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Resumo

O principal objetivo desta tese ¢ replicar os resultados analiticos € numéricos do artigo de
Huisman e Kort (2015), bem como detalhar o processo de replicagao de figuras e tabelas para
orientar os leitores na obtencao de resultados semelhantes. A nossa metodologia utiliza técnicas
quantitativas, especificamente calculo estocastico. Os resultados obtidos sdo implementados
em MATLAB para replicar as figuras e tabelas apresentadas no artigo original. Os dados
principais envolvem variaveis do processo geometric Brownian motion, fun¢des de precos
(tanto linear como isoeléstica) e a raiz positiva de uma solugao geral de uma equagao diferencial
ordinaria. A derivacdo analitica das varias proposi¢des do artigo permitiu concluir que existem
algumas imprecisdes nas equagoes, resultados e figuras do artigo. Em particular, as expressdes
(12), (A22), (A70), (B17) e (B30), bem como a Figura 1(a), sdo apresentadas erroneamente no
artigo original. Além disso, a medida que a incerteza aumenta, as empresas atrasam 0s Seus
investimentos, mas investem em capacidades maiores. Por fim, a empresa lider tende a
aumentar o seu investimento para impedir que a empresa seguidora invista, embora essa

estratégia ndo possa ser efetuada indefinidamente.

Palavras-chave: Investimento Estratégico em Capacidade, Incerteza, Opcdes Reais, Decisao

de Investimento Otima, Temporiza¢io de Investimento, Célculo Estocastico

Classificacao JEL: C61; D81






Abstract

The primary objective of this thesis is to replicate the analytical and numerical results of the
article by Huisman and Kort (2015), as well as to detail the process of replicating figures and
tables to guide readers in obtaining similar results. Our methodology employs quantitative
techniques, specifically stochastic calculus. The results obtained are implemented in MATLAB
to replicate the figures and tables presented in the original article. The primary data involves
variables from the geometric Brownian motion process, price functions (both linear and
isoelastic), and the positive root of a general solution to an ordinary differential equation. The
analytical derivation of the various propositions in the article led to the conclusion that there
are some inaccuracies in the equations, results, and figures of the article. In particular,
expressions (12), (A22), (A70), (B17), and (B30), as well as Figure 1(a), are erroneously
presented in the original article. Furthermore, as uncertainty increases, firms delay their
investments but invest in larger capacities. Finally, the leader firm tends to overinvest to deter

the follower firm from investing, although this strategy cannot be sustained indefinitely.

Key words: Strategic Capacity Investment, Uncertainty, Real Options, Optimal Investment

Decision, Investment Timing, Stochastic Calculus

JEL classification: C61; D81
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CHAPTER 1

Introduction

Investing in capacity, particularly under uncertain conditions, necessitates a robust valuation
method and a strategic plan to address future uncertainties and competitive pressures.

Several researchers have posited that the discounted cash flow (DCF) method and the
traditional net present value (NPV) analysis may result in suboptimal decisions regarding
investment capacity and timing. They suggest that more intricate valuation approaches,
particularly those presented in Real Options literature, substantiate these findings. This body of
literature emphasises the importance of incorporating flexibility into static NPV analysis,
thereby elucidating why firms may opt to invest at a later stage and in greater capacities when
faced with heightened uncertainty.

Our primary focus is on the mathematical equations presented in Huisman and Kort (2015)
research article, “Strategic capacity investment under uncertainty”. We provide detailed, step-
by-step mathematical proofs of all the equations and replicate the figures and tables from the
article. Additionally, we confirm the interpretations of the analysis made by these authors
through our mathematical demonstrations.

We make two significant contributions to the broader literature and the aforementioned
research article. First, we address the complexities and uncertainties inherent in investment
decisions by offering a detailed, step-by-step mathematical explanation of all the results. This
allows readers to gain valuable insights into the methodology and understand how the main
conclusions of Huisman and Kort (2015) were derived. Second, we correct the formulas and
figures that were mistakenly presented in the original article.

Our analysis encompasses all the equations from the article by Huisman and Kort (2015),
which yield intermediate and final results that enable the plotting of graphs and the achievement
of results in the tables.

Our methodology is as follows. For each result, we employ quantitative methods using
stochastic calculus, followed by applying these results in MATLAB, to replicate the figures and
achieve the tables in the article by Huisman and Kort (2015). This approach is chosen as it is
the most suitable for describing the mathematical steps of equations involving stochastic
variables.

The main results indicate that Huisman and Kort (2015) expressions (12), (A22), (A70),

(B17), and (B30), as well as Figure 1(a), are erroneous. The correct versions are presented in
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this thesis as expressions (4.13), (A4.6), (A6.20), (6.12), and (6.19), respectively, and Figure
4.1.

Additionally, we demonstrate that the leader firm cannot indefinitely prevent the follower
from investing and that the leader is typically the largest firm in the market. However, under
low uncertainty, the pre-emption effect may result in the second investor becoming the largest
firm.

Furthermore, increased uncertainty causes a delay in investments, but when they do occur,
they are made at larger capacities. Lastly, the leader tends to overinvest to deter the follower
from investing.

The structure of this thesis is as follows. Chapter 2 provides a brief literature review on
Real Options, while Chapter 3 presents the methodology employed.

Subsequently, Chapter 4 analyses the monopoly scenario and compares its outcomes with
those of the social planner.

Next, in Chapter 5, we introduce competition into the analysis, transitioning the market
structure from a monopoly to a duopoly, where firms compete using a Stackelberg strategy.
Additionally, we broaden the analysis to consider other scenarios where the cost of investing
changes. Finally, we investigate the consequences for total welfare when a monopolist can
invest twice.

Chapter 6 examines the transition from a linear price function to an isoelastic price function
and the consequent changes in the timing and investment capacity of either the leader or
follower firms. This chapter also encompasses both monopoly and duopoly market structures.

Following this, Chapter 7 provides the main conclusions and recommendations.

Lastly, two annexes are provided at the end, offering step-by-step resolutions of all
equations presented or omitted in the original research article. The findings presented in the
various subchapters should be read in conjunction with the corresponding subchapters in

Annexes A or B, as they provide additional details and further explanations.



CHAPTER 2

Literature review

This chapter highlights some of the most significant references in the Real Options literature,
essential for analysing a firm’s valuation and investment opportunities.

In traditional corporate finance, firms are advised to use a DCF model when evaluating
investment projects. This approach involves calculating the present value of the expected cash
that the investment is expected to produce and the present value of the expenditures required to
support the project. According to Bowman and Moskowitz (2001), Dixit and Pindyck (1995),
Keswani and Shackleton (2006), and Ross (1995), if the NPV is positive, the investment should
be undertaken. Conversely, if the NPV is negative, the investment should not proceed.

However, this seemingly straightforward approach contains flawed assumptions. For
instance, it presumes that the firm adopts a passive commitment, meaning that the project will
commence immediately and be operated at a predetermined production scale throughout its
useful life, regardless of future market conditions (Brealey et al., 2013; Keswani & Shackleton,
2006; Trigeorgis, 1993). Additionally, it assumes the investment is of a now-or-never nature
(Dixit & Pindyck, 1995). Consequently, the NPV rule essentially compares investing today with
never investing.

From this, it can be concluded that the traditional DCF model does not account for the value
associated with deferring the investment decision (Luehrman, 1998). This omission overlooks
the flexibility a project may possess, as managers can adjust the scale of production, reduce
funding for research and development (R&D) projects (Bowman & Moskowitz, 2001), or
postpone investment decisions in response to uncertain projected cash flows.

Another issue with the conventional NPV approach, as noted by Dixit and Pindyck (1995),
is its failure to consider the potential options generated by R&D activities. This oversight can
ultimately lead to underinvestment by firms.

Another approach to evaluating investments involves using “rules of thumb” such as hurdle
rates, profitability indexes, and payback rules. Although these rules may appear arbitrary,
McDonald (2000) demonstrates that they serve as effective proxies for optimal decision-
making. Generally, these rules capture between 50% and 90% of a project’s option value across
various project characteristics. Consequently, they approximate optimal investment timing

behaviour, as the value of the timing option is less sensitive to deviations from the optimal rule



when it is most valuable. However, these “rules of thumb” are less effective for low-volatility
projects.

When considering an investment with the option to delay, it may be optimal to postpone
the decision. This is because delaying can lead to a higher payoft as uncertainties are resolved
over time (Shackleton et al., 2004). To evaluate such investments, the real options approach is
a crucial capital budgeting and strategic decision-making mechanism. It incorporates the value
of future flexibility, allowing managers to adjust their strategy over time (Bowman &
Moskowitz, 2001).

Other advantages of using real options include: 1) it emphasises sharcholder value
maximisation, 2) it places greater importance on downstream decisions, such as abandoning
uneconomic projects or expanding those that show promise over time, and 3) its conceptual
framework simplifies the structuring of investment choices (Triantis, 2005).

When a firm has an option to invest, the traditional NPV analysis can lead to significant
errors. This is due to the opportunity cost, as McDonald and Siegel (1986) demonstrate, and the
variability in cash flow estimates, as Trigeorgis (1996) argues.

According to Baldwin (1982), firms should require a positive premium over the NPV to
offset any potential loss from future opportunity costs. Alternatively, firms should wait until the
project’s value is twice the NPV before investing, as McDonald and Siegel (1986) suggest.
Additionally, Dixit and Pindyck (1995) report that the present value of anticipated cash flows
should exceed the project costs by an amount equivalent to the value of maintaining the
investment option.

Regarding opportunity cost, Pindyck (1986) argues that a firm should invest when the
marginal value of an investment exceeds the total costs by an amount equivalent to keeping the
option alive. Moreover, Pindyck (1986) also shows that incorrect computation of opportunity
costs can result in overinvestment decisions.

All these different but concurrent interpretations highlight the impact of uncertainty on the
value of waiting and, ultimately, on the analysis of the static NPV approach. While these authors
offer various perspectives on how to approach investment decisions, they unanimously agree
that relying solely on the traditional NPV method is insufficient. Instead, they suggest
incorporating an option premium (sometimes referred to as “premium”, “opportunity cost” or
“flexibility value”) to account for potential future cash flow downturns, due to uncertainty.

A different approach seems to have Dixit (1993). This author not only considers the
strategic NPV approach, which includes the option value, but also the elasticity of output

relative to capital expenditures. If the elasticity is above one, the firm should opt for the largest
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available project. Conversely, if the elasticity is less than one but increasing, the smallest or the
largest projects are optimal choices.

In a competitive environment, Dixit and Pindyck (1994) highlight that the option to invest
remains crucial for analysing investments. Although competition may erode the option to wait,
pre-emptive investment can lead to better future outcomes, without necessarily reverting to the
static NPV approach.

However, when uncertainty is specific to a firm, the value of waiting is not diminished. If
a firm faces unique demand uncertainty, it does not need to worry about new entrants, as this
demand is exclusive. Consequently, the firm can wait and avoid potential losses if the demand
fluctuation is temporary.

Before entering a new market, a prospective entrant must analyse both the scale and timing
of its investment, considering the presence of an incumbent firm. The incumbent’s pre-entry
investment decisions can influence, but not indefinitely prevent, a new competitor from
entering the market. It can become active if future conditions allow the entrant to meet the
necessary investment threshold. Dixit (1980) and Spence (1977) both discussed this concept. A
high initial and irrevocable investment by the incumbent can discourage entry, but if not,
various forms of duopoly (Stackelberg, Cournot, or Bertrand) could emerge.

In a Stackelberg duopoly, overinvestment may arise, as Spence (1977) suggests, but this
does not occur under the Nash equilibrium, as Dixit (1980) argues.

In the presence of competition, the timing of investments must be adjusted in response to
competitors’ actions. Shackleton et al. (2004) found that fixed entry costs result in hysteresis in
competitors’ entry decisions. This hysteresis is positively associated with entry costs and
uncertainty but negatively affected by the correlation of competitors’ operations. When these
fixed costs are eliminated, the hysteresis disappears, leading to exercise strategies based on
current yield or profitability criteria.

Additionally, increased volatility reduces the active periods for competing firms, which, in
turn, raises their probabilities of entering the market. This dynamic results in short-lived market
leadership for any firm (Shackleton et al., 2004).

When producing, firms must choose the type of technology for their production based on
the level of uncertainty they face. For instance, Goyal and Netessine (2007) show that under
high demand uncertainty, firms (even monopolies) tend to favour flexibility over dedicated
technology. This preference is influenced by the low demand correlation between products and

the small market size and differential.



However, in competitive markets, the choice of technology depends on the competitor’s
choice. Flexibility is not always the best response, as firms might mimic their competitors’
technology adoption, which holds even for intermediate levels of uncertainty.

From the capacity side, in situations of high uncertainty, Pindyck (1986) indicates that
reducing the firm’s capacity is optimal. The reasoning is that while the value of the marginal
unit increases, the opportunity cost also rises, leading to a net reduction in the firm’s capacity.

Pindyck (1986) asserts that firms should maintain lower investment capacity if investments
are irreversible or future demand is uncertain. However, since the market value of firms is
closely tied to future demand (uncertainty), there seems to be a tendency to overinvest,
especially in the oil industry. However, this does not apply to manufacturing firms, as
McConnell and Muscarella (1985) evidence. Nonetheless, across sectors, higher uncertainty
increases the incentive to delay investment expenditures.

The option for a firm to delay its investments presents two main challenges. On one hand,
postponing investments can be costly, as the firm risks losing market share by not investing
promptly. On the other hand, delaying investments allows the firm to gather more information
about future conditions (Dixit & Pindyck, 1995; Huisman, 2001). This scenario suggests that
using the NPV approach alone may lead to suboptimal decisions (Huisman, 2001). Additionally,
the benefits of waiting are often substantially greater than exercising the option and investing
immediately, especially in scenarios of high uncertainty (Dixit & Pindyck, 1995).

When evaluating strategic options, one crucial aspect is the distribution of the underlying
asset price. The Black and Scholes (1973) and Merton (1973) formula assumes a lognormal
distribution with constant volatility, which might not be suitable for strategic options. As Bollen
(1999) points out, this is especially true in the semiconductor industry, where sales patterns
increase and fall abruptly, making them incompatible with a real options model based on a
lognormal distribution.

Furthermore, the geometric Brownian motion (GBM) model may not best describe the
random movement of projects that contribute to the overall firm value (Alexander et al., 2012).
While the market price of limited-liability shares cannot be negative, the value of a division or
project within a firm can be. The GBM assumes that the underlying project is always positive,
which does not reflect reality. Therefore, this model may not always be realistic or suitable.

To address the limitations of the GBM, Copeland and Antikarov (2001) advocate using
arithmetic or additive processes. For example, the arithmetic Brownian motion evaluates the

values of underlying projects as an additive process, with its variance remaining constant over



time. Additionally, this approach allows the project’s value path to be either positive or negative
(Alexander et al., 2012).

Despite the many advantages of real options and its potential as a viable alternative to the
traditional NPV method, it also comes with certain caveats, such as: 1) it can be complex to use
and explain, requiring significant analytical and computational effort, 2) a lack of structure,
since the value of an option depends on possible future outcomes, 3) firm’s competitors may
have investment options affecting our firm’s strategy, so their actions must be considered
(Brealey et al., 2013), and 4) real options models often assume market perfection rather than
reality. For example, it is assumed that managers are always loyal to the firm’s shareholders
(Triantis, 2005).

In conclusion, while it may seem that real options could replace the DCF method, this is
not entirely the case. First, the DCF method and NPV analysis are suitable for projects with
stable cash flows and for those whose value is not dependent on options that the underlying
business might create or be based on. Secondly, in real options analysis, the present price of the
underlying asset is generally determined using the DCF method (Brealey et al., 2013).
Additionally, NPV rules can be used when the investment opportunity disappears if not
undertaken immediately (Ross, 1995).

Lastly, it is important to emphasise that when uncertainty exists regarding future demand
or output prices, it is often optimal to invest in large projects and at a later time. Including the
value of flexibility in traditional NPV analysis can result in different investment decisions

compared to static NPV analysis.






CHAPTER 3

Methodology

To present all the calculations and results from the article of Huisman and Kort (2015)
meticulously, we utilise a methodology involving quantitative methods, specifically stochastic
calculus, applied to real options problems in both monopoly and duopoly regimes, followed by
their respective numerical implementations in MATLAB.

The quantitative methods include a detailed breakdown of mathematical equations, while
the stochastic component is introduced with a variable that adds uncertainty to the output price.
This variable, defined as the exogenous shock process, is assumed to follow a GBM process.

Subsequently, the contributions of real options are applied to firms aiming to invest in
capacity, determining the optimal levels of capacity and timing. Hypothetical firms are
considered in both monopoly and Stackelberg duopoly scenarios.

After obtaining all the results, we implemented them to replicate the figures and tables
presented in the original article. The main variables in the Huisman and Kort (2015) article are
the parameter values used to compute investment thresholds, capacity levels, firms’ value
functions, and the welfare implications of investment timing and size.

These variables are 1) u: representing the drift rate in the GBM process that defines the
exogenous shock process X;, 2) r: denoting the interest rate used to discount the firm’s future
cash flows, assuming the firm is risk-neutral, 3) #: modelling the price function, 4) ¢: indicating
the volatility of the exogenous shock process X, in the GBM process, 5) J: denoting the unit
investment costs, 6) f: corresponding to the positive root of a general solution of the ordinary
differential equation, and 7) y: standing as an elasticity parameter in the isoelastic price function.

Since Huisman and Kort (2015) structured their article around propositions that outline
relationships between abstract concepts in the Real Options literature, this master’s thesis will
follow a similar structure.

The general procedure for processing and analysing the article is as follows. We begin by
maximising the firm’s value function to determine the optimal capacity size. Then, using real
options concepts such as the value matching condition (VMC) and smooth pasting condition
(SPC), we identify the optimal investment threshold. Next, we prove all intermediate steps,
which are presented in the annexes for each proposition. After obtaining these results, we
combine them to derive expressions where the capacity level and the investment threshold are

independent of each other, allowing for computation based on fundamental parameter values.

9



Lastly, if applicable, we recreate the figures and the results in the tables presented in each
proposition.
For propositions requiring additional work, such as Propositions 1 and 9, we derive the

expressions for the total expected surplus for either the monopolist or the social planner.
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CHAPTER 4
Monopoly

Following the structure of Huisman and Kort (2015) article, we begin by analysing the
monopoly case and its impact on determining the investment threshold and the capacity level.

Considering Q(t) as the total market output, n > 0 as a constant, and the demand level
X(t) as an exogenous shock process following a GBM

dX(t) = uX(t) dt + oX(t) dw(t), 4.1)
where u is the drift rate, dw(t) is the increment of a Wiener process, and o > 0 represents
volatility, the market price is given by

P(®) =X(®)(1-1Q(0)). 4.2)

It is assumed that r > u because it ensures that there is a diminishing return to waiting,
which is necessary for determining an optimal investment time. Without this condition, the
problem would not have a finite solution, as waiting longer would always seem more
advantageous.

Since a unit of capacity costs §, investing in capacity Q would cost §Q. Additionally, the
article by Huisman and Kort (2015) imposes that firms always produce up to capacity.

Our goal in this chapter is to prove mathematically Proposition 1 of Huisman and Kort
(2015) and implement it. To accomplish this purpose, we start with the monopolist’s optimal
investment decision in subchapter 4.1, then analyse the optimal welfare outcome in subchapter
4.2. The detailed proofs of the results presented in subchapters 4.1 and 4.2 are provided in

annexes A.1 and A.2, respectively.

4.1. Monopolist’s optimal investment decision

Considering that the profit of a single firm at the time t is denoted by (t) and is equal to

n(t) = P(¢) - Q(1), (4.3)
we can denote the expected value of the firm at the moment of investment, V (X, Q), as
XQ(1-10Q) 4.4
VX,Q) =——— - 60. (4)
r—u
Then, the capacity level of the monopolist is equal to

. 1 S(r—uw) 4.5)

eo-3(-1572)
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This equation indicates that at the time of investment, a higher level of X correlates with
increased capacity investment by the firm, leading to a greater total profit flow.

The investment threshold can be represented as

BS(r —p) (4.6)
B-DA-nQ)

Through substitutions, it is possible to achieve the optimal investment capacity and

X'(Q) =

threshold levels, which are directly independent of each other, as follows

.1 (4.7)
C=Gronw
RSV (4.8)
X =7 _16(r w.

When X < X*, the firm is in an idle state, meaning that the value of the monopolist in this
region is given by the option value AX#. However, when X reaches the investment trigger, the
value of the monopolist firm is given by equation (4.4), which can be rewritten to give the

second branch of expression (4.9):

AXFP if X<X* (4.9)
V) =1{(x - s¢ —pw)° :
(X =00 —w) if X > X*
4Xn(r —w)
with
4.10
_1 ,u+ (1 y)2+2r L ( )
B = 2 o2 2 g2 o2
and
B+1 ’ (4.11)
5 m5 (r—mw
A=
(B2 —1)n
Differentiating equations (4.8) and (4.7) concerning 8 gives
oxX* 26(r — .
__20-w (4.12)
ap (B —1)?
E B 1 (4.13)

op - @Iz "

From expression (4.13), it is important to note that Huisman and Kort (2015) have a
typographical error in their expression (12).
From all the previous results, we can conclude that when uncertainty (o) rises, the optimal

investment trigger (X*) also rises, delaying investments. Additionally, the optimal capacity
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level (Q*) rises too (in expression (4.5), the rise is indirectly affected via X), leading the
monopolistic firm to adopt larger projects.

From equations (4.7) and (4.8), as the cost per unit (&) increases, it is evident that the firm
invests in the same capacity, but later, since X* increases while Q* remains constant.

Lastly, if § = 0, X* equals zero according to expression (4.8), and from equation (4.5),

Q" = % for a positive X. This result implies that it is optimal for a firm to invest immediately

: . . 1
and acquire a production capacity of P

4.2. Optimal welfare decision

Since the total expected consumer surplus (CS) is equal to

X0Q%n (4.14)
2(r— )

and the expected producer surplus (PS) is given by the value of the monopolist firm, which is

CS(X,Q) =

represented by equation (4.4), it can be expressed as
XQ(1—-nQ)
r—u

Following the formulas above, the total expected surplus (TS), which is the sum of

(4.15)

PS(X,Q) = 6Q.

consumer and producer surpluses, can be represented as

XQ2-1Q) (4.16)
2w ¢

Incorporating the monopoly decisions, i.e., the optimal capacity level and investment

TS(X,Q) =

threshold from the previous subchapter, the TS is given by
35 (4.17)
26+ 1D(B-Dn

For the case of the social planner, who maximises TS, the investment capacity level and

TS(X",Q%) =

investment trigger are given by

L2 (4.18)
QW_(3+1)77 20
L B+ (4.19)
XW_—,8—16(T w =X".

Based on the results in equations (4.18) and (4.19), it can be concluded that the social
planner invests simultaneously with the monopolist (i.e., the investment thresholds are equal),
but at twice the capacity level.

From this social planner scenario, the total welfare at the moment of investment is equal to

13



26 (4.20)
B+1DE-Dn
Therefore, the welfare loss that exists in a monopoly situation is equal to
6 (4.21)
26+ 1B -

However, this expression is not valid when § = 0. In this scenario, the social planner does

TSy = TS(Xy,Qw) =

not invest at the threshold level because, according to expression (4.19), the threshold would
be zero and the total welfare loss is computed using the investment threshold specified in
expression (4.19).

Regarding Figure 1(a) of Huisman and Kort (2015), we observed that for the parameter
values of r = 0.1, u = 0.06, § = 0.1, and = 0.05, the X* axis was incorrectly presented.
For instance, for approximately o =0, X* = 0.01600, as shown in Table 4.1, and not
approximately X* = 0.013 as depicted by Huisman and Kort (2015). Therefore, the correct
figure that should have been displayed is Figure 4.1.

Figure 4.1. Optimal investment trigger, X, as a function of o

This figure presents the corrected version of Figure 1(a) from Huisman and Kort (2015). It was
generated using expression (4.8) to compute the values for X*, based on the parameter values:
r=0.1, u =0.06, § = 0.1, and n = 0.05. The figure illustrates that as uncertainty increases,
the investment threshold also rises, prompting the monopolist firm to defer the investment

decision to a later stage.
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Table 4.1. Comparison of welfare outcomes

The investment threshold X* and capacity level Q* for the monopolist were calculated using expressions (4.8) and (4.7), respectively. For the social
planner, the corresponding values (Xy, and Q) were obtained from expressions (4.19) and (4.18), respectively. All total surplus values represent
their present values. The results shown correspond to specific levels of uncertainty (o), based on the following parameter values: r = 0.1, u =

0.06, § = 0.1, n = 0.05, and X(0) = 0.001.

Monopoly Social Planner Comparison

o X" Q" s Xw Qw TSy E Q:

TSy Qw
0.00 0.01600 7.500 0.01661 0.01600 15.000 0.02215 0.750 0.500
0.05 0.01641 7.563 0.01766 0.01641 15.125 0.02355 0.750 0.500
0.10 0.01759 7.726 0.02069 0.01759 15.452 0.02759 0.750 0.500
0.15 0.01942 7.940 0.02536 0.01942 15.880 0.03382 0.750 0.500
0.20 0.02180 8.165 0.03128 0.02180 16.330 0.04171 0.750 0.500
0..25 0.02467 8.379 0.03806 0.02467 16.757 0.05075 0.750 0.500
0.30 0.02800 8.571 0.04537 0.02800 17.143 0.06049 0.750 0.500
0.35 0.03178 8.741 0.05291 0.03178 17.483 0.07055 0.750 0.500
0.40 0.03600 8.889 0.06048 0.03600 17.778 0.08064 0.750 0.500

To obtain the values displayed in Table 4.1, we used expressions (4.7) and (4.8) to compute Q* and X*, respectively. The investment threshold

Xy, was obtained using expression (4.19), and the optimal investment capacity Qy, was derived from equation (4.18).
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To compute the total surpluses as Huisman and Kort (2015) present them, whether for the

monopolist or the social planner, it is necessary to multiply expressions (4.17) and (4.20) by the

S xoN?  (x@)P : L
stochastic discount factor (X—) or (x* ) , respectively. This adjustment ensures that the
w

results represent the expected present value of future surpluses.

