
Date of publication xxxx 00, 2025, date of current version Oct 15, 2025.

Digital Object Identifier 10.1109/ACCESS.2025.3622497

Towards Automatic Detection and Mitigation of
High-Risk Cybersecurity Vulnerabilities at
Networked Systems
JOÃO POLÓNIO1, JOSÉ MOURA1,2, RUI NETO MARINHEIRO1,2
1Instituto Universitário de Lisboa (ISCTE–IUL), 1649-026 Lisbon, Portugal
2Instituto de Telecomunições (IT), 1049-001 Lisbon, Portugal

Corresponding authors: jose.moura@iscte-iul.pt, rui.marinheiro@iscte-iul.pt

This work was supported by FCT - Fundação para a Ciência e Tecnologia, I.P. by project reference 2024.07624.IACDC and DOI identifier
https://doi.org/10.54499/2024.07624.IACDC. This work was also partially supported by FCT/MECI under UID/50008: Instituto de
Telecomunicações.

ABSTRACT The current manuscript investigates a comprehensive security framework designed to proac-
tively detect, classify, prioritize, and mitigate high-risk cybersecurity vulnerabilities in networked systems
controlled by software-defined networking (SDN). While available literature explores various approaches, it
lacks solutions that aggregate in a logically centralized and automatedways the previous referred capabilities.
Orchestrating efficiently all these capabilities is crucial to continuously ensure the reliable operation of high-
complexity networked systems. This article integrates in a novel way SDN with the Security Orchestration,
Automation, and Response (SOAR) paradigm to automatically identify and address security vulnerabilities
in network devices before they can be exploited. The proposed open-source framework leverages standard-
ized risk indicators to rank discovered vulnerabilities and apply the most suitable mitigation strategies to
mitigate the vulnerabilities with the highest risk of being explored against the system normal operation.
The paper framework enhances the reactive security capabilities offered by legacy network devices such
as Firewalls and Intrusion Detection Systems (IDSs). The paper details the design, implementation, and
evaluation of the framework, validated through both emulation and hardware-based tests. The results confirm
that the solution is effective in identifying and mitigating vulnerabilities across diverse devices. Analyzing
the results obtained from scalability tests, as the number of scanned devices exceeds a certain threshold, CPU
usage increases significantly, while memory and communication resources remain underutilized. In addition,
after identifying high-risk device vulnerabilities, the framework automatically applies mitigation measures,
timely protecting the system normal operation. Future work may improve the capabilities of the framework
by using artificial intelligence for more efficient device vulnerability discovery, context-aware security risk
evaluation, and better-aligned mitigation actions targeting identified high-risk security vulnerabilities.

INDEX TERMS System Vulnerability, Detection, Risk, Mitigation, Software Defined Networks, Automa-
tion, Network Security.

I. INTRODUCTION

COMPUTER networks are growing more complex due
to the proliferation of data, advanced applications, and

the Internet of Things (IoT), all of which have significantly
increased both the number and heterogeneity of connected
devices. Managing a considerable number of network nodes
with distinct functional characteristics is very difficult and
prone to mistakes. Many of these nodes often exhibit security
vulnerabilities, making them appealing targets for cyberat-
tackers. Typically, attackers have a persistent economic ad-

vantage over defenders. While defenders must secure every
potential vulnerability, an attacker might need to exploit only
a single weakness to achieve their goal. This economic dispar-
ity, coupled with the growing difficulty for human defenders
to maintain system security amidst constantly evolving cyber
threats targeting complex, high-connectivity networked sys-
tems, highlights the urgent need for further research into novel
solutions. In this context, extensive research into scalable,
automated, and proactive approaches is essential for effec-
tively detecting andmitigating system vulnerabilities, thereby

VOLUME XY, 202Z 1



J. Polónio et al.:Towards Automatic Detection and Mitigation of High-Risk Cybersecurity Vulnerabilities at Networked Systems

reducing the risk of disruptions to system normal operation,
caused by cyberattacks or natural events, which exploit or
expose the system security weaknesses [1].

Given the last referred open security issues, we investi-
gate the very common scenario of an organization network
infrastructure that is visualized in Fig. 1. The institution
aims to keep its networked system as secure as possible
from cyberattacks. In this scenario, new devices may be
integrated, emerging technologies adopted [2], and existing
devices updated. These ongoing system changes can unin-
tentionally introduce new security vulnerabilities, increasing
the risk of external threats to undermine the normal operation
of the institutional infrastructure. In our opinion, the typical
legacy security defense line formed by rigid policy-based
devices such as firewalls and intrusion detection systems
are not sufficient to keep always secure the organization’s
network infrastructure and they should be complemented by
proactive security solutions running at the internal part of
the network infrastructure. These proactive solutions should
allow the anticipation of possible occurrences of new security
problems, such as vulnerabilities in the network devices. In
addition, running the proactive solution at the internal part
of the network infrastructure, it allows the first line defense,
formed by firewalls and IDSs, to protect the normal operation
of that proactive solution.

As already mentioned, the network devices vulnerabilities
can expose critical systems to system threats, making crucial
the proactive management of those vulnerabilities to guaran-
tee the system normal operation. The primary objective of this
research is to correctly coordinate the automated discovery of
high-risk security vulnerabilities and the next mitigation of
those vulnerabilities. To accomplish this first goal, a resilient
and comprehensive architecture was developed, integrating
a considerable range of open-source security technologies.
Special attention was placed on the seamless orchestration
of these tools, thereby facilitating automatic and coordinated
responses to discovered security vulnerabilities. This novel
architecture relies on the additional security defense provided
by legacy security defense solutions such as firewalls and
intrusion detection systems (see Fig. 1). In addition, this
research has the secondary objective of rigorously evaluating
the impact of the new proposal on the network and device
performance, ensuring that the detection and mitigation of
security vulnerabilities are executed correctly and in a timely
manner. The paper main contributions are as follows:

1) The design and implementation of a novel security
architecture that extends the capabilities of existing
network devices by integrating a proactive vulnera-
bility detection and mitigation layer. This framework
enhances system resilience beyond what is offered by
traditional security tools, such as, firewalls and IDSs.

2) The development of a customized Security Orches-
tration, Automation, and Response (SOAR) logic, in-
cluding a tailored playbook and specifically designed
interaction flows. These orchestrated processes enable
seamless automation across different components of

the SDN-based system, allowing for efficient, scalable,
and intelligent responses to detected vulnerabilities.

3) A discussion of the unique contributions of the pro-
posed framework and orchestration logic as a cohesive
and novel system, rather than a mere integration of
existing tools. The SOAR playbook and interaction
flows are central to this innovation, enabling adaptive
and context-aware responses that go beyond current
approaches in the literature.

4) It highlights that future SOAR-based proposals should
consider limitations like restrictive APIs, limited con-
trol during automated execution, inefficient debugging,
and unclear documentation. It also offers a novel prac-
tical example of overcoming these challenges by com-
bining modular and reusable components with agile
and flexible strategies to ensure robust, scalable, and
adaptable security automation in modern networked
environments.

5) It uses a dynamic and virtualized testbed, incorporating
Hardware-in-the-Loop (HIL) capabilities, to evaluate
the system’s performance. The testbed is used to assess
system burden and measure the latency from vulnera-
bility detection to host isolation within the network.

The rest of the paper is structured as follows. Section II
discusses related literature. Section III presents the design of
solution’s architecture. Section IV details the implementation
of the proposed system. Section V discusses the results ob-
tained from the evaluation of the proposal. Finally, Section
VI concludes the paper and establishes upcoming research.

FIGURE 1. Proposed SOAR–SDN management loop, with SDN enhancing
SOAR’s response phase for host high-risk vulnerability mitigation.

II. LITERATURE REVIEW
A very recent work [1] has comprehensively analyzed the
literature for the discovery and mitigation of security vul-
nerabilities in networking infrastructures controlled by SDN,
which are strongly related to the current paper. Most of this
revised work supports system security in a reactive way. This
means the majority of previous contributions try to success-
fully detect and mitigate running attacks, which does not
guarantee a robust system protection. Exceptionally, some

2 VOLUME XY, 202Z



J. Polónio et al.: Towards Automatic Detection and Mitigation of High-Risk Cybersecurity Vulnerabilities at Networked Systems

work have proposed mitigation techniques such as Mov-
ing Target Defense (MTD) [3]–[5] or Honeynet [6], which
can be seen as proposals toward the proactive defense of
networking environments using active cyberdeception tech-
niques against potential attackers. These proposals aim to
reduce the likelihood of an attacker successfully exploiting
network vulnerabilities. However, there is always a possibility
for an attacker may still manage to exploit one of the existing
vulnerabilities and carry out a disruptive cyberattack, such
as Deny of Service (DoS) or data exfiltration. To effectively
prevent these attacks, new security management approaches
are needed, such as the one proposed in this paper, which can
automatically detect and eliminate high-risk vulnerabilities
from network devices.

Regarding the analysis of discovered security vulnerabil-
ities, including those associated with hosts, only a limited
number of literature contributions performed security vul-
nerability assessments using standardized metrics [1], calling
for further contributions using Common Vulnerabilities and
Exposures (CVE) to identify the vulnerabilities and Common
Vulnerability Scoring System (CVSS) to classify their risk.
The use of standardized metrics is fundamental for compa-
nies seeking to improve their security defenses and actively
prioritize the mitigation of high-risk vulnerabilities, before
these could be explored. In addition, the adoption of stan-
dardized security metrics enhances strategic decision-making
by providing deeper insights into emerging threats. It also
enables a more efficient dissemination of data associated to
security vulnerabilities among the security players of distinct
organizations. Another area that remains underexplored in the
literature is the integration of active probing tools within SDN
environments, relevant for organizations to promptly detect
vulnerabilities by actively examining their systems and, as
an example, discover open application ports that could be
used for non authorized system accesses. After the discovery
of these open ports, these should be closed or protected
by convenient mitigation techniques. Thus, active probing
techniques support the prioritization of mitigation efforts by
enabling organizations to swiftly and effectively address the
most critical security vulnerabilities within their systems. The
active scanning prevents security incidents, because it enables
a fast deployment of proactive measures against imminent
vulnerabilities exploitation by external attackers.

