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Resumo

Este trabalho aborda o problema de atribuição de salas na gestão de horários no Iscte,
atualmente realizado de forma manual, sendo um processo moroso e complexo. Apesar da
existência de software, a sua utilização é limitada devido à dificuldade de parametrização
e adaptação reduzida aos requisitos institucionais.

Assim foi realizada uma revisão sistemática da literatura com o objetivo de identificar
as abordagens mais utilizadas, analisando aplicações, vantagens, desvantagens e tendên-
cias emergentes. As abordagens híbridas, que combinam meta-heurísticas com busca local,
têm-se mostrado particularmente eficazes na resolução do University Course Timetabling
Problem (UCTP). Algoritmos evolutivos multiobjetivo, como Non-dominated Sorting Ge-
netic Algorithm II (NSGAII), Non-dominated Sorting Genetic Algorithm III (NSGAIII) e
Multi-Objective Evolutionary Algorithm Based on Decomposition (MOEA/D), destacam-
se em contextos com múltiplos objetivos.

Definiram-se seis critérios, quatro objetivos a minimizar: mudança de sala para turmas
consecutivas (RCCC), deslocação de alunos (SD), diferença entre o tipo de sala solicitado
e atribuído (MCRA) e capacidade da sala (CRA) e duas restrições rígidas: alocação
adequada da sala à aula (ROB) e sobreposição de salas (RO).

Com base nestes critérios, foram desenvolvidas versões personalizadas dos algoritmos
NSGAII, NSGAIII e MOEA/D, na framework JMetal com integração de busca local.

Os testes, com dados reais do Iscte, envolveram cerca de 10,000 alunos, 26,020 turmas
e 126 salas. O benchmarking comparou heurísticas construtivas [1], algoritmos Multi-
Objective Evolutionary Algorithms (MOEA) e programação inteira linear, modelada em
Pyomo [2] e resolvida com Gurobi [3]. A validação foi efetuada com o ficheiro comp02.ctt
do conjunto Curriculum-Based Course Timetabling da competição ITC2007.

Palavras-chave: Gestão de Horários Universitários, Atribuição de Salas, Progra-
mação Linear Inteira, Metaheurísticas, Algoritmos Evolutivos Multiobjetivo, Busca Local.
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Abstract

This work addresses the problem of room assignment in timetable management at Iscte,
currently performed manually, being a time-consuming and complex process. Despite
the existence of software, its use is limited due to the difficulty of parameterization and
reduced adaptation to institutional requirements.

Thus, a systematic literature review was carried out with the objective of identify-
ing the most used approaches, analyzing applications, advantages, disadvantages, and
emerging trends. Hybrid approaches, which combine metaheuristics with local search,
have proven particularly effective in solving the UCTP. Multi-objective evolutionary al-
gorithms, such as NSGAII, NSGAIII, and MOEA/D, stand out in contexts with multiple
objectives.

Six criteria were defined, four objectives to minimize: room change for consecutive
classes (RCCC), student displacement (SD), difference between the requested and assigned
classroom type (MCRA), and room capacity (CRA); and two hard constraints: proper
room allocation for the class (ROB) and room overlapping (RO).

Based on these criteria, customized versions of the algorithms NSGAII, NSGAIII, and
MOEA/D were developed, in the JMetal framework with local search integration.

The tests, with real data from Iscte, involved approximately 10,000 students, 26,020
classes, and 126 rooms. The benchmarking compared constructive heuristics [1], MOEA
algorithms, and integer linear programming, modeled in Pyomo [2] and solved with
Gurobi [3]. The validation was performed with the file comp02.ctt from the Curriculum-
Based Course Timetabling dataset of the ITC2007 competition.

Keywords: University Timetabling, Room Assignment, Integer Linear Programming,
Metaheuristics, Multi-Objective Evolutionary Algorithms, Local Search.
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CHAPTER 1

Introduction

This work was developed as part of the Master’s thesis in Computer Engineering, with
the theme “Room allocation multicriteria optimization in university timetabling”. The
motivation came from the Computational Intelligence and Optimization curricular unit,
where the topic of University Course Timetabling Problem (UCTP) was addressed in
the context of Iscte – Instituto Universitário de Lisboa, recognized as a Combinatorial
Optimization Problem (COP) of high complexity and NP-hard nature [4]–[6].

The efficient management of academic timetables is essential for the smooth running
of educational institutions. At Iscte, the scale of the problem and the limitations of the
current software in terms of scalability, customization, and performance justify the need
for a more robust solution adapted to the institutional reality.

A literature review of the state of the art was carried out presented in Chapter 2.
Methods based on Integer Linear Programming (ILP) and Mixed Integer Linear Pro-
gramming (MILP), although rigorous, face scalability difficulties. On the other hand,
population-based metaheuristics such as Genetic Algorithm (GA) and Ant Colony Opti-
mization (ACO) stand out for their effectiveness on large instances [5], [7].

Recent studies, such as those by Chen et al. (2021) and Bashab et al. (2023) [5], [8],
point to hybrid algorithms, which combine metaheuristics with local intensification, as the
most effective, accounting for 35% of the successful works identified. The Evolutionary
Algorithms (EA), such as Non-dominated Sorting Genetic Algorithm II (NSGAII), Non-
dominated Sorting Genetic Algorithm III (NSGAIII), and Multi-Objective Evolutionary
Algorithm Based on Decomposition (MOEA/D), are considered promising due to their
ability to deal with multiple criteria simultaneously.

This thesis therefore proposes the application and comparison of two approaches to
solving the UCTP at Iscte: one based on ILP, for its ability to generate optimal solutions,
and another based on the EA identified in the literature review, implemented with the
JMetal framework and using local search techniques and constructive heuristics. The aim
is to evaluate the performance of both, taking into account the realistic dimension of the
problem and institutional requirements.

The remaining content of this work is organized as follows: Chapter 2 presents the
literature review, where the fundamental concepts associated with the room assignment
problem in the context of the UCTP are discussed. This Chapter also includes a sys-
tematic review aimed at identifying and analyzing the most commonly used and effective
approaches to its resolution. Chapter 3 describes the problem under study and the pro-
posed solution, based on the formulation of specific constraints and objectives. Chapter

1



4 details the implementation of the evolutionary algorithms and the ILP approach, as
well as the tools used. Chapter 6 presents the analysis of the results obtained from the
experiments carried out with real data and a benchmarking instance. Finally, Chapter
7 summarizes the main conclusions reached, also identifying the limitations of the study
and proposing directions for future work. Appendix A describes the work plan developed
throughout the project, while Appendix B presents the participation in the scientific
conference.

2



1.1. Research Questions

The research questions of this work are as follows:

• What are the most widely used approaches to solving the UCTP?
• What are the main advantages, disadvantages, and limitations associated with

these approaches?
• What innovations and opportunities for improvement have been identified in the

literature?
• What recent trends have emerged in UCTP research?
• How does the performance of metaheuristic algorithms compare to ILP techniques

in solving the UCTP?
• How do the algorithms perform when applied to the ITC2007 benchmarks?

1.2. Objectives

This work has the following objectives:

• To conduct a literature review on the subject in order to provide a solid scientific
basis to support the developed study.
• To conduct a systematic review to identify and analyze the most widely used

approaches to solving the UCTP.
• To benchmark the different algorithms identified in the systematic review using

real data from Iscte, in order to solve the room allocation problem.
• To evaluate the performance of evolutionary algorithms in solving the UCTP,

compared to approaches based on ILP.
• To test the algorithms with the ITC2007 dataset in order to validate their effec-

tiveness.
• To identify relevant innovations and potential areas for improvement in the ana-

lyzed approaches.

1.3. Research Method

This work uses the Design Science Research (DSR) method, as described by Brocke,
Hevner, Maedche, et al. [9]. This method is a research paradigm focused on improving
knowledge through the creation of artifacts, with the aim of solving real-world problems
and contributing to the advancement of technological and scientific knowledge. The results
of DSR include both designed artifacts and Design Knowledge (DK), providing a deeper
understanding of application contexts.

The DSR process follows six interconnected stages, with feedback loops that allow for
adjustments and iterations throughout the project. The ultimate goal is to generate DK
and contribute to the advancement of different domains, such as information systems,
engineering, architecture, business, economics and others [10].

3



Figure 1.1. DSR Methodology Process Model. Source: Brocke, Hevner,
and Maedche [9]

Stages of the DSR Process:

1. Problem Identification and Motivation: In this step, the specific research
problem is defined, justifying the importance of a solution and motivating re-
searchers and stakeholders.

2. Definition of Solution Objectives: In this phase, researchers infer goals and
objectives from the specific problem definition. These objectives can be quanti-
tative, involving measurable measurements, or qualitative, related to more sub-
jective aspects, establishing clear and achievable goals to guide the development
of the solution effectively.

3. Design and Development: This stage focuses on creating the proposed solu-
tion. It includes drafting the artifact, which can take the form of any designed
object incorporating research contributions. Determining the desired function-
alities and defining the architecture of the artifact are critical aspects of this
phase. The search for innovation, efficiency and effectiveness in implementation
is fundamental to the success of this stage.

4. Demonstration: Demonstration is the phase in which the artifact is used to
solve real instances of the problem. This can include practical experimentation,
simulations or case studies. Validating the solution in practical contexts provides
valuable information about its performance and effectiveness. The nature of
the Demonstration can vary, but its central purpose is to verify the real-world
applicability of the proposed solution.

5. Evaluation: In this stage, comparisons are made between the objectives defined
for the solution and the actual results achieved. Evaluation can involve various
forms of analysis, such as quantitative measurements, statistical analysis and
qualitative assessments. This critical step provides information on whether the
proposed solution has been successful or requires adjustments.

6. Communication: In the Communication phase, all aspects of the problem and
the artifact are communicated clearly and comprehensively to the stakeholders.

