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Resumo

A volatilidade observada durante a pandemia de COVID-19 e as tensdes geopoliticas
destacou a necessidade da gestao de risco nos mercados financeiros. Esta dissertagao tem
como objetivo estimar perdas potenciais e implementar estratégias dinamicas de cobertura
utilizando a métrica de risco Value-at-Risk. O estudo mede e gere o VaR diario de uma
carteira diversificada composta por acoes e obrigacoes dos Estados Unidos, Europa e Asia.
Considerando 15 configuracoes de quatro modelos de VaR, Parametric Normal, Skewed
Generalized Student-t, Historical Simulation, and Quantile Regression, os modelos sao
avaliados através de backtesting. O modelo escolhido é utilizado para estimar o VaR
diario ao longo de um horizonte de um ano e para decompor o risco, identificando os
principais fatores de risco para o portefélio. Desta forma, é implementada uma estratégia
dinamica de cobertura de acoes para mitigar o risco, garantindo que o risco da carteira
se mantém dentro de um limite previamente definido. A eficicia da estratégia é avaliada
através de métricas de desempenho como o Return on Risk-Adjusted Capital e o Profit and
Loss. Os resultados mostram que a carteira coberta apresenta um desempenho superior a
nao coberta, ao proteger contra perdas adicionais e aumentar o Return on Risk-Adjusted
Capital. Para além disto, melhora a diversificagao das exposi¢oes em agoes que foram

cobertas e redistribui o risco entre os fatores de risco da carteira.

Keywords: Value-at-Risk, Economic Capital, Backtesting, Marginal VaR Contributions,
Equity Hedging, Return on Risk-Adjusted Capital
JEL Classification: G11, G32
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Abstract

The volatility observed during the COVID-19 pandemic and geopolitical tensions has
highlighted the need for risk management in financial markets. This thesis aims to esti-
mate potential losses and implement dynamic hedging strategies using the Value-at-Risk
risk metric. The study measures and manages the daily VaR of a diversified portfolio com-
posed of equities and bonds from the U.S., European, and Asian markets. Considering
15 configurations from four different VaR models, Parametric Normal, Skewed General-
ized Student-t, Historical Simulation, and Quantile Regression, the modes are evaluated
through backtesting. The chosen model is then used to estimate daily VaR over a one-year
horizon and to decompose it by risk factors, identifying the main contributors to risk. By
doing so, a dynamic equity hedging strategy is implemented to mitigate risk, ensuring that
the portfolio risk remains within a predefined target. The effectiveness of the strategy is
assessed using performance metrics such as Return on Risk-Adjusted Capital and Profit
and Loss. Results show that the hedged portfolio outperforms the unhedged portfolio by
protecting against additional losses and increasing the Return on Risk-Adjusted Capital,
while also improving diversification across hedged equity exposures and redistributing risk

across portfolio risk factors.

Keywords: Value-at-Risk, Economic Capital, Backtesting, Marginal VaR Contributions,
Equity Hedging, Return on Risk-Adjusted Capital
JEL Classification: G11, G32
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CHAPTER 1

INTRODUCTION

In today’s highly interconnected and volatile financial markets, effective risk management
is fundamental for individual investors and institutions. Market disruptions, such as those
caused by the COVID-19 pandemic and ongoing geopolitical tensions, have emphasized
the need to accurately measure, manage, and mitigate potential risks.

In financial risk management, quantifying potential losses is essential for making in-
formed investment decisions and protecting portfolios from adverse market movements.
In this context, during the 1990s, Value-at-Risk (VaR) was widely adopted for measuring
market risk in trading portfolios. By quantifying risk into a single numerical estimate
of potential losses over a specified time horizon (Hendricks, [1996]), VaR allows financial
managers to plan and be more prepared for adverse outcomes (Jorion, 2002)).

The motivation for this thesis arises from the critical importance of risk management
in protecting portfolios. In this field, VaR is a widely used measure, however, while it
provides an understanding of the potential downside risk, it does not indicate how this
risk can be reduced. The objective of the study is to measure and actively manage VaR
by identifying the sources of risk and implementing a hedging strategy to mitigate them.

The portfolio includes 30 stocks with long and short positions from different sectors
and markets, such as S&P500, AEX, DAX, CAC 40, IBEX 35, FTSE 100, Nikkei 225,
and Hang Seng index. The bond portion consists of six sovereign bonds rated Aaa on
the Moody’s scale, issued by different countries, including the U.S., Germany, and the
Netherlands.

As emphasized by Jorion (2007), the effectiveness of VaR models depends on the
portfolio’s composition and the return distributions of its underlying assets. A model
that performs well for one portfolio may not be the best for the other. To account for
this, we tested 15 configurations across four classes of models: Parametric Normal, Skewed
Generalized Student-t (SGSt), Historical and Quantile Regression.

Over a 10-year global backtesting period, from 11 February 2013 to 27 January 2023,
we computed a series of daily historical VaR estimates for each model under analysis,
as if the current portfolio had existed throughout the past. This approach allows us to
backtest all 15 models by comparing predicted losses with actual experienced losses. The
accuracy of the estimates is evaluated using the Unconditional Coverage (UC) and the
Berkowitz, Christoffersen, and Pelletier (BCP) tests.

After identifying the model that best fits the portfolio, VaR is measured and actively
managed going forward from 27 January 2023 to 2 February 2024. By decomposing risk
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through marginal VaR decompositions, which quantify each component’s contribution to
total portfolio risk, we implement a dynamic hedging strategy to maintain risk within a
predefined target. The target level of capital held to cover the portfolio’s risk exposure
was based on the average level observed under normal volatility conditions over the past
10 years. This level was defined as € 95 000, corresponding to 1.2% of the portfolio’s value
as of the mapping date. For one year, whenever VaR exceeds € 95 000, we implement
dynamic equity hedging, otherwise, hedging positions are removed.

As highlighted by Jorion (2002), hedging enhances portfolio resilience but can also
alter the risk profile, as mitigating some exposures can unintentionally increase others.
Therefore, a key question arises: What is the impact of hedging on this portfolio?

To evaluate the effectiveness of this strategy, we compare performance metrics such
as Profit and Loss (P&L), marginal VaR, diversification effect, exceedance rates, and
RORAC both before and after hedging.

The structure of this thesis is as follows: Chapter [2] provides the theoretical background
on VaR and the relevant literature; Chapter [3] describes the composition of the selected
portfolio, contextualizes key market events during the analysis period, and presents the
descriptive statistics; Chapter 4] outlines the methodology, including the risk factor map-
ping, the estimation of volatility and covariance, and the VaR models; Chapter [5 presents
the model selection process based on backtesting results; Chapter [0 reports the results
of actively managing VaR through the equity hedging strategy, and Chapter [7| concludes

the study and offers suggestions for future research.



CHAPTER 2

LITERATURE REVIEW

In finance, risk relates to the unpredictable fluctuations that can influence the value of
assets, equity, or earnings (Jorion, 2007)). This concept, understood in risk management
as the difference between actual and expected outcomes, covers both potential gains and
losses (Moreira & Muir, [2017)). Planning for the consequences of these outcomes is only
possible if financial managers understand risk, enabling them to be prepared for inevitable
uncertainties (Jorion, 2009), such as the economic crises of the 1990s (for more details on
this topic, see Dell’Ariccia et al. (2008)). These events emphasized the impact of market
risk, one of the four super-categories identified by Bankers Trust. Liquidity, credit, and
operational risks also play a crucial role in maintaining financial stability and must be
effectively managed to prevent similar disruptions (Kaplan & Mikes, 2016)).

With the growing need for better risk management tools and a standardized metric
to measure market risk, in the late 1980s, the Bankers Trust pioneered the adoption of
Value-at-Risk (VaR), a statistical risk measure that estimates the maximum potential loss
over a given future time horizon and for a given confidence level (Best,|2000)). In 1996, J.P.
Morgan introduced RiskMetrics (RM), a system that standardized and popularized the use
of VaR in financial risk management. Also, the Bank for International Settlements (2023)
helped VaR’s widespread acceptance as a global standard for measuring and managing risk
in financial institutions by allowing banks to use their internal VaR models to calculate the
amount of regulatory capital required (Linsmeier & Pearson, [1996)). Given its widespread
adoption and regulatory relevance, this study adopts VaR as the primary risk measure.
Expected Shortfall is acknowledged as a complementary metric that provides additional
information into extreme losses beyond the VaR threshold.

In terms of regulation, a financial institution is required by the Market Risk Amend-
ment to have a minimum of capital to cover risk and ensure its solvency. However, regard-
ing management systems, the approach to internal capital allocation differs (Alexander,
2009). Economic capital, estimated using internal methods approved by shareholders
(Alexander, 2009)), is the amount of capital needed to protect against the potential losses
that may happen due to the risk exposures (Tiesset & Troussard, 2005). The allocation of
economic capital follows a top-down approach: after determining the total requirement,
it is distributed across business units according to their respective risks. The more eco-
nomic capital allocated to a specific activity, the greater the risks it can take (Alexander,
2009). Thus, VaR is an essential tool for risk managers, as it provides a single quantitative

measure of potential losses, summarizing the risk profile of each business unit (Hendricks,
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1996). By using VaR models, risk managers can select the most appropriate method
to manage the specific risks associated with their portfolios (Jorion, 2007)), aligning the
economic capital and regulatory capital requirements (Alexander, 2009).

Accurately estimating VaR depends on the distribution of portfolio returns (Trenca
et al., [2011). There are various methods for measuring VaR, which can be classified as
either parametric or non-parametric models. According to Ammann and Reich (2001)),
the parametric models are based on statistical parameters of the risk factor distribution,
such as the Parametric Normal model and the Skewed Generalized Student-t (SGSt). On
the other hand, non-parametric models don’t make any assumption about the statistical
distribution, like the Historical VaR and the Quantile Regression VaR (QR) models. These
are the fours models that will be studied.

Among these categories, the Parametric Normal VaR model is the simplest to use in
practice (Dowd, 1998), since it assumes that returns follow a normal distribution over
time (Morgan, 1996). This topic is included in several finance studies, however, many
of them reach the same conclusion: the Normal VaR model is the one that provides the
least accurate VaR estimation. By ignoring fat tails in the distribution, it fails to pre-
dict extreme losses, as explored by Hendricks (1996]). Hendricks studied 12 approaches
across 1,000 randomly selected foreign exchange portfolios and found that the Normal
VaR cannot produce reliable estimates for these portfolios, as the normal distribution
fails to predict extreme outcomes. Similarly, this problem also arises in stock portfolios,
as investigated by Pafka and Kondor (2001)). Their study analyzed the performance of
the RM model (a parametric approach based on normally distributed returns) for market
risk using 4 years of data from the 30 stocks in the Dow Jones Industrial Average. They
demonstrated that if returns follow a normal distribution, the reliability of the model is
impacted during extreme events, particularly under volatile conditions, since it underesti-
mates extreme risks, especially at higher confidence levels like 99%. Nevertheless, during
stable market periods, this issue does not occur, and VaR estimates can be reasonably ac-
curate. The authors also highlighted an important feature of financial markets: financial
data frequently exhibit a higher probability of extreme events than normal distribution
would predict. This is represented by fat tails, as well as negative skewness.

To better capture the characteristics of financial data, the SGSt distribution can be
used. Introduced by Theodossiou (1998), it extends the traditional Student-t distribution
initially proposed by McDonald and Newey (1988)), by addressing its inability to capture
the asymmetry in the asset return distributions. This approach aligns with Giot and
Laurent (2003)), who not only addressed asymmetry but also incorporated kurtosis in
their analysis. They applied the SGSt distribution to estimate VaR using daily returns
from stock indices such as the FTSE, NASDAQ, and NIKKEI, as well as individual US
stocks like Alcoa, McDonald’s, and Merck. Their methodology enhanced the accuracy
of VaR predictions for both long and short trading positions by effectively capturing
asymmetry and fat tails in the financial data. They found that incorporating skewness
4



and kurtosis into VaR estimation outperforms the Normal VaR model, providing a more
accurate representation of reality.

Instead of making assumptions about the statistical distribution of returns, an alterna-
tive approach can be used: the Historical Simulation. Also referred to as Historical VaR,
this method assumes that all possible future variations have already occurred in the past,
which automatically incorporates the fat tails and skewness. Nevertheless, as explored
by Hendricks (1996) and van den Goorbergh and Vlaar (1999), the Historical Simulation
generally provides more accurate VaR estimations as the sample size increases. However,
increasing the sample size means including older and less relevant data, which may not
reflect the current market conditions. With this in mind, Boudoukh et al. (1998) and
Barone-Adesi et al. (1998) proposed an improvement to the conventional methodology
by attributing more weight to recent observations. Rather than prioritizing recent obser-
vations over older ones, Hull and White (1998)) proposed a refined method that adjusts
the volatility of the entire series of returns, while still giving the same weight to each
observation. This means that the impact of a past return is modified to reflect current
market volatility conditions. The authors analyzed 9 years of daily data from 12 exchange
rates and 5 stock indexes, and revealed that the proposed volatility adjustment method
outperformed the methodology of Boudoukh et al. (1998)), especially at a 99% confidence
level. This topic was also explored by van den Goorbergh and Vlaar (1999), who evaluated
both the traditional historical model and the one proposed by Hull and White. The em-
pirical evaluation involved a fictitious investment in the Dutch stock index AEX, using 16
years of data. The study demonstrated that volatility adjustment techniques can produce
more accurate VaR estimates compared to the traditional historical model, particularly
in periods of heavy fluctuations. This happens because it can deal much better with the
changing distribution by giving decaying weights to past observations.