Further investigation using SOAR is needed for enhancing
the automation and orchestration aspects on SDN-based so-
lutions protecting the system security. In fact, the adoption
of SOAR has several important benefits. One of the most
important is the ability to optimize and automate incident
response workflows. With SOAR, incident responses can
be executed through automated playbooks and workflows,
integrating and orchestrating various tools such as vulner-
ability scanners, analysis of discovered vulnerabilities, risk
classification of vulnerabilities, selection of vulnerabilities
to mitigate, and mitigation of high-risk vulnerabilities. The
automated and orchestrated response provided by SOAR to
timely eliminate high-risk security vulnerabilities in large-

scale and complex networks [7] can be further enhanced by
the SOAR’s flexibility in coordinating artificial intelligence
agents using various data learning models [8]–[10].
Another major concern that must be addressed is the secu-

rity risk posed by IoT devices, which are frequently deployed
with insufficient protection, rendering them highly suscepti-
ble to cyberattacks. One proposed framework enhances IoT
security by leveraging an SDN-based architecture to auto-
matically scan devices for known vulnerabilities before they
are granted access to the network [11]. Upon detecting a
vulnerability, the system attempts automated remediation;
if unsuccessful, it notifies the user and provides recom-
mended mitigation actions. In experimental evaluations, the
framework effectively identified and neutralized vulnerabil-
ities—for instance, by isolating compromised devices using
firewall rules.
The same evaluation also showed that incorporating ad-

ditional checks—such as verifying whether a host has al-
ready been scanned—introduces only minimal performance
overhead. Specifically, the average packet transmission delay
increased by just 5.05 ms, and bandwidth usage rose by
approximately 0.45% compared to baseline implementations
[11]. However, these values reflect internal orchestration
overhead rather than the time required to perform actual
vulnerability scans. For instance, scanning for weak or de-
fault passwords using a custom scanner may take an average
latency of 2.12 minutes, while detecting vulnerabilities such
as Badlock using tools like Nessus can require up to 7.25
minutes.
An illustrative example of applying automated vulnera-

bility management in real-world environments is the Vul-
nerability Assessment as a Service (VAaaS) system pro-
posed in [12]. Designed specifically for complex ICT in-
frastructures—particularly in healthcare, the VAaaS frame-
work addresses the challenges of securing heterogeneous de-
vices distributed across cloud, fog, and extreme edge layers.
Its architecture leverage SDN for real-time network mon-
itoring and employs the OpenVAS scanner to assess both
newly connected and existing devices. Devices are evaluated
against CVSS metrics and subsequently assigned to appro-
priate VLANs based on their risk profiles. Reported latency
results indicate that the scanning duration for generic devices
ranged from 13 seconds to 15 minutes, with an average of 441
seconds. In contrast, specialized healthcare devices required
significantly more time, averaging 38minutes and 11 seconds
due to their operational complexity.
These examples highlight that while orchestration over-

head can be minimal, the overall scan time, impacting la-
tency, remains a critical factor in system responsiveness and
scalability. In practice, scanning latency is influenced by
multiple parameters, including the number of vulnerability
tests performed, the complexity of the detection logic, the
computational resources available on the scanner host, and
the target device’s operating system and service configura-
tion. Additionally, network conditions and scan configura-
tions (e.g., full vs. fast scans) also play a role. Therefore,

VOLUME XY, 202Z 3



J. Polónio et al.:Towards Automatic Detection and Mitigation of High-Risk Cybersecurity Vulnerabilities at Networked Systems

the latency should be interpreted in light of these influencing
factors, which can vary significantly across different tools and
deployment environments.

Complementing orchestration-focused approaches, some
research has explored the integration of machine learning
for proactive threat detection. For example, the framework
introduced in [13] combines vulnerability assessment with
a machine learning-based Intrusion Detection System (ML-
IDS), enabling real-time monitoring of network flows and
predictive detection of attack patterns. Hosts are also seg-
mented into network slices based on their CVSS v3.0 risk
scores, allowing for differentiated handling according to as-
sessed severity.

As summarized in Table 1, most related works address
vulnerability detection or mitigation in isolation, often fo-
cusing on specific techniques such as MTD, honeynets, or
VLAN segregation. However, they generally lack a cohesive
orchestration framework that integrates discovery, risk-based
prioritization, and mitigation in a unified workflow. Further-
more, to the best of our knowledge, no prior SOAR–SDN
proposals provide publicly available implementations that
allow for reproducibility or direct benchmarking of orchestra-
tion complexity and response times. These gaps highlight the
novelty of our contribution, which combines standardized risk
scoring (CVSS with QoD) and SDN-based mitigation into an
open-source SOAR playbook, enabling both replication and
future comparative studies.

III. SYSTEM ARCHITECTURE
This section discusses the system architecture and design
concepts, with the objective of addressing the challenges
mentioned in Section II. Section III-A discusses the method-
ology and principles that guided the system’s development.
Section III-B details each system component, explaining their
functions, relationships, and contributions to the overall sys-
tem operation.

A. METHODOLOGY
The system architecture building blocks and system work-
flow are visualized in Fig. 2. It begins with the detection
phase, when the proposed SOAR-based solution discovers
hosts (see 1.2.1 in Fig. 2), using network tools. Then, the
SOAR invokes a scanner to inspect host vulnerabilities and
classify them via CVE (see 2.2.1). Once the vulnerabilities
have been classified, the SOAR framework moves on to the
analysis phase, where the severity and risk associated with
each vulnerability are assessed bymeans of CVSS, sorted out,
and compared against a decision threshold. This step identi-
fies the vulnerabilities with the higher security risk, which
need to be mitigated (see 3.2.1). Based on the last results,
the SOAR triggers the mitigation phase of high-risk vulnera-
bilities (see 4.1), where appropriate mitigation measures are
implemented, such as isolating vulnerable devices through
VLAN switching or blocking malicious traffic towards those
devices. The final solution outcome is to ensure the high-risk
vulnerabilities in hosts are successfully removed (see 4.2.1).

FIGURE 2. Proposal Functional Blocks Orchestrated by SOAR Framework.

Based on the proposed solution methodology, a clear se-
quence of management steps is required to ensure that each
vulnerable device on the network is systematically discov-
ered, classified, analyzed and its associated security risk ad-
dressed in a prioritizedmanner. The correct execution order of
all management phases must be orchestrated by a new SOAR
playbook. Therefore, in order to develop the proposed system,
the following stages were identified:

• Host discovery.
• Detection of host vulnerabilities.
• Generation of a vulnerability report for each host.
• Parse the host vulnerability report and analyze the ex-

tracted vulnerability information.
• Classify the risk associated to each host vulnerability.
• Identify the topmost hosts with high-risk vulnerabilities

against the system normal operation.
• Mitigate the high-risk vulnerabilities.

Each phase of the system development lifecycle plays a
vital role in ensuring robust network security. Device discov-
ery is fundamental, as it provides a comprehensive view of
all active components within the network. Identifying vul-
nerabilities in these devices is crucial for uncovering security
flaws before they can be exploited bymalicious actors. Gener-
ating a detailed vulnerability report ensures consistent and ac-
curate communication of security issues, thereby supporting
informed decision-making regarding mitigation strategies.
Parsing and analyzing the report is essential for assessing the
severity of each vulnerability, enabling the prioritization of
responses to the most critical threats. Finally, implementing
appropriate mitigation measures is key to effectively reduc-
ing the risk of exploitation and strengthening the network’s
resilience against future attacks.
The effective execution of these development phases fol-

lowed a set of fundamental design principles outlined in [14]:

• Interoperability.
• Proactivity.
• Adaptability.

Interoperability ensures that the system can seamlessly
integrate with diverse tools, platforms, and technologies,
thereby enhancing its compatibility and overall operational
efficiency. Proactivity empowers the system to anticipate and
address potential threats and vulnerabilities before they can

4 VOLUME XY, 202Z



J. Polónio et al.: Towards Automatic Detection and Mitigation of High-Risk Cybersecurity Vulnerabilities at Networked Systems

TABLE 1. Related Work Comparison

Paper Vulnerability Detect SDN Controller SOAR Risk Evaluation Vulnerability Scan Mitigation Measure Resources Latency

[3] ○␣ N/A ○␣ CVSS+Exploitation ○␣ MTD+Decoy nodes ○␣ ○␣
[4] ○␣ ONOS ○␣ CVSS+Exploitation ○␣ MTD ○ ○
[5] ○ OpenDaylight ○␣ CVSS+IDS Nessus MTD ○␣ ○␣
[6] ○␣ POX ○␣ ○␣ ○␣ Honeynet ○ ○
[7] ○␣ ○␣ ○␣ CVSS+Risk Graph ○␣ ○␣ ○␣ ○␣
[9] ○␣ ○␣ ○ ○␣ ○␣ VLANs+Honeypots ○␣ ○␣
[11] ○ POX ○␣ Custom Nessus Firewall è ○
[12] ○ ONOS ○␣ CVSS OpenVAS VLANs ○␣ ○
[13] ○ OpenDaylight ○␣ CVSS ○␣ Network Slices ○␣ ○␣
Ours ○ Ryu ○ CVSS GVM VLANs ○ ○

Legend: ○: topic is covered;è: topic partially covered;○␣: uncovered topic; N/A: unspecified SDN controller.

be exploited, significantly strengthening network security.
Lastly, adaptability preserves the system’s flexibility and re-
sponsiveness to change, enabling it to evolve in alignment
with emerging requirements, technological advancements,
and newly identified security challenges.

B. DESIGN
The architecture of the proposed proactive detection and mit-
igation solution is visualized in Fig. 3. The SOAR platform
orchestrates host discovery, vulnerability scanning, risk eval-
uation, and mitigation through SDN, ensuring an automated
and prioritized response to high-risk vulnerabilities. This so-
lution offers a hierarchical design and sequential functional-
ity among architecture components identified by numbered
interactions, which follow the discussion made in Section
III-A (see Fig. 2). The architecture consists of two primary
elements: the SOAR Server and the Security Tools Server.
The SOAR Server hosts the SOAR Platform, while the Secu-
rity Tools Server houses essential tools, including the Device
DiscoveryModule and the Vulnerability Scanner. The separa-
tion between the SOAR Server and the Security Tools Server
enhances scalability, and flexibility in updates and mainte-
nance on each server, allowing independent changes with-
out negative repercussions on the other server performance.
Moreover, it promotes effective task segregation, which is
an essential practice to ensure that the centralized control
of the SOAR Server remains unaffected by the operational
demands of individual tools, thereby reinforcing the system’s
structural integrity. Additionally, this approach enables the
deployment of Security Tools Servers in locations beyond
the direct visibility or reach of the SOAR Server, thereby ex-
tending the scope and effectiveness of SOAR Server security
orchestration capabilities.

There are two additional important architecture compo-
nents. The Database component, further detailed in Section
IV-D, that persistently stores in-memory key–value infor-
mation about relevant networked system status, namely dis-
covered network devices and found security vulnerabilities.
The SDN controller offers an NorthBound API that receives
SOAR requests to initiate vulnerability mitigation actions.

As already mentioned, the SOAR platform orchestrates the
diverse modules of Fig. 2 such as network tools, vulnerability

scanner, risk evaluation, and SDN controller, ensuring that
detected vulnerabilities are logged and promptly addressed.
This SOAR-based solution enables the fast automatic re-
sponse to high critical vulnerabilities in a structured and
scalable manner, reducing response time significantly com-
pared to manual intervention or non-orchestrated automatic
solutions. In the text below, we further detail the following
four features orchestrated by SOAR (see Fig. 3): i) device
discovery; ii) vulnerability scanner; iii) vulnerability risk
evaluation; and iv) vulnerability mitigation.
The SOAR framework, using the interaction numbered as

"1.0" of Fig. 3, initiates the sequence of automatic steps to
perform the device discovery feature via the security service
adapter (see 1.1 of Fig. 3), which in its turn invokes (see
1.1.1) the host discovery function (see 1.2). Each returned
result from the discovery function is permanently stored on
the database (see 1.2.1) for posterior consultation by other
system components interested on that information.
The trigger 2.0 in the SOAR framework starts the sequence

of steps to perform the vulnerability scanner feature via the
security service adapter (see 2.1), which by its turn invokes
(see 2.1.1) the vulnerability scanner function of Security
Tools Server over each network host (see 2.2). Each returned
result from the vulnerability scanner function is stored on the
database (see 2.2.1).
The SOAR framework can initiate (see 3.0) a sequence

of automated steps to execute the risk evaluation feature.
This process begins by collecting vulnerability data from the
database (see 3.1), evaluating the risk associated with each
vulnerability, identifying the highest-risk vulnerabilities on
each host (see 3.2), and storing the results in the database
(see 3.2.1). The severity of the identified vulnerabilities en-
ables the subsequent SOAR capability to make well-informed
mitigation decisions based on a risk-prioritized list of host
security vulnerabilities.
Through interaction "4.0", the SOAR framework performs

the mitigation feature by retrieving high-risk vulnerable de-
vices from the database and triggering (see 4.1) the SDN
controller to initiate a sequence of management actions aimed
at mitigating the risk associated to each host vulnerability (see
4.2). The results of these mitigation actions are stored in the
database (see 4.2.1). Here, the SDN controller plays a central

VOLUME XY, 202Z 5



J. Polónio et al.:Towards Automatic Detection and Mitigation of High-Risk Cybersecurity Vulnerabilities at Networked Systems

role. As an example of a possible mitigation action, the SOAR
component can instruct the SDN controller to temporarily
move a vulnerable host to a separate VLAN. This isolation
remains in place until corrective actions are performed on the
host to eliminate its vulnerabilities.