4



The nature of the communication can vary, from technical reports to more acces-
sible presentations, depending on the objectives and target audience. Ensuring
effective communication is essential for disseminating research results, allowing
the proposed solution to have a significant impact [9].
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CHAPTER 2

Review of the Literature

This chapter presents a review of the literature with the aim of framing the work carried
out in this dissertation. Initially, the fundamental concepts and main characteristics
associated with the UCTP are discussed. This is followed by a systematic review that
analyzes the different approaches proposed in the literature for solving this problem.

2.1. University Timetable Planning Problem

The UCTP is an NP-hard optimization problem, which means that it cannot be solved
in polynomial time by a deterministic algorithm. It is also classified as a COP, where the
objective is to allocate finite resources (classrooms, teachers, and timetables) to events
(classes or exams), while respecting a set of constraints. In some cases, the problem
consists of finding a timetable that satisfies all the constraints (a constraint satisfaction
problem), while in others, the goal is to optimize a function that takes into account both
hard and soft constraints. The complexity of the problem arises from the need to fulfill the
constraints and the nature of the variables, which can be discrete or continuous [5] [11].

2.1.1. Types of timetable planning

University timetable planning covers several subdomains, depending on the need, however
the most common are exams and courses, which are defined below:

• Course planning: this is characterized as a multidimensional assignment
problem, where students and teachers are allocated to courses, sections or classes,
and events (lessons) are distributed to specific rooms and times. This is an es-
sential component in educational timetabling which involves, in a first stage,
assigning students to courses and, in a second stage, allocating these courses to
appropriate rooms and time periods.

This problem can be broken down into several components, such as student
scheduling, course allocation, teacher distribution and room allocation.

There are also significant differences between subject timetables and exam
timetables, while subjects require a fixed allocation to a single room, exams can
be spread over several rooms [5].
• Exam planning: consists of assigning exams to limited time periods, with the

aim of avoiding conflicts and overlaps, ensuring that a student does not have two
exams at the same time and that only one takes place per room in each interval.
Also taken into account is the capacity of the rooms, which must accommodate
all students [5].

7



2.1.2. Constraints

Constraints within the scope of University Course and Teacher Timetabling Problem
(UCTTP) planning can be either soft or hard, depending on the requirements of the
institution, and are defined as follows [5] [11] [12]:

• Soft constraints: These are constraints that should preferably be satisfied;
however, their violation does not invalidate the solution. Failing to meet these
constraints decreases the quality of the solution and adds a penalty to the objec-
tive function. The aim is to minimize this penalty.

Examples of soft constraints:
1. A student should not have only one class in a day.
2. The characteristics of the room should match the requirements of the course.
3. A student should not have more than two consecutive lessons.
4. A student should not have a lesson scheduled in the last time slot of the day.

• Hard constraints: These are constraints that must be satisfied for a solution to
be considered valid in the UCTTP or any other optimization problem. Examples
include:

1. A teacher cannot teach two classes at the same time.
2. Only one course can be allocated to each room per time slot.
3. A course can only be assigned to predefined time periods.
4. Students must not have overlapping classes.

2.2. Approaches to University Course Timetabling Problem

Currently, there are several approaches to solving the UCTP. According to Chen et al. [5],
these can be divided into six main categories — from traditional approaches based on
Operational Research (OR) to modern hybrid methods that combine different techniques
to improve efficiency in solving the problem.

2.2.1. Methods Based on Operational Research (OR)

OR methods are techniques that use mathematical formulations to find optimal or near-
optimal solutions. These methods can include [5], [6]:

• Integer Linear Programming (ILP): ILP is a mathematical optimization
method in which all or some variables are restricted to non-negative integer val-
ues. It is widely used in the context of the UCTTP to allocate courses to teachers,
students, and timetables, ensuring that constraints such as room availability or
timetable conflicts are satisfied. This method is considered mathematically com-
plete but presents scalability challenges, making it computationally expensive for
large institutions.

To model the problem, ILP organizes courses into subject groups and time
intervals, enabling the optimization of class distribution. Some approaches, such
as Binary Integer Programming (BIP), can improve allocation efficiency by re-
ducing student and teacher dissatisfaction. Although often used in isolation, it

8



can also be combined with heuristics to facilitate constraint handling and improve
the efficiency of finding viable solutions [5], [6].
• Mixed Integer Linear Programming (MILP): MILP is a mathematical

optimization method in which the objective function and constraints are linear,
and some or all of the decision variables are integers.

This method is widely used in various fields due to its ability to model com-
plex problems involving discrete decisions. However, MILP can only handle
linear functions, which often requires the linearization of non-linear equations,
increasing the number of variables and making the problem computationally in-
tensive [13], [14].
• Graph Coloring Heuristics (GCH): GCH aims to assign the minimum num-

ber of colors to the vertices of a graph, ensuring that adjacent vertices have
different colors. In the context of the UCTP, events correspond to vertices, con-
flicts between events represent edges, and time intervals represent colors. GCH
heuristics are used to assign classes to time slots. Examples include the highest
degree (which prioritizes events with more conflicts), the highest weighted degree
(which considers the number of students), the saturation degree (which selects
events with fewer available periods), and the color degree (which prioritizes events
with more conflicts with already allocated events) [5].
• Constraint Programming (CP): CP is an optimization method for solving

combinatorial problems, using techniques from Artificial intelligence (AI), com-
puter science, and operations research to find solutions that satisfy a set of user-
defined constraints. Problems modeled in CP are often referred to as Constraint
Satisfaction Problem (CSP) and are widely applied in domains such as planning,
routing, configuration, and bioinformatics [15].

2.2.2. Single-Solution Based Metaheuristics (SSBM)

The Single-Solution Based Metaheuristics (SSBM) are local search algorithms that explore
the neighborhood of a single solution to find improvements. These can be classified into
three categories: single-stage, where hard and soft constraints are optimized simultane-
ously; two-stage, where a feasible solution is first found considering only hard constraints
and then improved by optimizing soft constraints; and relaxation, which allows adjust-
ments such as ignoring infeasible events or creating fictitious time slots to accommodate
activities. Below, we present algorithms from SSBM [5], [6]:

• Tabu Search (TS): TS is a metaheuristics (MH) Algorithm that starts the
search from an initial solution and selects the best available neighbor. If the new
solution is not in the tabu list, the algorithm moves to that solution; otherwise, it
checks the aspiration criterion, which allows tabu solutions to be accepted if they
are better than the best solution found so far. The tabu list is updated at each
iteration to prevent revisiting previous solutions. The duration of a solution’s stay

9



on the tabu list is determined by the Tabu Tenure, and the algorithm continues
exploring the solution space until a predefined stopping condition is met [6], [16].
• Local Search (LS): LS is an optimization method used to find a solution that

maximizes a criterion within a defined search space. The algorithm starts from
an initial solution and iteratively moves to neighboring solutions, provided the
neighborhood structure is well defined. Hill Climbing (HC) is an example of LS,
where each move is selected solely based on neighboring information to achieve
local improvement. The algorithm can also stop after a time limit or when no
significant improvement is observed over a predefined number of iterations [6],
[16], [17].
• Simulated Annealing (SA): SA is an LS method inspired by the physical pro-

cess of heating and cooling solids. This algorithm helps avoid becoming trapped
in local optima and enhances the exploration of the solution space. It starts with
a random solution, and at each iteration, the current solution may be replaced
by another randomly selected one, based on a controlled probability that allows
escaping local optima. This process continues until a termination criterion is
reached.

2.2.3. Population-Based Metaheuristics (PBM)

Population-Based Metaheuristics (PBM) operate on a set of solutions, applying differ-
ent operators and rules to generate new ones in their vicinity. These approaches are
widely used to solve complex optimization problems, whether Single-Objective Opti-
mization (SOO), Multi-Objective Optimization (MOO), or Many-Objective Optimiza-
tion (MaOO), where the process begins with a population of solutions and, at each iter-
ation, the best ones are chosen through a selection mechanism. Modifications are then
applied according to the meta-heuristic used, replacing the least fit ones. This process
is repeated until a stopping criterion is reached. In this type of approach, EA, ACO,
Particle Swarm Optimization (PSO), Memetic Algorithms (MA), Harmony Search (HS),
and Artificial Bee Colony (ABC) are widely used, which are defined below [5], [6], [16].

2.2.4. Evolutionary Algorithms (EA)

EA are inspired by the process of natural evolution, as proposed by Charles Darwin,
operating on a population of solutions, applying operators such as selection, crossover,
mutation, and replacement to find optimal or approximate solutions to complex problems.
EA are population-based MH because they operate with multiple solutions simultaneously
and use the selection of the fittest individuals to create new and increasingly better
generations [4], [6], [18].
10



Figure 2.1. Basic steps of an Evolutionary Algorithm. Source: Martinelli [18].

As shown in Figure 2.1, an Evolutionary Algorithm (EA) begins with the generation
of an initial population of solutions, usually at random.

Next, it checks whether a stopping criterion has been met; if not, the algorithm pro-
ceeds with the selection of the best solutions based on a fitness function (Fitness Func-
tion (FF)), ensuring that the fittest individuals are more likely to be chosen.

After selection, mutation is applied, introducing small random changes to increase
diversity and prevent premature convergence. Recombination then occurs, combining
characteristics from different solutions to generate new individuals and improve the ex-
ploration of the search space.

This process is repeated until the stopping criterion is satisfied, allowing optimal or
near-optimal solutions to be found.

Among the most common EA are Genetic Algorithms (GA), Evolution Strategies
(Evolution Strategies (ES)), Genetic Programming (Genetic Programming (GP)), and
Evolutionary Programming (Evolutionary Programming (EP)), as well as some learning-
based classification systems. In the context of the UCTP, GA stand out due to their
widespread application in solving this type of problem [6], [18], [19].

• Genetic Algorithm: GA are algorithms inspired by Charles Darwin’s theory
of natural selection, proposed by John H. Holland in the 1960s [20]. They follow
the structure of EA, using an evolutionary process based on genetic operators.
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Crossover combines characteristics of the parents to generate offspring, while
mutation introduces small random variations, promoting genetic diversity and
avoiding premature convergence.

