresponding to the maturity of a particular cash flow. In a portfolio of many bonds, this can rapidly
become unmanageable. A further challenge arises when a future cash flow falls on a date for which there
is no data for the corresponding interest rate rr. Without an adequate interest rate, it is impossible to

accurately discount the cash flow to the present and thus calculate its PV01.

To address these concerns, and following Alexander, (2008), we adopt a vertex mapping approach.
This consists of mapping non-standard maturity cash flows to a set of standard maturity interest rates
for which data is available. In this cash flow mapping process, a vertex refers to a standard maturity for
which interest rate data exist. The mapping method we use is the PV+PVO01 invariant mapping, which
ensures that both the present value PV and PV 01 of the original non-standard maturity cash flow are
preserved.

Let PV, be the present value of the original cash flow with maturity T and let T; and T, be the
standard maturity vertices immediately below and above T, respectively, for which interest rate data are

available. Let x; and x, denote the proportions of PV, assigned to vertices T; and T, respectively. To

preserve the PV of the original cash flow, we apply the following condition:

le + xTZ = PVCT, (6)

where xr, is the PV mapped to vertex T; and xr, the PV mapped to vertex T5.

For PV01 invariant mapping, the sum of the PV 01 of the mapped cash flows is equal to the PV 01
of the original cash flow. This ensures that the total PV01 of the two mapped cash flows is equivalent
to the PV01 of the original cash flow after a parallel shift of one basis point’ in the yield curve. To

maintain the PV 01 of the original cash flow, we apply the following condition:

T1XT1 + szTz = T PVCT (7)

®> when the interest rate curve shifts by one basis point it means all spot rates shift by 0.01%.
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Finally, we preserve the PV and PV01 conditions at the same time by combining equations 6 and

7. We get the values for x7, and x7, that meet both requirements simultaneously as:

I,-T; (8)
le = Tz —Tl XPVCT
and
T, —T,; ©
xT2 = 1_T2—T1XPVCT

We repeat the PV+PV01 mapping for each cash flow and each bond in our portfolio, and in terms
of exposure, each mapped standard maturity cash flow is sensitive to changes in its corresponding
standard maturity interest rate, which is given by its PV01.

Recalling Equation 5, in the scope of risk factor mapping, each standard maturity interest rate
(vertex) serves as a risk factor. The exposure to each risk factor is the sum of all PV01s mapped to that
maturity multiplied by -1. For bonds in the US market where cash flows are denominated in USD, we

convert the —PV01 exposures to EUR using the exchange rate on 27 January 2023.

4.1.2. Equity

The value of an investment in a stock is dependent on the number of shares held and the stock market
price. Consequently, the risk factor for any stock in our portfolio is the change in its market price. In
terms of risk factor mapping, the exposure to the price change of each stock is the amount of capital
invested in it, and for each stock we obtain the amount of capital invested by multiplying the number of
shares by the current market price:

Sit = Nit X Pit X FXt (10)

where F X, is the exchange rate on 27 January 2023 used to convert the exposure to local currency.

4.1.3. Currency

As our local currency is EUR and the portfolio under analysis contains positions in assets from foreign
markets, these positions are not only exposed to the risk factors of the respective assets, but also to the
exchange rate between the foreign currency and local currency. In our case, assets denominated in USD,
JPY and GBP are additionally exposed to the USD/EUR, JPY/EUR, GBP/EUR and CAD/EUR
exchange rates, respectively. Regarding the mapping, the exposure to each foreign currency is the total
amount of capital invested in assets, both bonds and equity, denominated in that specific currency

converted to EUR. Again, we use the exchange rates on 27 January 2023.
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4.1.4. Portfolio Exposures

Below, Table 2 shows the risk factors and the corresponding mapped exposures as of 27 January 2023.
For bonds, the risk factors are the standard maturity interest rates and the exposure to each standard
maturity interest rate is the sum of all —PV01s mapped to that maturity. We obtain the —PV01 via
methodology illustrated in subsection 1.1.. For equities, we compute the exposures presented in the table
using the methodology described in subsection 1.2. of this chapter. For currency, we get the exposures
to the USDEUR, JPYEUR, GBPEUR and CADEUR exchange rates by using the methodology

expressed in subsection 1.3..

Equity Bonds Currency
Risk Exposure Risk Exposure Risk Exposure
Factor (EUR) Factor (EUR) Factor (EUR)
9104.T 99160123€ EUR3M 0€ USDEUR 10767175685€
AAPL 1062837108€ EUREM -595€ JPYEUR 99160 123€
ADBE 374302171€ EUR1Y -1160€ GBPEUR 101474523 €
AMZN 985383989€ EUR2Y -3427€ CADEUR 232933303 €
ASML 855804 425€ EUR3Y -7495¢€
BKNG 451279888€ EUR5Y -17440¢€
CAT 225262007 € EUR7Y -141305€
CDI.PA 53722390€ EUR10Y -374943¢€
CMG 237006190 € EUR15Y -66239€
CNR.TO 232933303€ EUR20Y 0€
CRM 241305444€ USD3M -205€
GE 60633509€ USD6M -19€
GOOGL 1276964 161€ USD1Y -654 €
HSY 116494 536€ USD2Y -1691¢€
JPM 248994044 € USD3Y -3643€
MA 545254472 € USD5Y -7676 €
MC.PA 607 169579€ USD7Y -12427¢€
MCD 121585418€ USD10Y -157494¢€
MCO 101253261€ USD20Y -33913¢€
MSFT 1001078848€
NFLX 281478157 €
NVDA 1177083556 €
ORCL 104250586 €
ORLY 70785693 €
SHEL.L 101474523 €
SPGI 152435094 €
T™MO 157435352 €
TPL 610308932 €
UNH 525362631€
VMC 72846330€
VRTX 118023586 €
WFC 101323826¢€
WMT 102939016 €

Table 2. Risk factor exposures map in EUR on 27 January 2023.