IV. IMPLEMENTATION
This section details the process of implementing the proposed
system, describing the major elements and their interactions.
Section IV-A presents the logic of the system, explaining
the server where each component is running and the interac-
tion among the various components of the current proposal,
through a system activity diagram. The following sections
provide a detailed explanation of each tool or functional
module used in the implementation of the proposed solution.
The proposal code is publicly available in [15].

A. DATA FLOW AND INTERACTION

The Fig. 4 depicts a comprehensive activity diagram that
illustrates the end-to-end process from device discovery, vul-
nerability scanning, and risk evaluation to the mitigation of
high-risk vulnerabilities via SDN. This sequential functional
process was deployed as debated in the following text.

The process begins in the SOAR by creating a network
scanning ticket that requests a device discovery (1), thus ini-
tiating a device discovery task (2) from the SSA. The system
then checks for any active devices on the network (3) after
sending the request. If no devices are detected, the process
waits for a timeout period (4) before returning to the initial
device discovery request, restarting the loop. After detection,
the status of the device is checked in the database (5). This
status refers to the date of the last vulnerability scan carried
out on the device, and, based on this parameter, it is decided
whether or not the device should be scanned (6). As the SOAR
decides the device should be scanned, it then generates a
vulnerability scanning ticket for that device (7) and starts the
vulnerability scan (8). The scan results after being stored in
the database are analyzed (9) to calculate a severity score (10).
Based on the calculated score, the SOAR initiates a VLAN
change (i.e. Mitigation Measure 1) to relocate the device to a
quarantine zone via the SDN controller (11). This mitigation
strategy is just one of several possible approaches. Other
measures (i.e. Mitigation Measure 2), such as Deep Packet
Inspection (DPI) to analyze network traffic for malicious
content towards the vulnerable host, the use of firewall rules
to block flows involving the vulnerable host, or even MTD to
dynamically shift the network configuration and protect the
vulnerable host, could also be implemented in the proposed
solution. These mitigation alternatives to VLAN isolation can
be studied in future work. If the device is considered safe, the
process is finished and a new scanning is scheduled in the
future (12).

The next Section details how the SOAR was deployed.

B. SOAR PLATFORM
Catalyst [16] is an open-source SOAR platform that automat-
ically alerts about security incidents and deals with them. The
platform is adaptable to various processes and workflows,
allowing customization through ticket types, conditional cus-
tom fields, and playbooks to meet specific requisites. Catalyst
enables firms to enhance their operations. It also allows the
management of security alerts with high efficiency.
Catalyst version 0.10.3 was chosen because of its support

for creating customized automation scripts written in Python.
This version has the capability of creating detailed playbooks.
It allows the remote execution of processes via an API.
Playbooks are a particularly valuable feature of Catalyst,

offering the ability to define automation workflows from
scratch using the YAML language, with graphical representa-
tion available through the user interface (UI). While the con-
cept of a visual UI is appealing, its current implementation re-
quires further refinement, as constructing complex playbooks
remains cumbersome. Although YAML provides consider-
able flexibility, it lacks support for essential programming
constructs such as loops and conditional branching, which
are critical for building advanced automation logic. A more
intuitive and expressive language could enhance usability and
facilitate the creation of sophisticated workflows, including
the ability to revisit previous automation steps. As playbook
complexity increases, tracking modifications and identify-
ing errors in YAML code become progressively more diffi-
cult in the absence of an integrated debugging environment.
Furthermore, the documentation available for the Catalyst
version used in this study was notably limited, particularly
regarding playbook development. This inadequacy compelled
developers to rely on example-driven learning and trial-and-
error experimentation to understand and utilize the platform’s
capabilities effectively.
Develop Catalyst automation scripts offers numerous ad-

vantages, particularly programming in Python, which pro-
vides a wide range of capabilities. In Catalyst, automation
scripts are executed within Docker containers, where each
script runs in its own container. This approach improves com-
patibility and ensures process isolation. However, executing
each script in a distinct container can create some issues.
Specifically, a new container must be instantiated every time a
script is run, which increases overhead, latency, and resource
consumption.
Catalyst has proven to be a tool with a highly interesting

and promising concept. As previously noted, its ability to en-
hance automation while preserving a traditional ticketing in-
terface for opening and closing tasks demonstrates significant
innovation compared to other available open-source tools.
However, the software still requires substantial development
before it can be considered suitable for organizational use.
During the Catalyst implementation, several challenges

and limitations were encountered, which in our opinion
should be carefully addressed in future versions:

• The Catalyst API presented several limitations. For in-
stance, it required requests to be made using a complete

6 VOLUME XY, 202Z



J. Polónio et al.: Towards Automatic Detection and Mitigation of High-Risk Cybersecurity Vulnerabilities at Networked Systems

FIGURE 3. Proposed System Architecture and Functional Components.

FIGURE 4. Proposed System Workflow and Interaction Sequence.

VOLUME XY, 202Z 7



J. Polónio et al.:Towards Automatic Detection and Mitigation of High-Risk Cybersecurity Vulnerabilities at Networked Systems

JSON object, with parameters hardcoded directly within
it. When creating a ticket via the API, the system did
not auto-generate an ID, forcing the user (i.e., the appli-
cation using the API) to manually generate one. More-
over, there was no built-in function to retrieve the most
recently assigned ID, making it necessary to analyze all
existing tickets to determine the latest one.

• Another issue with Catalyst was the inability to manu-
ally close a task while a playbook was still running. This
limitation led to the unnecessary execution of automated
scripts, even when further processing was redundant or
potentially harmful. This behavior not only increased
system load but also posed risks, particularly on the Se-
curity Tools Server, where sockets sometimes remained
open, requiring a service restart.

• Debugging in Catalyst was notably challenging, pri-
marily because testing a single automation script at the
end of a chain required executing the entire playbook.
This made the development cycle inefficient and time-
consuming.

• The tool’s documentation was minimal and often un-
clear, which significantly hindered the installation, im-
plementation, and overall usability of the system.

To address the limitations encountered with Catalyst, our
system was deliberately designed to bypass or mitigate sev-
eral of these challenges. Specifically, in response to the com-
plexity of YAML-based playbook development and the ab-
sence of integrated debugging support, we implemented a set
of practical workarounds. One key strategy was the modular-
ization of playbook logic, wherein complex automation tasks
were decomposed into smaller, reusable components. This
modular approach enhanced maintainability and facilitated
iterative testing and development, even in the absence of
native debugging tools. By structuring the playbooks in this
way, we reduced error-proneness and improved the overall
robustness and scalability of the automation logic.

The next Section details the implementation of the Security
Service Adapter.

C. SECURITY SERVICE ADAPTER
The Security Service Adapter (SSA) was completely devel-
oped in Python. The SSA behaves as an intermediary between
the SOAR Server and the security tools, Greenbone Vulner-
ability Manager (GVM) and Nmap. Through the SSA REST
API, it receives instructions from Catalyst SOAR to execute
processes related to the GVM, as well as store and read data
from a database. FastAPI [17] was selected as the library
for the development of the SSA API. This Python library
was selected for its simplicity and performance. FastAPI
allows SOAR to quickly access the functionalities offered by
the SSA, such as running scans and extracting reports. The
choice of this technology was reinforced by its use in network
automation scenarios, as emphasized in [18]. Although the
focus of this research is not to have secure communications,
the HTTPS protocol was adopted to improve the security of

communications between the SSA and SOAR, thus ensuring
the integrity and confidentiality of the data exchanged.
The decision-making logic for handling device vulnerabil-

ities was implemented within SOAR, as it is the most suit-
able environment for this functionality. This implementation
provides users with greater flexibility to tailor vulnerabil-
ity analysis and mitigation workflows without affecting the
overall system operation. Thus, SOAR assumes responsibility
for the decision logic, while the SSA focuses on delivering
the necessary support functions, promoting a modular and
scalable architecture.
The scanning process is initiated when a request is made to

scan a specific target, with an IP address provided as input.
This triggers the function responsible for launching the scan.
In the activity diagram (Fig. 4), this step (8) is represented
by the block indicating the execution of the scan task, which
continues until the scanner produces a report detailing the
identified vulnerabilities.
During the scan, it is essential to monitor its progress to

determine when it has completed. In the implementation, this
is achieved through a function that periodically checks the
scan status using the report identifier. The system queries
the current scan status (e.g., “Running”, “Stopped”, “Done”)
from the GVM at regular intervals. By default, this interval is
set to 2 minutes but can be adjusted via the Device Discovery
Automation settings in SOAR to suit the environment’s needs.
There are two possible approaches for monitoring:

callback-based or polling. A callback mechanism would al-
low the GVM to notify the system immediately upon scan
completion, but it introduces additional implementation com-
plexity. The adopted approach based on periodic polling, it
queries about the scan status at configurable intervals. Shorter
intervals enable quicker detection of scan completion but
increase system load, while longer intervals reduce resource
usage at the cost of delayed detection.
Once the scan concludes, the system processes the results

by extracting relevant data and storing it in the database for
further analysis. This stage begins as soon as the monitoring
function detects scan completion. The corresponding function
then parses the XML report generated by GVM and converts
it into JSON format for analysis by the SOAR platform. As
part of this process, the SSA reads the report, extracts all
pertinent information, and prepares it for SOAR to make
informed decisions. This design allows for customization and
alignment of the extracted data with the system’s objectives,
including specific characteristics of the scanned nodes.

D. DATABASE
Redis [19] was used to manage the work queues and tem-
porary storage of data critical to the system’s operation.
Redis is an in-memory key-value store, categorized as a
NoSQL database, which provides high-performance storage
for various data structures such as strings, hashes, lists, sets,
and sorted sets. Unlike traditional relational databases, Redis
does not employ tables or schemas and does not enforce
relational integrity constraints. Its primary advantage is rapid

8 VOLUME XY, 202Z



J. Polónio et al.: Towards Automatic Detection and Mitigation of High-Risk Cybersecurity Vulnerabilities at Networked Systems

data access, whichmakes it particularly suitable for managing
queues and transient data required for system responsiveness.

In the Security Service Adapter (SSA), tasks such as device
discovery and report parsing are queued in Redis to facilitate
asynchronous processing. This setup enables parallel execu-
tion of multiple tasks, significantly reducing response times
for new requests. Consequently, the SSA can continuously
accept and enqueue new scan or operation requests without
needing to wait for preceding tasks to complete.

The Redis database itself is deployed within a dedicated
virtual machine, which ensures isolation, scalability, and ease
of maintenance, while providing flexibility to scale or relo-
cate the database infrastructure if needed.

Next Section discusses how the Device Discovery Module
was deployed.

E. DEVICE DISCOVERY MODULE
Nmap (Network Mapper) [20] is an open-source tool used for
exploring and evaluating network systems, including network
inventory and monitoring the availability of devices or ser-
vices and security purposes.While it is primarily designed for
scanning large networks quickly, it is also effective for target-
ing individual devices [21]. Nmap is widely recognized for its
efficiency and performance, offering fast and comprehensive
network scans.

In the deployed system, Nmap (version 7.93) is executed
within a Docker container, ensuring an isolated, reproducible,
and platform-independent environment for device detection.
The integration with the "python-nmap" library facilitates
programmatic control of Nmap from Python, enhancing the
system’s versatility by enabling seamless automation and
integration into broader data processing workflows.