The definition of parameters—such as the number of generations, population
size, and crossover and mutation probabilities—directly influences diversity, so-
lution quality, and execution time. Additionally, the tournament size regulates
selective pressure, helping to prevent premature convergence [20]–[22].

Figure 2.2 illustrates the functioning of a GA, where a population of solu-
tions is evaluated and iteratively modified by genetic operators until a stopping
condition is reached [23].

The main steps are described below:

Figure 2.2. Basic flow of a GA. Source: Faitouri e Khalafullah [24].

1. The first stage of modeling corresponds to the representation of the individ-
ual, in which each one represents a possible solution to the problem. This
representation can be binary, integer, real, or permutation-based. In the
binary approach, a sequence of bits is used to encode the solutions; the
integer representation associates specific elements with each gene; the real
representation uses continuous numbers and is suitable for problems with
physical quantities. Permutation representation is the most appropriate for
sorting problems, such as the Traveling Salesman Problem, as it preserves
the relative sequence of the elements.

2. The population corresponds to the set of candidate solutions that evolve
throughout the optimization process and can be generated randomly or
based on previously evaluated solutions (seeds). According to Diaz-Gomez
and Hougen [25], the definition of the initial population should consider
factors such as the search space, the evaluation function, the diversity of so-
lutions, the complexity of the problem, the selection method, and the num-
ber of individuals. When seeds are used, they are chosen from previously
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analyzed random solutions, selecting those with the best performance [21],
[25].

3. The fitness function measures the quality of each individual, indicating how
well it adapts to the problem. A well-defined function allows good solutions
to be effectively distinguished from less suitable ones. Otherwise, promising
solutions may be discarded or less useful solutions may be retained. In multi-
objective contexts, different weights can be assigned to different evaluation
criteria. The fitness value of an individual i is defined as fi

fA
, where fi repre-

sents the evaluation of individual i, and fA is the average of the evaluations
of the population. In other words, fitness is calculated in relation to the
other members of the population, ensuring a comparative evaluation [21].

4. Selection methods determine the individuals that will contribute to the next
generation, being influenced by the so-called selective pressure. Among the
most common are: roulette, which assigns each individual a probability pro-
portional to its fitness value; selection by absolute fitness, which favors the
fittest and may lead to premature convergence; tournament, which chooses
the best from random subsets, balancing diversity and elitism; and ranking,
which orders individuals according to their performance and distributes se-
lection probabilities based on this ordering, promoting greater diversity in
the population [25].

5. In this stage, genetic operators are applied, namely crossover and mutation,
with the aim of refining and diversifying the search, introducing genetic
variability into the population and allowing the generation of new solutions.

Figure 2.3. Operation of the mutation operator. Source: El Majdoubi et al. [26].

The mutation operator, as shown in Figure 2.3, randomly alters the genetic
characteristics of an individual based on a probabilistic criterion, using only
the parent to generate the descendant. Among the main types are: insertion
mutation, which moves a gene after another selected gene, partially main-
taining the order; inversion mutation, which reverses the sequence of genes
between two random points; and uniform mutation, which replaces a gene
with a random value within its possible domain.
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Figure 2.4. How the crossover operator works. Source: El Majdoubi et al. [26].

The crossover operator, as shown in Figure 2.4, generates new individuals
from the combination of two parents. This can occur in a simple way with
a single cut-off point, at multiple points, or uniformly, where each gene of
the offspring is chosen randomly from one of the parents, promoting genetic
diversity and efficient exploration of the solution space.
The most common crossover methods are: single-point, where a random
point is chosen in the parents and the parts before and after that point
are combined to form the offspring; multi-point, which is similar to the
previous one but uses multiple cut-off points, increasing the variability in
recombination; and uniform, where a binary mask is used to define, gene by
gene, which parent contributes each piece of information, promoting a more
balanced mix of genetic material.

6. Finally, stopping criteria are applied, which determine when the execution
of a GA should be terminated. The first criterion occurs when individu-
als reach a pattern considered optimal. The second is based on previously
defined constraints, such as the maximum number of generations, execution
time, total number of evaluations, or the absence of significant improvements
throughout the iterations. The algorithm ends when a satisfactory solution
is found or when one of these conditions is met [21].
Next, we present EA developed for optimization problems with multiple
objectives (MOO) and with many objectives (MaOO), highlighting the al-
gorithms NSGAII, NSGAIII, and MOEA/D.

2.2.5. Other Population-Based Metaheuristics

In addition to EA, other approaches such as ACO, PSO, MA, HS, and ABC are note-
worthy and will be described below due to their relevance and applicability to complex
optimization problems.

2.2.5.1. Ant Colony Optimization (ACO)
ACO is inspired by the collective behavior of real ant colonies, particularly their ability
to find efficient paths between the colony and food sources. Proposed by Marco Dorigo in
the early 1990s, this approach uses artificial agents (ants) that build solutions based on
local information and indirect signals simulated through the deposition of pheromones.
14



Figure 2.5. Illustrative flow of the functioning of ACO. Source: Almufti [27].

The general operation of the algorithm is illustrated in Figure 2.5, which represents
the complete cycle of construction, evaluation, and updating of solutions.

Initially, the ants are randomly distributed and begin to build solutions by traversing
the graph, guided by two factors: the amount of pheromone present on each path (τij)
and the heuristic visibility (ηij), usually defined as the inverse of the distance between
nodes.

During each iteration, the ants build complete solutions based on a probabilistic choice
of the next node to visit. The decision of an ant k to move from a node i to a node j is
modeled by the following formula:

pkij =
[τij(t)]

α · [ηij]β∑
l∈Nk(i)

[τil(t)]α · [ηil]β

Where:

• τij(t) is the amount of pheromone present on path (i, j) at time t;
• ηij is the heuristic visibility (for example, ηij = 1

dij
);

• α and β are parameters that control the relative influence of the pheromone trail
and the heuristic;
• Nk(i) represents the set of nodes not yet visited by ant k.

After each iteration, the amount of pheromone is updated to reflect the quality of the
solutions found, applying an evaporation rule:
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τij(t+ 1) = (1− ρ) · τij(t) + ∆τij(t)

where ρ ∈ [0, 1] represents the evaporation rate, and ∆τij(t) is the amount of
pheromone deposited, proportional to the quality of the solution found.

This mechanism allows the artificial colony to efficiently explore the search space, pro-
moting convergence to high-quality solutions in problems such as the Traveling Salesman
Problem, task scheduling, and route optimization [28].

2.2.5.2. Particle Swarm Optimization (PSO)
PSO is a stochastic optimization MH inspired by the collective behavior of animals, such
as flocks of birds or schools of fish. Proposed by Kennedy and Eberhart in 1995, the
algorithm simulates a population of particles (potential solutions) that move through the
search space, influenced by their own experience and that of the group.

Figure 2.6 illustrates how PSO works. Initially, the particles are randomly distributed,
each with a position x⃗i and a velocity v⃗i. Each particle stores its best-known position (p⃗i)
and is aware of the best global position found by the population (g⃗).

Figure 2.6. Illustrative flow of the functioning of PSO. Source: Almufti [27].

The velocity and position of the particles are updated using the following equations:

v⃗i(t+ 1) = ω · v⃗i(t) + c1 · r1 · (p⃗i − x⃗i(t)) + c2 · r2 · (g⃗ − x⃗i(t))
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x⃗i(t+ 1) = x⃗i(t) + v⃗i(t+ 1)

where:

• ω is the inertia weight;
• c1 and c2 are acceleration coefficients (cognitive and social);
• r1, r2 ∼ U(0, 1) are random numbers;
• p⃗i is the best position of particle i;
• g⃗ is the best global position of the population.

Each particle is evaluated using the objective function, which allows updating both
the individual and the global best positions:

p⃗i(t+ 1) =

x⃗i(t+ 1), if f(x⃗i(t+ 1)) < f(p⃗i(t))

p⃗i(t), otherwise

Optionally, a constriction factor χ can be used to ensure stability:

v⃗i(t+ 1) = χ · [v⃗i(t) + ϕ1 · r1 · (p⃗i − x⃗i(t)) + ϕ2 · r2 · (g⃗ − x⃗i(t))]

In this way, PSO is able to efficiently explore and refine the search space, being
successfully applied to continuous and discrete problems, function optimization, AI, and
timetabling [29].

2.2.6. Hyper-heuristics

Hyper-heuristics are search techniques that select, generate, or sequence heuristics or MH
to solve complex optimization problems. They operate at a higher level than traditional
MH, aiming to improve generalization and reduce dependence on problem-specific knowl-
edge. The most common types are:

• Selection Hyper-heuristics: These select, among various heuristics (or meta-
heuristics), the most appropriate one to apply based on past performance. They
may include machine learning techniques such as reinforcement learning or Q-
learning.
• Generation Hyper-heuristics: Instead of selecting, these create new heuris-

tics by combining components of existing ones. For example, generating a new
neighborhood function by combining simple operators.
• Sequencing Hyper-heuristics: These aim to define the best order or sequence

of heuristics to apply in order to achieve better results. For instance, first applying
mutation, then crossover, and finally local search.
• Parallel Hyper-heuristics: These exploit parallel architectures (such as GPUs

or clusters) to execute multiple heuristics simultaneously, with information ex-
change between them [30].

17



2.3. University Course Timetabling Problem Formulations

This section addresses the main optimization approaches used in the formulation and
resolution of the UCTP, grouped according to the number of objectives considered.

2.3.1. Single-Objective Optimization (SOO)

Single-Objective Optimization deals with problems in which the goal is to minimize
or maximize a single objective function, subject to constraints. It is used in situations
where the aim is to optimize one criterion, such as cost, time, or efficiency, with the goal
of finding a single optimal solution that represents the best possible value.