However, since estimating VaR is equivalent to identifying the conditional quantile of
the return distribution (Christoffersen et al., 2001), it is important to consider methods
that naturally capture this, such as Quantile Regression. Introduced by Koenker and Bas-
sett Jr (1978), QR does not assume a specific parametric form for the return distribution.
Instead, it directly estimates the conditional quantiles. In 2019, Westgaard, Arhus, and
Frydenberg compared this method to the RM parametric model and to the HS incorpo-
rating volatility adjustments. The purpose of the study was to evaluate whether a model
effective in financial markets exhibits the same behavior in power markets, which are
known for their volatility (Chan & Gray, 2006; Haugom et al., |[2014). The study focused
on the European energy markets to determine which model most effectively captured price
changes in these markets. The authors analyzed 9 different energy futures over the period
from 2007 to 2017, applying the models across 3 different confidence levels: 99%, 95%,
90%. Their findings reveal the QR model significantly outperforms both the Parametric
and Historical VaR models, being the only one that provides accurate forecasts across all

specified confidence levels. This performance aligns with the theoretical strengths of QR,
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confirming its effectiveness in capturing complex return distributions, particularly in the
energy markets where traditional models may be less effective.

In volatile markets like these, as well as others, accurately estimating return volatility
is essential, since VaR is a forward-looking risk measure. To model volatility, several
approaches have been proposed, including the Generalized Autoregressive Conditional
Heteroskedasticity (GARCH) and the Exponentially Weighted Moving Average (EWMA)
model, which became widely used due to its straightforward implementation and inte-
gration into the RiskMetrics framework. In this study, we adopt the EWMA model to
estimate the volatility and covariances for the four classes of VaR models.

Considering all the VaR models discussed, it is crucial to evaluate how accurately they
predict potential future losses. The validity of the effectiveness of these models can be
used by backtesting, a common approach where statistical tests are applied to a historical
sample of portfolio returns and their corresponding VaR estimates. This procedure com-
pares actual profits and losses against the projected VaR estimates, serving as "reality
checks". If discrepancies arise, the models must be reassessed to identify potential is-
sues, such as incorrect assumptions, inaccurate parameters, or errors in modeling (Jorion,
2002).

Several testing methods have been proposed for backtesting. In this study, the test
of Kupiec (1995) is used to evaluate how often the losses exceed the VaR estimate. This
test checks whether the observed number of exceedances is consistent with the number
expected by the VaR model. However, even if the number of exceptions is statistically
as expected, exceedances may occur in clusters. To analyze this, we adopt the BCP test
(Berkowitz et al., 2011)), which checks if the exceedances are independent of each other.
If this is the case, the model is well specified, and the model can adapt quickly to market
conditions.

When the VaR exceeds its set pre-defined maximum value, risk management actions
are needed to meet the EC quotas. In such instances, derivatives become a critical tool
for managing financial risks. By using derivatives to hedge a wide range of risks, the
portfolio’s resilience is enhanced, ensuring it remains aligned with the desired risk profile.
However, reducing exposure to some market risks will change the overall risk profile, as
some risks may be mitigated while others could potentially increase (Jorion, 2002).

Additionally, when considering portfolio strategies, there is a fundamental principle
that higher risk is associated with the potential for higher returns (Sharpe, 1970). Despite
this, it is important to consider a risk metric that accounts for both the returns and the
risks incurred to achieve them. RORAC addresses this by quantifying the return on risk-
adjusted capital. By incorporating both risk exposure and capital requirements, RORAC
provides a comprehensive view of how changes in risk exposures affect the returns relative
to the capital at risk, ensuring that decisions align with the overall risk management
strategy (Alexander, 2008).



CHAPTER 3

DATA

The objective is to determine, as of 27 January 2023, what is the most appropriate
Value-at-Risk (VaR) model to evaluate the risk of the portfolio until 2 February 2024,
corresponding to a period of 265 trading days. Therefore, to assess the reliability of the
models we backtest the different VaR models over a 10-year period.

The chosen portfolio includes equities and bonds, and the dataset spans from 2 January
2007 to 2 February 2024, covering a total of 17 years and 1 month to give us the flexibility
to use large sample sizes for the VaR models in the backtesting.

The objective was to build a well-diversified portfolio, balancing exposure across sec-
tors and individual positions (such as long and short). To guarantee sectorial diversifi-
cation, we assigned at least one short position per sector. Thus, the portfolio consists
of 30 equities, with 19 long and 11 short positions, chosen from 8 different sectors and
5 markets. These stocks belong to major indices in the United States (U.S.), Europe,
Japan, UK, and Hong Kong (HK). The investment in each stock was designed to es-
tablish a balanced approach, with individual stock weights ranging from -3.5% to 4.5%
of the portfolio’s overall weight as of the mapping date, 27 January 2023. The Euro
(EUR) is the local currency, thereby we identify the foreign currencies as the U.S Dollar
(USD), the British Pound (GBP), the Japanese Yen (JPY), and the HK Dollar (HKD).
The daily data for stocks, their respective indexes, and currencies were retrieved from
Yahoo Finance (https://finance.yahoo.com)). This includes daily adjusted closing prices
in local currency for each stock, as well as the corresponding exchange rates (USD/EUR,
GBP/EUR, JPY/EUR, and HKD/EUR).

The bond portion consists of six sovereign bonds issued by different markets, including
the U.S. (denominated in USD), Germany, and the Netherlands (in EUR). These bonds
were chosen for their higher coupon rates and low credit risk, as they are issued by coun-
tries with the best credit ratings, which means the credit risk events are minimal. Accord-
ing to Moody’s scale, the credit rating for these countries is set at Aaa, the highest quality
and lowest risk of default. Information on these fixed-income bonds was obtained from
Borse Frankfurt (https://www.boerse-frankfurt.de/bonds). Each bond has a fixed coupon
rate and a different payment frequency, with maturities of up to 20 years. For the daily
USD interest rate data, the source used was the Federal Reserve Economic Data website
(https://www.federalreserve.gov/dat adownload/Choose.aspx’rel=H15), while for EUR
interest rate data, based on AAA-rated sovereign bonds, was retrieved from the European
Central Bank website (https://sdw.ecb.europa.eu/browseSelection.do’node=9689726).


https://finance.yahoo.com
https://www.boerse-frankfurt.de/bonds
https://www.federalreserve.gov/dat adownload/Choose.aspx?rel=H15
https://sdw.ecb.europa.eu/browseSelection.do?node=9689726

3.1. Portfolio Composition
As of the mapping date, 27 January 2023, the total portfolio value was €7 674 324, with
53.75% allocated to bonds and 46.25% to stocks.

Table [3.1] presents the bond composition of the portfolio, while Table [3.2] details the

stock composition.

Maturity Coupon Coupon Face Value Fair Value Weight

Bonds ISIN Currency "pte (%) per Year (EUR) (EUR) (%)

German Bund 2027 DE0001135044 EUR 2027-07-04 6.50 1 800 000 968 505 12.62
German Bund 2030 DE0001135143 EUR 2030-01-04 6.25 1 500 000 627 176 8.17
Dutch State Loan 2028 NL0000102317 EUR 2028-01-15 5.50 1 650 000 T47 672 9.74
US Treasury 2025 US912810ET17 USD 2025-02-15 7.63 2 917 900 1011 251 13.18
US Treasury 2037 US912810PUG60 USD 2037-05-15 5.00 2 321 265 374 644 4.88
US Treasury 2028 US91282CJF95 USD 2028-10-31 4.88 2 367 160 395 499 5.15
Total Bonds Value 4 124 748 53.75

Table 3.1. Bond portfolio composition on the mapping date. The
table presents details for each bond, including fair value and its weight in
the total portfolio (stocks and bonds).

Stock Ticker Currency Sector Slll\Ia ?es (\]{L‘:i[lIuli) VV((;)g)ht
Alphabet Inc. GOOG USD Communication Services 3 567 323 546 4.22
Amazon.com, Inc. AMZN USD Consumer Cyclical 1 500 140 769 1.83
Apple Inc. AAPL USD Technology -400 -53 142 -0.69
Booking Holdings Inc. BKNG USD Consumer Cyclical 111 225 640 2.94
General Electric GE USD Industrials -1000 -60 634 -0.79
Mastercard Incorporated MA USD Financial Services 383 102 235 1.33
McDonald’s Corporation MCD USD Consumer Cyclical 1 300 316 122 4.12
NIKE, Inc. NKE USD Consumer Cyclical 2 500 287 886 3.75
NVIDIA Corporation NVDA USD Technology 1331 242 890 3.16
The Goldman Sachs Group GS USD Financial Services 500 155 297 2.02
The Walt Disney Company DIS USD Communication Services 2 800 280 616 3.66
Thermo Fisher Scientific Inc. T™O USD Healthcare -500 -262 392 -3.42
Walmart Inc WMT USD Consumer Defensive -5 000 -214 456 -2.79
Airbus SE AIR.PA EUR Industrials 3 000 342 841 4.47
Allianz SE ALV.DE EUR Financial Services -700 -139 666 -1.82
Bayer Aktiengesellschaft BAYN.DE EUR Healthcare 5 500 294 654 3.84
BNP Paribas SA BNP.PA EUR Financial Services 5 000 271 644 3.54
Danone S.A. DANOY EUR Consumer Defensive -8 000 -80 381 -1.05
Deutsche Post AG DHL.DE EUR Industrials 6 218 190 704 2.48
Heineken N.V. HEIA.AS EUR Consumer Defensive 4109 352 025 4.59
Industria de Disenio Textil, S.A. ITX.MC EUR Consumer Cyclical -400 -10 821 -0.14
Melia Hotels International, S.A. MEL.MC EUR Consumer Cyclical 25 000 152 000 1.98
Orange S.A. ORAN EUR Communication Services -6 334 -87 838 -1.14
Siemens Aktiengesellschaft SIE.DE EUR Industrials -1 100 -149 697 -1.95
Veolia Environment SA VIE.PA EUR Industrials 5 000 127 517 1.66
Volkswagen AG VOW3.DE EUR Consumer Cyclical 3 000 322 888 4.21
Unilever PLC ULVR.L GBP Consumer Defensive 5 000 217 082 2.83
Nintendo Co., Ltd 7974.T JPY Communication Services 9 000 340 663 4.44
Sony Group Corporation 6758.T JPY Technology -750 -61 029 -0.80
Hong Kong and China Gas Co., Ltd 0003.HK HKD Utilities -20 000 -17 389 -0.23
Total Equity Value 3 549 576  46.25

Table 3.2. Stock portfolio composition on the mapping date. The
table presents the amount invested in EUR for each stock, its sector, and
its weight in the total portfolio (stocks and bonds) on 27 January 2023.



3.2. Contextualization

The data used in this study span periods of economic turbulence. Major events, such as
financial crises, pandemics, and geopolitical disruptions, led to changes in market volatility
that affected the portfolio risk profile. Thus, it is important to have an overview of the
major economic events that occurred during the selected period. The events described
were chosen due to their impact on the markets covered in this study, primarily in Europe
and the U.S.

Among the most impactful developments was the Brexit referendum in 2016, where
the UK’s vote to leave the European Union. This event caused significant volatility in
currency markets, particularly a depreciation of the British pound (GBP) against the
euro (EUR). It also had an immediate negative impact on the liquidity of non-US stocks,
particularly those from the UK and EU.

The worldwide health crisis, Covid-19 Pandemic (2020-2021), caused economic down-
turns and some of the major indices, such as the S&P 500, lost up to 30% of their value
between mid-February and mid-March 2020. In terms of inflation, in the Eurozone, it de-
creased to negative values by late 2020, and in the US, it had also fallen sharply. However,
as economies started to reopen, inflation began to rise again. In response, the Federal
Reserve (Fed) and the European Central Bank (ECB) shifted from supporting economic
recovery to tackling growing inflation by raising interest rates in 2021, with the Fed raising
interest rates by more than four percentage points by 2022.

In 2022, the major geopolitical event of the Russian invasion of Ukraine increased
volatility in energy prices, currency fluctuations, and impacted the global supply chains.
Stock markets globally experienced sharp sell-offs in response to the uncertainty. Central
banks, particularly in the US and Europe, were forced to restrict monetary policy in
response to war-induced inflation. According to Eurostat, Eurozone inflation peaked at
10.6% in October 2022, while US inflation reached 9.1% in June 2022, the highest level
in 40 years. In order to reduce inflation to the 2% target level, the ECB began to raise
interest rates in July 2022, marking its increase in over a decade. Meanwhile, the Federal
Reserve began its tightening cycle earlier, with a 0.25% hike in March 2022, and further
0.75% hikes in June and July 2022.



3.3. Descriptive Statistics

To better understand the characteristics of the portfolio returns over time, this section
covers key statistical measures, including skewness and kurtosis, as well as the p-value of
the Jarque-Bera normality test.

Table shows these statistics for the daily portfolio returns (or absolute change in

interest rates) for each year and the entire period.

Mean Std Dev Minimum Maximum Jarque Bera

Data Range Kurtosis Skewness (%) (%) (%) (%) p-value (%)
2023 3.812 0.763 0.170  0.328 -0.302 0.900 41.690
2022-2023 3.487 0.276 -0.029  0.452 -1.043 1.569 6.390
2021-2022 4.256 -0.242 0.030  0.284 -0.910 0.954 1.0e 2*
2020-2021 10.536 -0.749 0.013  0.693 -3.780 3.132 2.2 e 14%
2019-2020 4.344 -0.276 0.045  0.262 -0.932 0.944 2.1 03%
2018-2019 3.500 -0.322  -0.010  0.329 -1.047 0.828 3.291%
2017-2018 4.593 -0.028 0.020  0.243 -0.890 1.154 3.0 e 04*
2016-2017 5.463 -0.120 0.020  0.455 -2.095 1.694 2.2 12%
2015-2016 4.420 -0.258 0.067  0.551 -2.178 1.775 8.9 e 04*
2014-2015 4.626 -0.260 0.033 0.441 -1.763 1.528 3.4e705%
2013-2014 3.173 -0.046 0.062  0.491 -1.494 1.313 86.900
Global Backtest g - 0375 0027 0440 -3.780 3.132 9.9 ¢~ 14%
Period

Table 3.3. Summary statistics and Jarque-Bera test p-values. The
Global Backtest Period spans from 11 February 2013 to 27 January 2023.
The null hypothesis of normality is rejected at the 95% confidence level
when the p-value is below 5%. P-values marked with * indicate rejections
at the 5% significance level.