Nmap was configured for device discovery using two spe-
cific scan types: sP, which performs a basic ping scan to find
active devices without further testing such as port scanning
or OS detection, and PR, which runs an Address Resolution
Protocol (ARP) scan, which determines device activity by
mapping IP addresses with their respective Media Access
Control (MAC) addresses.

The next Section discusses how the Vulnerability Scanner
was deployed and how the vulnerability risk was evaluated.

F. VULNERABILITY SCANNER
The purpose of the vulnerability scanner is to identify security
vulnerabilities across various devices within the network.
Once detected, these vulnerabilities are evaluated based on
the potential risk they pose to normal network operations if
exploited by cyberattacks. The used vulnerability scanning
tool was GVM [22] which is the successor to OpenVAS.

GVM utilizes two scanners to assess devices on the net-
work: the OpenVAS Scanner and the Notus Scanner. The
OpenVAS Scanner is a comprehensive engine that executes
individual vulnerability tests (VTs) sequentially, primarily
using Nessus Attack Scripting Language (NASL) scripts
against target systems. It draws on either the Greenbone
Enterprise Feed or the Greenbone Community Feed to ensure

up-to-date vulnerability information. While thorough, this
method can be resource-intensive and slower, as each NASL-
based local security check (LSC) is executed separately for
every device.
In opposition, the Notus Scanner enhances performance

by replacing the NASL-based LSC logic. Rather than exe-
cuting individual scripts, it performs a bulk comparison of
the installed software on a device against a known list of
applications with vulnerabilities. This significantly reduces
resource usage and scanning time, making the Notus Scanner
a faster and more efficient option, particularly for LSCs.
GVM provides a variety of scan configurations tailored to

different requirements and levels of detail. These configura-
tions are designed to balance the depth of analysis with the
potential impact on the normal operation of target systems.
Users can choose between quick, low-impact scans or more
exhaustive, potentially disruptive ones, depending on their
specific needs. For the purposes of this research, the Full and
Fast scan configuration was selected for the tests described in
Section V, due to its efficiency and ability to deliver fast and
reliable results without causing operational disruption to the
target systems.
GVM supports exporting scan data in multiple formats,

including PDF, CSV, and XML. For this research, XML was
chosen due to its ability to encapsulate comprehensive scan
details and facilitate seamless integration with other tools.
GVM-generated XML files are extensive, containing numer-
ous fields, some of these intended solely for internal system
use. For practical analysis, it is recommended to focus on the
report’s critical data fields rather than processing all reported
information.

G. VULNERABILITY RISK EVALUATION
The data in the report, obtained from the component in the
previous section, are used to determine whether a device is
considered vulnerable, as shown in Equation 1. This equation
computes a vulnerability score for each finding by combining
its Severity (S) with the corresponding Quality of Detection
(QoD), normalized as QoD/100. The QoD parameter reflects
the accuracy and confidence of the vulnerability detection
provided by GVM.
GVM calculates QoD based on predefined criteria consid-

ering the reliability of the detection methods used. Specifi-
cally, vulnerabilities explicitly confirmed via reliable meth-
ods, such as direct version or patch-level checking, or clear
proof of exploitation, are assigned high QoD values. De-
tections based on indirect evidence, such as service ban-
ners or other strong indicators, receive medium QoD values,
whereas vulnerabilities inferred heuristically or through low-
confidence indicators, such as generic behaviors or uncertain
patterns, are given lower QoD values.
Multiplying Severity by QoD/100 thus effectively captures

both the potential impact of the vulnerability and the accu-
racy of its detection. Therefore, QoD represents a structured
measure of the reliability and accuracy of vulnerability iden-

VOLUME XY, 202Z 9



J. Polónio et al.:Towards Automatic Detection and Mitigation of High-Risk Cybersecurity Vulnerabilities at Networked Systems

tification, providing essential context and confidence levels
for users making risk-based decisions.

For each device, the highest of these vulnerabilities scores
is denoted as V. If V exceeds a predefined threshold, the
device is classified as vulnerable. This threshold can be easily
adjusted within the Mitigation Measure Automation script to
accommodate varying risk assessment policies or operational
requirements.

As future work we envision to replace the current high-
risk decision mechanism, based on CVSS cores exceeding
a predefined threshold, by more comprehensive alternatives.
These include incorporating additional factors into the vul-
nerability risk evaluation process, such as: i) the vulnerabil-
ity’s exploitability value [3], [4]; and ii) the likelihood that
a CVE vulnerability could be exploited, as obtained from
a public API [23]; iii) the role or system’s function of the
affected device within the network; and iv) the number of
interactions the affected device have performed with other
network devices during a specific time interval. These factors
are expected to significantly improve the precision of risk pri-
oritization. Their omission in the current implementation was
primarily due to the increased complexity in data acquisition,
integration, and real-time processing within the orchestration
pipeline. Nonetheless, their inclusion remains a key direction
for future development.

V = max
i∈{1,2,...,n}

(
Si ×

QoDi

100

)
, V > Thresh (1)

Where:
• V is the highest vulnerability score.
• Si is the severity score of vulnerability i.
• QoDi is the quality of detection value of vulnerability i.
• n is the total number of vulnerabilities.
• The operator max selects the highest score.
• The condition V > Thresh means the device is consid-

ered vulnerable if the severity score exceeds the severity
Threshold.

GVM supports remote task execution, such as initiating
scans and retrieving reports, which enables its integration and
management by the SSA. To facilitate automated commu-
nication with GVM, the gvm-tools toolkit was installed.
Among the available tools, gvm-script was selected for
its simplicity and efficiency. It allows direct interaction with
GVM by executing Greenbone Management Protocol (GMP)
commands via the command line, streamlining the automa-
tion of scanning tasks.

The gvm-script interface, which is intuitive and user-
friendly, allows users to perform tasks such as initiating vul-
nerability scans, selecting scan configurations, and retrieving
detailed reports using concise, single-line commands. This
approach helps mitigate the complexity typically associated
with API-based interactions.

Moreover, the use of gvm-script and its scripting-based
design simplifies maintenance. By leveraging scripts, a clear
separation of responsibilities was successfully implemented.

This modularity facilitates easier updates and modifications,
particularly when adjusting the scanning logic contained
within the scripts. As a result, the integration process becomes
more straightforward, while the risk of bugs and errors, which
are common in other more complex API-based interactions,
is significantly reduced.
The gvm-script method enhances the testing and debug-

ging process, as each script can be independently validated,
ensuring reliable and predictable behavior.
The next two sections debate the deployment of the SDN

system.

H. SDN CONTROLLER
Ryu was chosen as the SDN controller [24], an open-source,
modular platform developed by Nippon Telegraph and Tele-
phone (NTT), a Japanese telecommunications company. In
Japanese, "Ryu" means "flow", a name that effectively de-
scribes the controller’s capability to dynamically manage
network traffic flows. Written in Python and licensed under
Apache 2.0, Ryu supports a wide range of network manage-
ment protocols, including NETCONF, OF-Config, and the
Open vSwitch Database Management Protocol. It also im-
plements the standard SouthBound API OpenFlow, support-
ing versions from 1.0 to 1.5. In this implementation, Open-
Flow v1.3 was used to control software-based switches via
OpenvSwitch. Ryu provides a rich set of libraries for packet
handling and supports various tunneling and encapsulation
methods, such as VLAN.
The decision to adopt Ryu was driven by its open-source

nature, extensive documentation, and Python-based imple-
mentation, which aligns well with the team’s expertise. Ad-
ditionally, Ryu’s ability to integrate smoothly with differ-
ent platforms and tools through its REST API (NorthBound
interface), combined with strong community support and a
flexible architecture, made it a robust choice for building a
resilient SDN environment. In this setup, the Ryu controller
operates within a Docker container.

I. SWITCH
The implementation has used Open vSwitch (OVS) [25], a
robust, multi-layer virtual switch licensed under the open-
source Apache 2.0 license. OVS is designed to support ad-
vanced network automation while maintaining compatibility
with standard management protocols and interfaces. It inte-
grates seamlessly with various virtualization platforms, such
as Docker and VMware, and is particularly well-suited for
virtualized environments involving multiple servers. These
environments are characterized by dynamic endpoints, the
need to preserve logical abstractions, and the offloading or
delegation of tasks to specialized switching hardware. Ver-
sion 3.1.0 of OVS was employed in this implementation.
The network topology was constructed using Mininet

[26], a lightweight network emulator that creates virtual net-
works for testing and development purposes. Version 2.3.0
of Mininet was used. Additionally, Mininet enabled the con-
figuration of an SDN router within one of its virtual hosts,

10 VOLUME XY, 202Z



J. Polónio et al.: Towards Automatic Detection and Mitigation of High-Risk Cybersecurity Vulnerabilities at Networked Systems

providing Internet connectivity to all emulated hosts. This
virtualized testbed was crucial for simulating diverse network
scenarios and assessing system behavior under controlled
conditions before transitioning to more complex and realistic
testing environments.

The next Section debates DHCP Server deployment.

J. DHCP SERVER
The DHCP service is provided through the implementation
of the ISC DHCP server [27]. Version isc-dhcpd-4.4.3-P1
was selected for its proven stability and ease of use. This
version is well-suited to the system’s requirements, offering
reliable performance and a straightforward configuration pro-
cess without unnecessary complexity.

It is worth noting that, at the time of writing, ISC DHCP,
while still supported, it is no longer receiving maintenance
releases and it has been officially succeeded by Kea [28].

The next Section details how the Mitigation Module was
built.

K. MITIGATION MODULE
In this research, the chosen mitigation strategy involved re-
assigning the VLAN of vulnerable devices to isolate them
from the rest of the network. To achieve this, it was necessary
to modify the behavior of the SDN controller by changing
its source code. As illustrated in Fig. 4, when a device is
identified as vulnerable, the SDN controller is responsible for
updating the VLAN assignment (see step 11) on the device’s
interface and applying specific flow rules on the switch to
enforce the new network policy. This effectively reroutes the
device to a quarantine VLAN, isolating it from the main
network.

Algorithm 1 is executed within the SDN controller after
the SOAR platform triggers a VLAN change for a high-
risk host via Ryu’s REST API. This approach offers several
advantages, as VLAN assignments are dynamically man-
aged based on switch ports, allowing for straightforward
and flexible updates. The algorithm relies on two dictionar-
ies: port_to_vlan (line 1) and ip_to_switch_port
(line 2). The port_to_vlan dictionary maintains real-
time mappings of VLAN IDs to switch ports, while
ip_to_switch_port links IP addresses to their corre-
sponding switch IDs and source ports.

Upon receiving an IP address (line 3) and a new VLAN ID
(line 4), the function first checks whether the IP exists in the
ip_to_switch_port dictionary. If found, it retrieves the
associated switch ID and port (line 7); otherwise, it returns
a 404 error (line 9), indicating the IP is not recognized.
Once the relevant switch and port are identified, the function
updates the port_to_vlan mapping with the new VLAN
ID (line 11). It then removes any existing flow rules for that
port to avoid conflicts (line 13), ensuring the new VLAN
configuration is correctly applied in the data plane. Finally,
the function returns the updated port_to_vlan dictionary
(line 16), reflecting the current VLAN assignments.

The next section presents and analyzes the results obtained
through a comprehensive set of evaluation tests conducted to
assess the proposed system.