The general formulation of an optimization problem can be expressed as:

gi(x) ≤ 0, i = 1, . . . ,m and hj(x) = 0, j = 1, . . . , p, x ∈ Ω

where:

• x = (x1, . . . , xn) is the decision variable vector of dimension n;
• Ω is the search space of feasible solutions;
• f(x) is the scalar objective function to be minimized or maximized;
• gi(x) are the inequality constraints; and
• hj(x) are the equality constraints [4], [31].

2.3.2. Multi-Objective Optimization (MOO)

MOO refers to an area of optimization in which two or more objectives are considered
simultaneously. This type of problem is common in real-world contexts, where multiple
criteria must be optimized together, for example, minimizing cost and maximizing the
quality of a product. Unlike single-objective optimization (SOO), where a single optimal
solution is sought, MOO problems involve trade-offs between conflicting objectives.

In these cases, the goal is not to find a single ideal solution, but rather a set of equally
valid solutions that represent different trade-offs between the objectives. This set is known
as the Pareto Front, composed of non-dominated solutions — that is, solutions for which
there is no other that is simultaneously better in all objectives.

2.3.2.1. Mathematical Formulation
The mathematical formulation of a MOO problem can be expressed as:

f : X → Rm, x 7→ [f1(x), f2(x), . . . , fm(x)]
⊤

where:

• X is the decision space, which contains all feasible solutions;
• f(x) represents the vector of objective functions to be minimized or maximized;
• fi(x) is the i-th objective function, with i = 1, . . . ,m;
• Rm is the objective space, where each solution x is evaluated according to the m

criteria.
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The goal of MOO is to minimize (or maximize) all functions fi(x) simultaneously.
Since there is generally no single global optimal solution, the aim is to find the Pareto-
efficient solution set, which corresponds to the best possible alternatives given the
problem constraints [4], [31].

2.3.2.2. Pareto Dominance and Front
The Pareto Front (PF) is a central concept in MOO, where the aim is to simultaneously
optimize multiple, often conflicting, objective functions. In this context, the classical
concept of optimal solution is replaced by that of Pareto Optimal (PO), which represents
the best possible trade-off among the considered objectives. A solution is said to be PO
given a vector objective function:

f : X → Rm, f(x) = [f1(x), f2(x), . . . , fm(x)],

a solution x∗ ∈ X is said to be Pareto optimal if there is no other solution x ∈ X such
that:

• fi(x) ≤ fi(x
∗) for all i ∈ {1, . . . ,m}, and

• fj(x) < fj(x
∗) for at least one index j ∈ {1, . . . ,m}.

The set of PO solutions forms the Pareto set, composed of non-dominated alternatives
in the decision space. Its image in the objective space is the PF, which graphically
represents the best possible trade-offs between conflicting objectives. Each point on the
PF expresses this balance, where improving one objective necessarily worsens another.

To ensure the usefulness of the PF in decision-making, it is essential that the solutions
are well distributed along the front. This allows the decision-maker to consider a variety
of alternatives with different preferences and priorities. A concentrated distribution may
neglect important areas of the objective space, limit the available options, and indicate
that the algorithm was not able to efficiently explore the entire front [4], [31].

Figure 2.7. Illustration of the PF. Source: Cai et al. [32]

In Figure 2.7, the dashed curve represents the PF, composed of non-dominated so-
lutions such as points A, B, and D, in which it is not possible to improve one objective
without worsening another. Point C, on the other hand, is dominated by B and D and
therefore does not belong to the PF. Identifying the PF is an essential step to support
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decision-making, as it provides the decision-maker with a complete view of the available
trade-offs. The choice of the most appropriate solution within the front will depend on
specific preferences or additional criteria, often not mathematically modeled [32].

In MOO, the selection of solutions directly influences the convergence and diversity
of the population over generations. Techniques such as Pareto Dominance (PD) and
diversity mechanisms like niching and crowding distance are widely used. The latter,
mainly adopted in NSGAII, measures the local density between neighboring solutions in
the objective space, favoring those located in less dense regions and promoting a more
balanced distribution along the PF [31].

2.3.2.3. Characterization of MOO Problems
The complexity of MOO problems depends on several structural characteristics, such as
the type of variables involved (continuous, discrete, or mixed), which directly influences
the search operators and the ease of exploring the decision space. Other important factors
include the geometry of the PF (convex, non-convex, or disconnected), the presence of
multiple local optima, and the topology of the decision space (with complex or discon-
nected feasible regions).

In addition, problems involving uncertainty or dynamic data require robust strategies,
and in many cases, it is necessary to incorporate the decision-maker’s preferences to guide
the search toward the most relevant solutions [31].

2.3.2.4. Classification of MOO Solution Methods
The choice of resolution strategy in MOO problems is directly related to how the decision-
maker’s (DM) preferences are considered in the process. This classification can be divided
into four main categories [31]:

• A priori methods: Incorporate preferences before optimization, usually
through weights or utility functions.
• A posteriori methods: Generate the PF without considering preferences, al-

lowing the decision-maker to choose after execution.
• Interactive methods: Adjust preferences during the process, with continuous

feedback from the decision-maker.
• No-preference methods: Seek solutions close to the ideal point without

decision-maker intervention.

2.3.2.5. Computational Challenges
Solving MOO problems with Multi-Objective Evolutionary Algorithms (MOEA) involves
relevant computational challenges, especially in complex contexts or with many objec-
tives [31]. The main challenges are:

• Computational cost: Evaluating multiple objectives simultaneously requires
more time and computational resources.
• Scalability: As the number of objectives increases, PD becomes less effective,

making solution selection more difficult.
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• Execution time: The complexity of MOEA increases with the problem dimen-
sion, which may compromise its applicability on a large scale.

2.3.3. Many-Objective Optimization (MaOO)

MaOO is a subfield of MOO that deals with problems involving four or more conflicting
objectives to be considered simultaneously. This type of problem is common in com-
plex real-world contexts, such as multidisciplinary engineering, bioinformatics, sustainable
product design, and urban systems planning, where multiple criteria must be optimized
together.

MaOO is conceptually based on the fundamentals of MOO, but it introduces additional
challenges mainly due to the high dimensionality of the objective space. As the number
of objectives increases, difficulties arise such as:

• An exponential growth in the number of non-dominated solutions, reducing the
effectiveness of PD;
• Difficulties in visualizing the PF and articulating preferences;
• High computational complexity in classical algorithms, such as non-dominated

sorting and hypervolume calculations;
• The decision-maker faces cognitive challenges in understanding the trade-offs

between solutions;
• Need for new strategies such as decomposition, objective space reduction, or

interactive methods [31].

2.3.3.1. Mathematical Formulation
The mathematical formulation of a MaOO problem is analogous to that of a MOO prob-
lem, but with m ≥ 4 objectives:

f : X → Rm, f(x) = (f1(x), . . . , fm(x))with x ∈ X

Where:

• X represents the decision space, i.e., the set of all feasible solutions;
• Rm is the objective space, in which solutions are evaluated based on m distinct

criteria;
• f(x) is the vector-valued objective function, composed of m functions fi(x), each

corresponding to an objective to be minimized or maximized;
• each solution x ∈ X is mapped to a vector f(x) ∈ Rm that expresses its perfor-

mance with respect to all objectives;
• the goal is to find a set of non-dominated solutions that constitutes the PF,

representing the best possible trade-offs among conflicting objectives [4].

2.3.3.2. Strategies for MaOO
To address the specific challenges of MaOO, dedicated algorithms have been developed
to overcome the limitations of traditional approaches. The NSGAIII [33] uses reference
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points to ensure diversity in high-dimensional spaces, while the MOEA/D [34] adopts a
decomposition strategy that breaks the problem into scalar subproblems.

The Hypervolume Estimation Algorithm (HypE) [35] focuses on hypervolume max-
imization through Monte Carlo sampling, making it suitable for scenarios where exact
computation becomes infeasible due to a large number of objectives.

In addition, interactive methods such as the Nautilus method [36] and the Pareto
Navigator [37] involve the decision-maker in the process, dynamically adjusting the search
direction based on their preferences. These techniques are especially useful when the aim
is to integrate human knowledge into the solution selection process.

These strategies represent significant advances, particularly in contexts with many
objectives, where conventional techniques lose effectiveness [4].

2.3.3.3. Future of the MaOO Field
Initiatives such as the construction of the MyCODA ontology [4] aim to structure knowl-
edge about MaOO. This ontology, presented in Chapter 13 of [38], classifies concepts,
methods, metrics, and applications, promoting a common vocabulary and collaboration
among researchers.

2.3.4. Quality Indicators in Multi-Objective Optimization and
Many-Objective Optimization

Quality indicators play a central role in evaluating the performance of algorithms in MOO
and MaOO, especially with regard to convergence to the Pareto front and the diversity
of the solutions generated. Among the main indicators, the following stand out:

• HyperVolume (HV): measures the volume of the objective space covered by
non-dominated solutions, bounded by a reference point, simultaneously reflecting
the convergence and diversity of the obtained front. The larger the hypervolume,
the better the coverage of the PF [31].
• Normalized HyperVolume (NHV): is used to evaluate the quality of ap-

proximated fronts. It is based on the HV metric, however the NHV is computed
in the normalized objective space, which allows for a fairer comparison between
algorithms, especially when objectives have different scales or units. This nor-
malization ensures that each objective contributes equally to the performance
evaluation, mitigating the bias caused by differing value ranges. NHV values
range from 0 to 1, with values closer to 1 indicating fronts that are closer to and
more representative of the ideal Pareto front [39].