13



4.2. Returns

For the equities in our portfolio, if the invested capital (Mg, ) remains unchanged, the P&L is obtained

from the change in the market price of its risk factor, i.e., the share price, and is given by:

Py 11

P&Lstock, = Mstocr X (3-—— 1) (b
t—1

When investing in a bond, each cash flow is exposed to a different interest rate and subsequently to

movements in that interest rate. In our portfolio, on the assumption that the invested capital and —PV01

values stay unchanged, the total P&L is calculated as the sum of the P&Ls of all the cash flows mapped,

as shown in equation 5:

Arr, ) (12)

n
P&Lponas, = Z —PV01g, X (0 01%

i=1

An allocation to an asset valued in a foreign currency implies an exposure not solely to the specific
risk factor of the asset, but also an indirect exposure to fluctuations in the exchange rate between the
foreign currency and the local currency. In other words, investing in equities and bonds denominated in
a foreign currency gives rise to an exchange rate exposure equal to the value of the investment

(M¢yrrency)- Since the underlying risk factor is the foreign exchange (FX) rate, the P&L resulting from

currency exposure is obtained by:

FX, (13)
P&Lcurrency, = Mcurrency % (F Xe—q - 1>
t_

Given a series of daily equity prices, spot interest rates and foreign exchange rates, we use the above
equations together with the mapped exposures to each risk factor as of 27 January 2023 to calculate the

historical time series of daily P&Ls for the portfolio structure at that date. In vector form, this is denoted

by:
. : (14)
[ Mstock, T <p.lt _1>
. -1
Ary,
P&Lportfoio, =| ~PVO01r | x 0 01T(ly
. ' 0
FX,
_MCurrency- ( L - 1)
\FX;_1

where the first vector transposed is constant and represents the exposure to each risk factor, and the

second vector reflects the change in the corresponding risk factor.
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We get the portfolio P&L as a percentage return via:

P&LPortfoliot ) (15)
Portfolio Value/’

Re(%) = (

where the denominator is the portfolio value on 27 January 2023.

4.3. Volatility

At the beginning of this chapter, we highlighted the two key components required for successful
backtesting: portfolio returns and portfolio volatility modelling to compute the VaR models under
assessment. In Section 1, we reviewed the procedure for determining the appropriate risk factors for
each asset class and the quantification of the portfolio's sensitivity to these risk factors. Having achieved
this, we have taken the portfolio exposures for the portfolio composition on 27 January 2023 (see Table
2) and holding them unchanged, we simulated historical returns using equations 14 and 15, we are left
with a series of historical returns for our portfolio.

The next step in computing the VaR models is volatility modeling. Volatility, o, is the standard
deviation of returns. The straightforward method to estimating it implies selecting a historical sample of
past returns and computing their standard deviation. This methodology assumes that all observations in
the sample carry the same weight, regardless of how recent they are. This may be unfitting since o is
equally influenced by older observations, which may have less relevance to current market conditions,
as it is by more recent ones.

As VaR is a forward-looking measure, data from the distant past may be of reduced relevance. The
Exponential Weighted Moving Average (EWMA) volatility model deals with this by giving more
emphasis to more recent observations, which better capture current market conditions. The weighting
factor, 4, ranges from 0 to 1, with lower values giving more weight to recent data. Whilst the choice of
A is subjective, according to the results of the RiskMetrics technical paper produced by J.P. Morgan
and Reuters, (1996), a A of 0.94 proved to be the best overall fit when handling daily returns, so we will
be using this from now on.

Based on the historical daily returns, we recursively estimate the variance of the EWMA as follows:

67 = (1— D2, + 162, (16)

where 67 is the variance estimated for day ¢t on day t — 1, 1,_; is the return observed on day t — 1 and

A € (0,1) is the smoothing factor.
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4.4, Value-at-Risk Models

VaR can be defined as the maximum expected loss over a future time horizon h at a given significance
level a. We assume a significance level of @ = 1, equivalent to a 99% confidence level, and a one-day
time horizon (h = 1). This implies that, while holding the current portfolio, we are 99% confident that
the observed loss over the next day will not exceed the estimated VaR.

Officially, the #-day 100a% VaR (VaRy, ) is defined as the negative a-quantile of the 4-day return
distribution. As Alexander, (2009) states, for any 0 < a < 1, the a-quantile of the A-day distribution of

a continuous random variable X is a real number (x,) such that:

P(X <x,) =a, 17

this means that the probability of observing a loss greater than x, is 1 — a.
If the distribution function of X is defined, then the a-quantile (x,) for any chosen value of « is
denoted by:
X, = F (), (18)

where F~1 is the inverse cumulative distribution function of X.

The a-quantile value reached (x,) is the maximum loss that we expect to be exceeded with

probability . Since VaR is a measure of potential loss, it is conventionally stated in absolute terms as:

VaRp, = — FY(a) (19)

This safeguards that the VaR value is always positive, illustrating the magnitude of the potential
loss. The subsequent subsections discuss the methodologies needed to build the four models referred to

above.

4.4.1. Parametric Normal VaR

Let X denote a continuous random variable which represents portfolio returns. The core assumption of
the Parametric Normal VaR model is that it assumes returns follow a normal distribution, that is, X =
N~(uy, o), where y;, and oy, are the estimated mean and standard deviation, correspondingly.

We take note of Equation 19 and, given that we are working with a normal distribution, it follows

that:
VaRpq, = -7 a) X gy — pps (20)

where ¢~ !(a) denotes the o-quantile of the standard normal distribution
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With regards to py,, Alexander, (2009) implies applying u, = 0 for small time horizons, and as we
are working with daily data and, hence daily VaR estimates (h = 1), this happens to be a sensible
assumption. With this, we adjust the equation above and calculate the #-day 100a% Parametric Normal
VaR as:

VaRye = —¢(a) X 0, 1)

where gy, is estimated using the EWMA volatility model via Equation 16.

4.4.2. Skewed Generalized Student-t VaR

As previously noted, the distribution of returns on financial assets frequently deviates from the normal
distribution by displaying thicker tails. As a result, the normal distribution may underestimate the
probability of sharp negative returns. Therefore, by assuming a normal distribution, there is a significant
likelihood that VaR will be underestimated at low levels of significance (e.g., 1%).