Algorithm 1 Change VLAN ID
Require: Dictionaries port_to_vlan and ip_to_switch_port.
1: port_to_vlan: Tracks which VLAN each port is assigned

to.
2: ip_to_switch_port: Maps an IP address to its associated

port and switch.
3: ipaddress: IP address of the device whose VLAN ID

needs to be changed.
4: vlanid: New VLAN ID to be assigned.
5: {Step 1: Check if IP address exists in ip_to_switch_port

dictionary.}
6: if ipaddress exists in ip_to_switch_port then
7: Retrieve switch ID and source port.
8: else
9: return 404 (Not Found).
10: end if
11: {Step 2: Update port_to_vlan dictionary with the new

VLAN ID.}
12: Update port_to_vlan for the source port with vlanid.
13: {Step 3: Clean all flow rules associated with the source

port.}
14: Use the clean_flows method to clear the flow rules.
15: {Step 4: Return the updated port_to_vlan dictionary.}
16: return Updated port_to_vlan dictionary.

V. RESULTS
This section presents and analyzes the results obtained from
testing the proposed system in two distinct environments,
aiming to comprehensively evaluate its performance under
varied conditions. Due to infrastructure limitations, the physi-
cal testbed lacked SDN-capable switches, rendering it unsuit-
able for validating the VLAN-based mitigation mechanism.
In traditional switching environments, VLAN assignments
are typically static and tied to physical port configurations,
which restricts the dynamic and programmable VLAN re-
assignments necessary for responsive host isolation. There-
fore, a virtualized SDN-enabled environment was employed
to assess the mitigation mechanism, offering the flexibility
to simulate and observe VLAN transitions in a controlled
setting.
Conversely, the physical environment was instrumental in

validating the vulnerability scanning process within a real-
world network context, where interaction with actual hard-
ware devices (referred to as hosts or machines) could be eval-
uated more realistically. Specifically, tests A to D, focused
on performance analysis of the vulnerability scanner, were
conducted in the physical environment, while test E, which
evaluates the orchestration performance, including automated
response execution, was performed in the virtual environ-
ment, where more control over the network setup was pos-
sible. Together, these complementary testbed environments

VOLUME XY, 202Z 11



J. Polónio et al.:Towards Automatic Detection and Mitigation of High-Risk Cybersecurity Vulnerabilities at Networked Systems

enabled a well-rounded assessment of the system’s function-
ality, scalability, and responsiveness.

The physical environment tests were conducted in the com-
puter networks laboratories at Iscte – University Institute of
Lisbon [29]. These tests aimed to evaluate the performance
of the vulnerability scanner integrated into the developed
system. The laboratories provided access to 32 machines
distributed across 16 workbenches in two separate rooms. By
conducting tests with varying numbers of hosts, the scala-
bility and performance of the scanner were evaluated under
different load conditions. Incrementally increasing the num-
ber of target hosts allowed for an analysis of how resource
consumption and scan duration scaled with the number of
devices being scanned.

Each laboratory machine hosted a virtual machine (VM)
designated as a scan target. Table 2 details the specifications
of both the physical machines and the target VMs.

TABLE 2. Hardware and software specifications of the laboratory
machines and their corresponding target virtual machines used in the
physical testbed. The laboratory machines hosted Windows 10 Enterprise
with virtualized Windows Server 2003 targets for vulnerability scanning.

Specification Laboratory Machine Target VM

OS Windows 10 Enterprise Windows 2003

CPU Intel i5-6600 8 CPU Cores

RAM 32 GB 1 GB

The physical machine designated as the Security Tools
Server hosts a VM running Kali Linux, where the vulnera-
bility scanner, GVM, is installed and operational. This server
is connected to the laboratory switch, providing it with access
to the network. Within the VM, a DHCP server is configured
to assign IP addresses to the laboratory machines. Table 3
presents the hardware specifications of the physical server
and the configuration details of the server VM.

According to our current best knowledge, we have not iden-
tified any prior SOAR–SDNproposals with publicly available
implementations that would enable a direct, quantitative com-
parison of orchestration complexity and response times. Most
related works provide only conceptual architectures or partial
implementations, which limits the possibility of benchmark-
ing our proposal performance against them. As an alternative,
and to promote transparency and reproducibility, we have
made our full implementation publicly available on [15]. This
allows the community to replicate our results and provides
a reference point for future work to compare orchestration
complexity and response times against our proposal.

A. SCAN TIME ANALYSIS
The objective of this test was to evaluate the resource con-
sumption of GVM and its impact on scan duration. The

TABLE 3. Hardware and software specifications of the Security Tools
Server and its associated virtual machine used for running GVM in the
physical testbed. The server hosted a Kali Linux VM configured with DHCP
and vulnerability scanning services.

Specification Server Machine Server VM

OS Windows 11 Home Kali Linux 2022.2

CPU Model AMD Ryzen 5 5600H 8 CPU Cores

RAM 24 GB 12 GB

time required to complete a scan directly influences how
frequently scans can be performed and how quickly vulner-
abilities can be detected and mitigated. Long scan durations
may delay vulnerability identification, thereby increasing ex-
posure to potential threats.
Assessing the scanner’s impact on system resources,

specifically CPU, RAM, and network bandwidth, ensures that
scanning operations do not degrade overall system perfor-
mance or lead to unexpected downtime. Bandwidth usage
was also monitored to verify that the scanning process does
not saturate the network, which could disrupt host commu-
nication or worse the performance of other services. The
parameters CPU, RAM, and bandwidth, were selected to
monitor the system performance in the tests described below.
The goal was to identify any resource bottlenecks that might
correlate with increased scan durations and limit the system’s
overall performance.
Tests were conducted in the laboratory environment using

1, 2, 4, 8, 16, and 32 hosts. Fig. 5 illustrates the relationship
between the number of scanned hosts and the corresponding
scan duration.

FIGURE 5. Duration of vulnerability scans with 1 to 32 hosts in the
physical testbed. Tests were executed with GVM (Full and Fast
configuration) running on Kali Linux, scanning Windows-based virtual
machines connected via laboratory switches.

The results indicate a noticeable increase in scan duration
as the number of scanned hosts grows, with a particularly
sharp rise observed beyond 8 hosts. This escalation can be
attributed to the complexity of the Vulnerability Tests (VTs)
performed by GVM on each individual host. As the number
of targets increases, the scanner must handle a proportionally

12 VOLUME XY, 202Z



J. Polónio et al.: Towards Automatic Detection and Mitigation of High-Risk Cybersecurity Vulnerabilities at Networked Systems

greater volume of data and processing tasks, leading to longer
execution times.

Further insights into this behavior are provided in subsec-
tions V-B, V-C, and V-D, where the scanner’s resource usage
is examined in greater detail. These analyses help identify
external limiting factors that may contribute to increased scan
durations.

B. CPU LOAD
This subsection analyzes CPU usage across the different
test scenarios. Table 4 presents the maximum, average, and
standard deviation values of CPU utilization recorded during
scans to a variable number of hosts. The standard deviation
indicates the variability of CPU usage over time, providing in-
sight into the consistency of resource consumption. All CPU
usage values were calculated from a representative sample,
with the CPU initially operating at 1%.

For tests involving up to 2 hosts, maximum CPU usage
remained moderate, and average usage was relatively low.
Although the test with 4 hosts showed a peak CPU usage
nearing 100%, the increase in scan duration was minimal,
only about two minutes longer than the single-host test (see
Fig. 5). This can be attributed to the average CPU usage
still being within acceptable limits, allowing the system to
maintain efficient operation (see Table 4).

However, starting from 8 hosts, the CPU experienced full
saturation, accompanied by a significant rise in average us-
age, indicating a notable strain on server resources. With 16
hosts, the impact on scan duration became more pronounced.
The CPU not only reached its maximum capacity but also
remained at high utilization levels for extended periods. In
the 32-host scenario, the situation further deteriorated, with
average CPU usage approaching 90%, signaling a critical
overload. This sustained high usage reduced the scanner’s
efficiency, preventing it from effectively handling all hosts
and resulting in a substantial increase in scan completion
time.

An analysis of the standard deviation values presented in
Table 4 reveals a notable variation in CPU usage consis-
tency as the number of hosts increases. For tests involving
1 and 2 hosts, the standard deviation remains relatively low,
indicating stable and predictable CPU usage with minimal
fluctuation around the mean. This suggests that under lighter
loads, resource consumption is more consistent.

However, for scenarios with 4 and 8 hosts, the standard
deviation increases significantly, reflecting greater variability
in CPU utilization. This implies that the system experienced
intermittent peaks in resource demand. Despite the high av-
erage CPU usage, the increased variability suggests that the
systemwas frequently operating near capacity, with only brief
and infrequent periods of reduced load.

These results highlight a substantial rise in CPU demand
as the number of hosts grows, underscoring the scalability
challenges associated with running vulnerability scans in en-
vironments with a high number of connected devices.

FIGURE 6. CPU utilization during vulnerability scanning with 4 and 16
hosts in the physical testbed. Scans were performed using GVM with the
Full and Fast configuration, and measurements were collected from the
Security Tools Server running Kali Linux on a virtual machine.

Fig. 6 illustrates CPU utilization over time for workloads
involving 4 and 16 hosts, respectively. In both scenarios, the
initial CPU load is approximately 13%, which is attributed
to the initiation of tasks within the GVM system. In the 16-
host scenario, CPU usage subsequently exhibits a marked
increase, particularly at minute four, reaching saturation at
100%. This sharp increase likely corresponds to the initial
intensive execution phase of vulnerability tests (VTs). Fol-
lowing these peaks, CPU utilization decreases around minute
six, with further reductions observed at minute eleven. To-
ward the conclusion of the scan, resource usage progressively
declines as expected. Conversely, in the 4-host scenario, CPU
utilization reaches saturation only once at minute fifteen,
demonstrating overall more efficient resource management
throughout the measurement period. The observed fluctua-
tions in CPU utilization are presumably correlated with the
timing of specific VTs, reflecting their varying computational
complexity and intensity. Comparing periods of highest CPU
utilization across both scenarios, it is evident that the 16-
host scan requires approximately seven additional minutes to
conclude compared to the 4-host scenario, a result consistent
with the findings presented in Fig. 5.

C. MEMORY USAGE
This subsection analyzes RAM usage during the various test
scenarios. As shown in Table 5 and Fig. 7, memory con-
sumption remains relatively stable despite the increase in the
number of scanned hosts. Although there is a slight upward
trend in RAM usage as more hosts are added, the variation
is minimal and does not follow the same increasing pattern
observed in scan duration results.
These findings suggest that GVM handles memory effi-

ciently, even as the workload scales, indicating that RAM is
not a limiting factor in the scanning process. Instead, the CPU
appears to be the primary contributor to the increased scan
times. RAM usage values were derived from a representative
sample, with the initial memory usage recorded at 37% (ap-
proximately 4.3 GB).

VOLUME XY, 202Z 13



J. Polónio et al.:Towards Automatic Detection and Mitigation of High-Risk Cybersecurity Vulnerabilities at Networked Systems

TABLE 4. CPU utilization results during vulnerability scans with 1 to 32 hosts in the physical testbed. Values include maximum, average, and standard
deviation of CPU load measured on the Security Tools Server running GVM with the Full and Fast configuration.

CPU load 1 Host 2 Hosts 4 Hosts 8 Hosts 16 Hosts 32 Hosts

Max (%) 27.5 58.6 99.0 100 100 100
Avg (%) 14.3 24.3 47.8 78.0 82.1 87.7

STD Deviation (%) 6.7 13.9 29.0 35.2 32.9 27.0

TABLE 5. RAM usage results during vulnerability scans with 1 to 32 hosts in the physical testbed. Maximum, average, and standard deviation values were
recorded on the Security Tools Server to assess the impact of scaling on memory consumption.

