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Resumo

Para o reconhecimento de monumentos arqueolégicos em imagens de satélite, os es-
pecialistas utilizam conhecimento de dominio e a sua experiéncia. No entanto, métodos
automatizados de detecgao de objetos, em geral, dependem apenas das imagens, funcio-
nando, no entanto, como ”caixas pretas”. Esta técnica também tende a retornar uma alta
taxa de falsos positivos, especialmente no caso de monumentos de pequenas dimensoes.
Para que as maquinas possam utilizar o conhecimento de dominio, é necessario torna-lo
interoperavel mas, para isso, € necessario superar o desafio levantado pela dispersao e
fragmentacao dos dados. Este estudo aborda essa questao, ao converter conhecimento
de dominio de fontes diversas e multidisciplinares em um formato legivel por maquina e,
assim, poder contribuir para reduzir os falsos positivos na detecgao de objetos. A imple-
mentagao de um Knowledge Graph (KG), usando como modelo estrutural o CIDOC-CRM,
sua extensao CRMgeo e GeoSPARQL, permitiu a integracao de informagoes sobre sitios
arqueolégicos e da geografia onde estes estao localizados. Combinando dados textuais
com dados espaciais o KG fornece insights sobre elementos de uma cena que podem nao
ser diretamente visiveis nas imagens. Posteriormente, os resultados de uma abordagem
de deteccao de objetos usando técnicas de Visao Computacional foram integrados no KG
para treinar um modelo hibrido KG-Machine Learning (KG-ML) para identificar areas de
interesse (AOIs) onde serd mais provavel encontrar dolmens. O modelo utiliza o conheci-
mento contextual da area de modo a excluir imagens com baixa probabilidade e melhorar

a precisao da deteccao.






Abstract

Experts use domain knowledge and experience to identify and analyze archaeological
monuments from satellite images. However, traditional object detection methods often
rely solely on image data and operate as ”black boxes,” which frequently results in false
positives, especially when detecting small archaeological sites. For machines to effectively
leverage domain knowledge, it must be organized in an interoperable format, address-
ing the challenge posed by scattered and fragmented data, particularly across multiple
disciplines. This study tackles this issue by converting domain knowledge from diverse
and multidisciplinary sources into a machine-readable format to reduce false positives
in automatic object detection. The study links information about archaeological sites
and their landscapes by implementing a Knowledge Graph (KG) based on CIDOC-CRM,
its CRMgeo extension, and GeoSPARQL ontologies. This KG integrates textual data
from semantic records with spatial data from vector topographic maps, encompassing (i)
metadata definitions, (ii) general and specific concepts, and (iii) the geometry of each
represented entity. This representation can provide insights into elements within a scene
that may not be visible in images. Subsequently, the output from an object detection
approach was integrated with the KG to train a Knowledge Graph-Machine Learning
(KG-ML) model. This model identifies areas of interest (AOIs) where dolmens in Pavia,
Mora (Portugal), are likely to be found, using contextual knowledge to exclude images
with a low probability of accurate detections. The KG-ML approach effectively reduced
false positives, providing contextual information that clarifies recognition decisions and

enhancing the understanding of detected sites.
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CHAPTER 1

Introduction

The expertise of specialists and information about the target is crucial in manual image
analysis [9] — a combination here referred to as domain knowledge. Domain knowledge
in archaeology combines visual and spatial analysis with ancient and modern landscape
perceptions searching for greater meaning in findings [10]. In contrast, existing automatic
data-driven approaches, such as object detection, process Remote Sensing Images (RSI)
using algorithms and Machine Learning (ML) techniques [11], often exclude the knowledge
critical to human experts. Hybrid approaches that combine data-driven and knowledge-
driven methods [12] are currently seen as promising developments for automatic detection
in Remote Sensing (RS) and in the field of archaeology [6] to contribute to explainabil-
ity, ultimately leading to more robust object detection systems, particularly in complex
scenarios. These approaches leverage existing information, relationships, and contextual
understanding to make informed decisions, similar to human reasoning.

In this light, we aim at enabling machines, that is, automated systems, to leverage
domain knowledge about the local landscape to enhance the location of archaeological
remains through image classification. Towards this end, we explored knowledge-driven
methods to reduce the number of False Positives (FP) (or incorrect predictionsFP [13]) hits
returned by data-based image recognition methods. In archaeology, potential sites requires
manual intervention thus misidentifying non-archaeological characteristics is costly and
highly time-consuming. As datasets grow larger, the need for a more precise automated
recognition also increases especially when analyzing vast areas, where the occurrence of
numerous FPs can be troublesome. While the final interpretation will always rest with
the expert, reducing the amount of data for manual analysis allows specialists to focus on
other critical tasks, thereby optimizing the overall efficiency of the archaeological survey
process [14, 15, 16].

In this chapter, first, we describe the motivation for using hybrid approaches to identify
archaeological monuments in satellite images (Section 1.1). Next, we outline the problem
of using domain knowledge in archaeology and define our case study (Section 1.2). After-
wards, we present the research questions (Section 1.3) and research methods (Section 1.4)
used to guide and structure this thesis. After that, we reflect on the contribution and
a list of the publications derived from this project (Section 1.5). Lastly, we present the

dissertation outline (Section 1.6).



1.1. Motivation

The human mind can recognise a wide range of concepts through visual analysis, in-
cluding complex architectural styles. Often in architecture, categories are ambiguous,
overlap (e.g., castles and palaces), and include numerous subcategories (e.g., houses).
In addition to common categories like houses, castles and palaces, specialized categories
like megalithic monuments are less common and have fewer examples. Although lim-
ited examples are available, humans can recognize these categories through experience,
generalization and inference [17]. For example, [18] manually analyzed satellite images
to identify 187 dolmens recorded in Mora and Arraiolos (Portugal), with 60 monuments
successfully identified in the images. It took several months to analyze images from just
one year, 2017, to recognize these monuments. As remote sensing data increases, this
type of manual analysis becomes not only time-consuming but even insufficient.

In light of the increasing volume of data available for analysis, data-driven approaches
to recognize archaeological sites in RSI have become more and more prevalent. These
typically use Airborne Laser Scanning (ALS)/Light Detection and Ranging (LIDAR) [19,
20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31], satellite imaging (e.g., panchromatic, multi-
spectral and hyper-spectral) [16, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46],
or images from platforms such as Google Earth [47, 48, 49] and BING [50]. However, to
achieve accurate recognition, automatic visual recognition systems require thousands of
labelled examples per category [51, 52], requiring a large and diverse set of examples for
training [53]. Additionally, since objects vary in illumination, occlusion, and perspective,
these approaches have difficulty in recognizing real-world scenes [54].

Using ML techniques to analyze archaeological sites from satellite images when data
is scarse and categorically complexity make accurate classification difficult. However, this
challenge can be addressed by exploring the information humans use in manual analysis,
which is often overlooked by automated methods since, for several reasons that will be
discussed further along (like the nonexistence of a symbolic knowledge base gathering the
until now dispersed information) it is not easily incorporated into the workflow. Unlike
data-based approaches, humans leverage their experiences and previous knowledge to
identify objects. For example, to identify immovable archaeological monuments in RSI,
researchers traditionally recur to domain knowledge about the monuments’ and to the
topographical features of the surrounding environment (e.g., geology, soil type and use,
hydrology, and archaeological features) [53, 55]. The realization that manual identification
relies heavily on domain knowledge that automated systems may not fully consider led us

to explore ways of incorporating domain knowledge into recognition systems’ processes.

1.2. Problem Definition

Although most archaeological research relies on visual identification of past remains, the
majority of the remains are hidden from view, whether buried underground by environ-
mental processes, covered by modern towns, or by vegetation. The use of RSI helps to

2

identify these hidden, or so-called “invisible,” remains, at the same time that places them
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in much larger contexts [10]. However, regarding small and non-easily distinguishable
structure monuments in satellite images remains a challenge for identification, whether in
manual or automated analyses [34].

The surrounding landscape may have played a critical role in the choice for the place-
ment of monuments like megalithic structures [56], and although the landscape has evolved
over thousands of years, analyzing its characteristics can help identify patterns to distin-
guish Areas of Interest (AOI) [18]. For example, key patterns for dolmens location include
elevated terrain and proximity to natural rocky outcrops, water lines, and other similar
monuments [56]. Based on this knowledge, we can infer that hydrography, hypsome-
try, soil type, and land use data can assist in identifying an AOI to locate dolmens.
By analysing spatial relationships between these characteristics within a scene, we can
identify patterns to determine how environmental factors influence monument presence
and visibility. The main challenge, however, is acquiring data and information that can
be made interoperable and machine-understandable for automated approaches to use as
domain knowledge.

Obtaining domain knowledge for monument recognition involves integrating multi-
disciplinary information, such as landscape data from RS and Cultural Heritage (CH)
data from archaeology. Most researchers focus on well-defined entities that can help iden-
tification, which makes the detection dependent on the specialist’s interpretation that
establishes the relation between the visual entities and the known concepts [55]. How-
ever, prior information and relevant data tend to be kept by different communities and
institutions, which employ conceptualizations and formal definitions that usually do not
match. Take the example of geoinformation, traditionally represented by Geographic
Information Systems (GIS), while CH data tend to remain as records in museums and
historical archives [57]. This diversity of data and data sources is problematic when the
goal is to use this information in automated systems and to provide context to ML models.

To address the lack of interoperability, each community has developed ISO stan-
dard ontologies for information representation reflecting its particular focus. For ex-
ample, Geospatial Consortium (OGC) (GeoSPARQL) [58] was developed for geoinfor-
mation recording using a typical formalism suited for semantic web technologies. In
contrast, CH information tends to be represented using the CIDOC-Conceptual Refer-
ence Model (CRM) [59]. Since both ontologies provide standards for the specified areas,
if applied together, they can enrich a model with precise and well-identified descriptions
of site location — such as CRMgeo [57], which extends CIDOC-CRM.

Knowledge-Based (KB) techniques play a crucial role in achieving interoperability
by representing domain knowledge and also open the path to deal with the explainabil-
ity commonly amiss in traditional automated image recognition approaches [60]. For
instance, the symbolic representation of Knowledge Graph (KG) has gained increasing
attention in recent years due to its ability to integrate, organize, and allow for reasoning

over vast amounts of domain-specific and inter-related information, enhancing Al systems’



performance in tasks requiring contextual understanding. Information in KGs is repre-
sented semantically in a linked way, emphasizing relationships between entities. While
KGs excel in organizing and linking domain-specific knowledge, object detection focuses
on analyzing images, that is, image data to identify objects without necessarily consid-
ering the object’s underlying context. As it will be described in the next chapter with
the review of the related literature, many studies explore object detection to recognize
sites in RSI, and others explore ontologies and KGs to represent semantic information.
Despite the growing interest in both methods, their integrated application in representing
spatial data with monument information to assist in scene recognition is a recent trend

and remains virtually unexplored within the field of archaeology.

1.3. Research Questions

In light of the problem definition outlined in Section 1.2, this research was driven by the

following main reserach question (MRQ):

e MRQ: To what extent does the provision of landscape context information im-

prove the precision of automated systems in archaeological site object detection?

As previously stated, incorporating domain knowledge in data-based approaches offers
a promising avenue to provide contextual information that can enhance the performance
of automated methods and their explainability. With this understanding, we can identify
the potential of using domain knowledge with object detection. As a first step, we need
to review the current state of this approach in the archaeological field, which leads us to

the following more specific research question:

e RQ1: Are there approaches that combine data-based and knowledge-based meth-

ods to enhance the recognition of archaeological sites in satellite images?

After reviewing the state-of-the-art, we focus on two research avenues: one involves
implementing a data-driven model, while the other aims to implement a semantic model
to represent domain knowledge about the target object. This brings us to our second

research question:

e RQ2: How can contextual information about archaeological sites and their sur-
rounding environment be made interoperable to enable machine learning systems

to identify and use domain-specific knowledge?

Building on the findings derived from the implementations of data-driven and knowledge-
based methods, we also explore how to use the semantic model to improve the detection

of the data-driven approaches to answer our third specific research question:

e RQ3: Is it possible to improve the detection of small or non-visible objects in
data-driven approaches by incorporating semantic contextual knowledge for guid-

ance?

This three-part research question approach has lead to a model implemented in order
to enable answering the MRQ and thus achieve the main research goal: the proposal
4



of a hybrid KG plus ML method that uses symbolic knowledge to assist a sub-symbolic

method in the detection of dolmens in satellite images.

1.4. Research Methods

In this dissertation, archaeological sites featuring dolmens located in Pavia (Mora, Por-
tugal) is defined as the case study that serves as a basis for addressing our MRQ (the
target object and area of interest are described in Section 2). This focused approach
minimizes variability introduced by regional differences and ensures that the insights are
deeply rooted in the selected AOI characteristics.

To address RQ1, we conducted a systematic literature review, reported in Chapter 3.
Object-based and knowledge-based approaches in archaeology rarely perform together
despite being widely used separately. As a result, we determined two lines of analysis
to identify how these approaches are combined. The first focuses on understanding the
data-based approaches, specifically object detection techniques, used in archaeology to
identify monuments in satellite imagery. The second line of analysis investigates how
knowledge-based approaches represent archaeological and spatial information, explicitly
using ontologies and KGs. By combining insights from these two viewpoints, we aim
to evaluate the potential for integrating data-based and knowledge-based approaches to
improve the accuracy and reliability of monument recognition in satellite images.

For answering RQ2, we implemented a satellite image-based approach for recogniz-
ing dolmens, reported in Chapter 4. Next, we performed an implementation of a KG
as a Labelled Property Graph (LPG) to link the information gathered and make it in-
teroperable, which is reported in Chapter 5. Vector Topographic Maps (VITM)s with
hydrological, soil types, soil uses, topographic relief information and textual fonts con-
taining monument-related information were used to represent the knowledge. The schema
model here proposed uses CIDOC-CRM, CRMgeo, and GeoSPARQL ontologies as a base
to represent the information. The goal is to represent each entity (e.g., archaeological
sites and surrounding environments) as structured instances, capturing their attributes
and relationships.

To answer RQ3, the LPG was combined with the object detection outputs (bounding
box with scores and coordinates of analysed images considered as Point of Interest (POI)s)
to train an ML model, resulting in a KG-ML approach for identifying AOIs to recognize
dolmens, reported in Chapter 6.

As a result, we present a method that integrates domain knowledge in an interoperable
format, making it suitable for automatic archaeological site detection, whose applicability

was demonstrated through testing, demonstrating its ability to reduce false positives.

1.5. Contributions

This project contributes to archaeology as well as information science. As a result of
linking semantic and spatial information from various VI'Ms and semantic sources about
the dolmens, its landscapes and their locations into an LPG, we created a model that
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is human-machine-readable, interoperable, and capable of organizing data from various
sources and formats. This model allows users to trace the origin of each piece of infor-
mation, making the data reusable and, by centralizing everything in one place, easily
accessible and findable. As the LPG acts as a reviewer, it operates independently of the
object detection method, being agnostic and capable of utilizing outputs from any other
approach, validating and refining the results from data-based recognition approaches.

To our knowledge, this is the first time an LPG has been used to review automated
archaeological site recognition to provide context to identify AOIs and minimize FPs.
Through the usage of well-known and accepted ontologies to implement an LPG, this
research advances the integration of spatio-temporal and semantic data from multiple
sources. As a result, the outputs of data-based approaches are enhanced, and the volume
of data to be analysed manually is decreased. While advancing theoretical insights into
knowledge representation and automated data analysis, the project’s contributions offer
practical benefits for archaeological research and heritage preservation.

This thesis builds on several research outcomes published in peer-reviewed venues.
Each work contributes to understanding automatic approaches for recognizing archaeo-
logical monuments, knowledge representation in cultural heritage and remote sensing, and
the integrated use of both methods.

e Camara, A., de Almeida, A., Oliveira, J. P., & Silveira, M. (2020, January). Pho-
tointerpretation as a Tool to Support the Creation of an Ontology for Dolmens.
In Program and Book of Abstracts XXVII Meeting of the Portuguese Association
for Classification and Data Analysis (CLAD) (p. 101).

e Camara, A., de Almeida, A., Cagador, D., & Oliveira, J. (2023). Automated
methods for image detection of cultural heritage: Overviews and perspectives.
Archaeological Prospection, 30(2), 153-169. DOI: 10.1002/arp.1883

e Camara, A., de Almeida, A., & Oliveira, J. (2023, May). Versioning: Represent-
ing Cultural Heritage Evidences on CIDOC-CRM via a Case Study. In Proceed-
ings of International Conference on Information Technology and Applications:
ICITA 2022 (pp. 363-371). Singapore: Springer Nature Singapore.

e Camara, A., Almeida, A. D.; & Oliveira, J. (2024). Transforming the CIDOC-
CRM model into a megalithic monument property graph. Journal of Computer
Applications in Archaeology. DOI: 10.5334 /jcaa.151

e Marcal, D., Camara, A., Oliveira, J., & de Almeida, A. (2024, June). Evaluating
R-CNN and YOLO V8 for Megalithic Monument Detection in Satellite Images.
In International Conference on Computational Science (pp. 162-170). Cham:
Springer Nature Switzerland.

e Camara, A., Almeida, A. D., & Oliveira, J. (2025). A Knowledge-Graph for
Portuguese Megalithic Monument-Landscape Relationships Representation and

Analysis. Ed: Stefania Stellacci, Serdar Aydin. The paper has been accepted



and is forthcoming in Endangered Heritage Sites: From FEidotypes to Enriched
Representations and Design Solutions in February 2025.
Other Publications include non-peer-reviewed works presented as posters, which are
listed below.

e Camara, A., Almeida, A. D.,; & Oliveira, J. (2022). KG-ML Approach Image
Recognition for Cultural Heritage. In Ciencia 2022 - Science and Technology in
Portugal Summit.

e Camara, A., Almeida, A. D., Oliveira, J., & Marcal, D. (2023). Arqueologia e
Comunicagao na era da Big Data: do sitio arqueoldgico ao registo de monumen-
tos e paisagens. Serd este um dia FAIR? In IV Congresso da Associacdo dos

Arquedlogos Portugueses.
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FIGURE 1.1. Dissertation outline

This dissertation is divided into seven chapters as depicted in Figure 1.1. The first chap-
ter (this chapter) introduces the problem addressed, methods and contributions. In the
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following, Chapter2 describes the AOI, including the monument and landscape features.
Chapter 3 presents a review of the state of the art, focusing on object detection approaches
to recognize archaeological monuments and knowledge graphs to contextualize archaeolog-
ical information. Next, the model implementation is subdivided into three major chapters:
implementing an object detection approach based on ML (Chapter 4), detailing the tech-
nical approach and processes involved, implementing the KG (Chapter 5), explaining its
design and integration, and implementing the KG-ML approach (Chapter 6), in which
results from object detection are combined with the KG. Finally, a conclusion is shown
in Chapter 7, which summarizes the research findings and suggests research avenues for
the future.



CHAPTER 2

Area of Interest: Definition and Data Sources

This case study uses information on dolmens, specifically those located in Pavia in Mora
in the Alentejo region of Portugal — our Areas of Interest (AOI). This city is part of
the Mora municipality, including Mora, Brotas, and Cabeg¢ao. Pavia is situated at the
northern edge of the Evora district, near the borders of Santarém and Portalegre [56].
It consists of an area of 185 km2 [2] and has been occupied since prehistoric times, as
evidenced by its numerous megalithic monuments such as dolmens.

In this chapter, we present in detail our target object (Section 2.1) and the landscape
description of the AOI where they are situated (Section 2.2) to understand the context
of what we are looking for and the relevant information. We also surveyed the geospatial
and semantic data — sources used to gather information about the target object and the
surrounding landscape (Section 2.3). Data and information from these sources can help

derive domain knowledge about the target object and the AOIL.

2.1. Dolmens

Dolmens are megalithic monuments primarily recognized for their funerary functions,
typically serving communal purposes [61, 62]. In Portugal, these structures, built during
the Neolithic and Chalcolithic periods (4000-5000 BC), were used to facilitate burial
practices and serve as collective memorials [61, 63, 64, 65, 66]. Portugal’s Alentejo region
has one of the highest concentrations of megalithic sites in Europe [67, 21]. In the Alentejo
region, these structures typically consist of a chamber formed by three or more uprights
(orthostats) supporting a single cover-stone (capstone) [68].

These vertical stones bear the weight of the overarching capstone and demarcate
the chamber’s confines. It also may have a corridor as an entrance composed of or-
thostats. These structures may have been covered with earth and stone (burial mound
or tumuli) [69, 63]. This human-made mound, raised over the dolmen, possibly played
protective and symbolic roles. In Figure 2.1, it is presented a well-preserved example of
a dolmen captured in a 3D model '. The image reveals its large chamber with eight or-
thostats (1), a capstone split in half that originally measured about 3.85 meters in length
(2), a corridor (3), and a well-preserved tumulus (4).

It has been observed that dolmens had their opening facing the rising sun and generally

diverged from East to South by 10°-20°. The differences in orientation, evidently based

IThe image can be accessed at: https: //sketchfab.com/3d-models/anta-grande-da-comenda-da-igreja-
5bd4clbddaf64c38937f6c47a71a79e6 [Last accessed in 09/12/2024]
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FiGURE 2.1. Anta Grande da Comenda da Igreja. A three-dimensional
reconstruction. Source: Sketchfab. License: CCO Public Domain.

on astronomical observations, could be attributed to the time or the season of the monu-
ment’s construction [61, 70]. However, the theory remains debated and is not universally
accepted, with a larger-scale analysis needed to definitively attribute this characteristic
to these monuments [69].

Studies on megalithic monuments have existed in the Pavia area since earlier, with
notable works dating back to the early 20th century [70, 71]. Recently, efforts have been
made to map these burial types using LIDAR data in the Alentejo [21] as well as a plan
to classify and protect them (Official Gazette No. 39/2022, Series 2 of 25/02/2022) [72].
Currently, 94 monuments are recorded in the area of Pavia [73, 8]. The map depicted in
Figure 2.2 showcases Portugal with a detailed view of Pavia, signalling the locations of
the dolmens that have been analysed.

A typical example of this monument type in the region features a chamber diameter of
two to five meters and a variety of shapes (polygonal, circular, semicircular, or quadrangu-
lar). It is usually built from granite or schist [74, 75]. The chosen construction materials,
mainly granite and schist, imparted a distinct aesthetic and fortified them against the
relentless march of time. Schist or granite soils are acidic, leading to the complete de-
composition of organic matter over time. As a result, no organic remains survive, leaving

only the architectural traces of these structures to endure through the ages [76].

2.2. Landscape

Portuguese continental geomorphology is characterized by three major morphostructural
units: the Ancient Massif, the western and southern Meso-Cenozoic fringes, and the
Cenozoic Tejo-Sado basin [77]. Alentejo falls primarily within the Ancient Massif unit,
10
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FIGURE 2.2. Map highlighting Portugal with a detailed inset of the Pavia
region, situated within Mora in the Alentejo area.

which is characterized by granite and schist, as well as some quartzites and metamorphic
rocks [77]. From a geological perspective, the Pavia area encompasses two formations: the
edges of the Tertiary Tejo basin and the ancient substrate, which is mostly made of granite.
Both formations are intersected by a dense watercourse network [77, 56]. The Tertiary
cover includes flatter areas, sometimes forming residual reliefs (W-S), while the ancient
substrate presents a more irregular topography. However, it is predominantly flat with
extensive granite outcrops [56]. There are generally gneisses, mica-schists, metamorphic
schists, and granites in this region (Ossa Morena), as well as lesser amounts of marble,
quartz, quartzite, clay, sandstones, and conglomerates [56, 78, 79].

Despite the relatively flat topography, numerous watercourses cut through the area [77].
Central Alentejo has three major river basins: Tejo, Guadiana, and Sado. The Pavia area
is part of the Sorraia river basin, a subsidiary of the Tejo left bank [56]. The river exhibits
high irregularities, resulting in more severe droughts and more concentrated runoff [80, 56].
According to the VTM to water lines from Agéncia Portuguesa do Ambiente (APA) at
scale 1:25,000, this river is considered to be artificial, and its left bank tributaries are the
Raia, Mora, Matalote and Tera rivers. In addition, the Tera River, a tributary of the
Sorraia River, traverses the entire central region of Pavia in a north-south direction [4].
According to Ramos (1994), the basin extends in an ESE-WNW direction, following the
flow direction of the primary collector, which begins on the Estremoz Plateau and flows
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to the Raia River [80]. Among the tributaries of the Tera are the Cré River on the left
bank and the Freixo River on the right bank. Other natural streams in the region include
Azenha and Divor rivers [4].

The interaction between the geological characteristics of a watershed and its drainage
network profoundly influences soil types and water movement across the landscape [81].
Over time, various factors can significantly alter watercourses, including deforestation,
dam construction, and natural hydrological variations [80]. Moreover, precipitation pat-
terns also affect changes in the landscape. In this region, the average annual precipitation
ranges between 650 and 700 mm, slightly increasing to 700-800 mm in the northeastern
part. Rainfall is evenly distributed throughout the year, primarily between October and
May [77].

Solos Litolicos refer to soils generally associated with rocky outcrops, unsuitable for
any agricultural use except with manual labour [82]. Much of the soil in the central re-
gion and surrounding the Tera, Cré, Matalote, and Divor rivers consists of Solos Litdlicos
and Solos Argiluviados Pouco Insaturados [83], as shown in Figure 2.3. These soil types
have low natural fertility due to their parent material, mainly granite, its derivatives, and
schists. The soils are characterized by low cation exchange capacity and high acidity,
further limiting their fertility [84]. Other soils present in the region, include Solos Incip-
ientes, Barros, Solos Hidromdrficos,and Solos Calcdrios [3]. Solos Incipientes and Solos
Calcdrios are weakly developed soils, the former being minimally evolved with shallow
organic layers, while the latter forms from limestone with varying carbonates. Barros,
in contrast, are well-developed, clay-rich soils with high plasticity and firmness. Solos
Hidromorficos face challenges due to temporary or permanent water saturation, leading
to reduction phenomena in the soil profile [85, 82].

Regarding soil quality, granitic formations generally result in low agricultural poten-
tial, typically classified as Class D and Class E soils. In contrast, tertiary formations
exhibit two distinct scenarios: the Oligocene clayey-limestone terrains support good ar-
eas of agricultural soils, classified as Class B and Class C, while the Miocene-Pliocene
complex of sandstone-clay conglomerates in the plateaus predominantly consists of soils
with very low agricultural suitability, classified as Class E [56]. Soil classification encom-
passes various categories based on their usability for different purposes. Class A soils
have very high usability with minimal limitations and erosion risks, suitable for intensive
agricultural use. Class B soils have high usability but moderate limitations and erosion
risks, making them ideal for moderately intensive agriculture and other uses. Class C
soils offer moderate usability, significant limitations, and high erosion risks, and they are
suitable for light agricultural use. Class D soils have low usability with severe limitations
and high erosion risks. They are often unsuitable for agriculture except in exceptional
cases but may be used for grazing, woodland, or forestry. Class E soils have very low
usability, severe limitations and high erosion risks, rendering them unsuitable for most

uses, often designated for natural vegetation or protection forests [82].
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In general, this region is relatively flat with elongated relief and gentle slopes near
watercourses, along with small hills and spurs [86], with altitudes ranging from 50 to 205
meters as shown in Figure 2.4. Among the areas in the region, Pavia stands out as having
the highest proportion of elevated areas above 145 meters. The northern region, including
the eastern and western parts, features the lowest altitudes. Conversely, the central to
southern regions exhibit the highest elevations. Rivers like the Tera are situated in low-
lying areas but are often surrounded by higher elevations, creating a varied landscape.
The region’s general flattening results from typical water erosion, which has gradually
smoothed and levelled the landscape into a peneplain [5].

Regarding current land use, the region is predominantly characterized by areas devoted
to cereal crops, olive groves, and vineyards [86]. These agricultural practices dominate the
landscape, contributing to the region’s economic activity. In addition to these cultivated
areas, there are significant forested regions, including montado systems, which consist of
oak and cork oak forests [87]. It is important to note that land use practices can influence
soil visibility. For instance, the extent of vegetation cover and agricultural activity can
obscure or alter the appearance of soil surfaces.