As shown in Table the portfolio’s skewness is negative in most years (except for
2022 and 2023), meaning the distribution’s left tail is longer or fatter than the right tail.
Kurtosis changes over time, peaking in 2020-2021, a period characterized also by high
volatility (a standard deviation of 0.693%). This indicates that the return distribution
has heavy tails and a higher probability of extreme events, which reflects the impact of the
COVID-19 pandemic. The maximum and minimum returns for the entire period occur
during this time, on 2023-03-24 and 2020-03-12, respectively.

Focusing on the results of the Jarque-Bera test for the global backtest period, the
null hypothesis of normality is rejected as the p-value is below the significance level (5%).
This result anticipates that the VaR model based on the normal distribution is unlikely
to perform well, reinforcing the need to consider alternative models for estimating VaR

that account for the non-normality of returns.
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CHAPTER 4

METHODOLOGY

The objective of this study is to manage market risk using VaR over one year. This thesis
aims to analyze the impact of hedging positions on the overall portfolio and individual
classes of risk, as well as the diversification effects within a portfolio of stocks and bonds.
However, to manage a portfolio’s VaR, it must first be accurately estimated.

For this analysis, we consider today as 27 January 2023. On this date, we map the
portfolio to its risk factors so that we can estimate the daily VaR. However, since the
primary goal is to measure VaR precisely, it is crucial to consider the following question:
Which model can more accurately predict VaR over the next year, assuming the portfolio
as of today?

To answer this question, we consider four different classes of VaR models: Parametric
Normal, Skewed Generalized Student-t (SGSt), Historical VaR, and Quantile Regression
(QR). A total of 15 models with different configurations were submitted to backtesting
from the global period (11 February 2013 to 27 January 2023). In this phase, using the
global period as the test period, we perform two key tests: the UC test (Kupiec, 1995)
and the BCP test (Berkowitz et al., |2011)). Based on the backtesting results, we select
the most appropriate VaR model for our portfolio and estimate the VaR for the one year
period from 30 January 2023 to 2 February 2024.

This chapter covers the steps for measuring VaR considering the different models.
These steps include mapping portfolio risk factors, determining portfolio returns, modeling
portfolio volatility, and computing each VaR model. Chapter [5| focuses on the results of
the backtest, which are used to select the most appropriate VaR model for the one-year
forward period starting from 30 January 2023. The final chapter analyzes the impact of

hedging on the portfolio, examining its effects on risk, return, and diversification.
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4.1. Risk Factor Exposure Mapping

To estimate VaR it is crucial to highlight that the model’s performance and the accuracy
of backtesting depend on how well the portfolio’s risk exposure is mapped to the different
risk factors.

Mapping a portfolio into risk factors begins by identifying and quantifying the relevant
exposures using a method known as risk factor mapping. This approach links each port-
folio position with its corresponding risk factor exposure, ensuring a representation of the
portfolio’s overall exposure. The risk factors to which each position is mapped depend on
the asset type, with different assets requiring specific risk factors. The following Figure
illustrates how the portfolio is mapped to a set of risk factors:

\ \

Intelest Rate Rlsk Exchange Rate Rlsk Equity Risk

(3m) (6m) ‘C}@ & é}h (UsD) (AMzN)(NVDA) (ULVR) ()

Figure 4.1. Risk factor mapping of the portfolio. The figure illus-
trates the relationships between assets and their corresponding risk factors.

To summarize, we map our portfolio to its risk factors as of 27 January 2023, ac-
cording to the classification scheme in Figure After quantifying these, we obtain the
corresponding vector of risk factor loadings, as described in Section This vector is
then used to estimate the VaR every day for the 10 years ending on the mapping date.
After selecting the best-performing VaR model, the VaR is estimated for the following
year.

In the following sections, we dive into the different risk exposure mapping methodolo-
gies for each class of assets present in our portfolio. Appendix [A] displays the portfolio

exposures for each risk factor (stocks, bonds, and currencies).

4.1.1. Stock Mapping

To map each asset to its corresponding risk factor, an important question must be ad-
dressed: What is the price of this type of asset sensitive to?

For stocks, the value and performance of an equity investment depend on stock price
movements. In this type of asset class, the risk factor is the change in the stock’s market
price, where the risk exposure is determined by the amount of capital invested.

For risk factor mapping, sensitivity to price changes for each stock corresponds to the
capital invested, calculated by multiplying the number of shares (1V;,) by the respective
market price (F;,):

Mit = Nz’t X Ht X FXt, (41)
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where F'X; is the exchange rate on the mapping date (27 January 2023), used to convert
the foreign stock exposure to the local currency, since the price must be expressed in the

currency for which VaR is estimated.

4.1.2. Bond Mapping

A bond is a financial instrument that consists of a series of cash flows that include periodic
interest payments (coupon payments) and the repayment of the principal amount (face
value) upon maturity. Since these cash flows are predetermined, the value of a bond
will fluctuate only due to changes in the appropriate discount rates applied to each cash
flow’s maturity. As we are calculating market risk, default risk, which constitutes credit
risk, is not considered here. As a result, bond volatility is linked to the volatility of the
interest rates used to discount their cash flows. When interest rates rise, discount rates
rise, reducing the present value (PV') of the bond’s future cash flows and, consequently,
decreasing its price. Therefore, the primary risk factor is the interest rate used to discount
the future cash flows.

The sensitivity of a bond’s price to changes in interest rates is captured by the present
value of a basis point (PV01). Thus, to quantify this metric, it is crucial to know the
future cash flows to discount them to present value.

The present value of the cash flow Cr is:

PVeypp = Cp x e (4.2)

where T is the time from now until the cash flow date, and r; is the annualized continu-
ously compounded interest rate for time 7.

To compute PV 01, which measures the change in a bond’s price for a one-basis point
movement in interest rates, the PV is adjusted to reflect this change. For a single cash
flow, the PV 01 can be approximated using a first-order Taylor expansion as:

_OPVey oy

PVO0lc, ., ~ x (—0.01%)

orr (4.3)
=T x PVey, o % 0.01%.

Given this, the first-order approximation of the P&L of a cash flow, which corresponds

to the change in its PV, can be written as a function of PV 01 as follows:

oPV
APV(CT,TT) ~ % X AT’T ~ —PVOl(CT,TT) X
rT
= —PVUl(CTﬂ“T) X ATT (bp),

A?“T
0.01% (4.4)

where Arp (b.p.) is the absolute change in the interest rate, expressed in basis points

(0.01%).
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In the case of a bond with several cash flows, the total P&L is the sum of the P&Ls

of each cash flow, which can be expressed as:

P&L=APV(C,R)~ > —PVOlz, x ARy, (bp.). (4.5)
i=1
This can also be represented in vector form as:

APV ~ 0T x Ar(b.p.), (4.6)
where .
o= [—Pval —on1Tn} (4.7)
T
Ar(bp) = [Are(bp) .. A, (bp)] (4.8)

Determining the P&L from the sensitivity of bond prices to changes in interest rates
may seem relatively straightforward for a small number of cash flows. However, for a
bond with n cash flows, there are n different interest rates to consider as risk factors, one
for each cash flow maturity. Furthermore, for large bond portfolios, cash flows can occur
almost every day, making the portfolio sensitive to changes in interest rates at virtually
all maturities, which can be a challenge.

To simplify this process, we use cash low mapping to align the bond’s cash flows with a
set of standard maturities, known as the vertices of the cash flow map. For this analysis,
the vertices were selected based on the maturities of the bonds in the portfolio, and
historical rates available from the European Central Bank and Federal Reserve Economic

Data website. The selected vertices of the cash flow map for each currency are detailed
in Table {11

Risk Factor Vertices

Currency
3M 6M 1Y 2Y 3Y 5Y Y 10Y 15Y 20Y
EUR EUR3M EUR6M EURIY EUR2Y EUR3Y EUR5Y EUR7Y EURI10Y EURI5Y EUR20Y
USD USD3M USD6M USD1Y USD2Y USD3Y USD5Y USD7Y USDI10Y - USD20Y

Table 4.1. Vertices of the cash flow map by currency and maturity.

Nevertheless, when considering bonds with non-standard maturities or vertices where
no interest rate is available, we adopt the vertices mapping approach suggested by Alexan-
der (2008]). With this approach, cash flows with non-standard maturities are mapped into
standard vertices for which interest rate data is available.

By using the vertices mapping approach, we perform a PV+PVO01 invariant cash flow
mapping, where the PV of each cash flow is distributed to the lower and upper vertices,
while still preserving the PV and PV 01 of the original cash flow.

14



The PV+PVO01 invariant conditions are the following:

tr e =1 (4.9)
Trar, +1Tyxr, =T
The objective of this condition is to solve in order for x; and xy, which represent the
proportion of PV, assigned to vertices 717, and Ty, respectively, being PV(, determined
by applying Equation with the interpolated rate r; between 17, and Ty;.

The first condition ensures the preservation of the PV of the original cash flow. In
this context, the PV of the original cash flow, denoted as PV, is distributed across two
standard maturity vertices, T, and Ty, where T}, is the nearest lower standard maturity
and Ty is the nearest upper standard maturity ( 7, < 7' < Ty). The second condition
ensures the preservation of the PV 01, guaranteeing that when there is a parallel shift of
all spot rates by 0.01% in the interest rate curve, the combined P&L of the two mapped
cash flows is equivalent to the P&L of the original cash flow.

By solving the condition above, the PV +PV01 invariant conditions ensure that a

non-standard vertex can be mapped to two standard vertices as follows:

Ty —T
= 4.1
S (4.10)
and
g =1—2ar. (4.11)

In this way, we assign each proportion of the present value to the upper and lower
vertices. The PV + PV 01 invariant mapping process is repeated for each standard vertex

maturity, with each exposure defined as -PV01.

4.1.3. Currency Risk

The portfolio includes positions in stocks and bonds from both local and foreign markets.
Since VaR is estimated in EUR, there is exposure to exchange rate fluctuations between
foreign currencies and the EUR. This means that stocks denominated in USD, JPY,
HKG, and GBP are exposed to the USD/EUR, JPY/EUR, HKG/EUR, and GBP/EUR
exchange rates, respectively. Additionally, bonds denominated in USD are also exposed
to the USD/EUR exchange rate. The approach to measuring currency exposure is the
same for stocks and bonds: the exposure in the asset’s currency is equal to the position
value in that currency. To quantify these exposures, the total amount invested in foreign
stocks and bonds is converted to EUR. Assets exposed to the same currency are grouped
together to determine the total exposure for each currency. The exchange rate used for

these conversions corresponds to the mapping date of 27 January 2023.
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4.2. Historical Returns

The portfolio’s sensitivity, derived from risk factor mapping, quantifies how changes in
underlying risk factors impact the portfolio’s value. To determine if these factors result in
a profit or a loss for the portfolio, it is necessary to consider the returns of the respective
risk factors. These returns are represented by the vector of risk-factor realizations (X),
which captures the changes in each risk factor.

Based on the portfolio’s composition, the returns for stocks, bonds, and currency are
considered. For stocks, returns are determined by the relative change in the market price

of each stock from day ¢-1 to day t:

b,
XStocki - (P - 1) y (412)
it—1

where P represents the adjusted close price of stock 1.

For bonds, each cash flow is exposed to its respective interest rates. For interest
rate risk factors we consider the change in their values expressed in absolute terms and

measured by basis points, that is,
ARy, (b.p.) = (iy — i;—1) x 10000. (4.13)

For currency exposures, returns are defined by the relative change in their respective

exchange rates and are calculated as:

FX;
Xpx, = | 4.14
FXz <FX“_1 > Y ( )

being F'X; a currency pair (e.g. USD/EUR). Considering the formulas presented above,

the vector of risk factor realizations (X) is the following:
(e -
(P -1 1)

Arr,

FX;, 1
L \FXipy .
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4.2.1. Profit and Loss of the Portfolio
In a generic way, the P&L in EUR recorded by the portfolio can be computed by multiply-

ing the vector of risk-factor loadings (©) in EUR by the vector of risk-factor realizations

(X). Thus, the historical time series of daily P&Ls for day ¢ can be expressed as follows:

- 1T [ P; T
MStocki <Piti1 - 1)
P&LPortfoliot = GTX = _]va()lTI X OéOLlT‘;o ) (416)
| MCurrencyi ] < Fiéilil — 1)

where © represents the portfolio’s risk exposures to different risk factors, derived from
the risk factor mapping in Section [4.I} and remains constant from the mapping date, 27
January 2023, while X denotes the changes in these risk factors from ¢-1 to .

For our study, the data was reviewed to identify and handle outliers by inspecting
the daily portfolio P&L values and computing the descriptive statistics for the returns
(or absolute change in interest rates) over the selected period. Unexpected measures or
P&L fluctuations with a higher deviation from the expected values were analyzed. If a
price error was identified, the incorrect price was replaced with the correct daily price.
Additionally, linear interpolation was also used to fill the missing data prices for all risk

factors when no information was available.

4.3. EWMA Volatility and Covariance Estimation

To measure VaR and with the portfolio risk already mapped, there is still one question
remaining: How can the volatility of returns be estimated?

As highlighted in the previous section, the vector of risk factor realizations represents
the historical sample of returns. One common approach to measure volatility is to cal-
culate the standard deviation of this sample. However, this method implies that older
observations, which may no longer reflect current market conditions, have the same in-
fluence as more recent ones (for example, yesterday’s returns have the same impact as
last year’s returns). Consequently, volatility is equally influenced by all observations,
regardless of when they occur.

To overcome this, the Exponential Weighted Moving Average (EWMA) volatility
model determines today’s variance as a function of the previous day’s variance. This
model assigns greater weight to recent data, while older observations have a lower impact
on the estimated volatility.

By introducing a time decay factor ()), the influence on past data decreases on average

exponentially, allowing the model to react faster to recent changes in the time series.
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The value of A is subjective and determines how quickly the weight of past observations
decreases. The smaller the \, the greater weight is assigned to more recent observations,
which increases the sensitivity of variance estimates to current market conditions. This
allows the model to quickly detect small changes while accounting for volatility clustering,
making the model more sensitive to recent changes.