From Figure 4.1, it is evident that X" is increasing as ¢ increases. This is because, as
uncertainty rises, the firm sets a higher investment threshold to compensate for the increased
risk, meaning that the firm will only invest when the expected returns are significantly higher.
Overall, firms prefer to wait for clear signals before committing to an investment, leading to a
higher optimal investment trigger and delayed investments.

Regarding Figure 1(b) of Huisman and Kort (2015), we obtained the same result as they

did, which can be observed in Figure 4.2.

Figure 4.2. Optimal quantity, Q, as a function of o
This figure presents the results obtained using expression (4.7) to compute the optimal capacity
level Q*. The figure closely resembles Figure 1(b) from Huisman and Kort (2015) and uses the

same parameter values as those specified in Figure 4.1.
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From Figure 4.2, achieved with the same parameter values as Figure 4.1, it is possible to
realise that Q™ is increasing as ¢ increases. This result is achieved indirectly, as from equation

(4.5), Q" increases when X rises, which in turn increase with higher c.
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This indicates that when uncertainty rises, firms delay their investments and opt to invest
in a higher capacity level. This strategy helps firms to better manage risks, adapt to fluctuating
market conditions, strengthen their market position, and avoid the costs and delays associated
with incremental capacity expansions in the future. This result also confirms the findings of
Dixit (1993).

From Table 4.1, it is possible to conclude that, for the parameters r = 0.1, u = 0.06, § =
0.1, n = 0.05, and X(0) = 0.001 there is a welfare loss of 25%, and the conclusions from
equations (4.18) and (4.19) still hold.
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CHAPTER 5

Duopoly

In this chapter, competition is introduced to the model in the previous chapter by incorporating
an additional firm.

The first firm, referred to as the leader, invests in a capacity level of Q;, while the second
firm, known as the follower, invests in a capacity level of Q. Consequently, the total market
quantity is expressed as Q = Q; + QF.

Our goal in this chapter is to prove mathematically the results in Propositions 2, 3, 4, 7, and
8 of Huisman and Kort (2015) and implement their results. Propositions 5 and 6 are going to
be discussed theoretically. Annexes A.3, A.4, A.5, A.6, and A.7 provide the full proofs of
Propositions 2, 3, 4, 7, and 8, respectively.

For that, we start by analysing the situation where there are strong asymmetric investment
costs between the two firms. Designating the leader firm as the low-cost firm (firm 1) and the
follower firm as firm 2, we assume that 0 < §; < §,. Additionally, there exists a cutoff value
8, such that §; < &;. In this situation, the second firm lacks the incentive to invest first,
resulting in no competition for leadership. This situation will be further explored in subchapter
5.1

The second case considered is of symmetric investment costs, meaning that §; = §, = §.
Since the investment costs are equal in both firms, it is unknown beforehand which firm will
invest first. This scenario is proposed in subchapter 5.2.

The third case involves moderate asymmetry, where 8, > &; > &;. This scenario is
analysed in subchapter 5.3.

Lastly, the duopoly investment outcome from a welfare perspective is analysed. This

scenario is presented in subchapter 5.4.

5.1. Significant leader advantage

As previously mentioned, firm 1 has the lowest investment costs, which means that it will invest
first and become the leader. Once the leader has invested, firm 2, the follower, cannot influence
the leader’s investment decision. This means the follower’s decisions lack strategic elements.
Given the leader’s investment threshold and capacity level, the follower only needs to determine

its optimal investment timing X5 (Q;) and the optimal investment capacity Qz(Qy).
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5.1.1. Follower’s investment strategy
Given the optimal capacity level of the follower, concerning the current level of X and the
leader’s capacity level Q;,

8, (r — M)) .1

1
Qr(X, Q1) = 5<1 -nQ - =

the value function of the follower can be represented by

Ap(QXP if X < X3(Q) (5.2)
Ve(X, QL) = (X(l —nQ.) — &, (r — ll))z
4Xn(r — p)
The rationale behind this is that for X < Xz(Q), the follower firm is still in the idle state,

if X = X7(Q)

and, therefore, the value of the firm is given by the option value Az (Q,)X? (i.e., the first branch
of equation (5.2)). For X > Xz(Q,), it is known that the value of the active firm is given by
equation (A3.3), which, when rewritten, gives rise to the expression in the second branch of
equation (5.2).

Additionally, it can be shown that

_(B-11-7n0,\%" 1-10)s, (5.3)
4@ = (555 w) G-n@ i
16,(r - 5.4
Xty =2l G
and
\ _1-70Q, (5.5)
Q) = G

Next, we examine the investment decision of the leader, who considers the strategy of the
follower. Since the follower either invests simultaneously with the leader or chooses to invest
later, the leader recognises that if he selects a capacity Q, such that Xz(Q,) > X, the follower
will opt to invest at a later stage. This type of strategy is referred to as a deterrence strategy.

In the deterrence strategy, the leader maintains a monopoly as long as the demand level X
is below X;(Q,). However, at a certain point, the follower will enter the market and become
active. This is because, as shown in equation (4.2), the output price can become arbitrarily large
when the demand level X increases sufficiently. The increase in X may eventually reach the
optimal investment threshold X;(Q;).

A deterrence strategy occurs when the leader chooses a capacity level Q, that exceeds Q,,
(the minimum capacity required to generate entry deterrence). Conversely, the follower invests

simultaneously with the leader when Q; < Q. We can define Q, as

20



1 B8 (56)
QL<X>—H<1 e )

Considering the entry deterrence strategy, the optimal leader capacity, denoted as Q¢ (X)
(With Q. = Qflet), is determined by the following condition
B
X(1-2n0f*) o (X(B —1)(1- nof“)> (1 - B+ Dnef*)s, _ (5.7)
=y P\ BHD&EC-w ) B-DA-ne)

det increases with X. Furthermore, by setting

From this expression, we can conclude that Q

det __
L

= 0, we determine a corresponding value of X. Denoting this value as X{¢*

, we identify
an investment threshold. Below this threshold, the deterrence strategy is not implemented, as
the demand level is insufficient to justify the investment.

Conversely, if X is too large, it indicates that the market is very profitable, leading the

follower to invest simultaneously with the leader firm, thus preventing any deterrence strategy
by the leader. This outcome occurs when X > X (Q det(x )). In other words, the smallest level

det and it occurs when

of X at which entry deterrence is not feasible is denoted by X

X; (Qget(Xget)) — Xget.
The leader’s entry deterrence policy results in the following value function for the leader
XA=10)Q o _ < X )” <X;<QL)nQ;(QL>QL> (5-8)
r—u RERVECS r—u '

where the first term represents the expected total discounted revenue that the leader gains as a

Vet (X, Q) =

monopolist, producing with capacity @;. The second term stands for the initial investment
necessary to achieve a production capacity of Q. The last term is a negative correction of the
first term, as the follower firm will eventually enter the market, transforming the monopoly into
a duopoly. When X (t) reaches the investment threshold X;(Q,), the follower firm invests
Q7(Qy), causing the output price to decrease by X;(Q;)nQfr(Q.), which in turn reduces the

B
leader’s revenue by X (Q;)nQ5(Q.)Q,. Additionally, in the last term, (x*fQ )) represents the
F\{L
stochastic discount factor and is equal to
X \f (5.9)
(ran) =l
XF (QL)

where T is the expected first passage time of X reaching X7 (Q;).
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5.1.2. Leader’s entry deterrence strategy

At level X, the leader’s entry deterrence strategy value function is given by

B 5.10
ey = 28T (1-mef@) oo - [ LD (1-n0i(0)\ 5,080 10
k B r—u tet B+ D6, (r— ) B—1
Therefore, the optimal capacity level (Qfet(X )) during the entry deterrence strategy is determined by
XA -21Q) (X(B - 1)(1 - nQL)>ﬁ (1- B+ D108 _ (5.11)
r—u PANBHDSEC-w ) B-DA-1Q)
Additionally, the interval of X that the leader will consider using the entry deterrence strategy is X € ]X%¢¢, X4¢![. The boundaries are defined
by
X{iet < X{iet(ﬁ _ 1) )ﬁ 52 _ 0 (5.12)
r—u 0 \B+D&C-w) B-D
and
B+1 5.13
X = E (B, =8+ 8.+ 8,)(r = . G.13)
The optimal capacity level and investment threshold are, respectively, equal to
1 (5.14)
det Xdet — .
Qi (™) B+ Dn
and
+1 5.15
Xget=§_151(r_li)- ( )
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From expressions (5.14) and (5.15), it is possible to realise that these investment decisions
coincide with the monopolist (see expressions (4.7) and (4.8), respectively).

In an alternative scenario where the leader firm invests in a capacity level such that Q; <
0, (X), the follower firm will invest immediately afterwards. This strategy can be represented
as an entry accommodation strategy by the leader.

As shown in Figure 5.1, there is an interval during which the leader firm will consider
accommodating the entrance of its competitor. Therefore, there exists a level, denoted by X{¥°¢,
from which the leader firm will consider accommodating the follower firm.

Figure 5.1 shows our results from using expression (5.6) to obtain Q, (X), expression (5.7)
to compute Q%¢*(X), and expression (5.18) to determine Qf*°“(X). This figure is similar to

Figure 2 from Huisman and Kort (2015) and was obtained using r = 0.1, = 0.06,0 =
0.1,6; = 0.08,6, = 0.12, and n = 0.05 as parameter values.

Figure 5.1. Optimal investment capacities in deterrence strategy (Qfet), accommodation
strategy (Q7°¢), and minimum capacity for entry deterrence (Q L) as functions of X

Expressions (5.6), (5.7), and (5.18) are used to determine Q,(X), Qf¢*(X), and Qf°°(X),
respectively. The parameter values employed in the analysis are: r = 0.1, u = 0.06, 0 = 0.1,
6, = 0.08,8, = 0.12, and n = 0.05. The figure illustrates the possible strategies that the leader

firm may implement for different levels of X.

15

10 |

Q

— Q7 (X)
T B e QLX)
— QX))

23



5.1.3. Leader’s entry accommodation strategy
In the context of an entry accommodation strategy, the value function when the leader invests

at the level X is given by

(X — (26, - 8)(r — )’ (5.16)
8Xn(r — ) '

The leader firm will consider this strategy when X > X{°“, where the investment threshold

Veee (x) =

is

2—-2B)6:+(1+3p)5 5.17
yaee L G220 HAH3PS (5.17)
p—1
In this strategy, the leader will invest at the optimal capacity level
1 (261 — 8,)(r — p) (5.18)
acc =—(1- )
0e°(0) = 5. ( 2

Nevertheless, the optimal investment threshold for the leader, X[*°, is given by
xgee = % (28, = 8)(r = . G-19
However, as X[*°¢ < X{°, the investment threshold X/*““ does not hold significant meaning
since the demand level X must be at least equal to X{“ for the follower to invest simultaneously
with the leader.
At the threshold X[*°“, the optimal capacity level is

gcc (chc ) = (5.20)

1
B+ Dn

In Figure 5.1, the functions Q#¢¢, Q,, and Q¢ are shown as a function of X. For levels of
X lower than X{°¢, the leader will apply an entry deterrence strategy, since the optimal capacity
level of the leader associated with the entry accommodation strategy, Q°¢, is higher than the
minimum capacity level needed to generate entry deterrence, Q.

For X levels higher than XJ¢¢, which can be visualised by the intersection point of Q, and
Q&et, the leader can only choose the entry accommodation strategy because the optimal
capacity level of the leader corresponding to the entry deterrence strategy, Q¢t, is lower than
Q,, implying that entry accommodation will occur.

In the interval X € ]X&¢, X4![ cither the entry deterrence or the entry accommodation

strategy can occur because both maximise the leader’s value.
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5.1.4. Strategic regime switching in leader investment behaviour

Given the results in subchapter 5.1.3, it is possible to construct the capacity level of the leader

as follows
Qfet(xfet) if X €[0,Xxge (5.21)
Q;(X) = { Q' (X) if X €[ xf X[,
(X)) if X €[X, 00
where X is
X = min {X € 1x{, Xge'[ | vEee(X) = Vet 0} (5.22)

In the first branch of the system of equations in (5.21), the leader commits to investing in a
fixed capacity level Q2¢¢ (X fet). This is because the leader aims to deter entry by committing
to a capacity level that is optimal for entry deterrence at the threshold X{¢¢. By maintaining this
fixed capacity level, the leader signals to the follower that entry would not be profitable, thereby
discouraging the follower from entering the market.

In the second interval, the leader adjusts its capacity level dynamically based on the current
level of X. The leader invests in a capacity level Q#¢¢(X) that is optimal for entry deterrence
given the current X. This dynamic adjustment allows the leader to respond to changes in market
conditions and maintain its entry deterrence strategy effectively. This strategy will last until X
reaches X.

Lastly, from subchapter 5.1.2, it is known that there exists a level X{°° from which the
leader considers using the accommodation strategy. The third branch represents the optimal
capacity level, under the accommodation strategy, that the leader will produce when X reaches
the minimum value of the interval X.

The leader’s value function can be represented as

x \# tro . ] (5.23)
e (W) vaet(xgety  if X € [0, X
(0 = vdet (x) if X € [ xfet, %[
vaee(x) if X € [X,o00]

The first branch represents the present value of the leader’s firm when it commits to
producing Qfet(X get). The initial term represents the stochastic discount factor of the leader’s
firm. This expression reflects the value of the firm that the leader holds but has not yet realised,

as the demand level is currently too low to justify an investment.
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The second branch represents the leader’s value function as described in equation (5.10),
applicable when the demand level X falls within the range where the leader can only employ
the entry deterrence strategy.

Finally, the third branch illustrates the leader’s value function when the entry
accommodation strategy is implemented. This occurs when the demand level X is sufficiently
high (at leastX > X ) In this region, the leader’s value function can be represented as

expressed in expression (5.16).

5.1.5. Leader’s investment threshold
Based on the results in subchapter 5.1.4, the investment threshold for the leader with a
significant cost advantage can be defined as

{Xﬁet if X € [0, x2[ (5.24)
X ifXe[Xx oo

*—
L=

From Figure 5.2, it is evident that at X%, the leader invests in a capacity level higher than
the follower. At levels below X, Q2¢¢(X) increases with X, as reasoned through expression
(5.11).

To obtain Figure 5.2 (whose results are similar to Huisman and Kort (2015)), it is important
to highlight that for values of X € [X det X [, we use expression (5.11) to determine the leader’s
capacity. For values higher than or equal to X, we use expression (5.18).

The follower’s capacity is computed using the optimal investment capacity in expression
(5.5), but selecting the leader’s capacity. This means that if X is below X, we use the leader’s
capacity obtained from expression (5.11). For values higher than or equal to X, we use the
leader’s capacity from expression (5.18).

The threshold X is determined by solving a system of two equations. In the first equation,
we set VL‘“C()? ) - VLdet()? ) = 0. In the second equation, we solve expression (5.11) where

fet(x = X).
The parameter values used to plot both functions are: r = 0.1, u = 0.06, ¢ = 0.1, §; =

0.08, 6, = 0.12 and n = 0.05.
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Figure 5.2. Optimal investment capacities as functions of X for the leader (Q;) and follower
(Qr) firms

Leader and follower capacity levels as functions of X, shown for values where X > X2¢¢. The
leader’s capacity is determined by expression (5.11) when X < X, and by expression (5.18)
when X > X. The follower’s capacity follows expression (5.5). The parameter values used are:
r=20.1 ©u=0.06, 0 =0.1, §; =0.08, 6, =0.12, and n = 0.05. The leader consistently

invests in a higher capacity than the follower, reflecting a tendency to overinvest.

Q
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In the entry deterrence region, the leader deliberately overinvests in capacity to discourage
the follower from investing. This overinvestment is evident when comparing the capacity levels
between entry deterrence and entry accommodation strategies at X.

Overinvestment results from the leader firm's investment. As reasoned in expression (5.5),
the higher the leader's capacity Q;, the lower the follower’s capacity. Additionally, from the
investment threshold in expression (5.4), the higher the leader’s capacity, the later the follower

invests.

5.2. No cost advantage for the leader
In this subchapter, it is assumed that the leader firm and the follower have identical unit capacity
costs, with §; = §, = §. Consequently, as the firms are now symmetric, the investment costs

are represented by 5Q.
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In this scenario, both firms are vying to be the first investor, as the initial investor will enjoy
a temporary monopoly until the other firm invests. This creates an incentive for each firm to
pre-empt the other. Once the first firm has invested, the strategic considerations for the second
firm’s investment are no longer relevant. Consequently, the timing and capacity level of the
second firm’s investment mirror those of the follower in the asymmetric firms’ case. Therefore,
subchapter 5.1.1 (with é replacing §,) applies to this framework.

Figure 5.3 illustrates that the leader’s value, representing the payoff after immediate
investment, is lower than the follower’s value for X values below the pre-emption trigger, Xp,
due to insufficient demand for immediate investment. When the leader shifts from an entry
deterrence strategy to an accommodation strategy at X = X, it reduces its capacity level (as
depicted in Figure 5.2). This reduction increases the output price for the follower, causing a

noticeable jump in the follower’s value at X = X.

Figure 5.3. Optimal value functions for the leader (V;") and follower (V) as a function of the
investment point X for the leader.

Leader and follower value functions in the symmetric-cost case. The leader’s value function is
given by expression (5.10) for X < X, and by expression (5.16) for X > X. The follower’s value
function is defined by expression (5.2), where X is the investment threshold that divides the
idle region from the active state. The parameter values used are: r = 0.1,u = 0.06,0 =

0.1,6 = 0.1, and n = 0.05.
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To achieve the figure above, it is necessary to follow the following steps.
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For the interval X € [0 , X [, the leader’s optimal capacity level Q] (X) is simply the
capacity level that deters entry, Q%¢* (X). Since the costs are identical, the leader’s entry
deterrence strategy remains consistent across this interval. This means the leader does not need
to maintain a fixed capacity level to signal to the follower that entry would not be profitable, as
is the case in the interval of X € [0 , Xfet[ when §; # &, (see expression (5.21)).

The value function for the interval of X € [0 , X [ is outlined in expression (5.10), where

Q&et (X) is obtained from expression (5.11). For the interval of X € [)? , 00[, where the leader
accommodates the entry of the follower firm, the value considered is presented in expression
(5.16), with the capacity level expressed in expression (5.18).

The point X was obtained in the same manner as in Figure 5.2.

Since the follower firm invests at the X threshold, we can assume X as the X (Q,) trigger
that divides the idle region from the active state in the value function of expression (5.2).
Therefore, for X € [0 , X [, the value function for the follower firm is given by the first branch
of expression (5.2), where Q, = Q" (X) from expression (5.11). For the interval X € [X, o],
the value function is given by the second branch of expression (5.2), where Q;, = Q¢ (X) from
expression (5.18).

The parameter values used to construct Figure 5.3 arer = 0.1,u = 0.06,0 = 0.1,6 = 0.1,

and n = 0.05.

5.2.1. Impact of uncertainty on entry deterrence and accommodation strategies

The discussion now centres on the effect of uncertainty on entry deterrence and entry
accommodation strategies, following a scenario in which there is no cost advantage for the
leader.

As X{°¢ increases with uncertainty, the X interval where only deterrence occurs also
expands. Consequently, it becomes more appealing for the leader to use an entry deterrence
strategy, as they will enjoy a longer period of being a monopolist, while the follower is
incentivised to invest later.

However, Maskin (1999) finds the opposite. He argues that increased uncertainty
diminishes the feasibility of employing an entry deterrence strategy. This is because uncertainty
prompts the incumbent to invest in higher capacity levels, which subsequently reduces the

profitability of such a strategy.
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The differing results between Huisman and Kort (2015) and Maskin (1999) stem from their
methodological approaches. Huisman and Kort (2015) utilise a dynamic framework that
accounts for the value of waiting for the entrant, while Maskin (1999) employs a static model.

From the results in expressions (A6.1), (A6.3), and (A6.5), it is possible to realise that the
interval where the leader can choose between entry deterrence and entry accommodation
strategies, i.e., X € ]X¢, X$¢t[, is independent of uncertainty. This is because X3¢ and X$¢¢
are affected to the same extent by it. Nevertheless, this interval decreases with the drift rate, as
expression (A6.21) suggests.

In Figure 5.3, the first investor invests at the pre-emption threshold X, because at time zero
X(0) < Xp. The pre-emption threshold Xp is the solution of

Vi (Xp) = Vi (Xp, Q1 (Xp)). (5.25)

The intuition is that when X < Xp, the demand level is too low to justify an investment,
and the payoff for the second investor is higher than for the first. When X > Xp, the payoft for
the first investor surpasses that of the second. Knowing in advance that firm 1 will invest at this
X level, it is optimal for firm 2 to pre-empt by investing at X — . This reaction will induce firm
1 to pre-empt firm 2, and firm 2 will then pre-empt firm 1. As the process continues, a race of
pre-emptions occurs until X — ne = Xp, where an investment will be made by one of the two
firms. In this scenario, the first investor, who becomes the leader, invests at the threshold Xp
with a capacity level of Q; (Xp), while the second firm, which becomes the follower, invests at
the threshold X,’?(Q; (Xp)) with a capacity level of Q;(QZ (Xp)).

In the case of asymmetric cost firms, it is evident that the leader will always invest in a
larger capacity level than the follower firm. However, since in this subchapter there is no
explicit expression for Xp it becomes impossible to derive precise analytical results about the
equilibrium capacity levels when considering the roles of firms that are determined within the
system itself. Essentially, the lack of an explicit expression for Xp complicates the analysis and
prevents straightforward calculations or conclusions about the capacity level at equilibrium.

Nevertheless, some experiments, such as the one presented in Figure 5.4, concluded that

the investment thresholds for the leader, Xp, and the follower, Xy, increase with uncertainty.
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Figure 5.4. Investment thresholds for the leader (Xp) and follower (X5) firms as functions of 6
Investment thresholds for the leader Xp and follower Xy firms under a scenario with no cost
advantage. The leader’s threshold is derived from expression (5.25), while the follower’s
threshold is obtained using equation (5.4). These thresholds represent the critical demand levels
at which each firm chooses to invest. The parameters used in the calculations are: r = 0.1, u =

0.06, 6 = 0.1, and n = 0.05.
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Some steps are necessary to obtain the figure above. First, we need to solve equation (5.25)
to determine the threshold Xp, where the value function V;" (Xp) is represented by expression
(5.10), where X = Xp and Q¢ (X) is given by expression (5.11). Additionally, the value
function Vg (X p Q7 (X p)) 1s represented by the first branch of expression (5.2), where Q; =
Q& from expression (5.11). These assumptions for the value functions are based on Figure
5.3, which shows that Xp € ]O X [ Therefore, we can disregard the value functions for the
interval [)? , 00[ when computing Xp.

It is also important to note that § should vary according to o (via expression (4.10)) within
the interval o.

To obtain X, we need to solve the optimal investment threshold of the follower, represented
in the equation (5.4), where Q;, = Q%¢*(X = X;) as given in expression (5.11).

The parameters used in the calculations are: r = 0.1, u = 0.06, § = 0.1, and n = 0.05.
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Figure 5.5 shows that due to the pre-emption threat, the leader can be forced to invest early
when the market is too small to justify a large capacity investment. As a consequence, the leader
deters the follower until X is large enough, making Qr > Q; possible, meaning that the
follower’s capacity will be larger in equilibrium, but only for low uncertainty values. For high
levels of uncertainty, the value of waiting increases, delaying investments. This implies that
when the leader finally invests, the market is large enough to justify a significant capacity

investment, resulting in the leader’s capacity level being higher than the follower’s capacity.

Figure 5.5. Optimal investment capacities for the leader (Q]) and follower (Q) firms as
functions of ¢

Optimal investment capacities for the leader Q; and follower Q firms under a scenario with no
cost advantage. The leader’s capacity is derived from expression (5.11) and the follower’s
capacity from equation (5.1). The parameter values are consistent with those used in Figure 5.4.

Notably, in low-uncertainty environments, the follower may emerge as the larger firm.

6.6
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To obtain Figure 5.5, Q; is determined by solving expression (5.11), where X = Xp and 8
varies according to g. To obtain Q we need to solve equation (5.1), where X = X and Q;, =
Q; . The parameter values are the same as those used in Figure 5.4.

However, Figures 5.6 and 5.7, computed with the same parameter values as Figure 5.4 but
with ¢ = 0.09, demonstrate that the conclusions in the two previous figures do not hold. In this

case, the leader is always the larger firm, regardless of whether the uncertainty is low or high.
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Figure 5.6. Investment thresholds for the leader (Xp) and follower (X5) firms as functions of 6
Investment thresholds for the leader Xp and follower Xy firms under a scenario with no cost
advantage. The thresholds are derived using the same expressions as in Figure 5.4. The
parameter values are also consistent with Figure 5.4, except for the drift, which is set to u =

0.09. These thresholds represent the critical demand levels at which each firm chooses to invest.
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Figure 5.7. Optimal investment capacities for the leader (Q;) and follower (Qf) firms as
functions of ¢

Optimal investment capacities for the leader Q; and follower Q firms under a scenario with no
cost advantage. The capacities are derived using the same expressions as in Figure 5.5. The
parameter values are consistent with those in Figure 5.4, except for the drift, which is setto u =

0.09. In this scenario, the leader firm consistently emerges as the larger firm.
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Finally, to generate Figures 5.6 and 5.7, we follow the same steps outlined for Figures 5.4

and 5.5, respectively, with the drift parameter set to u = 0.09.