RAM memory 1 Host 2 Hosts 4 Hosts 8 Hosts 16 Hosts 32 Hosts

Max (%) 41.6 42.3 43.2 46.7 50.4 52.9
Avg (%) 41.1 41.6 42.1 43.4 44.4 44.9

STD Deviation (%) 0.5 0.6 0.8 1.7 2.7 2.8

FIGURE 7. Comparison of RAM usage during vulnerability scans with with
1 to 32 hosts in the physical testbed. Scans were conducted using GVM
(Full and Fast configuration) on Windows-based target virtual machines,
with memory consumption monitored on the Security Tools Server.

The analysis of RAM usage over time, as illustrated in
Fig. 7, revealed no significant outliers, confirming the consis-
tency of the results throughout the testing process. This stable
behavior indicates that no anomalous or unexpected events
occurred during the test runs, thereby reinforcing the relia-
bility of the experimental data. The absence of abrupt fluctu-
ations in memory usage suggests that the system maintained
predictable performance, even under varying load conditions.

D. NETWORK OVERHEAD
This subsection examines the network bandwidth utilized
during the different test scenarios. Fig. 8 presents bandwidth
usage as a function of the number of scanned hosts. Through-
out the tests, upload bandwidth consistently remained lower
than download bandwidth, indicating that the scanner re-
ceived more data than it transmitted.

Following an initial increase, the growth in bandwidth
usage begins to plateau once the number of hosts exceeds 8.
This stabilization is likely due to the system reaching 100%
CPU utilization, which limits the scanner’s ability to pro-
cess and execute vulnerability tests in parallel. Both upload
and download bandwidth usage show a positive correlation
with the number of hosts, although the increase in down-

load bandwidth is more pronounced. The average bandwidth
values were calculated from a representative sample. Initial
average values were recorded at 0.7296 Kbps for upload and
1.0203 Kbps for download.

FIGURE 8. Average upload and download bandwidth usage during
vulnerability scans with 1 to 32 hosts in the physical testbed. Tests were
conducted on a 100 Mbps LAN, using GVM with the Full and Fast
configuration. Bandwidth consumption was monitored between the
Security Tools Server and the scanned hosts.

Although bandwidth usage increased over time, the values
remained well within acceptable limits and did not represent
a bottleneck for the vulnerability scanning process. The tests
were conducted on a LANwith a capacity of 100Mbps, which
is significantly higher than the peak bandwidth observed in
Fig. 8, approximately 2 Mbps. This means that the scanning
process utilized only about 2% of the available network ca-
pacity, confirming that bandwidth was not a limiting factor in
this context.

E. PERFORMANCE AND ORCHESTRATION TIMING
The tests conducted in the virtual environment involved run-
ning vulnerability scans on a single host running the Win-
dows 2003 operating system (see Table 2), hosted within a
VMware virtual machine. The objective of these tests was
to measure the execution time of each step in the workflow,
not to benchmark different operating systems, but rather to
assess the orchestration performance of the proposed SOAR-
based framework. Using a host with well-documented vul-

14 VOLUME XY, 202Z



J. Polónio et al.: Towards Automatic Detection and Mitigation of High-Risk Cybersecurity Vulnerabilities at Networked Systems

nerabilities allowed for a consistent and efficient evaluation
of detection, response, and mitigation sequences. To support
this, a logging mechanism was implemented on both the
SOAR Server and the Security Tools Server, enabling precise
tracking of when the system transitioned from one task to the
next (refer to Fig. 4).

Table 6 presents the time taken for each step. By analyzing
these durations, it becomes possible to identify stages that
may be contributing disproportionately to the overall exe-
cution time. The first entry, “Device Discovery,” represents
the time between initiating the network discovery request
and receiving a response. The second column, “Prepare Vuln
Scan,” shows the time required to prepare the vulnerability
scan request, which includes queuing the device information
and creating an automation ticket, until the scan request is
initiated.

Following this, the vulnerability scan itself is executed for
a single host, lasting approximately 18 minutes as shown
in Fig. 5; this duration is not included in the Table 6. The
“Request Report” column reflects the time between request-
ing and receiving the vulnerability report, while “Parsing
Report” visualizes the time taken to process and interpret the
report data. Lastly, the “Change VLAN” column indicates the
time required to reassign the VLAN, and the diverse values
associated to the "Change IP" column are available in Table 7.

The communication time between the SDN controller and
the switch during the VLAN change process was also evalu-
ated. This was done by measuring the time interval between
the transmission of the FLOW_MOD message and the receipt
of its corresponding acknowledgment (ACK). However, some
discrepancies were observed in the recorded timings during
message capture.

In one instance, the controller sent three separate
FLOW_MOD messages, each corresponding to a distinct com-
mand (ADD, DELETE, and ADD), resulting in a total com-
munication time of 0.000075302 seconds. In another case,
all command headers were encapsulated within a single mes-
sage, yielding a shorter time of 0.000024276 seconds. Despite
these variations, both durations are extremely short and do not
introduce any meaningful delay to the system, as expected.

Referring to Table 6, we observe that once the vulnerability
is detected by GVM, the combined time to request (16 ms)
and parse (3 ms) the vulnerability report totals only 19 ms.
This swift processing enables the system to rapidly identify
the need for mitigation, promptly isolating the vulnerable host
and minimizing exposure to potential security threats.

An additional issue identified during testing in the vir-
tual environment was the delay in reestablishing network
connectivity at the host level following a VLAN change.
The expected behavior was for the host’s network interface
to automatically disconnect and reconnect after the VLAN
switch. While the VMware virtual switch correctly detected
the interface as inactive, it failed to trigger any action on the
host side. As a result, the host retained its previous IP address
and did not initiate a new DHCP request.

Consequently, even though the host was now connected

to a switch port in the new VLAN, it continued operating
with the old IP address until the DHCP lease expired and was
renewed. To address this issue, the DHCP server’s lease time
was significantly reduced, enabling faster reassignment of IP
addresses and ensuring that hosts could more promptly adapt
to the new network context.
While reducing the DHCP lease time represents a practical

workaround, it incurs additional network overhead due to
more frequent lease renewal traffic. Although alternatives
such as leveraging SDN to trigger DHCP renewals or im-
plementing 802.1X-like port-based authentication may of-
fer more direct control, they typically require either root
access, specialized client-side software, or tight integration
with specific networking infrastructures. In our opinion, such
approaches compromise transparency and limit general ap-
plicability. By contrast, the proposed solution avoids the in-
stallation of agents or host-level code execution, preserving
the non-intrusive nature of the system. It also remains ag-
nostic to specific network configurations or authentication
mechanisms, operating effectively across generic switches
and diverse topologies, thus maximizing its deployability and
ease of integration.
As previously discussed, VLAN switching was executed

almost instantaneously at the SDN controller level, effectively
isolating the vulnerable host by applying the appropriate
OpenFlow rules to the topology switch. However, despite the
rapid VLAN reassignment, the host remained disconnected
until it obtained a new IP address. Adjusting the DHCP lease
time helped mitigate this limitation, enhancing the overall
responsiveness of the mitigation process.
To evaluate this behavior, two tests were conducted using

DHCP lease times of one and five minutes, respectively.
Each test included 40 measurements to determine the average
time required for lease renewal. Theoretically, the expected
average renewal time is half the lease duration, assuming
that the VLAN change request occurs randomly within the
lease cycle. Under a uniform distribution of waiting times, the
average remaining time until lease expiration should converge
to this midpoint.
A critical aspect of the testing methodology was ensuring

that VLAN change requests were issued at random points
within the lease interval. If requests were made immediately
after one another, the host would consistently wait the full
lease duration before acquiring a new IP address, skewing
the results. To ensure accurate and representative sampling,
requests were randomized throughout the lease cycle.
The results, presented in Table 7, confirm that the observed

average renewal times align with theoretical expectations,
falling within the standard deviation range.

F. SCALABILITY AND PERFORMANCE BOTTLENECKS
The evaluation results demonstrated the proposal’s respon-
siveness, with no excessive delays observed throughout the
complete SOAR workflow (Table 6). The vulnerability de-
tection process was divided into several critical functional
steps, including device discovery, preparation for vulnera-

VOLUME XY, 202Z 15



J. Polónio et al.:Towards Automatic Detection and Mitigation of High-Risk Cybersecurity Vulnerabilities at Networked Systems

TABLE 6. Execution time of each orchestration step in the virtual testbed during a single-host vulnerability scan. Measurements include device discovery,
vulnerability scan preparation, report retrieval and parsing, and mitigation actions (VLAN and IP reassignment).

Device Discovery Prepare Vuln Scan Request Report Parsing Report Change VLAN Change IP

1,5 sec 0,98 sec 0,016 sec 0,003 sec ∼ 0 sec Table 7

TABLE 7. Delay in IP renewal following VLAN reassignment, measured
under different DHCP lease times (60 s and 300 s) in the virtual testbed.
Results show the average renewal time and standard deviation across 40
measurements.

Lease Time (sec) Average (sec) STD Deviation (sec)

60 38 8
300 212 62

bility scanning, and report generation, all of which exhib-
ited minimal execution times. The mitigation measure, i.e.
Change VLAN in the present scenario, was executed almost
instantaneously by the SDN controller, indicating that the
tested architecture can timely isolate susceptible hosts. Only
the vulnerability scanning phase showed a noticeably ex-
tended duration due to its inherent job complexity.
The laboratory tests revealed that GVM exhibits high CPU
utilization when scanning more than eight hosts concurrently,
which can significantly prolong the overall scanning dura-
tion. These reported results reflect a worst-case scenario
in which all hosts were scanned simultaneously to stress-
test the system and expose its upper performance bounds. In
practical deployments, however, scalability can be improved
through several strategies. These include enforcing a prede-
fined concurrency limit with queued jobs, distributing work-
loads across scanning clusters, or applying scan scheduling to
stagger vulnerability assessments. Alternatively, lightweight
preliminary scans could be employed to reduce the load on the
main vulnerability assessment engine. Finally, the modular
design of the Security Tools Server enables parallelization
across multiple instances, further enhancing scalability and
performance. We identify the application of these techniques
as an important direction for future work.

G. IMPLICATIONS FOR SYSTEM ENHANCEMENT
The current solution operates within the internal boundaries
of the organization’s network, benefiting from existing in-
situ security mechanisms, such as, firewall policies.While the
proposed SOAR-based approach does not currently interface
directly with these legacy assets, real-world deployments
often require coordination with broader enterprise security
ecosystems, including SIEM platforms and firewalls. To this
end, future work will explore integration strategies, such as,
the use of RESTful APIs provided by either SIEM platforms
or firewalls, enabling the SOAR correct orchestration with
legacy security infrastructure. Such orchestration is essential
for enabling a scalable, cohesive, and responsive security
management in complex enterprise environments. The cur-
rent solution relies uniquely on the Nmap tool [20] to discover

new hosts connected to the network. Additionally, in future
investigation, other system components, such as the DHCP
server or the SDN controller could be used to discover a new
arriving host (or in general, detect any change in the network
topology) and inform the SOAR framework about that. As an
example, after the SOAR is notified about a new host, it could
trigger right away a vulnerability scan process on that specific
host, avoiding the SOAR resort to a more resource-intensive
active scanning in the network.
The risk evaluation of each host vulnerability should com-

bine the CVSS score with other future compensating factors,
such as the likelihood of exploitation by a malicious actor.
In this way, a high CVSS score associated with a specific
vulnerability may be adjusted downward if the probability of
successful exploitation is low. Such a scenario may occur,
for example, when an attacker would need local access or
elevated remote privileges on the host before being able to ex-
ploit the vulnerability. Additionally, other adjustment factors
available from public vulnerability databases, e.g. [23], they
can be also incorporated on the final calculation of the host
vulnerability risk. Some previous proposals [3], [4] studied
the vulnerability’s exploitability value by an attacker and they
should be considered in future work. Other interesting idea
to modulate the host risk is to factorize the average number
of interactions the affected device have performed with other
network devices during a specific time window.
Let us assume now the scenario of the current SOAR-based

proposal to select a possible mitigation action like moving
a high-risk host to a quarantine VLAN. This host isolation
should remain in place until corrective actions are performed
on the host to eliminate its vulnerabilities. Nevertheless, this
solution could have a drawback. For instance, isolating in this
way a critical server simply because it crosses the severity
risk threshold could result in service disruptions or broader
network issues. In this way, as future work, the mitigation
solution selected by the SOAR should also consider the role
or system’s function of the affected devicewithin the network.
The next Section concludes the paper and presents further

guidelines for upcoming research.