Considering the historical daily portfolio returns, the EWMA variance can be recur-

sively estimated as:
67 = (1= N2+ X672 ,, (4.17)

where 0 < X\ < 1 is the smoothing factor, 62 is the variance estimated on day ¢-1 for day
t and r; is the return observed on day t. For covariance estimation between different time

series, the same methodology used for variance estimation is applied, as expressed below:
&ij,t = (1 - )‘)ri,trj,t + )\C}ij,t—la (4.18)

where 7;;, is the estimated covariance between time series ¢ and j at time ¢, and r;; and

r;+ are the returns (or changes) of time series i and j at time ¢.

4.4. Value-at-Risk Models

The measure used to quantify potential losses in this study is Value-at-Risk. This repre-
sents, in present value terms, the greatest loss we are confident (with a probability of 1-
a) will not be exceeded if the portfolio is held static for a given amount of time h. For
this study, we adopt a significance level of alpha = 1% (equivalent to a 99% confidence
level) and a future horizon of 1 day (represented by h), as recommended by the Basel
Committee guidelines. In this scenario, assuming the portfolio remains unchanged over
the one-day horizon, we are 99% confident that losses will not exceed the VaR estimation
on that day. In other words, under normal conditions, we expect the VaR to be exceeded
once in every 100 days (once per é)

According to Alexander (2009)), the a-quantile of the h-day distribution of a continuous
random variable X is a real number z, that corresponds to the cumulative probability of

2. This relationship can be expressed as follows:
P(X <z,) =a. (4.19)

Given the distribution function of a continuous random variable X, the quantile at

any given significance level o can be determined as:
To = F 7 a), (4.20)

where F~! represents the inverse distribution function with cumulative distribution of X.

18



The cumulative probability at a given « level corresponds to the maximum potential
loss, with an a-probability of being exceeded. This concept aligns with the definition of

VaR. Thus, the a-quantile value can be expressed symmetrically as VaR:

VaRy o = —F () = —z,. (4.21)
In mathematical terms, the 100a% VaR of an h-day period is the negative of the

a-quantile of the h-day return distribution or P&L distribution. The choice between
using the return distribution or the P&L distribution depends on whether VaR is being
measured as a percentage of the portfolio value or in the currency in which VaR is being

estimated. For this analysis, we used the P&L distribution.

4.4.1. Parametric Normal VaR

In this model, it is assumed that the h-day portfolio returns follow a normal distribution
with mean pp, and standard deviation oy, which can be expressed as X, ~ N(up,op),
where X}, represents a continuous random variable corresponding to the portfolio returns.
Using the derivation of the formula on Equation for the Parametric Normal VaR, we
obtain the following:

VaRyo = —® (a) x o — pan, (4.22)

where ®~!(a) is the inverse cumulative distribution function (or a-quantile function) of
the standard normal distribution for a given probability level «.

However, according to Alexander (2008)), since we are estimating 1-day VaR (h = 1),
the drift adjustment () can be considered zero for small time horizons E] With this
additional assumption, the simplified formula for the h-day 100a% Parametric Normal
VaR is the following:

VaRy, o, = —® (a) x oy, (4.23)

where the mapped portfolio standard deviation is given by:
o, =VOTX0O. (4.24)

Here, ¥ is the covariance matrix determined using the EWMA volatility model (Equations
and [4.18) and O is the vector of risk factor loadings in EUR.

4.4.2. Skewed Generalized Student’s VaR

As mentioned in Chapter [2] using a normal distribution to fit the financial returns under-
estimates VaR at lower significance levels (more extreme confidence levels). Additionally,
the results in Section [3.3]indicate that the VaR model based on the normal distribution is
unlikely to perform well, highlighting the importance of considering models, such as the
Skewed Generalized Student-t (SGSt) distribution, that capture tail risks and account for
the skewness and excess kurtosis observed in our portfolio’s returns.

'In pratice, on very short time horizons any estimated value for the average return would be of almost
insignificant dimension, so the assumption does not lead to a significant imprecision on the models.
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This distribution, a generalization of the Student-t distribution proposed by Theodos-
siou (1998), captures the characteristics of financial data by accommodating asymmetry
and providing greater flexibility in capturing extreme risks.

For its normalized density function 7j; x4, €ach parameter controls different aspects:

e )\ determines the skewness, where A € (—1,1):

— A = 0: symmetric distribution

— A > 0: positively skewed

— A < 0: negatively skewed
e p > 0 controls the shape of the central region of the distribution.
e ¢ > 0 controls the shape of the tail region of the distribution.

Formally, the h-day 100a% SGSt VaR is defined as:
VaRj, o = _To_,11,,\,p,q(a) X O — [, (4.25)

where the a-quantile of the standard SGSt distribution is represented by T 11 Apig Q)
Similar to the Parametric Normal VaR discussed in the previous subsection, puy is
assumed to be 0, and oy, is estimated using the EWMA volatility model, which leads to

the simplified expression:

VaRy,o = —T(;ll’A’p’q(a) X O (4.26)
4.4.3. Historical VaR

Instead of assuming that portfolio returns follow a specific distribution, the empirical
distribution of actual historical returns can be used to estimate VaR.

It is important to highlight that when computing the distribution from historical data,
the sample size has a considerable influence on the precision of the VaR estimate, as a
larger dataset provides a broad diversity range of values and the VaR estimation becomes
less exposed to outliers. However, as the sample size increases, the representation of
current market conditions decreases, since a larger sample includes data from older periods
that may not adequately represent the current market behavior. In this approach, referred
to as Unadjusted Historical VaR, each observation is given the same weight, meaning that
the effect of the volatility from older data is considered the same as the volatility from
more recent observations.

The volatility-adjusted Historical VaR aims to address this issue. As proposed by
Hull and White (1998), the volatility-adjusted Historical VaR adjusts the entire series
of returns to account for current volatility, while still assigning the same weight to each
observation. This method guarantees that the whole sample better reflects the current

state of the market.
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To implement this approach, we first obtain a series of volatility estimates (672), using

the EWMA model (Equation4.17)), and then adjust the entire series of returns as follows:

~

ar

A

Ty =

T, (427)

~

Ot

where, 7; is the adjusted return, 7T is the VaR measurement date, ; is the volatility
estimate for day ¢, which is estimated at the end of day t — 1, and ¢ < T

To estimate both the Unadjusted and Adjusted Historical VaR, the 100a% h-day
historical VaR, is the a quantile of the empirical h-day distribution. The procedure for
calculating this is as follows: firstly, to replicate the portfolio’s returns in previous market
situations, we calculate the h-day empirical past returns using the chosen sample size
while keeping the portfolio weights constant. Next, we compute the portfolio P&L time
series using these risk factor returns and their respective risk factor loadings. We then sort
the P&L values from lowest to highest, and by assigning each observation a probability of
% (where n is the sample size), we create the empirical h-day portfolio P&L distribution
by accumulating probabilities from the worst return upwards. Finally, we determine VaR

by finding the a-quantile of the cumulative distribution.

4.4.4. Quantile Regression VaR

Estimating VaR is equivalent to determining the symmetric of the a-quantile of the return
distribution. Accordingly, VaR estimates can be obtained from a QR, which models the
portfolio returns as a function of relevant explanatory variables. Consequently, the value of
the QR VaR depends on both the parameter estimates and the values of these explanatory
variables.

Therefore, a-quantile (g, ) regression VaR can be estimated as follows:

k

VaRy = oy = —(a+ Y _ biz;), (4.28)
j=1
where y is the dependent variable, z; is the explanatory variable, and @ and ZA)j are the
estimated parameters of the a-quantile regression of y.
In this study, the dependent variable y represents the portfolio’s P&L, while the ex-
planatory variables are the EWMA volatility estimates of the portfolio, calculated using
different smoothing factors. The parameters of the a-quantile regression are estimated by

minimizing the quantile loss function:
(a,b) = arg mibnz gila—1I.,c0), &=y — (a+bx) (4.29)
R

where I, is an indicator function of event &;:

1, ifg <0,
(4.30)

I&‘i <0 — .
0, otherwise.
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To estimate the daily VaR, we considered five configurations, each differing in the
number of explanatory variables and the sample size. For our study, none of the configu-
rations include a constant (a). Typically, when volatility is the only explanatory variable,
including a constant restricts the model’s adaptability in certain cases. Because volatility
cannot be negative, the constant imposes a lower bound on VaR estimates, restricting
the model’s ability to adapt to low volatility periods. As a result, VaR cannot decrease
sufficiently to reflect these market conditions.

The first specification is defined as:
Yr =b X oxp + &1, (4.31)

where, 0; is the explanatory variable representing the volatility estimate for day ¢, com-
puted using the EWMA volatility model (Equation[4.17)). The second specification, which

includes two explanatory variables is defined as:
Y = bl X Ot + b2 X Ot + &4, (432)

where, o), and o), represent the two portfolio EWMA volatility estimates for day ¢,
each calculated using different smoothing factors (Equation . Similar to the SGSt
model, the parameters were re-estimated every trading day.

Formally, the h-day 100a% QR VaR can be estimated as:

VaR,; = —(61 X Tyt + 62 X $2,t>7 (4.33)

where the explanatory variables are z;; and ;.

4.5. Performance Metrics and Tests for VaR Models

After describing the VaR models and estimating their parameters, a critical question
arises: How can we guarantee that the VaR models predict risk accurately? To answer
this question and to verify that the results of VaR calculations are consistent and accurate,
we perform backtesting. The primary goal is to select the best-performing VaR model
during the backtesting period, ensuring that the losses predicted by the model reflect the
losses experienced.

When measuring a portfolio’s greatest potential loss, it is possible to observe a larger
loss than the predicted VaR. When this happens, an exceedance occurs. The number of
exceedances is the main performance metric used to evaluate a VaR model. To assess the
reliability of these exceedances, we adopt two tests: the UC test (Kupiec, |1995), which
evaluates whether the number of exceedances observed corresponds to the expected, and
the BCP test (Berkowitz et al., |2011]), which checks for autocorrelations between them.
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4.5.1. Unconditional Coverage Test
Introduced by Kupiec (1995), the Unconditional Coverage test (UC) compares whether

the exceedance rate verified throughout the test period (7,ps) corresponds to the expected
exceedance rate (Texp).

According to the definition of VaR, which represents the maximum loss expected not
to be exceeded with a confidence level of 1 — «, there is a probability « that the losses
will exceed VaR. Thus, the expected exceedance rate corresponds to the VaR model’s
significance level a. For example, in a sample of 500 daily observations, if the VaR is
estimated with a 99% confidence level (v = 1%), the expected number of exceedances
is 500 x (1 — 0.99) = 5. This means the VaR will likely be exceeded on approximately
5 days during the sample period. A model performs well if the observed and expected
exceedance rates align.

According to the UC test, the realized number of exceedances must statistically cor-
respond with the prespecified confidence level. To identify an exceedance, an indicator

function is used for a sample of n observations, defined as:

1, if P&L; < —VaR, .
I, = : =TV Aat (4.34)

0, otherwise

where VaR, .. is the estimated VaR for day ¢ This process results in a binary series
of n observations, where 1 indicates an exceedance (a "success"), and 0 indicates a non-
exceedance.

The purpose of the UC test is to check the validity of the null hypothesis, which states
that the probability of the indicator function is equal to the significance level of the VaR
model (a) (Alexander, 2009):

Hy : Tobs = Texp = @ (435)
Hl - Tobs 7é Texp 7 ‘

where the observed and predicted exceedance rates are denoted by mons and ey, respec-
tively.
To determine whether the observed exceedances are statistically consistent with the

significance level, the UC test employs a likelihood-ratio test statistic, expressed as:

ex " 1— ex; "
LRy = (” p) ($> , (4.36)
Tobs 1— Tlobs

where ny is the number of exceedances observed, ng is the number of non-exceedances,

which means the number of days that an exceedance does not occur (ng = n — nq),

_ ni —
Tobs = 2, and Texp = Q.
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Under null hyphotesis (Tops = Texp), the UC test statistic follows a chi-squared distri-

bution with one degree of freedom:
—2In(LRyc) ~ Xi- (4.37)

If the test statistic falls within the acceptance range, meaning that the null hypothesis
is not rejected, the VaR model is considered appropriate. This indicates that the number of
observed exceedances aligns with the expected number at the significance level a (neither
significantly above nor below the expected value).

However, the UC test raises an important question: What if the model passes the UC
test, but the exceedances are temporally dependent? Since Kupiec’s UC test considers
only the number of observed exceedances without accounting for their temporal clustering,
the BCP test is used to address this limitation.

4.5.2. BCP Test

According to the BCP test, a model is well specified if exceedances are independent of
each other, meaning it is not possible to predict when the next exceedance will occur
(Berkowitz et al., 2011). This implies that the time between VaR exceedances is not
related to the time elapsed since the last exceedance. In other words, the BCP test
evaluates the independence of exceedances by examining their k-order autocorrelation.

For a well-specified model, the autocorrelation should be 0 at all lags. The BCP test
assesses this through the following hypotheses:

Ho:ppe =0, Vke{l,... K}

, (4.38)
Hy:3ke{l,...,K}st. pp #0

where p represents the autocorrelation of k-th order of the time series of exceedances.
This time series is derived from the indicator function (where each observation is 1 or 0)
as defined in Equation [4.34] and the highest autocorrelation lag considered in the test is
denoted by K.

The test statistic can be computed recursively as follows:

BCP(K)=n(n+2)) nﬁ_’% - (4.39)

K
=1

k
where n is the sample size of the test.
Under the null hypothesis that pp = 0, the asymptotic distribution of the test static
follows a chi-squared distribution with K degrees of freedom, stated as BCP(K) ~ x%.
The choice of lag order K involves a trade-off. A larger K captures non-independence
at higher-order lags, by including information about the correlations up to lag K. How-
ever, as K increases, the critical value from the x% distribution also rises, reducing the

probability of rejecting Hy.
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On the other hand, a smaller K increases the power of the test because, by reducing
the degrees of freedom and consequently its critical value, it is easier to reject Hy when it
is false, increasing the probability of correctly rejecting Hy. However, a smaller K ignores
any dependencies at higher-order lags.

