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Resumo

Para o reconhecimento de monumentos arqueológicos em imagens de satélite, os es-

pecialistas utilizam conhecimento de domı́nio e a sua experiência. No entanto, métodos

automatizados de detecção de objetos, em geral, dependem apenas das imagens, funcio-

nando, no entanto, como ”caixas pretas”. Esta técnica também tende a retornar uma alta

taxa de falsos positivos, especialmente no caso de monumentos de pequenas dimensões.

Para que as máquinas possam utilizar o conhecimento de domı́nio, é necessário torna-lo

interoperável mas, para isso, é necessário superar o desafio levantado pela dispersão e

fragmentação dos dados. Este estudo aborda essa questão, ao converter conhecimento

de domı́nio de fontes diversas e multidisciplinares em um formato leǵıvel por máquina e,

assim, poder contribuir para reduzir os falsos positivos na detecção de objetos. A imple-

mentação de um Knowledge Graph (KG), usando como modelo estrutural o CIDOC-CRM,

sua extensão CRMgeo e GeoSPARQL, permitiu a integração de informações sobre śıtios

arqueológicos e da geografia onde estes estao localizados. Combinando dados textuais

com dados espaciais o KG fornece insights sobre elementos de uma cena que podem não

ser diretamente viśıveis nas imagens. Posteriormente, os resultados de uma abordagem

de detecção de objetos usando técnicas de Visão Computacional foram integrados no KG

para treinar um modelo hibŕıdo KG-Machine Learning (KG-ML) para identificar áreas de

interesse (AOIs) onde será mais provável encontrar dolmens. O modelo utiliza o conheci-

mento contextual da área de modo a excluir imagens com baixa probabilidade e melhorar

a precisão da detecção.
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Abstract

Experts use domain knowledge and experience to identify and analyze archaeological

monuments from satellite images. However, traditional object detection methods often

rely solely on image data and operate as ”black boxes,” which frequently results in false

positives, especially when detecting small archaeological sites. For machines to e↵ectively

leverage domain knowledge, it must be organized in an interoperable format, address-

ing the challenge posed by scattered and fragmented data, particularly across multiple

disciplines. This study tackles this issue by converting domain knowledge from diverse

and multidisciplinary sources into a machine-readable format to reduce false positives

in automatic object detection. The study links information about archaeological sites

and their landscapes by implementing a Knowledge Graph (KG) based on CIDOC-CRM,

its CRMgeo extension, and GeoSPARQL ontologies. This KG integrates textual data

from semantic records with spatial data from vector topographic maps, encompassing (i)

metadata definitions, (ii) general and specific concepts, and (iii) the geometry of each

represented entity. This representation can provide insights into elements within a scene

that may not be visible in images. Subsequently, the output from an object detection

approach was integrated with the KG to train a Knowledge Graph-Machine Learning

(KG-ML) model. This model identifies areas of interest (AOIs) where dolmens in Pavia,

Mora (Portugal), are likely to be found, using contextual knowledge to exclude images

with a low probability of accurate detections. The KG-ML approach e↵ectively reduced

false positives, providing contextual information that clarifies recognition decisions and

enhancing the understanding of detected sites.
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CHAPTER 1

Introduction

The expertise of specialists and information about the target is crucial in manual image

analysis [9] — a combination here referred to as domain knowledge. Domain knowledge

in archaeology combines visual and spatial analysis with ancient and modern landscape

perceptions searching for greater meaning in findings [10]. In contrast, existing automatic

data-driven approaches, such as object detection, process Remote Sensing Images (RSI)

using algorithms and Machine Learning (ML) techniques [11], often exclude the knowledge

critical to human experts. Hybrid approaches that combine data-driven and knowledge-

driven methods [12] are currently seen as promising developments for automatic detection

in Remote Sensing (RS) and in the field of archaeology [6] to contribute to explainabil-

ity, ultimately leading to more robust object detection systems, particularly in complex

scenarios. These approaches leverage existing information, relationships, and contextual

understanding to make informed decisions, similar to human reasoning.

In this light, we aim at enabling machines, that is, automated systems, to leverage

domain knowledge about the local landscape to enhance the location of archaeological

remains through image classification. Towards this end, we explored knowledge-driven

methods to reduce the number of False Positives (FP) (or incorrect predictionsFP [13]) hits

returned by data-based image recognition methods. In archaeology, potential sites requires

manual intervention thus misidentifying non-archaeological characteristics is costly and

highly time-consuming. As datasets grow larger, the need for a more precise automated

recognition also increases especially when analyzing vast areas, where the occurrence of

numerous FPs can be troublesome. While the final interpretation will always rest with

the expert, reducing the amount of data for manual analysis allows specialists to focus on

other critical tasks, thereby optimizing the overall e�ciency of the archaeological survey

process [14, 15, 16].

In this chapter, first, we describe the motivation for using hybrid approaches to identify

archaeological monuments in satellite images (Section 1.1). Next, we outline the problem

of using domain knowledge in archaeology and define our case study (Section 1.2). After-

wards, we present the research questions (Section 1.3) and research methods (Section 1.4)

used to guide and structure this thesis. After that, we reflect on the contribution and

a list of the publications derived from this project (Section 1.5). Lastly, we present the

dissertation outline (Section 1.6).
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1.1. Motivation

The human mind can recognise a wide range of concepts through visual analysis, in-

cluding complex architectural styles. Often in architecture, categories are ambiguous,

overlap (e.g., castles and palaces), and include numerous subcategories (e.g., houses).

In addition to common categories like houses, castles and palaces, specialized categories

like megalithic monuments are less common and have fewer examples. Although lim-

ited examples are available, humans can recognize these categories through experience,

generalization and inference [17]. For example, [18] manually analyzed satellite images

to identify 187 dolmens recorded in Mora and Arraiolos (Portugal), with 60 monuments

successfully identified in the images. It took several months to analyze images from just

one year, 2017, to recognize these monuments. As remote sensing data increases, this

type of manual analysis becomes not only time-consuming but even insu�cient.

In light of the increasing volume of data available for analysis, data-driven approaches

to recognize archaeological sites in RSI have become more and more prevalent. These

typically use Airborne Laser Scanning (ALS)/Light Detection and Ranging (LIDAR) [19,

20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31], satellite imaging (e.g., panchromatic, multi-

spectral and hyper-spectral) [16, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46],

or images from platforms such as Google Earth [47, 48, 49] and BING [50]. However, to

achieve accurate recognition, automatic visual recognition systems require thousands of

labelled examples per category [51, 52], requiring a large and diverse set of examples for

training [53]. Additionally, since objects vary in illumination, occlusion, and perspective,

these approaches have di�culty in recognizing real-world scenes [54].

Using ML techniques to analyze archaeological sites from satellite images when data

is scarse and categorically complexity make accurate classification di�cult. However, this

challenge can be addressed by exploring the information humans use in manual analysis,

which is often overlooked by automated methods since, for several reasons that will be

discussed further along (like the nonexistence of a symbolic knowledge base gathering the

until now dispersed information) it is not easily incorporated into the workflow. Unlike

data-based approaches, humans leverage their experiences and previous knowledge to

identify objects. For example, to identify immovable archaeological monuments in RSI,

researchers traditionally recur to domain knowledge about the monuments’ and to the

topographical features of the surrounding environment (e.g., geology, soil type and use,

hydrology, and archaeological features) [53, 55]. The realization that manual identification

relies heavily on domain knowledge that automated systems may not fully consider led us

to explore ways of incorporating domain knowledge into recognition systems’ processes.

1.2. Problem Definition

Although most archaeological research relies on visual identification of past remains, the

majority of the remains are hidden from view, whether buried underground by environ-

mental processes, covered by modern towns, or by vegetation. The use of RSI helps to

identify these hidden, or so-called “invisible,” remains, at the same time that places them
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in much larger contexts [10]. However, regarding small and non-easily distinguishable

structure monuments in satellite images remains a challenge for identification, whether in

manual or automated analyses [34].

The surrounding landscape may have played a critical role in the choice for the place-

ment of monuments like megalithic structures [56], and although the landscape has evolved

over thousands of years, analyzing its characteristics can help identify patterns to distin-

guish Areas of Interest (AOI) [18]. For example, key patterns for dolmens location include

elevated terrain and proximity to natural rocky outcrops, water lines, and other similar

monuments [56]. Based on this knowledge, we can infer that hydrography, hypsome-

try, soil type, and land use data can assist in identifying an AOI to locate dolmens.

By analysing spatial relationships between these characteristics within a scene, we can

identify patterns to determine how environmental factors influence monument presence

and visibility. The main challenge, however, is acquiring data and information that can

be made interoperable and machine-understandable for automated approaches to use as

domain knowledge.

Obtaining domain knowledge for monument recognition involves integrating multi-

disciplinary information, such as landscape data from RS and Cultural Heritage (CH)

data from archaeology. Most researchers focus on well-defined entities that can help iden-

tification, which makes the detection dependent on the specialist’s interpretation that

establishes the relation between the visual entities and the known concepts [55]. How-

ever, prior information and relevant data tend to be kept by di↵erent communities and

institutions, which employ conceptualizations and formal definitions that usually do not

match. Take the example of geoinformation, traditionally represented by Geographic

Information Systems (GIS), while CH data tend to remain as records in museums and

historical archives [57]. This diversity of data and data sources is problematic when the

goal is to use this information in automated systems and to provide context to ML models.

To address the lack of interoperability, each community has developed ISO stan-

dard ontologies for information representation reflecting its particular focus. For ex-

ample, Geospatial Consortium (OGC) (GeoSPARQL) [58] was developed for geoinfor-

mation recording using a typical formalism suited for semantic web technologies. In

contrast, CH information tends to be represented using the CIDOC-Conceptual Refer-

ence Model (CRM) [59]. Since both ontologies provide standards for the specified areas,

if applied together, they can enrich a model with precise and well-identified descriptions

of site location — such as CRMgeo [57], which extends CIDOC-CRM.

Knowledge-Based (KB) techniques play a crucial role in achieving interoperability

by representing domain knowledge and also open the path to deal with the explainabil-

ity commonly amiss in traditional automated image recognition approaches [60]. For

instance, the symbolic representation of Knowledge Graph (KG) has gained increasing

attention in recent years due to its ability to integrate, organize, and allow for reasoning

over vast amounts of domain-specific and inter-related information, enhancing AI systems’
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performance in tasks requiring contextual understanding. Information in KGs is repre-

sented semantically in a linked way, emphasizing relationships between entities. While

KGs excel in organizing and linking domain-specific knowledge, object detection focuses

on analyzing images, that is, image data to identify objects without necessarily consid-

ering the object’s underlying context. As it will be described in the next chapter with

the review of the related literature, many studies explore object detection to recognize

sites in RSI, and others explore ontologies and KGs to represent semantic information.

Despite the growing interest in both methods, their integrated application in representing

spatial data with monument information to assist in scene recognition is a recent trend

and remains virtually unexplored within the field of archaeology.

1.3. Research Questions

In light of the problem definition outlined in Section 1.2, this research was driven by the

following main reserach question (MRQ):

• MRQ: To what extent does the provision of landscape context information im-

prove the precision of automated systems in archaeological site object detection?

As previously stated, incorporating domain knowledge in data-based approaches o↵ers

a promising avenue to provide contextual information that can enhance the performance

of automated methods and their explainability. With this understanding, we can identify

the potential of using domain knowledge with object detection. As a first step, we need

to review the current state of this approach in the archaeological field, which leads us to

the following more specific research question:

• RQ1: Are there approaches that combine data-based and knowledge-based meth-

ods to enhance the recognition of archaeological sites in satellite images?

After reviewing the state-of-the-art, we focus on two research avenues: one involves

implementing a data-driven model, while the other aims to implement a semantic model

to represent domain knowledge about the target object. This brings us to our second

research question:

• RQ2: How can contextual information about archaeological sites and their sur-

rounding environment be made interoperable to enable machine learning systems

to identify and use domain-specific knowledge?

Building on the findings derived from the implementations of data-driven and knowledge-

based methods, we also explore how to use the semantic model to improve the detection

of the data-driven approaches to answer our third specific research question:

• RQ3: Is it possible to improve the detection of small or non-visible objects in

data-driven approaches by incorporating semantic contextual knowledge for guid-

ance?

This three-part research question approach has lead to a model implemented in order

to enable answering the MRQ and thus achieve the main research goal: the proposal
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of a hybrid KG plus ML method that uses symbolic knowledge to assist a sub-symbolic

method in the detection of dolmens in satellite images.

1.4. Research Methods

In this dissertation, archaeological sites featuring dolmens located in Pavia (Mora, Por-

tugal) is defined as the case study that serves as a basis for addressing our MRQ (the

target object and area of interest are described in Section 2). This focused approach

minimizes variability introduced by regional di↵erences and ensures that the insights are

deeply rooted in the selected AOI characteristics.

To address RQ1, we conducted a systematic literature review, reported in Chapter 3.

Object-based and knowledge-based approaches in archaeology rarely perform together

despite being widely used separately. As a result, we determined two lines of analysis

to identify how these approaches are combined. The first focuses on understanding the

data-based approaches, specifically object detection techniques, used in archaeology to

identify monuments in satellite imagery. The second line of analysis investigates how

knowledge-based approaches represent archaeological and spatial information, explicitly

using ontologies and KGs. By combining insights from these two viewpoints, we aim

to evaluate the potential for integrating data-based and knowledge-based approaches to

improve the accuracy and reliability of monument recognition in satellite images.

For answering RQ2, we implemented a satellite image-based approach for recogniz-

ing dolmens, reported in Chapter 4. Next, we performed an implementation of a KG

as a Labelled Property Graph (LPG) to link the information gathered and make it in-

teroperable, which is reported in Chapter 5. Vector Topographic Maps (VTM)s with

hydrological, soil types, soil uses, topographic relief information and textual fonts con-

taining monument-related information were used to represent the knowledge. The schema

model here proposed uses CIDOC-CRM, CRMgeo, and GeoSPARQL ontologies as a base

to represent the information. The goal is to represent each entity (e.g., archaeological

sites and surrounding environments) as structured instances, capturing their attributes

and relationships.

To answer RQ3, the LPG was combined with the object detection outputs (bounding

box with scores and coordinates of analysed images considered as Point of Interest (POI)s)

to train an ML model, resulting in a KG-ML approach for identifying AOIs to recognize

dolmens, reported in Chapter 6.

As a result, we present a method that integrates domain knowledge in an interoperable

format, making it suitable for automatic archaeological site detection, whose applicability

was demonstrated through testing, demonstrating its ability to reduce false positives.

1.5. Contributions

This project contributes to archaeology as well as information science. As a result of

linking semantic and spatial information from various VTMs and semantic sources about

the dolmens, its landscapes and their locations into an LPG, we created a model that
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is human-machine-readable, interoperable, and capable of organizing data from various

sources and formats. This model allows users to trace the origin of each piece of infor-

mation, making the data reusable and, by centralizing everything in one place, easily

accessible and findable. As the LPG acts as a reviewer, it operates independently of the

object detection method, being agnostic and capable of utilizing outputs from any other

approach, validating and refining the results from data-based recognition approaches.

To our knowledge, this is the first time an LPG has been used to review automated

archaeological site recognition to provide context to identify AOIs and minimize FPs.

Through the usage of well-known and accepted ontologies to implement an LPG, this

research advances the integration of spatio-temporal and semantic data from multiple

sources. As a result, the outputs of data-based approaches are enhanced, and the volume

of data to be analysed manually is decreased. While advancing theoretical insights into

knowledge representation and automated data analysis, the project’s contributions o↵er

practical benefits for archaeological research and heritage preservation.

This thesis builds on several research outcomes published in peer-reviewed venues.

Each work contributes to understanding automatic approaches for recognizing archaeo-

logical monuments, knowledge representation in cultural heritage and remote sensing, and

the integrated use of both methods.

• Camara, A., de Almeida, A., Oliveira, J. P., & Silveira, M. (2020, January). Pho-

tointerpretation as a Tool to Support the Creation of an Ontology for Dolmens.

In Program and Book of Abstracts XXVII Meeting of the Portuguese Association

for Classification and Data Analysis (CLAD) (p. 101).

• Câmara, A., de Almeida, A., Caçador, D., & Oliveira, J. (2023). Automated

methods for image detection of cultural heritage: Overviews and perspectives.

Archaeological Prospection, 30(2), 153-169. DOI: 10.1002/arp.1883

• Câmara, A., de Almeida, A., & Oliveira, J. (2023, May). Versioning: Represent-

ing Cultural Heritage Evidences on CIDOC-CRM via a Case Study. In Proceed-

ings of International Conference on Information Technology and Applications:

ICITA 2022 (pp. 363-371). Singapore: Springer Nature Singapore.

• Câmara, A., Almeida, A. D., & Oliveira, J. (2024). Transforming the CIDOC-

CRM model into a megalithic monument property graph. Journal of Computer

Applications in Archaeology. DOI: 10.5334/jcaa.151

• Marçal, D., Câmara, A., Oliveira, J., & de Almeida, A. (2024, June). Evaluating

R-CNN and YOLO V8 for Megalithic Monument Detection in Satellite Images.

In International Conference on Computational Science (pp. 162-170). Cham:

Springer Nature Switzerland.

• Câmara, A., Almeida, A. D., & Oliveira, J. (2025). A Knowledge-Graph for

Portuguese Megalithic Monument-Landscape Relationships Representation and

Analysis. Ed: Stefania Stellacci, Serdar Aydin. The paper has been accepted
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and is forthcoming in Endangered Heritage Sites: From Eidotypes to Enriched

Representations and Design Solutions in February 2025.

Other Publications include non-peer-reviewed works presented as posters, which are

listed below.

• Câmara, A., Almeida, A. D., & Oliveira, J. (2022). KG-ML Approach Image

Recognition for Cultural Heritage. In Ciencia 2022 - Science and Technology in

Portugal Summit.

• Câmara, A., Almeida, A. D., Oliveira, J., & Marçal, D. (2023). Arqueologia e

Comunicação na era da Big Data: do śıtio arqueológico ao registo de monumen-

tos e paisagens. Será este um dia FAIR? In IV Congresso da Associação dos

Arqueólogos Portugueses.

1.6. Document organization

Figure 1.1. Dissertation outline

This dissertation is divided into seven chapters as depicted in Figure 1.1. The first chap-

ter (this chapter) introduces the problem addressed, methods and contributions. In the
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following, Chapter2 describes the AOI, including the monument and landscape features.

Chapter 3 presents a review of the state of the art, focusing on object detection approaches

to recognize archaeological monuments and knowledge graphs to contextualize archaeolog-

ical information. Next, the model implementation is subdivided into three major chapters:

implementing an object detection approach based on ML (Chapter 4), detailing the tech-

nical approach and processes involved, implementing the KG (Chapter 5), explaining its

design and integration, and implementing the KG-ML approach (Chapter 6), in which

results from object detection are combined with the KG. Finally, a conclusion is shown

in Chapter 7, which summarizes the research findings and suggests research avenues for

the future.
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CHAPTER 2

Area of Interest: Definition and Data Sources

This case study uses information on dolmens, specifically those located in Pavia in Mora

in the Alentejo region of Portugal — our Areas of Interest (AOI). This city is part of

the Mora municipality, including Mora, Brotas, and Cabeção. Pavia is situated at the

northern edge of the Évora district, near the borders of Santarém and Portalegre [56].

It consists of an area of 185 km2 [2] and has been occupied since prehistoric times, as

evidenced by its numerous megalithic monuments such as dolmens.

In this chapter, we present in detail our target object (Section 2.1) and the landscape

description of the AOI where they are situated (Section 2.2) to understand the context

of what we are looking for and the relevant information. We also surveyed the geospatial

and semantic data — sources used to gather information about the target object and the

surrounding landscape (Section 2.3). Data and information from these sources can help

derive domain knowledge about the target object and the AOI.

2.1. Dolmens

Dolmens are megalithic monuments primarily recognized for their funerary functions,

typically serving communal purposes [61, 62]. In Portugal, these structures, built during

the Neolithic and Chalcolithic periods (4000-5000 BC), were used to facilitate burial

practices and serve as collective memorials [61, 63, 64, 65, 66]. Portugal’s Alentejo region

has one of the highest concentrations of megalithic sites in Europe [67, 21]. In the Alentejo

region, these structures typically consist of a chamber formed by three or more uprights

(orthostats) supporting a single cover-stone (capstone) [68].

These vertical stones bear the weight of the overarching capstone and demarcate

the chamber’s confines. It also may have a corridor as an entrance composed of or-

thostats. These structures may have been covered with earth and stone (burial mound

or tumuli) [69, 63]. This human-made mound, raised over the dolmen, possibly played

protective and symbolic roles. In Figure 2.1, it is presented a well-preserved example of

a dolmen captured in a 3D model 1. The image reveals its large chamber with eight or-

thostats (1), a capstone split in half that originally measured about 3.85 meters in length

(2), a corridor (3), and a well-preserved tumulus (4).

It has been observed that dolmens had their opening facing the rising sun and generally

diverged from East to South by 10°-20°. The di↵erences in orientation, evidently based

1The image can be accessed at: https://sketchfab.com/3d-models/anta-grande-da-comenda-da-igreja-
5bd4c1bddaf64c38937f6c47a71a79e6 [Last accessed in 09/12/2024]
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Figure 2.1. Anta Grande da Comenda da Igreja. A three-dimensional
reconstruction. Source: Sketchfab. License: CC0 Public Domain.

on astronomical observations, could be attributed to the time or the season of the monu-

ment’s construction [61, 70]. However, the theory remains debated and is not universally

accepted, with a larger-scale analysis needed to definitively attribute this characteristic

to these monuments [69].

Studies on megalithic monuments have existed in the Pavia area since earlier, with

notable works dating back to the early 20th century [70, 71]. Recently, e↵orts have been

made to map these burial types using LIDAR data in the Alentejo [21] as well as a plan

to classify and protect them (O�cial Gazette No. 39/2022, Series 2 of 25/02/2022) [72].

Currently, 94 monuments are recorded in the area of Pavia [73, 8]. The map depicted in

Figure 2.2 showcases Portugal with a detailed view of Pavia, signalling the locations of

the dolmens that have been analysed.

A typical example of this monument type in the region features a chamber diameter of

two to five meters and a variety of shapes (polygonal, circular, semicircular, or quadrangu-

lar). It is usually built from granite or schist [74, 75]. The chosen construction materials,

mainly granite and schist, imparted a distinct aesthetic and fortified them against the

relentless march of time. Schist or granite soils are acidic, leading to the complete de-

composition of organic matter over time. As a result, no organic remains survive, leaving

only the architectural traces of these structures to endure through the ages [76].

2.2. Landscape

Portuguese continental geomorphology is characterized by three major morphostructural

units: the Ancient Massif, the western and southern Meso-Cenozoic fringes, and the

Cenozoic Tejo-Sado basin [77]. Alentejo falls primarily within the Ancient Massif unit,

10



Figure 2.2. Map highlighting Portugal with a detailed inset of the Pavia
region, situated within Mora in the Alentejo area.

which is characterized by granite and schist, as well as some quartzites and metamorphic

rocks [77]. From a geological perspective, the Pavia area encompasses two formations: the

edges of the Tertiary Tejo basin and the ancient substrate, which is mostly made of granite.

Both formations are intersected by a dense watercourse network [77, 56]. The Tertiary

cover includes flatter areas, sometimes forming residual reliefs (W-S ), while the ancient

substrate presents a more irregular topography. However, it is predominantly flat with

extensive granite outcrops [56]. There are generally gneisses, mica-schists, metamorphic

schists, and granites in this region (Ossa Morena), as well as lesser amounts of marble,

quartz, quartzite, clay, sandstones, and conglomerates [56, 78, 79].

Despite the relatively flat topography, numerous watercourses cut through the area [77].

Central Alentejo has three major river basins: Tejo, Guadiana, and Sado. The Pavia area

is part of the Sorraia river basin, a subsidiary of the Tejo left bank [56]. The river exhibits

high irregularities, resulting in more severe droughts and more concentrated runo↵ [80, 56].

According to the VTM to water lines from Agência Portuguesa do Ambiente (APA) at

scale 1:25,000, this river is considered to be artificial, and its left bank tributaries are the

Raia, Mora, Matalote and Tera rivers. In addition, the Tera River, a tributary of the

Sorraia River, traverses the entire central region of Pavia in a north-south direction [4].

According to Ramos (1994), the basin extends in an ESE-WNW direction, following the

flow direction of the primary collector, which begins on the Estremoz Plateau and flows
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to the Raia River [80]. Among the tributaries of the Tera are the Cré River on the left

bank and the Freixo River on the right bank. Other natural streams in the region include

Azenha and Divor rivers [4].

The interaction between the geological characteristics of a watershed and its drainage

network profoundly influences soil types and water movement across the landscape [81].

Over time, various factors can significantly alter watercourses, including deforestation,

dam construction, and natural hydrological variations [80]. Moreover, precipitation pat-

terns also a↵ect changes in the landscape. In this region, the average annual precipitation

ranges between 650 and 700 mm, slightly increasing to 700-800 mm in the northeastern

part. Rainfall is evenly distributed throughout the year, primarily between October and

May [77].

Solos Litólicos refer to soils generally associated with rocky outcrops, unsuitable for

any agricultural use except with manual labour [82]. Much of the soil in the central re-

gion and surrounding the Tera, Cré, Matalote, and Divor rivers consists of Solos Litólicos

and Solos Argiluviados Pouco Insaturados [83], as shown in Figure 2.3. These soil types

have low natural fertility due to their parent material, mainly granite, its derivatives, and

schists. The soils are characterized by low cation exchange capacity and high acidity,

further limiting their fertility [84]. Other soils present in the region, include Solos Incip-

ientes, Barros, Solos Hidromórficos,and Solos Calcários [3]. Solos Incipientes and Solos

Calcários are weakly developed soils, the former being minimally evolved with shallow

organic layers, while the latter forms from limestone with varying carbonates. Barros,

in contrast, are well-developed, clay-rich soils with high plasticity and firmness. Solos

Hidromórficos face challenges due to temporary or permanent water saturation, leading

to reduction phenomena in the soil profile [85, 82].

Regarding soil quality, granitic formations generally result in low agricultural poten-

tial, typically classified as Class D and Class E soils. In contrast, tertiary formations

exhibit two distinct scenarios: the Oligocene clayey-limestone terrains support good ar-

eas of agricultural soils, classified as Class B and Class C, while the Miocene-Pliocene

complex of sandstone-clay conglomerates in the plateaus predominantly consists of soils

with very low agricultural suitability, classified as Class E [56]. Soil classification encom-

passes various categories based on their usability for di↵erent purposes. Class A soils

have very high usability with minimal limitations and erosion risks, suitable for intensive

agricultural use. Class B soils have high usability but moderate limitations and erosion

risks, making them ideal for moderately intensive agriculture and other uses. Class C

soils o↵er moderate usability, significant limitations, and high erosion risks, and they are

suitable for light agricultural use. Class D soils have low usability with severe limitations

and high erosion risks. They are often unsuitable for agriculture except in exceptional

cases but may be used for grazing, woodland, or forestry. Class E soils have very low

usability, severe limitations and high erosion risks, rendering them unsuitable for most

uses, often designated for natural vegetation or protection forests [82].
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Figure 2.3. Map highlighting the soil types in Pavia. The map was cre-
ated using VTMs [2, 3, 4]

In general, this region is relatively flat with elongated relief and gentle slopes near

watercourses, along with small hills and spurs [86], with altitudes ranging from 50 to 205

meters as shown in Figure 2.4. Among the areas in the region, Pavia stands out as having

the highest proportion of elevated areas above 145 meters. The northern region, including

the eastern and western parts, features the lowest altitudes. Conversely, the central to

southern regions exhibit the highest elevations. Rivers like the Tera are situated in low-

lying areas but are often surrounded by higher elevations, creating a varied landscape.

The region’s general flattening results from typical water erosion, which has gradually

smoothed and levelled the landscape into a peneplain [5].