In MOO problems with up to three objectives, HV is widely used due to
its computational efficiency. However, as the number of objectives increases, as
in MaOO problems, computing the HV becomes more demanding, which can
limit its direct use during algorithm execution. Nevertheless, HV remains an
effective metric for post-processing evaluations. During execution, it is often
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replaced by more computationally efficient indicators, such as IGD+, R2, or the
ε-indicator [4].
• Inverted Generational Distance (IGD) and IGD+: evaluate the qual-

ity of the obtained front based on its proximity to a reference Pareto front.
IGD computes the average distance from reference points to the generated solu-
tions, reflecting both convergence and diversity. However, it may favor dominated
fronts. IGD+ corrects this limitation by employing a modified metric that re-
spects the direction of Pareto dominance, thus being more suitable in the context
of MaOO [4], [31].
• Spread Indicator (SPREAD) / Spacing: assesses how evenly solutions are

distributed along the front. A lower value of this indicator indicates good coverage
and balance among solutions [31]. This indicator is widely used in MOO, but
its direct application in MaOO is limited due to the geometric complexity of
high-dimensional fronts and the difficulty in defining meaningful spacing metrics.
In MaOO, the dispersion of solutions is generally assessed using metrics more
suitable for multiple objectives, such as HV, R2, and IGD+, which incorporate
this analysis more robustly [4].
• Generalized Spread Indicator: The Generalized Spread (GS) is a diversity

metric that evaluates the uniformity and extent of non-dominated solutions in
problems with more than two objectives. It measures the distance between each
point and its nearest neighbors, as well as to the extreme points of the front. The
lower the value, the better the distribution. Although useful, it is not Pareto-
compliant, which requires careful interpretation [40], [41].
• Epsilon Indicator: indicates the smallest value needed to shift (or translate)

all solutions of one front so that it dominates another. This enables quantitative
comparisons between different solution fronts. It is widely used in MOO and
also applicable in MaOO due to its good computational scalability. Although
it is only weakly compatible with Pareto dominance, it remains a useful metric
for assessing convergence and coverage, especially when used alongside other
indicators [4], [31].
• R2 Indicator: applied in both MOO and MaOO, uses weighted utility functions

to assess solution quality based on the decision maker’s preferences, being partic-
ularly effective in multi-criteria decision-making contexts. With few objectives
(2 or 3), it is simple to configure representative weight vectors and geometrically
interpret the influence of each direction, making it a lightweight alternative to
hypervolume and compatible with interactive or preference-based algorithms.

In the MaOO context, R2 evaluates the quality of a set of solutions based on
a finite set of scalarization functions, such as the weighted Chebyshev function.
It is considered a comprehensive metric, as it incorporates aspects of conver-
gence, dispersion, uniformity, and cardinality. Furthermore, it stands out for
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its computational efficiency in problems with four or more objectives, in which
hypervolume becomes infeasible to calculate accurately.

However, this indicator is only weakly compatible with Pareto dominance,
being sensitive to the quality of the weight vector distribution, the choice of the
utopian point, and the geometry of the Pareto front. For example, uniformly
distributed weight vectors tend to perform better on linear fronts [4], [31].

These metrics are fundamental not only for guiding the evolution of the population
during the execution of the algorithms but also for enabling rigorous comparisons between
different optimization approaches.

2.3.5. Application of SOO, MOO, and MaOO to the UCTP

The UCTP can be formulated and solved through different optimization paradigms, de-
pending on the number of objectives considered and the degree of conflict between them.

In the context of SOO, according to Chen et al. [5], ILP and MILP are frequently used
to solve small-scale problems due to the NP-hard complexity of the problem. Although
these approaches can guarantee the achievement of optimal solutions, their application
becomes computationally infeasible in large-scale problems due to the exponential growth
of the search space.

On the other hand, in the MOO and MaOO formulations, metaheuristic-based algo-
rithms or hybrid approaches are often used, given the need to balance multiple conflicting
objectives and ensure diversity in the generated solutions. Although the number of stud-
ies is still limited, the authors highlight these approaches as a promising trend for future
research, especially in high-complexity scenarios.

2.3.6. Algorithms Used to Solve the Room Allocation Multicriteria
Optimization Problem

This section presents the algorithms used to solve the problem within the scope of this
work.

2.3.6.1. Non-dominated Sorting Genetic Algorithm II
NSGAII is a multi-objective evolutionary algorithm developed by Deb et al. [42], as a
modification of the original Non-dominated Sorting Genetic Algorithm (NSGA). Its ob-
jective is to solve problems involving the simultaneous optimization of multiple conflicting
criteria, aiming to find an efficient approximation of the PF.

According to Ma et al. [43], and as illustrated in Figure 2.8, the number of publications
using NSGAII has increased substantially from 2013 to 2022.
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Figure 2.8. Publication trend of NSGAII per year. Source: Ma et al. [43]

The algorithm emerged as an evolution of the first generations of dominance-based
sorting algorithms, introducing improvements to several limitations identified in earlier
approaches, such as high computational complexity, the absence of elitism, and the de-
pendency on external parameters for diversity control.
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Figure 2.9. Basic flow of NSGAII. Source: Ma et al. [43]

Initially, an initial population is generated, followed by the application of the three
main improvements introduced by NSGAII, which are defined as follows:

• Fast non-dominated sorting: NSGAII introduced a ranking method based
on non-dominated fronts with reduced complexity (O(MN2), where M is the
number of objectives and N is the population size). This method allows the
population to be organized into dominance layers, favoring solutions that are
closer to the optimal Pareto front.

Table 2.1. Example of dominance comparison between two solutions in a
minimization problem.

Solution Objective 1 Objective 2 Objective 3

A 30 40 40
B 20 30 35

It can be observed that solution B presents better values in all objectives com-
pared to solution A, which implies that B dominates A.
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• Elitism: The algorithm preserves the best solutions from each generation by
combining the parent and offspring populations before selection. This mechanism
ensures that high-quality solutions are not lost during the evolutionary process,
increasing the robustness of the search.
• Diversity preservation: To maintain a balanced distribution of solutions along

the PF, the concept of crowding distance was introduced. This metric evaluates
the density of neighboring solutions and favors individuals located in less densely
populated regions, promoting diversity without requiring additional parameters
such as the sharing parameter.

Figure 2.10. Selection process in NSGAII. Source: Deb et al. [42].

Figure 2.10 represents the selection process in NSGAII, where the parent and offspring
populations are combined and organized into dominance fronts. The fronts are sequen-
tially added to the new population until the desired size is reached. If only part of a front
needs to be selected, the crowding distance is applied to prioritize more diverse solutions.
The result is the new population Pt+1 for the next generation.

To generate the offspring population, genetic operators such as selection, crossover,
and mutation are applied, as described in Item 5.. After the creation of the new off-
spring population, the parent and offspring populations are combined to form an ex-
panded set. Then, fast non-dominated sorting is performed, organizing the solutions into
non-dominated fronts, followed by the calculation of the crowding distance to maintain
diversity.

The solutions are then selected based on their dominance front and crowding distance,
forming the new population Pt+1. This process of selection, crossover, and mutation is
repeated iteratively, generation after generation, until the stopping criterion—defined as
the maximum number of objective function evaluations—is reached.
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2.3.6.2. Non-dominated Sorting Genetic Algorithm III
NSGAIII is a many-objective evolutionary algorithm proposed by Deb et al. [33], aimed
at addressing optimization problems involving a large number of simultaneous objectives.

It emerges as an evolution of NSGAII, introducing a selection mechanism based on
predefined reference points, rather than relying solely on PD sorting and crowding dis-
tance, as in NSGAII. This approach enables a better distribution of solutions along the
PF, even in high-dimensional spaces where PD becomes less discriminative.

Maintaining the concept of elitism, NSGAIII combines the parent and offspring popu-
lations into an expanded population and sorts the solutions into dominance fronts. How-
ever, the final selection of individuals for the next generation is based on a process of
association with uniformly distributed reference points, maximizing diversity among so-
lutions.

The algorithm begins with a random population and applies the fast non-dominated
sorting process, as described in Subsection 2.3.6.1. Next, solutions are associated with
the reference points to guide the selection of the new generation.

Figure 2.11. Process of associating solutions to reference points. Source:
Vesikar et al. [44].

The process of associating solutions to reference points in NSGAIII is based on several
fundamental concepts. The Ideal Point 0 represents the theoretical point at which all
objectives are minimized simultaneously, although in practice it is unattainable. The
centroid g corresponds to the center of mass of the solutions in the objective space and
serves as a reference for data normalization.
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The points are "shrunk" toward the centroid to better fit the actual distribution of
the Pareto front. These adjusted points form the final reference points (shown in orange),
which are used in each generation to guide solution selection.

The association between solutions and reference points occurs in the normalized hy-
perplane (defined, for example, by the equation f1 + f2 + f3 = 1), ensuring a balanced
distribution in the objective space. The vectors r(k) represent the connection between
a solution and its nearest reference point, considering normalization with respect to the
centroid.

Next, the algorithm proceeds similarly to NSGAII, applying the selection process
based on dominance fronts. However, the choice of individuals for the new generation
is guided by the reference points, prioritizing solutions associated with less represented
regions in the objective space. This mechanism ensures not only convergence to the Pareto
front but also a diverse and balanced distribution of solutions along the front [33], [44].

2.3.6.3. Multi-Objective Evolutionary Algorithm Based on Decomposition
MOEA/D was proposed by Zhang and Li [34] as an alternative to algorithms based on
PD. Instead of operating directly on a population based on dominance between solutions,
MOEA/D decomposes the multi-objective problem into multiple scalar optimization sub-
problems, which are solved simultaneously.

Each subproblem is associated with a weight vector and maintained by a single indi-
vidual in the population. The evolution of each solution depends only on its neighbors,
defined by the proximity between the weight vectors. The update occurs locally, replacing
only the individuals in the neighborhood if a new solution performs better according to
the scalar decomposition function.

The algorithm can also be used for MaOO, showing good scalability and computa-
tional performance. Its modular architecture also allows the incorporation of various
genetic operators and different decomposition strategies, such as Tchebycheff, weighted
aggregation, or PBI (Penalty Boundary Intersection).
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Figure 2.12. Basic flowchart of MOEA/D. Adapted from Zhang and Li [34].