5.3. Moderate asymmetry

In the case of moderate asymmetry, meaning that §; < §; < &,, firm 1 will invest at the pre-
emption point of firm 2, Xp , to prevent firm 2 from investing first. Given the difference in
investment costs, it results in Xp, > Xp , implying that firm 2 will invest later than firm 1. Firm
1 has a strong preference to be the first to invest at the pre-emption point of firm 2, Xp, , because

it aims to secure a more advantageous position in the market, avoiding the increased

competition and potential reduction in profits that would occur if firm 2 were to invest first.

Consequently, in this scenario V; (Xp) > Vi (Xp, Q5 (Xp)).
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As the asymmetry between the two firms increases, Xp, also increases, meaning that firm

1 needs to invest later to pre-empt firm 2. As the asymmetry increases, the equilibrium

converges to the leader’s cost advantage.

5.4. Welfare

Regarding the welfare perspective of the duopoly investment, Huisman and Kort (2015)
considered a social planner who can invest twice. Since the investment strategy that maximises
welfare is determined backwards in time, firstly, the investment trigger and capacity level of
the second investment are determined conditionally on the capacity level of the first investment.
Then, the threshold and capacity level of the first investment are computed.

Before analysing the social planner case, Huisman and Kort (2015) examine the scenario
where a monopolist invests twice. This investment scenario is also solved backwards, meaning
that to analyse the first investment, the optimal investment behaviour for the second investment
is studied first, conditionally on the first investment. To differentiate between the first and
second investments, the results and functions for the first investment are represented by the
number one, while those for the second investment are denoted by the number two.

For the social planner scenario, however, the first investment is represented by L, W and

the second investment by F, W.

5.4.1. Monopolist and social planner with two investment opportunities
In this subchapter, the objective is to compare the outcomes of a monopolist who invests twice
over time with those of a social planner who has the same opportunity to invest twice.

For the monopolist, the first investment threshold and optimal investment capacity are

given by the following expressions

L Bt —p (5.26)
K= Da— oy
__Bnei ]G —2n0) r:(’ (5.27)
1-n¢; “|G+Da-n0D|

The second investment’s threshold and investment capacity for the monopolist are given

by

\ B+ —w (5.28)
=G =D -z
1-2
%) =Gy +Z§’;. (5.29)
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The initial investment by the social planner, aimed at maximising welfare, is characterised

by the following investment threshold and capacity level
Br—uw)d (5.30)
1 )
B-1(1-310,)

XZ,W(QL) =

(5.31)

1 *
L Paniw [ B(-nQiw) o

1-2n0w  \B+D(1-3100)

For the second investment, the social planner invests at the following threshold with the

capacity level

+1(r—p)d 5.32

X;",W(QL) = g 1 (1T_ :éL, ( )
2(1 - 5.33

Q;",W(QL) = —Eﬁ T 71’?7;) ( )

Comparing the results from the social planner and the monopolist who can invest twice, if
the capacity levels of the first investment in the welfare-maximising policy double the capacity
level of the monopolist, meaning that Q;,, = 2Q;, the investment thresholds (expressions
(5.30) and (5.32) for the social planner, and (5.26) and (5.28) for the monopolist who invests
twice) will be equal.

Furthermore, the social planner’s investment will occur later than that of the follower. This
is because, according to expressions (5.32) and (5.4) for the social planner and follower firm,
respectively, the investment trigger for the social planner is higher than that for the follower
firm. However, the social planner’s capacity level (expression (5.33)) will be less than twice
that of the follower (expression (5.5)).

In a different scenario, if we focus solely on the capacity levels between the social planner’s
second welfare investment (expression (5.33)) and the follower firm’s capacity (expression
(5.5)), it becomes clear that the capacity level under the welfare-maximising policy will be
twice as high as the capacity chosen by the follower, assuming the capacity level of the first
investment is the same in both cases.

The TS in this market is defined in expression (A7.25), where X; = X;, Q; = Q;, X, = Xp,
and Q, = Q. However, the TS presented by Huisman and Kort (2015) in their expression (55)
represents the present value of (A7.25), considering the timing of each investment. Following

their nomenclature, this can be defined as
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’ - g - - 5.34
TS(X,, Q. Xp, Qp ) = <X> (XLQL(Z nQL) _ SQL) + (X) <XF(QL +Qp)(2 - n(Q, + Qr)) XpQp(2 nQL)>. (5.34)

%)\ X 20— ERTC

Comparing the monopolist and duopoly cases (from Tables 4.1 and 5.1, respectively), it is evident that the leader firm invests before the
monopolist. After the follower invests, the total market capacity exceeds that of the monopolist.

When considering the optimal investment capacity chosen by the social planner for the second investment (Q },W), it becomes evident that this
capacity initially increases and then decreases with uncertainty (o). This scenario involves two conflicting effects. Initially, as uncertainty rises,
the value of waiting also increases, leading to the first investment occurring at a later stage. As a result, demand will be higher at that time, making
it optimal to invest in a higher capacity. However, this higher capacity reduces the profitability of the second investment, resulting in a lower
capacity for the second investment. Conversely, the second effect is that increased uncertainty delays the second investment as well, which occurs
when demand is higher, thereby positively influencing the capacity level of the second investment.

When comparing welfare loss (see Table 5.2), it becomes evident that the duopoly with symmetric costs incurs less welfare loss than the
monopoly, approximately 12% versus 25% (see Tables 5.2 and 4.1, respectively). In the case of asymmetric costs, the welfare loss is even lower,
around 9%, likely due to the pre-emption effect, which leads to earlier investments.

For symmetric costs, welfare loss initially decreases slightly with uncertainty and then increases. The minor differences between our values
and those presented by Huisman and Kort (2015) in their Table 2 are due to rounding. Uncertainty (o) affects total surplus via 8, which directly
and indirectly influences total surplus through the determination of thresholds and investment capacities (as seen in the computations that led to
expression (A7.26)).

Comparing the investment capacities of the duopoly with symmetric costs and the monopolist from Table 4.1, it is evident that in the duopoly
scenario, capacity increases with uncertainty and better aligns with what the social planner would invest. This means that in the duopoly scenario,

there is less uninvested capacity compared to what the social planner would invest.
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Table 5.1. Investment characteristics and total surpluses in duopoly and social planner scenarios with firms’ symmetric and asymmetric costs

This table summarises the investment thresholds and capacity levels for a duopoly and a social planner who invests twice, assuming symmetric
investment costs across firms or investment stages. For both the duopoly and the social planner cases, the final two columns report the present
values of total surplus under symmetric and asymmetric cost structures. Table 2 in Huisman and Kort (2015) omits the total surplus values for the
social planner under asymmetric cost conditions. All values are computed for specific levels of uncertainty (o). The parameters used are: r = 0.1,

u =0.06,n =0.05 6 = 0.1, and X(0) = 0.001. In the case of asymmetric costs, §; = 0.08 and §, = 0.12.

Duopoly Social Planner
o XP Qz X;' Q;‘ TSsym TSasym XZ,W QZ,W XI:E,W Q;",W TSWsym TSWasym

0.00 0.00993 5.331 0.02182 5.501 0.02065 0.02347 0.01291 9.010 0.02912 8.242 0.02352 0.02605

0.05 0.01009 5.385 0.02246 5.526 0.02193 0.02487 0.01321 9.086 0.03007 8.254 0.02497 0.02758
0.10 0.01052 5.527 0.02431 5.591 0.02561 0.02885 0.01406 9.284 0.03283 8.279 0.02915 0.03192
0.15 0.01116 5.716 0.02719 5.671 0.03125 0.03493 0.01538 9.544 0.03714 8.302 0.03557 0.03853
0.20 0.01195 5.921 0.03096 5.748 0.03835 0.04256 0.01709 9.817 0.04281 8.315 0.04365 0.04678
0.25 0.01282 6.121 0.03555 5.814 0.04641 0.05120 0.01916 10.076 0.04972 8.315 0.05285 0.05611
0.30 0.01376 6.306 0.04089 5.869 0.05504 0.06044 0.02156 10.310 0.05779 8.306 0.06271 0.06603
0.35 0.01474 6.475 0.04699 5911 0.06389 0.06991 0.02427 10.516 0.06701 8.290 0.07285 0.07618
0.40 0.01574 6.627 0.05384 5.944 0.07271 0.07935 0.02730 10.695 0.07738 8.271 0.08297 0.08626
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Table 5.2. Comparison of optimal investment capacities and total surpluses in duopoly and
social planner scenarios

This table compares the total surpluses reported in Table 5.1 for both symmetric and asymmetric
cost scenarios, along with the corresponding optimal investment capacities (under symmetric
cost conditions) for a duopoly and a social planner who invests twice. All parameters used are

consistent with those presented in Table 5.1.

Comparison
. TSsym T'Sasym QL+ Qr
TSweym — TSWasym  Qw + Qrw

0.00 0.87813 0.90099 0.62785
0.05 0.87826 0.90178 0.62924
0.10 0.87840 0.90385 0.63304
0.15 0.87848 0.90663 0.63807
0.20 0.87850 0.90963 0.64358
0.25 0.87813 0.91254 0.64896
0.30 0.87768 0.91524 0.65402
0.35 0.87706 0.91768 0.65861
0.40 0.87633 0.91983 0.66281

Table 5.1 pertains to a numerical example using the parameter values r = 0.1, u = 0.06,
n = 0.05, § = 0.1, and X(0) = 0.001 for columns two to six and eight to twelve. These
columns represent the investment thresholds and capacities determined under the assumption
of equal costs for both the leader and follower firms, as well as the two investments made by
the social planner and corresponding total surpluses. The values for columns two to five
correspond to those depicted in Figures 5.4 and 5.5, but here we focus on specific values of
uncertainty (o).

Columns six, seven, twelve, and thirteen show the present value of the expected total
surplus when firms or the social planner invest at their respective thresholds, as suggested by
expression (5.34). The formula for computing the total surplus of the social planner is analogous
to TS in expression (5.34), but with the optimal investment threshold and capacity values of the
social planner substituting the values of the duopoly.

For the case of asymmetrical costs (columns seven and thirteen), the same inputs are used

as in the other columns, except § = 0.1 is replaced by §; = 0.08 for the leader (or first
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investment of the social planner) and §, = 0.12 for the follower (or second investment of the
social planner).

To calculate the total surplus of the duopoly with asymmetrical costs, we use X{*¢* (see
expression (5.15)) as the leader threshold and Xz (Q L = Qget (X fwt)) (see expression (5.4)) as
the follower threshold. The investment capacities are Qf“(X Ldet) for the leader (see expression
(5.14)) and Qf (QL = f“(X Ldet)) for the follower (see expression (5.5)). These variables are

then substituted into the corresponding places in expression (5.34) for both the leader and
follower firms.

For the social planner’s total surplus with asymmetrical costs, & is replaced by §; in
expression (5.30) for the first investment and by &, in expression (5.32) for the second
investment. The investment capacities remain the same as in the symmetrical costs scenario, as
they are not affected by the investment costs (see expressions (5.31) and (5.33)). These values
are then substituted into the variables for the leader and follower to compute the present total
surplus.

Table 5.2 compares the welfare loss from the abovementioned scenarios and the invested

capacity differences.
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CHAPTER 6
The constant elasticity demand case

This chapter focuses on the constant elasticity demand case, which will be analysed to
understand its nuances and the robustness of the results presented by Huisman and Kort (2015).
In this chapter, the linear demand curve will be replaced by an isoelastic demand curve

given by

P(t) = X(®)(Q®) ™", (6.1)
where y € 10, 1[.

Our goal in this chapter is to mathematically prove the results in Propositions 9, 10, 11, 12,
and 15 of the Huisman and Kort (2015) article and implement their findings. Propositions 13
and 14 are going to be discussed theoretically. To achieve this, the following subchapters will
derive the results of Propositions 1 to 7 using the isoelastic demand curve.

In subchapter 6.1, we will revisit the analysis from Chapter 4, focusing on the monopoly
scenario and proving Proposition 9. This will be followed by examining the welfare
implications and changes that occur when a constant elasticity of demand is applied.

Subchapter 6.2 is dedicated to analysing the duopoly case from Chapter 5, but with a
constant elasticity demand curve. Here, Propositions 10, 11, 12, 13, 14, and 15 resemble
Propositions 2, 3, 4, 5, 6, and 7, respectively. The proofs of the propositions are detailed in

Annex B.

6.1. Monopoly analysis

In this subchapter, we revisit the monopoly scenario initially discussed in Chapter 4, focusing
on a constant elasticity demand curve. To achieve this, our analysis will be divided into two
segments. First, we will examine the monopolist’s optimal investment decision. Following this,
we will analyse the welfare implications of this market structure.

The ultimate goal is to prove Proposition 9 mathematically.

6.1.1. Monopolist’s optimal investment decision

The value function of a monopolist firm with an isoelastic demand curve can be represented as
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AXP if X <X (6.2)

Vix) = Y61 ((1—)’))(
1—y\6:(r—w)

Here, the first branch denotes the option value when the firm is idle, and the second branch

1
y .

represents the monopolist’s firm value, dependent only on X, when the firm is active.
In the value function of expression (6.2), the variable A can be defined as
-B
. (61 (r=m) <60B(1 - y))y> 2 (©3)
1-y \&By—-1D By —1
The optimal investment threshold for the monopolist is
X*_aar—m<&ﬁm—yvy (6.4)
1-y \&By-1)
This, in turn, corresponds to the optimal capacity level of

_8p(L—y) (6.5)
5By —1)

QXH=e"

6.1.2. Optimal welfare decision

Given that the instantaneous consumer surplus is equal to

° y (6.6)
D(P)dP = ——XQ'7,
I-y
P(Q)
the total expected consumer surplus is given by
XQtv 6.7
esr, @) = 124 ©7
l—yr—u

Since the expected producer surplus is equal to the value of the monopolistic firm from

equation (B1.3), it can be represented as

XxXQtv (6.8)
PS(X,Q) = — 8o — 610.
r—p
Therefore, the total expected surplus is given by
1 XxQtr (6.9)
TS(X,Q) = —— — 8, — 6,0.
S( 1Q) 1_yr_‘u 60 510

Regarding the social planner, it is possible to conclude that its optimal investment trigger

decreases as y increases, when compared with the investment threshold of the monopolist,

WA -DY (6.10)
wy—n) =A=-nx

and the optimal capacity level is equal to

Xy = 51("‘#)(
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. zdoﬁ(l—y)zQ* (6.11)
v 5By —1) .

Therefore, contrasting expressions (6.4) and (6.10), it is possible to realise that the social planner invests earlier than the monopolist, but they

Q

invest with the same capacity level, as seen in expressions (6.5) and (6.11).
Contrasting the monopolist's total surplus with the social planner's, it is possible to conclude that the welfare loss is equal to
X(0) X\ rseee 0 — (K@ P r86[1- (1= p)P (1 =y + By)] (6.12)
Xy X* ' X By —1 '

It is important to note that expression (B17) in the article by Huisman and Kort (2015) contains an error. Specifically, in their final step, the

B
) TS(Xw, Qw) — (
entire numerator of the second term should be multiplied by the variable &.

6.2. Duopoly
In this subchapter, we revisit the concept of competition discussed in Chapter 5. The key difference here is that the price function now follows a
constant elasticity demand model.

The investment capacity of the leader’s firm is denoted by Q;, while that of the follower’s firm is represented by Q. The total market quantity
is the sum of these two capacities.

Our objective in this subchapter is to mathematically prove the results presented in Propositions 10, 11, 12, and 15. Propositions 13 and 14,

however, will be discussed only in theoretical terms.
6.2.1. Follower’s optimal decision rule

Considering that the leader firm invests with the capacity level of Q; and faces a stochastic demand level of X, the optimal capacity level for the

follower, Q5 (X, @), is determined by
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X(Qr+0Q))7Y o 6.13
(Qr + Q1) <1_ YQr )—51=0. ( )
r—u

The follower’s firm value function can be represented as

Ap(QXP if X < X5(QL) (6.14)
VF(X’QL) = 50 + 51QF ifX > X;‘(QL) ’

p—1
where
a0y = i@ 03 (0; + @) (6.15)
FLCL B — )
B (r—u)(o+6,Qp) (6.16)
X = ,
N B W H AR
and
“(0,) = Bée(1—y) +6,Q, + \/(350(1 —Y) +8:0Q.)? — 4B8,6,0,(1 — yp) (6.17)
Qr(QL) = 2608 — D) :
The leader can use the entry deterrence strategy if it has investment capacity Q > Q. (X), where @, (X) is implicitly defined by
B (r=w)(8 +60:(X,Q)) ¥ (6.18)

B—10:(X,Q)(Qr(X,Q) + Q)Y
Here, Q7 (X, Q,) is obtained from expression (6.13).

6.2.2. Leader’s investment policy under the entry deterrence strategy

In the entry deterrence strategy, the leader firm’s value function is given by
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x(at00)” ©19)

VLdet(X) = r— 1 — & — 51Qget(X)
v\ (% (e ) et oo (o + ok (o)) - (e )]
X;; (Qget(X)) r—u

Regarding the leader’s value function above, it is important to note that expression (B30) from Huisman and Kort (2015) contains an error in
the numerator of the last term. Specifically, their expression fails to incorporate the variable — (Qfet(X ))_ .

The optimal investment capacity of the leader firm in this strategy, depending on the stochastic demand level X, Q#¢¢(X), can be implicitly

determined by solving

A-pxe” o A-PXPANFQQ+e0) " oX; X XD)F(Q+ o™ [Q £ 05— 70 (1 4 OQ;>] (6.20)
r—u ! r—u 00, r—u LR TR T ag,
XF(Xp) e, 0X
RGN e +(1-nx| =0
P B)AQL 20, VIAF
Finally, the optimal investment threshold, X{**, at which the entry deterrence strategy becomes optimal, is determined using
d d
Xt oVt (X) = ydet(xget). (6:21)

ﬁ 0X X=XLdet

From the results outlined here, it can be inferred that the leader can use the entry deterrence strategy for any value of X.

6.2.3. Leader’s investment policy under the entry accommodation strategy

Since the entry accommodation strategy can be applied when X > X7, with this threshold defined as
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xace = X;(Q?CC(X{ICC)), (6.22)

the value of the entry accommodation strategy, for the leader firm, is given by

X8 () (08 () + Q3 (X, 0= (x))) (623)
r—pu _60_6lQL (X)'

where Q; = Qf°“(X). From expression (6.13), we obtain Q7 (X, Q).

Ve (x) =

The leader’s optimal investment capacity, Q/°“(X) = Q,, is defined by

X(Qu+Qr(X, Q)" Q5 (X, QL)>l s g (6.24)
1 -_ .
r—u 90,

Lastly, the threshold, X{*““, from which the leader firm can use the accommodation strategy,

1
IQL + Qr(X,Q.) —vQ, <1 +

is implicitly given by
XSCC aVLacc (X)
B 0X

(6.25)

— VLaCC (XZLCC)

X=X

6.2.4. Leader’s strategy across investment regimes

Similarly to the results in subchapter 5.1.4, the leader firm’s optimal capacity level is given by

Qfet(xdet)  if X € o, xfet| (6.26)
QI (X) = Q) if X €[ X2 %[,
QLX) if X €&, oo

where the point at which the leader firm is indifferent between strategies, X, is defined as
X = min {X = X | v (X) = V(X)) (6.27)

In the first branch of the system of equations in expression (6.26), the stochastic demand
level X is below the optimal investment trigger X¢*, and thus no investment will occur.
However, the leader commits to investing QLdet(X fet) to discourage the follower from
investing, should the follower decide to do so.

In the intermediate region, the leader firm will apply the entry deterrence strategy. However,
this is only feasible when X%¢* < X < X In this interval, the leader’s optimal investment
capacity is represented by expression (6.20).

Lastly, in the third branch, the leader’s optimal investment capacity is represented by the
accommodation strategy. At this level, the leader firm can accommodate the entry of the
follower firm by producing up to its capacity Q/°“(X) in expression (6.24).

Similar to subchapter 5.1.4, the leader’s value function is given by
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(x , (6.28)
(W) vee(xie) if xefoxi
V' (X) = Vet (x) if X € [Xget,)’(‘[.

vace (x) if X € X, |

The first branch, similar to expression (5.23), represents the leader’s value function that is
held but not yet realised, as no investment has been materialised since X < X,

In the middle region, where the deterrence strategy is the optimal strategy for the leader
firm, the leader’s value function is given by expression (6.19).

Finally, in the third branch, the leader’s value function is derived from the implementation
of the accommodation strategy. This function corresponds to the one expressed in (6.23).

From these results, we can conclude that the leader will adopt an entry deterrence strategy

when the stochastic demand level X is low. As X increases, the leader firm will switch to an

accommodation strategy.

6.2.5. Investment threshold of the leader
Based on the results presented in subchapter 6.2.4, the investment threshold for the leader firm,
similar to the findings in subchapter 5.1.5, can be expressed as follows
. {Xgef if X €0, X (6.29)
Ul ifxe[xfet o

6.2.6. Impact of uncertainty on the leader’s strategic entry boundaries

The threshold at which the leader firm can apply the accommodation strategy, X1, can be

determined by solving the system of equations (6.30), (6.31), and (6.32) for X{°¢, that is
B (r—u)(6+6,QF) (6.30)
B—1 Qp(Qr+Q))Y °

where it is assumed that Xz = X{°“ and Qp = Q in expression (6.16).

acc _
X =

The following expression defines Q.
X1(Qr + Q)77 (1 __YQr
r—p Qr +Qy

Here, X = X7°“ and Q; = Qp are replaced in expression (6.13).

(6.31)

)_61:0.

Considering the next expression as the definition of Q¢ (see expression (B6.1)), we have

X7°(QL + Q)77 149 yYQr — QL (6.32)
1-— 1 -5, =0.
r—u [ QL+QF( +20L+(1—y)QF)] '
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From expressions (6.31) and (6.32), it can be concluded that % = 0 and % = 0, since

axgee
do

they are not dependent on . Consequently, from expression (6.30) > 0. Since % <0,

B

from expression (6.30) implies that v 0 because as the volatility increases, f — 1 < f5.

Therefore, the region X € |X{°¢, +oo[ in which the leader can choose between deterrence

and accommodation strategies decreases with increasing uncertainty.
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CHAPTER 7

Conclusions and recommendations

We began by meticulously deconstructing the mathematical equations, enabling us to replicate
the figures and tables and correct any inaccuracies found in the original research article by
Huisman and Kort (2015). This thorough analysis allowed us to present accurate versions of
the expressions, figures, and tables, ensuring the integrity and reliability of the results upon
which this thesis is based.

The expressions mistakenly presented in Huisman and Kort (2015) article are (12), (A22),
(A70), (B17), and (B30). The correct version is found in this thesis in expressions (4.13),
(A4.6), (A6.20), (6.12), and (6.19), respectively. Additionally, Figure 1(a) in the Huisman and
Kort (2015) article is incorrect. The correct version is presented in Figure 4.1.

This thesis confirms the findings of Huisman and Kort (2015) that entry deterrence cannot
be sustained indefinitely. As markets grow, the second (follower) firm will eventually enter.
Additionally, the first (leader) investor tends to overinvest to delay the second investor’s entry
and reduce their capacity. However, under low uncertainty, the pre-emption effect may cause
the first investor to invest too soon, resulting in the second investor becoming the larger firm.
In conditions of high uncertainty and symmetric firms, the first investor invests relatively late
and in a larger capacity, ultimately becoming the larger firm when the second investor enters.
This latter scenario is driven by the value of waiting.

For the case of monopoly, this thesis also confirms that higher uncertainty delays
investments, but that leads to larger projects. Comparing welfare outcomes, symmetric cost
firms incur less welfare loss than a monopoly. However, asymmetric cost firms reduce welfare
loss even more compared to both symmetric cost firms and a monopoly.

In the scenario of a constant elasticity demand curve, the finding that increased uncertainty
enhances the likelihood of entry deterrence remains consistent. Additionally, the region where
the leader can choose between entry deterrence and accommodation strategies decreases with
increasing uncertainty. This contrasts with the linear demand curve scenario, where that region
remains unaffected by uncertainty.

The finding of this thesis that deterrence cannot be sustained indefinitely corroborates the
analyses of Dixit (1980) and Spence (1977). Additionally, as Spence (1977) suggested, we also

found that overinvestment exists in a Stackelberg duopoly.
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In contrast to Pindyck (1986), this thesis demonstrates that as uncertainty increases, it is
optimal for firms to expand their capacities, aligning with Dixit (1993).

Furthermore, the conclusions of Maskin (1999) that the range of parameters for which
deterrence occurs decreases with increasing uncertainty are opposite to those of Huisman and
Kort (2015), due to Maskin’s static model versus Huisman and Kort’s dynamic model.

Lastly, the findings of this thesis align with Shackleton et al. (2004), indicating that
hysteresis in firms’ actions is positively related to costs and uncertainty and negatively affected
by competitors’ investment capacities.

This thesis makes significant contributions to the field of strategic capacity investment by
providing detailed mathematical validation and rectifying inaccuracies in the foundational
research. It offers readers a profound understanding of how the conclusions were reached. By
presenting corrected formulas and figures, it enhances the reliability of the Huisman and Kort
(2015) article, transforming it into a more robust tool for strategic decision-making. This is
valuable for both firms and policymakers who design regulations that maximise social welfare
by considering the timing and capacity of investments.

While this thesis provides a comprehensive mathematical validation, it is limited by the
scope of the original research article. Future studies could expand on this work by exploring
additional scenarios and incorporating empirical data to further validate the theoretical findings.

As stated by Huisman and Kort (2015), some limitations of their work involve firms
investing only once, meaning that they cannot expand their installed capacity in the future and
must produce up to their installed capacity.

Future research could focus on extending the analysis to different market structures,
utilising different price functions, and exploring the impact of varying levels of uncertainty on
investment decisions. Additional numerical experiments, using either linear or isoelastic
demand curves, could be conducted to test theoretical predictions and provide practical insights
for firms operating under uncertainty. Furthermore, deriving expressions for the variables
Qfet(Xx{et) and QF“(X2) in the isoelastic demand curve scenario would be beneficial.