Regarding current land use, the region is predominantly characterized by areas devoted

to cereal crops, olive groves, and vineyards [86]. These agricultural practices dominate the

landscape, contributing to the region’s economic activity. In addition to these cultivated

areas, there are significant forested regions, including montado systems, which consist of

oak and cork oak forests [87]. It is important to note that land use practices can influence

soil visibility. For instance, the extent of vegetation cover and agricultural activity can

obscure or alter the appearance of soil surfaces.

This landscape has profound utilization practices that can influence soil visibility

and megalithic monuments, which are strategically positioned near watercourses, rock

outcrops where they could access raw materials for constructions and elevated points to
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Figure 2.4. Map highlighting the topographic relief in Pavia. The map
was created using VTMs [2, 5]

maximize visibility [56, 86, 88]. At a macro-geographic scale, the placement of tombs is

generally considered deliberate, with site selection potentially based on practical reasons

or cultural factors. These results rely on most studies on astronomical or landscape

observations [76]. While current land use does not directly influence the original selection

of these sites’ placement, it could impact their preservation. The analysis of previous data

shows that many monuments were destroyed in Alentejo during the 20th century, mainly

between the 1970s and 1990s. These destructions were primarily driven by intensive

agriculture and reforestation e↵orts, which have significantly altered the landscape and

compromised the integrity of these sites [67].

Neolithic communities were among the first to develop and rely on agriculture, albeit

on a small scale—more akin to horticulture as we understand it today. They prioritized

settling on light, well-drained soils near permanent watercourses where they could cul-

tivate crops. Heavy, clayey soils were generally avoided, even if close to water, as these

soils were challenging to work with using the technology available at the time. Therefore,

Neolithic communities did not favour soils classified as A and B [76, 86]. In areas with

Class B and C soils, burial sites tend to be limited [76]. Conversely, soils with poorer

agricultural suitability, such as Classes D and E, which are often schistose, tend to host

more burial sites [56, 76].
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The archaeological landscape is, in essence, a product of long-term interactions be-

tween humans and the natural environment [6]. Over time, the remains of past civiliza-

tions have become buried or obscured by natural processes and later human activities,

often leaving monuments and structures concealed beneath layers of earth. This process

of layering, or stratification, is fundamental to archaeological excavation. In this ongoing

process, the uppermost layer represents the most recent interaction between humans and

the environment [89].

2.3. Data Sources

The information contained in cultural heritage sources (e.g. archives, museums, records

and databases) and from public entities responsible for the management and coordina-

tion of policies related to the territory, such as those responsible for creating Vector

Topographic Maps (VTM)s, is crucial as a source of knowledge about the territory. We

can interpret, understand, and extract accurate information from reliable and relevant

data sources from which domain knowledge is consistently derived.

Detecting archaeological sites in an image requires domain knowledge that involves a

multidisciplinary e↵ort to understand the monuments and their surrounding landscapes

— involving geospatial and semantic data and relating archaeology, geography and Re-

mote Sensing (RS). The landscape is a dynamic entity that evolves and houses various

geographical objects and features. Archaeological sites can be viewed as a subset of ge-

ographical objects, enclosed by significant areas, representing remnants of the original

archaeological record at a specific morphogenetic stage [6]. We infer that geographic ob-

jects and features encompass all physical elements above the Earth’s surface, including

natural landscape features, built structures, and archaeological monuments.

Data sources with information on geographic objects and features from di↵erent scopes

are found in disparate sources. In the sections below, we describe the data types and the

sources to obtain information about our target object and the AOI described in the

previous sections.

2.3.1. Archaeological Data

Archaeological analysis employs a range of data types, including domain literature,

RS data, images, and field observations. The analysis of these data types is influenced

by various interrelated factors, such as methodological, observational, contextual, and

semantic biases, which can impact the outcome [90]. So, “The archaeological record is

constructed by archaeologists, and patterns within that record will inevitably reflect the

activities and interests of archaeologists as much as any reality in the past. This is par-

ticularly apparent in the ongoing process of the interpretation and re-interpretation ...”

[91, p.15]. This perspective highlights how knowledge is inherently subjective to contin-

uous revision and argumentation [92]. Researchers unfamiliar with the described taxon

and related literature may find it challenging to interpret due to semantic ambiguities in

terminology, which can vary by taxonomy, author, and time frame [93].
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As evolving interpretations shape records, Cultural Heritage (CH) geographic objects

such as sites change over time. Dynamic concepts, such as time-sensitive changes, are inte-

gral to these processes [94, 95]. As new findings emerge or the condition of cultural assets

shifts, descriptions are updated to create new data versions that maintain the continuity

of the object’s history while incorporating these evolving interpretations [96]. Alterna-

tively, new records may be produced separately, resulting in di↵erent documents about

the same cultural asset. The process generates extensive data, often organized to meet

specific research needs and stored in institutional repositories or the cloud. Additionally,

records are frequently presented as unstructured text across various sources, impeding

their findability and accessibility [97, 93]. The lack of standardization in records renders

the data non-interoperable, and when combined with proprietary systems, which often

restricts access to the data, it further complicates data reuse. [98, 99, 92, 100].

The lack of standardization in records results from the fact that, for a long time,

knowledge has been created or maintained by di↵erent individuals and institutions with

di↵erent objectives within a framework of varied knowledge and understanding [101, 102].

Some institutions have dedicated e↵orts to structuring data. For example, the Portuguese

database Endovélico —- Archaeological Information and Management System—managed

by the Direção-Geral do Património Cultural (DGPC), started as a manual inventory

that began to be digitized at the end of the twentieth century and now has more than

35,000 archaeological records registered by di↵erent experts over the past 40 years [103].

Since 2013, the digitalization of technical and scientific archaeological reports has been

underway at DGPC to increase transparency and equality of access [103, 67]. Data from

these collections is available through Portal do Arqueólogo (PA) [8] — a digital platform

intended for professionals and researchers in archaeology. Few European countries have

repositories with the necessary expertise and mechanisms to ensure archaeological data is

freely and openly available for future research [98]. In Portugal, the PA serves as a valuable

source of digital information, alongside other useful resources, such as books published by

local municipal councils, like those from Mora — Carta Arqueológica (CA) [73].

However, the information is semi-structured and not interoperable, making it di�cult

to integrate and analyze across di↵erent systems; for example, to use this information

to understand the structure of a monument, it would be necessary to make the data

granular and extract details from the text, such as size, shape, dimensions, and other

relevant attributes.

Di↵erent researchers have been highlighting the need to make data findable, acces-

sible, interoperable, and reusable to enhance its usability and integration across various

platforms and systems [104, 92, 102].

2.3.2. Geospatial Data

Geospatial data is obtained through RS, where information about the Earth’s surface is

acquired using sensors without direct contact with the objects being studied [9, 105, 106].
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This process typically involves satellites, manned aircraft, and Unmanned Aerial Vehi-

cles (UAVs) that measure the electromagnetic radiation emitted or reflected by ground

objects. The data collected varies according to these objects’ physical and chemical char-

acteristics [106, 107].

There are numerous benefits to using RS data in archaeology: as a non-invasive tech-

nique, it preserves archaeological heritage without a↵ecting sensitive objects directly, while

it provides a bird’s-eye view of archaeological sites within their broader landscape con-

text, revealing the intricate interaction between natural and human-made elements [108].

Archaeological remote sensing relies mainly on the active-sounding technique known as

Airborne Laser Scanning (ALS) and passive air and spaceborne imaging in the optical

spectrum. While airborne imaging remains the preferred approach for detailed analysis,

satellite reconnaissance is well suited for mapping extensive landscape features and de-

tecting monuments in challenging environments [109]. The ability of satellite imagery

to cover large areas and provide broad contextual information highlights its significant

advantage in archaeological research.

Satellite Images

Satellites o↵er a unique category of RS platforms, distinct from aerial vehicles such as

human-piloted aircraft and UAVs. These artificial satellites collect and transmit electro-

magnetic data by orbiting the Earth or other celestial bodies, generating images of large

areas accessible at various resolutions [106, 17]. The four main resolution characteristics

in sensors are spatial, temporal, spectral, and radiometric [109, 106, 9].

Spatial resolution indicates an instrument’s ability to distinguish between neighbour-

ing objects, with higher resolution allowing for more detailed images. Radiometric res-

olution refers to the sensor’s ability to detect di↵erences in intensity related to the bit

depth. Temporal resolution indicates how frequently an imaging system revisits the same

area, which is critical for tracking changes over time. Spectral resolution measures a

sensor’s ability to distinguish wavelengths of light [109]. Images can be panchromatic,

capturing data from a single spectral band at high spatial resolution, multispectral, cap-

turing data from several discrete bands at moderate spatial resolution, or hyperspec-

tral, which captures data from many narrow, continuous bands with high spatial reso-

lution [109, 110, 106, 111]. Further, images can be fused, for example, high-resolution

optical panchromatic images can be combined with low-resolution multispectral images

to add color and spectral information, a procedure known as pansharpening [15, 39].

Since the launch of Sputnik 1 in 1957 and the capture of the first image by Explorer 6 in

1959, satellite technology has profoundly enhanced Earth observation capabilities [112].

Today, various satellites serve various purposes, including scientific research, meteorol-

ogy, and imaging [110, 112]. As a result, there is an ever-increasing amount of data in

the environmental sciences and cartography, which may contain archaeological informa-

tion [108, 111].

Raster and Vector
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Satellite imagery can be found in di↵erent catalogues maintained by major agencies

and regional Earth observation initiatives like the European Space Agency (ESA) [113],

the National Aeronautics and Space Administration (NASA) [114], and the United States

Geological Survey (USGS) [115]. Additionally, platforms such as Google Earth o↵er

interactive satellite imagery through an intuitive interface, enhancing exploration and

visualization [7]. This platform is widely used for applications such as archaeological

site detection, landscape analysis, and monitoring changes [48, 32, 47, 49]. While its

accessibility and ease of use make it popular among both casual users and professionals,

Google Earth has limitations for large-scale quantitative research due to inconsistent

image quality, lack of metadata, inadequate measurement capabilities (e.g., the spectral

analysis), and limited analytical tools [48].

The satellite imagery is typically stored as raster data and can be integrated with

vector data [30]. Raster and vector datasets are two geospatial data types [116, 111].

Raster data consists of grid cells (or pixels), such as satellite images [106]. In contrast,

vector data comprises distinct geometric entities representing discrete objects from the

real world with high spatial determination, such as rivers, elevations, soil types, and

archaeological monuments. This representation provides a compact representation of real-

world features within Geographic Information Systems (GIS) [117]. In this, geographic

features are illustrated using one of three types of geometries: (i) points, which depict

individual geographic locations; (ii) lines, used for linear features such as rivers; and

(iii) polygons, which describe enclosed areas like islands [116]. Each geometric entity

can store associated attributes, providing detailed descriptive information about spatial

features. This data type o↵ers advantages such as lower data volumes, improved spatial

resolution, and the preservation of topological relationships, which enhance the e�ciency

of operations like network analysis [111].

Various platforms and agencies create and provide access to digital vector data. At

the national, regional, or local level, the national agencies responsible can make vector

maps available. These maps generally provide more granular information about specific

areas, though the level of detail may vary depending on the mapping project’s region,

scale, and purpose. For instance in Portugal, the Sistema Nacional de Informação de

Ambiente (SNIAmb) [118] and the Sistema Nacional de Informação de Recursos Hı́dricos

(SNIRH) [119] o↵er hydrographic data, while the Direção-Geral do Território (DGT) [120]

and Direção-Geral de Agricultura e Desenvolvimento Rural (DGADR) [3] provide carto-

graphic information on land use and land cover. Most of these cartographic datasets

can be accessed through the online portal of the Sistema Nacional de Informação Ge-

ográfica (SNIG) [121]. It allows users to share, search, and access geographical informa-

tion produced by both public and private entities in Portugal. Many of the datasets on

this platform are available for public access without restrictions under the CC-BY-4.0
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license. Other platforms, such as the Sistema de Monitorização da Ocupação de So-

los (SMOS) [122] – e.g. viSMOS, COScid, and COSvgi portal provide a quick and easy

way to view VTMs from DGT and satellite images.

The general mapping methodology consists of a systematic interpretation, fieldwork,

image analysis, and map preparation. It emphasizes the integration of Remote Sensing

Images (RSI) with ground observations to ensure accurate mapping [123]. This approach

can generate vector maps reflecting the real-world conditions and features of the mapped

area. These maps contain fine-granule details and quantitative representation of the

Earth’s surface and its natural and artificial features. On such a map, the features are

labelled, and they integrate multiple elements (e.g., features di↵erentiated by colour and

symbols, labels for feature names, and contour lines showing the terrain changes) to

provide a comprehensive view of the terrain [54].
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CHAPTER 3

Literature Review

3.1. Introduction

In archaeology, the identification of monuments involves inspection, which includes intru-

sive (e.g., ground surveys) and non-intrusive prospection approaches (e.g., remote sensing

techniques like image analysis) to find and study archaeological monuments [124]. Image

interpretation is one of the methods used to extract information from Remote Sensing

Images (RSI) [123].

The increasing availability of satellite imagery has created overwhelming data for

manual image interpretation [125, 126]. However, modern land use practices and natural

changes over time are altering landscapes [89, 50]. While many archaeological sites have

been identified, others remain undiscovered and risk disappearing due to natural decay or

human activity [34]. These challenges have rendered traditional manual image analysis

methods insu�cient. In response, automated classification systems are being implemented

to accelerate data analysis and archaeological discovery, aiding in the protection of these

sites [19, 40, 20, 23, 49, 31, 24, 43, 35, 33, 16, 42, 30, 34, 32, 50, 29, 36, 46].

Despite the progress made with automated approaches, there is still a wide gap be-

tween humans and machines regarding learning. Automated approaches can find patterns

using training data. Nevertheless, those approaches are not taking advantage of the vast

amount of existent background knowledge [127]. Since images are reflections of the world,

exploiting background knowledge can be helpful and enrich image interpretation [127].

Integrating knowledge systems with data-driven approaches to add context to scenes via

semantic networks has been considered a promising direction to explore [128, 6, 129].

In this chapter, we analyse two distinct lines of research: one focused on object detec-

tion methods for identifying monuments in RSI (3.2), and the other on using a Knowledge

Graph (KG) to represent and contextualize the existing information on the monuments

targeted for detection (3.3). There is extensive research in each of these areas, but com-

bining KGs with object detection is, as far as we know, a more recent development and,

we believe, with limited application in archaeology.

For describing the state of the art in this thematic, a literature search was conducted

using Scopus and Google Scholar, with keywords such as: ”knowledge graph” AND ”se-

mantic” AND ”image” AND ”contextualization” AND ”archaeology” AND ”site” along

with terms related to ”machine learning” OR ”remote sensing” OR ”scene understand-

ing”. We then broadened our search to include references cited by the authors in the

identified papers, ensuring a comprehensive exploration of the relevant literature.
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3.2. Archaeological Object Detection Methods

Object detection is a computer vision task that involves identifying and localizing specific

objects within an image [130]. Typically, algorithms identify the objects of interest, draw

bounding boxes around them, and classify them into categories. The primary goal of using

automated methods to recognize archaeological sites in RSI is to reduce manual labour,

standardize analysis processes through replicable workflows, and increase the likelihood of

successfully detecting archaeological sites in large areas [30, 24]. The focus is on developing

techniques that enable machines to analyze and interpret visual data.

Object detection approaches are fundamentally data-based and often focus solely on

the visible traces of extant or subsurface structural remains [127], relying heavily on the

quality and quantity of the data as input to perform accurate recognition and classifi-

cation [23, 16]. The classification is based on initial knowledge, statistical information,

patterns, or a combination of these [11]. The most common approaches include pixel-

based [131, 38, 45, 39, 47, 23, 49, 43, 35, 33, 16, 42, 32, 132, 37] and Object-Based Image

Analysis (OBIA) [22, 38, 40, 46, 36, 20, 21, 31, 24, 29, 30, 50].

Pixel-based approaches involve assigning each pixel, or group of pixels, to a specific

target class based on their values [123]. These methods rely on the separability of classes

and establish relationships between pixel attributes to form relevant features for clas-

sification [11]. These techniques e↵ectively distinguish objects based on di↵erences in

reflectance between the pixels corresponding to the target object and those of the back-

ground [35, 45]. However, pixel-based analysis often performs poorly in heterogeneous

environments with mixed vegetation and soil contrasts [133, 38]. Low contrast between

archaeological features and the background may be responsible for this, as well as image

noise [134, 47, 43].

In contrast, OBIA starts with image segmentation, which groups pixels into meaningful

objects rather than classifying individual pixels [6, 33]. OBIA incorporates additional

components such as nearest neighbour classifiers, expert knowledge, and feature space

optimization [135, 136]. This method considers shape, texture, and morphology, bridging

the pixel world with the vector world [125, 33]. Both pixel-based and OBIA methods

have proven successful in archaeological applications, each o↵ering unique advantages

depending on the specific requirements of the analysis.

The rapid advancements in Remote Sensing (RS) technologies and computer vision

have significantly enhanced the potential for automated detection and classification of

archaeological sites above or below ground level [137, 38]. According to Cheng and Han

(2016), data-based approaches for object detection in remote sensing images can be classi-

fied into five main categories: Template Matching (TM), OBIA, Machine Learning (ML),

Deep Learning (DL) and Knowledge-Based (KB) [138]. Table 3.1 presents the method-

ologies used for detecting archaeological monuments, as well as the data types and target

objects identified in each case. It’s important to note that these methods are not mutually

exclusive. In fact, combining di↵erent techniques within the same project can enhance
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outcomes and help determine the most e↵ective approach for each specific case [40, 31].

For example, OBIA has been used together with ML [40] or TM methods [31], with

promising results. These five main categories are detailed in the following subsections.

Ref Methodology Data Goal
[131] MV + ML/RF (PB) STRM/SI Identify Mounds (tells)
[22] TM (OB) LIDAR Identify Burial Mounds
[38] ED + KNN (PB/OB) SI Identify archaeological features
[45] TM (PB) SI Identify Burial Mounds
[39] ML/k means (PB) GE Identify looted areas
[47] TM/CHT (PB) GE Identify tops of qanat shafts
[40] GEOBIA + ML (OB) SI Identify buried remains
[46] DL/CNN (OB) SI/Aerial Identify ruins of enclosures
[36] Sup/Uns ML (OB) - HCAL SI Identify damage in sites
[20] GEOBIA (OB) LIDAR Identify Barrows
[23] ML/RF (PB) LIDAR Identify burial mounds
[49] DL/CNN (PB) GE Identify Barrows
[21] GEOBIA (OB) LIDAR Identify Barrows
[31] GEOBIA + TM (OB) LIDAR Identify Mounds and shell rings
[24] DL/R-CNN + CS (OB) LIDAR Identify hitherto unknown sites
[43] ML/SVM:RF (PB) SI Identify farm communities sites
[35] TCT + PCA Matching (PB) SI Identify Buried remains
[33] HBE+ML/SVM+OBIA (PB) SI Predict cultural deposit location
[16] DL/CNN (PB) SI Identify qanats
[42] ML/RF (PB) SI Identify Mounds
[29] DL/R-CNN (OB) LIDAR Identify various sites
[30] DL/R-CNN (OB) LIDAR Identify hollow roads
[32] PCA/LISA (PB) SI Identify ancient roads
[50] HDBSCAN + PCA Bing Identify funerary monuments

Table 3.1. Methodology, data, and goals for RSI-based identification of archaeological
monuments a

aAbbreviations: i) Methodology: CHT (Circular Hough Transform), CS (Citi-
zen Science); ED (Edge Detection); HCAL (Hierarchical Categorization And Lo-
calization); HBE (Theoretical Model From Human Behavioral Ecology); HDB-
SCAN (Hierarchical Density-Based Spatial Clustering Of Applications With Noise);
KNN (K-Nearest Neighbours); LDA (Linear Discriminant Analysis); ML (Ma-
chine Learning); MV (Morphometrical Variables); OB (Object-Based); PB (Pixel-
Based); PCA (Principal Components Analysis); RF (Random Forest); Sup (Su-
pervised); SVM (Support Vector Machine); TCT (Tasselled Cap Transforma-
tion); TM (Template Matching); Uns (Unsupervised). ii) Data: LIDAR
(Light Detection And Ranging); SI (Satellite Imagery), GE (Google Earth).

3.2.1. Template Matching

In object detection, TM, is a straightforward and widely used technique in computer

vision, particularly e↵ective in archaeology, when monuments have distinct geometric
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shapes like circles or rectangles, which are rare in natural landscapes [138, 24]. This

method involves creating a template of the target object, manually or from existing data,

and searching for it across an image by adjusting the template’s orientation and position.

Its simplicity and e↵ectiveness in detecting consistently shaped objects make it a valuable

tool for automated archaeological site detection [22, 45, 25, 26, 31].

Despite its advantages, template matching can struggle with variability and complexity

in real-world environments. Variations in shape, size, orientation, and factors like noise

and overlapping features can complicate accurate detection [138, 24].

3.2.2. Object-Based Image Analysis

Unlike TM, which focuses on detecting predefined shapes within images, OBIA involves

segmenting images into meaningful objects or regions, allowing for the analysis of com-

plex and variable object features. When specifically applied to geographic data, this

technique is referred to as Geographic Object-Based Image Analysis (GEOBIA) [139].

Since the early 21st century, GEOBIA has gained popularity, leading to the development

of numerous applications and methods [6]. This approach leverages object-based meth-

ods in various subfields, such as feature extraction, often in combination with statistical

algorithms, to achieve good detection results [20, 40, 31].

3.2.3. Machine Learning

Object detection approaches using ML are becoming increasingly popular, treating it as

a classification problem to improve analysis and data management. These methods can

be divided into supervised and unsupervised techniques [140, 141].

In supervised approaches, features are selected from labelled data to train a model us-

ing domain expertise to fine-tune a learning algorithm. This allows for precise recognition

of objects within a defined feature space [142]. In contrast, unsupervised ML explores un-

labelled data to identify patterns and group similar objects, usually employing clustering

methods. Unlike supervised methods, unsupervised approaches do not require predefined

classes, making them helpful in discovering unknown relationships and needing less prior

data [11, 40, 36]. Supervised learning is typically preferred for satellite data analysis,

where the goal is to detect specific objects, among many other features.

3.2.4. Deep Learning

Recent developments in object recognition include Deep Learning methods, a subset of

ML, which has advanced the field by providing more precise results [143]. Deep learn-

ing uses artificial neural networks to perform complex computations on large datasets,

enabling machines to learn patterns and features from examples. These networks are

composed of artificial ’neurons’ organized into layers: input, hidden, and output [144].

Popular DL algorithms includes Multilayer Perceptron (MLP) and Convolutional Neural

Networks (CNN)s [143]. The latest applications of DL for detecting archaeological sites

in RSI often involve CNNs combined with other methods [49, 24, 27, 46, 140, 16, 29, 30].
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CNNs are particularly popular in image classification. This task becomes increas-

ingly complex when an image contains numerous objects, such as in satellite images.

This leads to challenges such as occlusion, where objects obscure one another, target

blur, which involves a loss of clarity in objects, and issues related to rotation, scale, and

complex backgrounds. Additionally, there can be occlusions between objects and their

backgrounds [54].

A CNN encapsulates two main stages: feature extraction and classification. In feature

extraction, convolutional layers apply filters (kernels) to the input image to detect pat-

terns such as edges and textures. Pooling layers follow, reducing the size of the extract

feature maps while retaining the most relevant information, typically using max pooling.

In classification, fully connected layers learn to map the extracted features to class labels,

often using a softmax function, allowing CNNs to generalize from labelled data [143, 144].

Learning occurs by adjusting connection weights employing techniques like backpropaga-

tion scores based on the error between predicted and actual outputs [143].

The CNN architectures can be classified into single-stage and two-stage detectors [145].

Single-stage detectors, such as You Only Look Once (YOLO), streamline the detection

process by predicting class labels and bounding boxes in one step, resulting in faster

performance but often with reduced precision [145, 146]. On the other hand, two-stage

detectors, including Faster Region-Based Convolutional Neural Networks (R-CNN), em-

ploy a more complex approach by first proposing regions of interest through a Region

Proposal Network (RPN) and then classifying these regions and refining the bounding

boxes in a second stage to detect objects [147, 130, 146]. This method achieves higher

performance and less False Positives (FP)s, making it particularly e↵ective in detecting

archaeological features in RSI [19, 24, 30, 29].

Various studies have demonstrated the e↵ectiveness of CNNs in archaeological detec-

tion, showcasing their strengths and limitations [24, 46, 27, 45, 28, 19]. However, a key

critique of these models is their ”black-box” nature, where outputs are di�cult to inter-

pret, and they often require large amounts of labelled data to perform well [129]. This is

particularly challenging in cultural heritage, where training samples are frequently lim-

ited [148, 30, 149]. Strategies like transfer learning [143], and data augmentation are

commonly employed to reduce the need for extensive labelled data and extend the use of

DL to fields previously constrained by smaller datasets [108, 16].

However, these techniques do not address the challenge of explainability in model

outputs. Semantic technologies o↵er a promising solution for enhancing the understand-

ability and interpretability of results, providing human-understandable insights into how

specific outcomes are achieved [60].

3.2.5. Knowledge-Based systems

“A holy grail of computer vision is the complete understanding of visual scenes: a model

that is able to name and detect objects, describe their attributes, and recognize their re-

lationships” [ 150, p. 34]. Consequently, di↵erent approaches focus on adding semantic
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information to data-based object recognition systems in RSI [150, 151, 152], namely for

object-detection-based approaches. Incorporating contextual and semantic knowledge

into these processes can improve object detection by considering complex relationships

between observed properties [127, 153].

Classification/detection using knowledge concerns on how information is represented

and formalized to be integrated with data-driven approaches [128], thus combining the

strengths of knowledge-based and data-based methods [154]. It also works as a bridge

where knowledge o↵ers explainability in these models [60]. This integration aims to im-

prove the interpretation of results and performance in handling complex tasks [60, 155].

The goal is to use context to enhance the interpretation of the detection of objects by

traditional object detection methods, that typically return a bounding box that indi-

cates candidate objects within an image. Knowledge-based models leverage this output

by mapping detected objects to corresponding nodes in a scene graph — a structured

representation that captures the semantic and spatial relationships between objects and

their attributes within the scene — integrating object detection with relevant contextual

data [156, 157], thus integrating high-level semantic information with low-level numerical

data from images [33, 139].

In knowledge-based object detection methods for RSI, Cheng & Han (2016) high-

light the use of geometric and contextual information, widely used as prior knowledge.

These approaches generally translate object detection into a hypotheses-testing problem

by establishing various knowledge sets and rules [138]. Rule-based knowledge represen-

tation is a method that articulates knowledge and features through structured ”if-then”

statements. They rely on predefined patterns or fixed knowledge that require specialist

interpretation, who then convert them into rules or guidelines for analysis. Experts fre-

quently encode their visual perceptions into symbolic classification rules. However, this

knowledge remains mainly implicit as it is often applied directly based on trial and error

or domain expertise, that is, without formalization [128, 55].

A variety of approaches have been developed to add semantic information to data-

based object recognition systems [150, 151, 152], with these hybrid approaches presenting

promising developments for remote sensing and archaeology [128, 6, 129]. This is suitable

for expressing relational knowledge, associating concepts with entities and facilitating in-

formation sharing through standardized vocabulary and semantics [158, 129]. Given that

knowledge represented through ontology’s and KGs is a recent trend in semantic net-

works [129], their application to contextualize scenes in remote sensing is also an emerg-

ing approach. Di↵erent hybrid approaches combine KG-ML techniques to improve the

recognition of objects/Areas of Interest (AOI) in satellite images [159, 160, 161, 152, 162].