Figure 2.12 represents the main steps of the algorithm, which can be described as
follows:

• Generate weight vectors and neighborhoods: The weight vectors are uni-
formly distributed, and for each one, the set of closest neighbors is calculated
based on Euclidean distance.
• Initialize population: Each weight vector is associated with a random initial

solution. The reference vector z is defined with the best values found so far.
• Run until stopping criterion:

– Select parents within the neighborhood;
– Apply crossover and mutation operators;
– Update the reference vector based on the new solution;
– Update the neighborhood solutions based on the decomposition function;
– (Optional) Update the external archive with non-dominated solutions.
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• Return solutions: The final solutions correspond to the best found for each
subproblem, or to the non-dominated solutions stored in an external archive (if
used), which maintains a global set of solutions.

2.3.6.4. ILP as a SOO Approach
As discussed in Section 2.2.1, ILP is widely used in solving the UCTP when it is formulated
as a single-objective problem. In this approach, different criteria are combined into a
single, usually linear, objective function, allowing the application of exact optimization
techniques. Although it provides optimal solutions, ILP is limited by scalability and is
more suitable for small-sized instances or as a benchmark for comparison with heuristic
approaches, as exemplified by the review conducted by Abdipoor et al. [12].

2.3.7. Software and Frameworks

Solving the UCTP involves not only defining mathematical models and algorithms but also
using appropriate computational tools that enable their implementation, experimentation,
and analysis. The choice of well-established software and frameworks contributes to
the consistency of results and facilitates development, given the support for reusable
components, standardized indicators, and extensive documentation.

The tools used in this dissertation are described below:

2.3.7.1. jMetal
jMetal is an object-oriented Java framework developed to facilitate the implementation
and evaluation of metaheuristics applied to multi-objective optimization [41]. It includes a
wide range of algorithms such as NSGAII, NSGAIII, MOCell, SMPSO, MOEA/D, as well
as several benchmark problems (ZDT, DTLZ, WFG, CEC2009) and quality indicators like
Hypervolume, Epsilon, SPREAD, GD, and IGD.

Its modular architecture allows for the creation and customization of new problems,
algorithms, and operators, promoting code reuse and development flexibility. jMetal also
supports systematic experimental studies, with automatic generation of LaTeX tables,
boxplots, statistical tests (e.g., Wilcoxon), and a graphical interface to simplify usage.
It is widely used in the scientific community due to its robustness, extensibility, and
comprehensive support for the experimentation cycle.

2.3.7.2. Python Optimization Modeling Objects
Python Optimization Modeling Objects (Pyomo) is an open-source library developed for
the Python programming language, designed for the formulation, resolution, and analysis
of optimization models. It integrates directly with a high-level programming language,
allowing symbolic modeling flexibility and the use of auxiliary libraries.

It supports a wide variety of problems, including linear, nonlinear, mixed-integer,
stochastic, bilevel, and disjunctive programming. It offers scripting capabilities, paral-
lelization, and integration with various solvers, such as Gurobi [45].
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2.3.7.3. GNU Linear Programming Kit
GNU Linear Programming Kit (GLPK) is an open-source solver developed by the GNU
project to solve Linear Programming (LP) and Mixed-Integer Programming (MIP) prob-
lems. Written in C, it is provided as a reusable library and includes methods such as
simplex, interior-point, and branch-and-cut.

It supports the GNU MathProg language, compatible with AMPL, and can be inte-
grated with various programming languages, such as Python via Pyomo. It is used in many
academic and research contexts, especially when open-source solutions are preferred [46].

2.3.7.4. Gurobi Optimizer
Gurobi Optimizer (Gurobi) is a commercial solver used to solve LP, ILP, MIP, and
Nonlinear Programming (NLP) problems. It implements algorithms such as primal and
dual simplex, barrier (interior-point), branch-and-bound, and branch-and-cut.

It is provided as an optimized library with APIs available for several programming
languages, including Python, Java, C++, C#, and R. In academic and research contexts,
its integration with libraries such as Pyomo allows flexible modeling [3].

2.4. State of the Art

This study followed the guidelines proposed by Kitchenham & Charters in 2007 [47] for
conducting a systematic literature review, ensuring a rigorous and transparent method-
ological approach. A systematic literature review is a structured research method that
involves the identification, evaluation, and synthesis of relevant evidence available in the
literature on a given topic.

Following the guidelines of Kitchenham & Charters (2017) [47], the study adopted a
robust and reliable approach to analyze and synthesize the existing knowledge in the field
of this dissertation.

To ensure a solid knowledge base and a comprehensive analysis, online repositories
were selected that align with the objectives of this investigation, guaranteeing a complete
and relevant literature review. The selected repositories were:

• IEEE Xplore (https://ieeexplore.ieee.org/Xplore/home.jsp)
• Scopus (https://www.scopus.com/home.uri)
• Web of Science (https://www.webofscience.com/wos/woscc/basic-search)
• ScienceDirect (https://www.sciencedirect.com/)
• ABSCO (https://www.ebsco.com/)

2.4.1. Systematic Review of Methodologies to Solve the UCTP

This subsection presents the first systematic review with the objective of identifying stud-
ies that analyze and compare the different approaches present in the literature, as well as
the most widely used methodologies to solve the UCTP.

The steps carried out to conduct the literature review are detailed next:
The following keywords were used:
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Figure 2.13. Steps of the systematic literature review

((“Abstract”:University timetabling OR “Document Title”:University timetabling) OR
(“Abstract”:UCTP OR “Document Title”:UCTP)) AND ((“Abstract”:“methodologies” OR
“Document Title”:“methodologies”)).

The keywords “University timetabling”, “UCTP” and “methodologies” were used, en-
abling a broad search for articles analyzing various methodologies applied to the UCTP
problem. All repositories used supported keywords without double quotation marks,
which allowed the search to return results such as “University timetabling” or “University
course timetabling.” The absence of quotation marks means that the space is interpreted
as an “AND”.

Table 2.2. Filtering process

Database Without
Filter

First Filter Second Filter Third Filter

IEEE 6 5 0 2
Web of Science 14 9 2 1

Scopus 71 46 3 0
ScienceDirect 19 13 2 0

EBSCO 87 58 0 0

Total 197 131 7 3

2.4.1.1. Filtering Process
The filtering process consisted of four stages:

1. Initial Search: A total of 197 articles were retrieved from five scientific
databases (IEEE, Web of Science, Scopus, ScienceDirect, and EBSCO), using
the specified keywords applied to titles and abstracts.
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2. First Filter: A temporal criterion was applied, restricting the analysis to articles
published between 2014 and 2024, which reduced the total to 131.

3. Second Filter: An analysis of the remaining 131 articles was conducted, re-
moving those that were not aligned with the objectives of the present systematic
review. After this filter, 7 articles remained.

4. Third Filter: Duplicates among the databases were eliminated, resulting in a
final total of 3 articles, which are analyzed in detail in the following section.

2.4.2. Review of the Identified Works

2.4.2.1. Pandey and Sharma (2016)
In 2016, Pandey and Sharma [7] classified the timetabling problem as NP-hard, empha-
sizing the difficulty of finding an optimal solution for large instances. The article points
out that hard constraints, such as room and schedule allocation, must be satisfied at all
costs, while soft constraints, such as teachers’ preferences, allow greater flexibility.

The authors also highlight that the timetabling problem varies between universities
due to the large number of constraints, making manual resolution difficult. In response,
researchers have explored several techniques, such as metaheuristics, hyper-heuristics,
adaptive methods, graph coloring, and particle swarm optimization. Constraint-based
reasoning is also mentioned as an effective approach. Furthermore, the timetabling
problem is categorized into variants such as Examination Timetabling Problem (ETTP),
Curriculum-based Timetabling Problem (CTTP), Lecture Timetabling Problem (LTTP)
(lecture timetabling problem), and Teacher Timetabling Problem (TTTP) (tournament
timetabling problem).

Section II discusses the various variants of the timetabling problem, such as University
Timetabling Problem (UTTP) (course and exam timetabling), CTTP (weekly course
timetabling), LTTP (assigning one lecture per day), and ETTP (exam scheduling with
constraints). The authors underline the importance of clear classification to effectively
address the problem and present mathematical formulations of the main constraints to
ensure feasible and optimized solutions.

Section III outlines the history of the timetabling problem, illustrating how the as-
signment of events to time slots while satisfying constraints increases computational com-
plexity as problem size grows. Evolutionary algorithms and constraint-based methods
were among the first proposed solutions, with significant contributions from Colorni et
al. (1991, 1992, 1997) and Deris et al. (1997). Reviews by Carter (1986) and Corne et
al. (1994) explored the application of genetic algorithms and linear programming. More
recently, bio-inspired approaches such as ABC and ACO have gained prominence.

Conferences like Practice and Theory of Automated Timetabling (PATAT) and com-
petitions such as International Timetabling Competition (ITC) have played crucial roles
in motivating research and establishing benchmarks. In 2006, RongQu and Di Gaspero,
and later Andrea Schaerf in 2007, facilitated result validation through the creation of
websites that promote research in this area.
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Section IV reviews various approaches to solving the timetabling problem, includ-
ing linear programming (Carter, 1986; Deris et al., 1997), integer programming (Lajos,
1996), and logic programming with backtracking (Kang and White, 1992). More recent
work by Schimmelpfeng and Helber (2007) using CPLEX for mixed-integer programming
demonstrated success with real-world instances.

Constraint satisfaction problem (CSP) approaches are also discussed, with graph color-
ing emerging as a popular method, where events are represented as vertices and constraints
as edges. Metaheuristics such as ACO, PSO, and genetic algorithms (GA), which combine
local search procedures with learning strategies, are highlighted for their effectiveness in
exploring the search space.

The conclusion reinforces the NP-hard complexity of the problem, emphasizing that
evolutionary algorithms are preferred for generating feasible approximate solutions, with
the ITC serving as a standard platform for result validation.

2.4.2.2. Chen et al. (2021)
In 2021, Chen et al. [5] identified the timetabling problem as a common combinatorial
optimization challenge in academic institutions, emphasizing the relevance of studying
recent methodologies applied to the UCTP. The article classifies these approaches and
highlights the associated challenges, distinguishing between hard constraints, which must
be strictly satisfied, and soft constraints, which are desirable but adaptable depending on
institutional requirements.