This landscape has profound utilization practices that can influence soil visibility
and megalithic monuments, which are strategically positioned near watercourses, rock
outcrops where they could access raw materials for constructions and elevated points to
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FiGURE 2.4. Map highlighting the topographic relief in Pavia. The map
was created using VTMs [2, 5]

maximize visibility [56, 86, 88]. At a macro-geographic scale, the placement of tombs is
generally considered deliberate, with site selection potentially based on practical reasons
or cultural factors. These results rely on most studies on astronomical or landscape
observations [76]. While current land use does not directly influence the original selection
of these sites’ placement, it could impact their preservation. The analysis of previous data
shows that many monuments were destroyed in Alentejo during the 20th century, mainly
between the 1970s and 1990s. These destructions were primarily driven by intensive
agriculture and reforestation efforts, which have significantly altered the landscape and
compromised the integrity of these sites [67].

Neolithic communities were among the first to develop and rely on agriculture, albeit
on a small scale—more akin to horticulture as we understand it today. They prioritized
settling on light, well-drained soils near permanent watercourses where they could cul-
tivate crops. Heavy, clayey soils were generally avoided, even if close to water, as these
soils were challenging to work with using the technology available at the time. Therefore,
Neolithic communities did not favour soils classified as A and B [76, 86]. In areas with
Class B and C soils, burial sites tend to be limited [76]. Conversely, soils with poorer
agricultural suitability, such as Classes D and E, which are often schistose, tend to host
more burial sites [56, 76].
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The archaeological landscape is, in essence, a product of long-term interactions be-
tween humans and the natural environment [6]. Over time, the remains of past civiliza-
tions have become buried or obscured by natural processes and later human activities,
often leaving monuments and structures concealed beneath layers of earth. This process
of layering, or stratification, is fundamental to archaeological excavation. In this ongoing
process, the uppermost layer represents the most recent interaction between humans and

the environment [89].

2.3. Data Sources

The information contained in cultural heritage sources (e.g. archives, museums, records
and databases) and from public entities responsible for the management and coordina-
tion of policies related to the territory, such as those responsible for creating Vector
Topographic Maps (VTM)s, is crucial as a source of knowledge about the territory. We
can interpret, understand, and extract accurate information from reliable and relevant
data sources from which domain knowledge is consistently derived.

Detecting archaeological sites in an image requires domain knowledge that involves a
multidisciplinary effort to understand the monuments and their surrounding landscapes
— involving geospatial and semantic data and relating archaeology, geography and Re-
mote Sensing (RS). The landscape is a dynamic entity that evolves and houses various
geographical objects and features. Archaeological sites can be viewed as a subset of ge-
ographical objects, enclosed by significant areas, representing remnants of the original
archaeological record at a specific morphogenetic stage [6]. We infer that geographic ob-
jects and features encompass all physical elements above the Earth’s surface, including
natural landscape features, built structures, and archaeological monuments.

Data sources with information on geographic objects and features from different scopes
are found in disparate sources. In the sections below, we describe the data types and the
sources to obtain information about our target object and the AOI described in the

previous sections.

2.3.1. Archaeological Data

Archaeological analysis employs a range of data types, including domain literature,
RS data, images, and field observations. The analysis of these data types is influenced
by various interrelated factors, such as methodological, observational, contextual, and
semantic biases, which can impact the outcome [90]. So, “The archaeological record is
constructed by archaeologists, and patterns within that record will inevitably reflect the
activities and interests of archaeologists as much as any reality in the past. This is par-
ticularly apparent in the ongoing process of the interpretation and re-interpretation ...”
[91, p.15]. This perspective highlights how knowledge is inherently subjective to contin-
uous revision and argumentation [92]. Researchers unfamiliar with the described taxon
and related literature may find it challenging to interpret due to semantic ambiguities in
terminology, which can vary by taxonomy, author, and time frame [93].
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As evolving interpretations shape records, Cultural Heritage (CH) geographic objects
such as sites change over time. Dynamic concepts, such as time-sensitive changes, are inte-
gral to these processes [94, 95]. As new findings emerge or the condition of cultural assets
shifts, descriptions are updated to create new data versions that maintain the continuity
of the object’s history while incorporating these evolving interpretations [96]. Alterna-
tively, new records may be produced separately, resulting in different documents about
the same cultural asset. The process generates extensive data, often organized to meet
specific research needs and stored in institutional repositories or the cloud. Additionally,
records are frequently presented as unstructured text across various sources, impeding
their findability and accessibility [97, 93]. The lack of standardization in records renders
the data non-interoperable, and when combined with proprietary systems, which often
restricts access to the data, it further complicates data reuse. [98, 99, 92, 100].

The lack of standardization in records results from the fact that, for a long time,
knowledge has been created or maintained by different individuals and institutions with
different objectives within a framework of varied knowledge and understanding [101, 102].
Some institutions have dedicated efforts to structuring data. For example, the Portuguese
database Endovélico — Archaeological Information and Management System — managed
by the Diregao-Geral do Patriménio Cultural (DGPC), started as a manual inventory
that began to be digitized at the end of the twentieth century and now has more than
35,000 archaeological records registered by different experts over the past 40 years [103].
Since 2013, the digitalization of technical and scientific archaeological reports has been
underway at DGPC to increase transparency and equality of access [103, 67]. Data from
these collections is available through Portal do Arquedlogo (PA) [8] — a digital platform
intended for professionals and researchers in archaeology. Few European countries have
repositories with the necessary expertise and mechanisms to ensure archaeological data is
freely and openly available for future research [98]. In Portugal, the PA serves as a valuable
source of digital information, alongside other useful resources, such as books published by
local municipal councils, like those from Mora — Carta Arqueolégica (CA) [73].

However, the information is semi-structured and not interoperable, making it difficult
to integrate and analyze across different systems; for example, to use this information
to understand the structure of a monument, it would be necessary to make the data
granular and extract details from the text, such as size, shape, dimensions, and other
relevant attributes.

Different researchers have been highlighting the need to make data findable, acces-
sible, interoperable, and reusable to enhance its usability and integration across various
platforms and systems [104, 92, 102].

2.3.2. Geospatial Data

Geospatial data is obtained through RS, where information about the Earth’s surface is
acquired using sensors without direct contact with the objects being studied [9, 105, 106].
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This process typically involves satellites, manned aircraft, and Unmanned Aerial Vehi-
cles (UAVs) that measure the electromagnetic radiation emitted or reflected by ground
objects. The data collected varies according to these objects’ physical and chemical char-
acteristics [106, 107].

There are numerous benefits to using RS data in archaeology: as a non-invasive tech-
nique, it preserves archaeological heritage without affecting sensitive objects directly, while
it provides a bird’s-eye view of archaeological sites within their broader landscape con-
text, revealing the intricate interaction between natural and human-made elements [108].
Archaeological remote sensing relies mainly on the active-sounding technique known as
Airborne Laser Scanning (ALS) and passive air and spaceborne imaging in the optical
spectrum. While airborne imaging remains the preferred approach for detailed analysis,
satellite reconnaissance is well suited for mapping extensive landscape features and de-
tecting monuments in challenging environments [109]. The ability of satellite imagery
to cover large areas and provide broad contextual information highlights its significant
advantage in archaeological research.

Satellite Images

Satellites offer a unique category of RS platforms, distinct from aerial vehicles such as
human-piloted aircraft and UAVs. These artificial satellites collect and transmit electro-
magnetic data by orbiting the Earth or other celestial bodies, generating images of large
areas accessible at various resolutions [106, 17]. The four main resolution characteristics
in sensors are spatial, temporal, spectral, and radiometric [109, 106, 9].

Spatial resolution indicates an instrument’s ability to distinguish between neighbour-
ing objects, with higher resolution allowing for more detailed images. Radiometric res-
olution refers to the sensor’s ability to detect differences in intensity related to the bit
depth. Temporal resolution indicates how frequently an imaging system revisits the same
area, which is critical for tracking changes over time. Spectral resolution measures a
sensor’s ability to distinguish wavelengths of light [109]. Images can be panchromatic,
capturing data from a single spectral band at high spatial resolution, multispectral, cap-
turing data from several discrete bands at moderate spatial resolution, or hyperspec-
tral, which captures data from many narrow, continuous bands with high spatial reso-
lution [109, 110, 106, 111]. Further, images can be fused, for example, high-resolution
optical panchromatic images can be combined with low-resolution multispectral images
to add color and spectral information, a procedure known as pansharpening [15, 39].

Since the launch of Sputnik 1 in 1957 and the capture of the first image by Explorer 6 in
1959, satellite technology has profoundly enhanced Earth observation capabilities [112].
Today, various satellites serve various purposes, including scientific research, meteorol-
ogy, and imaging [110, 112]. As a result, there is an ever-increasing amount of data in
the environmental sciences and cartography, which may contain archaeological informa-
tion [108, 111].

Raster and Vector
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Satellite imagery can be found in different catalogues maintained by major agencies
and regional Earth observation initiatives like the European Space Agency (ESA) [113],
the National Aeronautics and Space Administration (NASA) [114], and the United States
Geological Survey (USGS) [115]. Additionally, platforms such as Google Earth offer
interactive satellite imagery through an intuitive interface, enhancing exploration and
visualization [7]. This platform is widely used for applications such as archaeological
site detection, landscape analysis, and monitoring changes [48, 32, 47, 49]. While its
accessibility and ease of use make it popular among both casual users and professionals,
Google Earth has limitations for large-scale quantitative research due to inconsistent
image quality, lack of metadata, inadequate measurement capabilities (e.g., the spectral
analysis), and limited analytical tools [48].

The satellite imagery is typically stored as raster data and can be integrated with
vector data [30]. Raster and vector datasets are two geospatial data types [116, 111].
Raster data consists of grid cells (or pixels), such as satellite images [106]. In contrast,
vector data comprises distinct geometric entities representing discrete objects from the
real world with high spatial determination, such as rivers, elevations, soil types, and
archaeological monuments. This representation provides a compact representation of real-
world features within Geographic Information Systems (GIS) [117]. In this, geographic
features are illustrated using one of three types of geometries: (i) points, which depict
individual geographic locations; (ii) lines, used for linear features such as rivers; and
(iii) polygons, which describe enclosed areas like islands [116]. Each geometric entity
can store associated attributes, providing detailed descriptive information about spatial
features. This data type offers advantages such as lower data volumes, improved spatial
resolution, and the preservation of topological relationships, which enhance the efficiency
of operations like network analysis [111].

Various platforms and agencies create and provide access to digital vector data. At
the national, regional, or local level, the national agencies responsible can make vector
maps available. These maps generally provide more granular information about specific
areas, though the level of detail may vary depending on the mapping project’s region,
scale, and purpose. For instance in Portugal, the Sistema Nacional de Informacao de
Ambiente (SNIAmb) [118] and the Sistema Nacional de Informacao de Recursos Hidricos
(SNIRH) [119] offer hydrographic data, while the Diregao-Geral do Territério (DGT) [120]
and Dire¢ao-Geral de Agricultura e Desenvolvimento Rural (DGADR) [3] provide carto-
graphic information on land use and land cover. Most of these cartographic datasets
can be accessed through the online portal of the Sistema Nacional de Informacao Ge-
ografica (SNIG) [121]. It allows users to share, search, and access geographical informa-
tion produced by both public and private entities in Portugal. Many of the datasets on

this platform are available for public access without restrictions under the CC-BY-4.0
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license. Other platforms, such as the Sistema de Monitorizacao da Ocupagao de So-
los (SMOS) [122] — e.g. viSMOS, COScid, and COSvgi portal provide a quick and easy
way to view VI'Ms from DGT and satellite images.

The general mapping methodology consists of a systematic interpretation, fieldwork,
image analysis, and map preparation. It emphasizes the integration of Remote Sensing
Images (RSI) with ground observations to ensure accurate mapping [123]. This approach
can generate vector maps reflecting the real-world conditions and features of the mapped
area. These maps contain fine-granule details and quantitative representation of the
Earth’s surface and its natural and artificial features. On such a map, the features are
labelled, and they integrate multiple elements (e.g., features differentiated by colour and
symbols, labels for feature names, and contour lines showing the terrain changes) to

provide a comprehensive view of the terrain [54].
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CHAPTER 3

Literature Review

3.1. Introduction

In archaeology, the identification of monuments involves inspection, which includes intru-
sive (e.g., ground surveys) and non-intrusive prospection approaches (e.g., remote sensing
techniques like image analysis) to find and study archaeological monuments [124]. ITmage
interpretation is one of the methods used to extract information from Remote Sensing
Images (RSI) [123].

The increasing availability of satellite imagery has created overwhelming data for
manual image interpretation [125, 126]. However, modern land use practices and natural
changes over time are altering landscapes [89, 50]. While many archaeological sites have
been identified, others remain undiscovered and risk disappearing due to natural decay or
human activity [34]. These challenges have rendered traditional manual image analysis
methods insufficient. In response, automated classification systems are being implemented
to accelerate data analysis and archaeological discovery, aiding in the protection of these
sites [19, 40, 20, 23, 49, 31, 24, 43, 35, 33, 16, 42, 30, 34, 32, 50, 29, 36, 46].

Despite the progress made with automated approaches, there is still a wide gap be-
tween humans and machines regarding learning. Automated approaches can find patterns
using training data. Nevertheless, those approaches are not taking advantage of the vast
amount of existent background knowledge [127]. Since images are reflections of the world,
exploiting background knowledge can be helpful and enrich image interpretation [127].
Integrating knowledge systems with data-driven approaches to add context to scenes via
semantic networks has been considered a promising direction to explore [128, 6, 129].

In this chapter, we analyse two distinct lines of research: one focused on object detec-
tion methods for identifying monuments in RSI (3.2), and the other on using a Knowledge
Graph (KG) to represent and contextualize the existing information on the monuments
targeted for detection (3.3). There is extensive research in each of these areas, but com-
bining KGs with object detection is, as far as we know, a more recent development and,
we believe, with limited application in archaeology.

For describing the state of the art in this thematic, a literature search was conducted
using Scopus and Google Scholar, with keywords such as: "knowledge graph” AND ”se-
mantic” AND ”image” AND ”contextualization” AND ”archaeology” AND ”site” along
with terms related to ”"machine learning” OR "remote sensing” OR ”scene understand-
ing”. We then broadened our search to include references cited by the authors in the

identified papers, ensuring a comprehensive exploration of the relevant literature.
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3.2. Archaeological Object Detection Methods

Object detection is a computer vision task that involves identifying and localizing specific
objects within an image [130]. Typically, algorithms identify the objects of interest, draw
bounding boxes around them, and classify them into categories. The primary goal of using
automated methods to recognize archaeological sites in RSI is to reduce manual labour,
standardize analysis processes through replicable workflows, and increase the likelihood of
successfully detecting archaeological sites in large areas [30, 24]. The focus is on developing
techniques that enable machines to analyze and interpret visual data.

Object detection approaches are fundamentally data-based and often focus solely on
the visible traces of extant or subsurface structural remains [127], relying heavily on the
quality and quantity of the data as input to perform accurate recognition and classifi-
cation [23, 16]. The classification is based on initial knowledge, statistical information,
patterns, or a combination of these [11]. The most common approaches include pixel-
based [131, 38, 45, 39, 47, 23, 49, 43, 35, 33, 16, 42, 32, 132, 37| and Object-Based Image
Analysis (OBIA) [22, 38, 40, 46, 36, 20, 21, 31, 24, 29, 30, 50].

Pixel-based approaches involve assigning each pixel, or group of pixels, to a specific
target class based on their values [123]. These methods rely on the separability of classes
and establish relationships between pixel attributes to form relevant features for clas-
sification [11]. These techniques effectively distinguish objects based on differences in
reflectance between the pixels corresponding to the target object and those of the back-
ground [35, 45]. However, pixel-based analysis often performs poorly in heterogeneous
environments with mixed vegetation and soil contrasts [133, 38]. Low contrast between
archaeological features and the background may be responsible for this, as well as image
noise [134, 47, 43].

In contrast, OBIA starts with image segmentation, which groups pixels into meaningful
objects rather than classifying individual pixels [6, 33]. OBIA incorporates additional
components such as nearest neighbour classifiers, expert knowledge, and feature space
optimization [135, 136]. This method considers shape, texture, and morphology, bridging
the pixel world with the vector world [125, 33]. Both pixel-based and OBIA methods
have proven successful in archaeological applications, each offering unique advantages
depending on the specific requirements of the analysis.

The rapid advancements in Remote Sensing (RS) technologies and computer vision
have significantly enhanced the potential for automated detection and classification of
archaeological sites above or below ground level [137, 38]. According to Cheng and Han
(2016), data-based approaches for object detection in remote sensing images can be classi-
fied into five main categories: Template Matching (TM), OBIA, Machine Learning (ML),
Deep Learning (DL) and Knowledge-Based (KB) [138]. Table 3.1 presents the method-
ologies used for detecting archaeological monuments, as well as the data types and target
objects identified in each case. It’s important to note that these methods are not mutually

exclusive. In fact, combining different techniques within the same project can enhance
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outcomes and help determine the most effective approach for each specific case [40, 31].
For example, OBIA has been used together with ML [40] or TM methods [31], with

promising results. These five main categories are detailed in the following subsections.

Ref | Methodology Data Goal

131] | MV + ML/RF (PB) STRM/SI | Identify Mounds (tells)

22] | TM (OB) LIDAR Identify Burial Mounds

38] | ED + KNN (PB/OB) SI Identify archaeological features
45] | TM (PB) SI Identify Burial Mounds

39] | ML/k means (PB) GE Identify looted areas

47] | TM/CHT (PB) GE Identify tops of qanat shafts

40] | GEOBIA + ML (OB) SI Identify buried remains

46] | DL/CNN (OB) SI/Aerial | Identify ruins of enclosures

36] | Sup/Uns ML (OB) - HCAL SI Identify damage in sites

20] | GEOBIA (OB) LIDAR Identify Barrows

23] | ML/RF (PB) LIDAR Identify burial mounds

49] | DL/CNN (PB) GE Identify Barrows

21] | GEOBIA (OB) LIDAR Identify Barrows

31] | GEOBIA + TM (OB) LIDAR Identify Mounds and shell rings
24] | DL/R-CNN + CS (OB) LIDAR Identify hitherto unknown sites
43] | ML/SVM:RF (PB) SI Identify farm communities sites
[35] | TCT 4+ PCA Matching (PB) | SI Identify Buried remains

33] | HBE+ML/SVM+OBIA (PB) | SI Predict cultural deposit location

16] | DL/CNN (PB) SI Identify qanats

42] | ML/RF (PB) SI Identify Mounds

29] | DL/R-CNN (OB) LIDAR Identify various sites

30] | DL/R-CNN (OB) LIDAR Identify hollow roads

32] | PCA/LISA (PB) SI Identify ancient roads

50] | HDBSCAN + PCA Bing Identify funerary monuments

TABLE 3.1. Methodology, data, and goals for RSI-based identification of archaeological
monuments *

® Abbreviations: i) Methodology: CHT (Circular Hough Transform), CS (Citi-
zen Science); ED (Edge Detection); HCAL (Hierarchical Categorization And Lo-
calization); HBE (Theoretical Model From Human Behavioral Ecology); HDB-
SCAN (Hierarchical Density-Based Spatial Clustering Of Applications With Noise);
KNN (K-Nearest Neighbours); LDA (Linear Discriminant Analysis); ML (Ma-
chine Learning); MV (Morphometrical Variables); OB (Object-Based); PB (Pixel-
Based); PCA (Principal Components Analysis); RF (Random Forest); Sup (Su-
pervised); SVM (Support Vector Machine); TCT (Tasselled Cap Transforma-
tion); TM (Template Matching); Uns (Unsupervised). ii) Data: LIDAR
(Light Detection And Ranging); SI (Satellite Imagery), GE (Google Earth).

3.2.1. Template Matching

In object detection, TM, is a straightforward and widely used technique in computer
vision, particularly effective in archaeology, when monuments have distinct geometric
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shapes like circles or rectangles, which are rare in natural landscapes [138, 24]. This
method involves creating a template of the target object, manually or from existing data,
and searching for it across an image by adjusting the template’s orientation and position.
Its simplicity and effectiveness in detecting consistently shaped objects make it a valuable
tool for automated archaeological site detection [22, 45, 25, 26, 31].

Despite its advantages, template matching can struggle with variability and complexity
in real-world environments. Variations in shape, size, orientation, and factors like noise

and overlapping features can complicate accurate detection [138, 24].

3.2.2. Object-Based Image Analysis
Unlike TM, which focuses on detecting predefined shapes within images, OBIA involves

segmenting images into meaningful objects or regions, allowing for the analysis of com-
plex and variable object features. When specifically applied to geographic data, this
technique is referred to as Geographic Object-Based Image Analysis (GEOBIA) [139].
Since the early 21st century, GEOBIA has gained popularity, leading to the development
of numerous applications and methods [6]. This approach leverages object-based meth-
ods in various subfields, such as feature extraction, often in combination with statistical

algorithms, to achieve good detection results [20, 40, 31].

3.2.3. Machine Learning

Object detection approaches using ML are becoming increasingly popular, treating it as
a classification problem to improve analysis and data management. These methods can
be divided into supervised and unsupervised techniques [140, 141].

In supervised approaches, features are selected from labelled data to train a model us-
ing domain expertise to fine-tune a learning algorithm. This allows for precise recognition
of objects within a defined feature space [142]. In contrast, unsupervised ML explores un-
labelled data to identify patterns and group similar objects, usually employing clustering
methods. Unlike supervised methods, unsupervised approaches do not require predefined
classes, making them helpful in discovering unknown relationships and needing less prior
data [11, 40, 36]. Supervised learning is typically preferred for satellite data analysis,

where the goal is to detect specific objects, among many other features.

3.2.4. Deep Learning

Recent developments in object recognition include Deep Learning methods, a subset of
ML, which has advanced the field by providing more precise results [143]. Deep learn-
ing uses artificial neural networks to perform complex computations on large datasets,
enabling machines to learn patterns and features from examples. These networks are
composed of artificial 'neurons’ organized into layers: input, hidden, and output [144].
Popular DL algorithms includes Multilayer Perceptron (MLP) and Convolutional Neural
Networks (CNN)s [143]. The latest applications of DL for detecting archaeological sites
in RST often involve CNNs combined with other methods [49, 24, 27, 46, 140, 16, 29, 30].
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CNNs are particularly popular in image classification. This task becomes increas-
ingly complex when an image contains numerous objects, such as in satellite images.
This leads to challenges such as occlusion, where objects obscure one another, target
blur, which involves a loss of clarity in objects, and issues related to rotation, scale, and
complex backgrounds. Additionally, there can be occlusions between objects and their
backgrounds [54].

A CNN encapsulates two main stages: feature extraction and classification. In feature
extraction, convolutional layers apply filters (kernels) to the input image to detect pat-
terns such as edges and textures. Pooling layers follow, reducing the size of the extract
feature maps while retaining the most relevant information, typically using max pooling.
In classification, fully connected layers learn to map the extracted features to class labels,
often using a softmax function, allowing CNNs to generalize from labelled data [143, 144].
Learning occurs by adjusting connection weights employing techniques like backpropaga-
tion scores based on the error between predicted and actual outputs [143].

The CNN architectures can be classified into single-stage and two-stage detectors [145].
Single-stage detectors, such as You Only Look Once (YOLO), streamline the detection
process by predicting class labels and bounding boxes in one step, resulting in faster
performance but often with reduced precision [145, 146]. On the other hand, two-stage
detectors, including Faster Region-Based Convolutional Neural Networks (R-CNN), em-
ploy a more complex approach by first proposing regions of interest through a Region
Proposal Network (RPN) and then classifying these regions and refining the bounding
boxes in a second stage to detect objects [147, 130, 146]. This method achieves higher
performance and less False Positives (FP)s, making it particularly effective in detecting
archaeological features in RSI [19, 24, 30, 29].

Various studies have demonstrated the effectiveness of CNNs in archaeological detec-
tion, showcasing their strengths and limitations [24, 46, 27, 45, 28, 19]. However, a key
critique of these models is their ” black-box” nature, where outputs are difficult to inter-
pret, and they often require large amounts of labelled data to perform well [129]. This is
particularly challenging in cultural heritage, where training samples are frequently lim-
ited [148, 30, 149]. Strategies like transfer learning [143], and data augmentation are
commonly employed to reduce the need for extensive labelled data and extend the use of
DL to fields previously constrained by smaller datasets [108, 16].

However, these techniques do not address the challenge of explainability in model
outputs. Semantic technologies offer a promising solution for enhancing the understand-
ability and interpretability of results, providing human-understandable insights into how

specific outcomes are achieved [60].

3.2.5. Knowledge-Based systems

“A holy grail of computer vision is the complete understanding of visual scenes: a model
that is able to name and detect objects, describe their attributes, and recognize their re-
lationships” [ 150, p. 34]. Consequently, different approaches focus on adding semantic
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information to data-based object recognition systems in RSI [150, 151, 152], namely for
object-detection-based approaches. Incorporating contextual and semantic knowledge
into these processes can improve object detection by considering complex relationships
between observed properties [127, 153].

Classification/detection using knowledge concerns on how information is represented
and formalized to be integrated with data-driven approaches [128], thus combining the
strengths of knowledge-based and data-based methods [154]. It also works as a bridge
where knowledge offers explainability in these models [60]. This integration aims to im-
prove the interpretation of results and performance in handling complex tasks [60, 155].
The goal is to use context to enhance the interpretation of the detection of objects by
traditional object detection methods, that typically return a bounding box that indi-
cates candidate objects within an image. Knowledge-based models leverage this output
by mapping detected objects to corresponding nodes in a scene graph — a structured
representation that captures the semantic and spatial relationships between objects and
their attributes within the scene — integrating object detection with relevant contextual
data [156, 157], thus integrating high-level semantic information with low-level numerical
data from images [33, 139].

In knowledge-based object detection methods for RSI, Cheng & Han (2016) high-
light the use of geometric and contextual information, widely used as prior knowledge.
These approaches generally translate object detection into a hypotheses-testing problem
by establishing various knowledge sets and rules [138]. Rule-based knowledge represen-
tation is a method that articulates knowledge and features through structured ”if-then”
statements. They rely on predefined patterns or fixed knowledge that require specialist
interpretation, who then convert them into rules or guidelines for analysis. Experts fre-
quently encode their visual perceptions into symbolic classification rules. However, this
knowledge remains mainly implicit as it is often applied directly based on trial and error
or domain expertise, that is, without formalization [128, 55].

A variety of approaches have been developed to add semantic information to data-
based object recognition systems [150, 151, 152], with these hybrid approaches presenting
promising developments for remote sensing and archaeology [128, 6, 129]. This is suitable
for expressing relational knowledge, associating concepts with entities and facilitating in-
formation sharing through standardized vocabulary and semantics [158, 129]. Given that
knowledge represented through ontology’s and KGs is a recent trend in semantic net-
works [129], their application to contextualize scenes in remote sensing is also an emerg-
ing approach. Different hybrid approaches combine KG-ML techniques to improve the
recognition of objects/Areas of Interest (AOI) in satellite images [159, 160, 161, 152, 162].
Other authors are using hybrid approaches for Visual Question Answering (VQA), eX-
plainable Artificial Intelligence (XAI) [60, 17], information retrieval [159], Semantic Image
Contextualization (SIC) (semantic Referee [160]), semantic image classification [163, 162],

semantic segmentation [152], and land use/cover [164].
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Building on these approaches, using semantic knowledge with object-based image anal-
ysis can enhance decision-making by integrating relevant background information and
situational factors, refining object detection processes. This type of model provides infor-
mation, although abstract, that can help contextualize scenes [127]. However, to the best
of our knowledge, KG-ML approaches have not yet been used to provide context to RSI
for archaeological object detection.