Other authors are using hybrid approaches for Visual Question Answering (VQA), eX-

plainable Artificial Intelligence (XAI) [60, 17], information retrieval [159], Semantic Image

Contextualization (SIC) (semantic Referee [160]), semantic image classification [163, 162],

semantic segmentation [152], and land use/cover [164].
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Building on these approaches, using semantic knowledge with object-based image anal-

ysis can enhance decision-making by integrating relevant background information and

situational factors, refining object detection processes. This type of model provides infor-

mation, although abstract, that can help contextualize scenes [127]. However, to the best

of our knowledge, KG-ML approaches have not yet been used to provide context to RSI

for archaeological object detection.

3.2.6. Considerations

Data-based approaches — TM, OBIA, ML, and DL — share processes, including fea-

ture extraction, pattern recognition, and classification, and transform higher-dimensional

vector spaces into lower-dimensional vector spaces [165]. Feature extraction involves iden-

tifying and isolating relevant information from images [11]. Pattern recognition is a set

of techniques that makes use of ‘feature extraction, discriminant analysis, principal com-

ponent analysis, cluster analysis, neural networks and image processing to search for data

with a set of predefined characteristics’ [22, p.245] [144]. Classification then assigns ob-

jects to specific categories based on their extracted features and recognized patterns [143].

Automatic approaches for detecting archaeological monuments from RSI began over

30 years ago. However, they saw a decline in research interest until recent advancements in

computational power and improvements in aerial and satellite imagery quality revitalized

the field [166]. Since the early 21st century, automation in archaeological detection has

achieved significant success, with new methods, particularly those based on ML and DL,

greatly enhancing the precision and e�ciency of identifying archaeological features [39,

40, 36, 23, 43, 42, 46, 49, 24, 16, 29]. It is fair to say that computer vision systems are

being driven by enhanced computer processing power. Together with increasing image

resolution levels (either spatial, spectral, radiometric, or temporal) and faster availability

of data, technological advances are ensuring greater use and acceptance of automation in

image analysis [167, 14].

Despite successful applications, most of the object-based archaeological site detection

research has focused on relatively simple and uniform structures, as highlighted in [166, 6].

Researchers have focused on using these methods for recognition based on geometric

features such as circular shapes [131, 22, 45, 47, 39, 39, 20, 23, 49, 31, 16, 29, 50] to

identify structures like mounds [131, 22, 45, 47, 20, 23, 49, 31, 24, 42, 42, 29], linear

shapes [38, 39, 40, 46, 30] or rectangular [40, 46] to detect features such as roads [30, 32]

and walls [38, 39, 40, 46], and other patterns to recognize landmarks and significant

terrain features [43, 35, 33, 42]. Sites such as mounds are generally easier to detect

because they exhibit consistent features and can be defined with a limited set of descriptors

and parameters (e.g., those presenting a circular, standardized pattern with dimensions

�5m diameter) [6]. However, automated approaches usually return a high number of

FPs [30, 19, 16, 97]. Barrows, in particular, are detected with a degree of uncertainty,

and their identification is only considered accurate after reviewing common FP associated

with manual and automated detection methods [21, 20]. The manual evaluation of data
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returned by these approaches is highly time-consuming, limiting the amount of test data

that can be thoroughly analysed [168].

In satellite imagery, detecting small objects is particularly challenging due to low pixel

resolution, which can lead to a loss of critical details that make it di�cult to distinguish

these objects from the background [146]. Furthermore, the large scale of these images,

often consisting of hundreds of millions of pixels, complicates the task of separating the

target from the background in complex terrains [46, 108, 146]. Other factors can hinder

recognition, notably the characteristics of the site itself, such as the monument’s size, its

state of preservation [21, 23] and resolution/scale/time of the dataset used [23, 40]. These

factors complicate feature extraction and parameter selection, making it challenging for

automated systems to recognize ancient sites.

Detecting small-scale cultural heritage sites, such as tombs in RSI, is even more di�-

cult, specially when the construction material of the structure matches the surrounding

landscape [20, 6]. Their spectral similarity to surrounding imagery, combined with erosion

and collapse over time, indicates that new methods are needed to e↵ectively detect these

objects that blend into their environment.

3.3. Knowledge Bases in Archaeology

Data-based approaches focus on recognizing visual features without considering whether

the found solution is semantically correct or leveraging the semantic advantages associ-

ated with geo-data [129]. For example, neural-based algorithms are trained by adjusting

model parameters to minimize a cost function over the data [143]. These models excel

in perceptual tasks, such as image classification, but often struggle with more complex

cognitive tasks, like understanding and interpreting the deeper meaning or relationships

within an image [24]. These cognitive tasks involve reasoning, not just recognition. To be

successful at cognitive tasks, models need to understand how objects interact and relate

to one another [128, 150].

In contrast, KB approaches address this limitation by using or integrating feature

information, namely details on the characteristics of the objects to be found or on the site

where they are located. In literature, structured rule-based interactions are often used.

These approaches leverage information such as spectral features (e.g., spectral indices)

and environmental knowledge (e.g., precipitation, temperature, topographical features,

phenological stages) to inform model decisions [46, 33]. Rule-based approaches are one of

the simplest forms of machine-understandable expressions [129], by which domain-specific

knowledge is represented in the form of rules.

Conversely, knowledge-driven approaches based on semantic networks to interpret RSI

are considered one of the most promising directions [128, 6, 129]. A well-structured se-

mantic database is essential for hybrid approaches to provide context to images. As
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indicated by [129], compared with rule-based systems, semantic networks excel in con-

structing organic relationships between complex entities and characterizing spatial distri-

bution and relationships. Ontologies and KGs are modern implementations of semantic

networks [129].

As noted by Magnini et al. (2019) [6], there is a growing urgency in establishing

standardized methods for publishing semantic networks that can be semi-automatically

or automatically applied in archaeological investigations. They proposed a theoretical

ontology-based framework to formalize expert archaeological knowledge. Their approach

introduced the Diachronic Semantic Model (DhSM), designed to explain long-term land-

scape evolution and applied it to a data-driven approach using OBIA for archaeological

predictive modelling, incorporating DEM-based techniques to identify areas for human

occupation and territorial control based on info such as slope, local dominance, and so-

lar radiation [6]. This example highlights how landscape information can be valuable.

However, the use of semantic approaches to support object detection in satellite data,

particularly in archaeology, is still in its infancy, emphasizing the need for well-structured

semantic models.

A domain knowledge component for the interpretation of an image can include (i)

the real-world instances, consisting of tangible entities (e.g., barrow X, castle Y, etc.);

(ii) the conceptual domain, which represents these entities based on expert knowledge;

(iii) the digital domain, associated with the virtual representation of the instances; and

(iv) the spatiotemporal domain, indicating the chronological depth inextricably linked to

archaeological research [6] (see Figure 3.1). This involves knowing the structural details

of the archaeological sites as well as their relationship with the environment.

Figure 3.1. Graphic presentation of the features to be represented.
(Source: [6, p.14])

However, data with archaeological and environmental information to be used as do-

main knowledge are kept by di↵erent communities and institutions and these entities em-

ploy conceptualizations and formal definitions that usually do not match [57, 169]. There
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has been a traditional division in the management of data about archaeological mon-

uments. Archaeological data, typically overseen by cultural heritage institutions, often

emphasizes descriptive and interpretative information. On the other hand, geoinforma-

tion has been primarily handled through Geographic Information Systems (GIS), focusing

on visual and spatial representation rather than detailed semantic content [57]. This sep-

aration is mirrored in the various standards for information representation: Geospatial

Consortium (OGC)’s GeoSPARQL [58] — a well-established ontology for representing

geoinformation — while CIDOC-CRM [59] (ISO 2117:2023) is a well-established ontology

recognized as an o�cial ISO standard for representing cultural heritage data. When these

standards are applied together, they have the potential to significantly enrich Cultural

Heritage (CH) data by providing precise descriptions of both the site locations and the

geometries [57].

Semantic networks are a widely used formalism for the representation of knowledge in

archaeology and RS [129, 128]. In the geospatial domains, various Geospatial Knowledge

Graphs (GeoKGs) [170] were implemented, such as GeoLink [171], Geonames [172], Ge-

oGraphVis [173], KnowWhereGraph [174], DBpedia [175], Yago2geo [176], Wikidata [177],

Event KG [178] and GeoKG [179]. In general, the KGs with geographic information such

as DBpedia, YAGO, and Wikidata focus mainly on entity-centric information and may not

o↵er the same level of granularity as national/local Vector Topographic Maps (VTM)s,

particularly regarding detailed landscape features and local context. Others focus on

solving specific problems, for instance, constructing models and applying them to disas-

ter preparedness and resilience [173, 174].

One notable application using KGs in RSI is narrative cartography, which integrates

event-based spatial information to provide semantic context for scenes in a given tempo-

ral space [180, 116]. Mai et al. (2022) highlight several advantages of using knowledge

graphs for narrative cartography, including improved data acquisition, integration, and

semantic content management. Despite these benefits, the use of semantic web technolo-

gies for geo-visualization remains underexplored [180]. In some studies, we find KGs, such

as LinkedGeoData [181], WorldKG [154] and GeoKG [154], converting OpenStreetMap

(OSM) data into an Resource Description Framework (RDF) KG. Others are extracting

information from VTMs as historical maps and representing them as spatial-temporal

KGs [116]. Semantic representations of vector maps as a KG present inherent challenges

due to the large, heterogeneous, and ambiguous schema, and several recent projects are

addressing this issue [154, 180, 116, 182, 183].

Rather than focusing on ’Relationships’, a cartographic map focuses primarily on

’Entities’, where each entity is explicitly defined by its location, geometry, and semantics

descriptions [182]. Identifying and partitioning vector data into interconnected geospatial

entities — referred to as ”building block” geometries — is fundamental for capturing ge-

ographic features from vector maps and representing them in a liked way. This approach

enables a detailed and e�cient representation of features such as railway networks or
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wetlands [116]. The process involves tasks like partitioning and entity matching and can

be enhanced through schema matching, ontology alignment, and data exchange. Schema

matching involves aligning constituent elements of di↵erent relational schemas, such as

attributes and relation names. Ontology matching focuses on aligning classes and proper-

ties, while data exchange requires complex mapping specifications to transfer data between

source and target schemas. In this context, a direct concept attribute maps a database

column to a concept attribute, also known as a data property or schema entity [184].

Knowledge-based methods for RS data still need standards for storing information to

deal with the data flow that is constantly generated [128]. The lack of standardization

in terms of collection, storage and interpretation, and the data dispersion, inconsistency

and inaccuracy are reasons cited as restricting the use of automated approaches in this

field [185, 42]. In archaeology, di↵erent organizations have been concerned about data

storage methods and management, forming partnerships at both national and local levels

to create a comprehensive database for data collection and storage [186]. For example, var-

ious national archives (e.g., the Direção-Geral do Património Cultural (DGPC), Sistema

de Informação para o Património Arquitetónico (SIPA)) and international archives (such

as UNESCO and ICOMOS) present information on archaeological monuments. However,

there is no consistency standard for how data is organized and modelled, nor is there a

single, centralized database that contains all the data in one place.

To address these challenges, several projects are underway to enhance interoperability

among diverse databases [187, 188]. Initiatives such as ARCHES, an open-source infor-

mation system for heritage inventory and management [189], ARIADNE (Advanced Re-

search Infrastructure for Archaeological Dataset Networking in Europe), which integrates

diverse archaeological datasets to enhance research through unified access and advanced

technologies [190] that was expanded as ARIADNE Plus to include other public organiza-

tions which includes DGPC in Portugal, STAR (Semantic Technologies for Archaeological

Research), which achieved semantic interoperability among archaeological datasets [191],

OpenArchaeo which is a tool designed to query archaeological datasets in the Linked Open

Data cloud [192], EPISA [187], a project that migrates data from the National Archive

of Torre do Tombo to a relational database model [188], ArCo KG of Italian CH [96] and

CARARE [193] connecting archaeology and architecture. These projects provide digital

infrastructure for research data by creating interoperable datasets and representing the

datasets in a linked way, providing information on both a semantic level (e.g., descriptions

and interpretations) and a graphical level (e.g., photos and drawings).

Many of the semantic network representations for archaeology are compatible with

CIDOC-Conceptual Reference Model (CRM) [189, 190, 191, 192, 187, 194, 188, 96, 155,

195, 196, 197, 198, 199, 200, 193, 201]. There is an extensive body of literature demonstrat-

ing the benefits of the CIDOC-CRM in representing building and architectural heritage in

archaeology [189, 202, 200, 193, 201, 169]. For instance, Hansen & Fernie (2010) describe

the CARARE metadata schema, which focuses on the record of a detailed description
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of heritage, events, and digital resources [193]. Carlisle et al. (2013) highlight the bene-

fits of incorporating CIDOC-CRM standards into the design of Arches [189]. Ronzino et

al. (2016) present CRMba, an extension of CIDOC-CRM for encoding metadata about

archaeological building documentation [203]. Gergatsoulis et al. (2022) utilize CRM and

CRMba to represent archaeological buildings based on fieldwork data, including records,

provenance, and images [200]. Santos et al. (2022) focus on representing megalithic mon-

uments at a granular structural level using CRM [201]. Ranjgar et al. (2022) develop

a Point of Interest (POI)s-based data model for Iranian heritage sites by integrating

CIDOC-CRM with GeoSPARQL to merge spatial semantics with heritage information,

enabling users to explore and utilize location-based services and applications [169].

The CIDOC-CRM and its extensions have been successfully applied to represent ar-

chaeological sites instances [96, 169] in a granular way [201, 200, 189, 204]. Some ap-

proaches focus on retrieving information [169, 204]. Others focus on represent spatial

data [169] focusing on topological spatial relations [204, 197, 155, 205]. In this case,

”internal spatial relations” are explored, which refer to interactions among the struc-

ture (e.g., walls with cave roofs) [204] or between the finds in the structure [197]. Most

research utilized SQL [189] or NoSQL models, often employing the RDF and Web Ontol-

ogy Language (OWL) [155, 201, 169, 198], with few of these studies using Native Graph

Database (NGDB) to create KGs based on CIDOC-CRMs [197, 204].

3.3.1. Considerations

To the best of our knowledge, there are only a few approaches that integrate CIDOC-

CRM with ML [206, 168, 205, 199]. Even fewer apply semantic networks to contextualize

images [205] and improve data-based object detection [148, 168]. Ontologies/KGs with

data-based approaches to provide explainability to imagery are being applied to retrieve

image information [168, 199], improve data-based object detection [148, 168], generate

training data [207] and VQA [208]. The usage of KG-ML models to deal with RSI has

been introduced recently and is seen as a good method for improving automatic detection

in archaeology [6].

Recently several ontologies have been developed. However, spatial and contextual

information seem to be discussed separately, as do archaeological and landscape data.

A scene involves a complex network of cultural and historical contexts that must be

integrated and interconnected to fully capture its significance and provide comprehensive

information [169]. This perspective aligns with Tobler’s first law of geography, which

states, “everything is related to everything else, but near things are more related than

distant things.” [209].

A remote sensing scene consists of features such as land covers (physical states) and

land uses (functional objects), which are closely linked [17, 152]. Objects in the to-

pographic space include both landscape and archaeological features. The geographical

features considered in RS information extraction are classified into spatial, physical, and

regional categories. Spatial knowledge encompasses spatial vision features (e.g. texture),

32



spatial geometry features (e.g. shape), spatial distribution (e.g. position) and spatial

relationship. Physical knowledge contains sensor information (e.g. imaging mode, sensor

performance), model (e.g. physical model), and spectral features (e.g. spectral index).

Regional knowledge includes temporal knowledge (e.g. land/use change) and environmen-

tal knowledge/features (e.g. topographical features) [129]. Although data and knowledge

about these elements exist, they are not always organized e↵ectively for integration and

utilization.

The domain knowledge of geographical features can be obtained from a variety of

sources (As presented in section 2.3). The composition of a scene can be derived from

semantic, raster and vector data. Pre-made o�cial regional VTMs containing landscape

data are a valuable resource because they already contain derived and processed infor-

mation, which saves time and e↵ort in extracting and interpreting raw data. These maps

provide immediate insights into features like land cover, vegetation, or topography and,

contain info on structures (entities) and descriptions (characterization of identified enti-

ties) [81]. The info is provided in a structured format which allows for easy information

extraction. On the other side, data from archaeological sites is often found in textual

or structured repositories. Although this contains valuable information, it can also be

incomplete and disjointed due to data incompatibilities and the subjectivity of scientific

observations [97]. This information is often fragmented, with separate knowledge repre-

sentation models dedicated either to landscape information or to archaeological heritage.

Furthermore, specific data about monuments and landscapes within a given region are

typically stored in isolated sources and are not always consistent.

Although there is data and information about a place, what is missing is the structured

integration of this information in a way that can be e↵ectively utilized to leverage KG-ML

models. Considering this, we wonder if combining these data into a semantic model could

make it interoperable for contextualizing scenes using machine learning methods.

3.4. Conclusion

Upon reviewing studies on automated approaches for recognizing archaeological sites

in RSI (Section 3.2), it became clear that most automatic methods being used are data-

driven. Additionally, they tend to return FP [21, 131, 45, 25, 27], particularly for complex

or small sites [21]. Knowledge-driven approaches that add domain knowledge to provide

context to RSI scenes via semantic networks have been considered an important direction

to explore together with data-driven approaches [128, 6, 129]. However, these approaches

remain largely unexplored in archaeology. Nevertheless, semantic networks are gaining

attention for their role in representing and standardizing information otherway dispersed

across various sources [210]. There are many ontologies available, as presented in Sec-

tion 3.3, but to fully leverage them for contextualizing scenes it is crucial to gather the

relevant data and information to populate the ontology and implement a model to deal

with this information at an instance level. However, data is often scattered, diverse, and

sometimes inaccessible, making it challenging to e↵ectively integrate and use.
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The di�culty in acquiring diverse datasets poses challenges in the analysis of archae-

ological sites and their surrounding environments. Data collected from various sources

often lack consistency, resulting in di↵erent interpretations of the information. Semantic

and geospatial data are essential for understanding archaeological and topological fea-

tures and their relationships. Together, these types of information can enhance domain

knowledge about the elements present in a location and help contextualize a scene. We

identified two issues: one regarding the di↵erent sources of information related to archae-

ological and topological features, and the other concerning both semantic and geospatial

data formats.

The representation of spatial and contextual knowledge as linked data is seen as

a promising approach. It has been applied to standardize, improve accessibility and

interoperability of data, and enhance the contextualization and interpretation of im-

ages [128, 182, 17]. Currently, di↵erent approaches are combining KG and ML techniques

to improve the recognition of objects/AOI in satellite images [159, 160, 161, 152, 162].

In these works, KGs are applied either at the beginning, to train the model, or at the

end to review and refine the results. Thus, KGs act as (1) a Reviewer - validating and

refining visual model outputs [160], (2) a Trainee - used to create semantic embeddings to

align them closely with visual embeddings [148], (3) Peer, which combines semantic and

visual data into a hybrid space for a comprehensive representation [34, 211, 161, 168, 212],

or (4) guide the visual recognition where the KG acts as a Trainer [133]. These diverse

roles are illustrated in Figure 3.2 and align with the categories defined by Monka et al.

(2022) [165]. Most of them, however, are used at the beginning of the process to aid in

training and model development, with no attention paid to using domain knowledge in

an automated way to validate outputs.

Although hybrid KG+ML approaches are being used [159, 160, 161, 152, 162], they

have not yet been used to provide context to RSI for archaeological object detection.

Knowing this, a promising direction would be to implement a KG that centralizes avail-

able information about the monuments and their surrounding landscape, encapsulating

domain knowledge in an interoperable format. This would allow machines to e↵ectively

access and utilize information that would otherwise remain scattered and disconnected.

To address the gap in archaeology, where semantic databases have not yet been utilized

to provide context for RSI scenes and improve object detection outputs, we aim to create

an interoperable semantic database. This database will consolidate dispersed information

about both the target objects and the AOI. The purpose is to implement aKG to pro-

vide contextual knowledge that can be used to refine and improve the object recognition

results. By incorporating this contextual information, we aim to train a model capable

of enhancing detection and evaluating whether the additional context improves overall

performance.
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Figure 3.2. Diagram showing the roles of knowledge graphs in object
detection: reviewer, peer, trainer, and trainee.
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CHAPTER 4

Dolmen Detection

4.1. Introduction

Dolmens are one of Portugal’s most representative prehistoric cultural features. Object

detection for recognizing these monuments in Remote Sensing Images (RSI) in the Iberian

Peninsula has already been performed. Specifically, in our study area (Section 2), we have

contributed with a sequence of three significant works related to image analysis for iden-

tifying dolmens. The first involved photo-interpretation, resulting in the recognition of

60 monuments within the regions of Mora and Arraiolos (Portugal) [18]. This was fol-

lowed by two distinct automated approaches, both using satellite images over the 60

recognized monuments identified in the previous work as a dataset to train models for

automatic monument detection. One was a pixel-based approach that used hyperspec-

tral, multispectral, and panchromatic images from ESA’s PROBA-1 and WorldView-2

(WV-2) satellites [37] and the other an object-based approach employing 8K resolution

Google Earth images [213]. In the first case, there were many False Positives (FP)s, while

the object detection-based model showed better performance, achieving an F1 score of

0.78 and a precision of 0.93 using Convolutional Neural Networks (CNN)s. The test set

consisted of 3 monuments. However, it’s important to note that as more images of the

terrain are analyzed, the number of false positives may increase, especially considering

that the surrounding landscape predominantly comprises the same material as our target

object.

The problem of false positives remains significant. Other research, such as the one

in [20], which used LIDAR data to detect megalithic monuments on the Iberian Peninsula,

also resulted in several FPs. Even using di↵erent types of data, identifying small-scale

prehistoric structures appears to be challenging and often results in false positives.

This chapter details our object detection approach for dolmens in satellite images for

this thesis. Given that the object-based approach in [213] showed good precision, despite

the small test set, we adopted it as our model and extended the tests. The focus is on

our study area (Pavia), where we will use the 16 identified dolmens within this area for

testing and the remaining 44, located in the surrounding areas, for training. Additionally,

we extended the analysis to use images with no monuments in or testing AOI to assess

the model’s performance and evaluate if the number of false detections is maintained.

The remainder of this chapter outlines the process for data gathering (Section 4.2),

dataset preparation (Section 4.3), and the proposed algorithm (Section 4.4). Subse-

quently, the implementation section describes how the algorithm was executed (Sec-

tion 4.5), and the results section presents the outcomes of the experiment (Section 4.6).
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4.2. Data gathering

Data for this study comes from previous photointerpretations that identified 60 dol-

mens from satellite images within the regions of Mora and Arraiolos (Portugal) [18]. These

dolmens are shown in Figure 4.1. Knowing the location of this targets objects, the images

were sourced from Google Earth at an 8K resolution, captured at a scale of 1:400 meters.

For each known archaeological monument, five images were obtained, each showcasing the

monument from di↵erent positions, resulting in a total of 300 images. An additional 70

images with non-archaeological monuments were collected.

Figure 4.1. Map of Portugal showing detailed regions of Mora and Ar-
raiolos on the right, with analyzed dolmens marked in red. The map was
created using VTMs [2, 5]

Since its launch in 2005, Google Earth has leveraged geospatial technology to deliver

precise location data based on latitude and longitude, allowing users to pinpoint specific

locations with ease. As a free and user-friendly platform, it supports the storage and

sharing of location data through KMZ files, which package multiple files into a single,

compressed format for easier distribution and quicker downloads [214]. Google Earth

Pro o↵ers high-resolution images in pan-sharpened format [213], which can be accessed at

various resolutions and from di↵erent time periods, making it a valuable tool for analysing

and visualizing geographic data.

Google Earth provides historical images of the region, spanning from 1995 to the

present. Since 2015, each year presents multiple timeframes within the year, varying in
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quality throughout the timeline. The quality of the images may not necessarily improve

over time but rather depends on which satellite took the photographs. For example,

images between 2013 and 2017, especially during August and September, show better

resolution four our Areas of Interest (AOI) (see Figure 4.2d). Studies have shown that

the optimal time of year for object detection in images is typically during the summer

or fall [35, 215]. We chose images from August 2017 because they provided the best

resolution and clarity among the available historical images.

(a) August 2011 (b) August 2017

(c) August 2018 (d) September 2023

Figure 4.2. All images from Google Earth are in 8k resolution and at a
scale of 1:400m. Credits: [7]

4.3. Dataset Preparation

After gathering the data, the process involved preparing the data for training, in-

cluding enhancing data quality, preprocessing, and model training. This was done using

Roboflow, which facilitated data preparation, enhancement, and preprocessing for model

training. Roboflow is a platform that simplifies the management of computer vision

datasets. The Workspace Image Search API o↵ers a robust and flexible mechanism for

searching and labelling images, and an extensive range of augmentation and preprocessing

options [216].

Labeling involves marking objects in images. Bounding boxes and polygons can be

used to annotate images [216]. A total of 300 images were organized and annotated with

binary labels to create the dataset for the project ”Dolmen” and ”non-dolmen”. dolmens

are a positive class, while images without dolmens are marked as null — to indicate the

absence of the object of interest.

Once the images were annotated, we enhanced and augmented the dataset. Pre-

processing steps involve preparing the data for model training by normalizing images,

39



resizing them, and ensuring consistency and quality. Image augmentation is a computer

vision technique that artificially increases the size and diversity of training datasets by

applying various transformations to the original images. These transformations introduce

variations that enhance the model’s ability to generalize and improve its robustness to

new data. Augmentation techniques, such as rotations, flips, and colour adjustments,

are essential for enhancing dataset diversity. For instance, cropping involves selecting a

portion of the image, with adjustable minimum and maximum ranges. Rotation allows

for rotating the entire image by a specified angle in degrees. Hue adjustment modifies

the colour hue by specifying degrees, while saturation adjustment changes the image’s

saturation level in percentage terms [216].

In the preprocessing stage, we applied the following Auto-Adjust Contrast to enhance

image quality through adaptive equalization. The auto adjust contrast feature enhances

low-contrast images by adjusting contrast based on Contrast Stretching 1, Histogram

Equalization 2 and Adaptive Equalization 3 — being this last one used in our dataset.

Augmenting training datasets artificially with a variety of transformations is a technique

in computer vision that increases training dataset size and diversity. Here, we experi-

mented with di↵erent parameters, including replicating the approach indicated in [213],

to determine the most e↵ective preprocessing and augmentation strategies.

To augment the dataset and improve the robustness of the model, we applied the fol-

lowing configurations, which yielded the best results, producing three outputs per training

example: Crop with 0% minimum zoom and 30% maximum zoom, Rotation between -

15° and +15°, Hue adjustment between -25° and +25°, Saturation adjustment between

-34% and +34%, and Brightness adjustment between -24% and +24%. In comparison,

the replicated approach used the following augmentations: Crop with 0% minimum zoom

and 62% maximum zoom, Rotation between -20° and +20°, Hue adjustment between -

35° and +35°, Saturation adjustment between -99% and +99%, Brightness adjustment

between -55% and +55%, and Bounding Box Exposure adjustment between -35% and

+35%. These resulted in a dataset with 943 images.

To properly evaluate the model’s performance, the dataset was divided into training,

validation, and test sets based on unique objects. The training set includes one annotation

file and 867 images (comprising 47 dolmens, or 73%, and 47 null images). The validation

set contains 44 images (with 4 dolmens, or 3%, and 14 null images) and one annotation

file. The test set consists of 32 images (16 dolmens, or 23%, and 8 null images). For the

test set, special attention was given to the 16 dolmens located in the AOI, allowing for a

targeted evaluation of the model’s performance in identifying these specific objects. This

1Contrast Stretching: Rescales the image to cover the full range of intensities between the 2nd and 98th
percentiles [216].
2Histogram Equalization: Distributes intensity values more evenly across the image, achieving a roughly
uniform pixel colour distribution [216].
3Adaptive Equalization: Contrast Limited Adaptive Histogram Equalization (CLAHE) enhances local
contrast by applying histograms to di↵erent regions of the image, improving details in both dark and
light [216]
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dataset was downloaded in the COCO format [216]. This set is referred to as Dataset 2,

and in addition to it, we also utilized the dataset from [213] — referred to as Dataset 1

— which consists of three test images.