Lastly, as evidenced by Huisman and Kort (2015), it would be relevant to address the
uncertainty concerning the realised capacity produced compared to initial commitments and

model the uncertainty (o) parameter of demand by a Poisson arrival.
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ANNEX A
Linear demand curve

This annex presents the mathematical proofs for Chapters 4 and 5. The mathematical equations

developed here focus on a linear demand curve for the price function.

A.1. Mathematical details of the monopolist’s optimal investment decision
Given that the current level of X; is X (i.e., X, = X) and the firm invests in Q units of capital
(which implies that Q is fixed, meaning that Q; = Q). We can rewrite equation (4.3) as
m(t) = P(t) - Q(t) (ALT)
e () =X (1 -nQ(®) - Q(t)
o n(®) =X() Q- (1-nQ).
The expected value of the profit is then
E[n,] = E[X, Q(1 - nQ)] (A12)
© E[r] =Q(1 —nQ) - E[X,]
& En] =Q(1—1Q) - X - e"™.
Therefore, the monopolist value function, V (X, Q), can be expressed as

b (A1.3)
V(X,Q) = E[ j m(t)exp(—rt) dt — SQ]

t=0

s V(X,Q) = f Q(1—1Q)-X-ett.e Tt de - §Q
t=0

o VX, Q) = XQ(1 —nQ) f et dt - §Q
t=0

1 T

—_— — . ] (_r).t —
@ V() =X -nQ) - fim | —e ¢ - 50
V(X Q) =X - Q)-lim[ ! e—")T _ ! ]—60
’ e u—r u—r

1
e V(X,Q0)=XQ(1 —1Q) P 5Q

XQ(1—nQ)
r—u

Maximising V (X, Q) to Q gives the optimal capacity size Q*, concerning X, as follows

< V(X 0) = 6Q.
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VX, Q) _ 0 (Al.4)

aQ
XQ(1 —nQ)
@a( r—pu —6Q)=0
aQ
XQ - XnQ*
@a( r—u —6Q)=0
aQ
X 2Xn
& - Q-8 =0
r—u r—u
@zan_ X

r—u _r—y
X
@ZXnQ=(r—u)[m— 5]

©2XnQ =X-(r—wd

_X-(r—-wd
@szf( _(r—pé
n 2X7
1 (r—wd
ST T
1 §(r—
@QEQ*(X)zZ(l—y).

Next, we compute an expression for S, noting that the investment opportunity value,

denoted by F(X) must follow the ordinary differential equation (ODE):

1 AlS
EUZXZF"(X) + uXF'(X) —rF(X) = 0. (ALS)
Trying the trial solution F(X) = X#, it follows that
1 Al.6
S02X?B(B— DXF2 + uXBXF~1 —rxF =0 (A1.6)

2

& %02,8(,8 — DXP + upxf —rxf =0
(:)Eazﬁ(ﬁ—l)+,uﬁ—r]Xﬁ=O
@%azﬁ(ﬁ—1)+uﬁ—r =0V Xf=0

1 1
@50252"‘(#—502)5—7:0-
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The last expression corresponds to two roots, where ; > 1 and f, < 0. Therefore, a
general solution to the ODE could be F = AXf1 + BXPz,

As X — 0%, it is necessary that F(X) — 0 to satisfy the condition X!irggr F(X) = 0. But
since B, < 0, Xf2 — oo, implying that BX?2 is divergent at zero. Therefore, B must be set equal
to zero, yielding that F(X) = AXP1, or simply F(X) = AXP.

Consequently, from equation (A1.6), we can derive the expression for 8 as follows:

1 1 Al.7
—02ﬁ2+<,u——02>,8—r=0 (AL7)
2 2
_( _10-2) +J( _10-2)2 —4-Zg2- (-7
K72 K72 2
= =
2 .102
2
- (/,t - 702) + \//12 —uo? + 0%+ 20%r
e f= =
2 2r
—u+50’ \/04(%_%-"14'?)
ep= o2 + o2
Uz u 1 2r
w9 \/a_ “Ztit e
Shk= 2 o2 o?
1 u Uz 1 2r
‘:’ﬁ=§7+JF Ztit s
1 u u z2r
=F —z?*j(z -57) * o
To determine the threshold level X*, the VMC
F(X*) =V(X*Q), (A1.8)
and SPC
aF (X) _ VX, Q) (A1.9)
0X |y 0X |,
must be employed. Substituting (A1.8) into (A1.9) and solving for X* gives
dF (X) V(X Q) (A1.10)
0X X=Xx* 0X X=x*

X'Q(1 —nQ)
= a(A(X*)B) _ 0( r —Hn } SQ)
ax* X+
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X*)B 1—

@BA(X*) :Q(r—ZQ)
X*Q(1—10Q)

(5= ‘5Q>=Q(1—nQ)

(=14

X* r—u
@ﬁX*Q(l—UQ) _BsQ Q(1—nQ)
X* rT—u X r—u
- BQ(1—nQ) _BsQ Q(1—nQ)
r—u X+ r—u
(:),350 _ (1 —n0Q) B Q(1—nQ)
X r—u r—u
@B(SQ _ (1 —1nQ)- Q(1—nQ)
X r—u
B30 _(B-1Q-nQ)
X* r—u
LB _(B-D1-nQ)
X* r—u
e — ey B — )
SN EN@EE a0
Since equation (A1.4) can be rewritten as
1 o(r — Al.11
on :§<1_ (TX u)) (AL11)
11X 16(r—p)
CM=IX T X
replacing this equation into expression (A1.10) yields
P BS(r — ) (A1.12)
603 + P
oy B&(r — )
(6 - 1)(ZX—X ;—X6(r—u))
oy BS(r —w)2X

T B-DX + 60 -w)

& (B- DX + 80— ) =280 — )
SPB-DX + BSr-w-60—w =266(0r—wn
S E-DX =p5(r—w) + 60—

eFE-DX = F+D60r—p
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B +1

SX=X =ﬁ—_16(r— ‘Ll)
Incorporating this expression in equation (A1.4) yields
(A1.13)
0= 1 1 6(r—p)
T 2p\ 0 BH1
“n %5@ — W
1 p—1
®Q_§ﬁo_ﬁ+1)
0= 1 (,8+1—,3+1>
¢= 2n p+1
2 1
S 2np+1
1
©Q0=0"=0"(X") = :
Q=0 =00 =G0
Considering that the VMC states that
F(X*)=V(X*,Q) (Al1.14)
XQ(1 -

replacing X* and Q*(X™) (of expressions (A1.12) and (A1.13), respectively), in the right-hand
side of the equation (A1.14), yields

X'eu—ne) (AL15)
r—u
160 - 000 - Q)
r—u
B+l 1 1y 1
_ﬁ—16(ﬁ+1)n<1 "<ﬁ+1)n> "B+ m
1 §B+1-1 1
‘ﬁ—lﬁ< B+l >_5(ﬁ+1)77
_ 5B s B-1
G-DE+Dn CGB-DE+ Dy
B -8B +6
(B2 -1Dn
_ 1)
(B2 —Dn’
Therefore,
) (A1.16)
*ﬂ:
A (B%2—1)n
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_sx)F
(B2 -1

-B
1) (é’% 6(r — ,u))
(B2 —1n '

S A=

Based on the previous results, we can construct the value function for the monopolist as

AXB if X<X*
VX)) =1 (X -6(r - ,u))z
4Xn(r —p)

if X>Xx"

(A1.17)

The rationale behind this is that for X < X*, the firm remains in an idle state. Therefore,

the value of the monopolist firm is given by the option value AX? (i.e., the first branch of

equation (A1.17)). For X > X*, is known that the value of the active firm is given by equation

(A1.3). Rewriting equation (A1.4), we get

1 5(r—u)
0= (1-"77)

L (x=80r—w)
o 0=—»I(X—- - .
Q X r—u
We must notice that

1
XQ =%(X—6(r—u))

and
1nQ—L~—w §(r— )
= 1-10 :2X—X-2I-;(r—,u)
<1-—n0 = w
Therefore,

XQ(1=1Q) = 5 (X~ 8 - ) =)

@erwm———@ Sr—w)X +80—w)

and the value of the monopolist firm can be represented as

XQ(1 —nQ)

r—u —oQ
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(A1.18)

(A1.19)

(A1.20)

(A1.21)

(A1.22)



1 §(X —8(r — )
BT CET) X-6r-w)X+60r—p)- 20X
_ 1 2 _ 8200 _ N2 _ _ 200 _ 11\2
_477X(r—,u)(X 6°(r—w)*—26X(r— ) + 26°(r — w)*).
Also, it is important to note that
X?—68%(r—w)?—26X(r —p) +26%(r — p)? (A1.23)
=X?—-28X(r —p) + 8%(r — p)?
= (x-580—w)".

Based on the preceding equations, the value function in expression (A1.3) corresponds to
the second branch of equation (A1.17) because
XQU-nQ) _ ;o (X=0-w) (A1.24)
r—u X (r — )
Differentiating equations (A1.12) and (A1.13) concerning [ gives
X" (A1.25)

ap

=6(r—w-

1-B-1D-(F+1)-1
(B —-1)?
p-1-p—1
(B —1)?

<0,sincef>1= (B —-1)2>0,

=6(r—mw-

26(r — )
T G-
r>user—u>0,
and § > 0,
then 26(r — u) > 0,
0" (A1.26)
B
10-(B+1)—1-1
1 B+ D?

1
=——————<0,sincef>1=2(B+1)?2>0
n-(B+1)? P 4

and n > 0, yielding,
n-(B+1)?%>0.
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A.2. Mathematical details of the optimal welfare decision

Given that the instantaneous consumer surplus is represented by

X (A2.1)
D(P) dP,
P(Q)

we can rewrite the price function from equation (4.2) as follows

P(Q) = X(1-10Q) (A2.2)

o D(P) = 1 (1 — —) (rewriting Q = D(P)).

Combining expressions (A2.1) and (A2.2) we achieve that the instantaneous CS is equal to

X (A2.3)
D(P) dP
P(Q)

X

X(1-1Q)

1 2

bt -]

n (1-1Q) nx | 2 Px(1n0)

1 1

E[X X1 - UQ)]—T[XZ (X(1-nQ) ]

1 1 X2 2 2
= S =X +X0Q) — 2 X — (X*(1 = Q)]

=X X+X(1 2nQ +n*Q?)
= XQ 2t nQ +n“Q

= XQ -+ X xQ + 202
=XQ gty mXe N0

— 1 XQZ
= 2 T].
From the previous equation, it is possible to compute the total expected CS as
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o)

f %X(t)ane‘” dt [X(0) = X

t=0
f Xe "t dt]

t=0

(A2.4)
CS(X,Q) =E

1
o CS(X,Q) = EQZUE

o

e CS(X,Q) =%Q2n fE(Xt)e_r't dt

t=0
1 (o]
© CS(X,Q) = EQZW f Xette Tt dt (with X = X,)
t=0
1 (00
& CS(X,Q) = Eanx f et gt
t=0
XQ%n
& CS(X,Q) = 20— )

Since the PS is equal to the value of the monopolist firm in expression (A1.3), the TS is

computed as

TS(X,Q) = CS(X,Q) + PS(X, Q) (A2.5)
2 _
TS, Q) = 1 X0 _ o
2(r— ) =

XQnQ _I_XQ(Z —2n0Q)

R Ty A e B
X 2—2

o TS(X,0) = Q(ng(:_ﬂ) "Q)—ao
XQ(2 —

o TS(X,Q) = H — 50.

By incorporating the monopoly decisions into the previous equation, by substituting X with

equation (A1.12) and Q with equation (A1.13), we get

Erlsr— -t (2-p—L
@TS(X*Q*)_ﬁ—l‘S(r RIERTIG ”(ﬁ+1)n)_5 1
A 2(r—uw) B+ 1n
1 1 1
82 — 5
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@TS(X*,Q*)=1%61(2 : ) °

26—-1"n\" p+1/ (B+Dn
N L P L S S SIS U N
’ g-1 26-1 np+1 (B+ 1y
& TS(X* Q%) = b 6 9
B-Dn 2B-D(@E+Dn B+
o TS(X", Q) = 26+ 1) 5 26(8 - 1)

20-D@+Dn 26+ DB -Dn 28+ 1B - Dn
26(B+1)—-285(B—1)—6
28+ 1)(B - D1
38
26+ DB - Dn

Based on expression (A2.5), we can conclude that the value function for the social planner

& TS(X*, Q%) =

o TS(X* Q) =

at the time of investment is represented by
XQ(2Z-n0Q) 50 (A2.7)
2(r —u) '
Therefore, the social planner, who maximises TS, reveals the following capacity level
VX = X) B
aQ B
2X 2nXQ
@ j— j—
2r—w) 2(r—u)
X —nXQ
S — =
r—u
S X—nXQ=6(r—pun)
enXQ=X-60—-w
X =60 —u)
nX

Vw(Xy = X) =

. (A2.8)

6=0

é

Q=

1 6(r—uw
=Qy,(X)=--——"2
© Q=Qp(X) 7 X

Before investing, the social planner possesses an option value, which can be expressed as
Fy(X) = AXP. (A2.9)
To achieve the threshold level Xy, at which the social planner invests, the VMC
Fw (Xw) = Vw (X, Q) (A2.10)

XiwQ(2=nQ)

= A =500

8Q,
and the SPC
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dFy (X)
X

(A2.11)

_0V(X,0Q)
T 9X

X=Xy X=Xy

must be employed. Substituting (A2.10) into (A2.11) and solving for Xy, gives

dFy (X) V(X Q)
X X

(A2.12)

X=Xy X=Xy

XwQ(2 —1nQ)
_ oaci)?) _° (=3 %)
X, 0X;,
@w)f _Q2-nQ)
Xw 2(r — )
Q(2 —nQ) M
—ne) 2(r—u
2w F X;y
Q(2 —nQ) _ BQ(2—-nQ) BsQ
2(r—p) 2r—pw) Xy
2B6(r — )
Xw
2B8(r — )
Xw
2B8(r — )
Xw
2p6(r — p)
B-1D2-nQ)

Substituting X, (Q) into expression (A2.8) gives that

0 1 S(r—p) (A2.13)
m o 2B6(r — u)

(B —-1(2-10Q)
1 (B-1D(2-10)
c0=5" 261
26— (B—1)(2-10Q)

2B
© 2pnQ =28 -2+ pnQ + 2 —nQ
© pnQ =2-n0Q
e B+ 1DnQ =2
2

B+n

S A

—68Q

©2-1Q =2 —-nQ)—

©2-1)(=p+1) =-

e B-D2-10)=

< Xy (Q) =

S Q=

Q=0 =

20".
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From one the results in (A2.8), the optimal investment threshold can be computed as

follows
X—nXQ=6(r—uw (A2.14)
©X(1-1Q)=46(0r—w)
_6(r—p)
=100
o X = 6(1‘—/;) (replacing Q = Qy,)
SV
<:>X=—5(r_2'u)
1_m
5(r—uw)
Y )
B+1
5(r—uw)
SX=p1
p+1
+1
@X=%6(r—y)
+1
@XEXJ,Z%(S(T—‘M):X*.

The total welfare for the welfare-maximising policy at the time of the social planner’s

investment is equal to

TS = TS 0y = K@@ 710 _ o (A2.15)
2(r—uw)
B+1 2 2

e B O GET gETy)

v 2(r— ) B+ Dn
s TS =;51(2— 2 >—5 2

YoB-1"7 B+1 (B+Dn

g 20 28 28
TIwWIEGB -y B-DE+Dn B +Dn
g L 20B+1D—26 268 1)

W (B - D@+ Dy

26

< TS, =

S B+DE -y

The total welfare loss in a monopoly situation, at the moment of investment, is then
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TS(Xy, Qy) — TS(X™, Q%) (A2.16)

B 26 36
T B+DEB-Dn 26+ DB -Dn
_ 46-36
C2(B+1D(B- D

o)

T2+ D@ -y

A.3. Mathematical details of the follower’s investment strategy
Given that in the duopoly scenario the market capacity is Q = Q;, + Qp, it is possible to express
the profit function of the follower firm as
mp(t) = P(t) - Qr(¢) (A3.1)
o () = X(©) - (1 -1Q(®) - Qr(®)
e mp(t) = X(@©) - Qr(®) - [1 —n(QL + Qp)].
The expected profit of the follower firm is then
Elmr (D] = E[X(®) - Qr(®) - [1 = 1(Q, + ] (A32)
© E[rp(t)] = Qr[1 —n(Q, + QF)] - E[X,]
e E[np ()] = Qr[1 —n(Q, + Qp)] - X - e#™.
Therefore, the value function of the follower firm at the moment of investment, depending

on X, Q;, and QF, can be represented as follows

(o]

J np(t)exp(—1t) dt — 5, QF]

t=0

(A3.3)
V;(X, QL) QF) =E

© Vp(X,0,,0r) = f Qr[1—7n(QL + Qp)] - X - et e " dt — 5,0

t=0

& VE(X,Qu 0r) = XQp[1 — 1(Q1 + Qp)] f Wt dt — 5,0,

t=

o

X 1-— +
© Vi (X,0Q.,0r) = i rn_(iL %)) — 0,0QF.

By maximising this function with respect to Qf, we obtain the optimal capacity size of the

follower, given X and Q,, as follows

Ve (X, Q1 Qr) _ 0 (A3.4)
9Qr
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5 (XQF(l —n(Q.+Qr) 5, QF)

r—u
S =0
0QF
X—X —2X
o nQ, UQF_62=0

r—u
© X —XnQ, — 2XnQp = 8,(r — 1)
© 2XnQp = X — XnQ, — &,(r — p)

1 Q. 60 —uw
S Q=g
n 2 2Xn

6,(r — )
— )

1
© Qr = Qr(X,Q,) = 5(1 —nQL —

Considering that before an investment has been made, the follower firm has an option to

invest, represented as

Fe(X) = ApXP, (A3.5)
we can determine the indifference level X by combining the VMC
Fr(Xp) = Ve (XF, Q1. Qr) (A3.6)
o ap0xyr = KL ;71(% £09) 5.0,
and the SPC
F - (X) _ovi(x,0,,0,) (A3.7)
X X=Xp - X X=X,’f~.

Using the results from equations (A3.6) and (A3.7), we can obtain the value of X as

follows
dFz(X) _ VX, Q1 Qp) (A3.8)
0X X=Xp 0X X=Xg
o gt = 211+ Q)
r—u
X)f  Qr(1-n(Q, +Qp))
< Apf X —
B N Qr(1—n(QL + Qr))
‘:’X;AF(XF) = —
o f* XiQe(1=n(@u+0Qr) o | _ Qr(1=1(Qu+Qr)
F r—p r—u
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o BQF(l —-n(Q, + QF)) _ B6,QF _ QF(l —n(Q, + QF))

r—u Xr r—u
B8,Qr Qr(1 —n(Q, + Qr))
ol BT -
Bé, 1—n(QL+QF)
R RS
o X = B, (r — 1)
(8 = D(1=n(Q + Qp)
B 6,(r — p)

@ X=X = T r e 1 0T

To obtain the optimal capacity level (Q) and the optimal investment threshold (X7) where

they only depend on Q; we must solve the following system of equations

9

=5

( 1 6, (r — A3.9
Q;(X,QL)=5(1—nQL— 20 “)) 2

B 8, (r — )
p—-1 (1 -n(Q, + QF))

\ X;(QL' QF) =

.

. 1 §,(r — )
QF(XrQL)_% 1_TIQL_ ﬁ 62(7"—#)

B - 1(1 -n(Q, + QF))

(ifX = X;(QL: QF))

\ _
.

B - 1)(1 -n(Q, + QF)))

Q*_i<1_ —
F = ulo; B

2n
\ —

(Q* _ l B —pnQ,— (B — 1A —nQ, —nQr)
o B

\ —

(Q* _ l(ﬁ —BnQL — B+ pnQL+ pnQr+1-10, _T]QF)
ol B

\ —

(. _ 1 (BnQr +1—-n0Q, —n0Qr
<:><QF_2U( B )

\ —
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( L1 ﬁQF-l'%_QL_QF

\ —

(. QF Qp 1 Q. . —
@<QF_7+ﬁ_% 25 (assuming that Qr = Q)

K_

Y I N )
(:HQF(l_EJrﬁ)_an 28

(1L &
@<Q;_31}+f
B
\_
(1 4
QFzﬁZ+1ﬁ
= T
\_
( 1-7n0,
B
\—
(Q;;:,B(l_UQL)
=X BB+ 1)y
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( * — )k * _ 1_77QL
o QF = QF(XF(QL)P QL) - (B + 1)77

p 52(7”—#)
e {X =
B—1 1-n0,
\ (1 1 (QL HCE 1)77))
-
1y = B 6,(r — 1)
Fop—1,  ((B+DnQ,+1—-nQ,
\ 1 ’7( G +Dn )
-
<:><X*: B 62(7'_#)
PTB=1B+Dn—n(B+ D10, +1-1Q,)
\ B+ 1n
—
Sy 2 BB §,(r — )
U B=1 B+ Dn-n(B+DnQ,+1-1Q,)
ey . B+ 8o (r — 1)

7B —-1 B+1-[(B+1nQ.+1—10Q,]

S, _PH1 B8, (r — w)

U B—-18+1—-pnQ, —1nQ,—1+10Q,
—

S ye L BH1BS— )

U B—1B8-p10Q,

(A _1-1n0,
=2 .
B+168;(r—p)

kX;; = Xp(QL) =

p—-11-1n0,
To derive an expression for the parameter Ap in the investment option, we begin by

substituting X = X;(Q,) into the right-hand side of the VMC. This allows us to obtain
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70

1920 0, (1- 100, + @)

r—u

- 62QF

B+1 6,
B—11-n0Q,

p+1 6, 1-1n0Q, 1-n0, 1-n0, . _ e
F=11-70, (5 + <1 (0 G 1)n)> %G Dy ePiacing @ = 0i(Q)

P (1_77<QL+1_77QL>> s 1-1n0Q,

QF(]- -n(Q, + QF)) — 6,0F

(B—1n B+Dn)) 2B+ 1n
6, 1-nQ, 8, 6,m0Q,
(ﬁ—l)n(l_nQL_ B+l )_(ﬁ+1)n+(ﬁ+1)n

(P _ 6,m0Q. _ (P n 5,mQy _ 5, n 5,mQy
B-Dn B-LDn B-DE+Dn E-DE+Ln B+n B+
6,(B+1) —6,mQ,(B+1) — 8,4+ 6,mQ, — 6,(B—1) +6,mQ,(B—1)

B-D(B+n
828 + 6, — 8,mBQL — 8,mQL — 8, + 6210, — 628 + 6, + 6,mBQL — 62m0Q,
B-D(B+n

8, — 62nQy
B-DB+Dn
(1-1Q.)6;
B-DEB+Dn

(A3.10)



Therefore,

(1~ 10.)¢ (A3.11)
B =
AX = B-D@ + O
_ 1 (1-1Q)6;
CAr =B -DE+ D
1 (1-1Q.)5,; ]
= l _ .
o (ﬁ +18,(r — u>)ﬁ =D + Dy replacing X = Xi (@)
B—11-n0Q,

p-1 1—nQL)ﬁ (1-1Q.)8,
B+18,r—-w) B-DE+n

Using the earlier findings, we can formulate the value function for the follower firm as

© Ap = Ap(QL) = (

Ar(QL)XP if X <X:(Q) (A3.12)
Ve(X, QL) = (X(1 —nQ,) — 8,(r — H))Z , .
4Xn(r — if X = Xp(QL)

because for X < X;(Q,), the follower firm is still in the idle state, and, therefore, the value
of the firm is given by the option value Ar(Q,)X?. For X > X;(Q,), is known that the value
of the active firm is given by equation (A3.3) and rewriting equation (A3.4) yields

8, (r —/1)) (A3.13)

1
Qr = Qr(X,0Q,) = %(1 —nQ, — X

1

& Qp = Zn—X(X—XnQL —8,(r— )
1

& XQp = E(X —XnQy, — 8,(r — )

1
& XQr = o (X(1—nQy) = 8,(r — ).

Therefore, incorporating this result in equation (A3.3), we obtain the value of the second

branch in expression (A3.12)

27 (X1 =) = 80 = w)(1 = (@ + 0) (A3.14)

Ve (X,Q.,Qr) = P — 620QF
X(1=nQu) = 82(r = ) (1 = n(Qu + Qr)
o Vi, 0p) = L1 e 3)( 1@t 80) 0,
X(1 - —&,(r—w)(1 —1nQ, —
o Vi, 0, 0p) = 100 ;(;(r _ul); n Q) o
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(X(l —1nQL) — 6,(r — ll)) [1 —nQL — %(X(l —nQL) — 6,(r — ll))]

1
o VrX,Q,) = 200 — ) _52m(x(1_UQL)_52(T—H))
. B X(X(1—=nQy) = 6,(r — ) [1 —nQL — %(X(l —nQL) — 8, (r — .U))] 8, (r — W (X(1 —nQy) — 8,(r — )
e VriX, Q) = 2Xn(r — w) - 2Xn(r —p)
i B X(X(l —1Q) — 6,(r — .U)) [1 —nQ, — %(X(l —nQ) — 6,(r — H))] — 0,(r — H)(X(l —1Q) — 6,(r — .U))
e VrX,Q.) = 2Xn(r — 1)
* (X =10 = 8,0 = ) [ X — XnQ, — 5 (X1 = 1QL) — 8,0 — 1)) = 6,0 — )]
e ViX,Q) = 2Xn(r — 1)
(XA =10) — 8,6 - ) [X(AL = 71QL) — XL = 0Q) + 56,0 — 1) = 8 — )]
<:>VF()(!QL) - ZXT](T—,LL)
(X(1 =10 — 8,(r — ) |3 [X(A = 1Qy) — &, — )]
<:>VF()(!QL) = ZXT](T—,LL)
% _ (X(l —nQy) — &,(r — ll))z
<:>VF()(!QL) - 4XT](T—,LL) '
For the deterrence strategy, 0, can be defined using the investment threshold equation in the system presented in expression (A3.9) as follows
) _ ., B+180—w (A3.15)
XF(QL)=X—ﬁ_1 1-10,
+16,(r —
‘:’1_77QL=§_1 z(rX )
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&0, = 0,0 = %(1 (B 1D),(r —u))_

(B-1DX
Since X; follows a GBM, It6’s formula (Bjork, 2009) provides us with
2
X, = x,elli-F)e+ o amd] (A3.16)

o X = Xoe[(”_%z)t + GWtQ]

_a? Q
S X, = Xe[(“ 2 )HJWt ] (replacing X, = X).
Considering 7" as the optimal stopping time, we can represent it as

T = inf{t > 0: X; = X3(Q))} (A3.17)

Tt = inf{t > 0: Xe[(#_%)tJrthQ] = X;(QL)}

[(u—%z)t + aWtQ] _ X;(QL)
X

2 *
=33 inf{t > 0: <l" — %) t + O'l/VtQ —In <XF§(QL)>}

. s 1 o’ 1 Xr(QL)
ST =1nf{t>0:;<,u—7>t+WtQ=;ln<T .