The shape of the standardized SGSt distribution (Theodossiou, 1998) seeks to represent the
deviations from normality and its density function T4 ;4 is conditional on the parameters 4, p and
q: A € (—1,1) defines the skewness (if 4 = 0, the distribution is symmetric, if 1 > 0or 1 < 0, the
distribution is positively or negatively skewed, respectively), p > 0 controls the shape of the central
region of the distribution and g > 0 controls the shape of the tail of the distribution.

We use maximum likelihood to estimate these parameters so that the resulting SGSt distribution is
as close as possible to the actual return distribution of our portfolio. To ensure that the model reflects
current market conditions, we re-estimate the parameters each trading month and compute three different
SGSt VaR series, each differing in the size of the rolling sample of portfolio returns used for
parameterization: 250, 600 and 800 daily observations.

Officially, we compute the 4-day 1000% SGSt VaR as:

VaRny = =T o1apq(@) X 0p — pp (22)

where T71y | Ap.q (@) represents the a-quantile of the standard SGSt distribution. Homogenously to the
Paramentric Normal VaR, we adopt u;, = 0 and estimate o3, by the EWMA volatility model and we

adjust the previous equation to:

VaRh,a = _T_lo,l,/l,p,q (O{) X op (23)
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4.4.3. Volatility-Adjusted Historical VaR

In the RM and SGSt VaR models examined so far, we assume that the portfolio returns comply with a
specific defined distribution, which may prove to be unrealistic or, as in the case of the SGSt VaR,
computationally complex. Leaving the parametric world behind, Historical VaR offers a more
straightforward approach: it uses the empirical distribution of returns directly and relies on the a-quantile
of this distribution to estimate the VaR.

We estimate historical VaR by the next steps. First, we select the sample size n, which defines the
historical time frame used to estimate VaR. We then calculate the /#-day past empirical returns, holding
constant the current portfolio exposure to the risk factors over the entire sample horizon. This guarantees
that we are simulating how the current portfolio would have performed in past market conditions. Having
determined the historical returns, we sort them in ascending order from worst to best. Once sorted, we

start accumulating probability from the worst return upwards, where each observation has a probability
of % Finally, the VaR at significance level « is given by minus the return with @ cumulative probability.

As noted in Chapter 2, the selection of the sample size is critical, as a largest sample size increases
the diversity of returns, but at the same time, the greater the sample size, the less it reflects current market
conditions. This is the major problem with simple historical VaR, as each observation has the same
weight, so the current volatility of returns has the same impact as the volatility of the oldest returns in
the sample. The volatility-adjusted historical VaR proposed by Hull & White, (1998) attempts to
overcome this shortcoming by adjusting the volatility of the entire series of returns, while still giving
each observation the same weight. In this way, the entire sample mirrors current market conditions. To

do this, we first get a series of volatility estimates 6; and then adjust the series of returns as:

R LN
=g, (24)
Ot

where 7 is the adjusted return, T is the VaR date and t < T. We classify this model as the T volatility-
adjusted Historical VaR.

Bearing in mind the relevance of sample size for historical VaR, we compute three different VaR
series where the only two distinctions between them are the sample size of the volatility-adjusted returns
and if the volatility adjustment is performed or not. These variants use 250, 750 and 1000 daily
observations, enabling us to analyze how the selection of sample size impacts the VaR estimates and
their sensitivity to market conditions over different time horizons.

Officially, we compute the A-day 1000% volatility-adjusted Historical VaR as minus the a-quantile

of the sample of volatility-adjusted returns.
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4.4.4. Quantile Regression VaR

The Quantile Regression VaR is an advanced risk assessment model that estimates potential portfolio
losses under different scenarios, focusing on specific quantiles of the return distribution (Koenker &
Bassett Jr, 1978).

This VaR model uses quantile regression to estimate conditional percentiles of the return
distribution, based on explanatory variables like volatility or economic conditions (Steen et al., 2015).
Unlike ordinary least squares (OLS), which minimizes the sum of squared residuals to capture the
average relationship between predictors and response, quantile regression focuses on specific percentiles
by minimizing a weighted sum of residuals—using different weights depending on whether observations
fall above or below the target quantile.

The a-quantile is the value below which a part of alpha of the distribution falls. The quantile

regression achieves this by minimizing the asymmetric loss function:
G = arg Min %oy a(Vi = 4a) yi—ge0 + (@ = DOi = a)ly—ge<o- (25)

where a(y; — qq)ly,—q,>0 are the observations above the quantile, a(y; — qq)ly,—q,<0 are the
observations below the quantile and I, _, <o is an indicator function that takes the value 1 if y; < g4
and 0 else. Similarly, I,,_4 ¢ takes a value of 1 if y; > g, and O else.

For a quantile regression model on a portfolio’s returns, if y represents the portfolio returns and x

an explanatory variable, in this case the volatility, the quantile regression model becomes:

y=a+bx+eg, (26)

where a and b are parameters estimated by minimizing the quantile-specific loss function. The estimated

quantile regression equation for a quantile g, is:

Qay = @ + bx (27)

Hence, the a-QR VaR can be calculated as:

VaRp, = —qqy = —(@+ bx) (28)
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ModelID Description

Parametric NormalVaR

SGSt with a rolling sample of 250 observations

SGSt with a rolling sample of 600 observations

SGSt with a rolling sample of 800 observations

Historical with a rolling sample of 250 observations & without Volatility Adjustment
Historical with a rolling sample of 750 observations & with Volatility Adjustment
Historical with a rolling sample of 1000 observations & without Volatility Adjustment

QR with a rolling sample of 1000 observations, with constant & 2 explanatory variables
QR with a rolling sample of 1000 observations, with constant & 1 explanatory variables
QR with a rolling sample of 1000 observations, without constant & 1 explanatory variables

© 00 N4 O OB WON -

=
o

Table 3. Model numbers and respective description. With the exception of model 8 that has two
explanatory variables and for that reason has two A, that is A = 0.94 for variable 1 and A = 0.85 for
variable 2, the remaining models considered use a EWMA volatility model with 1 = 0.94 for each
volatility estimates. The rolling samples on the SGSt and QR models are the sample of returns used to
estimate the models’ parameters.