4.4. Proposed Algorithm

Fast Region-Based Convolutional Neural Networks (R-CNN) enhances the two-stage de-

tection process by introducing a Region of Interest (RoI) pooling layer, which standardizes

the feature maps generated by the backbone network. The process starts with the Region

Proposal Network (RPN) identifying potential object regions. Fast R-CNN then classi-

fies these regions and refines their bounding boxes [130]. The entire image is initially

processed through convolutional layers to produce a feature map. The RoI pooling layer

extracts fixed-length feature vectors from the proposed regions, which are then fed into

two fully connected layers: one for box regression (reg) to adjust bounding boxes and

one for box classification (cls) to determine object categories [147]. The network out-

puts classification probabilities and bounding box adjustments, all optimized through an

end-to-end multi-task loss function that simultaneously addresses both classification and

regression tasks [130].

In training RPNs, the objective is to minimize various loss functions to improve model

performance [147]. Several metrics are used to evaluate this process. The Classification

Loss for RPN measures the log loss over two classes (object vs. not object), assessing

the precision of the RPN in classifying anchors as either objects or backgrounds. The

Regression Loss for RPN, evaluates the error in predicting bounding box coordinates

using a robust loss function to refine the predicted coordinates. The Box Regression

Loss measures the error in the final bounding box regression performed by the detection

network [147]. The Classification Loss for Detection Network evaluates the precision of

object classification within the proposed regions, computed as a log loss over class pre-

dictions for detected objects. These metrics are combined into a multi-task loss function

that optimizes both classification and regression objectives, ensuring e↵ective training of

both the RPN and the detection network [213].

4.5. Implementation

To implement the Faster R-CNN framework, we employed Detectron2 with two back-

bone networks, ResNet-101 and ResNet-50, and evaluated Dilated Convolutional Net-

work (DCN), configured using the COCO detection pre-trained weights. Additionally,

two training schedules, 1x and 3x, were used to explore their impact on detection perfor-

mance

The model was trained with a maximum of 5000 iterations, a base learning rate of

0.001, and an evaluation period of every 200 iterations. The dataset annotations were

visualized to ensure quality, and the output directory was organized dynamically based on

the training setup and timestamp. Batch sizes and the number of workers were adjusted
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to optimize for the available computational resources. Additionally, the mask format was

set to bitmask for compatibility with the dataset annotations

4.5.1. Training Performance

Various training sessions were conducted with di↵erent dataset configurations, involv-

ing changes to both the training and test sets. This approach focuses on the model’s

ability to correctly identify dolmens in the area of interest while also accounting for the

impact of dataset variations. To better understand the model’s performance, the training

metrics will be examined, as illustrated in Figures 4.3 – 4.4.

Figure 4.3 presents three graphs depicting the model’s performance over time: Classi-

fication Accuracy, False Negatives (FN), and Foreground Classification Accuracy. Classifi-

cation accuracy shows that after approximately 3,000 steps, it stabilizes near 1, indicating

that the model correctly classifies nearly all training samples, with minor fluctuations but

an overall high accuracy of around 0.9922 at the final measurement. The false negative

rate similarly approaches zero by about 2,000 steps and remains low throughout the train-

ing. Lastly, foreground classification accuracy stabilizes after approximately 2,000 steps,

reflecting the model’s e↵ective precision in detecting objects of interest.

Figure 4.3. Training metrics showing classification accuracy, false nega-
tives, and foreground classification accuracy

The evaluation of the model’s performance is reflected in several loss metrics. Figure

4.4a shows a low loss rpn loc value of 0.0009, indicating excellent performance in pre-

dicting bounding box coordinates. Figure 4.4b presents the loss box reg value of 0.1632,

which, while higher, still suggests reasonable accuracy in final bounding box regression.

Figure 4.4c highlights a very low loss rpn cls value of 0.0001, demonstrating high preci-

sion in classifying anchors as objects or backgrounds. Finally, Figure 4.4d shows a loss cls

value of 0.0091, indicating strong classification performance in detecting objects within

proposed regions.

Using Google Collab, each algorithm required approximately 2 hours to train for 5000

iterations or 40 min for 2000 interactions, aiming to minimize total loss and achieve the

optimal learning rate for each algorithm. The default GPU for Collab is an NVIDIA Tesla

K80 with 12GB of VRAM (Video Random-Access Memory).

42



(a) Location Loss in RPN. (b) Box Regression Loss.

(c) Classification loss in the RPN. (d) Classification Loss for detection.

Figure 4.4. Training metrics are shown: Location Loss for RPN (A), Box
Regression Loss (B), Classification Loss in the RPN (C), and Classification
Loss for the Detection Network (D).

4.5.2. Evaluation Metrics

When evaluating an object detection model, several key metrics are used to assess its

performance, depending on the application’s goals. The model’s performance is evaluated

by counting True Positives (TP)s, where the model correctly identifies and locates objects;

FPs, where the model incorrectly detects objects that aren’t present; FN, where the

model fails to detect objects that are present; and True Negatives (TN)s, where the

model correctly identifies the absence of objects. A confusion matrix provides a detailed

summary of these metrics. It presents TP, FP, FN, and TN in a tabular format, allowing

for a comprehensive view of the model’s performance across all categories [141].

These metrics are then used to calculate precision, recall, and F1 scores. Precision,

calculated as Precision = TP / (TP + FP), measures the proportion of true positive

predictions among all positive predictions made by the model. This metric reflects the

robustness of the model’s positive detections, accounting for both correctly identified
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objects (true positives) and incorrectly detected objects (false positives). Recall, given by

Recall = TP / (TP + FN), measures the proportion of true positives among all actual

positive instances, including both correctly identified objects (true positives) and those

that were missed (false negatives). This indicates how well the model detects all relevant

objects. The F1 Score, calculated as F1 Score = 2 * (Precision * Recall) / (Precision +

Recall), combines precision and recall into a single metric, balancing the trade-o↵ between

accuracy and completeness. It provides a comprehensive measure of performance, which

is especially useful for evaluating models on imbalanced datasets.

4.6. Results and Discussion

Various training and testing scenarios were conducted using the two Faster R-CNN mod-

els, R 50 DC 1x and R 50 DC 3x, to assess their performance. For the approach using

Dataset 1, the methodology closely followed [213], employing the same dataset and hy-

perparameters. In contrast, Dataset 2 expanded the test set from 3 to 16 dolmens and

increased the non-dolmen images from 2 to 8 in the test scenario while also adding non-

dolmen images to the training and validation steps. This expansion was designed to

test the model’s ability to recognize all dolmens within the Pavia area. Various tests

were conducted for each model and dataset combination. Across all training sessions, the

R 50 DC 1x architecture consistently outperformed its counterpart. Notably, the repli-

cated approach in Dataset 2 achieved better results, with an overall precision of 55.6%.

Based on these outcomes, the R 50 DC 1x model was selected as the preferred pipeline for

further analyses and prediction of new datasets. The results are presented in Table 4.2.

Algorithm Dataset Overall Precision
R 50 DC 1x Dataset 1 44.6%
R 50 DC 1x Dataset 2 55.6%
R 50 DC 3x Dataset 1 43.7%
R 50 DC 3x Dataset 2 51.5%

Table 4.2. Performance metrics (Overall Precision) for R 50 DC 1x and
R 50 DC 3x models across di↵erent datasets

The aggregated results are presented in the confusion matrix in Table 4.4. This ma-

trix reveals a high number of false positives (77) compared to true positives (46), with

nearly five false positives for each correct detection. Switching the dataset to include only

large and easily detectable monuments improves performance; however, the focus was

on detecting the dolmens of Pavia. While the model performs exceptionally well during

training, its performance on test data is less favourable. This discrepancy highlights the

challenges posed by the small size of the dataset. A limited dataset may not provide

su�cient information for e↵ective model training, leading to suboptimal performance and

di�culty reducing errors such as false positives.
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Classification True False
Positive 57% 43%
Negative 82% 17%

Table 4.4. Aggregated confusion matrix – dataset 2

The model demonstrated high performance in detecting monuments that are well-

preserved and located in areas with minimal rocky outcrops. For instance, Figures 4.5a

(Dolmen Adua 1) and 4.5b (Dolmen Antoes 3) illustrate successful detections of such mon-

uments, achieving precision between 95% and 100% — this is similar for other monuments

such as — Remendo 2, Goncala 2, Sao Miguel 4 and Anta Capela de S. Diniz.

(a) Dolmen Adua 1 – was recognized in all
tests with precision superior to 95%.

(b) Dolmen Antoes 3– was recognized in all
tests with precision superior to 95%.

Figure 4.5. The figures A and B show examples of monuments that are
consistently recognized.

Challenges arise when the environment includes rocky outcrops, as illustrated by Fig-

ures 4.6a (Dolmen Matalote 1) and 4.6b (Dolmen Casa Branca). Other examples occurred

with Cre 2. In such cases, the algorithm tends to generate a high number of false pos-

itives. This issue is particularly pronounced in areas with substantial granite outcrops,

which are characteristic of the Alentejo region.

When images with no dolmens were analyzed, especially in these rocky areas, the

model frequently returned false positives - exceeding 50% (Figure 4.7).

Conversely, the model has di�culty detecting monuments that are either covered by

vegetation, such as dolmen Lapeira 1 (4.8b), Adua 4 or in very poor condition, like

dolmen Tera 12 (4.8a), Adua 6, Alcarou de Baixo and Lapeira 2. In these situations, the

algorithm’s performance significantly declines, making e�cient detection challenging. The

presence of dense vegetation or advanced deterioration often results in missed detections

or a high rate of false negatives.

When applying the model to predict new dolmens in a new data set (prediction set)

with no dolmens, the number of false recognitions tends to increase, particularly in areas

with significant granite presence. This additional test included 100 images, of which

64 images returned FPs. This resulted in an increase of false detections, reflecting the
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(a) Dolmen Matalote 1 recognized in 60%
of the tests with precision above 85%.

(b) Dolmen Casa Branca 1 recog-
nized in most tests with high precision.

Figure 4.6. The figures show examples where monuments are present and
identified by the model but also include false positives.

(a) Image with no target object showing
false detections.

(b) Image with no target object showing
false detections.

Figure 4.7. The figures show examples where no monuments were present
but were incorrectly classified as such.

(a) Dolmen Tera 12. (b) Dolmen Lapeira 1.

Figure 4.8. The figures show examples where monuments are present but
were not identified by the model.

challenges posed by the rocky environments and the model’s tendency to misidentify

granite natural formations as dolmens. In the figure 4.9, a map is presented with the data

used in the area of interest; the green points indicate the ’dolmens’ in the test set, the red

points represent the ’non-dolmens’ set, which was divided into training and testing, and

the black points correspond to the new dataset that we used after training the model.

The nature of the landscape plays a crucial role in the visibility and analysis of ar-

chaeological features. Flat terrains, with their smooth and unbroken surfaces, provide
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Figure 4.9. Map displaying ’dolmens’ (green points), ’non-dolmens’ (red
points), and the new dataset (black points) used after model training.

an ideal backdrop for detecting these monuments. In these environments, the distinct

outlines and features of the monuments stand out clearly against the background, making

them more noticeable. In contrast, rugged and undulating terrains pose significant chal-

lenges due to variations in light, shadows, and potential camouflage e↵ects. These factors

can obscure or distort the visualization, making detection more di�cult. Furthermore, an

unobstructed view is essential for clear visualization. Elements such as dense vegetation,

debris, or other environmental obstructions can greatly reduce the recognition. Thus, ar-

eas with a clear line of sight to the dolmen’s structure are more favourable for successful

detection.

Archaeological features are generally more visible on exposed ground than in cultivated

fields or areas with irregular vegetation growth, which weather conditions can influence.

Notably, some traces become visible due to anomalies in vegetation, such as changes

caused by varying health states of plants. This phenomenon is especially evident during

winter under dry and rainless conditions [35].

47





CHAPTER 5

Knowledge Graph: Monuments and Landscapes

5.1. Introduction

There are many platforms and formats for presenting information and data about

cultural heritage and landscape. An image analyst can consult a variety of layers of Vec-

tor Topographic Maps (VTM)s to understand better the landscape and spatial relations

between the geographic objects and features on the surface. Additionally, contextual in-

formation about the target object is used to derive knowledge. This process is further

enriched by the specialist’s own experience and expertise.

According to previous studies, dolmens tend to be found in elevated areas, near water-

courses and rocky outcroppings and in regions with poor agricultural capacity [56, 69, 18].

In addition, these monuments tend to be spatially near similar monuments, and they are

more visible from the ground in rural areas with a flat surface and little overlap. While

domain knowledge of cultural heritage information can be derived from textual records,

these landscape features can be derived from hydrography, hypsometry, soil type, and

land use modern VTMs of the Areas of Interest (AOI).

Traditionally, these data are not interoperable because they consist of di↵erent types

of information and formats. Ontologies and Knowledge Graph (KG)s for representing

archaeological culture heritage and landscape features have been receiving more attention

to deal with the lack of interoperability of data. There are ontologies and KGs with

information about the landscape and cultural heritage, but they are rarely addressed

together, and models are sometimes incompatible or non-open. Additionally, when it

comes to dolmens located in our AOI, we do not find open graphs containing such data.

Due to the 1) lack of a model linking VTMs features and contextual information on the

modern landscape with archaeological monuments, including spatial and contextual data,

and 2) the absence of a semantic model populated with detailed, granular information on

our target object and AOI (at least not openly available) — we chose to implement our

own KG as an Labelled Property Graph (LPG). This was implemented to e�ciently and

coherently display extensive archaeological data related to monuments and landscapes,

systematizing and integrating them. The goal is to represent knowledge granularly by

capturing specific instances and their relationships. This approach enables detailed queries

on particular aspects and information retrieval focused on instances. Using this knowledge

structure, we aim to organize information interoperably, providing a solid foundation for

future analysis and pattern recognition.

This chapter examines the implementation of the LPG, designed to represent infor-

mation about the scene by linking instances of entities present in the AOI where dolmens
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is located. Section 5.2 introduces the fundamental concepts of knowledge representa-

tion, providing the theoretical foundation for the chapter. The remainder of this chapter

outlines the process for data gathering (Section 5.1), dataset preparation (Section 5.3),

and the proposed schema model (Section 5.4). Subsequently, the implementation section

describes the model implementation (Section 5.5), and the information retrieval section

presents the analysis performed and conclusions (Section 5.6).

5.2. Knowledge-Based Semantic Networks

A knowledge base is a repository of information [217]. Systems based on Knowledge-

Based (KB)s utilize domain-specific knowledge and rules to guide decision-making. A

system is considered knowledge-based if it relies on a collection of symbolic structures

that represent the information used for reasoning and operation [217, 218].

Semantic networks are a form of knowledge representation that uses graph struc-

tures to model relationships between concepts. These networks enable an intuitive and

structured method for capturing and visualizing knowledge, with vertexes representing

entities and edges defining relationships between them.

5.2.1. Knowledge Representation

Knowledge representation in the context of semantic networks refers to the process

of encoding information about the world into a structured format that computational

systems can understand and manipulate, enabling them to model, interpret, and reason

about complex domains. On the other hand, knowledge reasoning involves using these

representations to solve problems and derive new insights, mimicking human cognition’s

logical and analytical capabilities. Knowledge representation and reasoning refer to how

knowledge is symbolically represented and automatically manipulated by reasoning pro-

grams [217].

Various standards have been proposed to communicate knowledge between knowledge-

based systems and represent knowledge in a standard format. Ontologies and KGs are

both methods for knowledge representation, with ontologies defining domain concepts

and relationships in a formal structure, while knowledge graphs capture entities and

their interrelationships in a graph-based format [217, 219]. Figure 5.1 illustrates how

knowledge-base, knowledge-representation, ontologies and knowledge-graph concepts are

related. The following subsections provide a detailed description of these knowledge rep-

resentation models.

Ontologies

Ontologies (a.k.a. for knowledge-bases) are ‘a means to formally model the structure

of a system, i.e., the relevant entities and relations that emerge from its observation,

which are useful to our purposes’ [ 220, p.2], defining ‘explicit specifications of conceptu-

alizations’. [220, p.8] in a common used and powerful way to represent domain knowl-

edge [221]. For Bianchi et al. (2020), it is ”a formal specification of the meaning of

types and relationships expressed as a set of logical constraints and rules, which support
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Figure 5.1. The diagram shows how knowledge bases, knowledge repre-
sentations, ontologies, and knowledge graphs are interconnected.

automated reasoning.”[ 222, p.2]. While there is a consensus on the importance of ontolo-

gies, opinions vary regarding their precise definitions and scope. In essence, ontologies

are structured to define how to represent entities and their relationships. This structure

semantically represents fundamental concepts and their relationships across various levels

of abstraction, increasing the sharing and reuse of information while increasing the shared

understanding of knowledge of a domain in an interoperable way [223].

An ontology is expressed in logic through logical axioms, which define the constraints

of semantic modelling [217]. It provides a formalism designed to represent structured

knowledge about a domain. The focus is on language and semantics to structure infor-

mation in a way that ensures interoperability [217, 59]. Description Logics play a crucial

role in the logical formalization of knowledge. It constitutes a family of logic rather than

a single specific logic. They are based on three fundamental elements: individuals (e.g.,

Lisbon), classes (e.g., City), and properties (e.g., flight). Description Logics enable the

formulation of assertions, known as axioms, about these elements. Assertive axioms can

represent unary class relations in individuals [224]. Ontology’s structure traditionally

comprises two parts: the terminological part Terminological Box (T-Box), which includes

definitions and axioms, and the assertive part Assertional Box (A-Box), which specifies

individuals or instances [225, 184].

Di↵erent languages have been implemented to express these ontologies. The World

Wide Web Consortium (W3C) has adopted several languages to represent ontologies, such

as the Resource Description Framework (RDF) and Web Ontology Language (OWL).

RDF provides a basic structure for describing data on the web composed of three el-

ements representing two vertices connected by an edge: subject-predicate-object [219].

The subject represents a node or resource, the object a node or literal value, while the

51



predicate represents an edge. In this model, nodes or edges are identified by a Uniform

Resource Identifier (URI), which is a unique identifier where the subject and predicate

are URIs, and the Object is a URI or literal. So nodes and edges are purely unique labels,

with no internal structure [226]. The OWL, defines how to model the RDF knowledge

semantically [227, 228, 229]. These international languages represent the most widely

used ontologies in information systems [226].

Some ontologies do not supply a vocabulary of concepts, so thesauri and glossaries

provide controlled terminology required for a semantic link between di↵erent terms for

the same concept [210]. A thesaurus is a controlled vocabulary with a structured seman-

tic network of distinct concepts that improves information retrieval through categorized

queries. It standardizes and harmonizes terminology across various sources, ensuring con-

sistency and clarity in concept representation [230]. Di↵erent thesauri are available for

defining specific domain features such as archaeological terms, such as ROSSIO [231], an

open-access, free platform to aggregate, organize, and connect digital resources in the

fields of Social Sciences, Arts, and Humanities, designed by Portuguese higher educa-

tion and cultural institutions — utilizing structured vocabularies and widely recognized

ontologies such as the Getty’s Art and Architecture Thesaurus (AAT); GETTY AAT

provides a comprehensive vocabulary for art and architecture, facilitating the standard-

ization of terminology in cultural heritage documentation; and the Forum on Information

Standards in Heritage (FISH) thesaurus has as main focus has been on developing content

and data standards for use in the heritage sector [232].

Knowledge-Graphs

Information from heterogeneous sources can be represented, retrieved, and integrated

using KGs. Even though the term ”knowledge graph” has been used at least since 1972,

its modern incarnation was introduced by Google in 2012 [233], followed by announce-

ments of knowledge graphs from Airbnb, Amazon, Facebook, LinkedIn, Microsoft, and

more [224, 234]. In recent years, more scientific literature has been published on knowl-

edge graphs due to the growing industrial uptake of the concept. This model is designed

to accumulate and convey real-world knowledge, focusing on representing relationships

between entities [165, 224, 235].

A KG is structured around two primary components: nodes (or vertices/entities in

ontological terms) and the relationships that connect them (known as edges or properties

in ontologies). These nodes and relationships are not just abstract concepts; they can

have specific instances (known as individuals in ontologies) with attributes or labels that

provide additional context or details. Knowledge within a KG is typically expressed

through factual triples, creating a web of interconnected entities and relationships that

constitute the graph’s structure [165].

The structure of a KG is often a source of confusion, particularly regarding its re-

lationship with ontologies that comprise the T-Box and A-Box. However, the literature

frequently mixes the distinction. Nys et al. (2018) suggest that, in the realm of computer
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science and KGs, an ontology formally describes the types, properties, and relationships

between real-world entities [155]. A similar idea is presented by Ferilli et al. (2021),

who states that when the definitions/concepts/axioms T-Box are considered in conjunc-

tion with the instances/individuals A-Box, the result is a KG [235]. This interpretation

underscores ontologies as the foundational framework, establishing the rules and struc-

ture that can be used to build KGs, while KGs focus on visualizing these relationships,

emphasizing the representation of instances. From our perspective, ontologies emphasize

logical structures, concept definitions, and semantic relationships. In contrast, KGs are

primarily concerned with representing and linking real-world data—instances.

Additionally, KGs can integrate information into an ontology and use reasoning mech-

anisms to generate new insights [218, 159]. Ontologies, semantics, and reasoning are crit-

ical for extracting new information [236, 224]. Ontologies provide a formal representation

of knowledge domains, while semantic technologies interpret the meaning and context of

data, enabling advanced reasoning. Reasoning involves applying logical rules to existing

knowledge, allowing for the derivation of new conclusions, inferences, and insights from

both explicit and implicit data relationships. There are various KGs models for repre-

sentation. For example, LPGs is a model where nodes and relationships have a uniquely

identifiable ID and a set of key-value pairs, or properties, that characterize them, so in this

model, nodes and relationships have internal structures [237] — with the ’key’ being the

property name and the ’value’ containing the corresponding data (instance). Unlike the

RDF structure where the nodes are atomic, LPG carries information allowing a compact

structure, has unique identifiers for relationship instances, allowing di↵erent instances of

the same relationship to be distinguished between the same pair of entities, and instances

of relationships can have properties.

Graph Databases

In semantic networks, knowledge representation based on ontologies and knowledge

graphs provides the foundation for e↵ectively structuring and organizing information.

Databases, then, o↵er a powerful tool for storing, managing, and querying interconnected

information. SQL and NoSQL are two distinct types of database management systems.

SQL is a relational database where data is stored in a highly structured format within

tables, which consist of rows and columns with predefined data types. These databases

require a strict schema design where tables are interconnected through referential in-

tegrity, typically using primary and foreign keys. When retrieving data from multiple

linked tables, a JOIN operation combines rows based on matching keys [238]. Conversely,

NoSQL databases o↵er more flexible solutions for handling unstructured or highly scalable

data. Traditionally, NoSQL models are associated with Basically Available, Soft State,

and Eventual Consistency (BASE) properties, whereas relational databases are known for

their Atomicity, Consistency, Isolation, and Durability (ACID) principles [188]. NoSQL

databases can be divided into five categories: key-value (e.g. Redis, Azure Table Storage,

DynamoDB), column-based (e.g. Cassandra, HBase), document-based (e.g. MongoDB,

53



Couchbase), graph-based (e.g. ArangoDB, GraphDB, Neo4j) and multi-model (e.g. Ori-

entDB). Choosing the proper database depends on the final objective and the type of

data [239, 238, 240, 241, 242].

Graph databases are an excellent option for handling data in graph form. They are

specifically designed to analyze relationships among data points more e�ciently, which

makes them ideal for knowledge graph applications. A Graph Databases (GDB) is a

database that uses a graph structure, not data schemas or rows and columns, to represent

the information. This model is specifically designed to manage large volumes of graph

data and supports running e�cient queries involving multiple levels of relationships be-

tween instances [240, 238]. Employing graph-based knowledge abstraction o↵ers several

advantages over relational models or NoSQL alternatives. Graphs provide a concise and

intuitive abstraction for various domains, where edges and paths capture di↵erent and

potentially complex relationships between entities within a domain [224, 238].

Data connections can be explored and graphically represented using di↵erent lan-

guages, such as RDF and OWL, which are ontology languages that use SPARQL for

querying. Both languages represent data as a graph and are focused on exchanging

data [219, 226] being ideal for incorporating disparate datasets and creating data ontolo-

gies. In most cases, these triple stores are indicated to be used with slow-changing, if

not immutable, additive datasets. Scalability, storage optimization, e�cient handling,

mining, and browsing data are some of the advantages of this Database Management Sys-

tems (DBMS)s [235]. However, operational and transactional use cases were not intended

for them. Alternatively, graph query languages (GQL), such as Cypher, are designed to

query and represent data instances in graph databases [237].

Native Graph Databases

The terms native and non-native databases can be used to describe GDBs. Non-

native graph databases use graphs as a bolt-on afterthought technology. Instead of being

engineered explicitly for graph data, non-native graph storage uses relational, columnar,

or other general-purpose databases. Performance and scalability are a↵ected by graph

data stored in non-graph storage. As in relational databases, relationships between rows

are not physically stored, and foreign keys can be used to refer to a row from another row

instead. That is a foreign key acts as a pointer. Using JOIN-like operators, relationships

between rows can be calculated at query time. The cost of this type of operation increases

exponentially with the size of the table, and the fact that the data is stored in a di↵erent

format starts to build a gap between the conceptual model and the model that is stored

and queried [237, 226].

Regarding of native graph storage (index-free adjacency), its purpose-built stack is

managed for performance and scalability [226]. Using a Native Graph Database (NGDB),

the focus is on e�cient storage, querying and fast traversals across the connected data

— since it is designed to maximize the speed of traversals during arbitrary graph search

algorithms [237, 188]. The graph itself provides a natural adjacency index technique, so
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NGDB are not dependent on indexes for searching linked data. Graphs are traversed

by ”walking” along it. Linked relationships point to a node at both the start and the

end [226]. Each vertex or edge in the graph stores its own ”mini-index” instead of a global

adjacency index, allowing vertices to be found quickly. Without indices, determining if

an element has a particular property would require a linear scan of all elements. Due to

this model, the size of the graph has little or no e↵ect on performance, and we can walk

over the graph following these relationships without requiring JOINs [243], traversing a

very large number of nodes per second [244]. Figure 5.2 shows the di↵erence between the

graph and relational models for the order management dataset.

Figure 5.2. Comparison of search methods in SQL vs. NGDB.

The structure of a NGDB is explicitly built for storing graph-like data, ensuring that

data is stored e�ciently by writing nodes and relationships. At the same time, its pro-

cessing is performed using index-free adjacency [237, 226]. It is the fastest way computers

have to look at relationships since graphs have direct physical RAM addresses from each

node. Storing and processing are the main di↵erences between native and non-native

graph databases [237]. Although improving traversal performance, native graph process-

ing makes some non-traversal queries di�cult or memory-intensive [241].
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5.3. Data Acquisition and Preparation

This section details the data and the data sources used in this study to establish the

domain knowledge required for archaeological site analysis. These sources include seman-

tic records, which comprehensively describe archaeological sites and their contexts, and

digital vector maps, which o↵er spatial representations of the sites and their surrounding

landscape. Integrating these datasets ensures a multidimensional understanding of the

archaeological and environmental context, bridging semantic knowledge with geospatial

analysis.

5.3.1. Semantic Records

In this dissertation, we used two primary sources to gather information about the dolmens:

the Portal do Arqueólogo (PA) [8] and the Carta Arqueológica (CA) [73]. The CA was

published in 2012 as a physical book. It emerged following archaeological work conducted

since the mid-1990s, supported by the local authority and research projects by specialists

in the field. Mora Municipality and the Ministry of Culture supported these projects.