3.2.6. Considerations

Data-based approaches — TM, OBIA, ML, and DL — share processes, including fea-
ture extraction, pattern recognition, and classification, and transform higher-dimensional
vector spaces into lower-dimensional vector spaces [165]. Feature extraction involves iden-
tifying and isolating relevant information from images [11]. Pattern recognition is a set
of techniques that makes use of ‘feature extraction, discriminant analysis, principal com-
ponent analysis, cluster analysis, neural networks and image processing to search for data
with a set of predefined characteristics’ [22, p.245] [144]. Classification then assigns ob-
jects to specific categories based on their extracted features and recognized patterns [143].

Automatic approaches for detecting archaeological monuments from RSI began over
30 years ago. However, they saw a decline in research interest until recent advancements in
computational power and improvements in aerial and satellite imagery quality revitalized
the field [166]. Since the early 21st century, automation in archaeological detection has
achieved significant success, with new methods, particularly those based on ML and DL,
greatly enhancing the precision and efficiency of identifying archaeological features [39,
40, 36, 23, 43, 42, 46, 49, 24, 16, 29]. It is fair to say that computer vision systems are
being driven by enhanced computer processing power. Together with increasing image
resolution levels (either spatial, spectral, radiometric, or temporal) and faster availability
of data, technological advances are ensuring greater use and acceptance of automation in
image analysis [167, 14].

Despite successful applications, most of the object-based archaeological site detection
research has focused on relatively simple and uniform structures, as highlighted in [166, 6].
Researchers have focused on using these methods for recognition based on geometric
features such as circular shapes [131, 22, 45, 47, 39, 39, 20, 23, 49, 31, 16, 29, 50] to
identify structures like mounds [131, 22, 45, 47, 20, 23, 49, 31, 24, 42, 42, 29|, linear
shapes [38, 39, 40, 46, 30] or rectangular [40, 46] to detect features such as roads [30, 32]
and walls [38, 39, 40, 46], and other patterns to recognize landmarks and significant
terrain features [43, 35, 33, 42]. Sites such as mounds are generally easier to detect
because they exhibit consistent features and can be defined with a limited set of descriptors
and parameters (e.g., those presenting a circular, standardized pattern with dimensions
>bm diameter) [6]. However, automated approaches usually return a high number of
FPs [30, 19, 16, 97]. Barrows, in particular, are detected with a degree of uncertainty,
and their identification is only considered accurate after reviewing common FP associated
with manual and automated detection methods [21, 20]. The manual evaluation of data
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returned by these approaches is highly time-consuming, limiting the amount of test data
that can be thoroughly analysed [168].

In satellite imagery, detecting small objects is particularly challenging due to low pixel
resolution, which can lead to a loss of critical details that make it difficult to distinguish
these objects from the background [146]. Furthermore, the large scale of these images,
often consisting of hundreds of millions of pixels, complicates the task of separating the
target from the background in complex terrains [46, 108, 146]. Other factors can hinder
recognition, notably the characteristics of the site itself, such as the monument’s size, its
state of preservation [21, 23] and resolution/scale/time of the dataset used [23, 40]. These
factors complicate feature extraction and parameter selection, making it challenging for
automated systems to recognize ancient sites.

Detecting small-scale cultural heritage sites, such as tombs in RSI, is even more diffi-
cult, specially when the construction material of the structure matches the surrounding
landscape [20, 6]. Their spectral similarity to surrounding imagery, combined with erosion
and collapse over time, indicates that new methods are needed to effectively detect these

objects that blend into their environment.

3.3. Knowledge Bases in Archaeology

Data-based approaches focus on recognizing visual features without considering whether
the found solution is semantically correct or leveraging the semantic advantages associ-
ated with geo-data [129]. For example, neural-based algorithms are trained by adjusting
model parameters to minimize a cost function over the data [143]. These models excel
in perceptual tasks, such as image classification, but often struggle with more complex
cognitive tasks, like understanding and interpreting the deeper meaning or relationships
within an image [24]. These cognitive tasks involve reasoning, not just recognition. To be
successful at cognitive tasks, models need to understand how objects interact and relate
to one another [128, 150].

In contrast, KB approaches address this limitation by using or integrating feature
information, namely details on the characteristics of the objects to be found or on the site
where they are located. In literature, structured rule-based interactions are often used.
These approaches leverage information such as spectral features (e.g., spectral indices)
and environmental knowledge (e.g., precipitation, temperature, topographical features,
phenological stages) to inform model decisions [46, 33]. Rule-based approaches are one of
the simplest forms of machine-understandable expressions [129], by which domain-specific
knowledge is represented in the form of rules.

Conversely, knowledge-driven approaches based on semantic networks to interpret RSI
are considered one of the most promising directions [128, 6, 129]. A well-structured se-
mantic database is essential for hybrid approaches to provide context to images. As
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indicated by [129], compared with rule-based systems, semantic networks excel in con-
structing organic relationships between complex entities and characterizing spatial distri-
bution and relationships. Ontologies and KGs are modern implementations of semantic
networks [129].

As noted by Magnini et al. (2019) [6], there is a growing urgency in establishing
standardized methods for publishing semantic networks that can be semi-automatically
or automatically applied in archaeological investigations. They proposed a theoretical
ontology-based framework to formalize expert archaeological knowledge. Their approach
introduced the Diachronic Semantic Model (DhSM), designed to explain long-term land-
scape evolution and applied it to a data-driven approach using OBIA for archaeological
predictive modelling, incorporating DEM-based techniques to identify areas for human
occupation and territorial control based on info such as slope, local dominance, and so-
lar radiation [6]. This example highlights how landscape information can be valuable.
However, the use of semantic approaches to support object detection in satellite data,
particularly in archaeology, is still in its infancy, emphasizing the need for well-structured
semantic models.

A domain knowledge component for the interpretation of an image can include (i)
the real-world instances, consisting of tangible entities (e.g., barrow X, castle Y, etc.);
(ii) the conceptual domain, which represents these entities based on expert knowledge;
(iii) the digital domain, associated with the virtual representation of the instances; and
(iv) the spatiotemporal domain, indicating the chronological depth inextricably linked to
archaeological research [6] (see Figure 3.1). This involves knowing the structural details

of the archaeological sites as well as their relationship with the environment.
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However, data with archaeological and environmental information to be used as do-
main knowledge are kept by different communities and institutions and these entities em-
ploy conceptualizations and formal definitions that usually do not match [57, 169]. There
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has been a traditional division in the management of data about archaeological mon-
uments. Archaeological data, typically overseen by cultural heritage institutions, often
emphasizes descriptive and interpretative information. On the other hand, geoinforma-
tion has been primarily handled through Geographic Information Systems (GIS), focusing
on visual and spatial representation rather than detailed semantic content [57]. This sep-
aration is mirrored in the various standards for information representation: Geospatial
Consortium (OGC)’s GeoSPARQL [58] — a well-established ontology for representing
geoinformation — while CIDOC-CRM [59] (ISO 2117:2023) is a well-established ontology
recognized as an official [SO standard for representing cultural heritage data. When these
standards are applied together, they have the potential to significantly enrich Cultural
Heritage (CH) data by providing precise descriptions of both the site locations and the
geometries [57].

Semantic networks are a widely used formalism for the representation of knowledge in
archaeology and RS [129, 128]. In the geospatial domains, various Geospatial Knowledge
Graphs (GeoKGs) [170] were implemented, such as GeoLink [171], Geonames [172], Ge-
oGraphVis [173], KnowWhereGraph [174], DBpedia [175], Yago2geo [176], Wikidata [177],
Event KG [178] and GeoKG [179]. In general, the KGs with geographic information such
as DBpedia, YAGO, and Wikidata focus mainly on entity-centric information and may not
offer the same level of granularity as national/local Vector Topographic Maps (VTM)s,
particularly regarding detailed landscape features and local context. Others focus on
solving specific problems, for instance, constructing models and applying them to disas-
ter preparedness and resilience [173, 174].

One notable application using KGs in RSI is narrative cartography, which integrates
event-based spatial information to provide semantic context for scenes in a given tempo-
ral space [180, 116]. Mai et al. (2022) highlight several advantages of using knowledge
graphs for narrative cartography, including improved data acquisition, integration, and
semantic content management. Despite these benefits, the use of semantic web technolo-
gies for geo-visualization remains underexplored [180]. In some studies, we find KGs, such
as LinkedGeoData [181], WorldKG [154] and GeoKG [154], converting OpenStreetMap
(OSM) data into an Resource Description Framework (RDF) KG. Others are extracting
information from VTMs as historical maps and representing them as spatial-temporal
KGs [116]. Semantic representations of vector maps as a KG present inherent challenges
due to the large, heterogeneous, and ambiguous schema, and several recent projects are
addressing this issue [154, 180, 116, 182, 183].

Rather than focusing on 'Relationships’, a cartographic map focuses primarily on
"Entities’, where each entity is explicitly defined by its location, geometry, and semantics
descriptions [182]. Identifying and partitioning vector data into interconnected geospatial
entities — referred to as ”building block” geometries — is fundamental for capturing ge-
ographic features from vector maps and representing them in a liked way. This approach

enables a detailed and efficient representation of features such as railway networks or
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wetlands [116]. The process involves tasks like partitioning and entity matching and can
be enhanced through schema matching, ontology alignment, and data exchange. Schema
matching involves aligning constituent elements of different relational schemas, such as
attributes and relation names. Ontology matching focuses on aligning classes and proper-
ties, while data exchange requires complex mapping specifications to transfer data between
source and target schemas. In this context, a direct concept attribute maps a database
column to a concept attribute, also known as a data property or schema entity [184].

Knowledge-based methods for RS data still need standards for storing information to
deal with the data flow that is constantly generated [128]. The lack of standardization
in terms of collection, storage and interpretation, and the data dispersion, inconsistency
and inaccuracy are reasons cited as restricting the use of automated approaches in this
field [185, 42]. In archaeology, different organizations have been concerned about data
storage methods and management, forming partnerships at both national and local levels
to create a comprehensive database for data collection and storage [186]. For example, var-
ious national archives (e.g., the Diregao-Geral do Patriménio Cultural (DGPC), Sistema
de Informagao para o Patriménio Arquiteténico (SIPA)) and international archives (such
as UNESCO and ICOMOS) present information on archaeological monuments. However,
there is no consistency standard for how data is organized and modelled, nor is there a
single, centralized database that contains all the data in one place.

To address these challenges, several projects are underway to enhance interoperability
among diverse databases [187, 188]. Initiatives such as ARCHES, an open-source infor-
mation system for heritage inventory and management [189], ARIADNE (Advanced Re-
search Infrastructure for Archaeological Dataset Networking in Europe), which integrates
diverse archaeological datasets to enhance research through unified access and advanced
technologies [190] that was expanded as ARIADNE Plus to include other public organiza-
tions which includes DGPC in Portugal, STAR (Semantic Technologies for Archaeological
Research), which achieved semantic interoperability among archaeological datasets [191],
OpenArchaeo which is a tool designed to query archaeological datasets in the Linked Open
Data cloud [192], EPISA [187], a project that migrates data from the National Archive
of Torre do Tombo to a relational database model [188], ArCo KG of Italian CH [96] and
CARARE [193] connecting archaeology and architecture. These projects provide digital
infrastructure for research data by creating interoperable datasets and representing the
datasets in a linked way, providing information on both a semantic level (e.g., descriptions
and interpretations) and a graphical level (e.g., photos and drawings).

Many of the semantic network representations for archaeology are compatible with
CIDOC-Conceptual Reference Model (CRM) [189, 190, 191, 192, 187, 194, 188, 96, 155,
195, 196, 197, 198, 199, 200, 193, 201]. There is an extensive body of literature demonstrat-
ing the benefits of the CIDOC-CRM in representing building and architectural heritage in
archaeology [189, 202, 200, 193, 201, 169]. For instance, Hansen & Fernie (2010) describe
the CARARE metadata schema, which focuses on the record of a detailed description
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of heritage, events, and digital resources [193]. Carlisle et al. (2013) highlight the bene-
fits of incorporating CIDOC-CRM standards into the design of Arches [189]. Ronzino et
al. (2016) present CRMba, an extension of CIDOC-CRM for encoding metadata about
archaeological building documentation [203]. Gergatsoulis et al. (2022) utilize CRM and
CRMba to represent archaeological buildings based on fieldwork data, including records,
provenance, and images [200]. Santos et al. (2022) focus on representing megalithic mon-
uments at a granular structural level using CRM [201]. Ranjgar et al. (2022) develop
a Point of Interest (POI)s-based data model for Iranian heritage sites by integrating
CIDOC-CRM with GeoSPARQL to merge spatial semantics with heritage information,
enabling users to explore and utilize location-based services and applications [169].

The CIDOC-CRM and its extensions have been successfully applied to represent ar-
chaeological sites instances [96, 169] in a granular way [201, 200, 189, 204]. Some ap-
proaches focus on retrieving information [169, 204]. Others focus on represent spatial
data [169] focusing on topological spatial relations [204, 197, 155, 205]. In this case,
“internal spatial relations” are explored, which refer to interactions among the struc-
ture (e.g., walls with cave roofs) [204] or between the finds in the structure [197]. Most
research utilized SQL [189] or NoSQL models, often employing the RDF and Web Ontol-
ogy Language (OWL) [155, 201, 169, 198], with few of these studies using Native Graph
Database (NGDB) to create KGs based on CIDOC-CRMs [197, 204].

3.3.1. Considerations

To the best of our knowledge, there are only a few approaches that integrate CIDOC-
CRM with ML [206, 168, 205, 199]. Even fewer apply semantic networks to contextualize
images [205] and improve data-based object detection [148, 168]. Ontologies/KGs with
data-based approaches to provide explainability to imagery are being applied to retrieve
image information [168, 199], improve data-based object detection [148, 168], generate
training data [207] and VQA [208]. The usage of KG-ML models to deal with RSI has
been introduced recently and is seen as a good method for improving automatic detection
in archaeology [6].

Recently several ontologies have been developed. However, spatial and contextual
information seem to be discussed separately, as do archaeological and landscape data.
A scene involves a complex network of cultural and historical contexts that must be
integrated and interconnected to fully capture its significance and provide comprehensive
information [169]. This perspective aligns with Tobler’s first law of geography, which
states, “everything is related to everything else, but near things are more related than
distant things.” [209].

A remote sensing scene consists of features such as land covers (physical states) and
land uses (functional objects), which are closely linked [17, 152]. Objects in the to-
pographic space include both landscape and archaeological features. The geographical
features considered in RS information extraction are classified into spatial, physical, and
regional categories. Spatial knowledge encompasses spatial vision features (e.g. texture),
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spatial geometry features (e.g. shape), spatial distribution (e.g. position) and spatial
relationship. Physical knowledge contains sensor information (e.g. imaging mode, sensor
performance), model (e.g. physical model), and spectral features (e.g. spectral index).
Regional knowledge includes temporal knowledge (e.g. land/use change) and environmen-
tal knowledge/features (e.g. topographical features) [129]. Although data and knowledge
about these elements exist, they are not always organized effectively for integration and
utilization.

The domain knowledge of geographical features can be obtained from a variety of
sources (As presented in section 2.3). The composition of a scene can be derived from
semantic, raster and vector data. Pre-made official regional VTMs containing landscape
data are a valuable resource because they already contain derived and processed infor-
mation, which saves time and effort in extracting and interpreting raw data. These maps
provide immediate insights into features like land cover, vegetation, or topography and,
contain info on structures (entities) and descriptions (characterization of identified enti-
ties) [81]. The info is provided in a structured format which allows for easy information
extraction. On the other side, data from archaeological sites is often found in textual
or structured repositories. Although this contains valuable information, it can also be
incomplete and disjointed due to data incompatibilities and the subjectivity of scientific
observations [97]. This information is often fragmented, with separate knowledge repre-
sentation models dedicated either to landscape information or to archaeological heritage.
Furthermore, specific data about monuments and landscapes within a given region are
typically stored in isolated sources and are not always consistent.

Although there is data and information about a place, what is missing is the structured
integration of this information in a way that can be effectively utilized to leverage KG-ML
models. Considering this, we wonder if combining these data into a semantic model could

make it interoperable for contextualizing scenes using machine learning methods.

3.4. Conclusion

Upon reviewing studies on automated approaches for recognizing archaeological sites
in RST (Section 3.2), it became clear that most automatic methods being used are data-
driven. Additionally, they tend to return FP [21, 131, 45, 25, 27|, particularly for complex
or small sites [21]. Knowledge-driven approaches that add domain knowledge to provide
context to RSI scenes via semantic networks have been considered an important direction
to explore together with data-driven approaches [128, 6, 129]. However, these approaches
remain largely unexplored in archaeology. Nevertheless, semantic networks are gaining
attention for their role in representing and standardizing information otherway dispersed
across various sources [210]. There are many ontologies available, as presented in Sec-
tion 3.3, but to fully leverage them for contextualizing scenes it is crucial to gather the
relevant data and information to populate the ontology and implement a model to deal
with this information at an instance level. However, data is often scattered, diverse, and
sometimes inaccessible, making it challenging to effectively integrate and use.
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The difficulty in acquiring diverse datasets poses challenges in the analysis of archae-
ological sites and their surrounding environments. Data collected from various sources
often lack consistency, resulting in different interpretations of the information. Semantic
and geospatial data are essential for understanding archaeological and topological fea-
tures and their relationships. Together, these types of information can enhance domain
knowledge about the elements present in a location and help contextualize a scene. We
identified two issues: one regarding the different sources of information related to archae-
ological and topological features, and the other concerning both semantic and geospatial
data formats.

The representation of spatial and contextual knowledge as linked data is seen as
a promising approach. It has been applied to standardize, improve accessibility and
interoperability of data, and enhance the contextualization and interpretation of im-
ages [128, 182, 17]. Currently, different approaches are combining KG and ML techniques
to improve the recognition of objects/AOI in satellite images [159, 160, 161, 152, 162].
In these works, KGs are applied either at the beginning, to train the model, or at the
end to review and refine the results. Thus, KGs act as (1) a Reviewer - validating and
refining visual model outputs [160], (2) a Trainee - used to create semantic embeddings to
align them closely with visual embeddings [148], (3) Peer, which combines semantic and
visual data into a hybrid space for a comprehensive representation [34, 211, 161, 168, 212],
or (4) guide the visual recognition where the KG acts as a Trainer [133]. These diverse
roles are illustrated in Figure 3.2 and align with the categories defined by Monka et al.
(2022) [165]. Most of them, however, are used at the beginning of the process to aid in
training and model development, with no attention paid to using domain knowledge in
an automated way to validate outputs.

Although hybrid KG+ML approaches are being used [159, 160, 161, 152, 162], they
have not yet been used to provide context to RSI for archaeological object detection.
Knowing this, a promising direction would be to implement a KG that centralizes avail-
able information about the monuments and their surrounding landscape, encapsulating
domain knowledge in an interoperable format. This would allow machines to effectively
access and utilize information that would otherwise remain scattered and disconnected.
To address the gap in archaeology, where semantic databases have not yet been utilized
to provide context for RSI scenes and improve object detection outputs, we aim to create
an interoperable semantic database. This database will consolidate dispersed information
about both the target objects and the AOI. The purpose is to implement aKG to pro-
vide contextual knowledge that can be used to refine and improve the object recognition
results. By incorporating this contextual information, we aim to train a model capable
of enhancing detection and evaluating whether the additional context improves overall

performance.
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CHAPTER 4

Dolmen Detection

4.1. Introduction

Dolmens are one of Portugal’s most representative prehistoric cultural features. Object
detection for recognizing these monuments in Remote Sensing Images (RSI) in the Iberian
Peninsula has already been performed. Specifically, in our study area (Section 2), we have
contributed with a sequence of three significant works related to image analysis for iden-
tifying dolmens. The first involved photo-interpretation, resulting in the recognition of
60 monuments within the regions of Mora and Arraiolos (Portugal) [18]. This was fol-
lowed by two distinct automated approaches, both using satellite images over the 60
recognized monuments identified in the previous work as a dataset to train models for
automatic monument detection. One was a pixel-based approach that used hyperspec-
tral, multispectral, and panchromatic images from ESA’s PROBA-1 and WorldView-2
(WV-2) satellites [37] and the other an object-based approach employing 8K resolution
Google Earth images [213]. In the first case, there were many False Positives (FP)s, while
the object detection-based model showed better performance, achieving an F1 score of
0.78 and a precision of 0.93 using Convolutional Neural Networks (CNN)s. The test set
consisted of 3 monuments. However, it’s important to note that as more images of the
terrain are analyzed, the number of false positives may increase, especially considering
that the surrounding landscape predominantly comprises the same material as our target
object.

The problem of false positives remains significant. Other research, such as the one
in [20], which used LIDAR data to detect megalithic monuments on the Iberian Peninsula,
also resulted in several FPs. Even using different types of data, identifying small-scale
prehistoric structures appears to be challenging and often results in false positives.

This chapter details our object detection approach for dolmens in satellite images for
this thesis. Given that the object-based approach in [213] showed good precision, despite
the small test set, we adopted it as our model and extended the tests. The focus is on
our study area (Pavia), where we will use the 16 identified dolmens within this area for
testing and the remaining 44, located in the surrounding areas, for training. Additionally,
we extended the analysis to use images with no monuments in or testing AOI to assess
the model’s performance and evaluate if the number of false detections is maintained.

The remainder of this chapter outlines the process for data gathering (Section 4.2),
dataset preparation (Section 4.3), and the proposed algorithm (Section 4.4). Subse-
quently, the implementation section describes how the algorithm was executed (Sec-

tion 4.5), and the results section presents the outcomes of the experiment (Section 4.6).

37



4.2. Data gathering

Data for this study comes from previous photointerpretations that identified 60 dol-
mens from satellite images within the regions of Mora and Arraiolos (Portugal) [18]. These
dolmens are shown in Figure 4.1. Knowing the location of this targets objects, the images
were sourced from Google Earth at an 8K resolution, captured at a scale of 1:400 meters.
For each known archaeological monument, five images were obtained, each showcasing the
monument from different positions, resulting in a total of 300 images. An additional 70

images with non-archaeological monuments were collected.

Dolmen
® Dolmen Analysed
[ Arraiolos
[ Mora
B Portugal

FIGURE 4.1. Map of Portugal showing detailed regions of Mora and Ar-
raiolos on the right, with analyzed dolmens marked in red. The map was
created using VT'Ms [2, 5]

Since its launch in 2005, Google Earth has leveraged geospatial technology to deliver
precise location data based on latitude and longitude, allowing users to pinpoint specific
locations with ease. As a free and user-friendly platform, it supports the storage and
sharing of location data through KMZ files, which package multiple files into a single,
compressed format for easier distribution and quicker downloads [214]. Google Earth
Pro offers high-resolution images in pan-sharpened format [213], which can be accessed at
various resolutions and from different time periods, making it a valuable tool for analysing
and visualizing geographic data.

Google Earth provides historical images of the region, spanning from 1995 to the
present. Since 2015, each year presents multiple timeframes within the year, varying in
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quality throughout the timeline. The quality of the images may not necessarily improve
over time but rather depends on which satellite took the photographs. For example,
images between 2013 and 2017, especially during August and September, show better
resolution four our Areas of Interest (AOI) (see Figure 4.2d). Studies have shown that
the optimal time of year for object detection in images is typically during the summer
or fall [35, 215]. We chose images from August 2017 because they provided the best

resolution and clarity among the available historical images.

(¢) August 2018 (D) September 2023

F1GURE 4.2. All images from Google Earth are in 8k resolution and at a
scale of 1:400m. Credits: [7]

4.3. Dataset Preparation

After gathering the data, the process involved preparing the data for training, in-
cluding enhancing data quality, preprocessing, and model training. This was done using
Roboflow, which facilitated data preparation, enhancement, and preprocessing for model
training. Roboflow is a platform that simplifies the management of computer vision
datasets. The Workspace Image Search API offers a robust and flexible mechanism for
searching and labelling images, and an extensive range of augmentation and preprocessing
options [216].

Labeling involves marking objects in images. Bounding boxes and polygons can be
used to annotate images [216]. A total of 300 images were organized and annotated with
binary labels to create the dataset for the project ”"Dolmen” and "non-dolmen”. dolmens
are a positive class, while images without dolmens are marked as null — to indicate the
absence of the object of interest.

Once the images were annotated, we enhanced and augmented the dataset. Pre-
processing steps involve preparing the data for model training by normalizing images,
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resizing them, and ensuring consistency and quality. Image augmentation is a computer
vision technique that artificially increases the size and diversity of training datasets by
applying various transformations to the original images. These transformations introduce
variations that enhance the model’s ability to generalize and improve its robustness to
new data. Augmentation techniques, such as rotations, flips, and colour adjustments,
are essential for enhancing dataset diversity. For instance, cropping involves selecting a
portion of the image, with adjustable minimum and maximum ranges. Rotation allows
for rotating the entire image by a specified angle in degrees. Hue adjustment modifies
the colour hue by specifying degrees, while saturation adjustment changes the image’s
saturation level in percentage terms [216].

In the preprocessing stage, we applied the following Auto-Adjust Contrast to enhance
image quality through adaptive equalization. The auto adjust contrast feature enhances
low-contrast images by adjusting contrast based on Contrast Stretching !, Histogram

Equalization 2

and Adaptive Equalization ® — being this last one used in our dataset.
Augmenting training datasets artificially with a variety of transformations is a technique
in computer vision that increases training dataset size and diversity. Here, we experi-
mented with different parameters, including replicating the approach indicated in [213],
to determine the most effective preprocessing and augmentation strategies.

To augment the dataset and improve the robustness of the model, we applied the fol-
lowing configurations, which yielded the best results, producing three outputs per training
example: Crop with 0% minimum zoom and 30% maximum zoom, Rotation between -
15° and +15°, Hue adjustment between -25° and +25°, Saturation adjustment between
-34% and +34%, and Brightness adjustment between -24% and +24%. In comparison,
the replicated approach used the following augmentations: Crop with 0% minimum zoom
and 62% maximum zoom, Rotation between -20° and +20°, Hue adjustment between -
35° and +35°, Saturation adjustment between -99% and +99%, Brightness adjustment
between -55% and +55%, and Bounding Box Exposure adjustment between -35% and
+35%. These resulted in a dataset with 943 images.

To properly evaluate the model’s performance, the dataset was divided into training,
validation, and test sets based on unique objects. The training set includes one annotation
file and 867 images (comprising 47 dolmens, or 73%, and 47 null images). The validation
set contains 44 images (with 4 dolmens, or 3%, and 14 null images) and one annotation
file. The test set consists of 32 images (16 dolmens, or 23%, and 8 null images). For the
test set, special attention was given to the 16 dolmens located in the AOI, allowing for a

targeted evaluation of the model’s performance in identifying these specific objects. This

IContrast Stretching: Rescales the image to cover the full range of intensities between the 2nd and 98th
percentiles [216].

’Histogram Equalization: Distributes intensity values more evenly across the image, achieving a roughly
uniform pixel colour distribution [216].

3Adaptive Equalization: Contrast Limited Adaptive Histogram Equalization (CLAHE) enhances local
contrast by applying histograms to different regions of the image, improving details in both dark and
light [216]
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dataset was downloaded in the COCO format [216]. This set is referred to as Dataset 2,
and in addition to it, we also utilized the dataset from [213] — referred to as Dataset 1

— which consists of three test images.

4.4. Proposed Algorithm
Fast Region-Based Convolutional Neural Networks (R-CNN) enhances the two-stage de-

tection process by introducing a Region of Interest (Rol) pooling layer, which standardizes
the feature maps generated by the backbone network. The process starts with the Region
Proposal Network (RPN) identifying potential object regions. Fast R-CNN then classi-
fies these regions and refines their bounding boxes [130]. The entire image is initially
processed through convolutional layers to produce a feature map. The Rol pooling layer
extracts fixed-length feature vectors from the proposed regions, which are then fed into
two fully connected layers: one for box regression (reg) to adjust bounding boxes and
one for box classification (cls) to determine object categories [147]. The network out-
puts classification probabilities and bounding box adjustments, all optimized through an
end-to-end multi-task loss function that simultaneously addresses both classification and
regression tasks [130].