Chapter 5

BACKTEST AND MODEL SELECTION

On Chapter 4 we explained the methods utilized to estimate all the models considered for use in our
portfolio. In total, we calculated 10 different models with diverse settings and for each we obtained a
time series of daily historical VaR estimates over 11 years, between 19 December 2011 and 27 January
2023. We refer to this test period as the global period. The next step is to evaluate the performance of
each model and select the best one to use for the next year.

The key performance metric considered for this purpose is the number of exceedances, and since
we are working with daily data, we identify an exceedance as an occurrence where the actual return for
the day is worse than the VaR estimate for that same day. To assess these exceedances, we use two
inference tests: the UC (Kupiec, 1995) and the BCP (Berkowitz et al., 2011), where the former measures
the number of exceedances and the latter assesses the autocorrelation between exceedances.

While both tests evaluate model performance from distinct standpoints, our main decision criterion
is the UC test results. The BCP test is used as a secondary measure to distinguish between models with
similar UC test performance. We took this approach because a model with a low number of exceedances
might still fail the BCP test if those exceedances are clustered or occur over a short period of time,
depending on the test lag. Inversely, a model with a higher number of exceedances may be able to pass
the BCP test if those exceedances are more widespread over time.

We perform the UC and BCP tests not only over the entire global period, but also, where relevant,
for each individual year within that period. Evaluating model performance over specific time periods
allows us to analyze how a model behaves under certain market conditions or to predict its performance
if similar conditions occur in the future. Nevertheless, our final decision is based predominantly on the
results for the global period, as this provides a more uniform and complete picture.

With this in mind, we have tried to optimize the settings of each model to maximize the results of

the UC for the global period.

5.1. Unconditional Coverage Test

The UC test is well specified if the number of exceedances is within the significance level a of the VaR
model (Alexander, 2009). 1f we recall VaR’s definition, there is an o probability that the loss will be
worse than the VaR. Since we are estimating the VaR at the 99% confidence level (@ = 1%), we expect
a number of exceedances of 1% the sample used to compute the VaR (ex. 500 observations X 1% =

5 expected exceedances).
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Officially, for a sample of n observations, we specify an exceedance for each observation via an
indicator function as:

I — {1, lf T‘t < _Valea,t (29)
at 0, otherwise

where 17 is the return at day t and VaR, , ; is the VaR estimated at day t. We are thus left with a series

of n observations, each of which is either 1 or 0, dependent on the indicator function above.
Specifically, we test whether the null hypothesis that the indicator function, that is assumed to

conform to an i.i.d. Bernoulli process, has a probability equal to « of the VaR model (Alexander, 2009).

The formulation of the null and alternative hypotheses for the UC test is as follows:

Hy : Tops = Texp = & (30)
Hi: Tops # Mexp,

where 1,5 and 7., are the observed and expected exceedance rates, correspondingly.

The test statistic 1s defined as:

Texp )”1 (1 — nexp) ’ 31

where n; and ny = n — n, are the number of exceedances and non-exceedances.
This test under the null hypothesis follows a chi-squared distribution with one degree of freedom:

—21In(L Ryc)~X2.

5.2. BCP Test

The BCP test is well specified when the exceedances are independent from each other (Berkowitz et al.,
2011), this means that we are unable to predict when the following exceedance will occur by looking at
an exceedance that has previously incurred. That is, for all lags, autocorrelation must be 0. The BCP is
useful when, for instance, we estimate VaR on a daily basis and have an exceedance during a period
where we observe a spike on market volatility. This event might lead to further exceedances over the
next trading days, a so-called exceedance clustering, and suggest that the model is not fast enough in
adapting to recent volatility increases. The BCP test signals this type of market events.

The formulation of the null and alternative hypotheses for the BCP test is as follows:

Hy:pp = 0,forallk € {1,...,K} (32)
Hy:3k € {1,...,K} such that p, # 0,
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where py, is the lag k autocorrelation of the series of n observations where each observation is either 1
or 0, specified by the indicator function of the UC test and K is the maximum autocorrelation lag
accounted for in the test.

The test statistic is defined as:
(33)

P
n—k’

K
BCP (K) = n(n+2)

where n is the sample size of the test.

This test under the null hypothesis follows a chi-squared distribution with K degrees of freedom:
BCP (K)~XZ. We have the freedom to pick the lag K, but it is essential to understand the implications
of opting for a larger or smaller K. A larger K gives information about higher order autocorrelations.
Nevertheless, because the test statistic under the null hypothesis follows a chi-squared distribution with
K degrees of freedom, an increase in K leads to an upward shift in the critical value, which makes it
more difficult to reject the null hypothesis. By contrast, choosing a smaller K increases the sensitivity
of the test, but ignores autocorrelations for lags larger than K. Recognizing these tradeoffs, we compute
the BCP test for K = 1 up to K = 10, which allows us to detect autocorrelations up to the 10" lag while

preserving an acceptable level of sensitivity.

5.3. Backtest Results

In this section we evaluate the performance of each model for the global period of 11 years from 19
December 2011 and 27 January 2023 and sub-periods when relevant, using the UC and BCP tests
described earlier and considering the different characteristics of each model mentioned on Chapter 4.
With this, we will conclude which model to use for our current portfolio composition.

For the chosen global period we have n = 2900 observations, which means that for a VaR model
with a significance level of @ = 1%, we expect 2900 X 1% = 29 exceedances. In statistics, normally
we reject the null hypothesis when the p-value is below 5%, with that, both the UC and BCP tests are

accepted when the null hypothesis is not rejected, that is, when the p-value is above 5%.
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Table 4 presents the results of the UC test for each model considered for the global period.

Model Model ID Global Period
No. of Exceedances Exc. Rate (%) p-value (%)

Parametric Normal 1 59 2.03% 0.00%
2 71 2.45% 0.00%
SGSt 3 33 1.14% 46.51%
4 33 1.14% 46.51%

5 35 1.21% 27.81%

Historical 6 54 1.86% 0.00%
7 34 1.17% 36.37%

. 8 37 1.28% 15.22%
Quantile 9 28 0.97% 85.11%

Regression

10 34 1.17% 36.37%

Table 4. UC Test results for each model. The bold models pass the test (p-value > 5%).