In contrast, the PA is a digital platform intended for professionals and researchers in

archaeology in Portugal — allowing researchers to access semi-structured information on

Portugal’s cultural heritage [8]. Recently, in 2021, it has also provided access to a geo-

portal with spatial information on the locations of these monuments. The platform is

managed by the Direção-Geral do Património Cultural (DGPC). The description of the

monuments in both data sources is presented in a semi-structured or unstructured format.

Figure 5.3 illustrates the record for the dolmen Anta de Pavia PA.

Figure 5.3. Record of the dolmen Anta de Pavia in the PA database
(Obtained on 11/09/2024) [8].
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Visualization Keys Dolmen aspects that impact how they are visualized
Complete
chamber
with

capstone

Complete
chamber
without
capstone

Incomplete
chamber
with

capstone

With
tumuli
covering

the
chamber

Artificial earth mound
(tumuli):
- Material: Earth and rocks;
- Height: �1m
- Diameter: �5m

X

Chamber:
- Material: Granite and schist
(Color grey);
- Diameter: 1.5m-5m;
- Shape: polygonal, circular,
semi-circular or quadrangular.

X X X

Chambers orthostats:
- tends to be inward-angled;
- Some must be in situ or are
identified through ground
marks.

X X

Table 5.2. Key Dolmen aspects influencing satellite visualization and
recognition, highlighting features that distinguish di↵erent configurations.

A more complete understanding of monuments was enabled by using multiple sources,

since each may contain unique details. For both of the data sources, we extracted, stan-

dardised, and transformed the relevant information to be represented in a structured way.

These sources address di↵erent versions of available data about dolmens. It is impor-

tant to recognize and take into account that information about monuments can change

over time. As monuments undergo alterations or are studied by di↵erent experts across

various periods, their analyses and records may vary. Interpretations can di↵er as people

approach the same monument with di↵erent perspectives. This variability means that the

information found in the data sources analyzed may di↵er due to these evolving records

and interpretations. The information provided by these sources provides context for ex-

plaining the characteristics of this type of monument. Figure 2.1 shows an example of a

monument, highlighting the structural elements. In contrast, Table 5.2 outlines the key

visual features of the monument, serving as classification criteria to guide the understand-

ing of how its site appears in an aerial view, depending on its condition (e.g., complete

chamber with capstone, or without capstone, incomplete chamber, or buried).

Monuments may be visible, but understanding them requires more than just observing

them in an image. The context helps visualize what is visible and understand what is not.
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This includes details on the monument’s designation (some monuments have multiple des-

ignations), location (place name and its geographical coordinates), description (covering

general concepts such as monument type, and specific details like (i) its component parts:

chamber, presence of a corridor, or a burial mound; and (ii) the characteristics of these

parts: shape, size, number of orthostats, construction material, and condition), as well as

a description of the data source (metadata).

The data sources describe various aspects of the monuments, including their identi-

fication (Class, Designation(s), Period of construction), physical characteristics (shape,

size, material, parts, and state of preservation), access (Localization), collected remains

(Remains, Deposit) and more.

Defining Key Features

A dolmen structure can be represented as a whole or a collection of individual com-

ponents. Di↵erent elements can represent each component based on its characteristics

(for example, materials, dimensions, and conditions). A terminology was defined to de-

scribe the object’s structure components. The terms were first analysed using a thesaurus.

For example, dolmens are described as “A megalithic tomb of Neolithic date comprising

a chamber bounded by large upright orthostats, often only three or four in number,

which supports a large capstone” [232]. The terms used to describe the dolmens, such

as chamber, orthostats, and capstone, were defined based on the thesaurus for the

terms it included.

The thesaurus served as a foundation for defining terminology, but proved insu�cient

to capture information at a granular level. To address this limitation, we analyzed spe-

cialized articles and references commonly used by experts to determine the terminology

used to describe the component parts of the monument (chamber, corridor, and burial

mound). Furthermore, our analysis of the data sources informed the identification of

specific physical characteristics to extract and represent for each component. Table 5.3

provides a representation of dolmen’s structural elements and the terminology associated

with the definition of the information.

Dolmen Object Structure Structure Information
Whole Dolmen Condition State; Material;

Dimension;

Components
Chamber Shape; Condition State;

Dimension; Orthostat - (number
and position); capstone (condition

state);
Corridor Condition State; Dimension;

Orthostat (Number and side)
Burial Mound Material; Condition State;

Dimension;

Table 5.3. Terminology for describing dolmen structural elements and
concepts: Representation of the object and its components

58



Condition State Material Measurement
Type

Chamber Shape Presence Location
Defini-
tion

Good Granite Diameter Polygonal Yes in situ
Bad Schizt Lenght Circular No nositu

Destructed Quartz Widht Semi circular Maybe north
Vestigy E-W direction Quadrangular south
Regular N-S direction Oblong

min height Trapeizodal
max height Rectangular

Table 5.4. Terminology and attributes for describing dolmen structural
elements.

Managing Data Sources

In what concerns site descriptions, both sources provided complementary yet varying

perspectives. PA records 73 described monuments in Pavia, 51 of which are not mentioned

in CA. On the other hand, CA documents 49 monuments, of which 21 are only described

by this source. The analysis of both documents revealed a total of 94 known dolmens

located within Pavia. It should be noted that these sources contain some inconsistent

information, with terminology di↵ering even within the same source.

The main di↵erences between the two sources are information about assets’ geographic

locations and the terms they use to describe designations, conditions, and measurement

types. For example, the coordinate formats were di↵erent: CA data used ESRI:102164 —

Lisboa Hayford Gauss IgeoE system, while PA data were obtained through its geoportal

using WGS 84 format. For consistency, all spatial references have been standardized.

Although the spatial coordinates were standardized, we preserved all the coordinate in-

formation, with a focus on extracting the original coordinate information and having the

data in either WGS 84 or the Cartesian coordinates system.

To ensure a detailed and systematic extraction of information from each document,

we tried to maintain the terminology employed by the source for describing the object’s

attributes. Table 5.4 presents the defined terminology for describing the characteristics

of each part of the monument. The information was originally in Portuguese, but we con-

verted it into English using equivalent terms, such as ”bom” to ”good”. All attributes that

relate to the dolmen condition state (e.g., good, bad, destroyed, vestigial, and regular),

material (granite or schist) and shape (polygonal, circular, semicircular, quadrangular,

oblong, trapezoidal, and rectangular) were only extracted when clearly stated in the data

sources.

About measurements, despite all dimensions being reported in meters, terminology

varied among descriptions — some referred to ”diameter,” others to ”minimum height,”

”maximum height,” or directional measurements such as E-W and N-S. The measurements

were maintained as stated in the original source, ensuring consistency. Measurements are
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used to describe the components of the monument (chamber, corridor and burial mound),

including specific features such as the capstone and orthostats.

In some cases, the descriptions were straightforward, such as stating that the monu-

ment was in a good or poor condition. But others required interpretation, as in statements

like ”the capstone is displaced or broken”. For such cases, specific terms were defined to

represent this information in a structured manner. The presence of features was recorded

as a ”yes”, ”no”, or ”maybe” for object structure components such as corridors, mounds,

and capstone. Position of characteristic elements, like the ”capstone”, were described in

terms of location (in situ, not in situ, North, or South), and the presence of orthostats

for elements like ”corridor” and ”chamber” was also documented using numerical values

to describe the number of orthostats that cast the monument.

As already mentioned, di↵erences were observed between both sources’ descriptions

during the analysis and data extraction process. Due to discrepancies between data

sources, where the IDs, and sometimes even the names of the monuments di↵er, we

assigned Global IDs to each monument to ensure consistency and resolve conflicts. A

monument’s Global ID starts with a capital letter ”D” followed by a numerical value

(e.g., D11) and are created according to the monument’s name and/or location. So, a

monument with the same designation or location has the same ID, allowing us to track the

monument information e�ciently, even if it is documented under di↵erent designations.

This attribution required manual analysis and understanding of the descriptions to assign

the Global IDs. The manual work was necessary because the texts used di↵erent for-

mats and terminology, with inconsistent references and descriptions that required careful

interpretation.

Various monuments’ levels of detail also di↵ered between the two datasets. As an

example, dolmen Lapeira 1 (D11) is recorded in CA and PA, but the descriptions di↵er:

PA includes the condition of the monument, while CA does not, and the size measure-

ments vary. In other cases, such as Alcarou de Baixo 3 (D10), only location information

is provided, with no description in either source. There were also instances where no

information was provided about a monument or specific details were missing in one or

both sources, in which case ”Not Available (n/a)” was added. The examples mentioned

previously are shown in Table 5.6.

Global
ID

Source Designation Shape Diameter Condition

D11 PA Lapeira 1 Polygonal 3.4 Good
D11 CA Lapeira 1 Polygonal 3.2 n/a
D10 PA/CA Alcarou de Baixo 3 n/a n/a n/a

Table 5.6. Examples of data information provided by PA and CA
datasets.
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5.3.2. Vector Topographic Maps

In this dissertation we used various sources to obtain detailed information about the

landscape of the AOI where the monuments are located. The aim was to spatially relate

the monuments to elements in the landscape that may have influenced the choice of their

construction in the past, such as natural watercourses, soil types, topography relief, and

land use, as well as contribute to their recognition. By exploring these spatial relation-

ships, we aim to understand how the proximity and interaction between the monuments

and their surrounding landscape elements may have influenced the choice of their location

in the past while also a↵ecting their current visibility and preservation.

Each piece of consolidated information is generated or owned by di↵erent institutions,

as shown in Table 5.7. Thus, vector maps were sourced from various institutions, namely

the Direção-Geral do Território (DGT), the Direção-Geral de Agricultura e Desenvolvi-

mento Rural (DGADR), the Sistema Nacional de Informação de Ambiente (SNIAmb) and

the Municipality of Mora (MM). The following provides comprehensive details on each

dataset. All data except the contour line map are in shapefile format obtained from the

Sistema Nacional de Informação Geográfica (SNIG) portal [121] and licensed under CC-

BY-4.0. The contour line map has been shared and allowed for use by the municipality

of Mora.

Data Description Owner Format
Borders O�cial administrative map of

Portugal
DGT Polygon + In-line

Soil Use The land use and occupation map
of Portugal

DGT Polygon

Soil Type The soil type map of southern
Portugal

DGADR Polygon

Contour
Line

Mora’s contour lines map MM Line

Water Line Surface water masses rivers of
mainland Portugal

SNIAmb Line

Table 5.7. Source and details of topographic vector maps used in the
analysis.

Data on Borders

The O�cial Administrative Map of Portugal [2], produced by DGT, was o�cially en-

dorsed by their order dated January 24, 2023, and was published as an o�cial notice

on February 3, 2023, according to Regulatory Decree no. 30/2012 of March 13. This

dataset portrays Portugal’s administrative boundaries, including districts, municipalities,

and parishes. The dataset consists of eight shapefiles: seven in polygon format and one in

line format (Catalog of O�cial Administrative Map of Portugal (CAOP) Entities n.d.).

The locations for parish, municipality, and district were obtained from a cartography file

(Cont AAD CAOP2022.shp). Table 5.8 lists all data in this shapefile, including columns

for attribute names, their descriptions, and attribute value format types.
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Attributes Attributes Description Format
DICOFRE Unique identifier for parishes (e.g., Brotas,

Pavia, and Mora)
Integer

Freguesia The o�cial designation by which the parish is
known

Text

Concelho Identification of the municipality to which the
administrative area belongs

Text

Distrito The designation by which the district is known Text
TAA Identification of the type of administrative area Text
Area T ha Total value of the parish area Float
Area EA ha Value of the Administrative Area Float
Des Simpli Simplified designation of the parish name Text

Table 5.8. Attributes, descriptions, and data types represented in the
CAOP 2022 VTM.

Soil Use Data

The Land Use and Occupation Map, or ”Carta de Uso e Ocupação do Solo” (COS),

is a product of the Sistema de Monitorização da Ocupação de Solos (SMOS) initiative

developed by the DGT. The Carta de Uso e Ocupação do Solo (COS) map, characterized

by polygons representing homogeneous land use and occupation units, was published in

1995 [245], 2007 [246], 2010 [247], 2015 [248] and 2018 [87], and is currently being updated.

We obtained the V2 versions for COS 1995, 2015, and 2018, and the V3 version for

COS 2007. These updated versions, which include COS1995v2, COS2007v3, COS2010v2,

COS2015v2, and COS2018v2, replace their earlier counterparts and are part of COS 2018

enhancements. The revised historical series marks the integration of COS into SMOS,

which now also includes the Conjunctural Land Use Map (COSc). While COS provides

structural information on land use, COSc focuses on land occupation. COS remains the

primary national reference for land use mapping, which is why it was chosen for this

study [249].

COS geospatial information divides the landscape into units representing homogeneous

land use and occupation categories, excluding linear and point elements. Except for the

1995 COS, which featured 44 classes, all subsequent maps include up to 83 classes at their

most detailed level – 4 levels. The nomenclature in each COS follows a hierarchical system

of land use and occupation classes. Each polygon is assigned a code that corresponds to its

classification within this hierarchy. Along the border with Spain, COS boundaries align

with the CAOP of the corresponding year, while maritime boundaries are defined through

photo interpretation. All COS maps use the reference system EPSG:3763:EPSG:4258.

Table 5.9 lists all data in this shapefile, including columns for attribute names, their

descriptions, and attribute value types (e.g., real numbers, doubles, integers).

Soil Type Data

The Land Type Cartography of Portugal, at a scale of 1:25,000, o↵ers detailed information

about the various soil types, represented on the map by distinct cartographic symbols (e.g.,
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Attributes Attributes Description Level Format
COS18n1 C Class code of land use/occupation 1 Float
COS18n1 L Label designation of the class code 1 Text
COS18n2 C Class code of land use/occupation 2 Float
COS18n2 L Label designation of the class code 2 Text
COS18n3 C Class code of land use/occupation 3 Float
COS18n3 L Label designation of the class code 3 Text
COS18n4 C Class code of land use/occupation 4 Float
COS18n4 L Label designation of the class code 4 Text
Area ha Value of the polygon’s area Float

Table 5.9. Attributes, descriptions, and data types represented in the
vector map - COS.

Solos Litólicos, Não Húmicos Pouco Insaturados, Normais, de granitos (pg)). These series

are subdivisions of families, defined as groups of soils that share similar horizons or layers,

distributed uniformly along the surface and formed from the same organic material [85].

The explanation for the symbols used in the cartography is accessible online through

the DGADR portal 1 and is not included within the map [1]. This note defines the codes

and labels, explaining what each represents. The maps are divided into northern and

southern parts of the country, and for this study, we analyzed only the southern part.

Note that cartography uses reference systems EPSG:3763, EPSG:4258, and ESPG:4326.

Table 5.10 presents the attributes, attribute descriptions, and attribute value types for

this cartography.

Attributes Attributes Description Format
COD1 Solos Soil code and phase ENUM
COD2 Solos Soil code and phase ENUM
COD3 Solos Soil code and phase ENUM
WRB2014 1 Soil code. ENUM
WRB2014 2 Soil code. ENUM
WRB2014 3 Soil code. ENUM
ADD 1 Soil phase. ENUM
ADD 2 Soil phase. ENUM
ADD 3 Soil phase. ENUM

Table 5.10. Attributes, descriptions, and data types represented in the
land type VTM

Contour Line Data

The municipality of Mora made available the approved cartography, at a scale of 1:10,000,

with territorial data - approved up to 09/09/2022. Decree-Law n.º 130/2019 in article 2

defines the approved cartography as vector/topographic and hydrographic imaging and

their respective thematic maps, which have been recognized by competent services as

having met the defined criteria, norms and specifications. The DGT has specifications

1The explanation note can be accessed at: https://www.dgadr.gov.pt/nota-explicativa
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for topographic cartography norms and technical specifications. The norms and technical

specifications for large-scale vector and image topographic cartography were published

through Notice n.º 11918-2019 in the O�cial Gazette on July 24th.

The data contains a map with contour lines that represent height measurement. The

contour lines are imaginary lines intersecting the terrain where all points have the same

elevation value relative to a specific altimetric datum. Table 5.11 presents the attributes,

attribute descriptions, and attribute value types for this cartography.

Attributes Attributes Description Format
ALTITUDE Numeric value indicating the terrain’s alti-

tude
Float

TIPO Code preceded by a dash indicating contour
line type (Master/Secondary/Auxiliary)

ENUM

Table 5.11. Attributes, descriptions, and data types represented in the
contour line VTM.

Water Line Data

Although there are numerous sources of vector hydrographic data pertaining to the Por-

tuguese territory, we chose to work with the ”Massas de água superficiais Rios de Portugal

continental” of SNIAmb, a geographic dataset at scale 1:25,000. The cartography refers

to the water bodies of rivers reported to the European Commission under the Diretiva

Quadro da Água, for the 2nd planning cycle 2016–2021. Regional Hydrographic Manage-

ment Plans are instruments aimed at the management, protection, and environmental,

social, and economic valorisation of waters at the regional hydrographic level.

The plans are drafted in planning cycles and revised and updated every six years. They

encompass various subjects grouped into five major thematic areas: Water Bodies (surface

and underground); Environmental Objectives; Measures Program; Economic Analysis;

and Public Participation. These are developed in accordance with the Water Law and

Dispatch n.o¯ 11955/2018, 2nd series, dated December 12. All Regional Hydrographic

Management Plans are reported to the European Commission, which, in partnership with

the European Environment Agency, developed the platform WISE (Water Information

System for Europe).

Table 5.12 presents the attributes, attribute descriptions, and attribute value types

for this cartography.

Managing Data Sources

In order to relate entities to other semantic information, we converted these maps, com-

posed of multiple layers, into a relational format.
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Attributes Attributes Description Format
codigo Code representing the water bodies ENUM
Nome Name of the water body Text
Regiao hid Hydrographic Region Text
Natur fm a Classification of water bodies: Natural, Artificial, and Heavily

Modified
Text

Transfront Transboundary water bodies – Portugal / Spain (Yes / No) Text
Est pot ec Likely refers to the ecological potential status of the water

bodies, especially for artificial or heavily modified ones (based
in RH5 Final Environmental Report)

Text

Estado qui Chemical status of the water bodies (Good, Unknown, Insuf-
ficient)

Text

St lenght Length of the water bodies represented as lines Float

Table 5.12. Attributes, descriptions, and data types represented in the
water line VTM.

Data was extracted from each VTM using ArcGIS Pro Desktop2. For data clean-

ing and standardisation, all datasets were encoded consistently with ISO-8859-1 Uni-

code [251]. The standardization applied to spatial coordinates extracted from dolmen

semantic records was also used for all VTMs. Afterwards, the geometric information was

extracted and the coordinates were converted to Well-Known Text (WKT) format [252].

The extracted data was organized into a structured format to facilitate bulk loading

into a database. The original descriptions from the source files were preserved to maintain

data integrity and consistency. All details and terms used in the original documents

are preserved in the database, allowing a seamless transition between raw data and the

database.

Grid Implementation

The segmentation of the AOI was achieved through a structured grid that was created to

standardize spatial data representation and facilitate its integration into the knowledge

graph. The total area was divided into 150 individual cells with an area around 1 km2.

The resultant grid data was extracted and saved using the same descriptions as the VTMs.

Traditionally, linked data approaches represent spatial information by directly map-

ping geometries onto the surface of the Earth using technologies like GeoSPARQL. Al-

though accurate, this method can lead to complex queries and long execution times,

especially with overlapping geometries. Structured grid systems o↵er a significant ad-

vantage in addressing these challenges. In spatial data analysis, a regular grid of cells is

used to divide the study area into discrete, manageable blocks. The grid-based approach

2ArcGIS is a geographic information system developed by Esri and designed for spatial data management,
analysis, and visualization. It o↵ers robust tools for capturing, analysing, and presenting geographic in-
formation, enabling users to work with a wide array of spatial data formats. Its user-friendly interface
and extensive functionality facilitate the extraction and conversion of vector map data into various for-
mats [250].
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enables the examination of individual cells, the prediction of adjacent cell contents, and

the rapid overview of spatially co-located features and regions.

Leveraging grid coordinates streamlines the search for spatial points, enhances data

analysis and retrieval, reduces computational complexity, and improves query performance

through pre-computed spatial relations. As Shimizu et al. (2021) [253] suggest, the

use of a discrete global grid for integrating spatial data within a knowledge graph is a

promising method, potentially enabling future knowledge graphs to perform integration

more e�ciently and rapidly [253].

5.4. Schema Definition

The schema model is based on CIDOC-Conceptual Reference Model (CRM), its extension

CRMgeo, and GeoSPARQL. The CIDOC-CRM [59] ontology is an ISO standard for se-

mantic interoperability among cultural institutions (ISO 21127:2006). This event-centric

ontology provides a guide for modelling heterogeneous information. By providing a model

for good conceptual modelling, the model guides the structuring of information and of

the existing interrelationships without prescribing specific terminology or what should be

documented [59].

The CRM (version 7.2.1) contains 81 hierarchically organized classes and 160 unique

relationships (referred to as ”properties” in the documentation) [59]. An identifier (num-

ber) and name are assigned to each declared class and relationship. Class names are

prefixed with the letter ’E’, while relationship identifiers begin with the letter ’P’. In both

cases, the letter is followed by its respective identifier number. Properties are bidirec-

tional: in the domain-to-range direction, they are written without parentheses; in the

reverse range-to-domain direction, they are enclosed in parentheses [59].

The model can be implemented in various databases using any language. It is par-

ticularly well-suited to storing information as triples that emphasize entities rather than

instances. There are, however, some limitations. This monolithic structure does not pro-

vide the modularity necessary to evaluate and represent the way cultural heritage objects

are interpreted by di↵erent agents (e.g., researchers) and what new information is cre-

ated as a result [96]. Further, CIDOC-CRM can handle some spatial relationships and

temporal information but not detailed spatial data.

CRMgeo [57] is an extension of CIDOC-CRM designed to enhance the representation

of geospatial information within cultural heritage. Its primary function is to integrate

geoinformation available in Geographic Information Systems (GIS) format into CIDOC-

CRM. Its primary purpose o↵ers a schema that aligns with CIDOC-CRM, facilitating

the integration of geoinformation through conceptualization, formal definitions, encoding

standards, and topological relationships established by the Geospatial Consortium (OGC)

in GeoSPARQL. A more comprehensive and contextually meaningful representation of

spatial data can be achieved by linking cultural heritage data with precise site loca-

tion and geometry information. The model integrates temporal entities with persistent

items through a temporal-spatial scheme [94]. In 2015, CRMgeo 1.2 was released with
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CLASSES SOURCES
E1 CRM Entity CIDOC-CRM
E3 Condition State CIDOC-CRM
E12 Production CIDOC-CRM
E13 Attribute Assignment CIDOC-CRM
E17 Type Assignment CIDOC-CRM
E18 Physical Thing CIDOC-CRM
E19 Physical Object CIDOC-CRM
E22 Human-Made Object CIDOC-CRM
E28 Conceptual Object CIDOC-CRM
E31 Document CIDOC-CRM
E41 Appellation CIDOC-CRM
E42 Identifier CIDOC-CRM
E52 Time-Span CIDOC-CRM
E53 Place CIDOC-CRM
E54 Dimension CIDOC-CRM
E55 Type CIDOC-CRM
E57 Material CIDOC-CRM
E58 Measurement Unit CIDOC-CRM
E60 Number CIDOC-CRM
E65 Creation CIDOC-CRM
E74 Group CIDOC-CRM
E93 Presence CIDOC-CRM
E94 Space Primitive CRMgeo
SP4 Spatial Coordinate Reference System CRMgeo
SP6 Declarative Place CRMgeo
SP15 Geometry CRMgeo
geo:Feature GeoSPARQL
geo:Geometry GeoSPARQL
C1 Geometry extracted from maps –

Table 5.13. Classes from CIDOC-CRM, CRMgeo, and GeoSPARQL used
in the schema model.

13 classes and 19 properties. Based on the CRM model, each class and property is as-

signed a name and an identifier. For classes, the identifier consists of the prefix ”SP”

followed by a number, while for properties, it begins with the letter ”Q.” By combining

CRM with specialized ontologies like CRMgeo, geospatial capabilities can be significantly

enhanced [94, 57].

GeoSPARQL [252] is an OGC standard that facilitates geospatial data representation

and querying. It provides a vocabulary for embedding geospatial data in RDF and extends

SPARQL for geospatial querying. The ontology includes the class geo:SpatialObject,

which denotes any entity with a spatial dimension. This class consists of two primary

subclasses, namely the geo:Feature, which represents real-world entities such as rivers and

houses, and geo:Geometry, which defines the spatial location of these features and can be
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represented using literals and type hierarchies like WKT or Geography Markup Language

(GML). Features are linked to their geometries via the geo:hasGeometry property [252].

The LPG was implemented using classes from these three ontologies as labels and

properties as relationships. To represent information extracted from VTMs and semantic

data related to archaeological monuments, 23 classes from CIDOC-CRM ontology were

used. Due to the lack of specific spatial classes in CRM, we incorporated three classes from

the CRMgeo extension and two from GeoSPARQL. We created a new class C1 Geometry

extracted from maps to store the data extracted from vector cartography — see Table 5.13

for the classes used.

Relationships establish connections between classes. Table 5.15 provides an overview

of the relationships defined for our model, detailing how each class connects, from the

domain class to the target/range class.

The schema model was defined to encompass all relevant information about monu-

ments and their surroundings, organized into three main categories: (i) Metadata defini-

tions, (ii) General and individual concepts, and (iii) Geometry. Metadata is defined as

”data about dat” [254] and includes the source of information, ensuring that the origin

of specific details can be traced, which is essential for referencing and citation. Whithin

metadata, there are two types of concepts: general and specific. General concepts provide

a framework for understanding various instances within their scope, such as ”rivers” for

types of bodies of water or ”dolmen” for types of monuments. On the other hand, specific

concepts refer to instances of general categories. For example, the Matalote River is an

individual river (a specific river), while ”Lapeira 1” is an individual dolmen (a specific

monument). Each concept includes detailed attributes such as the length, shape, and

chemical condition of the Matalote River or, for the monument, the size shape, as well

as the condition of the dolmen. Finally, the model includes the exact location of each

feature, as represented in the data source, and the geometry of each place.

For all data types, we used consistent classes to represent the geometry. Furthermore,

for metadata definitions, each data source is treated as an event marking the creation and

subsequent acquisition of information about an object. The fact that we were dealing with

two separate concepts and types of data-archaeological monuments, for which information

was extracted from semantic sources and landscape information derived from vector maps,

made it necessary to create separate subgraphs. One subgraph was dedicated to the

monuments, while each VTM was transformed into its respective subgraph, interconnected

by their locations. By clearly di↵ering between the data types and linking them via

geographical coordinates, this approach enabled us to maintain clarity and organization.