Hence, X; = X;(Q;) if and only if

et inf{t >0:e

2) 1 (XE?(QL)> (A3.18)

t=-—1
an X

1 2 1 (Xr(Q)
(:)—Wf—;(u—%)t:-;ln( FXL>

t—11< X )
“ o \X:Qn)

Following Shreve (2004) theorem 8.3.2, the Laplace transformation of the first passage

time can be written as

Bole™ Thiprcumy 1F,] = e (CHHITH20), (43.19)
as long as, for the perpetual call case, the variables 4, m, and M are defined as follows
A=, (A3.20)
1 | ( X ) (A3.21)
m=——=In|———<),
o \Xp(QL)
and
1 1 (A3.22)
M=—(u=50%)
o (,u 2°
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Incorporating expressions (A3.20), (A3.21), and (A3.22) into the right-hand side of

expression (A3.19) results in

1 X 1 1 1 1 \? (A3.23)
Eln(m) ~5(1-307) + [ga(n-70?) +2r
e
X 1 1 1 1 ,\% 2
“‘(m) ~oa(1-30%) + [za(n-307) +33
=e L
X 1 1\2 2
=e L
X
_ eln(x_;(QL)')ﬁ
- (tes)
Xz Q)
Therefore,
Eole™ oy |Fo] = e m(-M+VME+22) (A3.24)
B
& E[le™™T] = ( - ) replacing E, = E,7* =T,
Xpan) ertecing o

and since T* < 00 = 1l 3= 1)

X ﬁ_E —-rT
‘:’<X;(QL)> = Ele™)

A.4. Mathematical details of the leader’s entry deterrence strategy
Given that in the deterrence strategy the market investment capacity is Q = Q;, the steps to
derive the leader’s value function are similar to those in the monopolist case, but with Q = Q;.

However, as stated in subchapter 5.1.1, following expression (5.8), the follower firm will
eventually enter the market. Therefore, it is necessary to incorporate a negative correction
factor. Consequently, the value function of the leader firm is given by

XQu(1 - 1Q.) X\ (xi@em@i@)  A4D

T (x;(m)) ( r—u )

Substituting the follower’s optimal investment capacity and the optimal investment

VLdet (X! QL) =

threshold from expression (A3.9) in the value function of equation (A4.1) yields
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det —
SVTX Q)= = B+168,(r—p) r—u

p—11-n0Q,
X(B—1)(1 - nQJ)ﬁ 8,0,

d :8+152(7'_IUQ 1-10, (A4.2)
XQL<1—nQL)_6Q_< X )(ﬁ—l 1-n0Q, L"(ﬁ+1)n>
1¥L
U

XQ,(1—nQ.)
T

And VLdet(XJ QL) = —u

_519“< BrD60—-w ) -1

XQget(x) (1 - nQget )

e Vit (x) = —

(considering Q, = f“(X)).

B
X8 -1 (1-10% )\ 5,08 x)
B+ D&, — B—1

— 6,07 (X) — (

Differentiating the previous equation with respect to Q; and considering Q2¢¢(X) = Q,, we obtain

VLX) _ (A4.3)
aq,
o|(2¢-Da —nQL)>‘* 6ZQL]
X —2XnQ, B+ 1)o,(r—p) g—1
e———"_4 - =0
r—u aq,

JEIEDICE nQL))”’ o (22%)
SX=2me o |V DEGT-w ) &0 X(,B—l)(l—nQL)> p—1

r—u ! 0Q, ,3_1+<(,3+1)52(T—M) 0Q, =0

JX-2me o [B(X(-DA- n0.)" " (Xn = Xn) 6,0, N <X(ﬁ - DA —nQL)>B 5% | _,
B+ Do0r—p) ) B-1

1

T | (8 + D80 - w)’ p-1

o XA -200,) 6_<X(ﬁ—1)(1—nQL)>ﬁl BX(—fn) 5,0 & lzo
r—u PN B+HD&RC-w ) [XE-DA-1Q)B-1 B-1
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o Xa-2m0) _(X(ﬁ—l)(l—nQL)>ﬁl —Bn(B-1) 50, &
' ®

= B+D5,c-w ) [G-DA-nef-1 5-1 "
LXa-2mQ) o (X(ﬁ -1 - nQL)>”’ —B182Q, + 81— 1QW) _
r—p ERNCERTACEIN! (B -1 -nQ,)
o X(1-2nQ,) s — (X(ﬁ -1 - UQL))ﬁ —pnd, QL + 6, — 5,10, — 0
r—u P\ B+DSC-w (B-1DA-nQy)
_X(-21Q) . (X(B=1DA-10)\ (1= (B+1nQ)s;
SR =TT 0 <(,3+1)62(r—u)) G-Da-n0) "
Setting Q; = 0 in the previous expression, we define
?(X,Q,=0) =¢pX) (A4.4)
opon oYL= (X(ﬁ -DA-7- 0))’* (1-(B+Dn- 05,
r—u ! B+ 160 —w B-D@A-n-0)
X xg-1 \ s,
=100 =20~ (a0 =) 71
From the previous equation, we know that
o 0 008 —1) B 5, (A4.5)
pEX=0 = ((ﬁ n 1)52(r—ﬂ)> B-D

< Y(0) = -8, < 0,since §; > 0,

and
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B+16,r—w B+168,(r — ) g (A4.6)

B-1
* _ _Bp-11—-n-0 o [B-11-7-0 5,
V@ =0) =T~ T s | oD
X B+1 1)
S Y(XiO) =736 - 86—z
i B+1—-1
o P(X500)) = 6, (ﬁ) — 0y
e P(XH0) = Ao _ 8; > 0, this can be rewriten as BO2 — PO ¥ 61.
p—-1 p—1
Since B > 1 and 6; > 0,we have that

—f6; + 6, <O0.

However, since §, > §,,it follows that
pé, — 8, + 6, > 0.Therefore,

B,
p—1

From this expression, it is crucial to note that the expression (A22) by Huisman and Kort

— 8, >0,

(2015) contains an error. Specifically, the parameter “— §;” is missing. However, the
conclusion that (X7 (0)) > 0 remains valid.

From expression (A4.4), we can also derive that

(X)) (A4.7)
X
X s (_x@-1 V' s
_alr—u o <(ﬁ+1)52(r—u)>ﬁ—1l
B X
xg-1 Y
N a((ﬁ+1)5z(r—u))
r—pu B-1 0X

1 s 'ﬁ(X(ﬁ—l))ﬁ*(ﬁ—l)]
r—i B1] (B + 08,0 - w)°
(x5 - 1)’
15 (X(ﬁ——l))(ﬁ_l)
r—i B1 (B + 08,0 —w)°
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15 ﬁ( X(B—1) )’3
r—u B=1{X\(B+ D& —w

1 8,8 ( X(B-1) )ﬁ

r—u (B—DX\(B+ 18 —p)

__1 (r—u)c?zl?( X(B-1 )ﬁ
B+ D50 -

r—u\"  (B-DX

__1 (r—u)Szﬁ(ﬁ+1)< X@B-1 )’3
B+D80 —w

r—u\" B-DXEB+1

(i b’( X(g-1) )1< X(B—1) )”’
Tr—u\ B+ I\B+D&G—-m) \B+D&T -

_ (. ﬁ( X(B—1) )‘*‘1
- B+ 1\(B+ 18— '

0P (X)
0x

For values of X € ]0, X;(0)[, it holds that > 0. This is because since expression (A4.5) is negative and expression (A4.6) is positive,

then the slope of the function in expression (A4.4) must be positive. Therefore, a point within that X interval where the function intersects the axis

det
1

must exist. We can define this point as X{"°*, where expression (A4.4) is equal to zero.

Conversely, the leading firm is unable to employ the deterrence strategy if

Defining XJ¢¢ as

X; (Qfer(xger)) = x4, (A4.9)
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to determine it, we begin by incorporating the investment threshold from the system of equations in (A3.9) into the equation in (A4.3). This results

in the following expression for Q;

X(1-21Q) (X(ﬁ -1 - nQJ)ﬁ (1= (B +DnQ)S; _ (A4.10)
r 1

P(X,0Q) = y B+D80F—w ) B-DA-17Q) °

B
B+16,(r—p) B+18,(r —p)
C}'B_l 12_77QL (1—27]QL)_61_<ﬁ_1 12_770L (ﬁ—l)(l_nQL)> (1_(ﬂ+1)77QL)62_

r—p B+ 160 —w B-DA-1Q)
,8+11_27]QL62_61_1[;.(1_(ﬁ+1)nQL)62=
B—-11-n0Q, B-DA-n0QL)

LBr1l-me (= (B+1NQu)S; _
B—11-n0Q, 2 ! (B—1DA-1Q)
L (B DA =210)8, = (1= (B+ DQS; _
(B—DA-nQL)

& P, = 2PN6,QL + 8, — 2n6,Q, — 82 + fnd,Q, +162Q, = 818 —1B61QL — 61 + 1610,
S —pN6,Q, —n6,Q, +1nfs1QL —161Q, = 618 — 61 — 6
© nQL(—B; — 6, + 6 —61) = —B6, +6:.(f— 1)
© —nQL(B(6; —61) + 61+ 6,) =—B& +6:(F— 1)
Y Sl 2k VIR
n(B(6, —6,) + 61 +67)
Then, we incorporate this result into the investment threshold from the system of equations in (A3.9), yielding
B+1 8, (r— ) (A4.11)

F—1,___ B&%-(B-1o
T, — 8. + 6, + 5,

61

Xr(Qp) = XgEt =
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B+1 &, (r — )

P Xdet —
? B—1B(6,—8)+6+8,—B8+ (B —1)6
B(6; —61) + 61 + 6,
o ydet _ B+1 (B(8;—081)+ 61+ 8,)8,(r —p)
? B—1B6, —Bb1+ 81+ 8, — B, +B6 — 6
p+1
e Xj = ﬁ(ﬁ@z —81) + 6, +8)(r — ).
Before the leader has invested (when X < X{¢%) the firm holds the following option to invest

FAet(X) = A%etxh, (A4.12)
We can determine the optimal investment threshold in deterrence policy (X fet) combining the results of the VMC

FeH(X) = v (X) (A4.13)

s XQOO(1=00,(0) X8 - D(1 - 10,(0)Y 8,00 | o
& Adetxh = — —6lQL(X)—< ESACET) ) 51 (assummg that Q&¢t(X) =QL(X))
with the SPC
IF(X) vV Ier(X) (A4.14)
ox aXx
it follows that
5 (XL -n0.®) 0,0%) - (X(,B ~1)(1- nQL(X))>B 5,0,(X) (A4.15)
d(Agetx#) T et B+ D50 — W F-1
7 X
viopy GO -70,0)) x 0 (QL(X)(l - nQL(X))) 90,(X)
= pAITXPT = r—u +r—u X ~ o X
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1920 =10.00)"

axP
16— (1 -ne.)) +x 6 - D

1 } 5,0,0X)

0 ((B+ 180 -w)’| A1
5,0,(X)
. (X6 = D(1 -1, (0) 7o (L)
B+ 1)6,(r—p) 0X
svpr _ QOO(1-1Q, (X)) X [0Q,(X) 0Q,(X) 9Q,(X)
& pAdetxP-1 = — +r_#[ L - 20,00 =5 - 6 Ty
o168 - - nco))’ + x s - 178 (1-n0,(0)" <_ "’QLUO) | 1 8,01 (X)
X ’ 1-nQ.() X ) (B+18,0-w)| BT

L (¥ =D ~10,(x)) s, 90,0
B+D8,¢—-w ) F-1 ox

90, (X
o padetxb-i — 0.00(1-10,00) + x 2% (1 - 290,00) 5 00
L r—u )¢

XE-DO-n@N' [, B [ 000\&QW  (XE-D1-1eu®)) & 00,(X)
B+D&C-w ) X T\ " ox )| -1 B+D&G—p ) -1 ox

Q. (X)
QU1 —-nQ(X) +X =~ (1-27n0,(X)) 80, (x
& BAetxB-1 = — 0X — 5, QaL)(( )
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B (X(ﬁ -D(1- nQLoo))ﬁ
B+ Do — )

BB (00|60 5 90.X)
1-10,(X) oX B—1 B—1 oX

aQL(X)
(1 -1Q,(0) +X 1-27Q,(X
o pAseixP-1 = QL0 (1 —1nQ.( ))4;_# (1 - 2nQu.( ))_616(35)(()()

aQL(X)

)820.00 + 8, 2%F x(1 - 0,00

X(B - 1)(1-1Q.,(X))

(81 =n0.00) - pxn

B (X(B - D(1- nQL(X))>ﬁ |
B+ D& — )

90Q,(X)
QX1 -1Q,(X)) + X —5v—=(1-2nQ,(X) 90, (X
& BAFXP! = ( ) r—uaX ( )_61 QaL)(( )

(1= 10,(0) Q) — pxnQ, (1) 2L aQL(X)X(l—nQL(X)))
X(B-D(1-10.,00)

(X(B ~1)(1- nQL(X))>”’ o2\F <
(B + Doy (r — )

9Q,(X)
QX1 -1Q,(X)) + X —5v—=(1-2nQ,(X) 00, (X
o pagerys-s = 20 ) — ( s, e

82 (00 (81— 1@, x)) — pxn PG — sy 9 1 x 2%))
X(B-1D(1- nQL(X))

(X(ﬁ ~1)(1- nQL(X)))"
(B + 15,(r — )

o pagetgpns _ 00 =10,00) = —iQaL)((X) (1-200,00) 0.0
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X8 - (1 - 0,00 82 (@00 (B(1 - 10.0) - (8 + Dxn 2% ) + x 24 0)
_( B+ 1Dé(r—p) > X8 -1D(1-10,(0) '
By substituting the result of equation (A4.13) into equation (A4.15), we obtain

00, (X A4.16
pageeyos o L1 n00) + X L0 (1-200,00) 590, (A4.16)
r—u X
(X(B -1(1- nQL(X)))ﬁ 6 (0,00 (B(1 = 10.(0) - (8 + DX 2o + x 2%K))
B+ 18 (r—p) X(B-1D(1-170,(0)
8 0.00(1-10,0) +x2LE 1 _200,00) a0,
P _Agetxﬁ — 0X _ 61 L
X r—u X

<X(,B —1)(1- r]QL(X))>B 8 (QL(X)( (1-71Q,()) — (B + DXn aQL(X)) + XO%L)((X))
(B + 1)8,(r — ) X(B—1D(1-10Q,(0)

N (XQL(X)(l - 70, (X)) X@B-1)(1- nQL(X)))ﬁ 6ZQL(X)>

X r—u “51QL(X)‘< GrD8,c-w ) -1

_00(1-n0,0) + ¥ 7T (1 - 2m0,00) 30,0
B r—Uu T ax

20,00) , x2400)

<X(ﬁ ~1D(1- UQL(X))>B 82 (QL(X) (3(1 —1Q,(X)) — (B + DXn X

B+ 1)8,(r —p) X(B-1D(1-10,00)
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XQ,(0(1 - 10, (X)) X(B - D(1 - 10,00)\’ 8,0,(0
REET ‘51QL(X)‘< G > F-1
_xQ0(1-70,00) + 2% (1 - 210,00) 5,x00,00
e B ox
¥(8 — (1~ n0u00)\’ X2 (200 (801 ~n0u0) = 6 + Dxn 29) + x 2450
< B+ Do, 0r— ) > BX(B - D(1-nQ,(X))
XQuX)(1-nQ.(X0) XQ,(X)(1—nQ (X)) + X* —%== aQL(X) (1-2n7Q,00) s Xa0,(X)
R = 0,00+ T
B <X(B - 1(1- nQL(X))>B 5,Q.(0)
BrD&c-n ) -1
00,00 _ 510,00 2% 4 5,5 90400

<X(ﬁ -1D(1- nQL(X))> 8,8QL(X) — 8,8mQ7 (X) — 5,8mXQ(X)
B+ 1)60r—w) BB — 1)(1 nQL(X))

XQX)(1-nQ.(X) XQ(X)(1—10Q, (X)) + X2 5= aQL(X) (1-219Q, (X)) 81X 0Q,(X)

= . e R o

B <X(ﬁ -(1- nQL(X))>"’ 520,
B+D&c—w ) B-1

N (1 - nQL(X))>”’ 5.5 2% (1 - 10,00 - B0,00) + 6,0,00(1 = 10.(0) _
B+ D80 - BB - (1 -10.(0) B
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XQL(X)(l - UQL(X)) XQL(X)(]_ - UQL(X)) + x2 &) aQL(X) (1 _

r—u ,3(7‘—#)

270, (X)) X0, (X)
—8:0,(X) +
,8 X

00, (X
B <X(ﬁ - (1 - nQLoo))ﬁ 50 (X) <X(ﬁ - 1(1- nQLoo))ﬁ 5, 2% (1 — (g 1 1m0, () L5000\
B+ 18,0 — ) B—1 (B+1)8,(r — ) BB —1D(1—1Q,() -1 |
_ X0,0(1—n0u(X)  ¥QCO(1-n0u(0) + X270 29X (1-20,00) 00y £ 2O
r—u B(r— u) 10 ﬁ 0X
(5, x0U&) 1 X
(xw -D(1- nQL(X))> (X T (- B+ D)) 5,000 5000\ _
B+ 1o,(r—w) BB —1(1-nQ.(X)) g—1 -1 |
XQL(X)(l -1Q,(0) XQ,(X)(1-nQ, () + X* =5~ aQL ¢ (1- ZnQL(X)) o, K00
— = B+ ox

N <X(ﬁ —D(1- nQL(X))>ﬁ 52X % (1- B+ DnQ,)) <d a0 _ aQL>
B+ D5, — 1) 55~ DA - 10.(0) efining =y =%x )

Rewriting equation (A4.3), we obtain

XA-2Q) <X(ﬁ -1 - nQL)>ﬁ (1= (B+1mQ8 _ (A4.17)
r—u NG+ -m ) B-DA-10)

<X(/>’ ~1D)(1- nQL)>ﬁ (1- (B +DnQ)s,  X(1-21n0Q,)
G+D&C-w ) B-DA-10)  r—u

_—
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86

<x<ﬁ - D~ nQL>>”’ _ <x<1 ~21Q)

B+ 1D6(r—w) r—u

) (-1 —nQ)
Y@=+ 1nQs,

If we substitute the result of equation (A4.17) into equation (A4.16) and consider that Q; (X) = Q,, it yields that

XQ,00(1—70,(X)  XQu(0(1=n@00) + x> T3 (1 = 210, (1))

A4.18
6,X0Q, ( )

r—u B(r—u)

20,

—6:0,(X) +76_X

. (X(ﬁ ~1)(1- nQL(X)))ﬁ <6zX (- 1)nQL(X))> )

B+ 18 (r—p)

BB —1)(1-nQL(X))

XQ,(1—nQ,) XQ.(1-1Q,)+X? % (1-21Q,) 5,X 00,
A - — 00, +—F 5+
T—Hu B(r—p) B oX
N (X(l —2000) ) (B -1 -nQy) 62)(%(1 —(B+1nQL)\ 0
r—u YA -@B+1DnQ)s\ BE-DA-1Q) |

_XQ,(1-n0) XQ.(1-nQ) + X2 G (1~ 210)

r—u B(r—u)

d
o XQ,(1-1nQ,) . XQ,(1—nQ.) _ Xz%(l —210Q.)

_1L+36X

r—u B(r—p) B(r—p)
XQL(l_nQL)_XQL(]-_T]QL)_ _
" B(r—p) 020, =0
o pXQ,(1—nQ.) _ XQ,(1—nQy) _ 6:Q.8
B(r—w B(r—w B

— 0.0, + 5 X

6,X00Q, X(1-2nQ.) X0Q,
5 x2%% (g3
X 00, 55 C nQL)  6,X0Q,

Br—w B X




o XQ,(1-nQ.) 8:QLP

pr-w V=g
o TUETW (1) 5,0, = 0.
Simplifying the previous expression, we obtain
XQL((rl_—ﬂr;QL) B—1)—6,0,8 =0 (A4.19)
& X(1=1Q) = f 770, - .

Considering that during the deterrence strategy, the leader firm acts as a monopolist (since

there are no other active firms in the market), we can infer that its investment capacity is the

1
(B+1)n

investment threshold is given by incorporating this investment capacity into expression

(A4.19), yielding

same as that of a monopolist. Therefore, Q;, = Q% = Q* =

. Consequently, the leader’s

1 1 _ (A4.20)
K (1-1Gy) = A e
X1 —1 = ! o)

It ( _ﬁ+1)_ﬁﬁ—1 1=

X P _ ! )
= [?+1_'Bﬁ—1 1(r— )

B +1
B—1

o xget = 8, (r — 1) (substituting X = Xfte*).

A.5. Mathematical details of the leader’s entry accommodation strategy
Given that in the accommodation strategy, both firms invest, the market investment capacity is
Q = Q; + Qf. The profit function of the leader is then given by
m,(8) = P(t) - Q.(0) (A5.1)
em,t) =X©O(1-10)- Q.1
e, () =X() [1-n(Q, +Qr)] - QL)

e () =X({) Q.- [1—n(Q,+0Qp]
The expected profit of the leading firm is then
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Elm,(0)] = E[X(®)- Q.- [1 = n(Q. + Qp)]] (A5.2)
e E[m ()] = Q.(1-n(Q. + Q) - ElX.]
© E[m (0] = Q(1-n(Q, + Q) - X - ek,
Therefore, the leader firm’s value function in the accommodation strategy is given by

% (A5.3)
f m,(t)exp(—rt) dt — 61QL]

t=0

VX, Q) =E

o VX, Q) = f QL(l -n(Q, + QF)) X -ett-eTt dt - 68,0,

t=0
& VX, 0,) = X0u(1 — (01 + 0r)) f Wt dt — 5,0,
t=0

XQ,(1—n(Q,+ Q)

S VX, Q) = - 6,0, (regarding that Qr = Q;‘(QL))

r—u
Substituting Q in the previous expression by equation (A3.4) yields
1 5. (r — (A5.4)
X0, <1 -n <QL +E<1 —n0QL _¥>)>
acc(y — -
VX, QL) — 5,0,
1 1 O, (r —
XQL<1 —n(e+5-30 ‘Z(TXM)»
e VWX, Q) = — — 6,0,

_1+TIQL+52(7”—M)

X, (1-n0, -5 + 15t + 2 1)
VWX, Q) = — 6,0,
r—u
e VI, Q) = — 6,0,
r—u
1 1 1
ace 7XQL—§77XQL2+§52(T—#)QL
S VX, QL) = — 8,0,
r—H
Maximising the previous equation concerning @Q; yields the leader’s capacity level as
follows
VX, Q) 0 (A5.5)
90,
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1 1 1
QXQL _771XQ£ + 752(7' - wQy

r—u _61QL

= =0
aQ,,

9]

@1X X +16( ) ! 6, =0
> nxaQy 5 02" — H r—pu 1T

1 1
@EX_WXQL +§52(T_ll) =0;(r—p)

1 1
© —nXQL = 6,(r — p) —552(7”—/1) —EX

1
& —nXQu =5 (=X + (28, = 8,)(r — W)

o 10, = %(_1 n (26, — 5)2()(7" - #))
1 26 —6 -
& Q, = QFC(X) = %<1 _ (26, )2()(7' #))

Combining the results in equations (A5.4) and (AS5.5) gives the value of the entry accommodation strategy as

1 1 1
5XQL —5nXQf +58,(r —w)Q
VX, QL) = 2-° 2 rL_ .Uz : - 6,01
XQ, —nXQ + 8,(r —
o VLaCC(X, QL) — QL Ui ZQ(Lr — ‘uz)(r .u)QL _ 51QL
X —nXQ,+ 6,(r —
e VWX, Q) =0, 1 ZQ(Lr — Hz)(r o _ 61

(A5.6)
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ace 1 (26; —6,)(r — ) X - 77X2177<1_(261_6)2()(T_H)>+52(7"—#)—251(7"—#)
VX)) =—(1- e 20—

X (26— 68,)(r — )
x_X. — (28, = 8,)(r —p)
PN VLacc(X) — _(X — (26, —6,)(r — .u)) 2 2 2(r — ) ! 2 ‘

- (26, =6,)(r —
e VX)) == (X — (261 — 6,)(r — .U)) ( 4(r — ‘u))(T ,U)l
X — (26, — 6,)(r —
e VW) = (X — (26, = 6)(r - ll)) I (8X77(r —),lg ,U)l
26
& V00 = (X = @8, = 80 - 0) 5= ~ ]
acc _ X 26, =6, 28,—08, (26, —68)*(r—p)
R e R 8X7
yace(xy = X2 = X286, = 8)(r — ) = X(261 — 6)(r — ) + [(261 — 6,)(r — w)]?
=V = 8Xn(r — )
acc _ X% —2X(28; — 8,)(r — ) + [(28, — 8,)(r — w)]?
S VT = 8Xn(r — 1)
oo (X— @28, -8)0 — )’
o VX)) = G .