Through Table 4, we can, not surprisingly, reject the Parametric Normal model. Its wrong
assumption of a normal distribution of returns is the reason for the high number of exceedances. The
UC Test also rejects Model 2, which assumes a T-distribution with a rolling window of only 250
observations, and Model 6, which uses the historical empirical distribution with the volatility adjustment
with a rolling window of 750 observations.

Looking at the other models, we can see that Model 9 (QR VaR with constant and 1 explanatory
variable) clearly outperforms the others, by presenting a similar number of exceedances to the predicted
ones and lower than the other models.

We are now going to confirm the choice of model by looking at the results of the BCP test:

p-value (%)

Model Model ID
Lag1 Lag 2 Lag3 Lag4 Lag5 Lag6 Lag7 Lag 8 Lag9 Lag10
SGSt 3 0.00% 0.00% 0.02% 0.03% 0.06% 0.09% 0.16% 0.28% 0.35% 0.04%
4 0.00% 0.00% 0.02% 0.04% 0.08% 0.12% 0.21% 0.36% 0.45% 0.06%
Historical 5 0.01% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

istorica

7 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Quantile 8 0.34% 0.68% 1.61% 3.08% 5.15% 5.42% 7.94% 7.94% 7.88% 0.74%
Regression 9 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
10 0.00% 0.01% 0.03% 0.06% 0.12% 0.23% 0.39% 0.64% 0.81% 0.13%

Table 5. BCP Test Results. The bold value has a p-value superior to 5% and indicates which model passes the
BCP Test.

By looking at Table 5, we can clearly see that all models performed poorly, except for Model 8 that
managed to pass the test from Lag 5 to Lag 9. With this, we feel that, to make the best decision, we need
to analyze the results of each sub-period of the UC Test.
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2023-2022 2022-2021 2021-2020 2020-2019 2019-2018 2018-2017
Model ID Exc. p-value Exc. p-value Exc. p-value Exc. p-value Exc. p-value Exc. p-value
3 04% 25.4% 1.2% 80.8% 1.9% 18.4% 1.2% 80.8% 1.5% 419% 0.8% 69.7%
4 0.4% 25.4% 12% 80.8% 1.9% 18.4% 12% 80.8% 1.9% 18.4% 0.8% 69.7%
5 2.7% 23% 04% 25.4% 1.9% 18.4% 0.0% 22% 2.3% 7.0% 0.8% 69.7%
7 1.2% 80.8% 0.0% 22% 3.5% 0.2% 0.4% 25.4% 3.1% 0.7% 0.8% 69.7%
8 0.8% 69.7% 0.4% 25.4% 2.3% 7.0% 0.4% 25.4% 2.3% 7.0% 0.4% 25.4%
9 0.4% 25.4% 0.0% 22% 15% 41.9% 0.8% 69.7% 2.7% 23% 0.8% 69.7%
10 04% 254% 08% 69.7% 1.5% 41.9% 1.2% 80.8% 1.5% 41.9% 0.8% 69.7%
2017-2016 2016-2015 2015-2014 2014-2013 2013-2012
Modet ID Exc. p-value Exc. p-value Exc. p-value Exc. p-value Exc. p-value
3 0.8% 69.7% 1.9% 18.4% 19% 184% 1.2% 80.8% 0.0% 2.2%
4 0.8% 69.7% 19% 18.4% 1.2% 80.8% 1.5% 41.9% 0.0% 2.2%
5 0.4% 25.4% 15% 41.9% 19% 18.4% 1.2% 80.8% 0.4% 25.4%
7 0.8% 69.7% 3.1% 0.7% 0.4% 25.4% 0.0% 2.2% 0.0% 2.2%
8 0.8% 69.7% 2.7% 23% 12% 80.8% 0.8% 69.7% 0.0% 2.2%
9 08% 69.7% 19% 18.4% 15% 41.9% 0.4% 25.4% 0.0% 2.2%
10 0.8% 69.7% 19% 184% 19% 184% 15% 41.9% 0.8% 69.7%

Table 6. UC test results for each annual sub-period. The bold entries in the dates column indicate the
tests that pass that specific sub-period, while the bold entries in the models column indicate the tests that
pass all of the sub-periods considered.

As we can clearly see in Table 6, the different models exhibit similar behavior, but there is an

outperformance of consistency over the different time periods by Model 10, being the only one that

successfully passes the UC test for all periods. Therefore, Model 10 (QR VaR with a rolling sample of

1000 observations, without constant and 1 explanatory variable) is the VaR Model chosen for our

portfolio.
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On Figure 1 we can observe the daily VaR estimates for model 10 compared to the portfolio’s daily

P&L for the global period of Backtest.
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Figure 1. QR VaR Backtesting Performance. The red dots correspond to the exceedances of the model across
the global period of backtesting.

We can conclude that overall, the exceedances are decently spread across the observations apart
from the last quarter of 2014, the first quarter of 2018 and the third quarter of 2021 where the model
underperforms with several exceedances happening within a low number of days. On Table 7 we can

get a more detailed overview of the exceedances of the backtesting period.
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Date of

Exceedance (% of

Exceedance VaR€ P&L€ Exceedance € VaR)