5.4.1. Representing monuments

A schema for representing the dolmens can be seen in Figure 5.4. In this schema,

records refer to events that represent the creation and acquisition of information about

objects. To document assertions regarding the object’s values, we use the E13 Attribute

Assignment class. Descriptions are linked to an E31 Document class that represents the
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Relations Class-Domain Class-Range
P1 is identified by (identifies) E1CRMEntity E55MonumentType
P1 is identified by (identifies) E22HumanMadeObject E41Appellation
P1 is identified by (identifies) E28ConceptualObject E41Appellation
P1 is identified by (identifies) E41Appellation E42Identifier
P2 has type (is type of) E22HumanMadeObject E55Type
P2 has type (is type of) E53Place E55Type
P2 has type (is type of) E22HumanMadeObject E55Type
P2 has type (is type of) E58MeasurementUnit E55Type
P2 has type (is type of) E60Number E55Type
P2 has type (is type of) E52TimeSpan E55Type
P2 has type (is type of) E17TypeAssigment E55Type
P4 has time-span (is time-span of) E12Production E52TimeSpan
P4 has time-span (is time-span of) E13AttributeAssigment E52TimeSpan
P4 has time-span (is time-span of) E28ConceptualObject E52TimeSpan
P14 carried out by (performed) E65Creation E74Group
P39 measured (was measured by) E16Measurement E22HumanMadeObject
P40 observed dimension (was observed in) E16Measurement E54Dimension
P41 classified (was classified by) E17TypeAssigment E28ConceptualObject
P42 assigned (was assigned by) E17TypeAssigment E55Type
P44 has condition (is condition of) E19PhisicalComponent E3ConditionState
P45 consists of (is incorporated in) E22HumanMadeObject E57Material
P46 is composed of (forms part of) E22HumanMadeObject E22HumanMadeObject
P46 is composed of (forms part of) E22HumanMadeObject E19PhisicalComponent
P48 has preferred identifier (is preferred identifier of) E22HumanMadeObject E42Identifier
P48 has preferred identifier (is preferred identifier of) E55Type E42Identifier
P48 has preferred identifier (is preferred identifier of) SP6DeclarativePlace E42Identifier
P55 has current location (currently holds) E22HumanMadeObject SP6DeclarativePlace
P57 has number of parts E19PhisicalComponent E60Number
P67 refers to (is referred to by) SP6DeclarativePlace E42Identifier
P70 documents (is documented in) E31Document E13AttributeAssigment
P89 falls within (contains) SP6DeclarativePlace E53Place
P89 falls within (contains) E53Place E53Place
P91 has unit (is unit of) E54Dimension E58MeasurementUnit
P94 has created (was created by) E65Creation E28ConceptualObject
P108 has produced (was produced by) E12Production E22HumanMadeObject
P127 has broader term (has narrower term) E55Type E55Type
P130 shows features of (features are also found on) SP6DeclarativePlace SP6DeclarativePlace
P140 assigned attribute to (was attributed by) E13AttributeAssigment E22HumanMadeObject
P168 place is defined by (defines place) SP6DeclarativePlace E94SpacePrimitive
P195 was a presence of (had presence) E93Presence E22HumanMadeObject
P195 was a presence of (had presence) E93Presence E19PhisicalComponent
Q9 is expressed in terms of E94SpacePrimitive SP4SpatialCoordinateReference
geo hasGeometry E94SpacPrimitive SP15Geometry
GLP1 space primitive is defined by (defines space
primitive)

E94SpacePrimitive C1 Geometry extracted from maps

GLP1 space primitive is defined by (defines space
primitive)

geo:Feature C1 Geometry extracted from maps

geo hasGeometry geo:Feature geo:Geometry
geo:sfWithin geo:Feature E94SpacePrimitive
geo:sfNearby geo:Feature E94SpacePrimitive

Table 5.15. An overview of each class’s relationships regarding target and
range within the knowledge graph.

source of information and is timestamped using an E52 Time Span class to identify when

the data was recorded. This structure allows all pieces of information to be traced back

to their source. Since the data in our system comes from a variety of sources and times,

each record needs to be considered a distinct version of the object so that the provenance

and timeframe of the information can be tracked.
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Figure 5.4. Concise schema for representing dolmens.

The E22 Human-Made Object class represents an individual archaeological monument

concept. Dolmens, as enduring physical structures created by humans, fall under this

class, the most specific of human-made items in the hierarchy. As described by [59], the

E22 Human-Made Object class ”comprises all persistent physical items of any size that are

purposely created by human activity.”. Each record about a dolmen results in an instance

of the E22 node, regardless of the data source. In our case, with two distinct data sources,

up to two versions of information can exist for a single monument, each linked through a

global ID (E42 Identifier class), as shown in Figure 5.5. This approach allows multiple

versions of information about the same monument to be represented.

Dolmens and their components are represented using the same E22 Human-Made Ob-

ject class. Components within this class are treated as distinct instances. The hierarchical

schema uses the relationship label P46 is composed of to link these di↵erent components

and sub-components. This design transforms the dolmen node from a physical object into

an abstract container defined by its components. This allows a granular description of

the monument. The CRM framework aims to describe data structures at a high level,

focusing on entities and relationships without specializing in structural or topological de-

tails. Existing CRM extensions, such as CRMba [203], handle topological relations of

functional spaces. In our context, topological relations were not necessary for satellite

image contextualization. However, the graph can be extended in the future to include

such information if needed.
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Figure 5.5. Multiple E22 instances linked to a global ID (E42 Identifier),
demonstrating how multiple versions of information for a single dolmen can
be represented and expanded to accommodate additional versions.

To describe the features of the dolmen components, we use several specific classes, such

as E57 Material for construction materials, E3 Condition State for preservation state,

E54 Dimension for measurements, and E19 Physical Object for features like capstones

or orthostat numbers. Each E22 Human-Made Object is also linked to its geographical

location represented in SP6 Declarative Place class. This establishes a clear connection

between the monument and its spatial context. For a visual representation of the full

schema model, please refer to the illustration provided in the Appendices 8.2.

5.4.2. Representing Landscape

The schema created to represent VTMs is shown in figure 5.6. This model employs the

E28 Conceptual Object class from the CRM and showcases cartography as a conceptual

object crafted to represent physical entities, which consist of human-produced data that

have become objects of discourse. To represent who created the cartograph, we need to

associate the event of creation between the object created and the person/group responsi-

ble for it. In this case, we use E65 Creation class to describe the cartograph creation event

(E28) and relate them through P94 has created. The creation event (E65) is linked to the

creation responsible through P14 carried out by and is described in class E74 Group. It is

important to note that each cartograph represents the geographical objects present at the

time it was developed. To determine a cartograph’s date span, we use the class E52 Time

Span and link it to the conceptual object represented (E28) through the relationship P4

has time-span.

To relate the conceptual framework of cartography (E28) to the physical elements

described, we used the property P41 ”classified (P41 was classified by).” This property

links the general concepts represented in each vector map (E17 Type Assignment)—such
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Figure 5.6. Concise schema for representing the vector topographic maps.

as ”Hydrograph” or ”Soil Use”—to the E55 Type class, which provides a more detailed

definition of these concepts. For example, ”Rivers” is used in hydrographic maps, while

”Urban Areas” is included in land use maps. A hierarchical structure of concepts can

be found in some maps, such as the COS 2018, which categorizes 85 types of land use

(for example, forests and urban areas). We use the property P127 ”has broader term (is

a broader term of)” to link the hierarchical type (E55) to the general concepts depicted

in the map (E17). This taxonomy facilitates the organization and classification of map

concepts, o↵ering a controlled vocabulary and detailed content information. To link the

more specific concepts in the map (E55) with the physical objects they describe, we

use the property P137 ”exemplifies (is exemplified by)” to connect them with the E18

Physical Thing class, enabling a detailed articulation of individual features based on the

classification.

In the E18 Physical Thing class, all instances representing natural elements can be

related to other classes to capture their attributes. For example, a river is classified by its

type—such as ”natural” or ”artificial” (E55 Type)—and its condition—such as ”good” or

”modified” (E3 Condition State). To describe the geometry and location of each element,

instances of E18 are connected to the SP6 Declarative Place class using the property P67

”refers to” (or P67 ”is referred to by”). This linkage allows for a precise representation

of the spatial and locational attributes of each physical element, as illustrated in the

cartographic data. This approach ensures that each element’s characteristics and geo-

graphical context are represented and integrated into the overall analysis. For a visual
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representation of the entire schema model, please refer to the illustration provided in the

Appendices 8.1.

5.4.3. Representing Spatial Relationships

The schema model highlights the importance of spatial data in capturing instances

and their relationships. In order to establish granular topological relationships between

entities, specific relationships were defined to manage and link di↵erent spatial formats,

such as lines, points, and polygons. Without that, we would be left with various sub-

graphs interconnected by their respective regions (E53 Place — e.g., Pavia); however, this

representation lacked precision. Without it, we would be unable to determine the spatial

relation between geographic objects represented in the model.

Spatial entities are intrinsically interconnected. GeoSPARQL provides a standardized

way of representing these topological relationships. It implements the Simple Feature

Access Common Architecture specification to describe spatial relations. This model is

based on Egenhofer’s extension of RCC8, a subset of Region Connection Calculus (RCC)

that defines eight pairwise disjoint spatial relations. Egenhofer’s work was further gen-

eralized in the Nine Intersection Model [252]. The Simple Features topological relations

include equals, disjoint, intersects, touches, crosses, within, contains, overlaps, and relate

as shown in Figure 5.7 [255].

Figure 5.7. Illustration of spatial relationships between objects.

To enable a clear understanding of how entities relate to one another, we determined

that specifying whether one element is within another and detailing the nearby between

elements were su�cient for our use case. The GeoSPARQL’s geo:sfWithin was strate-

gically harnessed to express the topological relationship where one geometry is entirely

contained within another. With this relationship, it is possible to infer, for example,

when an E22 Human-Made Object is contained within a specific (E18 Physical Thing) by

relating instances of the E94 Space Primitive.

While GeoSPARQL encompasses di↵erent topological relationships (Section ??), it

does not explicitly define an ”Adjacent” relationship. The geo:sfTouches property can

represent objects that share only a boundary, without any overlapping interior, potentially

capturing the essence of adjacency in certain contexts. However, to address more nuanced

spatial relationships and to capture specific instances of proximity with or without direct
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boundary contact, there arises a need for a distinct relationship that could deal with the

representation of proximity between monuments and landscapes.

In order to denote proximity, a custom property called ”geo:sfNearby” was created.

The bespoke relationship is then used to link E94 Space Primitive entities that are ge-

ographically close to one another (whether adjacent or not). In order to enrich this

relationship, distances have been directly incorporated. In this way, proximity was es-

tablished, as well as the exact value of distance between them. Table 5.16 summarizes

spatial relationship properties. Following its creation, the property ”sfNearby” can be en-

riched with specific distance metrics in meters to provide a comprehensive representation

of physical proximity between entities. By embedding specific distance metrics directly

as properties of these relationships rather than as attributes of nodes, a direct linkage

of spatial relationships to entities is established. This model provides a clear distinction

between raw data sourced from primary materials, such as reports and vector maps, and

information derived from geospatial analyses.

Spatial Relationship Properties
E94:
sfWithin:E94

An sfWithin relationship links E94 classes that indicate
when a point is entirely contained within a polygon.
They indicate when monuments fall into ”Land Use” or
”Soil Type” — but can also be used to analyze when
other E18s fall within other E18.

E94:
sfNearby:E94

An sfNearby relationship connects E94 classes that
indicate closeness. They are used to indicate the position
of monuments in relation to other instances of E22 or
E18. Here, they are used to specifically relate the
monument’s position to its ”Hydrography”, ”Contour
Lines”, and ”Dolmen”. In this relationship, the distance
between each domain-range class (E22 or E18) is
embedded.

Table 5.16. Definition of spatial relationships.

These spatial relationships allow us to represent how di↵erent landscape components

and archaeological features are interconnected. By defining these relationships, we en-

hance the graph’s capability to model and interpret spatial dependencies. This is es-

sential for understanding archaeological monument interactions within their environment

and contextualizing scenes.

5.5. Model Implementation

To implement the LPG schema model we have used Neo4j graph database 3 and

data was mapped from the files to the database. Neo4J is a schema-free, NGDB built on

properties and characterized by its Cypher query language. The Cypher language relies on

relatively complex patterns that, when used e↵ectively, can provide insights that are not

readily available from traditional database engines [256]. The high readability of Cypher,

3The Neo4j graph database can be downloaded at: https://neo4j.com/
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coupled with the ability of Neo4j to present query results in a variety of formats, allows for

enhanced flexibility and diverse interpretations of data [257]. Although implementation

may be time-consuming, queries are typically less complex and execute faster than those

in PostgreSQL, making this system a strong candidate for data storage and analysis [257].

In addition to its high functionality, it complies with ACID principles [237].

When compared with other graph databases Neo4J consumes less memory for process-

ing [258], performs better through indexing techniques for queries retrieval performance,

and gets the best results with traversal workloads [259, 260, 261]. A graph database

like Neo4J is not designed to handle basic graph patterns and atomic lookups [236] or

to handle search based on a limited number of relationships (low number of JOINs in

SQL databases) [238]. In contrast, they are ideal for applications involving multiple levels

of relationships between data [240, 238] — ideal for applications involving relationships

between instances [239] and finding patterns [259].

Representations, searches, and retrievals of spatial geometry are supported via points

linked to a specific Coordinate Reference System (CRS), whose values are represented in

Cartesian coordinates or WGS-84. The schema-free nature of Neo4J allows labels, types,

and properties to be applied to nodes and relationships in a flexible way, although this can

sometimes lead to vague semantics. It is not only possible to represent archaeological sites

in this structure but also to perform multi-relational searches for each one. The flexibility

of Neo4J enables the construction of a model based on well-recognized ontologies (CIDOC-

CRM, CRMgeo, and GeoSPARQL), which can represent semantic and spatial data in

detail. The Neo4J desktop (V: 1.5.6) was the platform of choice for data integration.

To populate the LPG, the structured file derived from data standardization was used.

In this mapping process, table columns were mapped to property keys and rows to

values. Each column header corresponds to a predefined property of each class, while each

row represents an instance of that class. Our focus was on data mapping and curation,

linking entities, matching them to their respective instances, and ensuring that the data

was correctly connected to facilitate querying and information retrieval. Table 5.17 lists

the classes (node labels) used, and also includes the definitions of property key attributes

used to represent this information, serving as keys for assigning values within the database.

Even though data sources contained information of a larger area, such as the entire

country, only information about the AOI was retained. This targeted approach can lead to

e�cient resource allocation. Additionally, it helps to minimize data overload and ensures

that the most pertinent information is readily accessible. The LPG contains 141,380

nodes and 370,177 relationships. The model can, however, be expanded to include more

information if needed.

Data insertion was performed with and without indexing to assess how indexing af-

fected the import process e�ciency. Indexes were applied to enhance data retrieval speed

and performance. The performance of searches with and without indexes was consistently
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NODE LABELS PROPERTY KEYS DESCRIPTION

E1 CRM Entity E1CRMEntity Indicate the broader concept of E22 (e.g. Megalithic
Monument).

E3 Condition State E3ConditionState Comprises the E22 condition state.
E3ChemicalConditionState Comprises the chemical condition of E18 - Rivers.
E3EcologyConditionState Comprises the condition of E18 - Rivers.

E12 Production E12Production Indicate the E22 production.
E13 Attribute
Assignment

E13AttributeAssigment Indicates actions for asserting E22 properties.

E17 Type Assignment E17TerminologyDefinition Indicates the broader concept of classified terminology
for the E28.

E18 Physical Thing E18SpecificResource Comprises all instances of natural physical things (e.g.
River X).

E19 Physical Object E19Components Indicates the components of the E22.
E22 Human-Made
Object

E22Dolmen Comprises instances of archaeological sites (e.g.
dolmen X).

E22DolmenComponent Indicates the E22 parts.
E28 Conceptual Object E28ConceptualObject Indicate the source of the information for the E28.
E31 Document E31Document Indicate the source of information for the E22.
E41 Appellation E41Designation Comprises the designation of the E22.

E41DesignationMaps Indicate the designation that identifies the E28.
E41AppelationOfE18 Comprises the designation of E18.

E42 Identifier E42GlobalID Indicate a global identifier to each unique E22.
E42LocalID Comprises the identifier of the monument as indicated

by E31.
E42AssignedTypeID Comprises the identifier of the E18 as indicated by the

E28.
E42PolygonID Comprises the identifiers for each geometry extracted

from the E28.
E52 Time-Span E52TimeSpanHumanMadeObject Indicate when E22 was built.

E52TimeSpanDocument Indicate when E31 was released.
E52TimeSpanAcquisition Indicate when E31 information was extracted.
E52TimeSpanMaps Indicate when E28 was released.

E53 Place E53Place Indicate the place designation for E22 and E18.(e..g,
municipality and parish).

E54 Dimension E54DimensionValue Indicate any dimension value type used to describe an
E22 or E18 feature.

E55 Type E1CRMEntityType Indicate E22 in a narrower context (e.g. dolmen).
E55TerminologyType Comprises the terminology provided by E28 to

represent E18.
E55TypeObject Indicate E28 representation format.
E55ChamberShape Comprises the shape of the E22.
E55TypeOfDocument Indicate the E31’s data type (e.g. book).
LocalizationDistribution Comprises E19’s position (e.g. in situ).

E57 Material ChamberMaterial Comprises the material of the E22.
E58 Measurement Unit E58UnityOfValue Indicate the value unity type used to represent

measurement (e.g. meters).
E60 Number ComponentsParts Comprises the number of parts for E19 and the

number value for E54.
E65 Creation E65CreationEvents Indicate the events leading to the creation of E28 and

E13.
E74 Group E74Group Indicate who created the E28 and E31.
E93 Presence PresenceDescription Comprise information about the presence of parts E22

(e.g. maybe).
E94 Space Primitive E94GeometryWKT Comprises the coordinates of E18 and E22 in WKT.
SP4 Spatial Coordinate
Reference System

SP4Datum Indicate the type of the E94.

SP6 Declarative Place SP6DeclarativePlace Indicate the place defined by the E94 and relate it to
E22 or E18.

SP15 Geometry SP15Geometry Indicate the type of geometry in E94.
geo:Feature GridID Comprises the grid implemented .
geo:Geometry GeometryWKT Location in WKT format
C1 Geometry extracted
from maps

GLE1 Comprises all information extracted of E18 and
geo:Feature that allows insert it into GIS.

Table 5.17. The node labels, corresponding Properties Key definitions
used in the graph database, and descriptions of the information contained
in each node.
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better with indexes. As an example, in query 5.1, the query to retrieve the relation be-

tween E22 and E13 is provided. For this analysis, database access decreased from 284903

to 2395 (db hits), and the cost of run time decreased from 76ms to 13ms. As a result

of this query, the information about E22 pertaining to E13 — each monument analyzed

along with its source — is retrieved.

Listing 5.1. Search example

MATCH (n:E22_Human_Made_Object) -[r:P140_was_attributed_by ]-(m:E13_Attribute_Assignment)

RETURN n, r, m

In all our queries, performance gains were more apparent when searching for spatial

relationships between multiple entities. In query 5.5, the database hits decreased from

1176955 in 198 ms to 646967 in 52 ms for the database with indexes. This query returns

all monuments classified as destroyed, along with their soil type, last use (2018), the

natural rivers closest and if they are in a relief area.

MATCH dolmen =( E31Document:E31_Document {E31Document }) -[: P70_documents ]->(:

E13_Attribute_Assignment) -[: P140_assigned_attribute_to ]->(Dolmen:

E22_Human_Made_Object) -[: P55_has_current_location ]->(: SP6_Declarative_Place) -[:

P168_place_is_defined_by ]->( E94PolygonWKT:E94_Space_Primitive),

(Dolmen) -[: P46_is_composed_of ]-(chamber:E22_Human_Made_Object {E22DolmenComponent: ’’

Chamber’’}) -[P43DolmenDimension:P43_has_dimension ]-( E54TypeOfDimension:E54_Dimension

{E54TypeOfDimension: ’’Diameter’’}) -[: P90_has_value ]-( ChamberDiameter:E60_Number),

(chamber) -[: P44_has_condition ]-(Condition:E3_Condition_State),

WATER=( E17Water:E17_Type_Assigment {E17TerminologyDefinition: ’’Hidrografia ’’}) -[

P2A1Water:P2A1_assigned_definition_types ]->(E55Water:E55_Type)-[P137Water:

P137_is_exemplified_by ]->(WaterLine:E18_Phisical_Thing)-[P67Water:

P67_is_referred_to_by ]->(SP6Water:SP6_Declarative_Place) -[P168Water:

P168_place_is_defined_by ]->(E94Water:E94_Space_Primitive) <-[nearbyWater:geo_sfnearby

]-( E94PolygonWKT),

RELIEF =( E17Relief:E17_Type_Assigment {E17TerminologyDefinition: ’’Hipsometria ’’}) -[

P2A1Relief:P2A1_assigned_definition_types ]->(E55Relief:E55_Type)-[P137Relief:

P137_is_exemplified_by ]->(E18Relief:E18_Phisical_Thing)-[P67Relief:

P67_is_referred_to_by ]->(SP6Relief:SP6_Declarative_Place) -[P168Relief:

P168_place_is_defined_by ]->(E94Relief:E94_Space_Primitive) <-[nearbyRelief:

geo_sfnearby ]-( E94PolygonWKT),

(E18Relief)-[P43Relief:P43_has_dimension ]->(E534Relief:E54_Dimension) -[P90Relief:

P90_has_value ]->(E60Relief:E60_Number),

SOILTYPE =( E17SoilType:E17_Type_Assigment {E17TerminologyDefinition: ’’SoilType ’’}) -[

P2A1SoilType:P2A1_assigned_definition_types ]->(E55SoilType:E55_Type) -[P137SoilType:

P137_is_exemplified_by ]->(E18SoilType:E18_Phisical_Thing)-[P67SoilType:

P67_is_referred_to_by ]->(SP6SoilType:SP6_Declarative_Place) -[P168SoilType:

P168_place_is_defined_by ]->(E94SoilType:E94_Space_Primitive)<-[SoilTypeWithin:

sfWithin]-( E94PolygonWKT),
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SOILUSE =( E17SoilUse:E17_Type_Assigment {E17TerminologyDefinition: ’’SoilUse ’’}) -[

P2A1SoilUse:P2A1_assigned_definition_types ]->( E55SoilUseLevel1:E55_Type)-[

P127SoilUse1:P127_has_narrower_term ]->( E55SoilUseLevel2:E55_Type) -[P127SoilUse2:

P127_has_narrower_term ]->( E55SoilUseLevel3:E55_Type)-[P127SoilUse3:

P127_has_narrower_term ]->( E55SoilUseLevel4:E55_Type {b: ’’COS2018 ’’}) -[P137SoilUse:

P137_is_exemplified_by ]->(E18SoilUse:E18_Phisical_Thing) -[P67SoilUse:

P67_is_referred_to_by ]->(SP6SoilUse:SP6_Declarative_Place) -[P168SoilUse:

P168_place_is_defined_by ]->(E94SoilUse:E94_Space_Primitive)<-[SoilUseWithin:sfWithin

]-( E94PolygonWKT)

WHERE Condition.E3ConditionState = ’’destroyed ’’

RETURN *

In terms of hardware requirements, a CPU Core i7 with a memory of 16 GB is recom-

mended. The test execution was carried out on a machine with the following configuration:

AMD Ryzen 7 5800 8-Core Processor, 3401 Mhz, 8 Core(s), 16 Logical Processor(s) with

16.0 GB of RAM.

5.6. Information Retrieval and Discussion

The LPG model provides a robust basis for representing contextual and spatial infor-

mation. The model implemented consists of several subgraphs derived from the di↵erent

types of data sources used. With the LPG, we aimed to identify topological and fea-

ture multi-relationships between entities based on semantic and spatial relations. The

Figure 5.8) illustrates how the di↵erent subgraphs are spatially related to each other,

providing a visual representation of how geographic objects are interconnected.

Figure 5.8. Visual illustration of the constructed spatial-LPG.
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A spatial analysis of monuments and their surrounding landscape features is conducted

at the instance level. To ensure that the spatial relationships between geographic objects

were correctly interconnected and to verify this, we performed data retrieval. To achieve

this, we conducted retrieval tests using Cypher queries to return all nodes and relation-

ships related to the monuments and their connections to the landscape, verifying the

results against the original source data. For all queries, whether involving one or multiple

relationships, the results were returned in milliseconds. Additionally, spatial relationships

were manually confirmed using GIS. While the retrieval process and the GIS verification

are separate, both approaches confirm the accuracy of the spatial relationships. This

suggests that the LPG accurately represents the entities and their spatial and topological

relationships, which facilitates data retrieval.

We utilized the LPG to retrieve information that allowed us to confirm known truths

about the spatial distribution of monuments within the area of interest. In this case, it

is widely accepted that monuments in this AOI are typically located near watercourses,

rocky outcrops, areas with gentle slopes, and soils with low agricultural capacity — I call

these characteristics of Classification Keys that show the interplay of dolmens with the

environmental context. Additionally, it is also well-established that monuments tend to

be located in close proximity to one another.

Our analyses were conducted both at the level of collective (group analysis) to confirm

known patterns and at the individual level to understand their specific spatial contexts.

This aimed not only to confirm this known domain knowledge but also to uncover nuances

and particularities that could further enrich our understanding of these monuments and

their interactions with the landscape.

For example, group analysis for dolmens’ proximity was performed. Within the studied

region, the average distance between dolmens of the same type is approximately 300

meters. In fact, 84% of the dolmens (62 out of 67) were within less than 1000 meters from

one another. This data demonstrates a clear tendency for these sites to cluster together.

In addition to group analysis, we performed analyses focused on individual instances to

identify broader spatial patterns among the sites. For example, Figure 5.9 illustrates the

proximity between the dolmen Anta Capela de S. Diniz (D11) and its closest monument,

dolmen Ferragial de Nossa Senhora (D34), as returned by the LPG subgraph. The figures

represent the data sources using a colour scheme: Spatial and geometric details are shown

in blue, general concepts are shown in light green, specific concepts are shown in dark

green, descriptions of concepts are shown in yellow, and metadata details are shown in

beige. This information not only provides insights into the spatial relationships of the

dolmens but also includes metadata – indicating the source of information (PA), specific

attributes (conservation states: good for D11 and poor for D34; measurements: 4 meters in

diameter for D11 and not applicable for D34, and geometric details (spatial coordinates).
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Figure 5.9. Proximity between dolmen Anta Capela de S. Diniz (D11 –
pink node) and the nearest dolmen, Ferragial de Nossa Senhora (D34)

An example of information retrieval to analyze the interaction between specific dol-

mens and all geographic objects related to the landscape surroundings is shown in Fig-

ure 5.10, which shows the interaction between dolmen D11 and its environs. In the image,

the data sources, soil type where the monument is located; the soil use, indicating the cur-

rent land use in the area (urban area); the water lines, showing the distance between the

dolmen and the nearest waterline (700m) and precisely which waterline is nearby (Ribeira

da Tera); a hypsometry level indicating that the dolmen is situated at an elevation of 190

meters is shown. The figures represent the data sources using a colour scheme: Spatial

and geometric details are shown in blue, general concepts are shown in light green, spe-

cific concepts are shown in dark green, descriptions of concepts are shown in yellow, and

metadata details are shown in beige. Spatial relationships are depicted using ”within”

(in blue) and ”nearby” (in red) to show how di↵erent entities are interconnected. It is

possible to retrieve the interaction between all of these entities, regardless of whether

they are adjacent or not. We prioritized the E18 Physical Thing class closest to the E22

Human-Made object class in this case. It is possible to analyse how each thing interacts

with its surroundings based on any coordinate point.

This analysis is advantageous because it integrates multiple spatial relationships, links

multiple subgraphs, and provides a comprehensive semantic understanding of the inter-

connected elements. Visualizing these connections highlights interactions among entities

within a broader context. The search can be extended to retrieve information on all mon-

uments, allowing queries that identify patterns or define specific criteria, such as finding

structures with one or several similarities or di↵erences. This flexibility enables users
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Figure 5.10. Information retrieval of the Anta Capela de S. Diniz and its
spatial relation with the landscape.

Monument Water Line Topographic
Relief

Soil
Type

Tera 4 Tera River 165m Pmg
Forca Velha Tera River 180m Pm
Monte das Figueiras Tera River 170m Pg
Tera 5 Tera River 170m Pg
Adua 5 Tera River 175m Pgn
Ferragial da Fonte Tera River 175m Pgn

Table 5.18. Retrieve information where monuments classified as “de-
stroyed” share similar characteristics – water line, topographic relief and
soil type.

to refine searches based on semantic relationships, uncovering insights about monuments

that share common features or exhibit distinct characteristics. For example, which mon-

uments share the same condition (e.g., ’destroyed’), water line proximity (Tera River),

topographic relief areas and soil type and, in terms of spatial relations, are they in proxim-

ity of each other. Table 5.18 shows an example that highlights this retrieval of information.