Since the leader only uses its accommodation strategy if the optimal quantity Q/““ (X) leads to immediate investment of the follower, it follows

that
Xp(Qfc(X)) < X. (A5.7)
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It is possible to define X{“¢ as

X{ICC — X;(QfCC(xf.CC)) (A5.8)
and substituting the investment threshold from (A3.9) and the capacity level from equation (AS5.5) into equation (A5.8) yields
Xgee = Xp(Qee(x£e9)) (A5.9)
1 26, —8,)(r —
PEN Xfcc — X;( I(}CC — %<1 _ (26, XEC)C( ﬂ)))
(:)Xfcczﬁ+1 6,(r — )
-1 1— i(l _ (26, — 52)(7‘—#))
r] Zn XfCC
@Xfcczﬁ-i_l 6,(r — )
B - 11_1_'_(251_52)(7”—#)
2 2X7ee
@Xacc=ﬁ+1 8,(r — )
! B —1X7C+ (28, —6,)(r — p)
22X
o yuee LBF1__2XE00 =)

B —1X7 + (261 — 6)(r — )

& X{C(B — (X7 + (26, = 8)(r — ) = (B + 1)2X{°6,(r — p)

& BXFC + B(26, — 8,)(r — ) — X — (26, — 8,) (r — ) = 2B8,(r — 1) + 26,(r — )

© X{C(B—1) =[2B8; + 28, — (26, — 8) + 261 — 8,](r — 1)

© XFC(B —1) = (2B8; + 28, — 2B, + B, + 261 — 8,)(r — )

(2—-2B)6; + (1 +3B)6,
B—1

& Xpee =

(r —w.

91



For the accommodation strategy, the option value that the leader firm holds is given by

FAce(X) = A%ccxP, (A5.10)
This implies that the VMC is as follows
FFC(X) =V (X) (A5.11)
2
o atcexF = (X — 28— 8)r =)
8Xn(r —u)
The SPC is then
OFf“(X) _ AV (X) (A5.12)
X 09X
2
(X — (26, = 8,)(r — li))
d(AgxF) 8Xn(r — )
L =
X X
9 (Xz —2X(26; — 6,)(r _(ﬂ) + [)(251 —6)(r — #)]2>
_ 8Xn(r—u
accyf-1 _
o PATCX ox
6( (X = 2(26§— &,) + (26, — gf)()Z(r —u))
- 8n(r —u n n
accyf-1 _
o BATCX X
1 (268, — 8)*(r — ) ( 1 )
accyf-1 —_ -
< pATX Bntr—p) 8 X2
o BAsCxB-1 = X% — (26— 8,)°(r — M)Z.
8X2n(r —u)

To determine the optimal investment threshold for the entry accommodation strategy, we

combine the results from equations (A5.11) and (A5.12), yielding

accvpor X2 = (281 = 8)%(r — w)? (A5.13)
PALX = oG —
B accvB _ X% — (281 — 8)*(r — w)®
= XA = —gxme -
eevs  X(X? = (26, — 8,)%(r — w)?)
= AFXP = 8BX7n(r — )
(X - 28, =8 =) _ X2 — (28, = 8,)*(r — )?
8Xn(r —uw) 8BXn(r —w)
(X = @261 = 8)(r =) X2 = (263 =82 —w)* _
8Xn(r — w) 8BXn(r — ) -
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o ﬁ(X — (26, — 8,)(r — .U))(X — (26, — 8,)(r — ll)) - (X — (26, = 6)(r — ll))(X + (26, — 8,)(r — ll)) _

8BXnGr — 1) 0
- [B(X — (26, = 6)(r — ) — (X + (26, — 6)(r — )] - (X — 26, — 6,)(r — ) _ 0
8BXn(r —w)
(:.B(X— (26, _52)(7”—#)) - (X+ (26, _52)(7”—#)) —0V X—(26,—6,)(r—pu) =0

8BXn(r — )
< ,B(X — (26, — 8,)(r - .U)) - (X + (26, — 8,)(r —#)) =0V X=(26—-86)(r—p)
S BX—LR265—6)r—uw)—X—(26;—6,)r—pu)=0
SXB-1)=@B+1)(28 —6)r—mn

B+1

X=X =—r
L 3_1

(26, — 8,)(r — ).

In the previous equation, the second solution cannot occur; otherwise, the option value that the firm holds during the accommodation strategy,

as represented by the VMC (in equation (A5.11)), would be zero.

To determine the optimal capacity level for the entry accommodation strategy, we substitute X = X' into equation (AS.5), yielding

(@28 -8 —u)) (AS.14)

acc
XL

1
Qe xf) = 5 (1

(26, — 6)(r — )

128 -0 - w)

1
& QLX) = 2

& Qe (xpee) = %(1 : %)
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1 (ﬁ+1—,8+1>

= QilCC(XilCC) —

2\ p+1
acc acc 2
© QLX) = mE+1
& Q) =
B+ Dn

A.6. Mathematical details of the impact of uncertainty on entry deterrence and
accommodation strategies
Based on the literature, such as Dixit and Pindyck (1994), it is known that

0
_ﬂ <o (A6.1)
do

acc

Then, we can conclude that X{*°“ increases with uncertainty. The proof is as follows: given

that §, = §, = §, we can rewrite expression (A5.9) as

Xfcc — (2 - zﬁ)g '|_' il + 3[3)5 (T _ ﬂ) (A6.2)
26 — 2886+ 6 + 386
S X1 = 'Bﬁler £ (r—u)
36 + 36
cxpe BB,
This implies that
0X7* (A6.3)
ap
3<32t€6 (r—u)>
= 7
[0(36 + B9) (B —1)
:(r—u)- aﬁ (3_1)_(36‘}',86) 6,3
(B —1)2
) _5(3—1)—35—351
R (Ve
B 6B —8-35-85
== |1y |

—46(r — )
=———-<0,since(f—1)>>0,6 > 0,and
G =12 B-1

r>uer—u>0.
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Therefore, if uncertainty (o) increases, 8 decreases, following the rationale of (A6.1). As

B decreases, X1¢ rises, as shown by expression (A6.3).

Also, Xt increases when uncertainty rises. The proof is as follows: given that §; = §, =

&, we can rewrite expression (A4.11) as

xdet = gL (BB —8)+6+8)(r — 1) (A6.4)
1
& xdet = %26(7‘ — ).
This implies that
axget (A6.5)
ap
o)
= 7
B+1
O
=26(r — M)%
0(B+1) iB—-1)
B BN B-D-F+D=F5—
200w B -1
B—1—p—1
-0 -]
=48 —p)
-2

Therefore, if uncertainty (o) increases, § decreases, following the rationale of (A6.1). As

f decreases, X3¢ rises, as shown by expression (A6.5).

Adapting expression (A4.4) to the scenario in subchapter 5.2, concerning the computation

of X2t it must hold that

¢(XfetEX,ﬁ)=r_M_ B+Dsr-w) B-1

From the previous expression, it is possible to realise that X = X! is dependent on S, so

_( X(B-1) >ﬁ 5 _, (A6.6)

that X2¢¢(B). So, to see how X%¢¢ depends on 8 we must compute

(X1 (B), B) = p(X{*', B) ox{ . p(xdep) . (A6.7)
axdet aB B
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l/)(XdEt ﬁ)

axfer _ g
B o (X (B), B) = w(X{*', B)
aXdet

The rationale behind this expression is that, since from (A6.6) X = Xt is dependent on S, its partial derivative concerning 8 must be done in two
steps (as they appear in the first line of (A6.7)). First, we apply the chain rule to differentiate partially i,b(X det ) concerning 8 since X%¢¢ is also

dependent on 5. Then, after the plus sign, keeping X = X{¢* constant, we differentiate partially l,b(X et ) with respect to £5.

w(x B) Y(X.B) like
x=x{et X lx=xget

Also, from expressions (A4.5) and (A4.6), we know that > 0. Moreover, it is possible to represent

P(X, B)

aﬁ X=X{19t

X xg-10 s
_"’<m‘5‘((ﬁ+1>6<r—u>) B—1>
_ -

XB-1) V¥ s
g (((ﬁ 156 =) 7o 1)
_ .
( X(B-1) )ﬁ
Grusc-mw) &
3B B

(A6.8)

+< X(B 1) )ﬁ 6(361)
1

B+ —w ap

96



X(p-1)

X(B-1)
o ‘“((/m)a(r m)

X(B-1)
- _ ’f ‘“(‘(m_l)a(r m)

ap

a(ﬁ“‘(m».ﬁfﬁ( X(B-1 >ﬁ,<_ 6 )l

B+ D60 —pw (B —1)?

|

\B+ D —w

X(B—1) )’*
B+ —p

op B - B+ 16— (B —-1)?

ettt s (o

i) i) s ) o)
B+D6r-w) B-DE+1D) -1 \(B+D0—-w (B —1)?

__'( X(—1) )‘*
—\G+DsG-w

X(B—1) )’3'

(o) ol s (s 35 o
B+D6r—w) B-DEB+D) -1 \(B+D0 - (B —1)?

(1( X(B—1) ) 28 ) 5

\"\GB+Doc—-w) G-DBE+D) p-1_ (B-17?

( XB-1) > 5 28 5 5 l
B—

B+ —w TB-DBID F-1 B-17
( XB-1 > s§B-DE+1D) 2B6 §B+1)
)

B+05G-w) B-DBE-DBE+D  B-DBE-DBE+D B-DEBE-DEBE+ D

X(B-1) )’*' H X(B-1) )(B—l)(ﬁ+1) 28 ﬁ+1l
\B+D8C-w) |B7-

xg-1 1
((ﬁ+1)6(r—u)> !

XB-1

G+0sG-m)  B-D B-1 B-1

A —1<

B+ —w

XB-1 \ 26-p-1
)l(ﬁ+1)ln<(ﬁ+1)6(r—u))+ F-1 l
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__ & ([ x@-» Y ( X(B-1) ) ﬁ—ll
) BZ—1<(5+1)5(r—u)) l(ﬁ“)l“ G+Doc-w) " F-1

__ & (_xe-1 Y X(B-1)
S ((ﬁ T8 m) ll * (B +1in <(B T80 - u))l'

Regarding expression (A6.8), we use the natural logarithm (In) instead of the common

logarithm (log), as seen in Huisman and Kort (2015).

oY(X,p)
X X=Xfer

x{et(p-1)
(B+1)8(r—p)

To ensure that

>Oweneed1+(ﬁ+1)ln(

) < 0, as derived

from expression (A6.8).

Defining X = % §(r — w), then X2¢* < X, as it holds that

— B+1 (A6.9)
X < 'm6(r - ,Ll),

l/)(Xfet,ﬁ) =0, (A610)
ap(X) B +1 (A6.11)

ox >0,Wh€nXE]0,ﬁ6(T—,U)[;

and
— Zep B (A6.12)
N X XB-1) 5
lp(X'B)_r—u ® <(ﬁ+1)5(r—/l)) -1

o gee-w (Eee-we-n)
s Y(X,p) = — -6 3

r—u B+ 160 —p) -1
~ o _ B8 B\ s
@R =50 () 7=
_ BS —BS +6 B\ &
SV =51 _<,8+1> B—1
8 P s

B
@lp(i,ﬁ):L(l—(L) >>0,since(5>0,
p>1 B—1>0.

> 0.

and

B —1

Therefore, <1

p+1
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N————

B
1 - (— > 0.
£+1
x{et(p-1)

B D5G— < 0 holds if

Then, 1+ (8 + 1) In

X(-1) > <0
(ﬁ+1)5( — W

-w(p-1)
(/3+ Do |~

)
1+(B+1)In (

<:>1+(,B+1)ln

<:>1+(ﬁ+1)ln(

Assuming that the function y(f) is

y(ﬁ)=1+(ﬁ+1)ln(ﬁi1),

)
1+1
1
<y = 1+21n(§) < 0 because 1 < |21n(

lim y(B)

B—+co

we can conclude that

y(1) = 1+(1+1)1n(

=Bl_i)r£100<1+(ﬁ+1)ln<

™
+ |
U
N————
N———

= Jim () + i (p1n

N

L—+00 1
B
p+1-p
(B +1)2
B 1
=1+ lim p+1 +In| lim [ ——
L+ i L+ 1+l
p? B

)
2 )

(A6.13)

(A6.14)

(A6.15)

(A6.16)
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and

100

—1- 11 +0
1+
1
T T 1+0
—1-1
=0,
oy ()
ap
6(1+(ﬁ+1)1n(ﬁf_1>)
_ 7
B
—a(ﬁa;1)-1n(ﬁi1>+(ﬁ+1)'a(ln<ai+1
1
=1n<ﬁf_1)+(ﬁ+1)_<(ﬁ‘;1)z>
T+1
=ln(ﬁi1)+(ﬁ+1)'ﬁ(/31+1)

1
=—+ln< F >>O,because,8>1<:)ﬁ>0.

However,In <,3 f_ 1) <0,

bt1
u—
B

> | (ﬁ i 1>|

The previous expression holds as f > 1 and

(A6.17)



ay(B)
ap

—1+l ( 1 )
BT I

p=1

1 1
=14+1In (—) > 0 because 1 > |ln <§>|

2
lim (6}/_(,8))
B+ \ 0f
- i 3+ ml )

)
= i, (5)+ gim. (n555)

-+ (i (757))

1
1
= 0+ln< lim <—>>
L—+o00 +l
B
=In
1
It

- n(155)
- M"1¥xo0

= In(1)
= 0,

a*y(B)
032

Ju=y

1
o(z) 2(n(55))
B B
1 1
TETBEE+D
1 1
WY

(A6.18)

(A6.19)

(A6.20)
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_—BP-B+p°
AR A
__—F_
B P
= ! <0,si >0
= JEERE ,Since 8 .
From expression (A6.20), it is important to note that expression (A70) by Huisman and
Kort (2015) contains an error. The correct denominator should be 83 + 2, not f% + 2 as they

presented.

det
oP(X,B) > 0 and therefore, 2%

X=Xfiet d

It can be concluded that < 0. The region where the

leader can choose between the entry deterrence and accommodation strategies is equal to

xget — xace (A6.21)
1 36 + BS
:g—t126(r—u)+—ﬁt€ (r—mw
2 1 3
-2 20— -0 -
=6(r — ).

From this expression, it can be concluded that the interval X € X<, XJ¢¢[ is unaffected

by uncertainty (o) and decreases with the drift rate (u).

A.7. Mathematical details of the monopolist and social planner with two investment
opportunities
At the time of the second investment, the total market capacity is given by Q = Q1 + Q5.
Therefore, the profit function of the monopolist is
m, () = P(0) - Q1) (A7.1)
e m,(t) =X (1-1Q®) Q)
e m,(t) = X(0)(Q1 + Q2)[1 —n(Q1 + Q2)].
The expected profit of the monopolist firm is then
Elm (0] = E[X(©)(Q1 + Q2)[1 —n(Q1 + @] (A7.2)
© E[m,(0)] = (@1 + Q2)[1 —1(Q1 + Q2)] - E[X,]
& E[m,(0)] = (@1 + Q2)[1 —n(Q1 + Q)] - X - ek,
Therefore, the value function of the monopolist firm at the time of the second investment

1S
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* (A7.3)
VZ(X: Q1, Qz) =E ]

f m,(t)exp(—rt) dt — 6Q,
t=0

oo

S V,(X,04,Q2) = f(Q1 +Q)[1=n(Q1 + Q)] - X -ett e dt - 6Q,

t=0

& V5 (X, 01, 02) = X(Q1 + Q)[1 — (01 + Q)] f et 4t — 50,

t=

o

X(Q1+Q2)(1—n(Q, + Q)
r—u

Prior to undertaking this investment, the option value is equivalent to the sum of the

And VZ(X' QlJ QZ) = _602'

expected profit from the first investment and the option value of the second investment. This

relationship can be expressed as follows

R0 =XU0T19) | (A7.4)
From the VMG, it holds that
F(X; =X,01) =V2(X2 = X,01,0Q2) (A7.5)
X0 -n0) |y K@i+ Q)1 -0+ 0)) oo
r—u r—u
According to the SPC, it holds that
0F(X; =X,0,)  0Va(X; = X,04,Q2) (A7.6)
0X B 0X
X(Q + 1- +
3 (Xng,l__‘uan) N AZXﬁ) 6( (Q1 QZ)S - MTI(Ql Qz)) _ 5Q2>
< ox - ox
o Q=1 o e L (it 01— 1@ +0Q0)
r—u r—u

Combining the results from the SPC and VMC, we find that the investment threshold for

the second investment is defined by

Q=10 | o g - (Gt Q)(1 —1(Q1 + Q) (A7.7)
r—u r—Uu
oGl =ne) B,y (@t Q)(1-n(Q+ @)
r—u X r—u
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o Q=10  BIX(Q:+Q:)(1~n(Q: + ) XQ:(1—1Q0)| _ (@ +Q)(1—1(Q1 + Q)

r—u X r—u —00: - r—u r—u
o Q=100 B +Q)(1-n(Q:i+Q2)) B850 B -nQ) _ (@1 +Q)(1—n(Q: +@y)
r—u r—u X r—u B r—u
o XQ, — XnQ7 +XﬁQ1 — XBnQF — XpnQ,Q, + XBQ, — XpnQ,Q, — XBnQ3 _ BEQ,(r — ) _ XBQ, — XBnQi
X(r—u) X(r—u) X(r—uw) X(r—uw)
_ XQ1 — XnQf — XnQ:Q; + XQ, — X1Q1Q, — X1Q3

X(r—w
© XQ1 — XnQf + XBQy — XpnQ7 — XPnQ1Qz + XBQ, — XP1Q1Q; — XPnQ35 — BSQ(r — 1) — XBQ1 + XPnQ7 = XQ — XnQf
—X1nQ:Q2 + XQ; — XnQ1Q, — XnQ3
© XBQ, — XPNQF — XQ, + XnQF — 2XP1Q1Q; + 2XnQ1Q2 = BSQ2(r — )
© X[BQ2 — BnQ3 — Q2 + Q5 — 21Q1Q2 + 21Q1Q2] = BSQ(r — 1)
N(=BQ5 + Q) + Q2(B— 1) = n(20:Q,(B — )] = B6Q,(r — )
nQ3 (8 — 1)+ Q2(B — 1) —n(B — 1)2Q1Q;] = B6Q2(r — )
n0:(B -1 +B—-1-nB—-120:] =p6(r —p)
(B=1D(nQz +1-2nQ)] = p5(r — )
(B = D(1=n(2Q: + Q)] = B8 — )

B (r—wd
B—11-n(2Q;+ Q)

From expression (A7.5)

e X[
e X[
e X[
e X[
s X[

SX= X;(Qli QZ) =

X(Q1+Q2)(1—n(Q, + Q) (A7.8)

XQl(l_TlQl)_I_AZXﬁ _ 50,

r—u r—u
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X(Q,+Q)(1—n(Q1+ Q) XQ,(1-10,)

B — - —
o A,X — 8Q, r—u
o AxF = XQ1 — XnQf — XnQ10Qz + XQ; — X1Q1Q; — XnQ3 — X0y + XnQF 50
247 = 2
r—p
o AXP = —2Xn0Q,Q, + XQ, — XnQ3 _ 50
247 = — 2
— )
o 4,%F = X(=2nQ,Q2 + Q2 — nQ3) _ 50,
r—pu
B (r—wd _ N2
o 4xP =ﬁ_11—77(2Q1+Q2)( 2nQ,Q2 + Q; nQZ)_5Q
2 — 2
BS Q:(1—n(2Q: +Q2)
B — —
R T S T T A B
& A,XP = gs_Qi — 50,
o 4y _ BOQ— 50+ 50,
247 = B—1
5Q;
B =
o AX -1
S A, = X;_ﬁ ;?21 (substituting X = X3).

The optimal investment capacity level for this investment is achieved by maximising the value of the firm in this second investment, yielding
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aVZ(XZ = Xr Qli QZ) —
9Q;
5 <X(Q1 + Qz)gl_—MU(Q1 +0)) QZ)
S =0

00,

P X(Q1+Q2)(1_77(Q1+Q2))
rT—H _6(5Q2)_
9Q, 00,

P (XQl — XnQF —XnQ1Q; + XQ, — XnQ10Q, — XUQ%)

r—u
= —-56=0
00,

—5=0

0

& 0

- —2X1nQ, + X — 2X1nQ,
r—u
X(l —2n(Q, + Qz))
@ J—
r—u
And X(l —2n(Q, + Qz)) = —-wé
(r—wé
X

(r—wd
X

6=0

©1-2n(Q,+Qz) =

©2nQ+0Q) =1~

(r—wd
X

S 2nQ;=1- —2n0Q,

_(r=wé
X

1
© Q= 0;(X) = %(1 - ZTIQ1>-

(A7.9)

By substituting the previous result into expression (A7.7), we find that the investment

threshold for the second investment, depending only on @4, is equal to

¥t = B (r—wd

27 B-11-n(20; + Q)

B (r— s . .
(:)X_,B—ll—Zan—an (since X; = X)
oy B (r—wd

Pl 2mo -3 (1-L588 — 250,
oy P (r—p)é
S p-1 1 (r—pé
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S X =

B (r—wé

g 1%—n01+—(r5)§06
o ¥ B 2X(r —u)o

B—1X—2XnQ;+(r—wé
© X(B-DX —2XnQ; + (r —w)6) = 2BX(r — u)é
© X?B = 2X?pNQy + BX(r — )6 — X? + 2X°1Q, — (r — W)X = 28X (r — w8
& X2B — 2X2BnQ; — X* + 2X?1Q; — (r — WéX = fX(r — w8
& XB — 2XBnQ; — X + 2XnQ; — (r — w8 = B(r — w6
o X(B—-2pnQ1—1+2nQ) =B+ 160 —p)
S XB-DA-2nQ) =B +D0r—p
B+1D(r —p)
B —DA-2n0,)
By substituting the previous result into expression (A7.9), we find that the capacity level for the second investment, depending on Q4, is

1 —u)d A7.11
QZ(X)=%<1—U 1) —Zan) A

© X =X3(00) =

1 (r—mwé . vy
And QZ = 5(1 - (ﬁ + 1)6(7" —‘Ll) - 2an> (SlnCe QZ(X) = QZ)
(B—-1(A-2nQ,)

_ 1 (B —1D(A—=210,)
(:)Qz—%<1— B+1 _ZUQ1>

_ 1 (=10 -210,)
BT TS
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:/3'*‘1—5+2775Q1+1—277Q1—2773Q1—277Q1

= 20+ D)
_2—4n0Q,
CGR=nGr
1-2
© 0= 050D = e

Regarding the first investment, the total market capacity is given by Q = Q. Therefore, the

profit function of the monopolist is
m(t) = P() - Q1)
e m(t) =X®(1-70®) e
e my(t) = X(6)0:(1 —nQy).
The expected profit of the monopolist firm is then
E[m ()] = E[X(©)Q1(1 —nQ4)]
© E[m (0] = Q1(1 =nQy) - E[X,]
© E[m ()] =0:(1—n0Q) - X - ek™.

(A7.12)

(A7.13)

Consequently, the value function of the monopolist at the time of the first investment is

o)

Vi(X,00) = E [ f 1 (O)exp(—rt) dt — 50,
t=0

(o]

+ A,XB

oV (X,Qp) = j Q:(1—1Qp) - X - et et dt - §Q; + A,XP

t=0

o V(X 0) = X0, (1 —nQy) f e dt — §Q; + AXP
t=0

And Vl(Xl Ql) =

XQ:(1—nQ,) B
?— 6Q; + A,XP.

Here, A,XP represents the option value of the second investment.
Before the firm invests, the option value equals
F,(X) = A, XP.
From the VMC, it holds that
FX1=X) =X =X,0)

XQ:(1—1Q,)

o A XP =
r—u

—5Q, + A, XP.

According to the SPC, it holds that
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IF (X1 =X) _ Vi (X, =X,Q1)
0X B 0X

XQl(l — an) _ 6Q1 +A2XB

o) 2(HES

(A7.17)

)

0X 0X

© BAXPL = Ql(l%ZQl) + BAXPL,

r

Combining the results from the SPC and VMC, for this first investment, reveals that the

investment threshold is equal to

BAXB1 = Q1(i :ZQl) + BAXB1 (A7.18)
ﬁ B _ Ql(l - an) ﬁ B
(=4 }AlX = ﬁ + }AZX
B (XQ:(1—nQy) _ Q:(1—-n0Q) B
pQ:1(1—-nQy) p&Q; B B _ Q:(1—-n0Q1) B B
(=4 r—p - X +)—(A2X —ﬁ+§A2X
XBQ:(1—nQ1) p8Q(r—p) _ XQ:(1—nQq)
= — =
X(r—w X(r—w X(r—uw
© XBQ1 — XPnQ7 — BSQ1(r — ) = XQ, — XnQ7
© XB—XPnQy — X + XnQy = p6(r — )
S X(B—=pnQ1 —1+nQ) =p5(r —p)
e XB-1DA-nQ) =ps(r—pn)
ey BS(r—p)
SHERC) =T aA ey
Rewriting expression (A7.17), we obtain
ﬁAlxﬂ—l — Ql(:: : ZQI) + ,BAZXﬁ_l (A719)
& BAXPT — BAXPT = —Ql(l — 1)
r—u
1—
o ﬁxﬁ—l(Al _Az) — Ql(r _ZQl)
_ Q:(1—n0Qy)
A S e —
Xk Q,(1 —nQ1)
A=A
< Ay 2t B r—u
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XD Q.(1—10Qy)
B r—u

The optimal investment capacity level for this investment is determined by maximising the

S A =4+ (considering X = X;).

firm’s value function at the first investment stage, resulting in
oV, (X, =X,01) 0 (A7.20)
00,
XQ.(1—
o (X&) 5, + 4,007
e =0

00,

o (X200 — 50, + 4,000 )
S =0

00,
X —2X 0A
o nQ; 5+ 2(Q1)
r—u 001
X —XnQ; — XnQ, 94,(0Q1)
s -6+
r—p 00,
X(1-n0Q) XQun 04,(Q1)
S - -6+
r—u r—u 00,
Meanwhile, we can represent the expression (A7.8) as follows
- 6Q, (A7.21)

42(Q1) = (%3(Q0) " 55

51— 2010 (X3(Q0) "

XE =0

XF =0

XF = 0.