In training RPNs, the objective is to minimize various loss functions to improve model
performance [147]. Several metrics are used to evaluate this process. The Classification
Loss for RPN measures the log loss over two classes (object vs. not object), assessing
the precision of the RPN in classifying anchors as either objects or backgrounds. The
Regression Loss for RPN, evaluates the error in predicting bounding box coordinates
using a robust loss function to refine the predicted coordinates. The Box Regression
Loss measures the error in the final bounding box regression performed by the detection
network [147]. The Classification Loss for Detection Network evaluates the precision of
object classification within the proposed regions, computed as a log loss over class pre-
dictions for detected objects. These metrics are combined into a multi-task loss function
that optimizes both classification and regression objectives, ensuring effective training of
both the RPN and the detection network [213].

4.5. Implementation

To implement the Faster R-CNN framework, we employed Detectron2 with two back-
bone networks, ResNet-101 and ResNet-50, and evaluated Dilated Convolutional Net-
work (DCN), configured using the COCO detection pre-trained weights. Additionally,
two training schedules, 1x and 3x, were used to explore their impact on detection perfor-
mance

The model was trained with a maximum of 5000 iterations, a base learning rate of
0.001, and an evaluation period of every 200 iterations. The dataset annotations were
visualized to ensure quality, and the output directory was organized dynamically based on
the training setup and timestamp. Batch sizes and the number of workers were adjusted
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to optimize for the available computational resources. Additionally, the mask format was

set to bitmask for compatibility with the dataset annotations

4.5.1. Training Performance

Various training sessions were conducted with different dataset configurations, involv-
ing changes to both the training and test sets. This approach focuses on the model’s
ability to correctly identify dolmens in the area of interest while also accounting for the
impact of dataset variations. To better understand the model’s performance, the training
metrics will be examined, as illustrated in Figures 4.3 — 4.4.

Figure 4.3 presents three graphs depicting the model’s performance over time: Classi-
fication Accuracy, False Negatives (FN), and Foreground Classification Accuracy. Classifi-
cation accuracy shows that after approximately 3,000 steps, it stabilizes near 1, indicating
that the model correctly classifies nearly all training samples, with minor fluctuations but
an overall high accuracy of around 0.9922 at the final measurement. The false negative
rate similarly approaches zero by about 2,000 steps and remains low throughout the train-
ing. Lastly, foreground classification accuracy stabilizes after approximately 2,000 steps,

reflecting the model’s effective precision in detecting objects of interest.

fast_rcnn/cls_accuracy Lr : fast_rcnn/false_negative

0 1000 2000 3000 4000 (EER 0 1000 2000 3000 4000 0 1000 2000 3000 4000
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Run® Smoothed Value Step Relative Run® Smoothed Value Step Relative Run ™ Smoothed Value Step Relative
0.9933 09922 4999 15.24 min o . 0 0 4,999 15.24 min o . 1 1 4,999 15.24 min

FIGURE 4.3. Training metrics showing classification accuracy, false nega-
tives, and foreground classification accuracy

The evaluation of the model’s performance is reflected in several loss metrics. Figure
4.4a shows a low loss_rpn_loc value of 0.0009, indicating excellent performance in pre-
dicting bounding box coordinates. Figure 4.4b presents the loss_box_reg value of 0.1632,
which, while higher, still suggests reasonable accuracy in final bounding box regression.
Figure 4.4c highlights a very low loss_rpn_cls value of 0.0001, demonstrating high preci-
sion in classifying anchors as objects or backgrounds. Finally, Figure 4.4d shows a loss_cls
value of 0.0091, indicating strong classification performance in detecting objects within
proposed regions.

Using Google Collab, each algorithm required approximately 2 hours to train for 5000
iterations or 40 min for 2000 interactions, aiming to minimize total loss and achieve the
optimal learning rate for each algorithm. The default GPU for Collab is an NVIDIA Tesla
K80 with 12GB of VRAM (Video Random-Access Memory).
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(¢) Classification loss in the RPN. (D) Classification Loss for detection.

FIGURE 4.4. Training metrics are shown: Location Loss for RPN (A), Box
Regression Loss (B), Classification Loss in the RPN (C), and Classification
Loss for the Detection Network (D).

4.5.2. Evaluation Metrics

When evaluating an object detection model, several key metrics are used to assess its
performance, depending on the application’s goals. The model’s performance is evaluated
by counting True Positives (TP)s, where the model correctly identifies and locates objects;
FPs, where the model incorrectly detects objects that aren’t present; FN, where the
model fails to detect objects that are present; and True Negatives (TN)s, where the
model correctly identifies the absence of objects. A confusion matrix provides a detailed
summary of these metrics. It presents TP, FP, FN, and TN in a tabular format, allowing
for a comprehensive view of the model’s performance across all categories [141].

These metrics are then used to calculate precision, recall, and F'1 scores. Precision,
calculated as Precision = TP / (TP + FP), measures the proportion of true positive
predictions among all positive predictions made by the model. This metric reflects the
robustness of the model’s positive detections, accounting for both correctly identified
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objects (true positives) and incorrectly detected objects (false positives). Recall, given by
Recall = TP / (TP + FN), measures the proportion of true positives among all actual
positive instances, including both correctly identified objects (true positives) and those
that were missed (false negatives). This indicates how well the model detects all relevant
objects. The F1 Score, calculated as F1 Score = 2 * (Precision * Recall) / (Precision +
Recall), combines precision and recall into a single metric, balancing the trade-off between
accuracy and completeness. It provides a comprehensive measure of performance, which

is especially useful for evaluating models on imbalanced datasets.

4.6. Results and Discussion

Various training and testing scenarios were conducted using the two Faster R-CNN mod-
els, R.50_.DC_1x and R_50_DC_3x, to assess their performance. For the approach using
Dataset 1, the methodology closely followed [213], employing the same dataset and hy-
perparameters. In contrast, Dataset 2 expanded the test set from 3 to 16 dolmens and
increased the non-dolmen images from 2 to 8 in the test scenario while also adding non-
dolmen images to the training and validation steps. This expansion was designed to
test the model’s ability to recognize all dolmens within the Pavia area. Various tests
were conducted for each model and dataset combination. Across all training sessions, the
R_50_DC_1x architecture consistently outperformed its counterpart. Notably, the repli-
cated approach in Dataset 2 achieved better results, with an overall precision of 55.6%.
Based on these outcomes, the R_50_DC_1x model was selected as the preferred pipeline for

further analyses and prediction of new datasets. The results are presented in Table 4.2.

Algorithm Dataset Overall Precision
R.50_.DC_1x Dataset 1 44.6%
R.50.DC_1x Dataset 2 55.6%
R_50_DC_3x Dataset 1 43.7%
R_50_DC_3x Dataset 2 51.5%

TABLE 4.2. Performance metrics (Overall Precision) for R-50_-DC_1x and
R_50_DC_3x models across different datasets

The aggregated results are presented in the confusion matrix in Table 4.4. This ma-
trix reveals a high number of false positives (77) compared to true positives (46), with
nearly five false positives for each correct detection. Switching the dataset to include only
large and easily detectable monuments improves performance; however, the focus was
on detecting the dolmens of Pavia. While the model performs exceptionally well during
training, its performance on test data is less favourable. This discrepancy highlights the
challenges posed by the small size of the dataset. A limited dataset may not provide
sufficient information for effective model training, leading to suboptimal performance and
difficulty reducing errors such as false positives.
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Classification True False
Positive 57% 43%
Negative 82% 17%

TABLE 4.4. Aggregated confusion matrix — dataset 2

The model demonstrated high performance in detecting monuments that are well-
preserved and located in areas with minimal rocky outcrops. For instance, Figures 4.5a
(Dolmen Adua 1) and 4.5b (Dolmen Antoes 3) illustrate successful detections of such mon-
uments, achieving precision between 95% and 100% — this is similar for other monuments

such as — Remendo 2, Goncala 2, Sao Miguel 4 and Anta Capela de S. Diniz.

S N b
(A) Dolmen Adua 1 — was recognized in all (B) Dolmen Antoes 3— was recognized in all
tests with precision superior to 95%. tests with precision superior to 95%.

F1GURE 4.5. The figures A and B show examples of monuments that are
consistently recognized.

Challenges arise when the environment includes rocky outcrops, as illustrated by Fig-
ures 4.6a (Dolmen Matalote 1) and 4.6b (Dolmen Casa Branca). Other examples occurred
with Cre 2. In such cases, the algorithm tends to generate a high number of false pos-
itives. This issue is particularly pronounced in areas with substantial granite outcrops,
which are characteristic of the Alentejo region.

When images with no dolmens were analyzed, especially in these rocky areas, the
model frequently returned false positives - exceeding 50% (Figure 4.7).

Conversely, the model has difficulty detecting monuments that are either covered by
vegetation, such as dolmen Lapeira 1 (4.8b), Adua 4 or in very poor condition, like
dolmen Tera 12 (4.8a), Adua 6, Alcarou de Baixo and Lapeira 2. In these situations, the
algorithm’s performance significantly declines, making efficient detection challenging. The
presence of dense vegetation or advanced deterioration often results in missed detections
or a high rate of false negatives.

When applying the model to predict new dolmens in a new data set (prediction set)
with no dolmens, the number of false recognitions tends to increase, particularly in areas
with significant granite presence. This additional test included 100 images, of which
64 images returned FPs. This resulted in an increase of false detections, reflecting the
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(A) Dolmen Matalote 1 recognized in 60% (B) Dolmen Casa Branca 1 recog-
of the tests with precision above 85%. nized in most tests with high precision.

FIGURE 4.6. The figures show examples where monuments are present and
identified by the model but also include false positives.

(B) Image with no target object showing
false detections. false detections.

FIGURE 4.7. The figures show examples where no monuments were present
but were incorrectly classified as such.

77 __' =
(A) Dolmen Tera 12. (B) Dolmen Lapeira 1.

FIGURE 4.8. The figures show examples where monuments are present but
were not identified by the model.

challenges posed by the rocky environments and the model’s tendency to misidentify
granite natural formations as dolmens. In the figure 4.9, a map is presented with the data
used in the area of interest; the green points indicate the ’dolmens’ in the test set, the red
points represent the non-dolmens’ set, which was divided into training and testing, and
the black points correspond to the new dataset that we used after training the model.

The nature of the landscape plays a crucial role in the visibility and analysis of ar-
chaeological features. Flat terrains, with their smooth and unbroken surfaces, provide
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FIGURE 4.9. Map displaying 'dolmens’ (green points), 'non-dolmens’ (red
points), and the new dataset (black points) used after model training.

an ideal backdrop for detecting these monuments. In these environments, the distinct
outlines and features of the monuments stand out clearly against the background, making
them more noticeable. In contrast, rugged and undulating terrains pose significant chal-
lenges due to variations in light, shadows, and potential camouflage effects. These factors
can obscure or distort the visualization, making detection more difficult. Furthermore, an
unobstructed view is essential for clear visualization. Elements such as dense vegetation,
debris, or other environmental obstructions can greatly reduce the recognition. Thus, ar-
eas with a clear line of sight to the dolmen’s structure are more favourable for successful
detection.

Archaeological features are generally more visible on exposed ground than in cultivated
fields or areas with irregular vegetation growth, which weather conditions can influence.
Notably, some traces become visible due to anomalies in vegetation, such as changes
caused by varying health states of plants. This phenomenon is especially evident during
winter under dry and rainless conditions [35].
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CHAPTER 5

Knowledge Graph: Monuments and Landscapes

5.1. Introduction

There are many platforms and formats for presenting information and data about
cultural heritage and landscape. An image analyst can consult a variety of layers of Vec-
tor Topographic Maps (VTM)s to understand better the landscape and spatial relations
between the geographic objects and features on the surface. Additionally, contextual in-
formation about the target object is used to derive knowledge. This process is further
enriched by the specialist’s own experience and expertise.

According to previous studies, dolmens tend to be found in elevated areas, near water-
courses and rocky outcroppings and in regions with poor agricultural capacity [56, 69, 18].
In addition, these monuments tend to be spatially near similar monuments, and they are
more visible from the ground in rural areas with a flat surface and little overlap. While
domain knowledge of cultural heritage information can be derived from textual records,
these landscape features can be derived from hydrography, hypsometry, soil type, and
land use modern VTMs of the Areas of Interest (AOI).

Traditionally, these data are not interoperable because they consist of different types
of information and formats. Ontologies and Knowledge Graph (KG)s for representing
archaeological culture heritage and landscape features have been receiving more attention
to deal with the lack of interoperability of data. There are ontologies and KGs with
information about the landscape and cultural heritage, but they are rarely addressed
together, and models are sometimes incompatible or non-open. Additionally, when it
comes to dolmens located in our AOI, we do not find open graphs containing such data.

Due to the 1) lack of a model linking VTMs features and contextual information on the
modern landscape with archaeological monuments, including spatial and contextual data,
and 2) the absence of a semantic model populated with detailed, granular information on
our target object and AOI (at least not openly available) — we chose to implement our
own KG as an Labelled Property Graph (LPG). This was implemented to efficiently and
coherently display extensive archaeological data related to monuments and landscapes,
systematizing and integrating them. The goal is to represent knowledge granularly by
capturing specific instances and their relationships. This approach enables detailed queries
on particular aspects and information retrieval focused on instances. Using this knowledge
structure, we aim to organize information interoperably, providing a solid foundation for
future analysis and pattern recognition.

This chapter examines the implementation of the LPG, designed to represent infor-

mation about the scene by linking instances of entities present in the AOI where dolmens
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is located. Section 5.2 introduces the fundamental concepts of knowledge representa-
tion, providing the theoretical foundation for the chapter. The remainder of this chapter
outlines the process for data gathering (Section 5.1), dataset preparation (Section 5.3),
and the proposed schema model (Section 5.4). Subsequently, the implementation section
describes the model implementation (Section 5.5), and the information retrieval section

presents the analysis performed and conclusions (Section 5.6).

5.2. Knowledge-Based Semantic Networks

A knowledge base is a repository of information [217]. Systems based on Knowledge-
Based (KB)s utilize domain-specific knowledge and rules to guide decision-making. A
system is considered knowledge-based if it relies on a collection of symbolic structures
that represent the information used for reasoning and operation [217, 218].

Semantic networks are a form of knowledge representation that uses graph struc-
tures to model relationships between concepts. These networks enable an intuitive and
structured method for capturing and visualizing knowledge, with vertexes representing

entities and edges defining relationships between them.

5.2.1. Knowledge Representation

Knowledge representation in the context of semantic networks refers to the process
of encoding information about the world into a structured format that computational
systems can understand and manipulate, enabling them to model, interpret, and reason
about complex domains. On the other hand, knowledge reasoning involves using these
representations to solve problems and derive new insights, mimicking human cognition’s
logical and analytical capabilities. Knowledge representation and reasoning refer to how
knowledge is symbolically represented and automatically manipulated by reasoning pro-
grams [217].

Various standards have been proposed to communicate knowledge between knowledge-
based systems and represent knowledge in a standard format. Ontologies and KGs are
both methods for knowledge representation, with ontologies defining domain concepts
and relationships in a formal structure, while knowledge graphs capture entities and
their interrelationships in a graph-based format [217, 219]. Figure 5.1 illustrates how
knowledge-base, knowledge-representation, ontologies and knowledge-graph concepts are
related. The following subsections provide a detailed description of these knowledge rep-

resentation models.

Ontologies

Ontologies (a.k.a. for knowledge-bases) are ‘a means to formally model the structure
of a system, 1i.e., the relevant entities and relations that emerge from its observation,
which are useful to our purposes’| 220, p.2], defining ‘explicit specifications of conceptu-
alizations’. [220, p.8] in a common used and powerful way to represent domain knowl-
edge [221]. For Bianchi et al. (2020), it is "a formal specification of the meaning of
types and relationships expressed as a set of logical constraints and rules, which support
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FIGURE 5.1. The diagram shows how knowledge bases, knowledge repre-
sentations, ontologies, and knowledge graphs are interconnected.

automated reasoning.” [ 222, p.2]. While there is a consensus on the importance of ontolo-
gies, opinions vary regarding their precise definitions and scope. In essence, ontologies
are structured to define how to represent entities and their relationships. This structure
semantically represents fundamental concepts and their relationships across various levels
of abstraction, increasing the sharing and reuse of information while increasing the shared
understanding of knowledge of a domain in an interoperable way [223].

An ontology is expressed in logic through logical axioms, which define the constraints
of semantic modelling [217]. It provides a formalism designed to represent structured
knowledge about a domain. The focus is on language and semantics to structure infor-
mation in a way that ensures interoperability [217, 59]. Description Logics play a crucial
role in the logical formalization of knowledge. It constitutes a family of logic rather than
a single specific logic. They are based on three fundamental elements: individuals (e.g.,
Lisbon), classes (e.g., City), and properties (e.g., flight). Description Logics enable the
formulation of assertions, known as axioms, about these elements. Assertive axioms can
represent unary class relations in individuals [224]. Ontology’s structure traditionally
comprises two parts: the terminological part Terminological Box (T-Box), which includes
definitions and axioms, and the assertive part Assertional Box (A-Box), which specifies
individuals or instances [225, 184].

Different languages have been implemented to express these ontologies. The World
Wide Web Consortium (W3C) has adopted several languages to represent ontologies, such
as the Resource Description Framework (RDF) and Web Ontology Language (OWL).
RDF provides a basic structure for describing data on the web composed of three el-
ements representing two vertices connected by an edge: subject-predicate-object [219].
The subject represents a node or resource, the object a node or literal value, while the
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predicate represents an edge. In this model, nodes or edges are identified by a Uniform
Resource Identifier (URI), which is a unique identifier where the subject and predicate
are URIs, and the Object is a URI or literal. So nodes and edges are purely unique labels,
with no internal structure [226]. The OWL, defines how to model the RDF knowledge
semantically [227, 228, 229]. These international languages represent the most widely
used ontologies in information systems [226].

Some ontologies do not supply a vocabulary of concepts, so thesauri and glossaries
provide controlled terminology required for a semantic link between different terms for
the same concept [210]. A thesaurus is a controlled vocabulary with a structured seman-
tic network of distinct concepts that improves information retrieval through categorized
queries. It standardizes and harmonizes terminology across various sources, ensuring con-
sistency and clarity in concept representation [230]. Different thesauri are available for
defining specific domain features such as archaeological terms, such as ROSSIO [231], an
open-access, free platform to aggregate, organize, and connect digital resources in the
fields of Social Sciences, Arts, and Humanities, designed by Portuguese higher educa-
tion and cultural institutions — utilizing structured vocabularies and widely recognized
ontologies such as the Getty’s Art and Architecture Thesaurus (AAT); GETTY AAT
provides a comprehensive vocabulary for art and architecture, facilitating the standard-
ization of terminology in cultural heritage documentation; and the Forum on Information
Standards in Heritage (FISH) thesaurus has as main focus has been on developing content

and data standards for use in the heritage sector [232].

Knowledge-Graphs

Information from heterogeneous sources can be represented, retrieved, and integrated
using KGs. Even though the term “knowledge graph” has been used at least since 1972,
its modern incarnation was introduced by Google in 2012 [233], followed by announce-
ments of knowledge graphs from Airbnb, Amazon, Facebook, LinkedIn, Microsoft, and
more [224, 234]. In recent years, more scientific literature has been published on knowl-
edge graphs due to the growing industrial uptake of the concept. This model is designed
to accumulate and convey real-world knowledge, focusing on representing relationships
between entities [165, 224, 235].

A KG is structured around two primary components: nodes (or vertices/entities in
ontological terms) and the relationships that connect them (known as edges or properties
in ontologies). These nodes and relationships are not just abstract concepts; they can
have specific instances (known as individuals in ontologies) with attributes or labels that
provide additional context or details. Knowledge within a KG is typically expressed
through factual triples, creating a web of interconnected entities and relationships that
constitute the graph’s structure [165].

The structure of a KG is often a source of confusion, particularly regarding its re-
lationship with ontologies that comprise the T-Box and A-Box. However, the literature
frequently mixes the distinction. Nys et al. (2018) suggest that, in the realm of computer
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science and KGs, an ontology formally describes the types, properties, and relationships
between real-world entities [155]. A similar idea is presented by Ferilli et al. (2021),
who states that when the definitions/concepts/axioms T-Box are considered in conjunc-
tion with the instances/individuals A-Box, the result is a KG [235]. This interpretation
underscores ontologies as the foundational framework, establishing the rules and struc-
ture that can be used to build KGs, while KGs focus on visualizing these relationships,
emphasizing the representation of instances. From our perspective, ontologies emphasize
logical structures, concept definitions, and semantic relationships. In contrast, KGs are
primarily concerned with representing and linking real-world data—instances.
Additionally, KGs can integrate information into an ontology and use reasoning mech-
anisms to generate new insights [218, 159]. Ontologies, semantics, and reasoning are crit-
ical for extracting new information [236, 224]. Ontologies provide a formal representation
of knowledge domains, while semantic technologies interpret the meaning and context of
data, enabling advanced reasoning. Reasoning involves applying logical rules to existing
knowledge, allowing for the derivation of new conclusions, inferences, and insights from
both explicit and implicit data relationships. There are various KGs models for repre-
sentation. For example, LPGs is a model where nodes and relationships have a uniquely
identifiable ID and a set of key-value pairs, or properties, that characterize them, so in this
model, nodes and relationships have internal structures [237] — with the 'key’ being the
property name and the ’value’ containing the corresponding data (instance). Unlike the
RDF structure where the nodes are atomic, LPG carries information allowing a compact
structure, has unique identifiers for relationship instances, allowing different instances of
the same relationship to be distinguished between the same pair of entities, and instances

of relationships can have properties.

Graph Databases
In semantic networks, knowledge representation based on ontologies and knowledge
graphs provides the foundation for effectively structuring and organizing information.
Databases, then, offer a powerful tool for storing, managing, and querying interconnected
information. SQL and NoSQL are two distinct types of database management systems.
SQL is a relational database where data is stored in a highly structured format within
tables, which consist of rows and columns with predefined data types. These databases
require a strict schema design where tables are interconnected through referential in-
tegrity, typically using primary and foreign keys. When retrieving data from multiple
linked tables, a JOIN operation combines rows based on matching keys [238]. Conversely,
NoSQL databases offer more flexible solutions for handling unstructured or highly scalable
data. Traditionally, NoSQL models are associated with Basically Available, Soft State,
and Eventual Consistency (BASE) properties, whereas relational databases are known for
their Atomicity, Consistency, Isolation, and Durability (ACID) principles [188]. NoSQL
databases can be divided into five categories: key-value (e.g. Redis, Azure Table Storage,
DynamoDB), column-based (e.g. Cassandra, HBase), document-based (e.g. MongoDB,
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Couchbase), graph-based (e.g. ArangoDB, GraphDB, Neo4j) and multi-model (e.g. Ori-
entDB). Choosing the proper database depends on the final objective and the type of
data [239, 238, 240, 241, 242].

Graph databases are an excellent option for handling data in graph form. They are
specifically designed to analyze relationships among data points more efficiently, which
makes them ideal for knowledge graph applications. A Graph Databases (GDB) is a
database that uses a graph structure, not data schemas or rows and columns, to represent
the information. This model is specifically designed to manage large volumes of graph
data and supports running efficient queries involving multiple levels of relationships be-
tween instances [240, 238]. Employing graph-based knowledge abstraction offers several
advantages over relational models or NoSQL alternatives. Graphs provide a concise and
intuitive abstraction for various domains, where edges and paths capture different and
potentially complex relationships between entities within a domain [224, 238|.

Data connections can be explored and graphically represented using different lan-
guages, such as RDF and OWL, which are ontology languages that use SPARQL for
querying. Both languages represent data as a graph and are focused on exchanging
data [219, 226] being ideal for incorporating disparate datasets and creating data ontolo-
gies. In most cases, these triple stores are indicated to be used with slow-changing, if
not immutable, additive datasets. Scalability, storage optimization, efficient handling,
mining, and browsing data are some of the advantages of this Database Management Sys-
tems (DBMS)s [235]. However, operational and transactional use cases were not intended
for them. Alternatively, graph query languages (GQL), such as Cypher, are designed to

query and represent data instances in graph databases [237].

Native Graph Databases

The terms native and non-native databases can be used to describe GDBs. Non-
native graph databases use graphs as a bolt-on afterthought technology. Instead of being
engineered explicitly for graph data, non-native graph storage uses relational, columnar,
or other general-purpose databases. Performance and scalability are affected by graph
data stored in non-graph storage. As in relational databases, relationships between rows
are not physically stored, and foreign keys can be used to refer to a row from another row
instead. That is a foreign key acts as a pointer. Using JOIN-like operators, relationships
between rows can be calculated at query time. The cost of this type of operation increases
exponentially with the size of the table, and the fact that the data is stored in a different
format starts to build a gap between the conceptual model and the model that is stored
and queried [237, 226].

Regarding of native graph storage (index-free adjacency), its purpose-built stack is
managed for performance and scalability [226]. Using a Native Graph Database (NGDB),
the focus is on efficient storage, querying and fast traversals across the connected data
— since it is designed to maximize the speed of traversals during arbitrary graph search
algorithms [237, 188]. The graph itself provides a natural adjacency index technique, so
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NGDB are not dependent on indexes for searching linked data. Graphs are traversed
by ”walking” along it. Linked relationships point to a node at both the start and the
end [226]. Each vertex or edge in the graph stores its own ”mini-index” instead of a global
adjacency index, allowing vertices to be found quickly. Without indices, determining if
an element has a particular property would require a linear scan of all elements. Due to
this model, the size of the graph has little or no effect on performance, and we can walk
over the graph following these relationships without requiring JOINs [243], traversing a
very large number of nodes per second [244]. Figure 5.2 shows the difference between the

graph and relational models for the order management dataset.

Site Site - Water line Index Water Line

ID Designation ID Site  |ID Water Line| Distance(m) ID Designation | Condition

1 Site X 1 2 1000 1 River A Avrtificial

o

3 River Y Natural

3 Site Z

River Z Natural

SQL DATABASE

! River Condition: ! River Condition:
H Natural : H Artificial :

F1GURE 5.2. Comparison of search methods in SQL wvs. NGDB.

The structure of a NGDB is explicitly built for storing graph-like data, ensuring that
data is stored efficiently by writing nodes and relationships. At the same time, its pro-
cessing is performed using index-free adjacency [237, 226]. It is the fastest way computers
have to look at relationships since graphs have direct physical RAM addresses from each
node. Storing and processing are the main differences between native and non-native
graph databases [237]. Although improving traversal performance, native graph process-
ing makes some non-traversal queries difficult or memory-intensive [241].
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5.3. Data Acquisition and Preparation

This section details the data and the data sources used in this study to establish the
domain knowledge required for archaeological site analysis. These sources include seman-
tic records, which comprehensively describe archaeological sites and their contexts, and
digital vector maps, which offer spatial representations of the sites and their surrounding
landscape. Integrating these datasets ensures a multidimensional understanding of the
archaeological and environmental context, bridging semantic knowledge with geospatial

analysis.

5.3.1. Semantic Records

In this dissertation, we used two primary sources to gather information about the dolmens:
the Portal do Arquedlogo (PA) [8] and the Carta Arqueolégica (CA) [73]. The CA was
published in 2012 as a physical book. It emerged following archaeological work conducted
since the mid-1990s, supported by the local authority and research projects by specialists
in the field. Mora Municipality and the Ministry of Culture supported these projects.
In contrast, the PA is a digital platform intended for professionals and researchers in
archaeology in Portugal — allowing researchers to access semi-structured information on
Portugal’s cultural heritage [8]. Recently, in 2021, it has also provided access to a geo-
portal with spatial information on the locations of these monuments. The platform is
managed by the Dire¢ao-Geral do Patriménio Cultural (DGPC). The description of the
monuments in both data sources is presented in a semi-structured or unstructured format.
Figure 5.3 illustrates the record for the dolmen Anta de Pavia PA.