2022-09-13 -552002 198 € -721367099 € -169364901 € 30.68%
2021-09-28 -337288709€ -347881579€ -10592870€ 3.14%
2021-02-25 -419414 953 € -422738934 € -3323980€ 0.79%
2021-01-27 -372848420€ -375612590 € -2764170€ 0.74%
2020-06-11 -605 966 863 € -715587 303 € -109620440€ 18.09%
2020-03-09 -961959599€ -1165218939€ -203259340€ 21.13%
2020-02-24 -379919053€ -593806 062 € -213887009€ 56.30%
2020-01-27 -216591191€ -265946 349 € -49 355158 € 22.79%
2019-08-05 -316 013375 € -474 990989 € -158977613 € 50.31%
2019-05-13 -322178540€ -425542992 € -103364451€ 32.08%
2018-10-24 -554 932948 € -597 300648 € -42 367700 € 7.63%
2018-10-10 -306 570486 € -649 367920 € -342797434 € 111.82%
2018-06-25 -328619570€ -369 768 605 € -41149035€ 12.52%
2018-02-05 -397 160642 € -458 861883 € -61701241¢€ 15.54%
2018-02-02 -292 560190 € -358658 372 € -66 098 182 € 22.59%
2017-05-17 -251559035€ -457662471€ -206 103436 € 81.93%
2016-09-09 -218900712€ -390976 716 € -172076 004 € 78.61%
2016-06-24 -251833805€ -529410429€ -277 576624 € 110.22%
2016-02-05 -485639 886 € -597 204936 € -111565050 € 22.97%
2016-01-07 -296 871848 € -356718917€ -59847 068 € 20.16%
2015-08-24 -515568 759 € -615105367 € -99536 608 € 19.31%
2015-08-21 -387697 356 € -565 096 559 € -177399204 € 45.76%
2015-08-20 -291659970 € -429 578679 € -137918708€ 47.29%
2014-12-10 -272504 554 € -322113192€ -49608 638 € 18.20%
2014-10-07 -243913172€ -347955 137 € -104 041965 € 42.66%
2014-07-31 -238911479¢€ -249601 003 € -10689523€ 4.47%
2014-07-25 -201536 000 € -214 827858 € -13291858€ 6.60%
2014-04-10 -286794 081 € -330487539€ -43693458 € 15.24%
2014-01-24 -218039597 € -357995204 € -139955607 € 64.19%
2014-01-13 -172227 636 € -193152577€ -20924941€ 12.15%
2013-11-07 -248245759 € -260677700€ -12431941¢€ 5.01%
2013-08-27 -224786815€ -226 882967 € -2096 151 € 0.93%
2012-11-07 -283760260 € -287500983 € -3740723€ 1.32%
2012-06-01 -330704978€ -335301853¢€ -4596 875 € 1.39%

Table 7. QR VaR (Model 10) backtesting period exceedance details.

We can observe that in 2014, 2015 and 2018 several exceedances occur within only a few days of

distance, which is captured by the BCP test.
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Chapter 6

VALUE-AT-RISK MANAGEMENT

Risk managers define EC as the portion of capital exposed to potential loss based on the portfolio’s
behavior over a specific time frame and confidence level. Since VaR quantifies this exposure, EC and
VaR hold the same numerical value. By setting a target EC for the portfolio, firms can proactively shape
their risk management strategies around that benchmark.

Going forward we measure the VaR with model 10 chosen in Chapter 5 that is: QR VaR with a
rolling sample of 1000 observations, without constant and 1 explanatory variable (EWMA with A =
0.94). Considering the latest 10 observations before 30 January 2023 the VaR estimates were in the
range between €500 million and €600 million, so, if we consider a daily EC below €525 million, it
corresponds to 3.91% of the initial portfolio value which will be the percentage of VaR of the total
portfolio that we will aim for. Additionally, since we actively manage our portfolio, we also impose
limits of contribution to the VaR estimate of 12.5% per asset and 10.5% of currency risk.

In order to comply with the EC target we adopt the following procedure: each day, just before
markets close, we assess the portfolio’s current composition to estimate the next day’s VaR. If this
estimate exceeds 3.91% of portfolio value, we immediately adjust the portfolio using a predefined
strategy to bring the new VaR below the threshold. We repeat this process daily from 30 January 2023
through 2 February 2024, continuously monitoring and modifying the portfolio to maintain risk within
the set limit.

When it comes to the individual risk limits, using the Marginal VaR, which is the decomposition of
the VaR into individual contributions, we can verify if the violation is from currency risk, if so, we adopt
a hedging strategy. If the issue comes from an individual asset, we rebalance our portfolio by selling a
percentage of that asset and investing the same amount into another asset. Both strategies decrease the
total risk of the portfolio, reducing the VaR estimation.

Section 1 presents the marginal VaR decomposition methodology.

6.1. VaR Decomposition and Management Strategy

We define the gradient vector V to capture how the portfolio’s VaR responds to small shifts in each of
the n risk factor exposures, starting from their current values, denoted by ®. The decomposition vector
S reflects the portfolio’s present exposure to each individual risk factor 6; tailored to the decomposition
method we’ve chosen. To calculate the first sensitivity in V, we introduce a small perturbation € (e.g.

€1). We then slightly adjust only the first risk factor exposure 8; by ¢ as follows:
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0, +¢ (34)

O

with this we generate the return time series for the perturbed portfolio ®,, which reflects the e-adjusted

exposure to the first risk factor. We then compute the new VaR, denoted VaRg,. The first sensitivity

VaR@1 —VaR@

component in the gradient vector V is calculated as: . We repeat this procedure for each

exposure 0; perturbing one factor at a time until we derive the full set of sensitivities across all » risk
factors.

Finally, we obtain the marginal VaR as:

MarginalVaR = STV (35)

The decomposition done is up to the analyst and in our case, we will first decompose the VaR

estimate by asset class.

Asset Class
Description Total
Equity Bonds
VaR (%) 2.57 0.00 2.57
VaR (EUR) 507 961442 242 969 508204 411
VaR Decomposition (%) 99.95 0.05 100.00

Table 8. VaR decomposition by asset class. This table illustrates each asset class contribution to the VaR
estimate for 2 February 2024.

We observe that equity exposure is the main contributor to a higher VaR which is in line with the
portfolio composition showcased before. With this, and since we have individual limits, we will

disaggregate the contribution of each asset for the total VaR and the currency risk factor.
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Contribution

Asset Contribution %
(EUR)

MSFT 41969 154 8.26%
AAPL 27917 364 5.49%
NVDA 155784 854 30.65%
AMZN 46811015 9.21%
GOOGL 70115097 13.80%
UNH -4 846 388 -0.95%
MA 9447789 1.86%
CRM 11704732 2.30%
WMT 1331650 0.26%
T™MO 4065 095 0.80%
ADBE 18648 729 3.67%
ORCL 3711451 0.73%
CAT 5919361 1.16%
SPGI 3164310 0.62%
BKNG 13854574 2.73%
VRTX 1693 853 0.33%
CMG 6590711 1.30%
ORLY 1669 366 0.33%
HSY 1683113 0.33%
MC.PA 9099 405 1.79%
ASML 42 456 295 8.35%
CDI.PA 875730 0.17%
TPL 5284 686 1.04%
9104.T 477 814 0.09%
NFLX 13806 109 2.72%
GE 1776 609 0.35%
MCO 2391888 0.47%
VMC 2006 369 0.39%
SHEL.L 935930 0.18%
WFC 987 162 0.19%
CNR.TO 1793293 0.35%
MCD 1981958 0.39%
JPM 2852364 0.56%
NL0015001DQ7 -132804 -0.03%
US91282CJzZ59 958 965 0.19%
DE000BU2Z015 -583 192 -0.11%
Currency 47 450 837 9.34%
Total (excl currency) 508 204 411 100%

Table 9. VaR decomposition by asset and currency risk factor. This table illustrates each individual asset
contribution and the currency risk factor contribution to the VaR estimate for 2 February 2024.