& A;(Q0) = (B—1D(B + 1y
_6(1-21Q,) (B+1(—wé _ﬁ

< AZ(Ql) - (,B _ 1)(ﬁ + 1)1’] <’8 -11- 27’01)
_ 5 B+ D -ws\” +1

C)AZ(Ql)—(IB_l)(ﬁ_l_l)n( '3_1 ) (1—27]Q1)'B ’

so that
04,(Q,) (A7.22)
001

_ g <(ﬁ + D —pé
B-D(@B+Dn -1

___ 2 ((ﬁ+1)(r—u)6 )"f
T B-D\B-DA-210)

~B
) (B + D1 = 2nQ1)” - (—2n)
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25(x3(00)”"

-1
Incorporating the previous result into expression (A7.20), we obtain
X(1—-nQ) XQun 5 04; (Q1) (A7.23)
— —-6+—XFP =0
r—u r—u 001
X(1-210Q,) 25(x300) "
& ——-—-§— =0
r—u p—1
X(1-2n0,) 26 < X )ﬂ
& — -0 - - = 0.
r—u B —1\X;(Q1)

By incorporating the investment threshold of the second investment from expression
(A7.10) and the investment threshold of the first investment from expression (A7.18) into the

previous expression, we obtain that the capacity level of the first investment is given by

X(1-21Q) 28 ( X >ﬁ—o (A7.24)
r—u p—1 X;(Qﬂ B
_ B
e ey g | AR
PN - 65— 1 0
r—p 1| B+D6G—w
(B — D(T - 210D
ps 1-—2n0, S(ﬁ—l) l pa-2n0) 1°
< =0
B—11-nQ; B- 1[(B+ DA - 10D
B — 210 pa-2m0) 1V
1o P Grna-ae) T°
B —2B1Q: — B + pnQ pa-2m0) ¥
et 1-10; “lGrna-non] ~°
BnQq p(1—2nQ;

1 -

1-n0  “|GB+D0- nol)l = 0 replacing 0, = 01

The total surplus in this monopolistic market, where X; = X;, Q; = Q;, X; = Xr,and Q, =
Qr, and considering that the consumer surpluses are calculated similarly as in expression
(A2.4), and the producer surpluses are the value functions at each time the monopolist invests,

is then
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TS(X1,Qu, Xp,Qr ) = CS + PS (A7.25)
XQ*n  Xr(Q+0p)™  X0(1-nQ) . Xr(Q+0Qr)(1-1(Q, +0r)

S TS(X,,Q.,,Xr, Qr) = 20 — 1) + 20 = 1) — 6Q, _— —60QF
_XF(QL)ZU _ XrQ,(1—n0Qy)
2(r — ) r—u
_ X,0nQy | X,0.(2—21Q,) Xp(Q,+Qpn(Q, +Qr)  Xp(QL+ QF)(Z —2n(Q, + QF))
R ey R Te ey T B 26—
—50, — XrQnQy _ XpQL(2 —21Q,)
IR 2(r — )
X 2+ -2 X + 2+ + -2 +
o TS(X,, 0y, Xn, Q) = 1QL( Z(rU?L#) nQy.) ~ 50, + F(Qy QF)( UZ((QrL_ HQ)F) n(Qy QF)) — 50,
_XFQL(Z +1QL — 21Q,)
2(r—w)
X 2 — X + 2— + X 2—
o TS(X,, 0 Xp, O ) = LQZL((T _ :)QL) — 50, + QL QI;)((T - :)(QL QF)) — 50, — FQZL(E, - :)QL)'

Huisman and Kort (2015), in their expression (55), represent the present value (PV) of the TS achieved above. Therefore, to the previous

expression, we should incorporate the stochastic discount factor at each time the investments are undertaken. Thus, maintaining Huisman and Kort

(2015) nomenclature, we have

X\P (X,0,(2 - (A7.26)
PV TS(X,, Q1 Xr, Qe ) = TS(X1, Q1 Xr, Q) = () ( 1 :)QL) : 6QL)
X\F Xp(Qp + QF)(Z —n(Q, + QF)) XpQL(2 —10QL)
+(X_F) < 2(r—p) — 00 - 2(r—p) )

From expression (A7.25), we can conclude that the value function of the social planner at the moment of the second investment is given by
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X@Qu+0r)(2-n@+0r) (A7.27)
20— 1 e

and the option value, before the investment, is equal to the expected profit of the first social planner’s investment and the option value of the second

VF,W(XF,W =X, 0L QF) =

investment. This can be represented as

_XQ.(2—1nQ,) P (A7.28)
Frw(X,QL) = 20— + A, X"
From the VMG, it holds that
Vew (X, Q1 Qr) = Frw(X, QL) (A7.29)
X(Q, + QF)(Z -n(Q, + QF)) _ XQ.(2—1Q.) B
° 2= 1) IR R
According to the SPC, it yields that
aVF,W()(l QL) QF) _ aFF(X' QL) (A730)
0X - 0X
X(QL+QF)(2—77(QL+QF))_ XQ,(2 -10Q,)
’ < 200 =) 6QF> Y <2L(r——u)L + 40
< ox - 0x
o @t Qr)(2—1(Q,+ Q)  Q.(2—-nQ,) N gAZXﬁ_

2(r — ) 20— X
Combining the results from the VMC and SPC, we find that the investment threshold for the second investment in this social planner scenario

is denoted by

@ +0n(2-n@Q+0) _2-n0) B, (A7.31)
2(r — ) 2r—p) X?
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o @+ 02 =00 +0r) _ Q2 =10 L Blx@t Qr)(2 —n(Q, + Qp)) XQ,(2—1QL)

26— ) S 20-w X 20— B T
o (@t 0(2-n(Q+0p) _AuZ-1Q)  BQ+0)(2-n(Qu+0Qr) B3Qr BQEZ-1Q)
2(r—p) o 2(r—w 2(r—p) X 2(r — )

& X(QL+Qr) (2 —1(Q + Q) = XQ, (2 —1Q,) + XB(QL + Qr)(2 —1(QL + Qr)) — 2B8Qr (r — 1) — XBQL(2 — nQy)
© 2XQ, — XnQf — XnQLQr + 2XQr — XnQ,Qr — XnQF = 2XQ, — XnQf + 2XBQ, — XPnQF — XpnQLQr + 2XBQr — XBnQ,QF
—XBnQF — 2B8Qr(r — ) — 2XBQ, + XpnQ7
© —2X1nQ,QF + 2XQp — XnQF = —2XBNQ,Qr + 2XBQr — XPNQF — 2B8Qr(r — 1)
© —2XnQ, + 2X — XnQp = —2XPnQ, + 2XB — XPnQr — 2B6(r — w)
© 2XnQ, + 2X — XnQp + 2XBNQL — 2XB + XPnQp = —2B6(r — p)
© X[2nQ, + 2 —nQr + 2fnQ, — 2B + fnQr] = =2B6(r — )
© X[n(2Q, — Qr +2BQ, + BQr) — 2(f — 1] = =2B5(r — 1)
e XnB-1QQL+Qp) —2(f—1)] =-2p6(r — )
e X(B—DI[2-120Q,+Qp)] =2p5(r — )
B 26(r—p)
B—12-nQ,+ Qr)

The corresponding capacity level for this second investment is determined by maximising the social planner’s value function at the time of this

© X = Xpw(QL Qp) =

second investment, which implies that

Vpw(Xp = X,0Q.,QF) —0 (A7.32)
9Qr
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P (X(QL + QF)(Z —n(Q, + QF)) _ 5QF>

o 2(r— ) _ 0
9Qr -
9 <2XQL - XUQI% — XnQ.0r + 2X0Qr — XnQLQF — XUQE")
- 2(r—u) _5=0
0QF
- —XnQy +2X — XnQ, — 2XnQr 5
2(r— a

& —2XnQ, + 2X — 2XnQr = 25(r — )
© XnQ, — X +XnQp = —6(r — )
S XnQr =X —6(r —p) —XnQ,

5(r—u)
X

—n0,

60—
X

©nr=1-

1
S Qr = Qrw(X, QL) :ﬁ 1 —nQL|

Combining the results from expressions (A7.31) and (A7.32), we obtain that the investment

threshold, depending only on @Q;, can be expressed as
B 28(r—m)

X 120020, + 00

oy B 26(r—p)
p—12—-2nQ, —nQr

oy B 26(r—p)
F=la-2m, - (1-207 1 g,

oy B 26(r — )
B=ly oo - 148078 1o,

oy B 26(r—uw)
'B_ll_UQL‘Fw

oy B 2X6(r — )

B—1X—XnQ,+d6(r—pu

o X —XnQu+8(r— ) = —2— 260 —

-1
& X(1-10,) = BS(r — ) + 8(r — W)

5—1

(A7.33)
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B+ D0 —ws
B—1

p+1(—wd

B—11-1Q,

Incorporating the previous result into expression (A7.32) demonstrates that the optimal

©X(1-nQ,) =

X =Xiw(Q) =

investment capacity level, depending only on Q;, is equal to

1 6(r— A7.34
1 6(r—uw)
S0 = T prie—ws "%
B—11-n0Q,
1 (B—-1D(A—1nQy)
=0 _l-ﬁ+1_ﬁ+ﬁnQL+1_nQL_ﬁTIQL_nQL
Pl B+1
_12—2nQL
S r n f+1
— _2(1_77QL)
@QF=QF,W(QL)—W-

From expression (A7.25), we can derive the value function of the active investment
resulting from the first investment made by the social planner. However, we must incorporate
the option value A,X? to account for the possibility of undertaking the second investment.

Therefore, the value function of the social planner for the first investment is given by

Viw(Xow =X,Q,) = XQZLg:Z)QL) — 5Q, + A XP. (87:39)
The option value of the first investment is given by

FLw(X,Q.) = A XP, (A7.36)

From the VMG, it holds that
VL,W(X’ QL) = FL,W(X' QL) (A7.37)

e % —8Q, + A,XP = A, X5,

From the SPC, it yields that

Vw (X, QL) _ oF,w(X, QL) (A7.38)

0X 0X
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XQu(2 — 10y
o (TS - 0 + 4P _9(4,xF)

0X - aX
QL(2 nQL) :3 /g _ :3 B

Combining the results from the VMC and SPC, we find that the investment threshold,

depending only on @, for the first investment can be represented as

QLZ((Zr _r;gL) ﬁ XP = i A xP (A7.39)
2 X0,(2 -
QLZ((r _TLQ)L) )"%AZX ),i QZLEr - Z)QL) — 50, + AZXB
Q.(2—nQ,) B B _ BQL(2—1Q.) ﬁSQL B B
REECEN RS S R S

© XQ,(2—-1QL) = XBQL(2 —nQL) —2p5Q,(r — w)
© 2X —XnQ, = 2XB — XPnQ, — 2B6(r — w)

& 2X — 2XB — XnQ, + XPnQ, = —2B8(r — )

& —2X + 2XP + XnQ, — XpnQy, = 268(r — )

1 1
& 2X |1+ +510, — 3 F10.| = 266G - )

1
= X8 -1 (1-570,) = B3G—
B(r—uw)d
B-1(1-710.)

By maximising the firm’s value function concerning the capacity level of the first

S X=X w(Q) =

investment, we derive the capacity level function as follows

WV w(X, =X,0Q.) —0 (A7.40)
20, -
0 (XGE=1 50, + a,(00x" )
=0
20,
_ 2
0 (=X 5, + a,00x%)
=0
200,
2X —2XnQ, 04, (QL)
—_— =94 =0
20— 0 e
X(1-nQ.) 04, (QL)
5+ = 0.
= r—Hu 90,
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From the VMC of the second investment in expression (A7.29), we know that

X(Q +Qr)(2—1(QL +0p)) _XQu(2—1Q) g (A7.41)
20— ) T =Ty A
X(Q,+Qm(2-1(Q, +Qr) XQ,(2-1Qy.)
B _ _ _ L b/
< 4247 = 20— 1) 0 e
o AZX[’) _ 2XQ, — X’?QLZ —XnQ.0Qr + 2XQr — XnQL0QF _XUQI% —2XQ, + XTIQL2 — 50,
2(r —p)
—2XnQLQr + 2XQf — X’?QE‘
B — _
< AZX - 2(7" _ ’u) 6QF
X(—2nQ.Qr + 2QF — YIQI%)
B — _
e A,XP = 20— 5Q-

B 26(r —u)
13- 0020, + o |2 (2 ~1(2¢ + 2r)]

& AXP =

—60QF (incorporating X =Xpw(Qy, QF))

2(r—w)
5
o A,XP = g _Qi — 805
B6Qr — BSQF + 5QF
B —
o AX -1
& A,XP = 00y

6Qr

p—1

oA, = (X}E,W(QL))_E (substituting XP = (X;',W(QL))B>
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250 -0 (Xiw(@)
S v 7
o 4 200-n0) <ﬁ +1(r- u)6>_ﬁ
2= G- D+ Dn \F—11-1Q;
26 <(ﬁ F D - w8
G-DE+DI\ -1

Differentiating the previous expression in order to Q;, we obtain

replacing Qr = Qw(Q))

-B
© A,(QL) = ) (1 —nQ,)F*.

04,(Q,) .
00,
26 (G- F
_ i (U” - DB+ Dn ( B—1 ) (1—-nQ.)" )
) 20,

_ 2 <([>’ + D — w38
T (B-DE+ Dy B—1

2 <(ﬁ+1)<r—u)6>"”
F-1\(B-DU-1Q)

-5
) B+ 1A -nQF(-n)

- - (i)

Recalling expression (A7.40) and incorporating the result of expression (A7.42), we can simplify the expression for the optimal capacity level

for this first investment as follows

X(1_77QL)_6+

d4,(Q.) 8 (A7.43)
r—u 0,

=0
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X(1-nQ.) 28 . B
And r—uL _5_3_1(XF,W(QL)) XF =0
XA-nQ) . 26 ( x \_
< r—u 6 B_]-(X;",W(QL)) =0
BS(r — ) BS(r — ) d
(1-n0QL)
-1 (1-310,) ' 28 ./(ﬁ—l)(l—%nQL)\. ) o
e m— i FEEYCEIE; | —0(con51derlngX=XL,W(QL))
\ F1i=na )

B
p5(1 —nQL) 5__28 < B —nQyL) > _0
( )

G-0(1-300) A NG+ (1-1n,

B
o ps(1-nQ)  S(B-1) 28 < B(1—nQ,) ) —0
¢-»(1-zm0) F-1 A1 710:)

B+ (1-7370

B

@w_g(ﬁ—n—z@( ﬁ(l_"QlL) >=0
1-210, B+D(1-710)

B
@M—ﬁ+1—2< B -0, )) L

1-1no, ¢+ (1-370.
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1

g
+B_BﬁQL_ﬁ+%BnQL—2< B(1-1Q,) ) =0
( )

1_%77QL B+1)(1—%r]QL

s1-—

1 *
BanQiw 2( B(1=10;w)

B+1) (1 1 0: )) =0 (TeplacingQL = QZW )
—2NM¢Lw

1 *
1 - EUQL,W
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ANNEX B
Isoelastic demand curve

This annex presents the detailed mathematical derivations for Propositions 9, 10, 11, 12, and
15, as well as the welfare analysis. The equations below are derived with a focus on an isoelastic
demand curve for the price function.

It is important to note that f remains defined by expression (A1.7) and that Sy > 1 must
hold. Regarding investment costs, they are now expressed as 6y + §;Q. If §, = 0, firms will

opt to invest right at the beginning of the investment game.

B.1. Mathematical details of the monopolist’s optimal investment decision
Incorporating the new price function from expression (6.1) into equation (4.3) yields that the

total expected profit of a monopolistic firm at time t is given by
n(t) =P - Q) (BL.1)
e =X®QM)e®

1-y
o) =Xx0QwW) .
Therefore, the expected total profit is

Elm,] = E[X.Q; "] (B1.2)
o E[n] = E[X,0,”"]
& E[n] = Q" VE[X,]

o E[m] = Q177 Xett,
The value of the monopolist firm can be expressed as

o (B1.3)
V(X,0)=E [ f m(t)e "t dt — (6, + 6,0Q)

t=0

V(X Q) = f QY Y -X-ett-e T dt — 5, — 5,0

t=0
e VX, Q) =X0'Y f et dt — §y — 6,0
t=0
= 1-y — _
e VX, Q) =XQ —y 8o — 610Q
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XQtr
0 8o — 6,Q.

S VX,Q) ===

Maximising the previous monopolist’s value function with respect to Q gives the optimal
capacity level concerning X
wv(Xx,Q) 0 (B1.4)
Q

o (XL - 60— 60)

& 30 =0

1-y)XQ7"

<:>—

rT—u

S A-y)XQ7Y =60 —w
1 _51(7”—.11)
S — = —
Qv (A-y)X
_a-ynx
6.(r— )

_61:0

o QY

5.(r— )

Given that X™ is the optimal investment threshold, for X < X*, the firm remains idle, and

1
e 0=0"X) = <(1 _V)X>y.

the value of the monopolist firm is given by the option value AX?. For X > X*, substituting Q

from expression (B1.4) into expression (B1.3) results in the value function of the active firm

being
XQ\Y B1.5
v =T -5 - 610 (B
a-pxy]
1—-p)XY
X [(&(T - M)) (1-9)X y
S VX) = — P <—51(T—,U)>

1

X((l—V)X)V((l—V)X

_\&i(r—p) 61(r—#)) (1-y)X v
v = T ‘50‘51<m)
B 1-y)X % X B B
Ve = (61(7” - H)) (r— 1d-yX b %

6.(r — )
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1

1- y)X>7( o
& V(X) = -5,) -5
0 (cw—u) iy %) 7%
1
(1- V)X>7 (51 —6; + 51]’)
o VX) = -6
0 (61(r—u) 1-y ’
1
yé1 ((A—p)X >7
o VX) = — 0.
(*) 1_)’(51(7'_#) °
Combining the results, the value of the monopolist’s firm can be expressed as
AXFP if X <X* (B1.6)
1
V) =9 ys, (A-PXY . .
- 60 le 2 X
1=y \&:(r—w)

Since the option value of the monopolist firm is given by the first branch of expression

(B1.6), it can be represented as

F(X) = AXB. (B1.7)
Then, the VMC yields that
FX)=V(X,Q) (B1.8)
1
Y6, ((1— V)X>7
o AXP = — &,.
1-vy <51(7” D) °
Consequently, the SPC yields that
OF(X) aV(X,Q) (B1.9)
X 0X
1
¥6; ((1 —V)X>V _5
a(AXF) 1=y \6:(r =) °
T X
1,
5, 1/(1-yX\ 1-
@ﬁAxﬁ_1:V1_<( Y)) 14
1-yy\6:r—w)) 60—
(1 —px
1) 1—-y)XY\ 1-vy
& BAXP1 = L .
d 1—V<51(r—u)> 5, (r—uw)

Incorporating the result of the VMC in the SPC, we achieve that the optimal investment
threshold is

5 (B1.10)
AXP~T = — (

(1- y))()i‘1 1—y
0:(r—u) 0,(r— )
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1
B op_ O ((1—]/)X>7_1 1-y
XM T \6e-w) se-w

<(1—V)X>l_5 _ & ((1—1/)X>%_1 1-y
6.(r— ) ° _1_)’ 6.(r— ) 6.(r— )

@E 142 ((1—V)X)7%_ﬁ50_ 1 ((1_]’))()%_1
X1- 5,(r —uw X _T—ll 8,(r —uw)

E
=X

BY51 (1- ]/)VX( 1) ,850_ 1 <(1_Y)X>%—1

1 (5 (T—M))y X u 61(7"—/,[)

By51 a-prx&D 1 fa-px %‘1_&5@
1= - u<51(r—u)> X

(51(r—ﬂ))y
E-1)|Brd( 1—y %_ 1 1—y = _Bdo
>N Gomn) b)) |7 R
1,1 v [ pys 1
= -YV Y Y01
S Xy - — =B
(61(1"—/1)) 1—y (T—ﬂ)ﬁ 0
1 14 %ﬁyc?l _
V<51(r—,u)> ( )_'860
1 14 11’51(31’—1) _
V<51(r— )> < >_350
6 —
< (r—u))< 1(31’ )> - o
(51(,3V - 1)>V ('350))/
Y
51(7’—#)
5By -\ &
( (ﬁ)’ 1)) (T (ﬁ5o)y

oyx=y 00 —w <5oﬁ(1—)/)) _

1-y \&@Br-1
Combining the results of the VMC and the investment threshold from the previous

expression, the variable A of the option value can be calculated as follows
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(B1.11)

1
yé ((1-— V)X>7
AXP = )

1-vy <51(7' —w °

1
g Yo ( -y &0 - <60,3(1—y)>y>1’ B
oAt 1—y\&r—p) 1-y \&(By—-1) o
B _ ¥61 6of(1—y) _
A =T s G- ”
_ Y60
@AXﬁ_ﬁV—l — o0
B_V5o,3—5oﬁy+60
S AXP = 51
@Axﬁzﬁfil
o)
ey
SA=X By —1
o A= (51(7‘—,[1) <50ﬁ(1—y)>y>_ﬁ 8o
1-y \&Br—-1 By —1

Additionally, the optimal capacity level in expression (B1.4), when the investment

threshold from expression (B1.10) is incorporated, can be represented as follows

1-y)X >%
5.(r— )

(B1.12)
Q*(X) =<

8, (r =) (8,81 =)\ ’l’
A-N-7= (52(31/—1))
6, (r —uw

Q=

8oB(1—y)

AR X ()

B.2. Mathematical details of the optimal welfare decision

From equation (6.1), the demand concerning the price P can be represented as follows

P(t) =x®)(Q®)" (B2.1)
e P=XQ7"

X
@QVZE
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 D(P) = (%)? (representing Q = D(P)).

Therefore, the instantaneous consumer surplus can be computed as

e (B2.2)
D(P) dP

P(Q)

=—1
Y

Y 1 14
= Xv(X0~V) v
X7 ()

1 1
= Y_xvx" vl
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14
=——X017,
1—-vy ¢
Consequently, the total expected consumer surplus is given by

(B2.3)
CS(X,0) =E

_f JTVX(t)(Q(t))l_ye"” dt]

o)

f X(t)e Tt dt] (Q is fixed, then Q(t) = Q)

t=0

& CS(X,Q) = Q1 YE

oo

o CS(X,Q) = JTle‘V jE(X(t))e‘” dt

t=0
& CS(X,Q) = Q1 v erﬂ'fe—r't dt
t=0
f—4% CS(X, Q) = ]-)/T,VXQl_y f e(l‘_r)-t dt
t=0
= CS(H,Q) = 7T KO
y XQ'
@CS(X,Q) =m r—u'

Since the expected producer surplus is equal to the value of the firm from equation (B1.3),

it can be represented it as

Q1 14 (B2.4)
PS(X,Q) = _y —6p — 6,Q.
Thus, the total expected surplus is
TS(X,Q) = CS(X,Q) + PS(X,Q) (B2.5)
XQr  XQlv
o TSX, Q) = v _xe + ¢ — 68y — 610

l—yr—u r—u

XQ1Y
o TS(X,Q) = rQ_ [%Jr 1] — 5y — 6,0

ry+1-
o TSX, Q) = rQ_ [y y] 8o — 6:0Q
1 XQv
@TS(X,Q)=ET_‘“ —50—51Q.