Anta de Pavia / Capela de Sao Dinis / Sao Dionisio

Trabalhos (3) Bibliografia (15) Fotografias (0) Localizacao

Tipo
Anta/Délmen @

Distrito/Concelho/Freguesia

Periodo

Descricao

FIGURE 5.3. Record of the dolmen Anta de Pavia in the PA database
(Obtained on 11/09/2024) [8].
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Visualization Keys

Dolmen aspects that impact how they are visualized

Complete Complete Incomplete With
chamber chamber chamber tumuli
with without with covering
capstone capstone capstone the
chamber
Artificial earth mound X
(tumuli):
- Material: Earth and rocks;
- Height: >1m
- Diameter: >5m
Chamber: X X X

- Material: Granite and schist
(Color grey);

- Diameter: 1.5m-5m:;

- Shape: polygonal, circular,
semi-circular or quadrangular.

Chambers orthostats: X X
- tends to be inward-angled;
- Some must be in situ or are
identified through ground
marks.

TABLE 5.2. Key Dolmen aspects influencing satellite visualization and
recognition, highlighting features that distinguish different configurations.

A more complete understanding of monuments was enabled by using multiple sources,
since each may contain unique details. For both of the data sources, we extracted, stan-
dardised, and transformed the relevant information to be represented in a structured way.
These sources address different versions of available data about dolmens. It is impor-
tant to recognize and take into account that information about monuments can change
over time. As monuments undergo alterations or are studied by different experts across
various periods, their analyses and records may vary. Interpretations can differ as people
approach the same monument with different perspectives. This variability means that the
information found in the data sources analyzed may differ due to these evolving records
and interpretations. The information provided by these sources provides context for ex-
plaining the characteristics of this type of monument. Figure 2.1 shows an example of a
monument, highlighting the structural elements. In contrast, Table 5.2 outlines the key
visual features of the monument, serving as classification criteria to guide the understand-
ing of how its site appears in an aerial view, depending on its condition (e.g., complete
chamber with capstone, or without capstone, incomplete chamber, or buried).

Monuments may be visible, but understanding them requires more than just observing
them in an image. The context helps visualize what is visible and understand what is not.
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This includes details on the monument’s designation (some monuments have multiple des-
ignations), location (place name and its geographical coordinates), description (covering
general concepts such as monument type, and specific details like (i) its component parts:
chamber, presence of a corridor, or a burial mound; and (ii) the characteristics of these
parts: shape, size, number of orthostats, construction material, and condition), as well as
a description of the data source (metadata).

The data sources describe various aspects of the monuments, including their identi-
fication (Class, Designation(s), Period of construction), physical characteristics (shape,
size, material, parts, and state of preservation), access (Localization), collected remains

(Remains, Deposit) and more.

Defining Key Features

A dolmen structure can be represented as a whole or a collection of individual com-
ponents. Different elements can represent each component based on its characteristics
(for example, materials, dimensions, and conditions). A terminology was defined to de-
scribe the object’s structure components. The terms were first analysed using a thesaurus.
For example, dolmens are described as “A megalithic tomb of Neolithic date comprising
a chamber bounded by large upright orthostats, often only three or four in number,
which supports a large capstone” [232]. The terms used to describe the dolmens, such
as chamber, orthostats, and capstone, were defined based on the thesaurus for the
terms it included.

The thesaurus served as a foundation for defining terminology, but proved insufficient
to capture information at a granular level. To address this limitation, we analyzed spe-
cialized articles and references commonly used by experts to determine the terminology
used to describe the component parts of the monument (chamber, corridor, and burial
mound). Furthermore, our analysis of the data sources informed the identification of
specific physical characteristics to extract and represent for each component. Table 5.3
provides a representation of dolmen’s structural elements and the terminology associated
with the definition of the information.

Dolmen Object Structure Structure Information
Whole Dolmen Condition State; Material;
Dimension;
Chamber Shape; Condition State;
Components Dimension; Orthostat - (number
and position); capstone (condition
state);
Corridor Condition State; Dimension;
Orthostat (Number and side)
Burial Mound Material; Condition State;
Dimension;

TABLE 5.3. Terminology for describing dolmen structural elements and
concepts: Representation of the object and its components
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Condition State | Material Measurement Chamber Shape | Presence | Location
Type Defini-
tion
Good Granite Diameter Polygonal Yes in situ
Bad Schizt Lenght Circular No nositu
Destructed Quartz Widht Semi circular Maybe north
Vestigy E-W direction Quadrangular south
Regular N-S direction Oblong
min height Trapeizodal
max height Rectangular

TABLE 5.4. Terminology and attributes for describing dolmen structural
elements.

Managing Data Sources

In what concerns site descriptions, both sources provided complementary yet varying
perspectives. PA records 73 described monuments in Pavia, 51 of which are not mentioned
in CA. On the other hand, CA documents 49 monuments, of which 21 are only described
by this source. The analysis of both documents revealed a total of 94 known dolmens
located within Pavia. It should be noted that these sources contain some inconsistent
information, with terminology differing even within the same source.

The main differences between the two sources are information about assets’ geographic
locations and the terms they use to describe designations, conditions, and measurement
types. For example, the coordinate formats were different: CA data used ESRI:102164 —
Lisboa Hayford Gauss IgeoE system, while PA data were obtained through its geoportal
using WGS 84 format. For consistency, all spatial references have been standardized.
Although the spatial coordinates were standardized, we preserved all the coordinate in-
formation, with a focus on extracting the original coordinate information and having the
data in either WGS 84 or the Cartesian coordinates system.

To ensure a detailed and systematic extraction of information from each document,
we tried to maintain the terminology employed by the source for describing the object’s
attributes. Table 5.4 presents the defined terminology for describing the characteristics
of each part of the monument. The information was originally in Portuguese, but we con-
verted it into English using equivalent terms, such as ”bom” to ”good”. All attributes that
relate to the dolmen condition state (e.g., good, bad, destroyed, vestigial, and regular),
material (granite or schist) and shape (polygonal, circular, semicircular, quadrangular,
oblong, trapezoidal, and rectangular) were only extracted when clearly stated in the data
sources.

About measurements, despite all dimensions being reported in meters, terminology
varied among descriptions — some referred to ”diameter,” others to "minimum height,”
"maximum height,” or directional measurements such as E-W and N-S. The measurements
were maintained as stated in the original source, ensuring consistency. Measurements are
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used to describe the components of the monument (chamber, corridor and burial mound),
including specific features such as the capstone and orthostats.

In some cases, the descriptions were straightforward, such as stating that the monu-
ment was in a good or poor condition. But others required interpretation, as in statements
like "the capstone is displaced or broken”. For such cases, specific terms were defined to
represent this information in a structured manner. The presence of features was recorded
as a "yes”, "no”, or "maybe” for object structure components such as corridors, mounds,
and capstone. Position of characteristic elements, like the ”capstone”, were described in
terms of location (in situ, not in situ, North, or South), and the presence of orthostats
for elements like ”corridor” and ”chamber” was also documented using numerical values

to describe the number of orthostats that cast the monument.

As already mentioned, differences were observed between both sources’ descriptions
during the analysis and data extraction process. Due to discrepancies between data
sources, where the IDs, and sometimes even the names of the monuments differ, we
assigned Global IDs to each monument to ensure consistency and resolve conflicts. A
monument’s Global ID starts with a capital letter "D” followed by a numerical value
(e.g., D11) and are created according to the monument’s name and/or location. So, a
monument with the same designation or location has the same ID, allowing us to track the
monument information efficiently, even if it is documented under different designations.
This attribution required manual analysis and understanding of the descriptions to assign
the Global IDs. The manual work was necessary because the texts used different for-
mats and terminology, with inconsistent references and descriptions that required careful
interpretation.

Various monuments’ levels of detail also differed between the two datasets. As an
example, dolmen Lapeira 1 (D11) is recorded in CA and PA, but the descriptions differ:
PA includes the condition of the monument, while CA does not, and the size measure-
ments vary. In other cases, such as Alcarou de Baixo 3 (D10), only location information
is provided, with no description in either source. There were also instances where no
information was provided about a monument or specific details were missing in one or
both sources, in which case ”Not Awvailable (n/a)” was added. The examples mentioned

previously are shown in Table 5.6.

Global Source Designation Shape Diameter | Condition
ID

D11 PA Lapeira 1 Polygonal | 3.4 Good

D11 CA Lapeira 1 Polygonal | 3.2 n/a

D10 PA/CA Alcarou de Baixo 3 n/a n/a n/a

TABLE 5.6. Examples of data information provided by PA and CA
datasets.
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5.3.2. Vector Topographic Maps

In this dissertation we used various sources to obtain detailed information about the
landscape of the AOI where the monuments are located. The aim was to spatially relate
the monuments to elements in the landscape that may have influenced the choice of their
construction in the past, such as natural watercourses, soil types, topography relief, and
land use, as well as contribute to their recognition. By exploring these spatial relation-
ships, we aim to understand how the proximity and interaction between the monuments
and their surrounding landscape elements may have influenced the choice of their location
in the past while also affecting their current visibility and preservation.

Each piece of consolidated information is generated or owned by different institutions,
as shown in Table 5.7. Thus, vector maps were sourced from various institutions, namely
the Diregao-Geral do Territério (DGT), the Diregao-Geral de Agricultura e Desenvolvi-
mento Rural (DGADR), the Sistema Nacional de Informagao de Ambiente (SNIAmb) and
the Municipality of Mora (MM). The following provides comprehensive details on each
dataset. All data except the contour line map are in shapefile format obtained from the
Sistema Nacional de Informacao Geografica (SNIG) portal [121] and licensed under CC-
BY-4.0. The contour line map has been shared and allowed for use by the municipality
of Mora.

Data Description Owner | Format

Borders Official administrative map of | DGT Polygon + In-line
Portugal

Soil Use The land use and occupation map | DGT Polygon

of Portugal
Soil Type | The soil type map of southern | DGADR | Polygon
Portugal
Contour Mora’s contour lines map MM Line
Line
Water Line | Surface water masses rivers of | SNIAmb | Line
mainland Portugal

TABLE 5.7. Source and details of topographic vector maps used in the
analysis.

Data on Borders
The Official Administrative Map of Portugal [2], produced by DGT, was officially en-
dorsed by their order dated January 24, 2023, and was published as an official notice
on February 3, 2023, according to Regulatory Decree no. 30/2012 of March 13. This
dataset portrays Portugal’s administrative boundaries, including districts, municipalities,
and parishes. The dataset consists of eight shapefiles: seven in polygon format and one in
line format (Catalog of Official Administrative Map of Portugal (CAOP) Entities n.d.).
The locations for parish, municipality, and district were obtained from a cartography file
(Cont_ AAD_CAOP2022.shp). Table 5.8 lists all data in this shapefile, including columns
for attribute names, their descriptions, and attribute value format types.
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Attributes Attributes Description Format

DICOFRE Unique identifier for parishes (e.g., Brotas, | Integer
Pavia, and Mora)

Freguesia The official designation by which the parish is | Text
known

Concelho Identification of the municipality to which the | Text
administrative area belongs

Distrito The designation by which the district is known | Text

TAA Identification of the type of administrative area | Text

Area_T _ha Total value of the parish area Float

Area_EA ha Value of the Administrative Area Float

Des_Simpli Simplified designation of the parish name Text

TABLE 5.8. Attributes, descriptions, and data types represented in the
CAOP 2022 VTM.

Soil Use Data

The Land Use and Occupation Map, or "Carta de Uso e Ocupagao do Solo” (COS),
is a product of the Sistema de Monitoriza¢do da Ocupacdo de Solos (SMOS) initiative
developed by the DGT. The Carta de Uso e Ocupagao do Solo (COS) map, characterized
by polygons representing homogeneous land use and occupation units, was published in
1995 [245], 2007 [246], 2010 [247], 2015 [248] and 2018 [87], and is currently being updated.
We obtained the V2 versions for COS 1995, 2015, and 2018, and the V3 version for
COS 2007. These updated versions, which include COS1995v2, COS2007v3, COS2010v2,
COS2015v2, and COS2018v2, replace their earlier counterparts and are part of COS 2018
enhancements. The revised historical series marks the integration of COS into SMOS,
which now also includes the Conjunctural Land Use Map (COSc). While COS provides
structural information on land use, COSc focuses on land occupation. COS remains the
primary national reference for land use mapping, which is why it was chosen for this
study [249].

COS geospatial information divides the landscape into units representing homogeneous
land use and occupation categories, excluding linear and point elements. Except for the
1995 COS, which featured 44 classes, all subsequent maps include up to 83 classes at their
most detailed level — 4 levels. The nomenclature in each COS follows a hierarchical system
of land use and occupation classes. Each polygon is assigned a code that corresponds to its
classification within this hierarchy. Along the border with Spain, COS boundaries align
with the CAOP of the corresponding year, while maritime boundaries are defined through
photo interpretation. All COS maps use the reference system EPSG:3763:EPSG:4258.
Table 5.9 lists all data in this shapefile, including columns for attribute names, their

descriptions, and attribute value types (e.g., real numbers, doubles, integers).

Soil Type Data
The Land Type Cartography of Portugal, at a scale of 1:25,000, offers detailed information

about the various soil types, represented on the map by distinct cartographic symbols (e.g.,
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Attributes | Attributes Description Level | Format
COS18n1_C | Class code of land use/occupation 1 Float
COS18n1_L Label designation of the class code 1 Text
COS18n2_C | Class code of land use/occupation 2 Float
COS18n2_L Label designation of the class code 2 Text
COS18n3_.C | Class code of land use/occupation 3 Float
COS18n3_I. | Label designation of the class code 3 Text
COS18n4_C | Class code of land use/occupation 4 Float
COS18n4_L Label designation of the class code 4 Text
Area_ha Value of the polygon’s area Float

TABLE 5.9. Attributes, descriptions, and data types represented in the
vector map - COS.

Solos Litdlicos, Nao Humicos Pouco Insaturados, Normais, de granitos (pg)). These series
are subdivisions of families, defined as groups of soils that share similar horizons or layers,
distributed uniformly along the surface and formed from the same organic material [85].

The explanation for the symbols used in the cartography is accessible online through
the DGADR portal ! and is not included within the map [1]. This note defines the codes
and labels, explaining what each represents. The maps are divided into northern and
southern parts of the country, and for this study, we analyzed only the southern part.
Note that cartography uses reference systems EPSG:3763, EPSG:4258, and ESPG:4326.
Table 5.10 presents the attributes, attribute descriptions, and attribute value types for
this cartography.

Attributes | Attributes Description Format
COD1_Solos | Soil code and phase ENUM
COD2_Solos | Soil code and phase ENUM
COD3_Solos | Soil code and phase ENUM
WRB2014_1 | Soil code. ENUM
WRB2014_2 | Soil code. ENUM
WRB2014_3 | Soil code. ENUM
ADD_1 Soil phase. ENUM
ADD 2 Soil phase. ENUM
ADD_3 Soil phase. ENUM

TABLE 5.10. Attributes, descriptions, and data types represented in the
land type VI'M

Contour Line Data

The municipality of Mora made available the approved cartography, at a scale of 1:10,000,
with territorial data - approved up to 09/09/2022. Decree-Law n.? 130/2019 in article 2
defines the approved cartography as vector/topographic and hydrographic imaging and
their respective thematic maps, which have been recognized by competent services as

having met the defined criteria, norms and specifications. The DGT has specifications

IThe explanation note can be accessed at: https: //www.dgadr.gov.pt/nota-explicativa

63



for topographic cartography norms and technical specifications. The norms and technical
specifications for large-scale vector and image topographic cartography were published
through Notice n.? 11918-2019 in the Official Gazette on July 24th.

The data contains a map with contour lines that represent height measurement. The
contour lines are imaginary lines intersecting the terrain where all points have the same
elevation value relative to a specific altimetric datum. Table 5.11 presents the attributes,

attribute descriptions, and attribute value types for this cartography.

Attributes | Attributes Description Format

ALTITUDE | Numeric value indicating the terrain’s alti- | Float
tude

TIPO Code preceded by a dash indicating contour | ENUM
line type (Master/Secondary/Auxiliary)

TABLE 5.11. Attributes, descriptions, and data types represented in the
contour line VTM.

Water Line Data

Although there are numerous sources of vector hydrographic data pertaining to the Por-
tuguese territory, we chose to work with the "Massas de dgua superficiais Rios de Portugal
continental” of SNIAmb, a geographic dataset at scale 1:25,000. The cartography refers
to the water bodies of rivers reported to the European Commission under the Diretiva
Quadro da A gua, for the 2nd planning cycle 2016-2021. Regional Hydrographic Manage-
ment Plans are instruments aimed at the management, protection, and environmental,
social, and economic valorisation of waters at the regional hydrographic level.

The plans are drafted in planning cycles and revised and updated every six years. They
encompass various subjects grouped into five major thematic areas: Water Bodies (surface
and underground); Environmental Objectives; Measures Program; Economic Analysis;
and Public Participation. These are developed in accordance with the Water Law and
Dispatch n.2 11955/2018, 2nd series, dated December 12. All Regional Hydrographic
Management Plans are reported to the European Commission, which, in partnership with
the European Environment Agency, developed the platform WISE (Water Information
System for Europe).

Table 5.12 presents the attributes, attribute descriptions, and attribute value types
for this cartography.

Managing Data Sources

In order to relate entities to other semantic information, we converted these maps, com-
posed of multiple layers, into a relational format.
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Attributes | Attributes Description Format

codigo Code representing the water bodies ENUM

Nome Name of the water body Text

Regiao_hid Hydrographic Region Text

Natur_fm_a Classification of water bodies: Natural, Artificial, and Heavily | Text
Modified

Transfront Transboundary water bodies — Portugal / Spain (Yes / No) | Text
Est_pot_ec Likely refers to the ecological potential status of the water | Text
bodies, especially for artificial or heavily modified ones (based
in RH5 Final Environmental Report)

Estado_qui Chemical status of the water bodies (Good, Unknown, Insuf- | Text
ficient)
St_lenght Length of the water bodies represented as lines Float

TABLE 5.12. Attributes, descriptions, and data types represented in the
water line VTM.

Data was extracted from each VIM using ArcGIS Pro Desktop?. For data clean-
ing and standardisation, all datasets were encoded consistently with ISO-8859-1 Uni-
code [251]. The standardization applied to spatial coordinates extracted from dolmen
semantic records was also used for all VT Ms. Afterwards, the geometric information was
extracted and the coordinates were converted to Well-Known Text (WKT) format [252].

The extracted data was organized into a structured format to facilitate bulk loading
into a database. The original descriptions from the source files were preserved to maintain
data integrity and consistency. All details and terms used in the original documents
are preserved in the database, allowing a seamless transition between raw data and the

database.

Grid Implementation
The segmentation of the AOI was achieved through a structured grid that was created to
standardize spatial data representation and facilitate its integration into the knowledge
graph. The total area was divided into 150 individual cells with an area around 1 km?.
The resultant grid data was extracted and saved using the same descriptions as the VI'Ms.
Traditionally, linked data approaches represent spatial information by directly map-
ping geometries onto the surface of the Earth using technologies like GeoSPARQL. Al-
though accurate, this method can lead to complex queries and long execution times,
especially with overlapping geometries. Structured grid systems offer a significant ad-
vantage in addressing these challenges. In spatial data analysis, a regular grid of cells is

used to divide the study area into discrete, manageable blocks. The grid-based approach

2ArcGIS is a geographic information system developed by Esri and designed for spatial data management,
analysis, and visualization. It offers robust tools for capturing, analysing, and presenting geographic in-
formation, enabling users to work with a wide array of spatial data formats. Its user-friendly interface
and extensive functionality facilitate the extraction and conversion of vector map data into various for-
mats [250].
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enables the examination of individual cells, the prediction of adjacent cell contents, and
the rapid overview of spatially co-located features and regions.

Leveraging grid coordinates streamlines the search for spatial points, enhances data
analysis and retrieval, reduces computational complexity, and improves query performance
through pre-computed spatial relations. As Shimizu et al. (2021) [253] suggest, the
use of a discrete global grid for integrating spatial data within a knowledge graph is a
promising method, potentially enabling future knowledge graphs to perform integration
more efficiently and rapidly [253].

5.4. Schema Definition

The schema model is based on CIDOC-Conceptual Reference Model (CRM), its extension
CRMgeo, and GeoSPARQL. The CIDOC-CRM [59] ontology is an ISO standard for se-
mantic interoperability among cultural institutions (ISO 21127:2006). This event-centric
ontology provides a guide for modelling heterogeneous information. By providing a model
for good conceptual modelling, the model guides the structuring of information and of
the existing interrelationships without prescribing specific terminology or what should be
documented [59].

The CRM (version 7.2.1) contains 81 hierarchically organized classes and 160 unique
relationships (referred to as ”properties” in the documentation) [59]. An identifier (num-
ber) and name are assigned to each declared class and relationship. Class names are
prefixed with the letter 'E’, while relationship identifiers begin with the letter 'P’. In both
cases, the letter is followed by its respective identifier number. Properties are bidirec-
tional: in the domain-to-range direction, they are written without parentheses; in the
reverse range-to-domain direction, they are enclosed in parentheses [59].

The model can be implemented in various databases using any language. It is par-
ticularly well-suited to storing information as triples that emphasize entities rather than
instances. There are, however, some limitations. This monolithic structure does not pro-
vide the modularity necessary to evaluate and represent the way cultural heritage objects
are interpreted by different agents (e.g., researchers) and what new information is cre-
ated as a result [96]. Further, CIDOC-CRM can handle some spatial relationships and
temporal information but not detailed spatial data.

CRMgeo [57] is an extension of CIDOC-CRM designed to enhance the representation
of geospatial information within cultural heritage. Its primary function is to integrate
geoinformation available in Geographic Information Systems (GIS) format into CIDOC-
CRM. Its primary purpose offers a schema that aligns with CIDOC-CRM, facilitating
the integration of geoinformation through conceptualization, formal definitions, encoding
standards, and topological relationships established by the Geospatial Consortium (OGC)
in GeoSPARQL. A more comprehensive and contextually meaningful representation of
spatial data can be achieved by linking cultural heritage data with precise site loca-
tion and geometry information. The model integrates temporal entities with persistent
items through a temporal-spatial scheme [94]. In 2015, CRMgeo 1.2 was released with
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CLASSES SOURCES
E1 CRM Entity CIDOC-CRM
E3 Condition State CIDOC-CRM
E12 Production CIDOC-CRM
E13 Attribute Assignment CIDOC-CRM
E17 Type Assignment CIDOC-CRM
E18 Physical Thing CIDOC-CRM
E19 Physical Object CIDOC-CRM
E22 Human-Made Object CIDOC-CRM
E28 Conceptual Object CIDOC-CRM
E31 Document CIDOC-CRM
E41 Appellation CIDOC-CRM
E42 Identifier CIDOC-CRM
E52 Time-Span CIDOC-CRM
E53 Place CIDOC-CRM
E54 Dimension CIDOC-CRM
E55 Type CIDOC-CRM
E57 Material CIDOC-CRM
E58 Measurement Unit CIDOC-CRM
E60 Number CIDOC-CRM
E65 Creation CIDOC-CRM
E74 Group CIDOC-CRM
E93 Presence CIDOC-CRM
E94 Space Primitive CRMgeo

SP4 Spatial Coordinate Reference System CRMgeo

SP6 Declarative Place CRMgeo
SP15 Geometry CRMgeo
geo:Feature GeoSPARQL
geo:Geometry GeoSPARQL
C1_Geometry_extracted from_maps —

TABLE 5.13. Classes from CIDOC-CRM, CRMgeo, and GeoSPARQL used

in the schema model.

13 classes and 19 properties. Based on the CRM model, each class and property is as-
signed a name and an identifier. For classes, the identifier consists of the prefix ”SP”
followed by a number, while for properties, it begins with the letter 7Q.” By combining
CRM with specialized ontologies like CRMgeo, geospatial capabilities can be significantly
enhanced [94, 57].

GeoSPARQL [252] is an OGC standard that facilitates geospatial data representation
and querying. It provides a vocabulary for embedding geospatial data in RDF and extends
SPARQL for geospatial querying. The ontology includes the class geo:SpatialObject,
which denotes any entity with a spatial dimension. This class consists of two primary
subclasses, namely the geo:Feature, which represents real-world entities such as rivers and
houses, and geo:Geometry, which defines the spatial location of these features and can be
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represented using literals and type hierarchies like WKT or Geography Markup Language
(GML). Features are linked to their geometries via the geo:hasGeometry property [252].

The LPG was implemented using classes from these three ontologies as labels and
properties as relationships. To represent information extracted from VTMs and semantic
data related to archaeological monuments, 23 classes from CIDOC-CRM ontology were
used. Due to the lack of specific spatial classes in CRM, we incorporated three classes from
the CRMgeo extension and two from GeoSPARQL. We created a new class C'1 Geometry
extracted from maps to store the data extracted from vector cartography — see Table 5.13
for the classes used.

Relationships establish connections between classes. Table 5.15 provides an overview
of the relationships defined for our model, detailing how each class connects, from the
domain class to the target/range class.

The schema model was defined to encompass all relevant information about monu-
ments and their surroundings, organized into three main categories: (i) Metadata defini-
tions, (ii) General and individual concepts, and (iii) Geometry. Metadata is defined as
”data about dat” [254] and includes the source of information, ensuring that the origin
of specific details can be traced, which is essential for referencing and citation. Whithin
metadata, there are two types of concepts: general and specific. General concepts provide
a framework for understanding various instances within their scope, such as "rivers” for
types of bodies of water or ”dolmen” for types of monuments. On the other hand, specific
concepts refer to instances of general categories. For example, the Matalote River is an
individual river (a specific river), while ”Lapeira 1”7 is an individual dolmen (a specific
monument). Each concept includes detailed attributes such as the length, shape, and
chemical condition of the Matalote River or, for the monument, the size shape, as well
as the condition of the dolmen. Finally, the model includes the exact location of each
feature, as represented in the data source, and the geometry of each place.

For all data types, we used consistent classes to represent the geometry. Furthermore,
for metadata definitions, each data source is treated as an event marking the creation and
subsequent acquisition of information about an object. The fact that we were dealing with
two separate concepts and types of data-archaeological monuments, for which information
was extracted from semantic sources and landscape information derived from vector maps,
made it necessary to create separate subgraphs. One subgraph was dedicated to the
monuments, while each VT'M was transformed into its respective subgraph, interconnected
by their locations. By clearly differing between the data types and linking them via

geographical coordinates, this approach enabled us to maintain clarity and organization.