Using queries, it was possible to perceive that, in spite of the AOI’s predominantly

flat terrain, which spans altitudes between 50 meters and 205 meters, revealed a marked

preference for site placement on slightly elevated terrain. A total of 37 dolmens were

found at altitudes exceeding 160 meters, 25 located between 100 meters and 159 meters,
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Dolmen Quantity Soil
Type

Condition

Outeiro da Forca 1 Pdg destroyed
Têra 4 1 Pmg destroyed
Entreáguas 4; Anta do Forno 1 Sr destroyed
Forca Velha 1 Pm destroyed
Folha da Anta 1 A destroyed
Entreáguas 1 Vt destroyed
Freixo 1 Pg, Arg destroyed
Pućıcaros 2, Pućıcaros 1 2 Pdc,

Pdg
destroyed

Monte das Figueiras, Têra 5, Madre de Deus 1,
Casa Branca 2

4 Pg destroyed

Oliveira 2; Anta do Cabeço da Anta, Adua 5,
Gonçala 2, Ferragial da Fonte

4 Pgn destroyed

Table 5.19. Retrieving data from the source ”PA” about monuments des-
cribed as ”destructed” and the soil type on which they are situated.

and 11 below 100 meters. The majority of these sites are located along prominent terrain

reliefs.

Diverse analyses can be performed to return information about spatial relationships

between E18 Physical Thing and E22 Human-Made Object classes. For example, contour

lines can be analyzed by examining whether steep slopes or reliefs follow local contour

lines around monuments and how these interact with water lines or soil use. This allows

for an assessment of whether the areas adjacent to the monument are higher or lower,

which can provide insights into how these choices influence the monument’s condition or

help with theories of choices for its placement.

By overlaying dolmen locations with regional soil types, a clear relationship between

monuments and specific soil characteristics emerged. The analysis confirmed that dolmens

are predominantly situated on PG (Litholic Soils) and ARG (Rock Outcrops) soils. PG

soils are shallow and rest atop granite bedrock, providing excellent drainage and limiting

deep root growth. In contrast, ARG soils are located near exposed granite or quartz

diorite rock, o↵ering minimal soil cover. These soil types not only influence vegetation

and land but can impact decisions related to settlement and construction.

Only a few sites appeared in the following soil types: Argiluviados Pouco Insaturados

(Pgn, Sr, Pdc, Pdg, Pmg, Pag, Pm, Pac and Vcm), solos incipientes (A, At) and other

types of solos litólicos (Vt and Par). No monuments were found in areas of black, brown,

and reddish brown clay, calcarios, and Hidromórficos soils. Barros are evolved soils of

profile A, B or C as well as solos calcarios and podlizados soils (Servico de Reconhecimento

e de Ordenamento Agrário 1970). When soil’s conservation status is correlated with

monument destruction, it was observed that ”destroyed” monuments were predominantly

located in PGN and PG areas, as shown in table 5.19.
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The information extracted from the soil type map contained information coded as

symbols, so we mapped the explanatory legend of soil types into the LPG, enhancing

understanding and accessibility by providing contextual information and enabling seam-

less connections between related data. Additionally, Appendix 8.1 includes a table with

explanation notes for each code.

Today’s landscape reflects generations of ecological shifts and human interventions.

A number of factors can prevent the identification of the megalithic structures, including

the landscape (such as in urban areas or areas with high vegetation that di�cult the

observation of the monuments). The landscape in the area is dominated by Holm Oak

Agroforestry Systems (SAFs) and most monuments (43) in di↵erent conservation states

are located in these areas. The monuments’ concentration spots are followed by pastures

(9 monuments), temporary crops (6 monuments), oak forests (4 monuments), eucalyptus

plantations (3 monuments), olive groves (3 monuments), and SAF cork oak agroforestry

systems (2 monuments). Other land uses all have one monument.

Besides the SAF zone, the improved pasture areas contain the most destroyed classified

monuments (5), with no one monument classified as in good condition. For understanding

soil evolution related to the monument position, the land use representation is structured

to enable spatiotemporal retrieval (figure 5.11). It was found that land use changed very

little between 1995 and 2018. As a result, we focus on the most recent land use data to

examine how it relates to dolmen’s positioning.

Figure 5.11. Visual representation of the knowledge graph for all COS.
They can share similar classes, but each polygon is associated with a specific
source of information.

Considering that land use patterns have changed since the construction of archaeologi-

cal monuments such as those built during the Neolithic time, it is important to emphasize

that land use patterns do not impact the placement of dolmens since they reflect modern

uses. Instead, the current land use allows us to contextualize the dolmens within their
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present landscape. It provides a better understanding of their location relative to contem-

porary land use patterns. It is possible that these land uses contributed to the monument’s

degradation, and this information can be used to understand this relationship.

Additionally, an analysis was conducted to determine the relationship between dolmen

and water sources. Around 49% of the dolmen were located between 30 and 400 meters

from a water source. This number increases to almost 90% when the area increases to 1

km. The maximum distance measured from a water source was less than 2 kilometres.

This proximity to water suggests a correlation between dolmen locations and access to

water. This could reflect preferences for placing monuments near vital resources.

The river near which most monuments are found is the Tera (33 monuments), followed

by Matalote (8), Almadafe (5), Sorraia (3), Raia (3), Divor (2) and Freixo (1). In total,

7 of these are in good condition near the Tera River, 2 are in Almadafe, and 1 is in

both Divor and Raia. Figure 5.12 provides a detailed view of the 2 monuments and

their proximity to Ribeira da Tera and each other. The queries can be extended to

understand the relationship between all things based on specific information about the

monuments, including size, shape, material, or specific rivers such as names, composition

and state of these and their geospatial relationship with each other. It is important to

note that the hydrography data used for this analysis reflects the present-day situation.

While the current proximity of dolmens to water sources o↵ers valuable insights, it is

crucial to recognize that waterlines and other geographical features may have changed

over millennia. This is due to natural processes and environmental shifts.

Figure 5.12. A direct path to the final entity is shown — bypassing in-
termediate connections that connect other entities sequentially — showing
how Remendo 2 and Tera 1 relate spatially to Tera River.

Based on the patterns identified through data retrieval, we confirm classification keys

to use as domain rules since these features provide valuable insight into dolmen’s spatial
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relationships and contextual significance. These domain keys can be used as conceptual

guidelines derived from previous observed patterns and correlations, which help in un-

derstanding the typical characteristics and spatial arrangements associated with dolmens

and their surrounding landscape. Table 5.20 illustrates the main patterns observed in the

placement of the dolmens relative to their surroundings.

Classification Keys: Interplay of dolmens with Environmental Contexts
Proximity Among dol-
mens:
( 1km distance)

Site Density: When a site is identified in a specific location, there’s a high
likelihood of finding at least two more dolmens within an immediate surround-
ing.
Average Proximity: These sites tend to be located at an average distance
of 300m – with 80% of these with 1Km from another.
Isolation Exceptions: While many sites are clustered, some are exceptions
and can be found isolated (� 1km 3km).

Proximity with water
lines:
( 1km distance)

Average Proximity: On average, these sites are located within a distance of
417 meters from natural water sources.

Predominant Proximity: A majority of these sites(approximately 80%) are
situated within 1 km of a drinkable water source.
Cluster Indication: Most of these sites are near water lines, especially along
the Tera river in AOI.

Located near rock out-
crops:
( 1km distance)

Geological Preference: These sites are mainly located on PG and ARG soil
types — granite soils.

Soil Depth and Rock Proximity: Predominant attention to areas where the
soil is either minimal or non-existent due to the underlying rock’s proximity;

Located in relief areas:
(�160m hight)

Relief Preferences: There are mainly sites above 160m altitude.

Table 5.20. The main interactions between dolmen and their surround-
ings that have been identified

These insights provide a deeper understanding of the relationships between the objects

analysed and their surrounding landscape elements, allowing for a more comprehensive

analysis of their context. The retrievals have validated theories regarding the placement

of these monuments, showing their tendency to be situated on elevated terrains and near

rocky outcrops and water lines [56, 88, 86].
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CHAPTER 6

KG-ML Model Implementation

6.1. Introduction

Object detection approaches that leverage knowledge-based systems, where semantic in-

formation is used to provide context, rely heavily on a well-structured database. Such a

database must contain detailed and interconnected information that can be used to en-

hance data-driven methods. By combining object detection with semantic enrichment and

classification, the goal is to enhance both the precision and explainability of archaeologi-

cal monument recognition. Ultimately creating the basis for a robust reviewer for object

detection that helps deal with the false detections returned and decreases the necessity of

extensive manual evaluation of incorrect outputs.

To explore the application of this concept in satellite image object detection for the

recognition of archaeological monuments, we developed a new approach. Specifically, we

created a Labelled Property Graph (LPG) to represent the monument and its surround-

ing context, employing this structured representation as the foundation for a Knowledge

Graph (KG)-Machine Learning (ML) reviewer for object detection outputs. Developing

such a hybrid approach requires a detection-based approach, a semantic model, and a

combination of both. This chapter explains the methodology and results of our KG-ML

model. It begins by a detailed explanation of the data acquisition process and describes

how the collected data was prepared for use in Section 6.2. Next, it introduces the pro-

posed algorithms in Section 6.3 and discusses the implementation process, focusing on

the training strategies, model testing, and the metrics used to analyze the outputs in Sec-

tion 6.4. Finally, the chapter concludes with a presentation of the results in Section 6.5,

discussing the findings, their implications, and how they align with the study’s objectives

(Section 6.5).

In this approach, we aimed to illustrate a potential use case for the implemented LPG

and assess whether, with the information structured in this way, the model could learn

the contextual patterns that experts have identified as significant in the positioning of

this type of monument.

6.2. Data Acquisition and Preparation

The data used in this phase comes from the object detection approach described

in Chapter 4. The object detection data consists of the outputs obtained from detecting

potential monuments in the area of interest. This data includes information on the spatial

coordinates of the image, along with scores assigned to each detection within an image,

referred to as Point of Interest (POI)s. Each POI is defined by the image’s ID, its spatial
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coordinates, and the detection score (e.g., FPC1: 38.913757, -7.993010, tensor(0.9950)).

We used the POIs from Dataset 2, which comprises results from 16 images with dolmens

and 70 images without dolmens. We also included POIs from a dataset referred to as

the ’prediction set’. This dataset contains results from 100 images from the same area

of interest, which had no monuments but returned 64 false detections. The POIs of the

analyzed locations are shown in Figure 6.1.

Figure 6.1. The map highlights the AOI, with green POIs representing
sites used for training/testing and red POIs indicating non-sites. Black
POIs show the predicted sites after the model has been trained and tested.

In the image analysis approach, only 16 monuments were considered across the avail-

able images, which limited the number of monuments that could be analyzed using object

detection, consequently restricting the number of monument locations that could be used

to train our KG-ML model. Out of these 16 POIs, outputs from 14 were consistently

retained for the training and testing phases, while the remaining 2 were excluded and

reserved exclusively for the prediction phase. However, the total number of monuments

in the area of interest is 94, and these 16 detected monuments represent only a fraction

of the full set. The other 78 monuments were not detected during photo-interpretation

tasks due to various challenges, such as their conservation state (e.g., destroyed or in poor

condition), coverage by modern layers, or other factors, and since they were not visible

in the manual interpretation analysis, they were not analyzed by the automated object

detection.
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To overcome the limitation imposed by the visible monuments, we leveraged the full

set of 94 monuments in our LPG to train our KG-ML model. By utilizing the known

locations of all monuments in the Areas of Interest (AOI), even if they were not visible in

the images, we could use them as POIs to capture the surrounding pattern information

to enhance the model’s performance. This allowed us to create a scenario where we could

use the data from these monuments to augment our training and testing dataset. The

scenarios were defined as follows:

(1) Test Scenario 1:

• Training/Testing Set: 14 Points of Interest (POIs) from Dataset 2.

• Prediction Set: 178 POIs, including 100 without dolmens and 78 with dol-

mens.

(2) Test Scenario 2:

• Training/Testing Set: 14 POIs from Dataset 2, plus the rest of known dol-

mens.

• Prediction Set: 103 POIs, consisting of 100 without dolmens and 3 with

dolmens.

The data for analysis in each test scenario was divided into training and testing sub-

sets. Outputs from all 70 POIs without monuments were consistently included across

all scenarios. For images containing monuments, the dataset was adjusted to define two

distinct configurations. Scenario 1 contains only the POIs returned by object detection

during the test phase. In contrast, Scenario 2 incorporates not only these POIs but also

the information about the other monuments in the LPG. The POIs in each scenario were

distributed between the training and testing phases. The POIs not used in the train-

ing/testing were reserved for the prediction phase, where the model was evaluated with

unseen data, referred to here as the ”prediction scenario”. The data used in the pre-

diction scenario was derived from the object detection analysis explained in Section 4.6.

Our dataset, referred to as the ”prediction set,” includes images of 100 POIs that did not

contain monuments but were analyzed by the object detection model, resulting in 64 FPs.

6.3. Proposed Algorithms

In this section, we present our proposed approach, which combines object detection

outputs with information extracted from our LPG. Our approach integrates the results

from the object detection phase with a structured knowledge base, utilizing domain knowl-

edge to improve these results. Figure 6.2 shows the flow of our proposed model.

In the first step, during pre-classification, the object detection model obtains scores

for each identified monument. These scores, along with the coordinates of the analyzed

images, form the basis for creating POIs, each representing a monument or a potential

monument. In the second step, the POIs are used as inputs to query our LPG, which

contains detailed information about the monuments and their surrounding landscape. The

relevant landscape features, are defined in Table 5.20 in section 5.6. The features include
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Figure 6.2. Pipeline architecture.

proximity to other monuments, water bodies, rock outcrops, and topographic relief areas.

The information is retrieved from the KG to enrich each POI with domain knowledge

about the AOI.

In the final step, the enriched data — combining the object detection outputs with

the landscape features from the LPG — is used to train our KG-ML model. The training

process leverages the proximity of monuments to key landscape elements, providing the

model with the ability to use domain knowledge to classify monuments based on their

environmental context. To train our predictive model, we tested di↵erent supervised

machine-learning algorithms, implemented using Dataiku [262]. The algorithms used were

K Nearest Neighbours (KNN), Logistic Regression (LR) and Least Absolute Shrinkage

and Selection Operator (LASSO)-LARS, and decision tree models as Random Forest

(RF) and Gradient Boosted Trees (GBT), Support Vector Machine (SVM), Single Layer

Perceptron (SLP) and the Stochastic Gradient Descent (SGD) [144].

6.4. Implementation

In this section, we describe the KG-ML implementation performed in Dataiku [262]. This

is a Data Science Studio platform that provides a workflow, enabling users to create

scripts for data cleansing, normalization, and enrichment visually and interactively. This
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approach simplifies the entire data science process, from data preparation to model de-

velopment and deployment. Aside from providing an interface for manipulating data, it

also provides users with the ability to integrate multiple data sources and handle large

amounts of data e�ciently [262]. Additionally, Dataiku o↵ers AutoML algorithms that

automate the process of model selection and tuning, further streamlining the workflow.

To retrieve the data from the KG, the POIs (defined in Section 6.2) were used as input

to query and retrieve contextual knowledge from the LPG (described in Chapter 5). This

task was accomplished by creating Python scripts to search and retrieve relevant informa-

tion. These scripts focused on the spatial and semantic relationships between dolmens and

landscape elements. The data is retrieved based on spatial relations, specifically ”within”

and ”nearby”.

The Python Shapely module was used to determine whether a point (each dolmen)

is inside a polygon (representing land use or soil type) or near another point or line (e.g.,

proximity to other dolmens, water lines, relief features, or other land uses or soil types).

The distance() method determines the shortest distance between two geometries [263].

As an example, the following code calculates the distance between POIs, which are poten-

tial detections, and nearby landscape elements, represented by points, lines, or polygons.

In this case, the distance between POIs (represented as points) and rivers (represented as

multilines) is being calculated.

point = Point(poi[0], poi [1]) # POIs latitude and longitude

multiline = shapely.wkt.loads(r[’’polyg’’]) # transform the WKT polygon in a shapely

object

dist = point.distance(multiline) # compute the distance between the geometries

In general, the LPG is used to provide context to the scene by introducing unseen

information that describes what is present in the AOI. For each POIs, the LPG provides

structured and contextual data by identifying topographical relationships and returning

key attributes such as soil type, land use, altitude, and water lines to the AOI.

Grid-based searches were used to optimize searches within the LPG. Rather than

performing a full search across all nodes to identify the nearest one, we first determine

which grid cell contains the target point based on its spatial coordinates. This approach

significantly narrows down the search space, allowing us to focus only on the relevant

subset of data. Once the grid is identified, we can e�ciently retrieve information from

the surrounding area, reducing the computational cost and time associated with searching

large datasets. This method enhances the scalability of the system and supports the rapid

retrieval of contextually relevant information, which is crucial for tasks such as monument

detection and spatial analysis within the LPG.

When information is retrieved from the LPG, domain-specific knowledge is used to

create new features for the waterlines and contour lines, which consist of various numerical

values. For example, when the distance to a water line is less than 1000 meters, it is

classified as 1, indicating proximity. The distance is 0 when it is 1000 meters or more

away.

91



Similarly, for contour lines, elevation zones were categorized using interval binning

into four ranges: Category A for elevations below 50 meters, Category B for elevations

between 50 and 100 meters, Category C for elevations between 100 and 150 meters, and

Category D for elevations above 150 meters.

This approach was not applied to semantic information, particularly when dealing

with a set of specific concepts such as soil type and land use descriptions. Although it

is non-ordinal data, its values represent categorical information. Therefore, the semantic

data was kept in its original form, preserving its contextual significance for more advanced

analysis.

6.4.1. Training and Testing

To analyse all POIs and their respective context that were retrieved from the AOI,

the dataset was divided into training and testing portions — 80% for training and 20%

for testing — for each of the training and testing scenarios described earlier in the Sec-

tion 6.2. Like previously referred, our prediction task is a binary classification problem to

distinguish images with dolmen(s) and without. To address the existing class imbalance,

class rebalancing with an approximate ratio was performed by adjusting class weights to

create a more balanced distribution of classes and improve model performance by mit-

igating bias toward any particular class. A 5-fold cross-validation strategy was used in

training.

The training was carried out using the various algorithms already described. The

Dataiku platform simplifies the process by o↵ering predefined algorithm presets, some

of which can be customized, while also suggesting optimal values based on the dataset.

Some parameters were tailored for each algorithm to optimize performance, as indicated

in the Table 6.1.

The hyperparameters for all algorithms use the grid search strategy for optimization.

This approach performed better in our tests than the random search option, although

the di↵erences were minimal. Features handling was defined in the model to take into

account the information about soil type, soil use, topographic relief, water line and the

score to identify the class. Feature engineering is the process of constructing new features

from existing ones. The goal is to derive new combinations and representations of our

data that might be useful to the machine learning model [262]. For our case study, we

defined explicit features to take into account in this process focusing on the interaction

of soil type with relief and water line.

The training parameters described in Table 6.1 were applied to all scenario datasets

using the same algorithms. This allowed for a comparison of the model’s performance

in handling varying data and conditions. After the model was trained, the respective

prediction set was evaluated corresponding to the remaining hold-out set of data, which

was not used in the training and testing phase.
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Algorithm Parameters / Options
KNN K = 5 (number of neighbors);

P = 2 (Euclidean distance);
LR L2 regularization;

Penalty parameters = 0.01, 0.1, 1, 10, 100;
LASSO All features included;

Number of tests: 100;
RF Number of trees = 100;

Maximun depht = 12;
GBT Number of trees = 100;

Maximun depht = 3;
Loss = Exponential (AdaBoost);

SVM Kernel = Sigmoid;
Gamma = 1 / (number of features * variance);
Stop Criteria = 0.001;

SLP Hidden layer size = 1;
Activation function = ReLU;
Stop Criteria = 0.001;
ADAM solver

SGD Loss Function = Modified Huber;
Stop Criteria = 0.001;
L2 regularization;
Alpha = 0.001

Table 6.1. Hyperparameters and options used in the machine learning
algorithms for model training in Dataiku.

6.4.2. Feature Importance Metrics

When evaluating the feature importance in a knowledge-based machine learning ap-

proach, several metrics can be used to measure the impact of input features on the model.

Shapley values identify each feature’s role. This value can be understood as a weighted

average of contributions to every possible subset of features [264]. This method estimates

the average impact on the prediction by switching a feature’s value from the one in a

random sample (x) to the one in the sample to be explained (y) while also considering all

possible combinations of feature switches. It computes predictions before and after the

switch, repeats the process, and averages the results to determine the feature’s impact

(i) [262]. It considers all possible combinations of features, whether they are directly or

indirectly impacting the model’s output. Kumar et al. (2020) highlight computational

complexity and feature selection as limitations for this conditional value feature. Calculat-

ing the exact Shapley value is di�cult since it requires knowledge of multiple distributions

(n combinations), which is computationally intensive and often requires approximations.

Additionally, because influence is determined based on any set of features, selecting which

features to include is crucial, as it impacts the explanations [264].

Shapley and ICE (Individual Conditional Expectation) can be used to compute the

individual prediction explanations [262]. In contrast to Shapley, ICE focuses on a single
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feature, estimating functional relationship for each observation [265]. It explains the im-

pact of a feature by switching only its value in a sample (x) to di↵erent values, computing

predictions (y), and comparing the actual prediction for (x) with the average of these

predictions (y). ICE doesn’t account for interactions between features as Shapley does

but provides a simpler, more localized view of a feature’s e↵ect on predictions [262].

Feature importance metrics, play a crucial role in determining the model’s performance

by providing detailed information on each feature’s importance. By using techniques

like Shapley values, we can assess how each feature metric contributes to the model’s

precision, with each feature being assigned a weight that reflects its impact. The model’s

performance metrics include precision for the training phase and a cost matrix to analyse

False Positives (FP), True Positives (TP), False Negatives (FN), and True Negatives (TN)

(explained in Chapter 4.5.2).

6.5. Results and Discussion

This section presents the results obtained from our experiments and provides an anal-

ysis of the findings. As shown in Table 6.2, Scenario 1 yielded the worst performance

overall. This may be attributed to the limited number of POIs available for testing, with

only 14 data points. For instance, some algorithms, such as KNN and RF, achieved ex-

ceptionally high precision scores of 1.00, while others, like LASSO, performed poorly with

a score of 0.26. In contrast, Scenario 2 demonstrated consistently strong performance

across all tests, as also shown in Table 6.2. This improvement can likely be explained

by adding more POIs for training the model, providing richer information about the AOI

and enabling pattern identification across the area analyzed. Consequently, all subsequent

analyses presented in this study are based on the results obtained from Scenario 2.

Algorithm Test Scenario 1: Precision Test Scenario 2: Precision
RF 1000 0,91
GBT 0,8 0,8
LR 0,8 0,81
SVM 0,44 0,81
SGD 0,66 0,83
KNN 1000 0,9
LASSO 0,26 0,91
SLP 0,44 0,91

Table 6.2. Performance metrics for tested algorithms in Scenario 1 and
Scenario 2.

Most algorithms performed consistently, with several achieving notable results, as

shown in Table 6.3. All models trained using SGD, Lasso Path, SLP, and RF achieved an

average precision of around 80% or higher. These models also perform better when tested

with di↵erent parameters in this case study. The SLP algorithm had better performance,

with an average precision of 85%.
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Algorithm Base Average
Precision

Average F1-score

RF Decision Tree 0.81 0.84
GBT Decision Tree 0.80 0.80
LR Linear Model 0.77 0.86
SVM Kernel Function 0.78 0.80
SGD Optimization for Linear

Model
0.80 0.81

KNN Distance Metric 0.79 0.77
LASSO Linear Model 0.80 0.85
SLP Single-Layer Neural

Network
0.85 0.87

Table 6.3. Average precision and F1-score of KG-ML

In all tests, the top models achieved precision rates from 70 to 91 %. A number of

factors contributed to the improvement in precision, including scoring of data derived

from the previously used object detection approach and feature generation techniques

that analyse nonlinear relationships among landscape elements, as described in the model

training section. The techniques used were able to maintain or enhance the performance

of most models, each contributing to overall precision.

Continuing our evaluation, the SLP-based model demonstrated strong performance

across key metrics. This model achieved an average precision of 85%, a recall of 85% and

an AUC (Area Under the Curve) of 89%. These metrics indicate a balanced performance,

with high precision emphasizing the model’s e↵ectiveness in minimizing false positives,

while a high recall reflects its ability to correctly identify true positives. The confusion

matrix (as shown in Figure 6.3) further illustrates the model’s robust performance, high-

lighting its capability to accurately use contextual information to classify the presence or

absence of dolmens across the dataset.

Figure 6.3. Confusion Matrix.

Most of the high-performing models prioritized the spatial relationships of the monu-

ment with water lines and soil type as the most influential features, followed by topography

relief, land use, and finally, the detection score output from the pre-classification phase
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as shown in Figure 6.4. For SLP algorithms, as demonstrated in the image, the spatial

relationship with soil type, water lines and topographic relief areas was identified as the

most critical factor in the model’s accuracy. Land use played a secondary role, while

object detection scores, although useful, had a lesser impact than the primary features.

Even though the scores were not particularly solid, their inclusion in model training im-

proved performance. In this way, scores can be used to capture patterns that, although

subtle, may still be significant in certain circumstances and ultimately help guide the

model. Additionally, the model can learn to distinguish between detections with high and

low confidence by using the scores as a secondary element. By implementing a hybrid

approach, in which scores are considered secondary information, overall performance was

optimized.

Figure 6.4. Feature importance — explainability metric

The feature ”soilType” has the highest impact on predictions, with a feature impact

of 0.92 and an information gain of 0.69. These help to explain the impact of features

on the predictions of the model. In this case, for example, the presence of soil type Pg

is linked to higher predictions, while soil types Vt are associated with lower predictions

(Figure 6.5).

The second most impactful feature is ”distWater”, with a feature impact of 0.72 and a

correlation of 0.71. Higher distance-to-water values are associated with higher predictions.

The feature ”topographic relief” has an impact of 0.62 and an information gain of 0.68.

Higher predictions are associated with Type D, while lower predictions are associated with

Type C. Since there are no cases of prediction of 1 in train sections for A and B, the model

is unaware of this modality (unrepresented in train). The partial dependence for relief

features is shown in Figure 6.6.

The model provides insights into why each object was classified as Dolmen or non-

Dolmen. The model accurately predicted 91% of the non-dolmens and 85% of the dolmens,

highlighting its e↵ectiveness in separating the two classes. Figure 6.7 shows various cases

where false positives returned by object detection were correctly identified by the KG-ML

model. The KG-ML model factors distance from water, topographic relief, soil type, and
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Figure 6.5. Partial dependence for soil type — explainability metric

Figure 6.6. Partial dependence for topographic relief — explainability
metric

land use. If a detection is made spatially over 1 km from a water line, in low-indication

soil types (e.g., Vcx and Pc), and in a low-level relief area, and even if the detection

output score is high or low, the KG-ML can correctly classify the point as not being a

monument.

Figure 6.7. Individual explanations for an FP POI.

97



These results are particularly noteworthy given the limited data available for train-

ing and testing. Despite the small dataset, several algorithms performed remarkably

well. This suggests that landscape context information e↵ectively aids in recognizing pat-

terns and predicting AOIs for dolmens. It underscores the potential of these models to

generalize and make accurate predictions even with constrained data. This robustness

across multiple algorithms highlights the value of landscape context in enhancing model

performance. It reinforces the reliability of these approaches in class prediction under

data-limited scenarios. Next is shown the use of the model for new POIs

Using the configuration described earlier, we tested the predictive model’s performance

with unviewed POIs. Using this KG-ML approach, FPs are reduced by 84%. In the ap-

pendices, Table 8.2 shows the POIs for false detections returned by the object detector

that were given new scores by KG-ML. Of the 64 incorrectly classified images, only 10

remained. Additionally, the table contains the top 3 elements that influenced the model’s

decision and the weight assigned to each, derived from the combination of relevant rela-

tionships. Despite additional classification datasets and a wide range of POIs across the

185 km2 area of interest, the model maintained its high performance. This indicates that

the model can adapt well to new POIs in the AOI and that its pattern recognition capa-

bilities are e↵ective for identifying AOIs. Through the use of environmental information,

the model enhances detection scores significantly, even though it doesn’t directly detect

monuments. In addition to improving detection scores, it provides valuable insights into

relevant patterns and features associated with dolmens in diverse locations.