Given the above, we can conclude that, although the VaR limit is not exceeded, we have breaches
of individual contributions on NVDA and GOOGL. We will tackle this issue by rebalancing the
portfolio, that is, by selling a certain number of shares of those companies and reinvesting that amount

in different assets. If the currency limit is also breached, we can solve both problems with two trades if
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we reinvest in an asset quoted in EUR. This way we reduce both the individual exposure to those
companies and currency risk.
On the other hand, if we only have a non-compliant exposure to currency risk, we will add short
positions on FX futures contracts to hedge and bring both the portfolio risk and currency risk down.
Finally, whenever the VaR estimate for the next trading day is above €525 million (or 3.91% of the
total portfolio value) we can use both strategies defined above depending on the size of the exceedance.
Both options are managed and adjusted daily so that, if a short position is not needed, we will remove

it. We repeat this process daily until 2 February 2024.

6.2. VaR Management

For evaluation reasons, we define the portfolio with the hedging strategy implemented as Hedged
Portfolio and the same portfolio without the strategy as Unhedged Portfolio.
Figure 2 below illustrates the daily VaR estimates for both the Unhedged and Hedged portfolios

for estimation period.
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Figure 2. Daily VaR estimates in euros for both portfolios.
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In Figure 3 below we can observe the hedging positions we took throughout the year to reduce FX

risk.
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Figure 3. Currency risk hedging positions

Figure 4 below displays the maximum daily Marginal VaR from all risk factors across the

estimation period.
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Figure 4. Maximum daily Marginal VaR as a percentage of the Total VaR for both portfolios across the estimation

period.
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Table 10 illustrates the rebalancing trades of the Hedged portfolio during the period.

Date Ticker T.rade No. of N.e.w T.rade No. of

Signal Shares Positions _Signal Shares
ORCL 1300000
30-Jan NVDA Sell -2946 932 VRTX Buy 400000
GE 1000000
MCD 500 000
SHEL.L 6388 334
1-Feb GOOGL  Sell -2054 526 WrC Buy 3217562
MCO 451160
VMC 627 765
GOOGL -2677117 MC.PA 1057308
3-Feb MSFT Sell -1155930 MA Buy 1858339
AMZN -2559625 CDI.PA 364813
NVIDIA -592566 WMT 6837 054
9-Feb GOOGL  Sell -2137454 AMZIN Buy 9784360
24-Feb  NVDA Sell -568472 MSFT Buy 3767964
27-Apr  AMZN Sell -1877204 ADBE Buy 2000724
28-Apr MSFT Sell -193594 VRTX Buy 934128
8-May AAPL Sell -1178257 GE Buy 5011855
26-May  NVDA Sell -1082605 GOOGL Buy 10007512
29-May  ASML Sell -76859 ORCL Buy 3255820
27-Jul MSFT Sell -172178 AMZN Buy 8275907
31-Jul MSFT Sell -189597 CRM Buy 1834400
7-Aug AMZN Sell -1969989 ORCL Buy 5280653
3-Oct  GOOGL Sell -1843693 CMG Buy 278 689
26-Oct GOOGL  Sell -1261303 GE Buy 6 606 163
25-Jan  ASML Sell -436612 GE Buy 9626 106

Table 10. Rebalancing trades.

We observe from Figures 2 and 3 and from Table 10 that whenever the VaR exceeds the target of
€525 million, a short position on the pair EUR/USD is opened or a portfolio rebalancing is done. Due
to this combined strategy, the VaR of the Hedged portfolio is kept at a maximum of €525 million and
the individual contributions to the VaR inside the pre-established boundaries of 12.5% per stock and
10.5% of currency risk.

From Figure 4 we can conclude that the combined strategy was clearly successful in reducing the
individual risk contributions of each risk factor and maintaining the values inside the boundaries.

Figure 5 below presents the daily P&L for both portfolios for the one year period. Figures 6 and 7
illustrate the Unhedged and Hedged VaR (as a loss) performance for the period.
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Figure S. Daily P&L of both portfolios for the one year period.
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Figure 6. VaR Performance for the Unhedged portfolio.
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Figure 7. VaR Performance for the Hedged portfolio.
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We observe from Figure 5 that the Unhedged portfolio has more volatility on its daily P&Ls than
the Hedged Portfolio (see Appendix B for the 22-day rolling volatility process plot). This discrepancy
is more obvious for periods with larger short positions or portfolio rebalancing, for instance between
April 2023 and July 2023.

From Figures 6 and 7 we can conclude that, for the estimation period, both Unhedged and Hedged
VaR models did not have any exceedance, indicating that model was effective in capturing the risk of
both portfolios.

Figure 8 below shows the daily cumulative P&L for both portfolios for the one year period.
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Figure 8. Cumulative P&L of both portfolios.

We can see from Figure 8 that both portfolios return a profit for the year. However, the profit for
the Unhedged was higher than the Hedged. This can be explained by the reduction of exposure to certain
assets on the Hedged portfolio through the portfolio rebalancing to comply with the individual exposure
limits and increase diversification. This indicates that, for the bull market in question, the Unhedged
portfolio has a higher profit than the Hedged portfolio, although it has a higher risk profile.

Table 11 below illustrates the returns for both portfolios.

Portfolio
Unhedged Hedged

P&L (€M) 6324€ 3894¢€
Return % 47.94% 29.13%

Indicator

Table 11. Returns in euros and in % for both portfolios.