5.4.1. Representing monuments

A schema for representing the dolmens can be seen in Figure 5.4. In this schema,
records refer to events that represent the creation and acquisition of information about
objects. To document assertions regarding the object’s values, we use the E13 Attribute
Assignment class. Descriptions are linked to an E31 Document class that represents the
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Relations Class-Domain Class-Range

P1 is identified by (identifies) E1CRMEntity E55MonumentType

P1 is identified by (identifies) E22HumanMadeObject E41Appellation

P1 is identified by (identifies) E28ConceptualObject E41Appellation

P1 is identified by (identifies) E41Appellation E42Identifier

P2 has type (is type of) E22HumanMadeObject E55Type

P2 has type (is type of) E53Place E55Type

P2 has type (is type of) E22HumanMadeObject E55Type

P2 has type (is type of) E58MeasurementUnit E55Type

P2 has type (is type of) E60Number E55Type

P2 has type (is type of) E52TimeSpan E55Type

P2 has type (is type of) E17TypeAssigment E55Type

P4 has time-span (is time-span of) E12Production E52TimeSpan

P4 has time-span (is time-span of) E13AttributeAssigment E52TimeSpan

P4 has time-span (is time-span of) E28ConceptualObject E52TimeSpan

P14 carried out by (performed) E65Creation E74Group

P39 measured (was measured by) El6Measurement E22HumanMadeObject
P40 observed dimension (was observed in) El6Measurement E54Dimension

P41 classified (was classified by) E17TypeAssigment E28ConceptualObject
P42 assigned (was assigned by) E17TypeAssigment E55Type

P44 has condition (is condition of) E19PhisicalComponent E3ConditionState

P45 consists of (is incorporated in) E22HumanMadeObject E57Material

P46 is composed of (forms part of) E22HumanMadeObject E22HumanMadeObject
P46 is composed of (forms part of) E22HumanMadeObject E19Phisical Component
P48 has preferred identifier (is preferred identifier of) E22HumanMadeObject E42Identifier

P48 has preferred identifier (is preferred identifier of) E55Type E42Identifier

P48 has preferred identifier (is preferred identifier of) SP6DeclarativePlace E42Identifier

P55 has current location (currently holds) E22HumanMadeObject SP6DeclarativePlace
P57 has number of parts E19PhisicalComponent E60Number

P67 refers to (is referred to by) SP6DeclarativePlace E42Identifier

P70 documents (is documented in) E31Document E13AttributeAssigment
P89 falls within (contains) SP6DeclarativePlace E53Place

P89 falls within (contains) E53Place E53Place

P91 has unit (is unit of) E54Dimension E58Measurement Unit
P94 has created (was created by) E65Creation E28ConceptualObject
P108 has produced (was produced by) E12Production E22HumanMadeObject
P127 has broader term (has narrower term) E55Type E55Type

P130 shows features of (features are also found on) SP6DeclarativePlace SP6DeclarativePlace
P140 assigned attribute to (was attributed by) E13AttributeAssigment E22HumanMadeObject
P168 place is defined by (defines place) SP6DeclarativePlace E94SpacePrimitive
P195 was a presence of (had presence) E93Presence E22HumanMadeObject
P195 was a presence of (had presence) E93Presence E19Phisical Component
Q9 is expressed in terms of E94SpacePrimitive SP4SpatialCoordinateReference
geo_hasGeometry E94SpacPrimitive SP15Geometry

GLP1 space primitive is defined by (defines space E94SpacePrimitive C1l_Geometry_extracted from_maps
primitive)

GLP1 space primitive is defined by (defines space geo:Feature C1_Geometry_extracted from_maps
primitive)

geo_hasGeometry geo:Feature geo:Geometry
geo:sfWithin geo:Feature E94SpacePrimitive
geo:sfNearby geo:Feature E94SpacePrimitive

TABLE 5.15. An overview of each class’s relationships regarding target and

range within the knowledge graph.

source of information and is timestamped using an E52 Time Span class to identify when
the data was recorded. This structure allows all pieces of information to be traced back
to their source. Since the data in our system comes from a variety of sources and times,
each record needs to be considered a distinct version of the object so that the provenance
and timeframe of the information can be tracked.
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F1GURE 5.4. Concise schema for representing dolmens.

The E22 Human-Made Object class represents an individual archaeological monument
concept. Dolmens, as enduring physical structures created by humans, fall under this
class, the most specific of human-made items in the hierarchy. As described by [59], the
E22 Human-Made Object class “comprises all persistent physical items of any size that are
purposely created by human activity.”. Each record about a dolmen results in an instance
of the E22 node, regardless of the data source. In our case, with two distinct data sources,
up to two versions of information can exist for a single monument, each linked through a
global ID (E42 Identifier class), as shown in Figure 5.5. This approach allows multiple
versions of information about the same monument to be represented.

Dolmens and their components are represented using the same E22 Human-Made Ob-
ject class. Components within this class are treated as distinct instances. The hierarchical
schema uses the relationship label P/6 is composed of to link these different components
and sub-components. This design transforms the dolmen node from a physical object into
an abstract container defined by its components. This allows a granular description of
the monument. The CRM framework aims to describe data structures at a high level,
focusing on entities and relationships without specializing in structural or topological de-
tails. Existing CRM extensions, such as CRMba [203], handle topological relations of
functional spaces. In our context, topological relations were not necessary for satellite
image contextualization. However, the graph can be extended in the future to include
such information if needed.
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FIGURE 5.5. Multiple E22 instances linked to a global ID (E42 Identifier),
demonstrating how multiple versions of information for a single dolmen can
be represented and expanded to accommodate additional versions.

To describe the features of the dolmen components, we use several specific classes, such
as E57 Material for construction materials, E3 Condition State for preservation state,
E54 Dimension for measurements, and F19 Physical Object for features like capstones
or orthostat numbers. Each E22 Human-Made Object is also linked to its geographical
location represented in SP6 Declarative Place class. This establishes a clear connection
between the monument and its spatial context. For a visual representation of the full

schema model, please refer to the illustration provided in the Appendices 8.2.

5.4.2. Representing Landscape

The schema created to represent VT Ms is shown in figure 5.6. This model employs the
FE28 Conceptual Object class from the CRM and showcases cartography as a conceptual
object crafted to represent physical entities, which consist of human-produced data that
have become objects of discourse. To represent who created the cartograph, we need to
associate the event of creation between the object created and the person/group responsi-
ble for it. In this case, we use E65 Creation class to describe the cartograph creation event
(E28) and relate them through P94 has created. The creation event (E65) is linked to the
creation responsible through P14 carried out by and is described in class E7/ Group. It is
important to note that each cartograph represents the geographical objects present at the
time it was developed. To determine a cartograph’s date span, we use the class E52 Time
Span and link it to the conceptual object represented (E28) through the relationship P/
has time-span.

To relate the conceptual framework of cartography (E28) to the physical elements
described, we used the property P41 "classified (P41 was classified by).” This property
links the general concepts represented in each vector map (E17 Type Assignment)—such
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FI1GURE 5.6. Concise schema for representing the vector topographic maps.

as "Hydrograph” or ”Soil Use”—to the E55 Type class, which provides a more detailed
definition of these concepts. For example, ”Rivers” is used in hydrographic maps, while
"Urban Areas” is included in land use maps. A hierarchical structure of concepts can
be found in some maps, such as the COS 2018, which categorizes 85 types of land use
(for example, forests and urban areas). We use the property P127 "has broader term (is
a broader term of)” to link the hierarchical type (E55) to the general concepts depicted
in the map (E17). This taxonomy facilitates the organization and classification of map
concepts, offering a controlled vocabulary and detailed content information. To link the
more specific concepts in the map (E55) with the physical objects they describe, we
use the property P137 ”exemplifies (is exemplified by)” to connect them with the E18
Physical Thing class, enabling a detailed articulation of individual features based on the
classification.

In the E18 Physical Thing class, all instances representing natural elements can be
related to other classes to capture their attributes. For example, a river is classified by its
type—such as "natural” or "artificial” (E55 Type)—and its condition—such as ”good” or
"modified” (E3 Condition State). To describe the geometry and location of each element,
instances of E18 are connected to the SP6 Declarative Place class using the property P67
"refers to” (or P67 "is referred to by”). This linkage allows for a precise representation
of the spatial and locational attributes of each physical element, as illustrated in the
cartographic data. This approach ensures that each element’s characteristics and geo-
graphical context are represented and integrated into the overall analysis. For a visual
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representation of the entire schema model, please refer to the illustration provided in the

Appendices 8.1.

5.4.3. Representing Spatial Relationships

The schema model highlights the importance of spatial data in capturing instances
and their relationships. In order to establish granular topological relationships between
entities, specific relationships were defined to manage and link different spatial formats,
such as lines, points, and polygons. Without that, we would be left with various sub-
graphs interconnected by their respective regions (E53 Place — e.g., Pavia); however, this
representation lacked precision. Without it, we would be unable to determine the spatial
relation between geographic objects represented in the model.

Spatial entities are intrinsically interconnected. GeoSPARQL provides a standardized
way of representing these topological relationships. It implements the Simple Feature
Access Common Architecture specification to describe spatial relations. This model is
based on Egenhofer’s extension of RCC8, a subset of Region Connection Calculus (RCC)
that defines eight pairwise disjoint spatial relations. Egenhofer’s work was further gen-
eralized in the Nine Intersection Model [252]. The Simple Features topological relations
include equals, disjoint, intersects, touches, crosses, within, contains, overlaps, and relate

as shown in Figure 5.7 [255].

Equals Disjoint  Touch Within  Overlap  Contain  Crosses
00 N -
([ B B \
e N\ :
/ B
[
| N ‘ /\ °
Aand B partiall .
Aand B accupy AandBmeeta  Ais entirely inside h P t)|/., Acontains B Aand B
the same space A and B do not . | share space, wi d thei int t with A
. X boundary, but their B, and their ith letel an elr Intersect, wi
and contain the share points or ; ) . neither completely boundaries d ing th h
X interiors do not boundaries may or taining th oundaries do passing throug
same boundaries. N containing the tint ¢
. overlap. may not intersect. th not intersect. .
boundaries. other.

FIGURE 5.7. Illustration of spatial relationships between objects.

To enable a clear understanding of how entities relate to one another, we determined
that specifying whether one element is within another and detailing the nearby between
elements were sufficient for our use case. The GeoSPARQL’s geo:sfWithin was strate-
gically harnessed to express the topological relationship where one geometry is entirely
contained within another. With this relationship, it is possible to infer, for example,
when an F22 Human-Made Object is contained within a specific (E18 Physical Thing) by
relating instances of the E94 Space Primitive.

While GeoSPARQL encompasses different topological relationships (Section ?7), it
does not explicitly define an ”Adjacent” relationship. The geo:sfTouches property can
represent objects that share only a boundary, without any overlapping interior, potentially
capturing the essence of adjacency in certain contexts. However, to address more nuanced
spatial relationships and to capture specific instances of proximity with or without direct
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boundary contact, there arises a need for a distinct relationship that could deal with the
representation of proximity between monuments and landscapes.

In order to denote proximity, a custom property called ”geo:sfNearby” was created.
The bespoke relationship is then used to link E94 Space Primitive entities that are ge-
ographically close to one another (whether adjacent or not). In order to enrich this
relationship, distances have been directly incorporated. In this way, proximity was es-
tablished, as well as the exact value of distance between them. Table 5.16 summarizes
spatial relationship properties. Following its creation, the property ”sfNearby” can be en-
riched with specific distance metrics in meters to provide a comprehensive representation
of physical proximity between entities. By embedding specific distance metrics directly
as properties of these relationships rather than as attributes of nodes, a direct linkage
of spatial relationships to entities is established. This model provides a clear distinction
between raw data sourced from primary materials, such as reports and vector maps, and

information derived from geospatial analyses.

Spatial Relationship Properties

E94: An sfWithin relationship links E94 classes that indicate

sfWithin:E94 when a point is entirely contained within a polygon.
They indicate when monuments fall into ”Land Use” or
”Soil Type” — but can also be used to analyze when
other E18s fall within other E18.

E94: An sfNearby relationship connects E94 classes that

sfNearby:E94 indicate closeness. They are used to indicate the position

of monuments in relation to other instances of E22 or
E18. Here, they are used to specifically relate the
monument’s position to its "Hydrography”, ” Contour
Lines”, and "Dolmen”. In this relationship, the distance
between each domain-range class (E22 or E18) is
embedded.

TABLE 5.16. Definition of spatial relationships.

These spatial relationships allow us to represent how different landscape components
and archaeological features are interconnected. By defining these relationships, we en-
hance the graph’s capability to model and interpret spatial dependencies. This is es-
sential for understanding archaeological monument interactions within their environment

and contextualizing scenes.

5.5. Model Implementation

To implement the LPG schema model we have used Neo4j graph database ® and
data was mapped from the files to the database. Neo4J is a schema-free, NGDB built on
properties and characterized by its Cypher query language. The Cypher language relies on
relatively complex patterns that, when used effectively, can provide insights that are not
readily available from traditional database engines [256]. The high readability of Cypher,

3The Neodj graph database can be downloaded at: https: //neodj.com/
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coupled with the ability of Neo4j to present query results in a variety of formats, allows for
enhanced flexibility and diverse interpretations of data [257]. Although implementation
may be time-consuming, queries are typically less complex and execute faster than those
in PostgreSQL, making this system a strong candidate for data storage and analysis [257].
In addition to its high functionality, it complies with ACID principles [237].

When compared with other graph databases Neo4J consumes less memory for process-
ing [258], performs better through indexing techniques for queries retrieval performance,
and gets the best results with traversal workloads [259, 260, 261]. A graph database
like Neo4J is not designed to handle basic graph patterns and atomic lookups [236] or
to handle search based on a limited number of relationships (low number of JOINs in
SQL databases) [238]. In contrast, they are ideal for applications involving multiple levels
of relationships between data [240, 238] — ideal for applications involving relationships
between instances [239] and finding patterns [259].

Representations, searches, and retrievals of spatial geometry are supported via points
linked to a specific Coordinate Reference System (CRS), whose values are represented in
Cartesian coordinates or WGS-84. The schema-free nature of Neo4J allows labels, types,
and properties to be applied to nodes and relationships in a flexible way, although this can
sometimes lead to vague semantics. It is not only possible to represent archaeological sites
in this structure but also to perform multi-relational searches for each one. The flexibility
of Neo4J enables the construction of a model based on well-recognized ontologies (CIDOC-
CRM, CRMgeo, and GeoSPARQL), which can represent semantic and spatial data in
detail. The Neo4J desktop (V: 1.5.6) was the platform of choice for data integration.

To populate the LPG, the structured file derived from data standardization was used.
In this mapping process, table columns were mapped to property keys and rows to
values. Each column header corresponds to a predefined property of each class, while each
row represents an instance of that class. Our focus was on data mapping and curation,
linking entities, matching them to their respective instances, and ensuring that the data
was correctly connected to facilitate querying and information retrieval. Table 5.17 lists
the classes (node labels) used, and also includes the definitions of property key attributes
used to represent this information, serving as keys for assigning values within the database.

Even though data sources contained information of a larger area, such as the entire
country, only information about the AOI was retained. This targeted approach can lead to
efficient resource allocation. Additionally, it helps to minimize data overload and ensures
that the most pertinent information is readily accessible. The LPG contains 141,380
nodes and 370,177 relationships. The model can, however, be expanded to include more
information if needed.

Data insertion was performed with and without indexing to assess how indexing af-
fected the import process efficiency. Indexes were applied to enhance data retrieval speed

and performance. The performance of searches with and without indexes was consistently
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[ NODE LABELS | PROPERTY KEYS | DESCRIPTION
E1 CRM Entity E1CRMEntity Indicate the broader concept of E22 (e.g. Megalithic
Monument).
E3 Condition State E3ConditionState Comprises the E22 condition state.

E3ChemicalConditionState
E3EcologyConditionState

Comprises the chemical condition of E18 - Rivers.
Comprises the condition of E18 - Rivers.

E12 Production

E12Production

Indicate the E22 production.

E13 Attribute
Assignment

E13AttributeAssigment

Indicates actions for asserting E22 properties.

E17 Type Assignment

E17TerminologyDefinition

Indicates the broader concept of classified terminology
for the E28.

E42Assigned TypelD

E42PolygonID

E18 Physical Thing E18SpecificResource Comprises all instances of natural physical things (e.g.
River X).

E19 Physical Object E19Components Indicates the components of the E22.

E22 Human-Made E22Dolmen Comprises instances of archaeological sites (e.g.

Object dolmen X).
E22DolmenComponent Indicates the E22 parts.

E28 Conceptual Object E28ConceptualObject Indicate the source of the information for the E28.

E31 Document E31Document Indicate the source of information for the E22.

E41 Appellation E41Designation Comprises the designation of the E22.
E41DesignationMaps Indicate the designation that identifies the E28.
E41AppelationOfE18 Comprises the designation of E18.

E42 Identifier E42GloballD Indicate a global identifier to each unique E22.
E42LocallD Comprises the identifier of the monument as indicated

by E31.

Comprises the identifier of the E18 as indicated by the
E28.

Comprises the identifiers for each geometry extracted
from the E28.

E52 Time-Span

E52TimeSpanHumanMadeObject

Indicate when E22 was built.

from_maps

E52TimeSpanDocument Indicate when E31 was released.
E52TimeSpanAcquisition Indicate when E31 information was extracted.
E52TimeSpanMaps Indicate when E28 was released.
E53 Place E53Place Indicate the place designation for E22 and E18.(e..g,
municipality and parish).
E54 Dimension E54DimensionValue Indicate any dimension value type used to describe an
E22 or E18 feature.
E55 Type E1CRMEntityType Indicate E22 in a narrower context (e.g. dolmen).
E55TerminologyType Comprises the terminology provided by E28 to
represent E18.
E55TypeObject Indicate E28 representation format.
E55ChamberShape Comprises the shape of the E22.
E55TypeOfDocument Indicate the E31’s data type (e.g. book).
LocalizationDistribution Comprises E19’s position (e.g. in situ).
E57 Material ChamberMaterial Comprises the material of the E22.
E58 Measurement Unit E58UnityOfValue Indicate the value unity type used to represent
measurement (e.g. meters).
E60 Number ComponentsParts Comprises the number of parts for E19 and the
number value for E54.
E65 Creation E65CreationEvents Indicate the events leading to the creation of E28 and
E13.
E74 Group E74Group Indicate who created the E28 and E31.
E93 Presence PresenceDescription Comprise information about the presence of parts E22
(e.g. maybe).
E94 Space Primitive E94GeometryWKT Comprises the coordinates of E18 and E22 in WKT.
SP4 Spatial Coordinate SP4Datum Indicate the type of the E94.
Reference System
SP6 Declarative Place SP6DeclarativePlace Indicate the place defined by the E94 and relate it to
E22 or E18.
SP15 Geometry SP15Geometry Indicate the type of geometry in E94.
geo:Feature GridID Comprises the grid implemented .
geo:Geometry GeometryWKT Location in WKT format
C1_Geometry_extracted | GLE1 Comprises all information extracted of E18 and

geo:Feature that allows insert it into GIS.

TABLE 5.17. The node labels, corresponding Properties Key definitions
used in the graph database, and descriptions of the information contained

in each node.
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better with indexes. As an example, in query 5.1, the query to retrieve the relation be-
tween E22 and E13 is provided. For this analysis, database access decreased from 284903
to 2395 (db hits), and the cost of run time decreased from 76ms to 13ms. As a result
of this query, the information about E22 pertaining to E13 — each monument analyzed

along with its source — is retrieved.

LI1STING 5.1. Search example

MATCH (n:E22_Human_Made_Object)-[r:P140_was_attributed_byl-(m:E13_Attribute_Assignment)
RETURN n, r, m

In all our queries, performance gains were more apparent when searching for spatial
relationships between multiple entities. In query 5.5, the database hits decreased from
1176955 in 198 ms to 646967 in 52 ms for the database with indexes. This query returns
all monuments classified as destroyed, along with their soil type, last use (2018), the

natural rivers closest and if they are in a relief area.

MATCH dolmen=(E31Document:E31_Document {E31Document})-[:P70_documents]->(:
E13_Attribute_Assignment)-[:P140_assigned_attribute_to]l->(Dolmen:
E22_Human_Made_0Object)-[:P55_has_current_location]->(:SP6_Declarative_Place)-[:
P168_place_is_defined_by]l->(E94PolygonWKT:E94_Space_Primitive),

(Dolmen) -[:P46_is_composed_of]-(chamber:E22_Human_Made_Object {E22DolmenComponent: °’’
Chamber’’}) -[P43DolmenDimension:P43_has_dimension]-(E54TypeOfDimension:E54_Dimension
{E54TypeOfDimension: ’’Diameter’’})-[:P90_has_value]-(ChamberDiameter:E60_Number),
(chamber)-[:P44_has_condition]-(Condition:E3_Condition_State),

WATER=(E17Water:E17_Type_Assigment {Ei17TerminologyDefinition: ’’Hidrografia’’})-[
P2A1Water:P2A1_assigned_definition_types]->(E55Water:E55_Type)-[P137Water:
P137_is_exemplified_byl->(WaterLine:E18_Phisical_Thing)-[P67Water:
P67_is_referred_to_by]->(SP6Water:SP6_Declarative_Place)-[P168Water:
P168_place_is_defined_byl->(E94Water:E94_Space_Primitive)<-[nearbyWater:geo_sfnearby
1-(E94PolygonWKT),

RELIEF=(E17Relief :E17_Type_Assigment {E17TerminologyDefinition: ’’Hipsometria’’})-[
P2A1Relief :P2A1_assigned_definition_types]->(E55Relief:E55_Type)-[P137Relief:
P137_is_exemplified_by]->(E18Relief:E18_Phisical_Thing)-[P67Relief:
P67_is_referred_to_byl->(SP6Relief:SP6_Declarative_Place)-[P168Relief:
P168_place_is_defined_by]->(E94Relief:E94_Space_Primitive)<-[nearbyRelief:
geo_sfnearby]-(E94PolygonWKT) ,
(E18Relief)-[P43Relief:P43_has_dimension]->(E534Relief:E54_Dimension)-[P90Relief:

P90_has_value]->(E60Relief:E60_Number),

SOILTYPE=(E17S0ilType:E17 _Type_Assigment {E17TerminologyDefinition: ’’SoilType’’})-I[
P2A1S0ilType:P2A1_assigned_definition_types]->(E5580ilType:E55_Type)-[P137S0ilType:
P137_is_exemplified_byl->(E18S0ilType:E18_Phisical_Thing)-[P67SoilType:
P67_is_referred_to_by]l->(SP6S0ilType:SP6_Declarative_Place)-[P168S0oilType:
P168_place_is_defined_byl->(E94S0ilType:E94_Space_Primitive)<-[SoilTypeWithin:
sfWithin] -(E94PolygonWKT),
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SOILUSE=(E17S0ilUse:E17_Type_Assigment {E17TerminologyDefinition: ’’SoilUse’’})-[
P2A1S0ilUse:P2A1_assigned_definition_types]->(E55S0ilUselLevell:E55_Type)-I[
P127S0ilUsel1:P127_has_narrower_term]->(E5550ilUselLevel2:E55_Type)-[P127S0ilUse2:
P127_has_narrower_term]->(E5580ilUselLevel3:E55_Type)-[P127S0ilUse3:
P127_has_narrower_term]->(E5550ilUselLevel4:E55_Type {b: ’>’C0S2018°’°})-[P137So0ilUse:
P137_is_exemplified_byl->(E18S0ilUse:E18_Phisical _Thing)-[P67S0ilUse:
P67_is_referred_to_by]->(SP6So0ilUse:SP6_Declarative_Place)-[P168So0ilUse:

P168_place_is_defined_byl->(E94S0ilUse:E94_Space_Primitive)<-[SoilUseWithin:sfWithin
]1-(E94PolygonWKT)

WHERE Condition.E3ConditionState = ’’destroyed’’

RETURN *

In terms of hardware requirements, a CPU Core i7 with a memory of 16 GB is recom-
mended. The test execution was carried out on a machine with the following configuration:

AMD Ryzen 7 5800 8-Core Processor, 3401 Mhz, 8 Core(s), 16 Logical Processor(s) with
16.0 GB of RAM.

5.6. Information Retrieval and Discussion

The LPG model provides a robust basis for representing contextual and spatial infor-
mation. The model implemented consists of several subgraphs derived from the different
types of data sources used. With the LPG, we aimed to identify topological and fea-
ture multi-relationships between entities based on semantic and spatial relations. The
Figure 5.8) illustrates how the different subgraphs are spatially related to each other,

providing a visual representation of how geographic objects are interconnected.
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FIGURE 5.8. Visual illustration of the constructed spatial-LPG.
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A spatial analysis of monuments and their surrounding landscape features is conducted
at the instance level. To ensure that the spatial relationships between geographic objects
were correctly interconnected and to verify this, we performed data retrieval. To achieve
this, we conducted retrieval tests using Cypher queries to return all nodes and relation-
ships related to the monuments and their connections to the landscape, verifying the
results against the original source data. For all queries, whether involving one or multiple
relationships, the results were returned in milliseconds. Additionally, spatial relationships
were manually confirmed using GIS. While the retrieval process and the GIS verification
are separate, both approaches confirm the accuracy of the spatial relationships. This
suggests that the LPG accurately represents the entities and their spatial and topological
relationships, which facilitates data retrieval.

We utilized the LPG to retrieve information that allowed us to confirm known truths
about the spatial distribution of monuments within the area of interest. In this case, it
is widely accepted that monuments in this AOI are typically located near watercourses,
rocky outcrops, areas with gentle slopes, and soils with low agricultural capacity — I call
these characteristics of Classification Keys that show the interplay of dolmens with the
environmental context. Additionally, it is also well-established that monuments tend to
be located in close proximity to one another.

Our analyses were conducted both at the level of collective (group analysis) to confirm
known patterns and at the individual level to understand their specific spatial contexts.
This aimed not only to confirm this known domain knowledge but also to uncover nuances
and particularities that could further enrich our understanding of these monuments and

their interactions with the landscape.

For example, group analysis for dolmens’ proximity was performed. Within the studied
region, the average distance between dolmens of the same type is approximately 300
meters. In fact, 84% of the dolmens (62 out of 67) were within less than 1000 meters from

one another. This data demonstrates a clear tendency for these sites to cluster together.

In addition to group analysis, we performed analyses focused on individual instances to
identify broader spatial patterns among the sites. For example, Figure 5.9 illustrates the
proximity between the dolmen Anta Capela de S. Diniz (D11) and its closest monument,
dolmen Ferragial de Nossa Senhora (D34), as returned by the LPG subgraph. The figures
represent the data sources using a colour scheme: Spatial and geometric details are shown
in blue, general concepts are shown in light green, specific concepts are shown in dark
green, descriptions of concepts are shown in yellow, and metadata details are shown in
beige. This information not only provides insights into the spatial relationships of the
dolmens but also includes metadata — indicating the source of information (PA), specific
attributes (conservation states: good for D11 and poor for D34; measurements: 4 meters in
diameter for D11 and not applicable for D34, and geometric details (spatial coordinates).
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FIGURE 5.9. Proximity between dolmen Anta Capela de S. Diniz (D11 —
pink node) and the nearest dolmen, Ferragial de Nossa Senhora (D34)

An example of information retrieval to analyze the interaction between specific dol-
mens and all geographic objects related to the landscape surroundings is shown in Fig-
ure 5.10, which shows the interaction between dolmen D11 and its environs. In the image,
the data sources, soil type where the monument is located; the soil use, indicating the cur-
rent land use in the area (urban area); the water lines, showing the distance between the
dolmen and the nearest waterline (700m) and precisely which waterline is nearby (Ribeira
da Tera); a hypsometry level indicating that the dolmen is situated at an elevation of 190
meters is shown. The figures represent the data sources using a colour scheme: Spatial
and geometric details are shown in blue, general concepts are shown in light green, spe-
cific concepts are shown in dark green, descriptions of concepts are shown in yellow, and
metadata details are shown in beige. Spatial relationships are depicted using ”within”
(in blue) and "nearby” (in red) to show how different entities are interconnected. It is
possible to retrieve the interaction between all of these entities, regardless of whether
they are adjacent or not. We prioritized the E18 Physical Thing class closest to the E22
Human-Made object class in this case. It is possible to analyse how each thing interacts

with its surroundings based on any coordinate point.

This analysis is advantageous because it integrates multiple spatial relationships, links
multiple subgraphs, and provides a comprehensive semantic understanding of the inter-
connected elements. Visualizing these connections highlights interactions among entities
within a broader context. The search can be extended to retrieve information on all mon-
uments, allowing queries that identify patterns or define specific criteria, such as finding
structures with one or several similarities or differences. This flexibility enables users
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FI1GURE 5.10. Information retrieval of the Anta Capela de S. Diniz and its
spatial relation with the landscape.

Monument Water Line Topographic Soil
Relief Type
Tera 4 Tera River 165m Pmg
Forca Velha Tera River 180m Pm
Monte das Figueiras Tera River 170m Pg
Tera 5 Tera River 170m Pg
Adua 5 Tera River 175m Pgn
Ferragial da Fonte Tera River 175m Pgn

TABLE 5.18. Retrieve information where monuments classified as “de-
stroyed” share similar characteristics — water line, topographic relief and

soil type.

to refine searches based on semantic relationships, uncovering insights about monuments
that share common features or exhibit distinct characteristics. For example, which mon-
uments share the same condition (e.g., 'destroyed’), water line proximity (Tera River),
topographic relief areas and soil type and, in terms of spatial relations, are they in proxim-
ity of each other. Table 5.18 shows an example that highlights this retrieval of information.