In analyzing the results of a test set, using POIs with known dolmens that are not

visible in images, the model was capable of precisely identifying them. This highlights

the model’s performance not only in identifying AOIs but also in improving monument

location detection precision. These results suggest that the model performs well in en-

hancing detection precision and providing valuable insights into classifying true monument

locations.

Overall, these results highlight the model’s e↵ectiveness in enhancing detection preci-

sion and minimizing false positives while also suggesting that further optimization could

help capture all true positives and reduce missed detections, even when new coordinates

and datasets are introduced.
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CHAPTER 7

Conclusions

In this final chapter, we present an overall view of the work reported in this disserta-

tion. The following sections begin with a detailed discussion of the key components of

the project in Section 7.1, followed by an outline of the contributions of this work in

Section 7.2, and conclude with insights and possibilities for future developments (Sec-

tion 7.3).

7.1. Global Considerations

The literature review shows that object detection approaches contribute to the recogni-

tion of archaeological sites from satellite images, allowing archaeologists to manage vast

datasets more e�ciently. These approaches facilitate faster identification of heritage sites

across extensive geographical areas. However, there are still limitations. While promising,

these methods often generate false positives, especially when identifying small features.

Also, these approaches tend to focus on simpler forms with distinct geometric features or

specific spectral behaviours, such as material reflectance in agricultural fields that con-

trast with the surrounding landscape. Not surprisingly, in the Areas of Interest (AOI)

we worked on (Pavia, Portugal), where both the dolmens, our target object, and the sur-

rounding terrain share the same spectral behaviour (granite for both soil and monument)

and where the monuments are too small to be easily visualized ( 4 meters in diameter),

detection proved be particularly challenging — returning many false detections.

The False Positives (FP)s returned by automated approaches to archaeological site

detection are traditionally analyzed manually by specialists. In these interpretations, ex-

perts bring their domain knowledge to the table, enabling them to better understand and

interpret the context. By incorporating domain knowledge into automated approaches,

this process could be streamlined, with fewer data points that will require immediate

attention. In fields like remote sensing, Knowledge Graph (KG)s are already seen as the

future for contextualizing scenes and improving object detection. The implementation of

KGs, representing domain knowledge, for both cultural heritage representation and land-

scape analysis is gaining popularity, however they are addressed separately at the same

time that info to derive this domain knowledge is not interoperable, as the literature

demonstrates.

By implementing a model that interrelates information about the landscape and the

monuments, we create a Labelled Property Graph (LPG) model that can be used to

provide context for what surrounds a site. Using multiple Vector Topographic Maps

(VTM)s, we integrated isolated layers of spatial data and incorporated relationships based
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on their interactions into a unified model. By linking it with heritage information sourced

from various textual references, we create a semantic model that holds the info about

what exists in a space — topological features that matter for the dolmen recognition.

This approach provided a more comprehensive and interconnected view of the data —

enhancing its depth and context that can be explored through sophisticated queries,

facilitating a deeper understanding of spatial interactions and heritage contexts. By

utilizing the well-established ontologies — CIDOC-CRM and GeoSPARQL — to create

our schema model, and by incorporating all metadata, concepts, and geometry provided

by each source, our implementation of the LPG is structured to be findable, accessible,

interoperable and reusable.

Using the LPG as a basis to train an ML model with outputs returned from tradi-

tional object detection, we created what I called the KG-ML model in order to predict

AOIs where monuments are located to be used to improve these outputs. Our tests

demonstrated that integrating a semantic model enriched with landscape information sig-

nificantly improved the automated object detection outputs and provided explainability

for each detection.

7.2. Contribution and Implications

Our proposed approach in this thesis leveraged existing domain knowledge—traditionally

used by experts to recognize dolmens—and transformed it into an interoperable format

that machines could utilize, allowing us to address RQ2, RQ3 and finally the main reserach

question (MRQ).

In our approach to object detection, semantic information was used di↵erently. As

opposed to merging object detection outputs with knowledge graph data in a unified

embedding as most previous research has done, we standardized and linked VTMs with

textual information into a LPG to map a scene. Instead of labelling every object within

an image, we labelled only our target objects and retained the spatial coordinates of

images with detected objects. The spatial coordinates from object detection outputs —

indicating where detections occurred — are used to query the graph to uncover relevant

contextual information about the AOI. Context was then provided through the LPG

that details what exists in the area, regardless of whether it is visible in the image. For

instance, even if a river is not visible, whether due to scale, being dry, or being covered,

its presence is derived semantically from the maps. Thus, our context relies not on visual

features but on semantic information linked through the graph. This approach removes

the need to label all scene objects, like rivers or soil types, and accounts for aspects that

are di�cult to label, such as land use.

By using information — which is not visible in most images, this approach can provide

information such as monuments destroyed or not visible and correctly identify monument

localizations as positives even if they are not visible. It appears that by relationally

considering environmental factors, the machine can identify interest zones. By providing
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detailed knowledge, researchers can retrieve, compare, and analyze monument compo-

nents more precisely by querying and exploring cultural heritage data. Integrating various

sources of information into one unified model makes it easier to contextualize and inter-

pret non-visible features, making it an e↵ective tool for future research regarding spatial

relationships and image identification.

There is a growing interest in utilizing KGs to represent contextual and spatial knowl-

edge to meet the challenges of heterogeneity and interoperability. However, KGs as a tool

for contextualizing scenes in satellite images is still in its infancy. As far as we know, this

is the first study linking geospatial data with contextual information about archaeological

monuments and landscape elements derived from textual and VTMs data sources into

a KG and employ it as a reviewer to improve object detection outputs. As opposed to

existing KGs, our model integrates both landscape and archaeological information and

uses this information to train an Machine Learning (ML) model to identify patterns and

predict AOIs where archaeological monuments can be found — thus providing context to

the representation of real-world features in each location.

Using machine learning to automatically analyse the relationship of an AOI to detect

patterns o↵ers several significant benefits. It helps reduce FPs typically returned by

data-driven approaches by incorporating contextual and semantic information, leading to

more precise results. This reduces the workload for specialists who would need to confirm

detections manually. Additionally, the ability to identify patterns across an entire region

can propel future research by providing insights into broader trends and relationships

within the landscape. This has been demonstrated in cases involving false negatives,

where the model successfully identified patterns and provided context to correctly analyze

previously missed detections.

Given the lack of research in this domain for the archaeological field, this contribution

highlights the innovative use of KGs as a tool to train an interoperable model that can

be used to leverage automated data-based approaches.

7.3. Limitations and Future Work

Despite the promising results achieved with our KG-ML approach, several limitations

remain. One major challenge is the scarcity of cultural heritage data available for training,

a common issue also encountered in traditional object detection. It is critical to note that

we have trained the model with all available information about known monuments for

the AOI. Therefore, if specific scenarios are not covered, it indicates that the limitations

are not due to a lack of data on the machine’s part. Many details about the monuments

were not present in the sources, and some monuments mentioned by archaeologists in the

literature may be missing or no longer exist. Future work should focus on integrating

additional information into the KG — in response to new data becoming available.

Additionally, the KG o↵ers extensive possibilities for analyzing spatial relationships

between entities, for example, assessing monument conservation status and understand-

ing how landscape changes, such as land use, may a↵ect their preservation. It provides
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a framework for answering questions about how the surrounding environment influences

monuments, o↵ering valuable insights into these interactions. It is possible to use this

LPG in any field that seeks to understand the landscape in the future. Leveraging in-

sights from the KG-ML model can be particularly valuable for fields like urban planning

and environmental management, enabling them to identify areas of archaeological interest

early on. By doing so, potential disruptions, such as delays or changes required when dis-

covering archaeological monuments in modern construction zones, can be avoided, saving

time and resources.

Further analyses also could deepen our understanding of how landscape elements—such

as rivers, topography, soil types, land use, and elevation—interact with the target mon-

ument. Our current focus has been on how these individual factors can help in the

identification of areas of interest, as dolmens are often found in areas with specific to-

pography features. However, there is significant potential to expand this by considering

more factors. For example, by integrating data on how soil reacts to precipitation with

existing information on soil type, land use, local hydrology, and elevation, we can gain a

better understanding of how environmental conditions, such as heavy rainfall or floods,

a↵ect the place — since certain soil types may be more vulnerable to erosion under ex-

cessive moisture, potentially threatening the monument’s stability. This approach could

enhance understanding of how environmental factors a↵ect monument preservation and

predict risks. However, integrating domain knowledge of landscape change would require

input from experts in other fields. While my focus has been on archaeological knowl-

edge to identify monument locations, the LPG is designed for expansion to incorporate

additional data as it becomes available.

As the model is designed for expansion, future work could focus on enriching the KG

with additional regional data and a broader range of archaeological monuments, using

it to predict AOIs across di↵erent sites. Also, the KG-ML model is agnostic to specific

object detection methods. It can use coordinates and detection scores from any previous

recognition approach, making it a flexible tool for reviewing diverse detection outputs.

Finally, the model integrates data from various sources, with information gathered

manually. This approach has provided valuable insights, but a future direction would

be to incorporate Natural Language Processing (NLP) to automate extracting relevant

text information, improving the model’s scalability and e�ciency. Additionally, while the

model currently serves as a reviewer, it could be further leveraged to guide the object

detection process directly
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Portugueses, 2016.
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remota.

110



[106] Paulo Roberto Meneses and T de Almeida. Introdução ao processamento de imagens

de sensoriamento remoto. Universidade de Braśılia, Braśılia, 2012.
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Figure 8.1. Model schema of the LPG used to represent monuments.
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Figure 8.2. Model schema of the LPG used to represent the VTMs.
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Type Code Description
Solos Incipientes A Solos Incipientes - Aluviossolos Modernos, Não Calcários, de

textura mediana
Al Solos Incipientes - Aluviossolos Modernos, Não Calcários, de

textura ligeira
At Solos Incipientes - Aluviossolos Antigos, Não Calcários, de

textura mediana
Atl Solos Incipientes - Aluviossolos Antigos, Não Calcários, de

textura ligeira
Eg Solos Incipientes - Litossolos dos Climas de Regime Xérico, de

granitos ou quartzodioritos
Egn Solos Incipientes - Litossolos dos Climas de Regime Xérico, de

gnaisses ou rochas afins
Ex Solos Incipientes - Litossolos dos Climas de Regime Xérico, de

xistos ou grauvaques
Rg Solos Incipientes - Regossolos Psamı́ticos, Normais, não

húmidos
Sb Solos Incipientes - Solos de Baixas (Coluviossolos), Não

Calcários, de textura mediana
Sbl Solos Incipientes - Solos de Baixas (Coluviossolos), Não

Calcários, de textura ligeira

Barros Castanhos Bvc Barros Castanho-Avermelhados, Calcários, Muito
Descarbonatados, de dioritos ou gabros ou rochas
cristalof́ılicas básicas associados a calcário friável

Barros Castanho-
Avermelhados

Cpv Barros Castanho-Avermelhados, Calcários, Pouco
Descarbonatados, de rochas eruptivas ou cristalof́ılicas básicas
associadas a calcário friável, ou de grés argilosos calcários, ou
margas

Barros Pretos Cp Barros Pretos, Calcários, Pouco Descarbonatados, de rochas
eruptivas ou cristalof́ılicas básicas associadas a calcário friável,
ou de grés argilosos calcários ou margas

Solos Hidromórficos Ca Solos Hidromórficos, Sem Horizonte Eluvial,
Para-Aluviossolos (ou Para-Coluviossolos), de aluviões ou
coluviais de textura mediana

Cac Solos Hidromórficos, Sem Horizonte Eluvial,
Para-Aluviossolos (ou Para-Coluviossolos), de aluviões ou
coluviais de textura mediana, calcários

Cal Solos Hidromórficos, Sem Horizonte Eluvial,
Para-Aluviossolos (ou Para-Coluviossolos), de aluviões ou
coluviais de textura ligeira

Ps Solos Hidromórficos, Com Horizonte Eluvial, Planossolos, de
arenitos ou conglomerados argilosos ou argilas
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Solos Argiluviados
Pouco Insaturados

Pac Solos Argiluviados Pouco Insaturados - Solos Mediterrâneos,
Pardos de Materiais Calcários, Para-Barros, de margas ou
calcários margosos ou de calcários não compactos associados
com xistos, grés argilosos, argilitos ou argilas ou de grés
argilosos calcários (de textura franca a franco-argilosa)

Pag Solos Argiluviados Pouco Insaturados - Solos Mediterrâneos,
Pardos, de Materiais Não Calcários, Para-Solos Hidromórficos,
de arenitos ou conglomerados argilosos ou argilas (de textura
arenosa ou franco-arenosa)

Pbc Solos Argiluviados Pouco Insaturados - Solos Mediterrâneos,
Pardos, de Materiais Calcários, Para-Barros, de calcários
margosos associados a arcoses ou rochas afins

Pdc Solos Argiluviados Pouco Insaturados - Solos Mediterrâneos,
Pardos, de Materiais Calcários, Para-Solos Hidromórficos, de
arcoses ou rochas afins associadas a depósitos calcários

Pdg Solos Argiluviados Pouco Insaturados - Solos Mediterrâneos,
Pardos, de Materiais Não Calcários, Para-Solos Hidromórficos,
de arcoses ou rochas afins

Pgn Solos Argiluviados Pouco Insaturados - Solos Mediterrâneos,
Pardos, de Materiais Não Calcários, Normais, de gnaisses ou
rochas afins

Pm Solos Argiluviados Pouco Insaturados - Solos Mediterrâneos,
Pardos, de Materiais Não Calcários, Para-Barros, de dioritos
ou quartzodioritos ou rochas microfaneŕıticas ou cristalof́ılicas
afins

Pmg Solos Argiluviados Pouco Insaturados - Solos Mediterrâneos,
Pardos, de Materiais Não Calcários, Normais, de
quartzodioritos

Pv Solos Argiluviados Pouco Insaturados - Solos Mediterrâneos,
Vermelhos ou Amarelos, de Materiais Não Calcários, Normais,
de rochas cristalof́ılicas

Px Solos Argiluviados Pouco Insaturados - Solos Mediterrâneos,
Pardos, de Materiais Não Calcários, Normais, de xistos ou
grauvaques

Sr Solos Argiluviados Pouco Insaturados - Solos Mediterrâneos,
Vermelhos ou Amarelos, de Materiais Não Calcários, Normais,
de de ”rañas” ou depósitos afins

Vcc Solos Argiluviados Pouco Insaturados - Solos Mediterrâneos,
Vermelhos ou Amarelos, de Materiais Calcários, Normais, de
calcários cristalinos ou mármores ou rochas cristalof́ılicas
cálcio-siliciosas

Vcd Solos Argiluviados Pouco Insaturados - Solos Mediterrâneos,
Vermelhos ou Amarelos, de Materiais Calcários, Normais, de
calcários compactos ou dolomias

Vcm Solos Argiluviados Pouco Insaturados - Solos Mediterrâneos,
Vermelhos ou Amarelos, de Materiais Calcários, Para-Barros,
de margas ou calcários margosos

Vgn Solos Argiluviados Pouco Insaturados - Solos Mediterrâneos,
Vermelhos ou Amarelos, de Materiais Não Calcários, Normais,
de gnaisses ou rochas afins

Vx Solos Argiluviados Pouco Insaturados - Solos Mediterrâneos,
Vermelhos ou Amarelos, de Materiais Não Calcários, Normais,
de xistos ou grauvaques
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Solos Litólicos Par Solos Litólicos, Não Húmicos Pouco Insaturados, Normais, de
materiais arenáceos pouco consolidados (de textura arenosa a
franco-arenosa)

Pg Solos Litólicos, Não Húmicos Pouco Insaturados, Normais, de
granitos

Ppg Solos Litólicos, Não Húmicos, Pouco Insaturados, Normais, de
rochas microf́ıricas claras

Vt Litólicos, Não Húmicos, Pouco Insaturados Normais, de
arenitos grosseiros

Solos Calcários Pc Solos Calcários, Pardos dos Climas de Regime Xérico,
Normais, de calcários não compactos

Pcd Solos Calcários, Pardos dos Climas de Regime Xérico,
Para-Litossolos, de calcários compactos (travertinos)

Pcs Solos Calcários, Pardos dos Climas de Regime Xérico,
Normais, de margas ou materiais afins

Vc Solos Calcários, Vermelhos dos Climas de Regime Xérico,
Normais, de calcários

Vct Solos Calcários, Vermelhos dos Climas de Regime Xérico,
Normais, de arenitos grosseiros associados a depósitos
calcários

Vcx Solos Calcários, Vermelhos dos Climas de Regime Xérico,
Normais, de xistos ou grauvaques associados a depósitos
calcários

Solos Podzolizados Ppt Solos Podzolizados - Podzóis, (Não Hidromórficos), Com
Surraipa, com A2 incipiente, de ou sobre arenitos

Afloramentos
Rochosos

Arg Afloramento Rochoso de granitos ou quartzodioritos

Table 8.1. Detailed explanation of the Portuguese Solos Charter [1]for
Pavia (46 types of solos)
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POIs ID Object
Detection
Score 1

KG-ML
Score 1

KG-ML
Prediction

Explanations

FPC1 995 449.618 0 ”soilUse”: 0.22989976704085627, ”soilType”:
0.7867751618777192, ”distWater”:
-0.2568191903075665

FPC3 9.951 449.625 0 ”soilUse”: 0.22989828934496748, ”soilType”:
0.7867839642088739, ”distWater”:
-0.2568118279666314

FPC4 8.367 202.995 0 ”soilUse”: 0.21598968510329564, ”soilType”:
-0.23505485741077892, ”distWater”:
-0.3171490607871281

FPC5 7.481 203.163 0 ”soilType”: -0.0797594191946489, ”relief”:
-0.21837644064467843, ”distWater”:
-0.4304651105910129

FPC6 9.824 271.296 0 ”relief”: -0.2951803095207308, ”soilUse”:
0.3479574057208671, ”distWater”:
-0.4596893656854788

FPC7 9.939 214.446 0 ”score”: 0.052397982736154924, ”relief”:
-0.2215257557524073, ”distWater”:
-0.4123684765717135

FPC8 9.946 214.479 0 ”score”: 0.05259252363584377, ”relief”:
-0.22153472450983358, ”distWater”:
-0.4123169401851655

FPC9 9.867 236.889 0 ”soilUse”: 0.16515961915586708, ”relief”:
-0.30687900051610206, ”distWater”:
-0.41076054138310014

FPC10 9.974 197.002 0 ”soilType”: 0.06635292406596927, ”soilUse”:
-0.10891082602957392, ”distWater”:
-0.12591324017501515

FPC11 7.105 154.029 0 ”relief”: -0.2281958404741382, ”soilUse”:
-0.30260694584258085, ”distWater”:
-0.43899024698930655

FPC12 9.934 62.082 1 ”relief”: -0.04608784164083085, ”soilType”:
0.4823567331516542, ”distWater”:
-0.1978373970604736

FPC14 8.236 131.561 0 ”soilUse”: -0.23904444019384652, ”soilType”:
-0.4061352741933566, ”distWater”:
-0.532798317096719

FPC18 9.408 780.785 1 ”soilUse”: 0.38765264850442216, ”soilType”:
0.9263562952328672, ”distWater”:
1.4144990595952684

FPC19 8.094 452.394 0 ”soilUse”: 0.2238042688467437, ”soilType”:
-0.5559506167553067, ”distWater”:
0.923290822543101

FPC20 9.569 237.051 0 ”soilUse”: -0.2720753950748639, ”soilType”:
0.30498802758261623, ”distWater”:
-0.3052567801138163

FPC23 955 693.321 1 ”soilUse”: -0.13549604404726634, ”relief”:
0.15174257470090136, ”soilType”:
2.072831554701101

FPC24 9.966 181.612 0 ”soilUse”: 0.16231976422546057, ”soilType”:
-0.4418911857299319, ”distWater”:
-0.49684082392054285

FPC26 9.217 395.091 0 ”soilType”: -0.21152978424319252, ”soilUse”:
-0.22968706316359744, ”distWater”:
0.9569971064522595
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FPC29 9.271 39.529 0 ”soilType”: -0.2116233227798077, ”soilUse”:
-0.23011514734918134, ”distWater”:
0.9569724173709525

FPC31 9.857 150.708 0 ”soilType”: -0.24329342840259272, ”soilUse”:
-0.2575094099047539, ”distWater”:
-0.35628994990610807

FPC32 9.965 531.124 1 ”soilType”: -0.22679124110608442, ”soilUse”:
0.303821024958959, ”distWater”:
0.9437254752148441

FPC37 9.848 261.744 0 ”soilUse”: -0.14771504442364647, ”soilType”:
0.3000267003074555, ”distWater”:
-0.3456844113886606

FPC38 9.827 53.014 1 ”soilType”: -0.23084297298194523, ”soilUse”:
0.30296140754882606, ”distWater”:
0.942464041087625

FPC39 8.402 446.831 0 ”score”: 0.013995627770624769, ”soilType”:
-0.20259393561750405, ”distWater”:
1.0032998424054353

FPC40 8.627 169.834 0 ”soilUse”: -0.09738086620000508, ”soilType”:
-0.23790276166658209, ”distWater”:
-0.3745260111999562

FPC44 9.848 172.622 0 ”soilUse”: -0.09547580422616031, ”soilType”:
-0.23020949649824574, ”distWater”:
-0.3793194470232917

FPC45 9.914 458.278 0 ”score”: 0.06020179537892126, ”soilType”:
-0.16902143079653847, ”distWater”:
1.0192387035379016

FPC46 9.602 455.912 0 ”score”: 0.050667189364511256, ”soilType”:
-0.17620596646112063, ”distWater”:
1.0159497321931072

FPC47 9.905 159.408 0 ”soilUse”: -0.13372615688872402, ”soilType”:
-0.5236805796854314, ”distWater”:
-0.41502354403808206

FPC63 9.913 565.123 1 ”soilType”: 0.2748698030911674, ”relief”:
-0.30283846170627726, ”distWater”:
1.4536728225467135

FPC69 9.915 333.855 0 ”soilUse”: 0.2046164362765962, ”relief”:
0.7751260757354288, ”distWater”:
-0.5791549491059756

FPC53 8.299 122.796 0 ”soilUse”: -0.22209652909766842, ”soilType”:
-0.458853235768393, ”distWater”:
-0.3784599517637699

FPC76 9.954 213.303 0 ”soilUse”: 0.3207653460105917, ”soilType”:
-0.6599848157119274, ”distWater”:
-0.6140612119523329

FPC61 9.889 210.124 0 ”soilUse”: 0.3082214790295075, ”soilType”:
-0.33403215410865317, ”distWater”:
-0.5350962154722311

FPC91 9.718 126.854 0 ”soilUse”: -0.15877216092447655, ”soilType”:
-0.4412252133049974, ”distWater”:
-0.452385588935053
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FPC86 8.204 664.835 1 ”soilType”: 0.15566747672817915, ”relief”:
0.33728850465244054, ”distWater”:
0.8820125327624436

FPC92 9.883 145.438 0 ”relief”: -0.02510068304171864, ”soilType”:
-0.5191036902962307, ”distWater”:
-0.4549890018735021

FPC70 8.576 168.923 0 ”soilUse”: -0.1661750358440297, ”soilType”:
-0.2704605296854432, ”distWater”:
-0.44641918713813866

FPC60 8.481 131.992 0 ”soilUse”: -0.2374479860732306, ”soilType”:
-0.3785400108480166, ”distWater”:
-0.5423812392794907

FPC80 9.903 212.509 0 ”soilUse”: 0.1991387036724046, ”soilType”:
-0.5503984598633342, ”distWater”:
-0.51902957301917

FPC95 8.878 566.798 1 ”soilUse”: 0.3430223952423181, ”soilType”:
-0.6188856081351858, ”distWater”:
1.4252805998111926

FPC59 8.885 206.683 0 ”soilUse”: 0.28378342013561686, ”soilType”:
-0.336480811124501, ”distWater”:
-0.44333116461400535

FPC73 9.217 380.477 0 ”soilUse”: 0.26606029655794183, ”soilType”:
0.2949779638014228, ”distWater”:
-0.31399746181000293

FPC83 9.823 335.607 0 ”distWater”: -0.1903691786014884, ”relief”:
0.428153701518481, ”soilUse”: 0.3184515387294621

FPC90 8.623 334.425 0 ”relief”: -0.17234590808016892, ”soilType”:
-1.0471590565266917, ”distWater”:
0.4357049171897306

FPC96 7.741 237.032 0 ”soilType”: -0.321135382134933, ”soilUse”:
0.476646856269491, ”distWater”:
-0.3855345455814201

FPC99 9.982 66.153 1 ”soilType”: 0.16796795485411975, ”relief”:
0.33844459492315515, ”distWater”:
0.8225747639308485

FPC64 9.551 332.221 0 ”soilUse”: 0.2031619734357949, ”relief”:
0.7740113574972235, ”distWater”:
-0.5884939865763333

FPC98 9.349 16.462 0 ”soilUse”: 0.24307414722905563, ”soilType”:
-0.623894309762101, ”distWater”:
-0.5644393405260395

FPC75 984 156.225 0 ”relief”: -0.1256545782340266, ”soilType”:
-0.6286243693109843, ”distWater”:
-0.6083947875566464

FPC77 9.743 156.273 0 ”relief”: -0.12435035168676056, ”soilType”:
-0.6265322959938129, ”distWater”:
-0.6082788202223652

FPC62 9.949 15.027 0 ”relief”: -0.26714013571758155, ”soilType”:
-0.6302935803893088, ”distWater”:
-0.5411848023544508

FPC57 9.882 261.939 0 ”soilUse”: -0.14764065671950655, ”soilType”:
0.3006557258603837, ”distWater”:
-0.34546383045535056
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FPC72 7.433 157.417 0 ”relief”: -0.09329093597349725, ”soilType”:
-0.5785101074281611, ”distWater”:
-0.6055171239111241

FPC52 9.784 192.899 0 ”relief”: -0.08758339408485427, ”soilUse”:
-0.25853395922569744, ”distWater”:
-0.4274822523042683

FPC88 7.214 228.808 0 ”soilUse”: -0.2595799423624008, ”soilType”:
0.27100069841984764, ”distWater”:
-0.31417097961641516

FPC94 9.936 628.758 1 ”soilType”: 0.09999747829620387, ”relief”:
0.45120011595025333, ”distWater”:
1.6327552801839245

FPC55 9.455 275.996 0 ”soilType”: 0.14789957570369205, ”soilUse”:
0.21447669079084974, ”distWater”:
-0.35472000585124397

FPC97 8.736 227.507 0 ”soilType”: -0.09632491032410417, ”relief”:
-0.10290479757633597, ”distWater”:
-0.09660099847912473

FPC58 9.944 172.843 0 ”soilUse”: -0.09532602048374517, ”soilType”:
-0.22972543524378164, ”distWater”:
-0.37969632649834506

FPC78 975 212.582 0 ”soilUse”: 0.3171789949779449, ”soilType”:
-0.6590190315049408, ”distWater”:
-0.6136435114895642

FPC100 9.895 386.497 0 ”soilUse”: 0.2704533217919689, ”soilType”:
0.2976845228106447, ”distWater”:
-0.30720924262131544

FPC56 7.285 136.365 0 ”soilUse”: -0.09317811549562327, ”soilType”:
-0.4856207944029247, ”distWater”:
-0.40328706095403644

Table 8.2. KG-ML results from analyzing POIs determined incorrectly
as TP by pre-classification (object detection), now with updated scores.
Additionally, the image explains what factors influenced KG-ML’s score.
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