The authors discuss methodologies for solving the UCTP using benchmark datasets
such as Socha, ITC-02, ITC-07, and ITC-19. These methodologies are categorized into
operational research-based techniques, single-solution metaheuristics, population-based
metaheuristics, hyper-heuristics, multi-criteria approaches, and hybrid approaches. The
article provides a detailed analysis of each category, discussing their advantages and dis-
advantages, with examples of studies that applied these methodologies. The application
of these methods in real-world scenarios is also examined, evaluating their practical effec-
tiveness and adaptability to the specific needs of the institutions studied. The variability
of hard and soft constraints across different institutions is also emphasized.

The review included 35 articles, of which six explored operational research (OR)-
based methodologies, ten focused on single-solution metaheuristics, eight on population-
based metaheuristics, two on hyper-heuristics, one on a multi-criteria approach, and eight
on hybrid approaches. In terms of benchmarks, single-solution and population-based
metaheuristics were the most commonly used, with seven approaches each. Five of the
seven single-solution approaches used SA, while two of the population-based approaches
applied Ant Colony Optimization (ACO). In contrast, hyper-heuristics and multi-criteria
approaches were less popular, although they present opportunities for future studies.

For real-world UCTTP applications, hybrid approaches were the most frequently used,
followed by single-solution metaheuristics, operational research techniques, population-
based metaheuristics, and hyper-heuristics.
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In Section IV, the authors present several practical examples of real-world applica-
tions. One such study applied a hybrid approach combining Variable Neighborhood Search
(Variable Neighborhood Search (VNS)) and TS to solve the UCTTP at the Fluminense
Federal University. This hybrid method was developed using the FINESS framework and
outperformed the individual performance of VNS and TS. Another example comes from
the University of Bahrain, where a clustering and color-mapping algorithm was used to
generate conflict-free schedules for 1,270 students and 83 courses, leveraging data mining
techniques. Additionally, a Hybrid Genetic Algorithm (HGA) with four neighborhood op-
erators was applied to manage teaching workloads in higher education institutions in the
Philippines, generating feasible solutions for 118 classes and optimizing teachers’ work-
loads. These practical examples highlight the adaptability and success of hybrid and
metaheuristic methods in complex real-world scenarios.

Section VI of the article analyzes the most commonly used benchmark datasets and
state-of-the-art methodologies for addressing the UCTP. The authors highlight that
datasets from international competitions such as Socha, ITC 2002, ITC 2007 (Tracks
2 and 3), Hard Benchmark, and ITC 2019 are the most popular among researchers.

In Section VII, the authors report that the 35 approaches analyzed indicate that OR
techniques generate feasible but low-quality solutions. Single-solution metaheuristics, such
as SA, are effective but require precise parameter tuning. Population-based metaheuris-
tics, such as GA and ACO, are superior in exploring the solution space but tend to be
computationally intensive. Hyper-heuristics offer fast and adaptable algorithms but face
difficulties in effectively exchanging information, while multi-criteria approaches demand
substantial computational effort. Hybrid methods are noted for their complexity and high
costs. The section concludes with a call for the development of effective algorithms that
are simple to use and adaptable to various institutional contexts.

The conclusion emphasizes that the UCTP remains an active and important research
area, largely motivated by international competitions. The authors also detail the charac-
teristics of the benchmark datasets and discuss the limitations of each category of method-
ology. Opportunities for future research are identified, focusing on the development of
more flexible and adaptable solutions for real academic institutions.

2.4.2.3. Bashab et al. (2023)
In 2023, Bashab et al. [8] explored methodologies used to address the University Course
Timetabling Problem (UCTP), classified as NP-hard and belonging to the class of Combi-
natorial Optimization Problems (COP). The article highlights the application of various
optimization techniques, particularly metaheuristics, in multi-objective optimization to
find robust solutions that account for both hard and soft constraints. It reviews recent
studies discussing key concepts, algorithms, benchmarks, and open questions, emphasiz-
ing the growing need for automation, while recognizing that human intervention is still
required in certain aspects of the problem.
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The study explains that the timetabling problem involves the allocation of exams
and classes, aiming to prevent scheduling conflicts and ensure that rooms are suitable
for the number of students. Course timetabling is further divided into curriculum-based
and enrollment-based approaches, both involving the allocation of teachers, students, and
rooms.

Bashab et al. [8] classify metaheuristic optimization methodologies into four main
categories: Sequential Methods, Clustering Methods, Constraint-Based Methods, and
Metaheuristic Methods, with extensions such as Hybrid Evolutionary Algorithms and
Hyper-heuristics. The study also details simpler heuristic approaches like the LS algo-
rithm, along with more advanced metaheuristics such as Simulated Annealing (SA), TS,
and population-based methods like GA, PSO, ACO, and ABC, which iteratively seek
optimal solutions.

Regarding algorithm evaluation, the article focuses on balancing exploration and ex-
ploitation, using evolutionary operators such as crossover, mutation, and selection. To
assess performance, metrics like accuracy, number of evaluations, and execution times are
compared.

In terms of benchmarks, the study references datasets from ITC2007 and Purdue
University for course timetabling, as well as datasets from Toronto, Nottingham, and
Melbourne for exam timetabling. These benchmarks are essential for evaluating the ef-
fectiveness of applied approaches.

In the discussion, the research presents a comprehensive review of the university
timetabling problem, divided into four main stages: understanding the problem, clas-
sifying constraints, analyzing applied approaches, and defining criteria to select the best
method. The main concern is satisfying all constraints, which become more complex as
they are added, making it more difficult to find the optimal solution. Suggested timetables
should be generalized, satisfying all hard constraints while minimizing the soft ones.

Metaheuristics have been widely explored to optimize this type of problem and are
divided into single-solution methods and population-based methods. Figure 2.14 high-
lights that Genetic Algorithms (GA) had a significant presence (16%) compared to other
methods, while hybrid algorithms stood out with a 35% rate due to their effectiveness in
final results. Additionally, swarm intelligence algorithms, which use a decentralized and
self-organizing approach, also demonstrated efficiency and reliability.

In terms of publication types, most research was published in scientific journals
(86) and conferences (58), indicating strong academic interest and discussion among re-
searchers. However, there is a lack of performance measures to compare different algo-
rithms, and the difficulty of making fair comparisons is emphasized due to the variability
of constraints and objectives among different institutions.

For future directions, the article suggests exploring more modern optimization algo-
rithms, such as multi-objective evolutionary algorithms, which are promising for obtaining
robust solutions for the timetabling problem. The hybridization of algorithms and the
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Figure 2.14. Distribution of the publication rate of metaheuristic algo-
rithms to solve the UCTP, Source: Bashab et al. [8]

exploration of new techniques are seen as important ways to achieve greater efficiency in
solving this type of complex problem.

Finally, the conclusion highlights the importance of hybrid algorithms in achieving
robust and effective solutions and suggests that there is room to improve performance
metrics and create more realistic benchmarks. Additionally, the increase in the number
of publications in the last decade underscores the growing relevance of the university
timetabling problem in the field of combinatorial optimization.

2.4.3. Conclusions and Future Pathways for Solving the University Course
Timetabling Problem

The analysis of the works by Pandey and Sharma (2016) [7], Chen et al. (2021) [5], and
Bashab et al. (2023) [8] indicates that the UCTP remains one of the main challenges
in combinatorial optimization. The complexity of the problem results from the need to
simultaneously satisfy several hard and soft constraints.

The review shows that despite the historical application of methods based on ILP and
MILP, these face scalability limitations when applied to large instances of the problem.
On the other hand, approaches based on MH, especially population-based ones such as
GA and ACO algorithms, have demonstrated effectiveness in exploring the solution space.

Both Chen et al. (2021) [5] and Bashab et al. (2023) [8] highlight hybrid algo-
rithms as the most effective and promising approaches. The combination of techniques,
such as GA with SA or VNS, allows the integration of global exploration with local refine-
ment, resulting in more robust and adaptable solutions to different institutional scenarios.
Bashab et al. (2023) [8] reinforce that hybrid algorithms accounted for 35% of the suc-
cessful approaches identified in the recent literature, significantly outperforming isolated
approaches.

Multi-objective evolutionary algorithms, such as NSGAII, and more recently, NSGAIII
and MOEA/D, are pointed out as highly promising alternatives, especially due to their
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ability to handle multiple evaluation criteria simultaneously, which is an inherent feature
of the UCTP.

Additionally, approaches such as hyper-heuristics and swarm intelligence-based meth-
ods have also gained relevance due to their adaptability and simplicity of implementation,
although they still require further exploration in real-world contexts.

Thus, based on the systematic review conducted, it can be concluded that:

• Hybrid approaches that combine the exploratory power of metaheuristics with lo-
cal intensification strategies currently represent the most effective line for solving
the UCTP;
• Evolutionary algorithms such as NSGAII, NSGAIII, and MOEA/D are highly

recommended for future research, especially in contexts with multiple objectives;
• The automation of the scheduling generation process continues to evolve but

still requires enough flexibility to consider human preferences and institutional
specificities;
• It is essential to validate these approaches using recognized benchmarks, such as

those from the ITC, and to continue improving comparison metrics to effectively
evaluate different algorithms.

The literature review, as well as the systematic review carried out, will serve as the
foundation for the practical approach to the UCTP problem at Iscte, guiding the selection
of the most appropriate methods and tools for its resolution.
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CHAPTER 3

Problem and Proposed Solution

3.1. Problem Description

The problem addressed in this dissertation concerns room allocation to existing timetables,
which is a specific subset of the UCTP, where the main objective is to optimize previously
defined schedules by minimizing a set of soft constraints.

To this end, a real dataset was used, corresponding to the calendar of one academic
semester at Iscte – Instituto Universitário de Lisboa, consisting of approximately 10,000
students, 26,020 classes, and 126 classrooms of 23 distinct types.