Using queries, it was possible to perceive that, in spite of the AOI’s predominantly
flat terrain, which spans altitudes between 50 meters and 205 meters, revealed a marked
preference for site placement on slightly elevated terrain. A total of 37 dolmens were

found at altitudes exceeding 160 meters, 25 located between 100 meters and 159 meters,
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Dolmen Quantity | Soil Condition
Type
Outeiro da Forca 1 Pdg destroyed
Tera 4 1 Pmg destroyed
Entredguas 4; Anta do Forno 1 Sr destroyed
Forca Velha 1 Pm destroyed
Folha da Anta 1 A destroyed
Entredguas 1 Vit destroyed
Freixo 1 Pg, Arg | destroyed
Pucicaros 2, Pucicaros 1 2 Pdc, destroyed
Pdg
Monte das Figueiras, Téra 5, Madre de Deus 1, |4 Pg destroyed
Casa Branca 2
Oliveira 2; Anta do Cabego da Anta, Adua 5, 4 Pgn destroyed
Gongcala 2, Ferragial da Fonte

TABLE 5.19. Retrieving data from the source "PA” about monuments des-
cribed as "destructed” and the soil type on which they are situated.

and 11 below 100 meters. The majority of these sites are located along prominent terrain
reliefs.

Diverse analyses can be performed to return information about spatial relationships
between K18 Physical Thing and E22 Human-Made Object classes. For example, contour
lines can be analyzed by examining whether steep slopes or reliefs follow local contour
lines around monuments and how these interact with water lines or soil use. This allows
for an assessment of whether the areas adjacent to the monument are higher or lower,
which can provide insights into how these choices influence the monument’s condition or

help with theories of choices for its placement.

By overlaying dolmen locations with regional soil types, a clear relationship between
monuments and specific soil characteristics emerged. The analysis confirmed that dolmens
are predominantly situated on PG (Litholic Soils) and ARG (Rock Outcrops) soils. PG
soils are shallow and rest atop granite bedrock, providing excellent drainage and limiting
deep root growth. In contrast, ARG soils are located near exposed granite or quartz
diorite rock, offering minimal soil cover. These soil types not only influence vegetation
and land but can impact decisions related to settlement and construction.

Only a few sites appeared in the following soil types: Argiluviados Pouco Insaturados
(Pgn, Sr, Pdc, Pdg, Pmg, Pag, Pm, Pac and Vem), solos incipientes (A, At) and other
types of solos litélicos (Vt and Par). No monuments were found in areas of black, brown,
and reddish brown clay, calcarios, and Hidromorficos soils. Barros are evolved soils of
profile A, B or C as well as solos calcarios and podlizados soils (Servico de Reconhecimento
e de Ordenamento Agrério 1970). When soil’s conservation status is correlated with
monument destruction, it was observed that ”destroyed” monuments were predominantly
located in PGN and PG areas, as shown in table 5.19.
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The information extracted from the soil type map contained information coded as
symbols, so we mapped the explanatory legend of soil types into the LPG, enhancing
understanding and accessibility by providing contextual information and enabling seam-
less connections between related data. Additionally, Appendix 8.1 includes a table with
explanation notes for each code.

Today’s landscape reflects generations of ecological shifts and human interventions.
A number of factors can prevent the identification of the megalithic structures, including
the landscape (such as in urban areas or areas with high vegetation that difficult the
observation of the monuments). The landscape in the area is dominated by Holm Oak
Agroforestry Systems (SAFs) and most monuments (43) in different conservation states
are located in these areas. The monuments’ concentration spots are followed by pastures
(9 monuments), temporary crops (6 monuments), oak forests (4 monuments), eucalyptus
plantations (3 monuments), olive groves (3 monuments), and SAF cork oak agroforestry

systems (2 monuments). Other land uses all have one monument.

Besides the SAF zone, the improved pasture areas contain the most destroyed classified
monuments (5), with no one monument classified as in good condition. For understanding
soil evolution related to the monument position, the land use representation is structured
to enable spatiotemporal retrieval (figure 5.11). It was found that land use changed very
little between 1995 and 2018. As a result, we focus on the most recent land use data to

examine how it relates to dolmen’s positioning.
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E65Creation | P94 = P94 was created by
Events: RSI i P14 carried out by :
/ Analysis \ e ‘
/P94 P94 P94 P94\ P94\
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| Object: Map Soil | Object: Map Soil Object: Map Soil Object: Map Soil Object: Map Soil
Type (COS 1995) Type (COS 2007) Type (COS 2010) Type (COS 2015) Type (COS 2018)

FIGURE 5.11. Visual representation of the knowledge graph for all COS.
They can share similar classes, but each polygon is associated with a specific
source of information.

Considering that land use patterns have changed since the construction of archaeologi-
cal monuments such as those built during the Neolithic time, it is important to emphasize
that land use patterns do not impact the placement of dolmens since they reflect modern
uses. Instead, the current land use allows us to contextualize the dolmens within their
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present landscape. It provides a better understanding of their location relative to contem-
porary land use patterns. It is possible that these land uses contributed to the monument’s

degradation, and this information can be used to understand this relationship.

Additionally, an analysis was conducted to determine the relationship between dolmen
and water sources. Around 49% of the dolmen were located between 30 and 400 meters
from a water source. This number increases to almost 90% when the area increases to 1
km. The maximum distance measured from a water source was less than 2 kilometres.
This proximity to water suggests a correlation between dolmen locations and access to
water. This could reflect preferences for placing monuments near vital resources.

The river near which most monuments are found is the Tera (33 monuments), followed
by Matalote (8), Almadafe (5), Sorraia (3), Raia (3), Divor (2) and Freixo (1). In total,
7 of these are in good condition near the Tera River, 2 are in Almadafe, and 1 is in
both Divor and Raia. Figure 5.12 provides a detailed view of the 2 monuments and
their proximity to Ribeira da Tera and each other. The queries can be extended to
understand the relationship between all things based on specific information about the
monuments, including size, shape, material, or specific rivers such as names, composition
and state of these and their geospatial relationship with each other. It is important to
note that the hydrography data used for this analysis reflects the present-day situation.
While the current proximity of dolmens to water sources offers valuable insights, it is
crucial to recognize that waterlines and other geographical features may have changed

over millennia. This is due to natural processes and environmental shifts.

P2 has type
| .

i E18Specific .
Eeabolmens sy nearby -->  Resource: <« ---nearby---- E22Dolmen:
Remendo2 = 7777 e AR Tera 1

Tera River
123m i 398m

P44 has cgndition P44 has condition

F1GURE 5.12. A direct path to the final entity is shown — bypassing in-
termediate connections that connect other entities sequentially — showing
how Remendo 2 and Tera 1 relate spatially to Tera River.

Based on the patterns identified through data retrieval, we confirm classification keys
to use as domain rules since these features provide valuable insight into dolmen’s spatial
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relationships and contextual significance. These domain keys can be used as conceptual

guidelines derived from previous observed patterns and correlations, which help in un-

derstanding the typical characteristics and spatial arrangements associated with dolmens

and their surrounding landscape. Table 5.20 illustrates the main patterns observed in the

placement of the dolmens relative to their surroundings.

Classification Keys: Interplay of dolmens with Environmental Contexts

Proximity Among dol-
mens:

(< 1km distance)

Site Density: When a site is identified in a specific location, there’s a high
likelihood of finding at least two more dolmens within an immediate surround-
ing.

Average Proximity: These sites tend to be located at an average distance
of 300m — with 80% of these with <1Km from another.

Isolation Exceptions: While many sites are clustered, some are exceptions
and can be found isolated (> 1km <3km).

Proximity with water
lines:
(< 1km distance)

Average Proximity: On average, these sites are located within a distance of
417 meters from natural water sources.

Predominant Proximity: A majority of these sites(approximately 80%) are
situated within 1 km of a drinkable water source.

Cluster Indication: Most of these sites are near water lines, especially along
the Tera river in AOI.

Located near rock out-
Crops:
(< 1km distance)

Geological Preference: These sites are mainly located on PG and ARG soil
types — granite soils.

Soil Depth and Rock Proximity: Predominant attention to areas where the
soil is either minimal or non-existent due to the underlying rock’s proximity;

Located in relief areas:
(>160m hight)

Relief Preferences: There are mainly sites above 160m altitude.

TABLE 5.20. The main interactions between dolmen and their surround-
ings that have been identified

These insights provide a deeper understanding of the relationships between the objects

analysed and their surrounding landscape elements, allowing for a more comprehensive

analysis of their context. The retrievals have validated theories regarding the placement

of these monuments, showing their tendency to be situated on elevated terrains and near

rocky outcrops and water lines [56, 88, 86].
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CHAPTER 6

KG-ML Model Implementation

6.1. Introduction

Object detection approaches that leverage knowledge-based systems, where semantic in-
formation is used to provide context, rely heavily on a well-structured database. Such a
database must contain detailed and interconnected information that can be used to en-
hance data-driven methods. By combining object detection with semantic enrichment and
classification, the goal is to enhance both the precision and explainability of archaeologi-
cal monument recognition. Ultimately creating the basis for a robust reviewer for object
detection that helps deal with the false detections returned and decreases the necessity of
extensive manual evaluation of incorrect outputs.

To explore the application of this concept in satellite image object detection for the
recognition of archaeological monuments, we developed a new approach. Specifically, we
created a Labelled Property Graph (LPG) to represent the monument and its surround-
ing context, employing this structured representation as the foundation for a Knowledge
Graph (KG)-Machine Learning (ML) reviewer for object detection outputs. Developing
such a hybrid approach requires a detection-based approach, a semantic model, and a
combination of both. This chapter explains the methodology and results of our KG-ML
model. It begins by a detailed explanation of the data acquisition process and describes
how the collected data was prepared for use in Section 6.2. Next, it introduces the pro-
posed algorithms in Section 6.3 and discusses the implementation process, focusing on
the training strategies, model testing, and the metrics used to analyze the outputs in Sec-
tion 6.4. Finally, the chapter concludes with a presentation of the results in Section 6.5,
discussing the findings, their implications, and how they align with the study’s objectives
(Section 6.5).

In this approach, we aimed to illustrate a potential use case for the implemented LPG
and assess whether, with the information structured in this way, the model could learn
the contextual patterns that experts have identified as significant in the positioning of

this type of monument.

6.2. Data Acquisition and Preparation

The data used in this phase comes from the object detection approach described
in Chapter 4. The object detection data consists of the outputs obtained from detecting
potential monuments in the area of interest. This data includes information on the spatial
coordinates of the image, along with scores assigned to each detection within an image,
referred to as Point of Interest (POI)s. Each POI is defined by the image’s ID, its spatial
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coordinates, and the detection score (e.g., FPC1: 38.913757, -7.993010, tensor(0.9950)).
We used the POIs from Dataset 2, which comprises results from 16 images with dolmens
and 70 images without dolmens. We also included POlIs from a dataset referred to as
the ’prediction set’. This dataset contains results from 100 images from the same area
of interest, which had no monuments but returned 64 false detections. The POIs of the

analyzed locations are shown in Figure 6.1.

Area of Interest

Pavia (|
Dolmen °
Non-Dolmen - Prediction set ®
Non-Dolmen - Train/Test set e

FIGURE 6.1. The map highlights the AOI, with green POIs representing
sites used for training/testing and red POIs indicating non-sites. Black
POIs show the predicted sites after the model has been trained and tested.

In the image analysis approach, only 16 monuments were considered across the avail-
able images, which limited the number of monuments that could be analyzed using object
detection, consequently restricting the number of monument locations that could be used
to train our KG-ML model. Out of these 16 POlIs, outputs from 14 were consistently
retained for the training and testing phases, while the remaining 2 were excluded and
reserved exclusively for the prediction phase. However, the total number of monuments
in the area of interest is 94, and these 16 detected monuments represent only a fraction
of the full set. The other 78 monuments were not detected during photo-interpretation
tasks due to various challenges, such as their conservation state (e.g., destroyed or in poor
condition), coverage by modern layers, or other factors, and since they were not visible
in the manual interpretation analysis, they were not analyzed by the automated object
detection.
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To overcome the limitation imposed by the visible monuments, we leveraged the full
set of 94 monuments in our LPG to train our KG-ML model. By utilizing the known
locations of all monuments in the Areas of Interest (AOI), even if they were not visible in
the images, we could use them as POIs to capture the surrounding pattern information
to enhance the model’s performance. This allowed us to create a scenario where we could
use the data from these monuments to augment our training and testing dataset. The

scenarios were defined as follows:

(1) Test Scenario 1:
e Training/Testing Set: 14 Points of Interest (POIls) from Dataset 2.
e Prediction Set: 178 POls, including 100 without dolmens and 78 with dol-
mens.
(2) Test Scenario 2:
e Training/Testing Set: 14 POIs from Dataset 2, plus the rest of known dol-
mens.
e Prediction Set: 103 POls, consisting of 100 without dolmens and 3 with

dolmens.

The data for analysis in each test scenario was divided into training and testing sub-
sets. Outputs from all 70 POIs without monuments were consistently included across
all scenarios. For images containing monuments, the dataset was adjusted to define two
distinct configurations. Scenario 1 contains only the POIs returned by object detection
during the test phase. In contrast, Scenario 2 incorporates not only these POIs but also
the information about the other monuments in the LPG. The POlIs in each scenario were
distributed between the training and testing phases. The POIs not used in the train-
ing/testing were reserved for the prediction phase, where the model was evaluated with
unseen data, referred to here as the ”prediction scenario”. The data used in the pre-
diction scenario was derived from the object detection analysis explained in Section 4.6.
Our dataset, referred to as the ”prediction set,” includes images of 100 POIs that did not

contain monuments but were analyzed by the object detection model, resulting in 64 FPs.

6.3. Proposed Algorithms

In this section, we present our proposed approach, which combines object detection
outputs with information extracted from our LPG. Our approach integrates the results
from the object detection phase with a structured knowledge base, utilizing domain knowl-
edge to improve these results. Figure 6.2 shows the flow of our proposed model.

In the first step, during pre-classification, the object detection model obtains scores
for each identified monument. These scores, along with the coordinates of the analyzed
images, form the basis for creating POIs, each representing a monument or a potential
monument. In the second step, the POIs are used as inputs to query our LPG, which
contains detailed information about the monuments and their surrounding landscape. The
relevant landscape features, are defined in Table 5.20 in section 5.6. The features include
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FIGURE 6.2. Pipeline architecture.

proximity to other monuments, water bodies, rock outcrops, and topographic relief areas.
The information is retrieved from the KG to enrich each POI with domain knowledge
about the AOIL.

In the final step, the enriched data — combining the object detection outputs with
the landscape features from the LPG — is used to train our KG-ML model. The training
process leverages the proximity of monuments to key landscape elements, providing the
model with the ability to use domain knowledge to classify monuments based on their
environmental context. To train our predictive model, we tested different supervised
machine-learning algorithms, implemented using Dataiku [262]. The algorithms used were
K Nearest Neighbours (KNN), Logistic Regression (LR) and Least Absolute Shrinkage
and Selection Operator (LASSO)-LARS, and decision tree models as Random Forest
(RF) and Gradient Boosted Trees (GBT), Support Vector Machine (SVM), Single Layer
Perceptron (SLP) and the Stochastic Gradient Descent (SGD) [144].

6.4. Implementation

In this section, we describe the KG-ML implementation performed in Dataiku [262]. This
is a Data Science Studio platform that provides a workflow, enabling users to create
scripts for data cleansing, normalization, and enrichment visually and interactively. This
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approach simplifies the entire data science process, from data preparation to model de-
velopment and deployment. Aside from providing an interface for manipulating data, it
also provides users with the ability to integrate multiple data sources and handle large
amounts of data efficiently [262]. Additionally, Dataiku offers AutoML algorithms that
automate the process of model selection and tuning, further streamlining the workflow.

To retrieve the data from the KG, the POIs (defined in Section 6.2) were used as input
to query and retrieve contextual knowledge from the LPG (described in Chapter 5). This
task was accomplished by creating Python scripts to search and retrieve relevant informa-
tion. These scripts focused on the spatial and semantic relationships between dolmens and
landscape elements. The data is retrieved based on spatial relations, specifically ”within”
and "nearby”.

The Python Shapely module was used to determine whether a point (each dolmen)
is inside a polygon (representing land use or soil type) or near another point or line (e.g.,
proximity to other dolmens, water lines, relief features, or other land uses or soil types).
The distance () method determines the shortest distance between two geometries [263].
As an example, the following code calculates the distance between POIs, which are poten-
tial detections, and nearby landscape elements, represented by points, lines, or polygons.
In this case, the distance between POIs (represented as points) and rivers (represented as

multilines) is being calculated.

point = Point (poil[0], poil1l)
multiline = shapely.wkt.loads(r[’’polyg’’])

dist = point.distance(multiline)

In general, the LPG is used to provide context to the scene by introducing unseen
information that describes what is present in the AOI. For each POIs, the LPG provides
structured and contextual data by identifying topographical relationships and returning
key attributes such as soil type, land use, altitude, and water lines to the AOL.

Grid-based searches were used to optimize searches within the LPG. Rather than
performing a full search across all nodes to identify the nearest one, we first determine
which grid cell contains the target point based on its spatial coordinates. This approach
significantly narrows down the search space, allowing us to focus only on the relevant
subset of data. Once the grid is identified, we can efficiently retrieve information from
the surrounding area, reducing the computational cost and time associated with searching
large datasets. This method enhances the scalability of the system and supports the rapid
retrieval of contextually relevant information, which is crucial for tasks such as monument
detection and spatial analysis within the LPG.

When information is retrieved from the LPG, domain-specific knowledge is used to
create new features for the waterlines and contour lines, which consist of various numerical
values. For example, when the distance to a water line is less than 1000 meters, it is
classified as 1, indicating proximity. The distance is 0 when it is 1000 meters or more
away.
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Similarly, for contour lines, elevation zones were categorized using interval binning
into four ranges: Category A for elevations below 50 meters, Category B for elevations
between 50 and 100 meters, Category C for elevations between 100 and 150 meters, and
Category D for elevations above 150 meters.

This approach was not applied to semantic information, particularly when dealing
with a set of specific concepts such as soil type and land use descriptions. Although it
is non-ordinal data, its values represent categorical information. Therefore, the semantic
data was kept in its original form, preserving its contextual significance for more advanced

analysis.

6.4.1. Training and Testing

To analyse all POIs and their respective context that were retrieved from the AOI,
the dataset was divided into training and testing portions — 80% for training and 20%
for testing — for each of the training and testing scenarios described earlier in the Sec-
tion 6.2. Like previously referred, our prediction task is a binary classification problem to
distinguish images with dolmen(s) and without. To address the existing class imbalance,
class rebalancing with an approximate ratio was performed by adjusting class weights to
create a more balanced distribution of classes and improve model performance by mit-
igating bias toward any particular class. A 5-fold cross-validation strategy was used in
training.

The training was carried out using the various algorithms already described. The
Dataiku platform simplifies the process by offering predefined algorithm presets, some
of which can be customized, while also suggesting optimal values based on the dataset.
Some parameters were tailored for each algorithm to optimize performance, as indicated
in the Table 6.1.

The hyperparameters for all algorithms use the grid search strategy for optimization.
This approach performed better in our tests than the random search option, although
the differences were minimal. Features handling was defined in the model to take into
account the information about soil type, soil use, topographic relief, water line and the
score to identify the class. Feature engineering is the process of constructing new features
from existing ones. The goal is to derive new combinations and representations of our
data that might be useful to the machine learning model [262]. For our case study, we
defined explicit features to take into account in this process focusing on the interaction
of soil type with relief and water line.

The training parameters described in Table 6.1 were applied to all scenario datasets
using the same algorithms. This allowed for a comparison of the model’s performance
in handling varying data and conditions. After the model was trained, the respective
prediction set was evaluated corresponding to the remaining hold-out set of data, which
was not used in the training and testing phase.
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Algorithm Parameters / Options

KNN K =5 (number of neighbors);
P = 2 (Euclidean distance);
LR L2 regularization;
Penalty parameters = 0.01, 0.1, 1, 10, 100;
LASSO All features included;
Number of tests: 100;
RF Number of trees = 100;
Maximun depht = 12;
GBT Number of trees = 100;

Maximun depht = 3;

Loss = Exponential (AdaBoost);
SVM Kernel = Sigmoid;

Gamma = 1 / (number of features * variance);
Stop Criteria = 0.001;

SLP Hidden layer size = 1;

Activation function = ReLU;
Stop Criteria = 0.001;

ADAM solver

SGD Loss Function = Modified Huber;
Stop Criteria = 0.001;

L2 regularization;

Alpha = 0.001

TABLE 6.1. Hyperparameters and options used in the machine learning
algorithms for model training in Dataiku.

6.4.2. Feature Importance Metrics

When evaluating the feature importance in a knowledge-based machine learning ap-
proach, several metrics can be used to measure the impact of input features on the model.
Shapley values identify each feature’s role. This value can be understood as a weighted
average of contributions to every possible subset of features [264]. This method estimates
the average impact on the prediction by switching a feature’s value from the one in a
random sample (x) to the one in the sample to be explained (y) while also considering all
possible combinations of feature switches. It computes predictions before and after the
switch, repeats the process, and averages the results to determine the feature’s impact
(i) [262]. It considers all possible combinations of features, whether they are directly or
indirectly impacting the model’s output. Kumar et al. (2020) highlight computational
complexity and feature selection as limitations for this conditional value feature. Calculat-
ing the exact Shapley value is difficult since it requires knowledge of multiple distributions
(n combinations), which is computationally intensive and often requires approximations.
Additionally, because influence is determined based on any set of features, selecting which
features to include is crucial, as it impacts the explanations [264].

Shapley and ICE (Individual Conditional Expectation) can be used to compute the
individual prediction explanations [262]. In contrast to Shapley, ICE focuses on a single
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feature, estimating functional relationship for each observation [265]. It explains the im-
pact of a feature by switching only its value in a sample (x) to different values, computing
predictions (y), and comparing the actual prediction for (x) with the average of these
predictions (y). ICE doesn’t account for interactions between features as Shapley does
but provides a simpler, more localized view of a feature’s effect on predictions [262].

Feature importance metrics, play a crucial role in determining the model’s performance
by providing detailed information on each feature’s importance. By using techniques
like Shapley values, we can assess how each feature metric contributes to the model’s
precision, with each feature being assigned a weight that reflects its impact. The model’s
performance metrics include precision for the training phase and a cost matrix to analyse
False Positives (FP), True Positives (TP), False Negatives (FN), and True Negatives (TN)
(explained in Chapter 4.5.2).

6.5. Results and Discussion

This section presents the results obtained from our experiments and provides an anal-
ysis of the findings. As shown in Table 6.2, Scenario 1 yielded the worst performance
overall. This may be attributed to the limited number of POIs available for testing, with
only 14 data points. For instance, some algorithms, such as KNN and RF, achieved ex-
ceptionally high precision scores of 1.00, while others, like LASSO, performed poorly with
a score of 0.26. In contrast, Scenario 2 demonstrated consistently strong performance
across all tests, as also shown in Table 6.2. This improvement can likely be explained
by adding more POIs for training the model, providing richer information about the AOI
and enabling pattern identification across the area analyzed. Consequently, all subsequent

analyses presented in this study are based on the results obtained from Scenario 2.

Algorithm Test Scenario 1: Precision | Test Scenario 2: Precision
RF 1000 0,91

GBT 0,8 0,8

LR 0,8 0,81

SVM 0,44 0,81

SGD 0,66 0,83

KNN 1000 0,9

LASSO 0,26 0,91

SLP 0,44 0,91

TABLE 6.2. Performance metrics for tested algorithms in Scenario 1 and

Scenario 2.

Most algorithms performed consistently, with several achieving notable results, as
shown in Table 6.3. All models trained using SGD, Lasso Path, SLP, and RF achieved an
average precision of around 80% or higher. These models also perform better when tested
with different parameters in this case study. The SLP algorithm had better performance,
with an average precision of 85%.
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Algorithm Base Average Average Fl-score
Precision

RF Decision Tree 0.81 0.84

GBT Decision Tree 0.80 0.80

LR Linear Model 0.77 0.86

SVM Kernel Function 0.78 0.80

SGD Optimization for Linear 0.80 0.81
Model

KNN Distance Metric 0.79 0.77

LASSO Linear Model 0.80 0.85

SLP Single-Layer Neural 0.85 0.87
Network

TABLE 6.3. Average precision and F1-score of KG-ML

In all tests, the top models achieved precision rates from 70 to 91 %. A number of
factors contributed to the improvement in precision, including scoring of data derived
from the previously used object detection approach and feature generation techniques
that analyse nonlinear relationships among landscape elements, as described in the model
training section. The techniques used were able to maintain or enhance the performance
of most models, each contributing to overall precision.

Continuing our evaluation, the SLP-based model demonstrated strong performance
across key metrics. This model achieved an average precision of 85%, a recall of 85% and
an AUC (Area Under the Curve) of 89%. These metrics indicate a balanced performance,
with high precision emphasizing the model’s effectiveness in minimizing false positives,
while a high recall reflects its ability to correctly identify true positives. The confusion
matrix (as shown in Figure 6.3) further illustrates the model’s robust performance, high-
lighting its capability to accurately use contextual information to classify the presence or

absence of dolmens across the dataset.

Predicted Predicted

Total

1 0
Actually 1 85 % 15 % 100 %
Actually o 9 % 91 % 100 %

FI1GURE 6.3. Confusion Matrix.

Most of the high-performing models prioritized the spatial relationships of the monu-
ment with water lines and soil type as the most influential features, followed by topography
relief, land use, and finally, the detection score output from the pre-classification phase
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as shown in Figure 6.4. For SLP algorithms, as demonstrated in the image, the spatial
relationship with soil type, water lines and topographic relief areas was identified as the
most critical factor in the model’s accuracy. Land use played a secondary role, while
object detection scores, although useful, had a lesser impact than the primary features.
Even though the scores were not particularly solid, their inclusion in model training im-
proved performance. In this way, scores can be used to capture patterns that, although
subtle, may still be significant in certain circumstances and ultimately help guide the
model. Additionally, the model can learn to distinguish between detections with high and
low confidence by using the scores as a secondary element. By implementing a hybrid

approach, in which scores are considered secondary information, overall performance was

optimized.

0% 10% 20% 30% 35%

FIGURE 6.4. Feature importance — explainability metric

The feature "soilType” has the highest impact on predictions, with a feature impact
of 0.92 and an information gain of 0.69. These help to explain the impact of features
on the predictions of the model. In this case, for example, the presence of soil type Pg
is linked to higher predictions, while soil types Vt are associated with lower predictions
(Figure 6.5).

The second most impactful feature is ”distWater”, with a feature impact of 0.72 and a
correlation of 0.71. Higher distance-to-water values are associated with higher predictions.

The feature ”topographic relief” has an impact of 0.62 and an information gain of 0.68.
Higher predictions are associated with Type D, while lower predictions are associated with
Type C. Since there are no cases of prediction of 1 in train sections for A and B, the model
is unaware of this modality (unrepresented in train). The partial dependence for relief
features is shown in Figure 6.6.

The model provides insights into why each object was classified as Dolmen or non-
Dolmen. The model accurately predicted 91% of the non-dolmens and 85% of the dolmens,
highlighting its effectiveness in separating the two classes. Figure 6.7 shows various cases
where false positives returned by object detection were correctly identified by the KG-ML
model. The KG-ML model factors distance from water, topographic relief, soil type, and
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FIGURE 6.5. Partial dependence for soil type — explainability metric
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FIGURE 6.6. Partial dependence for topographic relief — explainability
metric

land use. If a detection is made spatially over 1 km from a water line, in low-indication
soil types (e.g., Vex and Pc), and in a low-level relief area, and even if the detection

output score is high or low, the KG-ML can correctly classify the point as not being a

monument.
P25 0.395 FP34 0.378 FP31 0.206
r Most influential features ¥ Most influential features ¥ Most influential features
[ ] soilType | distWater ] distWater

B distwater | relief [ ] soilType

[ | soilUse 1 score [ | soilUse
[ ] relief | soilUse [ | relief
| score I Solvee | score

FIGURE 6.7. Individual explanations for an FP POI.
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These results are particularly noteworthy given the limited data available for train-
ing and testing. Despite the small dataset, several algorithms performed remarkably
well. This suggests that landscape context information effectively aids in recognizing pat-
terns and predicting AOIs for dolmens. It underscores the potential of these models to
generalize and make accurate predictions even with constrained data. This robustness
across multiple algorithms highlights the value of landscape context in enhancing model
performance. It reinforces the reliability of these approaches in class prediction under
data-limited scenarios. Next is shown the use of the model for new POls

Using the configuration described earlier, we tested the predictive model’s performance
with unviewed POIs. Using this KG-ML approach, FPs are reduced by 84%. In the ap-
pendices, Table 8.2 shows the POIs for false detections returned by the object detector
that were given new scores by KG-ML. Of the 64 incorrectly classified images, only 10
remained. Additionally, the table contains the top 3 elements that influenced the model’s
decision and the weight assigned to each, derived from the combination of relevant rela-
tionships. Despite additional classification datasets and a wide range of POIs across the
185 km? area of interest, the model maintained its high performance. This indicates that
the model can adapt well to new POIs in the AOI and that its pattern recognition capa-
bilities are effective for identifying AOIs. Through the use of environmental information,
the model enhances detection scores significantly, even though it doesn’t directly detect
monuments. In addition to improving detection scores, it provides valuable insights into
relevant patterns and features associated with dolmens in diverse locations.