Given this trade-off, we compute the BCP test considering several different lags, rang-
ing from 1 to 10, establishing a balance between capturing higher-order dependencies
while maintaining an adequate test power. It is important to be aware of the properties
of K when interpreting the results, as the choice of K influences both the power and the
scope of the test.
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CHAPTER 5

BACKTEST

In the previous chapter we detailed the methodology for mapping the portfolio risk factors,
estimating the four VaR models, and explaining the backtesting tests. This chapter
focuses on the results and the performance of each model to select the VaR model to be
applied for the one year going forward.

During the 10-year global backtesting period, from 11 February 2013 to 27 January
2023, we compute a series of daily historical VaR estimates for each model under analysis,
as if the current portfolio had existed throughout the past. This allows us to compare
the losses predicted for each VaR model to those that were experienced over the global
testing period.

We assessed the accuracy of these estimates using the UC and the BCP tests, as

outlined in Subsections [4.5.1] and [4.5.2] respectively. Both tests are important and com-

plement each other because even if the number of exceedances aligns with expectations,
the exceedances can still be correlated, which could indicate the clustering of risk events.
In this situation, if exceedances are correlated, it implies that extreme losses are not oc-
curring randomly but rather in clusters, meaning that the model cannot respond rapidly
enough to changes in market conditions. For example, during periods of high volatility,
losses may cluster, revealing that the model fails to capture the speed and magnitude of
changes in the market.

We perform the tests on both the global backtesting period and annual sub-periods of
one trading year because a model’s performance can differ depending on the timeframe
considered. For example, a model may underperform during specific sub-periods, such as
periods of high volatility, while still performing well overall.

The process for selecting the VaR model is performed over multiple rounds. In the
first stage, models are evaluated using the UC test over the entire backtesting period, with
those with p-values greater than 5% moving forward. In the second round, the focus is on
the BCP test, with models with p-values greater than 5% moving on to the next stage.
This test is only computed for the models that were not rejected in the previous round and
helps us to distinguish between models with a similar number of expected exceedances
(i.e., models with similar UC test performance). In this round, most models can be
rejected in the BCP test due to the high volatility observed in the COVID-19 market
turmoil. If this happens, our decision will be highly based on the UC test, because the
BCP test is sensitive to the timing of exceedances. If exceedances occur in clusters within

a short period, the model can be rejected by the BCP test, even if the overall number of
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exceedances is within acceptable UC limits. Conversely, a model with a higher number
of exceedances might pass the BCP test if these exceedances are well-spaced over time.
Therefore, we prioritize the UC test in our decision-making process. In the third round,
the UC is applied to annual sub-periods. The preferred model is the one with consistent
results across the years, being the ones that maintain a steady number of exceedances
annually, rather than concentrating exceedances in a few years. The last round evaluates
the models in terms of the BCP test, but this time for the annual sub-periods.

This chapter includes Section [5.1] which outlines the parameters, configurations, and
specifications of each model selected for further analysis in backtesting, and Section [5.2]

which presents and explains the VaR model selection process results.

5.1. Model Parameters and Configurations

The study evaluates 15 different configurations of the models discussed in the previous
section: Parametric Normal, SGSt, Historical, and QR. These configurations share a
common parameter, the EWMA smoothing factor. However, the optimal configuration
for one model may not be the best for another. Jorion (2002)) highlighted that if the VaR
models are inaccurate, they must be reexamined for inappropriate assumptions or wrong
parameters. To identify the best-performing representatives of each model class, we tested
multiple variations by adjusting parameters such as sample size and smoothing factors.
From this extensive search, we narrowed our analysis to 15 optimized configurations based
on backtesting results, including the UC and BCP tests. The objective was to select the
best models that fall within the green zone of the traffic light system proposed by the Basel
Committee, which corresponds to backtesting results that do not raise any issue about
the accuracy or quality of the models. If a model with a given configuration performs well
in backtesting, it proceeds to forward analysis. Otherwise, parameters such as the sample
size and the EWMA smoothing factor are adjusted to achieve satisfactory backtesting
results. The 15 models represent a selected sample from the many variations tested, with
the best-performing configurations chosen for each model class.

According to the UC and BCP tests, the configurations of the VaR models for our
portfolio, selected for further analysis, are presented in Table 5.1}
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Models

Class Number Specifications Sample EWMA Smoothing

Size Factor
Normal 1 Parametric Normal with EWMA volatility estimation - 0.970
2 Parametric SGSt with EWMA volatility estimation 370 0.990
SGSt 3 Parametric SGSt with EWMA volatility estimation 500 0.955
4 Parametric SGSt with EWMA volatility estimation 600 0.945
5 Parametric SGSt with EWMA volatility estimation 900 0.960
6 Volatility Adjusted Historical 300 0.975
7 Volatility Adjusted Historical 400 0.975
Hist 8 Volatility Unadjusted Historical 500 -
9 Volatility Adjusted Historical 500 0.990
10 Volatility Adjusted Historical 700 0.970
11 Quantile Regression with EWMA volatility as the explanatory variable 300 0.985
QR 12 Quantile Regression with EWMA volatility as the explanatory variable 400 0.975
13 Quantile Regression with EWMA volatility as the explanatory variable 500 0.970
14 Quantile Regression with 2 EWMA volatility explanatory variables 1000 0.980 and 0.930
15 Quantile Regression with EWMA volatility as the explanatory variable 700 0.955

Table 5.1. VaR Model Descriptions. Each model adopts a different
sample size and EWMA smoothing factors. These values are determined
based on the backtesting results, according to the specification for each
model.

5.2. Backtest Results

As described in the previous section, selecting a VaR model for further analysis involved
adjusting the configurations of each model class to identify the best fit, allowing them
to proceed to backtest. The backtesting period is from 11 February 2013 to 27 January
2023, corresponding to 2600 trading days (520 weeks). For a well-specified model at the
1% significance level, the UC test expects approximately 26 exceedances (1% of 2600).
Generally, the null hypothesis is rejected at a 95% confidence level of the test statistic
when the p-value is below 5%. This way, the UC and BCP tests are not rejected when
the p-value is above 5%. Table below presents the exceedance rate and the p-value of
the UC test for all the models.

Exceedance  UC Test

Class  Number “p .o (%)  p-value (%)

Normal 1 1.50 1.70*
2 1.00 100.00
3 1.08 69.70
SGSt 4 1.12 56.15
5 1.00 100.00
6 1.12 56.15
7 1.08 69.70
Hist 8 1.38 6.25
9 1.19 33.88
10 1.23 25.37
11 1.23 25.37
12 1.19 33.88
QR 13 1.27 18.54
14 1.38 6.25
15 1.19 33.88

Table 5.2. UC test results for the different models over the global
period. P-values marked with * are rejected at the 5% significance level.
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As observed in Table we reject model 1, as it presents a higher number of ex-
ceedances, leading to a rejection of the Unconditional Coverage (UC) test. The Parametric
Normal model is rejected due to its assumption that returns follow a normal distribution,
which fails to capture the observed data characteristics in Section [3.3] Over the global
period, the model that best captures the negative skewness and kurtosis of the portfolio’s
returns is the SGSt. This distribution consistently shows a higher p-value over the dif-
ferent configurations. This result is consistent with the analysis presented in Section
and the findings of Pafka and Kondor (2001)), which highlighted that the financial data
with the characteristics of our portfolio (higher kurtosis and negative skewness) is better
captured by the SGSt instead of the Normal model. Following this, the Historical dis-
tribution seems to be a good fit with certain configurations, particularly for the return’s
distribution in models 6 and 7. All models, except model 1, are within the acceptance
range. Among the accepted models, the ones that stood out were models 2 through 7
because they present an exceedance rate close to the expected (1%). Specifically, models 2
and 5 present an exceedance rate exactly equal to what is expected. To proceed with the
analysis, the models rejected by the UC test were excluded. For the remaining models,
Table presents the results of the BCP test for the global period.

BCP p-value (%)
Lag1 Lag2 Lag3 Lag4 Lagb5 Lag6 Lag7 Lag8 Lag9 Lag 10

Class Number

2% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
SGSt 3% 0.18 0.33 0.01 0.02 0.06 0.11 0.12 0.22 0.37 0.00
4* 0.29 0.57 0.02 0.06 0.13 0.25 0.29 0.49 0.78 0.05
5% 0.06 0.09 0.00 0.00 0.01 0.02 0.02 0.03 0.05 0.00
6* 0.29 0.57 0.02 0.06 0.13 0.25 0.29 0.49 0.78 0.05
* 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Hist 8% 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
9% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
10%* 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00
11* 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
QR 12* 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
13* 0.01 0.02 0.00 0.00 0.00 0.00 0.01 0.01 0.02 0.00
14* 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00
15% 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.02 0.03 0.00

Table 5.3. BCP test results for the global period, for lags from 1
to 10. A model passes the BCP test if the p-value exceeds 5%, indicating
that the exceedances are independent across the specified lags. The lags
represent the time intervals considered for assessing the independence of
exceedances generated by the models. VaR models marked with * in the
Number column are rejected at least at one of the lags.
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From Table [5.3, we observe that all models are rejected at a 95% confidence level of
the BCP test across all lags. Failing this test means that the models tested are not gen-
erating independent exceedances over time, tending to generate consecutive exceedances
or exceedances separated by intervals within the range of 1 to 10 days.

Although all models failed the global BCP test, models 4 and 6 were the closest
to passing. In both cases, their rejection was mainly due to exceedances with 3- and
10-day intervals, since the p-value decreases at these lags. For the remaining lags, the
p-value increased due to the higher degrees of freedom in the test distribution. Since
no exceedances occurred at these intervals for both models, the test statistics remained
unchanged, and the p-value rises as the degrees of freedom increase.

Since all the models are in the rejection range of the BCP test, we consider the ones
with the best global UC test results. According to Table [5.2] models 2 through 7 meet
this criterion, so we narrow our selection to these models.

Tables and show UC test results across sub-periods for models 2 to 7. The
results for the remaining models are presented in Tables [B.2]and [B.]] located in Appendix

Bl

Date Model 2 | Model 3 | Model 4
Range Exc. Rate Number of p-value | Exc. Rate Number of p-value | Exc. Rate Number of p-value
(%) Exc. (%) (%) Exc. (%) (%) Exc. (%)
2022-2023 0.00 0 2.22% 0.38 1 25.44 0.38 1 25.44
2021-2022 0.38 1 25.44 1.15 3 80.77 1.15 3 80.77
2020-2021 2.69 7 2.34% 1.92 5 18.44 2.31 6 7.01
2019-2020 0.77 2 69.67 1.15 3 80.77 1.15 3 80.77
2018-2019 1.54 4 41.87 1.15 3 80.77 0.77 2 69.67
2017-2018 0.77 2 69.67 0.77 2 69.67 0.77 2 69.67
2016-2017 0.38 1 25.44 0.38 1 25.44 0.77 2 69.67
2015-2016 1.15 3 80.77 1.15 3 80.77 1.15 3 80.77
2014-2015 1.15 3 80.77 1.54 4 41.87 1.54 4 41.87
2013-2014 1.15 3 80.77 1.15 3 80.77 1.15 3 80.77

Table 5.4. UC test results for models 2, 3, and 4 across one-year
sub-periods. P-values marked with * are rejected at the 5% significance

level.
D Model 5 | Model 6 | Model 7
ate
Range [Exc. Rate Number of p-value | Exc. Rate Number of p-value | Exc. Rate Number of p-value
(%) Exc. (%) (%) Exc. (%) (%) Exc. (%)
2022-2023 0.00 0 2.22% 0.77 2 69.67 0.38 1 25.44
2021-2022 1.15 3 80.77 0.77 2 69.67 0.38 1 25.44
2020-2021 1.92 5 18.44 1.54 4 41.87 1.54 4 41.87
2019-2020 1.15 3 80.77 1.15 3 80.77 1.15 3 80.77
2018-2019 1.15 3 80.77 0.77 2 69.67 1.54 4 41.87
2017-2018 0.77 2 69.67 1.92 5 18.44 1.92 5 18.44
2016-2017 0.38 1 25.44 0.77 2 69.67 0.38 1 25.44
2015-2016 1.15 3 80.77 1.15 3 80.77 1.15 3 80.77
2014-2015 1.15 3 80.77 1.15 3 80.77 1.15 3 80.77
2013-2014 1.15 3 80.77 1.15 3 80.77 1.15 3 80.77

Table 5.5. UC test results for models 5, 6, and 7 across one-year
sub-periods. P-values marked with * are rejected at the 5% significance
level.
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The choice of the model should fall on the model that has more consistent results
on an annual basis. For instance, it is preferable to have a small number of exceedances
distributed each year rather than having all the exceedances concentrated in specific years
and none in the others.

From Tables and it is possible to observe that the choice of the model is
challenging, since all models perform very similarly in the earlier sub-periods, with only
slight differences in the number of exceedances. The most significant difference is seen in
the sub-period 2020-2021, where most models have increased exceedances. This period was
extraordinarily demanding for the models due to all the turbulence caused by COVID-19,
a period of high volatility.

Despite the overall similarities among the models, the exceedances for model 2 show
inconsistencies over some periods. The highest exceedance rate (2.69%) occurred in 2020-
2021, while no exceedances were observed in 2022-2023. Consequently, model 2 was
rejected at a 5% significance level for this period. Similarly, model 5, which had no
exceedances in the 2022-2023 subperiod, was also rejected by the UC test. This highlights
that even when a model meets the expected number of exceedances (as seen with models 2
and b), it can still be not optimal if those exceedances are not evenly distributed (clustering
of exceedances). Consequently, both models were excluded from further analysis.

Nevertheless, selecting the best model remains challenging because the exceedances
appear to be compensated over periods. For example, when comparing models 3 and
6, model 6 has one fewer exceedance in the 2020-2021 sub-period but one more in the
2022-2023 sub-period. This balancing effect complicates the decision-making process, as
no single model consistently outperforms the others across all periods.

Overall, the remaining models (models 3, 4, 6, and 7) perform very similarly over the
annual sub-periods. To break the tie and select the most suitable model, we consider
again the exceedance rate over the global period, based on the global UC test results.
Although models 4 and 6 were the closest to passing the global BCP test, they also show
the highest exceedance rate over the global period (1.12%) among the four models. This
narrows the selection to models 3 and 7, exhibiting an exceedance rate of 1.08%. To make
the final decision, we examine the annual sub-periods for the BCP test for each model.