VI. CONCLUSIONS AND FUTURE WORK
This section presents the conclusions drawn from this re-
search and proposes further future work, complementing
what was already debated in V-G.

A. CONCLUSIONS
This research explored the proactive and automated detection
and mitigation of vulnerabilities in network environments
managed by SDN, using a SOAR platform to orchestrate var-

16 VOLUME XY, 202Z



J. Polónio et al.: Towards Automatic Detection and Mitigation of High-Risk Cybersecurity Vulnerabilities at Networked Systems

ious open-source tools. The system automates processes such
as discovering devices, assessing vulnerabilities, analyzing
results, and executing mitigation measures, ensuring inter-
operability, proactivity, and adaptability. It integrates tools
like Nmap and GVM through a Security Service Adapter,
enabling workflow automation and continuous monitoring.
Vulnerable devices are promptly isolated via VLAN switch-
ing implemented by the SDN controller, with a modular
architecture allowing future enhancements. Beyond the inte-
gration of existing tools, this work presents a cohesive and
novel framework, where the orchestration logic and SOAR
playbook are central to its innovation. These elements enable
adaptive and context-aware responses that surpass current
approaches in the literature, highlighting the system’s unique
contribution to the field.

Tests conducted in laboratory and virtual environments
validated the system’s functionality and performance. Labo-
ratory results highlighted GVM’s significant CPU demands
when scanning more than eight devices, with CPU usage
increasing from 14–48% for 1–4 devices to 78–88% for 8–32
devices. RAM usage remained stable (41–45%), while band-
width ranged from 76 Kbps (TX) and 170 Kbps (RX) for one
device to 784 Kbps (TX) and 2036 Kbps (RX) for 32 devices.
Scan durations increased from 18 minutes for one device to
49 minutes for 32 devices. The VLAN switching mitigation
was applied almost instantly, taking just 19ms, demonstrating
the system’s responsiveness and efficiency.

The research successfully developed a proactive system
that automates vulnerability detection and mitigation by inte-
grating SDN, open-source tools, and a SOAR platform. The
system efficiently identified vulnerabilities, implemented
VLAN switching as a mitigation measure, and with effective
orchestration among components, addressing all initial goals.

B. FUTURE WORK
Complementing what was already discussed in Section V-G,
below are presented some suggestions for future work, as
follows: i) node classification and scanning; ii) applying
more mitigation measures; iii) vulnerabilities in IoT sensor
environments; iv) automated intelligent generation of system
security tests; and v) multiple AI agents managing vulnera-
bilities in network domains controlled by SDN.

Node Classification and Scanning: The SDN controller
can be further enhanced to classify network nodes based
on their contextual relevance within the topology, such as,
their proximity to critical assets or the nature of the services
they provide. This would enable prioritization of vulnerabil-
ity scans for devices that perform essential functions, such
as servers or nodes with elevated privileges. Moreover, the
framework could benefit from the implementation of cus-
tomizable scan configurations. For instance, it could dynam-
ically adjust scan aggressiveness based on system load, con-
ducting lighter scans during peak usage periods to minimize
performance impact, and reserving more intensive scans for
off-peak hours. Additionally, the scanning strategy could be
adapted based on a device’s position within the network and

the number of its active direct neighbors. This would allow
the system to fine-tune the frequency and intensity of scans,
focusing resources where they are most needed and improv-
ing overall efficiency and responsiveness.
Applying more mitigation measures: To ensure a ro-

bust defense posture, the implementation of additional mit-
igation measures is essential. The system developed in this
research was designed with flexibility in mind, allowing for
the seamless integration of new mitigation strategies. Deep
Packet Inspection (DPI) serves as a valuable complement
to VLAN isolation, particularly for devices with low-risk
vulnerabilities. By monitoring network traffic in real time,
DPI enables the detection of potentially malicious activity
without restricting the device’s access to system resources,
thus maintaining operational continuity while enhancing se-
curity. Moving Target Defense (MTD) is another mitigation
approach that can be applied in cases where immediate isola-
tion is not required. Vulnerable devices could be placed in
a dedicated VLAN where MTD techniques are employed,
such as, periodically changing the device’s IP address—to
create a dynamic and less predictable network presence. This
provides an intermediate level of containment that is less
disruptive than full isolation. Additionally, a more granu-
lar analysis of the CVSS vector could be leveraged to tai-
lor mitigation strategies. By interpreting individual metrics
within the vector, the system can derive more context-aware
insights, enabling the application of mitigation measures that
are better alignedwith the specific characteristics and severity
of each vulnerability. Additional mitigation strategies could
also draw upon architectures designed for media-independent
handovers [30] and flow mobility management, as exem-
plified in systems combining PMIPv6 with IEEE 802.21
for simultaneousmulti-access across heterogeneous networks
[31]. These approaches enable dynamic routing of traffic
flows across multiple interfaces (e.g., WiFi and cellular),
providing flexible control and continuous service even during
access transitions, capabilities that could support the deploy-
ment of mitigation zones or adaptive quarantine in mobile IoT
contexts.
Vulnerabilities in IoT Sensor Environments: A key di-

rection for future work is to extend the framework’s capabili-
ties to IoT environments, where devices are often deployed
without sufficient security controls, making them potential
attack vectors. IoT scenarios introduce new technical con-
siderations: devices typically have constrained processing
power and battery life, and they utilize diverse communi-
cation protocols that may offer limited bandwidth or inter-
mittent connectivity. Integrating support for these technolo-
gies will likely require adapting our scanning and mitigation
techniques to operate efficiently under such constraints. For
example, one promising approach is to leverage SDN-based
admission control for IoT endpoints, similar to the framework
proposed in [11], which automatically scans IoT devices
for known vulnerabilities before allowing them to join the
network. If a device is found to be vulnerable, that system
attempts automated remediation or isolates the device (e.g.,

VOLUME XY, 202Z 17



J. Polónio et al.:Towards Automatic Detection and Mitigation of High-Risk Cybersecurity Vulnerabilities at Networked Systems

using firewall rules) to prevent it from exposing the network
to risk. Notably, this type of pre-admission scanning was
shown to incur only minimal performance overhead (on the
order of a few milliseconds of added latency), suggesting that
our architecture could incorporate similar IoT device checks
without significantly impacting overall performance.

We plan to explore this direction in crowd-monitoring
scenarios, where sensors are deployed in urban environments,
heritage sites, and public spaces to collect occupancy and
movement data [32], [33]. Adapting the current scanning and
mitigation system to support such devices would demonstrate
its applicability to smart city infrastructures, where ensuring
the secure operation of sensor networks is essential for main-
taining data integrity, system resilience, and public trust.

Self-generation of automatic system security tests:Gen-
erative AI can produce security tests to performmore efficient
automatic pentesting procedures, reducing human interven-
tion and enabling a more proficient detection and posterior
mitigation of eventual security vulnerabilities [34]. Pentesting
is also referred as penetration testing [35] or ethical hacking
[36]. Another interesting topic to investigate is explainable
artificial intelligence (XAI) [37], [38]. The main aim for
using XAI in scenarios where AI/ML models artificially self-
produce security tests for high complex systems is to guar-
antee to the humans as network security managers to always
trust on all the (learned) management security decisions made
by artificial agents, because these agents never could make a
wrong automatic decision. In this way, AImodelsmust satisfy
the following range of criteria to boost in humans a sufficient
level of trust on the automatic AI decisions [38]: reliability,
safety, privacy, explanatory justifiability, impartiality (fair-
ness), and usability. A recent review [39] on interpretability
in AI offers a new strategy on how humans can develop trust
in the automated decisions made by a specific AI model. This
trust can be established if people understand how the AI algo-
rithm is trained and how it arrives at reliable security manage-
ment decisions across various system scenarios. The authors
of [40] provide theoretical foundations of XAI, clarifying
important definitions and identifying research goals, open
issues, and future research lines related to turning opaqueML
outputs into more transparent decisions to humans. In [41],
two XAI methods, i.e. LIME and SHAP, were used in a ma-
chine learning-based intrusion detection system. They have
conducted a survey analysis in which participants answered
questions evaluating the degree of interpretability increase
when each XAI method was used, directly comparing both
methods. The authors conclusions are in [41].

Autonomous vulnerability management in SDN: The
autonomous [42] detection and mitigation of device security
vulnerabilities [1] in SDN environments [2] should be viewed
as a cross-cutting capability that interacts with all primary
SDN control actions, namely, flow management, traffic en-
gineering, topology control and, fault detection and recovery.
Rather than functioning as an isolated task, AI agents respon-
sible for the autonomous security vulnerability management
could influence and modify each one of these control loops.

For instance, flow rules may be updated to isolate malicious
traffic, traffic paths may be rerouted to avoid compromised
nodes, topologymay be reconfigured to disable affected links,
and anomaly detection mechanisms may trigger security re-
sponses. As such, AI-based vulnerability management acts
as a longitudinal layer, enhancing the overall resilience and
trustworthiness of the network.

REFERENCES
[1] João Polónio, José Moura, and Rui Neto Marinheiro. On the road to proac-

tive vulnerability analysis and mitigation leveraged by software defined
networks: A systematic review. IEEE Access, 12:98546–98566, 2024.

[2] Rahim Masoudi and Ali Ghaffari. Software defined networks: A survey.
Journal of Network and Computer Applications, 67:1–25, 5 2016.

[3] Mengmeng Ge, Jin-Hee Cho, Dongseong Kim, Gaurav Dixit, and Ing-
Ray Chen. Proactive defense for internet-of-things: moving target defense
with cyberdeception. ACM Transactions on Internet Technology (TOIT),
22(1):1–31, 2021.

[4] Seunghyun Yoon, Jin-Hee Cho, Dong Seong Kim, Terrence J Moore,
Frederica Free-Nelson, and Hyuk Lim. Attack graph-based moving target
defense in software-defined networks. IEEE Transactions on Network and
Service Management, 17(3):1653–1668, 2020.

[5] Ankur Chowdhary, Adel Alshamrani, Dijiang Huang, and Hongbin Liang.
Mtd analysis and evaluation framework in software defined network (ma-
son). In Proceedings of the 2018 ACM International Workshop on Security
in Software Defined Networks & Network Function Virtualization, page
43–48, 2018.

[6] Sukwha Kyung, Wonkyu Han, Naveen Tiwari, Vaibhav Hemant Dixit,
Lakshmi Srinivas, Ziming Zhao, Adam Doupé, and Gail-Joon Ahn. Hon-
eyproxy: Design and implementation of next-generation honeynet via
sdn. In 2017 IEEE Conference on Communications and Network Security
(CNS), pages 1–9. IEEE, 2017.

[7] George Stergiopoulos, Panagiotis Dedousis, and Dimitris Gritzalis. Au-
tomatic analysis of attack graphs for risk mitigation and prioritization on
large-scale and complex networks in industry 4.0. International Journal of
Information Security, 21(1):37–59, 2022.

[8] Johnson Kinyua and Lawrence Awuah. Ai/ml in security orchestration, au-
tomation and response: Future research directions. Intelligent Automation
& Soft Computing, 28(2), 2021.