From the TS, we can conclude that the value function of the social planner at the moment

of investment is given by
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XQrr 5 — 6.0 (B2.6)
— 0o T O1¥-

1
VW(XWEX,Q)=mr_u

Before the investment is undertaken, the social planner holds an option value that is equal

to

Fy(X) = AX5. (B2.7)
The capacity level of the social planner is determined by maximising the social planner’s

value function at the time of the investment, which implies that

Wy Xy =X,Q) 0 (B2.8)
30 B
1-y
(i=5reg — 0 =09
S =0
a0
1 XxQir-t
& m( V) —6;,=0
X 6
[—4 =
Qir—u)
Q" = (@i (D) = ——
= = =—)
v 6, (r — )
From the VMC, it holds that
VwXw =X,Q) = FwXw =X) (B2.9)
1 XxQ~v
— & — = AXB
T=yr—n 5o —6,Q = AX
and together with the SPC below, this yields the social planner’s investment threshold as
AV (X, Q) _OFy(X) (B2.10)
ox X=Xy ox X=Xy
1 XxXQv
L)L (=g ~%-59) _a(ar)
0X - oX
1 Q'Y XB
o — = pLA—
1—yr—u X
1 QY p( 1 XQt7
1 = _< — 80— 610Q
—yr—u X\1-yr—u
1 Q77 p Q" B
A = — = (60 +61Q)
l—yr—u 1—yr—-pu X
B 1 Q77
S 36 +80) = — (F -1
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B (8o +6:Q)

1 07 |
mr_u(ﬁ— 1)

& X =Xy (Q) =

By replacing Xy, (Q) into expression (B2.8), we obtain that the social planner’s optimal capacity level is equal to

B8y +6,Q) (B2.11)

1 Q17
T—37 _H(ﬁ -1
6.(r— )

B +6:, QA —y)(r—p)
QB
6, (r — )
B(6o+6,Q)A—y)(r—p)
TS T VE A
© QB —1)6 =P +6,Q)(1A—v)
& B6:Q — Q61 = By — BSoy + B6,Q — B61YQ
& 610 — Q6 — 6,0 + B61yQ = By — Boy
© —Q6; + B61yQ = B (1—y)
© Q(=81 + Bby) = 6B —vy)
= Q(8:(By - 1) =81 —v)

5B (1—7y) _
5By — 1)

Replacing Qy, into expression (B2.10), we get that the social planner’s optimal investment threshold is equal to

Q" =

e QY =

Q=0 =

Q"
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ﬁ(50+51 SoB(1 = Y)) (B2.12)

_ 5,y — 1)
=
1 By — 1
== — B -1
581 =)
oy Pt BN G
8oL =)\
(2G=D) ©-v
T-NGE-1
e — o (8B =) SoBA=Y)\ i1 _ e o (8BA =P
B LA v s 5) o (3G=0) e -» (3G =h)
SoB(1 —y) SoB(1—7)
(2G—5) ¢ (2=1)¢ -
_ ) (8B =1 A — o (8B =Y)
oyl 0 (55 =0) o mnt 0 (35=0)
g—1 g—1
6By — 1)
_ D - (2BA =1 N ) ($BO =)
. _aer-ne 0 (BEE=1) 4 s, (1 -y - (2EL=1Y
B—1
5o8(1
@xzal(r_’“‘)(ao(ﬁy—l)) (By-1+p0-7)
B—1
5 (%BA—y) _ _
L he 0 (2EE=1) gy~ 1+ 5 - p)
B—1
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_ Y
= (@=n) 0V

S X =

p—1
505(1“V)>y
5By —1)
oX=Xy=0-y)X"

¢*X=5Kr—u)<

The (present) welfare loss in the monopoly scenario is equal to

X(0)

d X0
) rstin 0 - (52

X*

B
> TS(X*, Q)

-y r—u X

-y r—upu X

1—y r—u

X(0 B 1 X * \1-y X(0 B 1 X*(0)Y
(0) ( w(Qw) —50—61Q§V>—< ()> (1_]/ T(NQ_)#

- 50 - 51Q*>

- 50 - 51Q*>>

_6‘0

r—u s By-1n X

58—

1 X* * )1-¥ X* ﬁ 1 X* *\1—-y
( w(Qw) _%_6&%_G¥>< @)

1-y

1 X(@)"

r—pu °  pr-1 —(1—VW<1

X(0)\? 61?"__)/”) (50,3(1 — V))V (60[3(1 - y)>1—y

0:(By — 1) 6, (By — 1)

_50_

-y T—u

r—p

SoB(1—y)
rTH By —1

0

(

(%)

(%)

<X<0)>ﬁ S CH Y ¢ ((1—y)x*>”’ < 1 X (@)
(%)

(%)

_60

By —1

58—

_ §oB(1—y)
Y6,(By - 1)

)

)

(B2.13)
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5 8y(r = ) (60/3(1 - y))V (505<1 - y))l‘y
_(X(0) 1 - )P I 1—-y \&6@By-1D) \&s@By—-1 _s 6B —-y)
Xy Ty r—u ° By-1
<x<0)>’* 5 8pU-y) _503(1—)/)_(1_ ),3< 580 -Y) _603(1—)/))
1-y&@Br-10D " Br- \a=-paGr-n " pr—1
:<X(0)>B 603 _0BU=n ),3< S, _60[?(1—1/)>
Xy, ) \Br- -1 Pla=ner-n T a1
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‘(m)(m s B Gt O v B C R LR G Dy s
_X(O)ﬁ‘s _ p-1 __ﬁM__B
_<XW>(M (-0 = 80 =0 =) =g =7~ (1= -1
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Xw By —1
:<X(0)>ﬁ («%ﬁ(l—(l—y)ﬁ 1) + (=80By +60)(1 - (1 —)F) + (= 603+6oﬁy)(1—(1—y)3)>
Xw By —1
_ (X(0)>ﬁ (50,3 SoB(1 — )Pt — 80By + 80By(1 —¥)P + 65, — 50(1—)’)B—5oﬁ+5oﬁ(1—]’)ﬁ+50,3V—50ﬁ)/(1—)/)3>
X By —1
_ (X(O))ﬂ ( 8oB(L = Y)F™" + 8y = 8o(1 = 1)P + 8B (1 ~ y>f>’>
X By —1
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B.3. Mathematical details of the follower’s optimal decision rule

Given that in the duopoly scenario the market capacity is Q = Q;, + QF, the profit function of the follower firm can be expressed as
mp(t) = P(t) - Qr(0) (B3.1)
-y
e ) =X1®) - (Q®) " Qr)

o mp(t) = X(@) - Qr(®) - (QL + Qp)7.
The expected profit of the follower is then
E[np(0)] = E[X(®) - Qr(t) - (QL + Q)] (B3.2)
© E[rp(0)] = Qr(®)(QL + Qr) 7 - E[X]
© E[mp(0)] = Qr(QL + Q)77 - X - eH™.

Therefore, the follower’s firm value function is
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o (B3.3)
Vir(X,Q.,Qr) = E [ f mr(t)exp(—rt) dt — &y — 51QF]
t=0

(0]

© Vi(X,0.,QF) = f Qr(QL+ Q)Y X ekt -e ™t dt — 5, — 6,Qr

t=0
& Vi(X, 0u ) = XQr(Qy + Q)" f Wt dt — 8, — 6,05
t=0
XQr(QL+ Q)"
e Vp(X,Q., Q) = QF(gL_ 'uQF) — 6o — 81QF.

Maximising this function with respect to Qr yields the optimal capacity level of the

follower, Q7 (X, Q;). This can be determined by solving

0QF
XQr(QL+Qp)7Y
@a( et 0 —60—610F)=0
00QF
X 0Qr(QL+Qp)™) — 5, =0

9Qr

=4

0((QL +Qp)7Y) _
225 =0

r—
X |00 _
T_Mlﬁ(QL‘l'QF) Y+ Qr

X
And m [(QL+ Q)"+ Qr(—y(QL+ Q)" H]=6,=0

@%[(QL +Qr)7 (1 oY >] —6,=0

QL+ Qr
X(Qp+ Q)7 F
- (QI; - ﬁL) (1 _ Q;-(I)-FQ) — &, = 0 (considering Qr = Q).

For values of X < X7(Q,,), the follower firm is in the idle state, and the value of the firm is

given by the option value

Fr(X) = ApXP. (B3.5)
Combining the value function of the follower and the option value, the VMC yields
VE(X,Q, Qr) = Fp(X) (B3.6)
X + L
- Qr(QL+0Qr)™" 8y — 5,00 = ApXP.

r—p
Then, the SPC can be represented as
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aV;(X) QL) QF)
X

L OF(X) (B3.7)

0X

X=X* X=Xx*
Incorporating the VMC result into the SPC and solving for X*, we find that the investment

threshold of the follower, with respect to Q,, is given by

Vg (X, QL Qr) _9FX) (B3.8)
0X X=x* 0X |y x-
X’ +Qp) 7
ox* - AX”
Qr(QL+Qp)™" -
< r—u = BAp(X*)P~1
Q(Q+0NT B .y
(=4 — —FAF(X )
Qr(QL+Qp)™ B |X"Qr(QL+Qp)7Y
And r—u =¥ r—u — 80 — 6,0F
N Qr(QL+Qp)™  PQp(QL+ Qp) _ Bdo _ B610Qr
r—Uu B r—u X* X*
o B-1) Qr(QL i‘ Qr)™Y _ Bdo + €6IQF
r—u X
o Xp(Q) = B_(r =1 +6:0r) (replacing Qr = Qf and X = X}).

B—1 Qr(Qr+QL7Y
For values of X = X;(Q,) and considering X = X*(Q,) and Qr = Qj, the value of the

follower firm can be rewritten as

X + Y B3.9
Vi (X, QL QF) = QF(gL_ 'uQF) — 89— 610Qr ( )
PTGl g e 8

© Vi(X,Q.,0F) = — 6y — 6,0QF

r—u
© Vi0) = 7 (60 + 8,00 ~ 50— 8,03
R LT LY R R
o Vilen =

Based on the previous results, it is possible to construct the value function for the follower

firm as
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Ar(QXP if X <Xp(QL) (B3.10)

Vi(X, Q) =480 +6:Q5 . o
F( QL) { Oﬁ_llQF le ZXF(QL)

From the VMC and substituting X for X;(Q,), it is possible to define Az(Q,) as
XQr(QL+ Qp)7Y
r—pu

(=0 +8:0D . 0 4 059-
R (P Y ARl
=

B3.11
- 50 - 51QF = AFXﬁ ( )

— 80— 6,07 = AFXB

r—u
< %(50 +6,Q5) — 80 — 6,Q5 = ApXF
o (80 + 6,00 (/% _ 1) = ApXP
8o + 8,0; 1 _ XB
& (6p + 1QF)'m_AF
(80 + 6:Qp)B(r — 1) p(r—u)

=AFX/3

- D0+ 0r Qi + Q)7
B(r—p)
Qr(Qr + QL)
(X2 @)™’ 0pop + Q)
B r—u
By incorporating the investment threshold Xz(Q;) in expression (B3.4), it is possible to

& X = X;(Q,) = ApXF

& Ap(Qy) =

(considering Ap = AF(QL)).

obtain the optimal investment capacity of the follower firm as follows
X(Qr+0Q)™ ¥ Qr (B3.12)
——|1—-———=—]—-6:=0
r—p Qr + 0y

B =00+ 8108 (0 4 o y-
N SO DR (Q”QL”( yQ: >_51=o

1 —
r—u Qr +Qy
B 6o+ 6.0F 14%4
1—-———|—-6,=0

TE-1 o < Q;';+QL> :
- B [50+51Q;_50+51Q; 14%4 lza

p—1 Qr Qr Qr+0; !

(80 + 61Qr)(QF + Q1) — (6o + 6,Q5)YQr _ 6, (f—1)
o =

Qr(Qr + Q) B
o 80QF + 80QL + 61(QF)* + 8,Q.QF — So¥ Q5 — 61v(Qf)? _ 5 (B—-1)
(Qp)?* + QL0QF B
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© 8,QF + B80QL + £81(Qr)* + £8:0,QF — BSoyQr — BS17(QF)? = B1(QF)* — 61(QF)* + B61QLQF — 61QLQF
© 0=—8(Qr)* + BS17(QF)* — 8:Q,QF — BEQF + By Q; — 50 Q.

© 0= (By — 1)8.1(Qr)* + (=B8(1 —¥) — 61Q,)QF — B5Q,

© 0= By —18,(Qp)?* — (BS(1 —¥) + 6:Q.)QF — B00,

BSo(1—y)+6,Q, £ \/(—(350(1 —-y)+ 51QL))2 —4-(By — D61 - (=F60QL)

0= 2Gy - Do,
o 0n = féo(1—vy)+ 6,0, \/(,360(1 —¥)+6,0.)% —4-(=Py +1)8; - 6,0,

) 2(By — D6,

x — n* _.350(1_]/)+51QL+\/(,360(1—V)+61QL)2_4ﬁ5051QL(1—)’ﬁ)
© Qr = Qr(QL) = 26,7 — 1) :

For the investment capacity level in the previous expression, we should ignore the other root, as it yields negative values for Q.

As in subchapter 5.1.1, Q,(X) represents the capacity level from which entry deterrence is possible if Q > Q,(X). Then the investment
threshold that separates the accommodation and entry deterrence strategies can be defined, for a given level X, as Xr (Q L (X )) = X.

The capacity level Q; (X) is implicitly determined by the investment threshold in expression (B3.8), where Q; = Q;(X, Q,) is from equation
(B3.4). Consequently, @, (X) can be indirectly defined by

B (r— #)(50 + 6,0 (X, QL)) _ (B3.13)
ﬁ -1 Q;'(X) QL)(Q;‘(Xl QL) + QL)_V
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B.4. Mathematical details of the leader’s investment policy under the entry deterrence strategy
Given that in the entry deterrence strategy the market investment capacity is Q = @, the steps to derive the leader’s value function are similar to
those in the monopolist scenario, but with Q = Q. However, since the follower firm will eventually enter the market, it is necessary to incorporate

a correction factor. Consequently, the value function of the leader firm is given by

X >ﬁ X:(Q)0.(0, + Qr(Q) " XrQQ " (B4.1)
X;'(QL) r—u r—u '

By differentiating this value function concerning Q;, we can obtain an expression for the optimal capacity level Q2¢¢(X) as follows

1-y

X
VLdet(X) = r—L’u — 60 — 51QL + <

VL (X,Q) _ (B4.2)
00,
xQ, " X V(%002 + 07 (@) X7 (QQ "
g T—Lu_8°_81QL+(X§(QL)) ( r—p =Ty
= =0
0Q,
- B-1-X 0Xr 1-y
SUmnxe” o (X 30, (X:Qu(Q+ QD X;Q;
r—u ! X (X;7)? r—u r—u
x\Pr 1 jox; ) ) o 20;
+ (X;> = Gara@ + e + x|+ e + aum@+ e (14557 )
X\ o1 oaxp ., .
—(X;:) —l5g e x| =0
SATNXQT o ~BXP (X)) PlQu(@ + QR — @, "] ax;
r—u r—u 0,
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+Xﬁ
Xp

B *
_ <£> 1 [aﬁ Qz_l’ + X;(l _ V)QL—)/] =0

1 [o0Xg o
r—o (GQZ 0,(Q, + Q5 + X2(0, + Q2™ + X:Q,(=y)(Q, + Q1)1 (1 N a_gi))]

Xp) r—uloQ,
(1 -1xQ." —BXP (X F[QL(Q + QY — Qi ] axy (x\ 1 ax; .
@ﬁ_é‘l‘k r—p aQL-I_ X_;- T'—‘ua_QLQL(QL-I_QF) Y
x\| 1 ) . 1o} 1 [9Xp 1y o, .
+<X—F> m(XF(QmQF) Y4 X0+ 0D 1<1+aQL>>‘r—u 5o 0 + X1 -1Q7|| = 0

(1-y)xQ,” —BXP(XE)7PQLQ +Qp) Y aXy BXPXp)TFQ M axy  XP(XH)TFQL(QL+ Q)Y 0X;
& ————-6, + + +
r—u r—u 0 r—u 0 r—u 0
XP (X (Q, + Qp) Y . Q; X\ 1 opoxp ., S
¥ . [QL+QF—yQL(1+a—QL)]—<X—;) —l5g e x| =0
(1-y)xQ,” 1 -RXPX)FQL(Q, + Q)Y oX;:  XP(XH)YA(Q, +Qp ) 205
Sy at — 30, F — [QL+QF‘VQL(1+a—Q)]
BXP(Xp)FQ, Y axy XP(Xp)7PQ TV axy XP(Xp)TPXp(1—1)Q."
+ - - =0
r—u 0 r—u aQ,, r—u
(1-1)XQ;" (1= BXPXFQL(QL+ Q)" Xy XP(Xp™P(Q,+ Q)1 . 0Q;
ey “at — 30, — [QL+QF_VQL<1+6_QL>]

XFxnFa,” 0X; ] _
- —y (1_ﬁ)QLa_QL+(1_V)XF = 0.

Differentiating the investment threshold in expression (B3.8) with respect to Q;, gives
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0X; (B4.3)
aq,
TGO
ﬁ -1 QF(QF + QL) Y
9q,,

2 = 108, SEE 01 (@5 + 0 = (7 = o + 8:09) [FEE (@5 + 07 + Q-1 (@3 + 0 (5 +1)]

T B- Q0 + BRIE

— ) [61 DL 03(Qr + Q)" — (B + 8,0)(Q + Q) (a 2 —yoicor + o0 (5 + 1))]
@@ + Q)

(r—u) S8 g (60+610F><6QF YQ: (0 + Q)" (8+1))]

B—1 (Qr)?(QF + Q)7

g 0 =085 0r — 60 S5E + 8y 03 (Qr + QI G + 80y Qi (0} + 0 = 8,03 5E + 18, (01205 + Q)"

Tp-1 (QF)Z(Q}? Q)
N B (r—mwys(Qp)*(Qr + Q)7 !
B—1  (QpQr+QD~

g =0 ]85 + 60y 0r(0r + 07 (1+5%) +v8,007@i + 007 (14 58|

1 aQF

=5-1 @@ + Q7
p =0+ 007 [rai0p? (1 + 555) — 50(0i + QGG + 80 (1 + )|
“5-1 @@ + Q)7
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I (r—uw _Y&(Q;)z (1 + gglz) — 80QF ggF 800 agF + 8oy Qr + 8ovQr 6812"
“B-1 QP2 (Q + Q™7
g - [rae? (1+5%) - 5,0, 52 + 5,0; (v - 1 - G|
“B-1 (@2 (Qr + Q)™ |
Differentiating expression (B3.12) with respect to Q, yields
9Qr (B4.4)
aQ,
<,350(1 —¥) + 6.0, +/(B8(1 —y) + 6:Q1)% — 485,6:Q,(1 — Vﬁ))
260(yp-1)
a0,

[51 + % [(BS(1 —¥) + 6:QL)* — 4B8¢6,Q,(1 — Vﬁ)]_% [2(B8o(1 —y) + 81Q,)6; — 4B86:(1 —yB)I|-26,(yf — 1)
28,y - 1)

1B (1 1) + 6,00 — 4B5,5,01(1 — Y] 2+ [2(B6(1 =) + 6,008, — 486,8,(1 — yB)]

26:(yB—1)
_ 81 [((BS(1—v) + 51QL)2 —4$606,Q,(1 - V,B)]_% [(BS(1 —y) +6:Q.)01 — 288,6,(1 — yp)]
26;(yp—1) 26;(yB—1)
1 BSo(1—v) +6:Q, — 266,(1 —vp)

= +
20B=1)  2(yB — DY(BSe(1 —y) + 6:0,)% — 48606,Q,(1 — yB)
_ 1 ( Bbo — BSoy + 6,Q, — 2B8¢ + 228,y >
208 =D\ [(BS,(1 — ) + 6,Q0)% — 4B8,6,0,(1 — yB)
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—B8o + BSoy — 81QL, + 2880 — 28?84y

- z(ﬁ)’ -1 (1 V(B —y) +6:0,)> — 4B6,65,Q, (1 — Y,B)>
_ (1 By + BSoy — 61Q, — 2B*8ey )

ZW ~D\ (B8 (T—1) +6,0,)7 — 486,6,0, (1 — ¥B)
_ (1 BSo(1+y —2By) — Q.6 )

Z(By— D V(B —y) +6:0,)% —4B65,5,Q,(1 — vB)
_ (1 B+ (1—-2B)y)8 — Q.6 )

2([3)/— 1 \/(350(1—)’)+51QL)2_4,35051QL(1—V,3)

It is possible to rewrite the leader’s value function from expression (B4.1) as follows

1 B [y x 4 * 1-
Ve, Q) = : — 8= 6,0, ( X*faa) (XF<QL>QL(3L_+MQF<QL>) _ XF(;zngL V) (B4.5)

XQL X V' (x:000.(0, + 0:(Q) " — X2(Q)QF
de _ F\UL)U\{L F\UL FldL)C,
o VX, Q) = iy 6o — 0:Q, + (X;(QL)> < r—n

1V

— — 6y — 61QL+<

B * * vV _ A-v
et (. QL)—X X > <XF(QL)QL[(QL+QF(QL)) Q, ])

X;'(QL) r—u

X (Qilet(X))l_V )

e VX)) = — — 8,01 (X)
v\ (% () areeoo (oo + 0: (ot 0)) - (ofe0) ]
+ X; ( det(X)) r—u
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(considering X3(Q,) = X; (QF€°(X)), @, = Qf**(X), and Q3(Q,) = 0z (Q**(X)) ).
When X < X{¢t, the leader firm is in the idle state and holds an option value equal to
F . (X) = AdetxB, (B4.6)
The VMC yields that
F (X) = Vet (X) (B4.7)
o AdetxP = yaet(x),
Therefore, the SPC gives that

OF,(X) _ aV2*(X) (B4.8)
ox  oX
a(AferxP)  aviet(X)
f—3 =
X X
o pagerxs-1 = V&)
g X
The optimal investment threshold X#¢¢ can be achieved via
det
BAdetxB-1 — Ve (X) (B4.9)
k 0X
det
o EAdetxﬁ = M
Xt 0X
avdet X
& %VLdet(Xfet) = La—x() (considering X = X{* and incorporating the VMC)
L X=XLdet
d d
XL et aVL et(X) — VLdet(Xget).
ﬁ aX sziiet
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B.5. Mathematical details of the leader’s investment policy under the entry accommodation strategy
In the accommodation strategy, both firms invest, but the investment capacity of the follower firm depends on the investment capacity of the leader.

Therefore, the total market capacity is given by Q = Q; + Q7 (X, Q). The profit function of the leader is then
m,(t) = P(6) - QL(6) (B5.1)
e m®) =X (Q®) " - Qu.®
e m®) =X®Q, (0 +QX Q)"
The expected profit of the leader firm is then
Elm, (0] = E[X® Q. (Q + @ (X, Q) '] (B5.2)
& E[m, ()] = Q- (Q, + Qs (X, Q) - E[X,]

* 4 .
© E[m,(0] = Qu(Qu + Qr(X, QL)) " X -et™.
Therefore, in the accommodation strategy, the value function of the leader is

e (B5.3)
VX, Q) =E [ f m, (t)exp(—7t) dt — 8, — 51QL]

t=0

< VLaCC(X; QL) = J QL(QL + Q;(X' QL))_y X-ett-eTmt dt - 60 - 51QL
t=0

& VX, Q) = XQu(Q1 + 03 (X, 0) ™ f et 4t — 5, — 5,0,
t=0

xQ,(Q, + Qp(X, Q)"
T—u

Differentiating this value function with respect to Q,, we find that the optimal capacity level of the leader firm, Q/*°“(X), is given by

© VX, QL) = — 6y — 6,10,
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oV (X, Q) _ 0 (B5.4)
a0,
« -¥
(e Gra” ;)
S 30 =0
L
1 - —y- 0Qr(X,
= [X(QL 0, Q)+ XQ(Q + Q)T (1 + %)] —8, =0
x(Q, +Qpx,0))"" Q1 (X,
-4 QF(_ %) [QL +Qr(X,Qu) — vQ, (1 4 2.0 QL))] —6,=0.
r—u 03
Differentiating expression (B3.4) with respect to Q;, reveals that %{ZQL) is equal to
XQr+0)™(,__vQr \_ (B5.5)
(G 1) )
a0,
9Qr 9Qr
1 . (005 YQr X(Qr+0Q,)7Y Ya_QL(QF + QL) —vQr (a_QL + 1) B
< r—u [X(_Y)(QF T <6_QL i 1)] (1 - Qr + QL> * r—u <_ (Qr + Q)2 =0
(substituting Qr = Q)
a0 a0
o X(Qr+0)7Y [—V(Q - ((3& s 1>] (1 Y0 ) s X(0p + 0,) _)’a—QIZ(Qp + QL) —vQr (a—QlLF + 1) i
r—u P 0, Qr +0Qy r—u (Qr + Q)2
9Qr 9Qr
1005 y0r }’a—QL(QF + QL) —vQr (a_QL + 1)
— (== — — =
= [ v(Qr +Qu) (aQL " 1)] (1 Qr + QL) (Qr + Q)2 0
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& 1@+ @) (G +1) (1- ) -y S (e + @) + 1@ (G +1) =0

9QF 0Qr vOQr YQr dQr dQF _
& —Y(Qr + Q) 50- + V(@ + Q) 55 G g~ Y@+ Q)+ Y0 + Q) G~y 55 Qe + @) +vQe (55 +1) = 0
_ a& 2 a& _ 2 a& =
& =2y(Qr + Q) 20, +v°Qr 20, y(Qr + QL) +v*Qr + YQF 20, +yQr=0
9Qr 9Qr 9Qr _
& —2(QF + QL)O_QL+YQF6_QL_ Qr — QL +VY0Qr + QFa_QL+ Qr=0
9Qr 9Qr 0Qr
© 2(QF + QL)a—QL—)/QFa—QL+ QL—vQr — QFa_QL =0
d
A &[Z(QF +Q.) —vQr—Qrl =vQr — Q,
o
9Qr
© —[2Qr+2Q,—vQr —Qrl =YQr — Q,
o
0
< a_gF[ZQL +Qr —vQr]l =vQr — Q,
L
0
And a_gF[ZQL + (1 =y)Ql =vQr—Q,
L
o 00r(X,Q.) _ yYQr — Q1 substitutin 9Qr _ 9Qr(X, QL)
00, 20 +(1-1Qr 90, " 9, )
When the stochastic demand level X < X7“¢ , the leader holds an option value equal to

F,(X) = A%ccxB, (B5.6)
Therefore, the VMC yields
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F(X) = VE&(X) (B5.7)
& Adeexh = yaee(x).
Therefore, from the SPC and combining it with the VMC, the optimal investment threshold

X7 is defined by

OF,(X) _ avEce(X) (B5.8)
X 0X
o a(A%CCXﬁ) _ Ve (X)
0X X
aVLaCC (X)
0X
aVLaCC (X)
0X
B acepn _ OVEC)

g oV (X)
XA Ve (xfec) = T

o pAFCXPT =

B

o FALXP =

(considering X = X[*¢)
X=Xxpc¢

=14

XSCC a VLaCC (X)
B 09X

— VLaCC (XilCC)

X=X

B.6. Mathematical details of the impact of uncertainty on the leader’s strategic entry
boundaries
From expression (B5.4) and considering that X = X{°° and Qr(X, Q1) = Qp, and incorporating

the result form expression (B5.5), we obtain

x 10 X, -y-1 90 X, (B61)
(@ %;F» [m+@mm%wmﬁ+£%f@ﬂ—&=0
X1°(QL+Qp)7Y YQr — Qy ]
— 1 -6, =0
= (r—w(QL + Qr) [QL For Y ( ¥ 20+ (1 - V)QF)' '
i B yQr — Q ]
(:)Xfcc(QL‘FQF)_V QutCQr—vQ (1+2QL +?1—;)QF) -5, =0
r—u QL+ Qr '

i | QL (1 L Y= Q )] __51 _o.

1_
r—u - Q.+ 0QF 20, + (1 —y)Qr
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