Tables and present the p-values of the BCP test for the annual sub-periods

across all ten lags for models 3 and 7, respectively.
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Date BCP p-value %

Range Lag1 Lag2 Lag3 Lag4 Lagb Lag6 Lag7 Lag8 Lag9 Lagl10
2022-2023 94.99 99.60 99.97 100.00 100.00 100.00 100.00 100.00 100.00  100.00
2021-2022 84.93 96.43 99.07 99.74 99.93 99.98 99.99 100.00 100.00 100.00
2020-2021 74.95 90.26 0.00* 0.00* 0.00*  0.00*  0.00* 0.00* 0.00* 0.00%*
2019-2020 84.93  96.43  99.07 99.74 99.94  99.99 100.00 100.00 100.00 100.00
2018-2019 84.93 96.43 99.07 99.74 99.93 99.98 99.99 100.00 100.00 0.12*
2017-2018 92.90 99.21 99.90 99.99 100.00 100.00 100.00 100.00 100.00 100.00
2016-2017 94.99  99.60 99.97 100.00 100.00 100.00 100.00 100.00 100.00  100.00
2015-2016  0.00*  0.00*  0.00* 0.00*  0.00*  0.00*  0.00* 0.00%* 0.00* 0.00%*
2014-2015 79.92 93.70 97.82 99.20 99.70 99.89 99.96 99.98 99.99 100.00
2013-2014 84.93  96.43  99.07 99.74 99.93  99.98  99.99  100.00 100.00  100.00

Table 5.6. BCP test results for annual sub-periods across 10 Lags
for model 3. Bold values indicate p-values that differ between model 3
and model 7. P-values marked with * are rejected at the 5% significance
level.

Date BCP p-value %

Range Lag1l Lag2 Lag3 Lag4 Lagb5 Lag6 Lag7 Lag8 Lag9 Lag10
2022-2023 94.99 99.60 99.97 100.00 100.00 100.00 100.00 100.00 100.00  100.00
2021-2022 94.99 99.60 99.97 100.00 100.00 100.00 100.00 100.00 100.00 100.00
2020-2021 79.92 93.70 0.00* 0.00*  0.00* 0.00* 0.00* 0.00* 0.00* 0.00*
2019-2020 84.93 96.43 99.07 99.74  99.94  99.99 100.00 100.00 100.00 100.00
2018-2019 82.60 95.25 0.01* 0.04* 0.09* 0.20* 0.40* 0.74* 1.29*% 2.13*
2017-2018 77.57 92.16 96.97 98.77 99.49 99.78 99.90 99.96 99.98 99.99
2016-2017 94.99 99.60 99.97 100.00 100.00 100.00 100.00 100.00 100.00  100.00
2015-2016 0.00*  0.00* 0.00*  0.00*  0.00*  0.00* 0.00* 0.00%  0.00* 0.00*
2014-2015 84.93 96.43 99.07 99.74 99.93 99.98 99.99 100.00 100.00 100.00
2013-2014 84.93 96.43 99.07 99.74  99.93  99.98  99.99 100.00 100.00 100.00

Table 5.7. BCP test results for annual sub-periods across 10 Lags
for model 7. Bold values indicate p-values that differ between model 3
and model 7. P-values marked with * are rejected at the 5% significance
level.

From the tables above, we can observe that the global BCP test results for both
models were strongly influenced by the rejection in the subperiods 2015-2016 and 2020-
2021. Overall, the two models exhibit a similar performance, however, the main difference
is observed in the sub-period 2018-2019, where model 7 is rejected for lags from 3 to 10,
while model 3 passes the BCP test for all lags, except for lag 10. This is illustrated in
Appendix [B], which presents two graphs showing the temporal distribution of exceedances
for both models. In each graph, triangles represent the P&L on days when exceedances
occurred for both models, while circles indicate the P&L on days with an exceedance in
only one model. It can be observed that model 7 shows consecutive exceedances in early
2018, but almost none between 2020 and 2022, while for model 3 these exceedances are

more distributed over time.
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Therefore, to summarize and justify the final model selection we need to recap the
decision process. Models 3 and 7 have the exact same exceedance rate and are both
rejected by the global BCP test, due to cluster of exceedances in the 2015-2016 and 2020-
2021 sub-periods. This means that both models are slow to adapt and tend to generate
clustered exceedances. Even though both models fail the test, model 7 performs worse
because its exceedances occur over several consecutive days, which is more problematic
than model 3, whose exceedances occur at three-day intervals (as observed in the 2020-
2021 subperiod in Table . Considering all of this we proceed with model 3, the
Parametric SGSt with EWMA volatility estimation, a sample size of 500 and A =0.955.

Figure presents the details for the exceedances in the selected model and comple-

ments the BCP test results. In the figure, the grey portion represents the size of each

exceedance, while the corresponding percentage indicates the exceedance relative to the
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Figure 5.1. Exceedances details for model number 3 over the
global backtesting period.

As shown in Figure[5.1] during the 2015 period, exceedances occurred on three consec-
utive trading days (20, 21, and 24 August 2015). This clustering explains the rejection of
the global BCP test for lags up to 10 in this period, as the test detects autocorrelation at
any lag within the specified range. Similarly, during the 2018-2019 period, the exceedance
that occurred 10 trading days apart (from 10 October to 24 October 2018) was also well
captured by the BCP test, since lag 10 was the only rejected lag. Additionally, in 2020,
the exceedance on February 24 was followed by exceedances with gaps of 3, 7, and 10
trading days, occurring on February 27, March 9, and March 12, respectively. These
exceedances account for the rejection of the global BCP test at lags from 3 to 10.

Appendix [B] provides further information on the backtesting results for the other
models, with detailed UC test results for each sub-period.
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CHAPTER 6

VaR MANAGEMENT

The selected model, Parametric SGSt with EWMA volatility estimation (sample size of
500, A=0.955) is used from now on. VaR is measured and managed over one period going
forward from the mapping date of 27 January 2023 until 2 February 2024.

An important consideration in managing portfolio exposure is to define the acceptable
level of risk. This aligns with the concept of Economic Capital (EC), which represents
the desirable level of capital to hold that is sufficient to cover the risk exposure with a
given degree of confidence over a specified time horizon. This is quantified using VaR,
meaning that, numerically, Economic Capital is equivalent to VaR.

To define the level of EC we established the following goal: we want the daily exposure
to be below the average VaR level measured over the 10 years, under normal volatility
conditions. We designated this threshold as the stop-loss limit. Observing Figure[B.I]from
Appendix B, during the Backtesting period, VaR ranged mostly between € 50 000 and
€ 200 000, excluding the high volatility period in 2020 (Covid-19), when VaR was higher
than this. Since we want our stop-loss limit to be based on normal market conditions,
VaR during these periods was on average € 96 000. To manage VaR over a one year
we want the stop-loss limit to be slightly below this, at € 95 000, which corresponds
to approximately 1.2% of the portfolio value as of the mapping date. The approach for
limiting losses is as follows: each day throughout one year, we estimate the next day’s
VaR based on the portfolio composition at the end of each day. If the estimated loss
exceeds € 95 000, we implement a hedging strategy to keep the VaR below this limit.
Otherwise, no hedging is applied. This process is repeated daily from 27 January 2023
to 2 February 2024. This means that hedging is dynamic, since the positions are only
taken whenever VaR is higher than € 95 000. In other words, whenever the VaR without
hedging is below the stop-loss limit we remove the hedging position. Additionally, during
this period when bond coupons are received, they are reinvested, as detailed in Table[C.1]

This chapter focuses on the results of VaR management and details the impact of
hedging at the portfolio level, including its effects on portfolio risk, diversification, and
P&L. First, we analyze the portfolio risk on the first day the loss limit is exceeded. Then,
we implement a hedging strategy based on risk decomposition and compare its impact on
both the hedged and unhedged portfolios.
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6.1. VaR Decomposition

To measure how much a position contributes to the overall VaR of a portfolio, we decom-
pose VaR into its marginal VaR components. By assigning a proportion of the total risk
to each component, marginal VaR is used to disaggregate VaR while considering diver-
sification benefits among the risk components. Marginal VaR can also be defined as the

diversified VaR and is expressed by the following formula:
Marginal VaR® = Vf(0)7 0%, (6.1)

where V f(0©)T is the gradient vector, which represents the sensitivity of each risk factor
against the portfolio to small changes in the exposure to each risk factor.

For our study, we decompose marginal VaR contributions by asset class (stocks and
bonds) to analyze how different asset categories influence the portfolio’s risk profile. Table
shows how much each risk factor contributed to the total VaR on 30 January 2023,
the first day the VaR threshold was exceeded.

Category Equity Bonds FX Total

Equity Bonds

Marginal VaR (€) 82328.95 13311.69 9577.28 9576.05 114793.97
Marginal VaR (%) 71.72 11.60 8.34 8.34 100.00

Excess VaR (%) 20.84

Table 6.1. VaR decompositions for stocks and bonds. Equity VaR
reflects stock price risk, while FX Equity captures additional currency risk
from foreign stocks. Bond VaR represent interest rate risk, and FX Bonds
account for currency risk in foreign bond holdings. All values are in EUR.

On 30 January 2023, stocks accounted for 72% of the portfolio’s total risk, repre-
senting the main source of overall risk. Stocks and bonds contributed equally to the
portfolio’s currency exposure, which represented 16.68% of the VaR on that day. Since
stocks are the asset class with the highest marginal VaR, Table details the exposures
from stocks, including both stock risk and the currency risk arising from investments in

different regions.

Equity Equity FX
U.S. Europe Asia USD GBP JPY HKD

Marginal VaR (€) 51201.16 30687.03 440.77 7979.41 149.68 1538.43 -90.23 91906.24
Marginal VaR (%) 55.71 33.39 0.48 8.68 0.16 1.67 -0.10 100.00

Category Total

Table 6.2. Equity risk decomposition by region and currency ex-
posure.
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Table shows a significant concentration of risk in two regions: U.S. and Europe.
Together, these regions contribute to 97.94% of the portfolio’s stock VaR, with U.S. be-
ing the largest contributor. The remaining 2.06% of VaR comes from Asian equity. Our
objective is to reduce this main risk. However, when hedging positions are implemented,
it is important to recognize that reducing VaR to the target level with only one position
can be impossible. If we hedge VaR using only one position, the required size of that
position would likely be so large (the VaR reduction would be larger than the marginal
VaR of the risk factor) that it would significantly alter the portfolio’s overall sensitivity
to the risk factor. These large sensitivity variations would make it difficult to hedge the
portfolio exposure with only a single position. Therefore, we hedge the two main risk
sources. Given the geographic concentration observed on this day, we implemented hedg-
ing strategies to mitigate exposure to these dominant regions. Specifically, we implement
hedging strategies by taking short positions in the indices with the highest marginal VaR
in each region using futures contracts over the indexes with a 1-day maturity. As a result,
for North American equities (the main source of stock risk), we shorted the S&P 500
index, while for European equities (the second largest source of risk), we used the CAC
40 to adjust the final position and reach the desired target (€ 95 000). CAC 40 was

chosen because it represents the largest risk exposure (45%) from Europe.

6.2. Hedging strategy

To determine the size of the hedging positions, we analyze the incremental effect on VaR
of adding a new instrument to the portfolio. This concept, Incremental VaR, measures
how much risk a position adds to the portfolio. For example, if it is positive, increasing
the size of the position will increase the portfolio risk. With this in mind, for a given
target change in the VaR, we determine the required hedging position by the following
procedure:
AVaR = f(0') — f(©) * Vf(O) x (6 —0). (6.2)
As highlighted previously, we implement the hedging positions based on the two main
marginal contributions to portfolio VaR. However, it is important to consider the foreign
currency exposure if the index is denominated in a foreign currency. For example, hedging
U.S. market exposure with the S&P500 index creates both an S&P500 futures contract
exposure and a USD/EUR currency exposure. Therefore, to adjust a hedging position for
a desired change in VaR, the required exposure is calculated based on the sensitivities to
risk factors such as the S&P 500 and USD/EUR exchange rate, expressed as below:
oVaR oVaR
55&p500 < ersn T GaspRuR ¢ fserin:
Finding Osg p500 determines the amount that is needed to hedge the U.S. stock exposure

AVaR ~ (6.3)

to guarantee the stop-loss limit for the next estimated day does not exceed € 95 000.
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Although, after applying the hedging position on the S&P500, the target VaR of € 95
000 was not fully achieved, since the sensitivities to the risk factor change as the risk factor
exposure changes (by introducing a hedging position). To address this, after applying the
initial hedging position, as stated in Equation [6.3] and achieving a partial reduction in
VaR, we once again use Incremental VaR to determine the required hedging position in
the CAC 40 to reach the target VaR reduction.

The following formula determines the size of the hedging position in the CAC40:

oVaR
m X 9CAC4O~ (64)

Thus, for the one year, we first determined fsgpsoo using Equation to achieve a

AVaR ~

partial reduction, and then applied Equation to calculate Ocacao in order to reach the
target VaR.
Figure shows the short positions taken in the S&P500 and CACA40.
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Figure 6.1. Daily short positions on the CAC 40 and S&P 500
indexes.

As expected, since the primary risk comes from the U.S. market, the hedging positions
in the S&P500 are larger than the CAC 40, the index with the highest marginal VaR in
Europe. Additionally, on 6th March, both positions reached a peak, with the S&P500
exceeding CAC 40 by 351%. It is interesting to observe that the size of S&P500 position
shows large variations compared to CAC 40, which remains relatively stable. This is in
line with the strategy taken: we first hedge the position with the highest marginal VaR
to achieve a larger reduction in overall risk and then adjust the second position to reach
the desirable target level. The following subsections present the results and the impact of
these strategies on the overall portfolio, including risk, diversification effects, and returns.
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6.3. VaR Management Results

In the following section, the Hedged Portfolio refers to the portfolio with hedging positions
shown in Figure [6.1] while the Unhedged Portfolio represents the portfolio without them.
Figure illustrates the VaR management results for both the Hedged and Unhedged
portfolios over one year, while Figure in Appendix [C] presents these results with a

focus on stocks, the main driver of portfolio risk.
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]
W 100 | M [\L
| |
| |
80 f
02/2023 08/2023 02/2024
Date
—— VaR Unhedged VaR Hedged

Figure 6.2. Daily VaR estimates comparison between Unhedged
and Hedged Portfolios.