In analyzing the results of a test set, using POIs with known dolmens that are not
visible in images, the model was capable of precisely identifying them. This highlights
the model’s performance not only in identifying AOIs but also in improving monument
location detection precision. These results suggest that the model performs well in en-
hancing detection precision and providing valuable insights into classifying true monument
locations.

Overall, these results highlight the model’s effectiveness in enhancing detection preci-
sion and minimizing false positives while also suggesting that further optimization could
help capture all true positives and reduce missed detections, even when new coordinates

and datasets are introduced.
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CHAPTER 7

Conclusions

In this final chapter, we present an overall view of the work reported in this disserta-
tion. The following sections begin with a detailed discussion of the key components of
the project in Section 7.1, followed by an outline of the contributions of this work in
Section 7.2, and conclude with insights and possibilities for future developments (Sec-
tion 7.3).

7.1. Global Considerations

The literature review shows that object detection approaches contribute to the recogni-
tion of archaeological sites from satellite images, allowing archaeologists to manage vast
datasets more efficiently. These approaches facilitate faster identification of heritage sites
across extensive geographical areas. However, there are still limitations. While promising,
these methods often generate false positives, especially when identifying small features.
Also, these approaches tend to focus on simpler forms with distinct geometric features or
specific spectral behaviours, such as material reflectance in agricultural fields that con-
trast with the surrounding landscape. Not surprisingly, in the Areas of Interest (AOI)
we worked on (Pavia, Portugal), where both the dolmens, our target object, and the sur-
rounding terrain share the same spectral behaviour (granite for both soil and monument)
and where the monuments are too small to be easily visualized (< 4 meters in diameter),
detection proved be particularly challenging — returning many false detections.

The False Positives (FP)s returned by automated approaches to archaeological site
detection are traditionally analyzed manually by specialists. In these interpretations, ex-
perts bring their domain knowledge to the table, enabling them to better understand and
interpret the context. By incorporating domain knowledge into automated approaches,
this process could be streamlined, with fewer data points that will require immediate
attention. In fields like remote sensing, Knowledge Graph (KG)s are already seen as the
future for contextualizing scenes and improving object detection. The implementation of
KGs, representing domain knowledge, for both cultural heritage representation and land-
scape analysis is gaining popularity, however they are addressed separately at the same
time that info to derive this domain knowledge is not interoperable, as the literature
demonstrates.

By implementing a model that interrelates information about the landscape and the
monuments, we create a Labelled Property Graph (LPG) model that can be used to
provide context for what surrounds a site. Using multiple Vector Topographic Maps
(VTM)s, we integrated isolated layers of spatial data and incorporated relationships based
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on their interactions into a unified model. By linking it with heritage information sourced
from various textual references, we create a semantic model that holds the info about
what exists in a space — topological features that matter for the dolmen recognition.
This approach provided a more comprehensive and interconnected view of the data —
enhancing its depth and context that can be explored through sophisticated queries,
facilitating a deeper understanding of spatial interactions and heritage contexts. By
utilizing the well-established ontologies — CIDOC-CRM and GeoSPARQL — to create
our schema model, and by incorporating all metadata, concepts, and geometry provided
by each source, our implementation of the LPG is structured to be findable, accessible,
interoperable and reusable.

Using the LPG as a basis to train an ML model with outputs returned from tradi-
tional object detection, we created what I called the KG-ML model in order to predict
AOIs where monuments are located to be used to improve these outputs. Our tests
demonstrated that integrating a semantic model enriched with landscape information sig-
nificantly improved the automated object detection outputs and provided explainability

for each detection.

7.2. Contribution and Implications

Our proposed approach in this thesis leveraged existing domain knowledge—traditionally
used by experts to recognize dolmens—and transformed it into an interoperable format
that machines could utilize, allowing us to address RQ2, RQ3 and finally the main reserach
question (MRQ).

In our approach to object detection, semantic information was used differently. As
opposed to merging object detection outputs with knowledge graph data in a unified
embedding as most previous research has done, we standardized and linked VTMs with
textual information into a LPG to map a scene. Instead of labelling every object within
an image, we labelled only our target objects and retained the spatial coordinates of
images with detected objects. The spatial coordinates from object detection outputs —
indicating where detections occurred — are used to query the graph to uncover relevant
contextual information about the AOI. Context was then provided through the LPG
that details what exists in the area, regardless of whether it is visible in the image. For
instance, even if a river is not visible, whether due to scale, being dry, or being covered,
its presence is derived semantically from the maps. Thus, our context relies not on visual
features but on semantic information linked through the graph. This approach removes
the need to label all scene objects, like rivers or soil types, and accounts for aspects that
are difficult to label, such as land use.

By using information — which is not visible in most images, this approach can provide
information such as monuments destroyed or not visible and correctly identify monument
localizations as positives even if they are not visible. It appears that by relationally
considering environmental factors, the machine can identify interest zones. By providing
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detailed knowledge, researchers can retrieve, compare, and analyze monument compo-
nents more precisely by querying and exploring cultural heritage data. Integrating various
sources of information into one unified model makes it easier to contextualize and inter-
pret non-visible features, making it an effective tool for future research regarding spatial
relationships and image identification.

There is a growing interest in utilizing KGs to represent contextual and spatial knowl-
edge to meet the challenges of heterogeneity and interoperability. However, KGs as a tool
for contextualizing scenes in satellite images is still in its infancy. As far as we know, this
is the first study linking geospatial data with contextual information about archaeological
monuments and landscape elements derived from textual and VITMs data sources into
a KG and employ it as a reviewer to improve object detection outputs. As opposed to
existing KGs, our model integrates both landscape and archaeological information and
uses this information to train an Machine Learning (ML) model to identify patterns and
predict AOIs where archaeological monuments can be found — thus providing context to
the representation of real-world features in each location.

Using machine learning to automatically analyse the relationship of an AOI to detect
patterns offers several significant benefits. It helps reduce FPs typically returned by
data-driven approaches by incorporating contextual and semantic information, leading to
more precise results. This reduces the workload for specialists who would need to confirm
detections manually. Additionally, the ability to identify patterns across an entire region
can propel future research by providing insights into broader trends and relationships
within the landscape. This has been demonstrated in cases involving false negatives,
where the model successfully identified patterns and provided context to correctly analyze
previously missed detections.

Given the lack of research in this domain for the archaeological field, this contribution
highlights the innovative use of KGs as a tool to train an interoperable model that can

be used to leverage automated data-based approaches.

7.3. Limitations and Future Work

Despite the promising results achieved with our KG-ML approach, several limitations
remain. One major challenge is the scarcity of cultural heritage data available for training,
a common issue also encountered in traditional object detection. It is critical to note that
we have trained the model with all available information about known monuments for
the AOI. Therefore, if specific scenarios are not covered, it indicates that the limitations
are not due to a lack of data on the machine’s part. Many details about the monuments
were not present in the sources, and some monuments mentioned by archaeologists in the
literature may be missing or no longer exist. Future work should focus on integrating

additional information into the KG — in response to new data becoming available.
Additionally, the KG offers extensive possibilities for analyzing spatial relationships
between entities, for example, assessing monument conservation status and understand-
ing how landscape changes, such as land use, may affect their preservation. It provides
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a framework for answering questions about how the surrounding environment influences
monuments, offering valuable insights into these interactions. It is possible to use this
LPG in any field that seeks to understand the landscape in the future. Leveraging in-
sights from the KG-ML model can be particularly valuable for fields like urban planning
and environmental management, enabling them to identify areas of archaeological interest
early on. By doing so, potential disruptions, such as delays or changes required when dis-
covering archaeological monuments in modern construction zones, can be avoided, saving
time and resources.

Further analyses also could deepen our understanding of how landscape elements—such
as rivers, topography, soil types, land use, and elevation—interact with the target mon-
ument. Our current focus has been on how these individual factors can help in the
identification of areas of interest, as dolmens are often found in areas with specific to-
pography features. However, there is significant potential to expand this by considering
more factors. For example, by integrating data on how soil reacts to precipitation with
existing information on soil type, land use, local hydrology, and elevation, we can gain a
better understanding of how environmental conditions, such as heavy rainfall or floods,
affect the place — since certain soil types may be more vulnerable to erosion under ex-
cessive moisture, potentially threatening the monument’s stability. This approach could
enhance understanding of how environmental factors affect monument preservation and
predict risks. However, integrating domain knowledge of landscape change would require
input from experts in other fields. While my focus has been on archaeological knowl-
edge to identify monument locations, the LPG is designed for expansion to incorporate
additional data as it becomes available.

As the model is designed for expansion, future work could focus on enriching the KG
with additional regional data and a broader range of archaeological monuments, using
it to predict AOIs across different sites. Also, the KG-ML model is agnostic to specific
object detection methods. It can use coordinates and detection scores from any previous
recognition approach, making it a flexible tool for reviewing diverse detection outputs.

Finally, the model integrates data from various sources, with information gathered
manually. This approach has provided valuable insights, but a future direction would
be to incorporate Natural Language Processing (NLP) to automate extracting relevant
text information, improving the model’s scalability and efficiency. Additionally, while the
model currently serves as a reviewer, it could be further leveraged to guide the object

detection process directly
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Type

Code

Description

Solos Incipientes

Al
At
Atl
Eg
Egn

Ex

Sb

Sbl

Solos Incipientes - Aluviossolos Modernos, Nao Calcéarios, de
textura mediana

Solos Incipientes - Aluviossolos Modernos, Nao Calcarios, de
textura ligeira

Solos Incipientes - Aluviossolos Antigos, Nao Calcarios, de
textura mediana

Solos Incipientes - Aluviossolos Antigos, Nao Calcarios, de
textura ligeira

Solos Incipientes - Litossolos dos Climas de Regime Xérico, de
granitos ou quartzodioritos

Solos Incipientes - Litossolos dos Climas de Regime Xérico, de
gnaisses ou rochas afins

Solos Incipientes - Litossolos dos Climas de Regime Xérico, de
xistos ou grauvaques

Solos Incipientes - Regossolos Psamiticos, Normais, nao
himidos

Solos Incipientes - Solos de Baixas (Coluviossolos), Nao
Calcérios, de textura mediana

Solos Incipientes - Solos de Baixas (Coluviossolos), Nao
Calcérios, de textura ligeira

Barros Castanhos

Bve

Barros Castanho-Avermelhados, Calcdrios, Muito
Descarbonatados, de dioritos ou gabros ou rochas
cristalofilicas basicas associados a calcério fridvel

Barros Castanho-
Avermelhados

Barros Castanho-Avermelhados, Calcarios, Pouco
Descarbonatados, de rochas eruptivas ou cristalofilicas basicas
associadas a calcario fridvel, ou de grés argilosos calcarios, ou
margas

Barros Pretos

Cp

Barros Pretos, Calcérios, Pouco Descarbonatados, de rochas
eruptivas ou cristalofilicas béasicas associadas a calcario friavel,
ou de grés argilosos calcarios ou margas

Solos Hidromorficos

Ca

Cac

Cal

Solos Hidromoérficos, Sem Horizonte Eluvial,
Para-Aluviossolos (ou Para-Coluviossolos), de aluvides ou
coluviais de textura mediana

Solos Hidromoérficos, Sem Horizonte Eluvial,
Para-Aluviossolos (ou Para-Coluviossolos), de aluvides ou
coluviais de textura mediana, calcirios

Solos Hidromoérficos, Sem Horizonte Eluvial,
Para-Aluviossolos (ou Para-Coluviossolos), de aluvides ou
coluviais de textura ligeira

Solos Hidromorficos, Com Horizonte Eluvial, Planossolos, de
arenitos ou conglomerados argilosos ou argilas
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Solos Argiluviados Pac Solos Argiluviados Pouco Insaturados - Solos Mediterraneos,
Pouco Insaturados Pardos de Materiais Calcarios, Para-Barros, de margas ou
calcarios margosos ou de calcarios nao compactos associados
com xistos, grés argilosos, argilitos ou argilas ou de grés
argilosos calcdrios (de textura franca a franco-argilosa)

Pag Solos Argiluviados Pouco Insaturados - Solos Mediterraneos,
Pardos, de Materiais Nao Calcéarios, Para-Solos Hidromérficos,
de arenitos ou conglomerados argilosos ou argilas (de textura
arenosa ou franco-arenosa)

Pbc Solos Argiluviados Pouco Insaturados - Solos Mediterraneos,
Pardos, de Materiais Calcarios, Para-Barros, de calcarios
margosos associados a arcoses ou rochas afins

Pdc Solos Argiluviados Pouco Insaturados - Solos Mediterraneos,
Pardos, de Materiais Calcarios, Para-Solos Hidromoérficos, de
arcoses ou rochas afins associadas a depdsitos calcarios

Pdg Solos Argiluviados Pouco Insaturados - Solos Mediterraneos,
Pardos, de Materiais Nao Calcarios, Para-Solos Hidromérficos,
de arcoses ou rochas afins

Pgn Solos Argiluviados Pouco Insaturados - Solos Mediterraneos,
Pardos, de Materiais Nao Calcédrios, Normais, de gnaisses ou
rochas afins

Pm Solos Argiluviados Pouco Insaturados - Solos Mediterraneos,
Pardos, de Materiais Nao Calcérios, Para-Barros, de dioritos
ou quartzodioritos ou rochas microfaneriticas ou cristalofilicas

afins

Pmg Solos Argiluviados Pouco Insaturados - Solos Mediterraneos,
Pardos, de Materiais Nao Calcérios, Normais, de
quartzodioritos

Pv Solos Argiluviados Pouco Insaturados - Solos Mediterraneos,

Vermelhos ou Amarelos, de Materiais Nao Calcarios, Normais,
de rochas cristalofilicas

Px Solos Argiluviados Pouco Insaturados - Solos Mediterraneos,
Pardos, de Materiais Nao Calcarios, Normais, de xistos ou
grauvaques

Sr Solos Argiluviados Pouco Insaturados - Solos Mediterraneos,

Vermelhos ou Amarelos, de Materiais Nao Calcarios, Normais,
de de "ranas” ou depdsitos afins

Vee Solos Argiluviados Pouco Insaturados - Solos Mediterraneos,
Vermelhos ou Amarelos, de Materiais Calcarios, Normais, de
calcérios cristalinos ou marmores ou rochas cristalofilicas
calcio-siliciosas

Ved Solos Argiluviados Pouco Insaturados - Solos Mediterraneos,
Vermelhos ou Amarelos, de Materiais Calcdrios, Normais, de
calcarios compactos ou dolomias

Vem Solos Argiluviados Pouco Insaturados - Solos Mediterraneos,
Vermelhos ou Amarelos, de Materiais Calcdrios, Para-Barros,
de margas ou calcdrios margosos

Vgn Solos Argiluviados Pouco Insaturados - Solos Mediterraneos,
Vermelhos ou Amarelos, de Materiais Nao Calcarios, Normais,
de gnaisses ou rochas afins

Vx Solos Argiluviados Pouco Insaturados - Solos Mediterraneos,
Vermelhos ou Amarelos, de Materiais Nao Calcarios, Normais,
de xistos ou grauvaques
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Solos Litélicos Par Solos Litdlicos, Nao Humicos Pouco Insaturados, Normais, de
materiais arendceos pouco consolidados (de textura arenosa a
franco-arenosa)

Pg Solos Litélicos, Nao Humicos Pouco Insaturados, Normais, de
granitos

Ppg Solos Litélicos, Nao Huimicos, Pouco Insaturados, Normais, de
rochas microfiricas claras

Vit Litdlicos, Nao Humicos, Pouco Insaturados Normais, de
arenitos grosseiros

Solos Calcérios Pc Solos Calcarios, Pardos dos Climas de Regime Xérico,
Normais, de calcarios nao compactos

Pecd Solos Calcarios, Pardos dos Climas de Regime Xérico,
Para-Litossolos, de calcérios compactos (travertinos)

Pcs Solos Calcarios, Pardos dos Climas de Regime Xérico,
Normais, de margas ou materiais afins

Ve Solos Calcarios, Vermelhos dos Climas de Regime Xérico,
Normais, de calcarios

Vet Solos Calcarios, Vermelhos dos Climas de Regime Xérico,
Normais, de arenitos grosseiros associados a depédsitos
calcérios

Vex Solos Calcdrios, Vermelhos dos Climas de Regime Xérico,
Normais, de xistos ou grauvaques associados a depdsitos
calcérios

Solos Podzolizados Ppt Solos Podzolizados - Podzdis, (Nao Hidromoérficos), Com
Surraipa, com A2 incipiente, de ou sobre arenitos

Afloramentos Arg Afloramento Rochoso de granitos ou quartzodioritos

Rochosos

TABLE 8.1. Detailed explanation of the Portuguese Solos Charter [1]for
Pavia (46 types of solos)
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POIs ID

Object
Detection
Score 1

KG-ML
Score 1

KG-ML
Prediction

Explanations

FPC1

995

449.618

7s0ilUse”: 0.22989976704085627, ”soilType”:

0.7867751618777192, ”distWater”:
-0.2568191903075665

FPC3

9.951

449.625

"soilUse”: 0.22980828034496748, "soil Type”:

0.7867839642088739, ”distWater”:
-0.2568118279666314

FPC4

8.367

202.995

”s0ilUse”: 0.21598968510329564, ”soilType”:

-0.23505485741077892, ” dist Water”:
-0.3171490607871281

FPC5h

7.481

203.163

7s0il Type”: -0.0797594191946489, "relief”:
-0.21837644064467843, ” dist Water”:
-0.4304651105910129

FPC6

9.824

271.296

"relief”: -0.2951803095207308, ”soilUse”:
0.3479574057208671, ”dist Water”:
-0.4596893656854 788

FPC7

9.939

214.446

"score”: 0.052397982736154924, "relief”:
-0.2215257557524073, ” dist Water”:
-0.4123684765717135

FPC8

9.946

214.479

7score”: 0.05259252363584377, "relief”:
-0.22153472450983358, " dist Water”:
-0.4123169401851655

FPC9

9.867

236.889

”s0ilUse”: 0.16515961915586708, "relief”:
-0.30687900051610206, " dist Water”:
-0.41076054138310014

FPC10

9.974

197.002

"s0ilType”: 0.06635292406596927, ”soilUse”:

-0.10891082602957392, " dist Water”:
-0.12591324017501515

FPC11

7.105

154.029

"relief”: -0.2281958404741382, "soilUse”:
-0.30260694584258085, " dist Water”:
-0.43899024698930655

FPC12

9.934

62.082

"relief”: -0.04608784164083085, "soilType”:
0.4823567331516542, " dist Water”:
-0.1978373970604736

FPC14

8.236

131.561

"s0ilUse”: -0.23904444019384652, "soilType”:

-0.4061352741933566, " dist Water”:
-0.532798317096719

FPC18

9.408

780.785

7s0ilUse”: 0.38765264850442216, ”soilType”:

0.9263562952328672, ”distWater”:
1.4144990595952684

FPC19

8.094

452.394

7s0ilUse”: 0.2238042688467437, ”soil Type”:
-0.5559506167553067, ” dist Water”:
0.923290822543101

FPC20

9.569

237.051

”s0ilUse”: -0.2720753950748639, "soilType”:

0.30498802758261623, ”distWater”:
-0.3052567801138163

FPC23

955

693.321

”s0ilUse”: -0.13549604404726634, "relief”:
0.15174257470090136, ”soil Type”:
2.072831554701101

FPC24

9.966

181.612

”s0ilUse”: 0.16231976422546057, ”soilType”:

-0.4418911857299319, ”distWater”:
-0.49684082392054285

FPC26

9.217

395.091

7soilType”: -0.21152978424319252, ”s0ilUse”:

-0.22968706316359744, " dist Water”:
0.9569971064522595
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FPC29

9.271

39.529

"soilType”: -0.2116233227798077, "soilUse”:
-0.23011514734918134, " dist Water”:
0.9569724173709525

FPC31

9.857

150.708

"soilType”: -0.24329342840259272, ”soilUse”:
-0.2575094099047539, " dist Water”:
-0.35628994990610807

FPC32

9.965

531.124

"soilType”: -0.22679124110608442, ”soilUse”:
0.303821024958959, " dist Water”:
0.9437254752148441

FPC37

9.848

261.744

”s0ilUse”: -0.14771504442364647, ”soilType”:
0.3000267003074555, ”distWater”:
-0.3456844113886606

FPC38

9.827

53.014

”s0ilType”: -0.23084297298194523, ”soilUse”:
0.30296140754882606, ”distWater”:
0.942464041087625

FPC39

8.402

446.831

"score”: 0.013995627770624769, "soilType”:
-0.20259393561750405, ” dist Water”:
1.0032998424054353

FPC40

8.627

169.834

”s0ilUse”: -0.09738086620000508, ”soil Type”:
-0.23790276166658209, " dist Water”:
-0.3745260111999562

FPC44

9.848

172.622

”s0ilUse”: -0.09547580422616031, "soilType”:
-0.23020949649824574, ” dist Water”:
-0.3793194470232917

FPC45

9.914

458.278

”score”: 0.06020179537892126, ”soilType”:
-0.16902143079653847, ” dist Water”:
1.0192387035379016

FPC46

9.602

455.912

"score”: 0.050667189364511256, "soilType”:
-0.17620596646112063, " dist Water”:
1.0159497321931072

FPC47

9.905

159.408

"s0ilUse”: -0.13372615688872402, "soilType”:
-0.5236805796854314, "distWater”:
-0.41502354403808206

FPC63

9.913

565.123

"soilType”: 0.2748698030911674, "relief”:
-0.30283846170627726, " dist Water”:
1.4536728225467135

FPC69

9.915

333.855

”s0ilUse”: 0.2046164362765962, "relief”:
0.7751260757354288, ”distWater”:
-0.5791549491059756

FPC53

8.299

122.796

”s0ilUse”: -0.22209652909766842, ”soilType”:
-0.458853235768393, " dist Water”:
-0.3784599517637699

FPC76

9.954

213.303

7s0ilUse”: 0.3207653460105917, ”soil Type”:
-0.6599848157119274, ” distWater”:
-0.6140612119523329

FPC61

9.889

210.124

7s0ilUse”: 0.3082214790295075, ”soil Type”:
-0.33403215410865317, " dist Water”:
-0.5350962154722311

FPC91

9.718

126.854

7s0ilUse”: -0.15877216092447655, ”soil Type”:
-0.4412252133049974, ” dist Water”:
-0.452385588935053
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FPC86

8.204

664.835

"soilType”: 0.15566747672817915, "relief”:
0.33728850465244054, " dist Water”:
0.8820125327624436

FPC92

9.883

145.438

"relief”: -0.02510068304171864, "soilType”:
-0.5191036902962307, " dist Water”:
-0.4549890018735021

FPC70

8.576

168.923

"soilUse”: -0.1661750358440297, "soil Type”:
-0.2704605296854432, ” dist Water”:
-0.44641918713813866

FPC60

8.481

131.992

”s0ilUse”: -0.2374479860732306, ”soilType”:
-0.3785400108480166, ”dist Water”:
-0.5423812392794907

FPC80

9.903

212.509

”s0ilUse”: 0.1991387036724046, ”soil Type”:
-0.5503984598633342, ” distWater”:
-0.51902957301917

FPC95

8.878

566.798

”s0ilUse”: 0.3430223952423181, ”soilType”:
-0.6188856081351858, ”dist Water”:
1.4252805998111926

FPChH9

8.885

206.683

”s0ilUse”: 0.28378342013561686, ”soilType”:
-0.336480811124501, " distWater”:
-0.44333116461400535

FPC73

9.217

380.477

”s0ilUse”: 0.26606029655794183, ”soilType”:
0.2949779638014228, " dist Water”:
-0.31399746181000293

FPC83

9.823

335.607

7distWater”: -0.1903691786014884, "relief”:

0.428153701518481, "soilUse”: 0.3184515387294621

FPC90

8.623

334.425

"relief”: -0.17234590808016892, "soilType”:
-1.0471590565266917, " dist Water”:
0.4357049171897306

FPC96

7.741

237.032

"s0ilType”: -0.321135382134933, "soilUse”:
0.476646856269491, ” dist Water”:
-0.3855345455814201

FPC99

9.982

66.153

”soilType”: 0.16796795485411975, "relief”:
0.33844459492315515, ”distWater”:
0.8225747639308485

FPC64

9.551

332.221

”s0ilUse”: 0.2031619734357949, "relief”:
0.7740113574972235, ” dist Water”:
-0.5884939865763333

FPC98

9.349

16.462

7s0ilUse”: 0.24307414722905563, ”soilType”:
-0.623894309762101, " dist Water”:
-0.5644393405260395

FPCT75

984

156.225

"relief”: -0.1256545782340266, "soil Type”:
-0.6286243693109843, ”dist Water”:
-0.6083947875566464

FPCT77

9.743

156.273

"relief”: -0.12435035168676056, ”soilType”:
-0.6265322959938129, ”distWater”:
-0.6082788202223652

FPC62

9.949

15.027

"relief”: -0.26714013571758155, "soilType”:
-0.6302935803893088, ”dist Water”:
-0.5411848023544508

FPC57

9.882

261.939

"s0ilUse”: -0.14764065671950655, "soilType”:

0.3006557258603837, " dist Water”:
-0.34546383045535056
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FPCT72

7.433

157.417

"relief”: -0.09329093597349725, "soilType”:
-0.5785101074281611, ”distWater”:
-0.6055171239111241

FPC52

9.784

192.899

"relief”: -0.08758339408485427, "soilUse”:
-0.25853395922569744, " distWater”:
-0.4274822523042683

FPC88

7.214

228.808

"soilUse”: -0.2595799423624008, "soil Type” :
0.27100069841984764, ” dist Water”:
-0.31417097961641516

FPC94

9.936

628.758

”soilType”: 0.09999747829620387, "relief”:
0.45120011595025333, ”distWater”:
1.6327552801839245

FPCh5

9.455

275.996

7soil Type”: 0.14789957570369205, "soilUse”:
0.21447669079084974, " dist Water”:
-0.35472000585124397

FPC97

8.736

227.507

7s0il Type”: -0.09632491032410417, "relief”:
-0.10290479757633597, ” dist Water”:
-0.09660099847912473

FPChH8

9.944

172.843

”s0ilUse”: -0.09532602048374517, ”soil Type”:
-0.22972543524378164, 7 dist Water”:
-0.37969632649834506

FPC78

975

212.582

”s0ilUse”: 0.3171789949779449, ”soil Type”:
-0.6590190315049408, ” dist Water”:
-0.6136435114895642

FPC100

9.895

386.497

7s0ilUse”: 0.2704533217919689, ”soilType”:
0.2976845228106447, " dist Water”:
-0.30720924262131544

FPC56

7.285

136.365

"s0ilUse”: -0.09317811549562327, "soilType”:
-0.4856207944029247, ”distWater”:
-0.40328706095403644

TABLE 8.2. KG-ML results from analyzing POIs determined incorrectly
as TP by pre-classification (object detection), now with updated scores.
Additionally, the image explains what factors influenced KG-ML’s score.
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