We can conclude that the Hedged portfolio underperformed the Unhedged portfolio as previously
shown by Table 11. Nevertheless, both annualized volatility and max drawdown (see Appendix B.1.)
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illustrate that both portfolios have different risk profiles with the Unhedged portfolio being riskier than
the Hedged portfolio, as it should. This states the necessity for a risk-adjusted performance metric to
make this comparison fair.

The RORAC (Matten, 1996) compares the performance with the risk incurred to attain it. We
compute the RORAC as:

P&L (36)
RORAC = —,
EC
where P&L is the P&L for the estimation period, in our case, one year, and EC is the sum of the daily
EC (measured by the VaR) throughout the year.

Table 12 below shows the RORAC for the estimation year for both Unhedged and Hedged

portfolios.
Portfolio
Unhedged Hedged
P&L (€M) 6324€ 3894 €
EC(€EM) 123941 € 93015€
RORAC % 5.10% 4.19%

Table 12. RORAC for the one year period.

We can conclude that the Unhedged portfolio, although it has a riskier profile, proved to be more
efficient than the Hedged portfolio due to the bullish market conditions during the estimation period,

presenting a difference in performance of 0.92% against the latter.
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Chapter 7

CONCLUSION

This thesis aimed to actively monitor and control the daily VaR of the portfolio over a one year period
- from 30 January 2023 to 2 February 2024. The core objective was to keep VaR within a predetermined
limit while also managing the individual risk contributions from each component within the portfolio.

The portfolio studied was composed of part equities and part bonds from U.S., European and Asian
markets. To measure the market risk there are several classes of VaR models, so, to define the better
suited model to our portfolio, we computed four different models: Parametric Normal VaR, SGSt,
Historical and QR. Inside these classes, we calculated 10 different models so that we had a broad range
to analyze and choose from. We evaluated each model’s performance using a backtesting procedure that
incorporated both the UC and BCP tests.

The Backtest analysis using the portfolio composition on 30 January 2023 presented expected
results. We computed the VaR at the 1% significance level and the Parametric Normal VaR, which
assumes returns follow a normal distribution, failed the Backtest, indicating that the returns of our
portfolio were not normally distributed and that the model is unfit. Still in the parametric world, the
SGSt VaR model aims to solve the limitations of the Parametric Normal model, passed the Backtest and
became one of the possible models to suit our portfolio. Out of the parametric landscape, the Historical
VaR models passed the Backtest but did not impress, so they were not considered. Finally, the QR VaR
models passed the Backtest and presented solid results for our portfolio and, similarly to the SGSt
Models, was considered for our portfolio. After extra analysis, we decided on the QR VaR due to its
more flexible adaptation to market conditions, something useful for our rebalancing strategy. With this,
we used the QR VaR with a rolling sample of 1000 observations, without constant and 1 explanatory
variable model.

To manage the VaR, based on more recent observations, we chose a daily limit of €525 million and
individual contributions limits of 12.5% per asset and 10.5% of currency risk. From 30 January 2023,
every time the VaR or the assets surpassed those limits, a hedging strategy would be applied to the
portfolio.

The first time one of those boundaries was crossed was on the first date, 30 January 2023, where
we performed a portfolio rebalancing by selling an individual asset and reinvesting the same amount in
other assets to solve that exposure limit, increase diversification and reduce the risk profile of our
portfolio. The other hedging strategy used, when needed, was shorting the EUR/USD pair every time
the VaR surpassed the €525 million limit. The latter was revised daily and, if not necessary, removed

entirely. This methodology was repeated daily for the whole one year period and, for comparison
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purposes, we defined the portfolio without the hedging strategy as Unhedged portfolio and the one with
the strategy as Hedged portfolio.

Results displayed that the hedging strategy was successful in keeping the VaR at a maximum of
€525 million and the individual contribution per asset and the currency risk below 12.5% and 10.5%
respectively throughout the year. If the hedging strategy was not applied, all the pre-established limits
would have been broken several times across the estimation period. Finally, to be able to fairly compare
the returns from both portfolios, we used the RORAC risk-adjusted performance metric that allowed us
to conclude that while the hedging strategy was able to reduce the risk profile of the portfolio, the
Unhedged portfolio was more efficient given the bullish market conditions, generating a difference in

performance of 0.92% against the Hedged portfolio.
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Appendix A

Cash Reinvestments

In the table below we present the reinvestments of each bond cash flows that matured across the one

year period.

Date Stock  Number of Shares
16-Jan-23 ASML 7070
17-Feb-23 UNH 8916
16-Aug-23 MC.PA 16 295
18-Aug-23 SPGI 11042

Table 13. Cash reinvestments.

45






Appendix B

Additional Risk Indicators

Figure 9 shows a 22 day rolling volatility process for both Unhedged and Hedged portfolios across the

one year period. This delivers further information on the risk profile of each portfolio and if the hedging

strategy successfully reduced the risk of the Hedged portfolio.
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Figure 9. Rolling Volatility process for both portfolios.

B.1. Annualized Volatility and Max Drawdown

With the same purpose, Table 14 presents the annualized volatility and the max drawdown for both

portfolios to verify the effectiveness of the hedging strategy and the difference of risk incurred between

both portfolios.
. Portfolio
Indicator
Unhedged Hedged
Volatility (%) 16.73% 13.91%

Max Drawdown (%) -7.80% -6.81%

Table 14. Annualized Volatility and Max Drawdown for both portfolios across the estimation period.
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Appendix C

VaR vs Pre-defined Economic Capital Limit

In Figures 10 and 11 we can observe the VaR behaviour for both Unhedged and Hedged portfolios
compared to the pre-defined EC. With this we can conclude that the hedging strategy successfully
maintains the VaR below the pre-defined EC limit for the Hedged portfolio.
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Figure 10. Unhedged Portfolio: Daily Total VaR vs EC Limit.

-200€

Millions

-250€

-300€

-350€

-400 €

-450 €

Potential Loss in Euros

-500€

-550 €
30-Jan-23 30-Apr-23 31-Jul-23 31-Oct-23 31-Jan-24

TotalVaR ===~ Economic Capital

Figure 11. Hedged Portfolio: Daily Total VaR vs EC Limit.
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