Figure demonstrates that the portfolio’s overall risk decreased. On average, both
total portfolio risk and stock risk declined by approximately 4.37% over the one year
considered (the total portfolio risk declined from € 94 522 to € 90 390 while the stock
risk declined from € 78 972 to € 75 518). However, despite this reduction, it is important
to focus specifically on days when hedging was applied. While including all days (both
with and without hedging) provides a broad overview of the portfolio’s performance,
it dilutes the actual impact of the hedging, since risk on non-hedging days offsets the
observed risk reduction on hedging days. To isolate the true effect of hedging, Table [6.3
presents the average results exclusively for the days when hedging was applied, which
corresponds to the 120 out of 266 days on which VaR exceeded € 95 000.
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Unhedged Hedged

. . Variation Variation in
Risk Factor Marginal VaR Marginal VaR ; "prrg (%) portfolio weight (%)
EUR Pct (%) EUR Pct (%)
U.S. 56 480.43 54.22  49595.70 52.21 -12.19 -2.02
S&P500 56 480.43 54.22  49595.70 52.21 -12.19 -2.02
Europe 27782.24 26.67  26895.84 28.31 -3.19 1.64
DAX 10137.95 9.73 10366.68 10.91 2.25 1.18
AEX 2123.51 2.04 2119.74 2.23 -0.18 0.18
CAC 40 12077.98 11.60  10989.40 11.57 -9.01 -0.03
IBEX 2911.89 2.80 2950.47 3.11 1.32 0.31
FTSE 100 530.91 0.51 470.15 0.49 -11.45 -0.01
Asia 1950.22 1.87 2064.32 2.17 5.85 0.30
N225 1919.61 1.84 2037.23 2.14 6.13 0.30
HSI 30.61 0.03 27.09 0.03 -11.50 0.00
Total Equity 86212.90 82.77  78555.87 82.69 -8.88 -0.08
Total Currency 14879.79 14.29  12556.45 13.22 -15.61 -1.07
Total Bonds 3067.40 2.94 3887.68 4.09 26.74 1.15
Total Portfolio 104160.08 100.00 95000.00 100.00 -8.79 —

Table 6.3. Average Marginal VaR before and after hedging by
region and index. The table presents the average marginal VaR for the
unhedged and hedged portfolios, considering only the 120 out of 266 days
on which hedging was applied.

Before analyzing Table let’s remember our main goal: the objective of hedging
was to decrease both total portfolio and stock risk. On days when hedging was applied,
total portfolio risk was reduced by 8.79%, and total stock risk decreased by 8.88%, which
is consistent with our main objective. However, by analyzing the variation in portfolio
weight for each risk element, we can observe that the risk has been redistributed. As
expected, while hedging reduced exposure to the S&P500 and CAC 40 indices, it also
changed the correlations between assets, resulting in changes in how risks were spread
across the portfolio. Indeed, the largest variations in risk occurred in factors that were
not directly hedged, such as currency and interest rates. On the one hand, currency risk
saw the largest decrease. By taking short positions, the currency contribution dropped
by 1.07% in portfolio weight, since the position in the S&P500 reduced exposure to the
U.S. currency market. On the other hand, interest rate risk had the largest increase, both
in terms of absolute value and portfolio weight. This can be explained by the fact that
hedging altered the portfolio’s exposure by also changing correlations and sensitivities
between assets. Specifically, the increase was mostly caused by changes in the correlation
of short-term rates, which included EUR3M, EUR6M, EUR1Y, USD3M, USD6M, and
USD1Y. Among them, EUR6M and USD1Y showed the largest increase in correlation,
rising by 46%. Thus, the hedging strategy shifted the relative importance of the various

risk factors, making interest rates a more dominant source of portfolio risk.
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Regarding the hedged risk factors, the S&P500 had a larger decrease in both portfolio
weight and absolute terms compared to the CAC40. This can be explained by the fact
that, in the unhedged portfolio, the risk associated with the U.S. equities was, on average,
5.2 times greater than the risk from French stocks (represented by the CAC 40 index).
Consequently, the hedging strategy had a more significant impact on the U.S. market.
Additionally, both Europe and Asia experienced an increase in their risk weights within
the overall portfolio. In Europe, despite a decrease in marginal VaR, the increase was
driven by a higher risk weight in practically all unhedged indexes, except for the FTSE.
Among them, the DAX contributed the most to the rise in Europe’s overall risk weight. In
Asia, the N225 was the main index responsible for the increase in the region’s risk weight.
Overall, the reduction in U.S. equity risk, combined with the rise in European and Asian
stocks, resulted in a more balanced distribution of stock weights within the portfolio, since
the total stock weight remained nearly unchanged (a decrease of just 0.08%).

From the analysis of Table [6.3] we conclude that hedging altered the distribution of
each risk factor exposure while decreasing some risk. In the previous table, our focus
was solely on changes in diversified VaR. To complement this analysis, the following table
introduces the concept of undiversified VaR, presenting the diversification effects on both
the worst VaR day and on average hedged days across the main risk factors. We con-
sidered these two scenarios to compare portfolio dynamics under extreme versus average
market conditions. To calculate the diversification effect, we consider both standalone
and marginal VaR. We define the diversification effect as:

Standalone VaR — Marginal VaR
Standalone VaR ’
where the standalone VaR measures the risk of each asset in isolation, independent of its

Diversification Effect (D.E.) =

(6.5)

correlations with other portfolio components. The Marginal VaR is defined in Equation
6.1l The resulting value quantifies the reduction in total risk due to the interactions
between assets within the portfolio.

Table presents the diversification effects between stocks, interest rates and curren-
cies on both the worst day of VaR (the day with the highest total VaR within the one
year) and the average hedged days. The worst VaR day occurred on 17 March 2023, when
VaR exceeded the limit by 30.4%. Additional details on the diversification effects for each
risk index are provided in Table in Appendix [C]
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Worst VaR day On average hedged days
Unhedged D.E. Hedged D.E. Variation Unhedged D.E. Hedged D.E. Variation

Risk Factor

Equity (%) 17.14 50.61 195.35 14.67 29.77 102.96
Bonds (%) 41.15 43.50 5.71 87.82 84.56 -3.71
Currency (%) 111.62 100.81 -9.69 66.46 68.01 2.34

Table 6.4. Diversification effects for equity, interest rate, and cur-
rency. A 20% diversification effect means 20% of the total VaR (undiversi-
fied or stand-alone VaR) is reduced due to risk factor interactions. A larger
diversification effect is better since it indicates a greater risk reduction.

According to the results presented in Table [6.4] the asset class with the greatest di-
versification benefits on average (measured by the largest difference between undiversified
and diversified VaR) are bonds, followed by currencies, and then stocks. Building on
the findings from Table [6.3] an inverse relationship between risk and diversification was
observed across all portfolio components.

By observing Table [6.4] the significant increase in stock diversification stands out im-
mediately, both on average days and worst day. As expected, by taking hedging positions
on indexes, the total stand-alone of stocks increases while the marginal VaR decreases,
which amplifies the diversification effect. As detailed in Table in Appendix [C] the
hedged indices saw the largest increase in diversification after hedging, both on the worst
day and on average. This occurred because the hedged indices experienced the greatest
reduction in marginal VaR, resulting in a wider gap between diversified and undiversified
VaR. This effect is also observed in the currency risk factor, however, with a much smaller
variation. For the unhedged risk factor (interest rate), hedging did not alter its risk factor
exposure. Therefore, its stand-alone VaR remained unchanged, and the slight decrease in
diversification was solely due to an increase in its marginal VaR after hedging. On the
worst day, the interest rate risk did not exhibit the same behavior because its marginal
VaR decreased. Additionally, while equity risk consistently shows a significant increase
in diversification after hedging in both situations, interest rate and currency exposures
showed an inverse pattern when comparing the worst VaR day and the average hedged
days.

From this analysis, we conclude that hedging impacts risk and diversification. How-
ever, while risk is reduced, the portfolio’s profit and loss can also be affected, since the
lower volatility caused by the short positions can limit potential gains. Therefore, the

next section analyses the trade-off between risk reduction and its impact on profitability.
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6.4. Performance Analysis

Figure illustrates the daily P&L differences between the hedged and unhedged port-

folios over one year.

20

€K
o

—90 L ‘ ‘
02/2023 08,2023 02/2024
Date
—— P&L Difference

Figure 6.3. Daily P&L difference between Hedged and Unhedged
Portfolios.

As displayed in Figure [6.3] above, the period with the largest variation in the P&L
difference coincides with the largest decrease in VaR observed in previous Figure [6.2
This can be explained because when hedging positions are implemented, the portfolio’s
risk profile changes, leading to fluctuations in the P&L. This is evidenced by the fact that,
on some days, hedging increased P&L, while on others, it limited profits. Specifically, on
nearly half of the days, the P&L increased (58 out of the 120 hedged days). On the
remaining days, the P&L of the hedged portfolio was lower than that of the unhedged
portfolio, meaning that hedging limited profits on 62 days. Overall, the standard deviation
of the P&L decreased by 4.4%. To better understand this trade-off, we analyze the results
by distinguishing between days when the unhedged P&L was positive and those when it
was negative. Table presents the difference between the hedged and unhedged P&L,
distinguishing between positive and negative unhedged P&L days to show the trade-off
in the impact of hedging.

Statistic P&Lunhedged >0 P&Lunhedged <0
Average (€) -2747.29 3576.72
Maximum (€) 3617.46 23197.86
Minimum (€) -17204.92 -4 843.30
3Q -311.65 5235.20

Table 6.5. Profit and Loss difference between hedged and un-
hedged portfolios. The table presents some statistics for the P&L dif-
ference (P&Lpedged-P&Lunhedged) based on whether the unhedged P&L was

positive or negative.
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As highlighted in Table[6.5] hedging reduced on average P&L by € 2 747 on days with
positive unhedged P&L. This reflects the trade-off in risk reduction as lower risk typically
limits the potential for higher profits. Conversely, on days with negative unhedged P&L,
hedging improved performance by increasing the average P&L by € 3 577, since the risk
reduction helped mitigate losses.

Looking at the maximum differences, the largest difference between the hedged and
unhedged portfolio during a positive P&L scenario was € 3 617. However, when unhedged
P&L was negative, the maximum benefit reached € 23 198. This reinforces that, during
downturns (P& Lynhegea<0), hedging can significantly limit losses, as the largest difference
occurs when the unhedged result is negative. On the other hand, the minimum difference
observed when unhedged P&L was positive was —€ 17 205, reinforcing that in some
cases, the hedge reduced profits. The third quartile values further support these findings.
In 75% of positive P&L cases, hedging reduced profits by at least € 312, while in 75% of
negative P&L cases, it improved results by at least € 5 235.

Figure presents the performance of VaR and the exceedances observed over the

one year for both the unhedged and hedged portfolios.
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Figure 6.4. Comparison of VaR and P&L evolution with and with-
out hedging over one year.

Figure|6.4] shows that the hedging strategy did not impact the number of exceedances,
as both hedged and unhedged portfolios experienced only one exceedance throughout the
year. Although hedging was designed to mitigate losses, the exceedance occurred on a
day when the strategy was not implemented (6 July 2023). On this day, the VaR was
13% below the target of € 95 000, meaning the portfolio was within the acceptable risk
limit, and there was no need to apply the hedging strategy. Therefore, while a fixed VaR
threshold is effective in managing and reducing overall portfolio risk, it does not prevent
exceedances on days when the strategy is not applied.
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Figure presents the daily cumulative P&L for the hedged and unhedged portfolios,

over one year.
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Figure 6.5. Daily cumulative P&L for Hedged and Unhedged
Portfolios.

As shown in Figure [6.5) both portfolios exhibited a similar performance. From the
beginning of the observation period until 21 April 2023, when the short positions were
larger, the daily cumulative P&L remained relatively stable. Furthermore, it was only
until early March 2023 that the cumulative daily unhedged P&L was higher than the
hedged P&L. Overall, both portfolios generated a profit by the end of the year. The
unhedged portfolio achieved a profit of € 795 964, while the hedged portfolio recorded a
profit of € 820 433, resulting in an additional gain of 3.07%. However, as discussed in the
previous subsection, the hedging strategy altered the portfolio’s risk profile. Consequently,
the additional profit of 3.07% does not reflect the level of risk taken to achieve this return.
To consider the trade-off between the return achieved and the risk taken, we use the
concept of RORAC (Matten, 1996)). This risk-adjusted performance metric is calculated
as follows:

P&L

RORAC = ST (6.6)

where the numerator represents the daily cumulative P&L for the one-year, and the
denominator corresponds to the Economic Capital for the same period, calculated as the
sum of the daily EC.

Table [6.6] presents the RORAC for both strategies.
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Metric Unhedged Hedged Variation (%)

P&L (€ K) 79596 820.43 3.07
Average P&L (€ K) 3.00 3.10 3.07
Return (%) 1037 10.69 3.07
EC (€ K) 95 143.01 24 043.80 4.37
RORAC (%) 3.17 3.41 7.79

Table 6.6. Portfolio Performance Comparison (Hedged vs. Un-
hedged).

Table highlights that the hedging not only improved profits and returns but also
enhanced the risk-adjusted performance of the portfolio. The additional return is higher
before adjusting for risk, since hedging limits both the potential for large gains and the
possibility of significant losses. The increase in RORAC is consistent with the rise in
P&L and the reduction in economic capital. Specifically, the 3.07% increase in the P&L
of the hedged portfolio corresponds to a 7.79 percentage point increase in return when
adjusted for the risk taken, reflecting the combined effect of the improvement in P&L and
the reduction in economic capital.