[9] Upendra Bartwal, Subhasis Mukhopadhyay, Rohit Negi, and Sandeep
Shukla. Security orchestration, automation, and response engine for
deployment of behavioural honeypots. In 2022 IEEE Conference on
Dependable and Secure Computing (DSC), pages 1–8, 2022.

[10] Tao Zhang, Fanyu Kong, Dongshang Deng, Xiangyun Tang, XuangouWu,
Changqiao Xu, Liehuang Zhu, Jiqiang Liu, Bo Ai, Zhu Han, et al. Moving
target defense meets artificial intelligence-driven network: A comprehen-
sive survey. IEEE Internet of Things Journal, 2025.

[11] RuthM.Ogunnaike and Brent Lagesse. Toward consumer-friendly security
in smart environments. In 2017 IEEE International Conference on Per-
vasive Computing and Communications Workshops, PerCom Workshops,
pages 612–617, 2017.

[12] Yannis Nikoloudakis, Evangelos Pallis, George Mastorakis, Constandi-
nos X Mavromoustakis, Charalabos Skianis, and Evangelos K Markakis.
Vulnerability assessment as a service for fog-centric ict ecosystems: A
healthcare use case. Peer-to-Peer Networking and Applications, 12:1216–
1224, 2019.

[13] Yannis Nikoloudakis, Ioannis Kefaloukos, Stylianos Klados, Spyros Pana-
giotakis, Evangelos Pallis, Charalabos Skianis, and Evangelos KMarkakis.
Towards a machine learning based situational awareness framework for
cybersecurity: an sdn implementation. Sensors, 21(14):4939, 2021.

[14] Systems and software engineering – Systems and software Quality Re-
quirements and Evaluation (SQuaRE) – Product quality model. Technical
report iso/iec tr 25010:2023, International Organization for Standardization
(ISO), Geneva, Switzerland, 2023.

[15] J. Polónio. SDN-Vuln: Proactive Discovery andMitigation of Security Vul-
nerabilities Leveraged by SDN. https://github.com/linuxer1337/sdn-vuln,
2024. Accessed: Apr. 12, 2025.

[16] Catalyst. Catalyst - Speed up your reactions. https://catalyst.
security-brewery.com/, 2025. Accessed: Apr. 12, 2025.

18 VOLUME XY, 202Z

https://github.com/linuxer1337/sdn-vuln
https://catalyst.security-brewery.com/
https://catalyst.security-brewery.com/


J. Polónio et al.: Towards Automatic Detection and Mitigation of High-Risk Cybersecurity Vulnerabilities at Networked Systems

[17] FastAPI. FastAPI framework, high performance, easy to learn, fast to code,
ready for production. https://fastapi.tiangolo.com/, 2025. Accessed: Apr.
12, 2025.

[18] Tayyab Muhammad and Muhammad Munir. Network automation. Euro-
pean Journal of Technology, 7(2):23–42, 2023.

[19] Redis. Redis: The Real-time Data Platform. https://redis.io/, 2025.
Accessed: Apr. 12, 2025.

[20] Nmap. Nmap: Discover your network. https://nmap.org/, 2025. Accessed:
Apr. 12, 2025.

[21] Gordon Lyon. Nmap Network Scanning. https://nmap.org/book/, 2009.
Accessed: Apr. 12, 2025.

[22] Greenbone AG. Vulnerability Management: Open Source and GDPR-
compliant. https://www.greenbone.net/en/, 2025. Accessed: Apr. 12, 2025.

[23] FIRST.org. API that returns Exploit Prediction Scoring System (EPSS)
Probabilities for CVE security vulnerabilities. https://api.first.org/, 2025.
Accessed: Apr. 12, 2025.

[24] Ryu SDN Framework Community. Python Controller Ryu: Build SDN
Agilely. https://ryu-sdn.org/, 2017. Accessed: Apr. 12, 2025.

[25] The Linux Foundation. Open vSwitch: Production Quality, Multilayer
Open Virtual Switch. https://www.openvswitch.org/, 2016. Accessed: Apr.
12, 2025.

[26] Mininet Project Contributors. Mininet: An Instant Virtual Network on your
Laptop (or other PC). https://mininet.org/, 2022. Accessed: Apr. 12, 2025.

[27] Internet Systems Consortium, Inc. ISC DHCP: Enterprise-grade solution
for IP address-configuration need. https://www.isc.org/dhcp/, 2025. Ac-
cessed: Apr. 12, 2025.

[28] Internet Systems Consortium, Inc. Kea DHCP: Modern, open source
DHCPv4 and DHCPv6 server. https://www.isc.org/kea/, 2025. Accessed:
Apr. 12, 2025.

[29] ISCTE-IUL. Iscte-IUL: Laboratories. https://www.iscte-iul.pt/conteudos/
research/1002/laboratories, 2025. Accessed: Apr. 12, 2025.

[30] Andreia Mateus and Rui Neto Marinheiro. A media independent informa-
tion service integration architecture for media independent handover. In
2010 Ninth International Conference on Networks, pages 173–178, 2010.

[31] Hugo Alves, Luís Miguel Silva, Rui Neto Marinheiro, and José André R S
Moura. PMIPv6 Integrated with MIH for Flow Mobility Management: A
Real Testbed with Simultaneous Multi-Access in Heterogeneous Mobile
Networks. Wireless Personal Communications, 98(1):1055–1082, 2018.

[32] Rúben Dias da Silva, Rui Neto Marinheiro, and Fernando Brito e Abreu.
Crowding detection combining trace elements from heterogeneous wire-
less technologies. In 2019 22nd International Symposium on Wireless
Personal Multimedia Communications (WPMC), pages 1–6, 2019.

[33] Tomás Mestre dos Santos, Rui Neto Marinheiro, and Fernando Brito e.
Abreu. Wireless crowd detection for smart overtourism mitigation. In
Elena Kornyshova, Rébecca Deneckère, and Sjaak Brinkkemper, editors,
Smart Life and Smart Life Engineering: Current State and Future Vision,
pages 237–258. Springer Nature Switzerland, Cham, 2025.

[34] Eric Hilario, Sami Azam, Jawahar Sundaram, Khwaja Imran Mohammed,
and Bharanidharan Shanmugam. Generative ai for pentesting: the good, the
bad, the ugly. International Journal of Information Security, 23(3):2075–
2097, 2024.

[35] Qianyu Li, Miao Hu, Hao Hao, Min Zhang, and Yang Li. Innes: An
intelligent network penetration testing model based on deep reinforcement
learning. Applied Intelligence, 53(22):27110–27127, 2023.

[36] Yien Wang and Jianhua Yang. Ethical hacking and network defense:
Choose your best network vulnerability scanning tool. In 2017 31st
International Conference on Advanced Information Networking and Ap-
plications Workshops (WAINA), pages 110–113, 2017.

[37] Sajid Ali, Tamer Abuhmed, Shaker El-Sappagh, KhanMuhammad, JoseM
Alonso-Moral, Roberto Confalonieri, Riccardo Guidotti, Javier Del Ser,
Natalia Díaz-Rodríguez, and Francisco Herrera. Explainable artificial
intelligence (xai): What we know and what is left to attain trustworthy
artificial intelligence. Information fusion, 99:101805, 2023.

[38] Filip Karlo Došilović, Mario Brčić, and Nikica Hlupić. Explainable
artificial intelligence: A survey. In 2018 41st International Convention on
Information and Communication Technology, Electronics and Microelec-
tronics (MIPRO), pages 0210–0215, 2018.

[39] Ujjwal Singh Kathait, Anamika Rana, Rahul Chauhan, and Ruchira Rawat.
A comprehensive review of interpretability in ai and its implications for
trust in critical applications. In 2024 4th International Conference on
Sustainable Expert Systems (ICSES), pages 1683–1693, 2024.

[40] Evandro S. Ortigossa, Thales Gonçalves, and Luis Gustavo Nonato. Ex-
plainable artificial intelligence (xai)—from theory to methods and appli-
cations. IEEE Access, 12:80799–80846, 2024.

[41] Diogo Gaspar, Paulo Silva, and Catarina Silva. Explainable ai for intrusion
detection systems: Lime and shap applicability on multi-layer perceptron.
IEEE Access, 12:30164–30175, 2024.

[42] Sven Gronauer and Klaus Diepold. Multi-agent deep reinforcement learn-
ing: a survey. Artificial Intelligence Review, 55(2):895–943, 2022.

JOÃO POLÓNIO received his B.Sc. in Telecom-
munications and Computer Engineering from Iscte
– Instituto Universitário de Lisboa, Portugal, in
2021. During his undergraduate studies, he de-
veloped a strong interest in computer networks
and network security. He completed his M.Sc. in
Telecommunications and Computer Engineering
at Iscte in 2024. Throughout his time at Iscte,
he has actively contributed to teaching activities
in computer network architectures and has been

involved in the management and support of departmental laboratories.

JOSÉ MOURA received the B.Sc. degree in Elec-
tronics and Telecommunications from the Univer-
sidade de Aveiro, Portugal, in 1989; the M.Sc.
degree in Computer Networks from the Faculdade
de Engenharia, Universidade do Porto, Portugal, in
2001; and the Ph.D. degree in Computer Science
from Lancaster University, U.K., in 2011. From
1989 to 2000, he worked as an Engineer in Su-
pervisory Control and Data Acquisition (SCADA)
systems and industrial automation at EFACEC Sis-

temas Electrónica, Portugal. From 2000 to 2001, he was a Researcher at
INESC, Porto, Portugal. Since 2001, he has been with Iscte – Instituto
Universitário de Lisboa, Portugal, where he teaches Computer Networks,
and he is also a Researcher with the Instituto de Telecomunicações, Portugal.
He serves as an active reviewer for several Quartile 1 journals. His current
research interests include network management, edge computing, optimiza-
tion, virtualization, software-defined networking, security and resilience in
networked systems.

RUI NETO MARINHEIRO is an Associate Pro-
fessor at Iscte – Instituto Universitário de Lis-
boa, Portugal, and a researcher at the Instituto de
Telecomunicações. He holds a Ph.D. in Multime-
dia Information Systems from the University of
Southampton, United Kingdom, and an M.Eng. in
Electrical and Computer Engineering with a spe-
cialization in Telecommunications from the Fac-
ulty of Engineering, University of Porto, Portugal.
Dr. Marinheiro has extensive experience in teach-

ing and research in the fields of Telecommunications, Computer Networks,
Security, and the Internet of Things. He has coordinated and contributed to
numerous national and international research projects.

VOLUME XY, 202Z 19

https://fastapi.tiangolo.com/
https://redis.io/
https://nmap.org/
https://nmap.org/book/
https://www.greenbone.net/en/
https://api.first.org/
https://ryu-sdn.org/
https://www.openvswitch.org/
https://mininet.org/
https://www.isc.org/dhcp/
https://www.isc.org/kea/
https://www.iscte-iul.pt/conteudos/research/1002/laboratories
https://www.iscte-iul.pt/conteudos/research/1002/laboratories

	Introduction
	Literature Review
	System Architecture
	Methodology
	Design

	Implementation
	Data Flow and Interaction
	SOAR Platform
	Security Service Adapter
	Database
	Device Discovery Module
	Vulnerability Scanner
	Vulnerability Risk Evaluation
	SDN Controller
	Switch
	DHCP Server
	Mitigation Module

	Results
	Scan Time Analysis
	CPU Load
	Memory Usage
	Network Overhead
	Performance and Orchestration Timing
	Scalability and Performance Bottlenecks
	Implications for System Enhancement

	Conclusions and Future Work
	Conclusions
	Future Work

	REFERENCES
	João Polónio
	José Moura
	Rui Neto Marinheiro