Therefore, while hedging mitigated the portfolio’s overall risk, redistributed risk expo-
sure across risk factors, and increased the diversification effects in stocks, it also improved

the P&L, resulting in a higher risk-adjusted return.
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CHAPTER 7

CONCLUSION

This study demonstrated how VaR management can be integrated into an active risk
management strategy, influencing the exposure, diversification, and performance of a
portfolio.

Using a portfolio of equities and bonds from global markets, and after testing 15 model
configurations across four model classes, the SGSt model with EWMA volatility (A=0.955,
n—=>500) was identified as the most effective for our portfolio to capture the distributional
characteristics of returns, particularly negative skewness and excess kurtosis. However,
while the SGSt model outperformed the others overall, it is important to highlight that
the BCP rejected the time independence of exceedances for all models.

With the model selected and to manage VaR, we determined the desirable capital
to cover exposure, the Economic Capital. Therefore, we define the stop-loss limit as
€95 000, slightly below the 10-year average of VaR under normal conditions. Whenever
the estimated VaR exceeded this threshold, we implemented a hedging strategy through
short positions in futures on the S&P 500 and CAC 40 indices, selected according to their
marginal VaR contributions.

The results showed that the hedging strategy met the main objective, reducing both
total portfolio risk and stock risk by approximately 8.8%. However, this came with a
redistribution of risk across factors. While exposure to S&P 500 and CAC 40 indexes was
reduced, the portfolio dynamics shifted, slightly increasing interest rate risk, particularly
due to stronger correlations in short-term maturities. The currency risk, in contrast,
declined because of the short positions in the U.S. index. Furthermore, equity risk was
the decomposition with the smallest variation in the risk weight of the portfolio, but the
one with the largest variation in the diversification effect.

Regarding portfolio performance, hedging reduced P&L on average by € 2 747 on days
with positive unhedged P&L but mitigated losses by increasing the average P&L by € 3
577 on negative days. Therefore, taking less risk limited the potential for higher profits
but improved the RORAC of the portfolio due to the combined effect of the reduction in
economic capital and the increase in the portfolio’s P&L.

In conclusion, given the limitations observed in the global performance of VaR models,
particularly in failing to capture exceedance clustering, future research should explore the
use of Expected Shortfall as an alternative risk measure. Expected Shortfall is more
sensitive to extreme events than VaR since it considers the average loss in the tail beyond

the selected quantile. This is particularly important in portfolios such as the one analyzed
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here, where return distributions are non-normal and subject to fat tails. Furthermore,
since the hedging strategy was applied during a relatively stable period, assessing its
robustness under stressed market conditions, such as financial crises or geopolitical shocks
where correlations between assets can shift, would provide a better understanding of its

effectiveness.
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APPENDIX A

Portfolio Exposures

Equity Exposure Bond Exposure Currency Exposure
Risk Factor (EUR) Risk Factor (EUR) Risk Factor (EUR)
AMZN 140 769 EUR3M -0.34 USDEUR 3 330 864
GS 155 297 EUR6M -2.20 GBPEUR 217 082
NVDA 248 682 EUR1Y -9.06 JPYEUR 279 634
NKE 287 886 EUR2Y -22.66 HKDEUR -17 389
T™O -262 392 EUR3Y -114.03

DIS 280 616 EURbHY -624.55

WMT -214 456 EURTY -316.83

AAPL -53 142 EURI10Y 0.00

MCD 316 122 EURI15Y 0.00

GOOG 329 740 EUR20Y 0.00

MA 130 520 USD3M -1.94

GE -60 634 USD6M -0.60

BKNG 250 460 USD1Y -7.40

VOW3.DE 322 888 USD2Y -176.19

ALV.DE -139 666 USD3Y -27.39

DHL.DE 237 159 USD5Y -119.53

BAYN.DE 294 664 USDTY -103.91

SIE.DE -149 697 USD10Y -164.73

HEIA.AS 361 618 USD20Y -186.84

BNP.PA 280 065

DANOY -80 381

AIR.PA 342 841

VIE.PA 127 517

ORAN -61 818

MEL.MC 152 000

ITX.MC -10 821

ULVR.L 217 082

7974.T 340 663

6758.T -61 029

0003.HK -17 389

Table A.1. Portfolio
27 January 2023.

risk factor exposure map by asset class on
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Backtest Performance Details

APPENDIX B

20182017 2017-2016 2016-2015 2015-2014 2014-2013
Exc. Rate p-value Exc. Rate p-value Exc. Rate p-value Exc. Rate p-value Exc. Rate p-value

(%) (%) (%) (%) (%) (%) (%) (%) (%) (%)
1 1.15 80.77 0.38 25.44 1.15 80.77 1.54 41.87 1.15 80.77
2 0.77 69.67 0.38 25.44 1.15 80.77 1.15 80.77 1.15 80.77
3 0.77 69.67 0.38 25.44 1.15 80.77 1.54 41.87 1.15 80.77
4 0.77 69.67 0.77 69.67 1.15 80.77 1.54 41.87 1.15 80.77
5 0.77 69.67 0.38 25.44 1.15 80.77 1.15 80.77 1.15 80.77
6 1.92 18.44 0.77 69.67 1.15 80.77 1.15 80.77 1.15 80.77
7 1.92 18.44 0.38 25.44 1.15 80.77 1.15 80.77 1.15 80.77
8 0.38 25.44 0.38 25.44 2.69 2.34 1.54 41.87 0.77 69.67
9 1.15 80.77 0.38 25.44 1.15 80.77 1.92 18.44 0.77 69.67
10 1.54 41.87 0.38 25.44 1.15 80.77 1.92 18.44 1.15 80.77
11 1.92 18.44 0.38 25.44 1.15 80.77 1.15 80.77 1.92 18.44
12 1.92 18.44 0.38 25.44 1.15 80.77 1.92 18.44 1.15 80.77
13 1.54 41.87 0.77 69.67 1.15 80.77 2.31 7.01 1.15 80.77
14 1.15 80.77 0.77 69.67 2.31 7.01 1.54 41.87 1.15 80.77
15 1.15 80.77 0.77 69.67 1.54 41.87 1.54 41.87 1.15 80.77

Table B.1. UC test results for all models over the annual sub-

period (2013-2018).

2023-2022 2022-2021 2021-2020 2020-2019 2019-2018

Exc. Rate p-value Exc. Rate p-value Exc. Rate p-value Exc. Rate p-value Exc. Rate p-value

(%) (%) (%) (%) (%) (%) (%) (%) (%) (%)
1 1.15 80.77 1.54 41.87 3.46 0.18 1.54 41.87 1.92 18.44
2 0.00 2.22 0.38 25.44 2.69 2.34 0.77 69.67 1.54 41.87
3 0.38 25.44 1.15 80.77 1.92 18.44 1.15 80.77 1.15 80.77
4 0.38 25.44 1.15 80.77 1.15 7.01 0.38 80.77 2.69 69.67
5 0.00 2.22 1.15 80.77 1.92 18.44 1.15 80.77 1.15 80.77
6 0.77 69.67 0.77 69.67 1.54 41.87 1.15 80.77 0.77 69.67
7 0.38 25.44 0.38 25.44 1.54 41.87 1.15 80.77 1.54 41.87
8 3.08 0.69 0.38 25.44 2.69 2.34 0.00 2.22 1.92 18.44
9 1.54 41.87 0.00 2.22 2.31 7.01 0.77 69.67 1.92 18.44
10 0.00 2.22 0.77 69.67 1.92 18.44 1.54 41.87 1.92 18.44
11 0.77 69.67 0.77 69.67 1.54 41.87 0.77 69.67 1.92 18.44
12 0.38 25.44 0.38 25.44 1.54 41.87 1.54 41.87 1.54 41.87
13 0.38 25.44 0.77 69.67 1.54 41.87 1.54 41.87 1.54 41.87
14 0.00 2.22 1.15 80.77 2.69 2.34 1.92 18.44 1.15 80.77
15 0.38 25.44 0.77 69.67 1.92 18.44 1.54 41.87 1.15 80.77

Table B.2. UC test results for all models over the annual sub-
period (2018-2023).
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Figure B.1. VaR Model number 3 global perfomance. Triangles
represent the P&L on days when exceedances occurred for both Model 3
and Model 7, while circles indicate the P&L on days when an exceedance
was observed only in Model 3.

300 |
200
100 | ‘
0 TRRUALAYNY 1" |" LA I A o | NI AR | J‘ LN |
y WMWWWWWWMWWM MW
® —100 | | 1)
|
—200 :
—300 |
—400 |
—500 | ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ n
2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
Date
—— VaR —— P&L A Common Exceedance ® Unique Exceedance

Figure B.2. VaR Model number 7 global perfomance. Triangles
represent the P&L on days when exceedances occurred for both Model 3
and Model 7, while circles indicate the P&L on days when an exceedance
was observed only in Model 7.



Exceedance P&L Total VaR Exceedance Exceedance

Date (€K) (€K) (€K) (% of VaR)
2022-02-03 -101.21 100.8 0.4 0.4
2021-11-26 -120.98 84.21 36.76 43.7
2021-07-19 -96.42 75.58 20.84 27.6
2021-04-20 -103.22 88.84 14.38 16.2
2020-10-28 -139.86 129.47 10.39 8.0
2020-03-12 -409.66 255.64 154.02 60.2
2020-03-09 -304.74 173.00 131.74 76.2
2020-02-27 -146.51 130.56 15.95 12.2
2020-02-24 -161.52 83.04 78.48 94.5
2020-01-27 -85.94 60.28 25.66 42.6
2019-12-30 -66.71 60.15 6.56 10.9
2019-08-05 -99.32 92.34 6.98 7.6
2018-10-24 -95.88 93.04 2.84 3.1
2018-10-10 -114.40 63.97 50.43 78.8
2018-06-25 -113.19 84.92 28.26 33.3
2018-02-02 -103.08 74.64 28.44 38.1
2017-05-17 -94.81 67.85 26.96 39.7
2016-06-24 -193.02 81.76 111.26 136.1
2015-08-24 -194.78 150.26 44.53 29.6
2015-08-21 -170.98 117.03 53.95 46.1
2015-08-20 -110.36 102.54 7.82 7.6
2014-10-07 -86.46 T77.78 8.68 11.2
2014-07-31 -84.63 59.11 25.52 43.2
2014-04-25 -76.77 71.20 5.57 7.8
2014-03-03 -83.54 66.02 17.51 26.5
2014-01-24 -128.06 56.50 71.56 126.7
2013-06-20 -98.42 87.49 10.94 12.5
2013-03-21 -89.46 80.87 8.59 10.6
Number of exceedances 28
Exceedance rate (%) 1.08

Table B.3. Exceedance details for model 3: P&L, Total VaR, and
Size of Exceedance.



Exceedance P&L Total VaR Exceedance Exceedance

Date (€K) (€K) (€K) (% of VaR)
2022-02-03 -101.21 92.90 8.31 8.94
2021-11-26 -120.98 76.97 44.00 57.17
2020-03-12 -409.67 223.19 186.48 83.55
2020-03-09 -304.74 160.15 144.59 90.28
2020-02-27 -146.51 112.21 34.30 30.57
2020-02-24 -161.52 78.59 82.93 105.52
2020-01-27 -85.94 60.80 25.14 41.36
2019-12-30 -66.71 65.22 1.49 2.28
2019-08-05 -99.32 86.32 13.00 15.05
2018-10-10 -114.40 62.01 52.39 84.50
2018-06-25 -113.19 71.57 41.61 58.14
2018-02-08 -75.80 67.77 8.03 11.85
2018-02-05 -68.30 65.94 2.36 3.58
2018-02-02 -103.08 57.03 46.05 80.73
2017-12-20 -57.15 54.74 2.42 4.42
2017-06-29 -68.20 55.61 12.58 22.62
2017-05-17 -94.81 51.10 43.72 85.56
2017-04-26 -50.16 49.80 0.36 0.73
2016-06-24 -193.02 77.20 115.82 150.04
2015-08-24 -194.78 137.54 57.24 41.62
2015-08-21 -170.98 110.36 60.62 54.93
2015-08-20 -110.36 98.23 12.13 12.35
2014-10-07 -86.46 77.25 9.21 11.92
2014-07-31 -84.63 65.29 19.34 29.62
2014-03-03 -83.54 58.64 24.90 42.46
2014-01-24 -128.06 50.71 77.35 152.54
2013-06-20 -98.42 72.73 25.69 35.32
2013-03-21 -89.46 63.62 25.84 40.61
Number of exceedances 28
Exceedance rate (%) 1.08

Table B.4. Exceedance details for model 7: P&L, Total VaR, and
Size of Exceedance.



APPENDIX C

VaR Management Details

Investment Coupon Value Invested Share Price Stocks

Date (EUR) Stocks (EUR) Purchased
2023-04-30 8 855 Nvidia 282 31
2023-05-15 8 063 Alphabet 120 67
2023-07-04 52 000 DHL.DE 1218
2023-08-15 34 964 Booking 3104 11
2023-10-31 9 185 Heineken 109
2023-11-15 8 185 BNP Paribas 155
2024-01-04 31 250 Orange 2 666
2024-01-15 35 750 Mastercard 428 83

Table C.1. Reinvestment of coupon payments from bonds in the

portfolio.
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Figure C.1. Stock marginal contribution comparison between Un-
hedged and Hedged Portfolios.
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Risk Factor

Worst VaR day

On average hedged days

Unhedged D.E. Hedged D.E.

Variation Unhedged D.E. Hedged D.E. Variation

S&500 (%) 17.48
DAX (%) 43.36
AEX (%) 66.96
CAC 40 (%) 57.56
IBEX (%) 60.77
FTSE 100 (%) 81.76
N225 (%) 97.65
HSI (%) 77.59

19.62
41.23
69.56
65.07
63.96
86.72
95.97
75.34

12.26
-4.91
3.88
13.05
5.24
6.06
-1.72
-2.90

17.45
52.01
82.01
51.35
61.16
89.79
83.52
93.99

17.92
50.93
82.04
52.69
60.64
90.96
82.51
94.68

2.67
-2.08
0.04
2.61
-0.84
1.30
-1.21
0.74

60

Table C.2. Diversification effects by index: comparison before and
after hedging on the worst VaR day and on average hedged days.
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