Each classroom is described by properties such as capacity, building, and specific
characteristics (e.g., computer lab), while each class includes information about enrolled
students, the course, the group, the schedule, and the required classroom features. The
following sections formally present the sets of rooms and classes, as well as their respective
properties:

• LetR = {r1, r2, . . . , r|R|} be the set of rooms, where each room rj ∈ R is described
by the following properties:

– Name: room identifier;
– Normal capacity: number of available seats;
– Number of features: total number of features, such as computer lab,

journalism lab, regular classroom, etc.;
– Features: set of room features, such as computer lab, journalism lab, regular

classroom, etc.;
– Building: name of the building to which the room belongs.

• Let C = {c1, c2, c3, . . . , c|C|} be the set of classes, where each class ci ∈ C is
described by the following properties:

– Course: set of courses separated by comma, where each course has its
identifier, for example: ME, LETI, LEI, etc.;

– Shift: class shift;
– Class: class name;
– Enrolled students: number of enrolled students;
– Day of week: day of the week;
– Time: execution time, consisting of the day, start and end time of the class;
– Requested room features: requested room characteristics, such as com-

puter lab, journalism lab, regular classroom, etc.;
– Actual room features: set of features of the assigned room;
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3.2. Problem Constraints

As indicated in the literature review, the constraints applied to the UCTP can be classified
as hard or soft. In this dissertation, this distinction is concretely applied, defining which
constraints must be strictly fulfilled (hard) and which represent preferences to be satisfied
whenever possible (soft).

3.2.1. Soft Constraints

The soft constraints considered are four:

• S1 Student relocation: aims to minimize the change of building between
classes within the same shift, same course unit, and on the same day; that is,
students should not have to move between different buildings within short time
intervals;
• S2 Incompatibility between requested room type and assigned room:

evaluates the compatibility between the requested and the actually assigned
room, penalizing cases where the assigned room does not meet the requested
requirements, e.g., the need for a computer lab;
• S3 Room capacity waste: penalizes the waste of seats, accounting for cases

where the assigned room has significantly more capacity than the number of
enrolled students, with an acceptable waste threshold defined (e.g., 40%);
• S4 Room change in consecutive classes: penalizes when the same room is

not assigned to classes that belong to the same course unit and shift, and take
place on the same day.

The mathematical formulation of these constraints is as follows:
S1 Student relocation between buildings (SD)

min f1 =
∑
i<j

ci,cj∈C
shift(ci)=shift(cj)
unit(ci)=unit(cj)
day(ci)=day(cj)

δ(building(ri) ̸= building(rj))

Where:

• δ(·) is an indicator function that returns 1 if rooms ri and rj belong to different
buildings, and 0 otherwise;
• ri and rj are the rooms assigned to classes ci and cj, respectively;
• The function penalizes the allocation of classes with the same shift, course unit,

and day to different buildings.

S2 Incompatibility between requested and assigned room type (MCRA)

min f2 =
∑
i∈C

incompatibility(ci, ri)

Where:
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• incompatibility(ci, ri) represents the number of features requested by class ci that
are not met by the assigned room ri;
• Penalizes the allocation of rooms that do not meet the functional requirements

of the class (e.g., type of lab, technical resources, etc.).

S3 Waste of room capacity (CRA)

min f3 =
∑
i∈C

δ

(
capacity(ri)− enrolled(ci)

capacity(ri)
× 100 > θ

)
Where:

• capacity(ri): capacity of the room assigned to class ci;
• enrolled(ci): number of students enrolled in class ci;
• θ: maximum acceptable waste percentage (e.g., θ = 40%);
• δ(·): indicator function that returns 1 if the waste exceeds θ, 0 otherwise;
• Penalizes assignments where the room has significantly more capacity than re-

quired.

S4 Room change for consecutive classes of the same course unit and shift (RCCC)

min f6 =
∑
i<j

ci,cj∈C
unit(ci)=unit(cj)
shift(ci)=shift(cj)

δ (room(ci) ̸= room(cj))

Where:

• unit(ci): course unit associated with class ci;
• shift(ci): shift of class ci;
• room(ci): room assigned to class ci;
• δ(·): indicator function that returns 1 if the rooms are different, 0 otherwise;
• Penalizes assignments where different rooms are allocated to classes of the same

course unit and shift.

3.2.2. Hard Constraints

The hard constraints considered are:

• H1: aims to ensure that no class is assigned to a room with insufficient capacity
for the number of students;
• H2: avoids class overlap in the same room, i.e., prevents two classes from taking

place simultaneously in the same physical space;

The mathematical formulation of these constraints is presented below:
H1 Insufficient room capacity (ROB)

min f4 =
∑
i∈C

δ (capacity(ri) < enrolled(ci))

Where:
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• capacity(ri): normal capacity of the room assigned to class ci;
• enrolled(ci): number of students enrolled in class ci;
• δ(·): indicator function that returns 1 if the condition is true, 0 otherwise;
• Penalizes allocations where the room does not have enough seats for all enrolled

students.

H2 Overlapping classes in the same room (RO)

min f5 =
∑
i<j

ci,cj∈C
day(ci)=day(cj)

room(ci)=room(cj)

δ (overlap(ci, cj))

Where:

• room(ci): room assigned to class ci;
• day(ci): day of the week in which the class occurs;
• overlap(ci, cj): function that returns 1 if the class times overlap, 0 otherwise;
• Penalizes cases in which two classes are assigned to the same room on the same

day with overlapping schedules.

3.3. Proposed Solution

The strategy defined to solve the UCTP at Iscte was structured based on the literature
review and the conclusions of the systematic review. The approach plan integrates multi-
objective optimization techniques, hybrid methods, and Integer Linear Programming ILP,
as outlined below:

1. Evolutionary Multi-Objective Optimization (EMO): The multi-objective
evolutionary algorithms that stood out in the systematic review of Subsec-
tion 2.4.3 will be applied, namely:
• NSGA-II
• NSGA-III
• MOEA/D

These algorithms are suitable for dealing with problems involving multiple con-
flicting criteria, such as the UCTP at Iscte.

2. Hybrid Approaches with Local Intensification: Hybrid versions of the evo-
lutionary algorithms will be developed, incorporating local intensification mech-
anisms (local search). These strategies aim to refine and improve the solutions
generated during the evolutionary process by performing small targeted adjust-
ments to each individual in the population.

3. Integer Linear Programming: ILP will be used to solve small-scale instances
of the problem. This approach enables the generation of optimal solutions, which
will be used as a reference to validate the effectiveness of the approximate solu-
tions produced by the evolutionary and hybrid algorithms.
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4. Heuristic Initial Population (Constructive Population): In addition to
the random generation of initial solutions, a constructive strategy based on simple
heuristics and allocation rules will be used. This initial population will take into
account the criteria defined in the problem modeling presented in Section 3.1, and
will be compared to the randomly generated populations. Tests will also include
variations with and without local search applied to this constructive population.

All proposed variants (base algorithms, hybrids, ILP, and constructive populations)
will be evaluated using real data from Iscte and the benchmark instance comp02.ctt
from the ITC dataset. The comparison of results will be based on the quality metrics
described in Section 2.3.4.

This approach aims to assess the impact of heuristic construction and local intensifica-
tion on evolutionary algorithms and to demonstrate the robustness of hybrid approaches
in the practical and realistic resolution of complex scheduling problems and large instances
such as that of Iscte.
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CHAPTER 4

Implementation

The development involved the use of the NSGAII, NSGAIII, and MOEA/D algorithms,
integrated into the jMetal framework, and an approach based on ILP using the Pyomo
library. Regarding the EMO, customized versions with local search integration were
implemented.

The real data from ISCTE were integrated and used to validate the performance of the
approaches in the scenarios defined in Section 3.3, reflecting the complexity and specific
constraints of the institution.

To support the execution and validation of the implemented algorithms, a Java-based
solution was developed for data reading, solution evaluation, and comparison between
algorithms. This solution was used to test the EMO algorithms on the comp02.ctt instance
from the ITC2007 benchmark, enabling a comparative evaluation with a standardized
instance from the literature.

4.1. Tools Used

The main tools used for the implementation were:

• jMetal Framework: For the application of evolutionary algorithms, this frame-
work provided the infrastructure to define problems, solutions, genetic operators,
objective functions, and to conduct experimental studies.
• Pyomo: For the mathematical modeling of the problem, the Pyomo library was

used, which allows defining optimization models declaratively.
• Gurobi Optimizer: The Gurobi solver was used to solve the instances formu-

lated with ILP. Initially, the use of GLPK was considered, as it is an open-source
solution commonly used in academic contexts. However, it only supports single-
objective problems and does not allow the simultaneous definition of multiple
objective functions, as required in this approach.

Since the developed model uses a structure of separated objectives (multi-
objective), it was necessary to use a solver with native support for this type of
modeling. After research, it was found that Gurobi is available free of charge
for academic purposes, making it a suitable alternative for solving ILP problems
with multiple objectives.

The programming languages used were Java and Python, chosen based on compati-
bility with the tools used. Java was selected because version 6.1 of the jMetal framework
was developed in this language. Python was used for the mathematical modeling of the
problem, as it is compatible with the Pyomo library and the solver.
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4.2. Solution Implementation in Java

The implementation was developed based on object-oriented programming (OOP) prin-
ciples, using a modular architecture to facilitate maintenance, extension, and reuse of
components. Figure 4.1 presents the UML diagram developed, representing the main
classes involved in modeling the room and timetable allocation problem.

Figure 4.1. UML diagram representing the problem modeling in Java
using the jMetal framework

The solution was developed following object-oriented programming (OOP) principles,
adopting a modular architecture with the aim of facilitating the maintenance, extension,
and reuse of components. Figure 4.1 presents the UML diagram with the main entities
involved in the modeling of the room and timetable allocation problem.

4.2.1. Data Integration

The data provided were encoded in CSV format. Therefore, parsing was performed and
modeling was carried out through the RoomModel and TimetableModel classes, which
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represent the rooms and schedules, respectively. The former stores information such as
room capacity and specific features, while the latter contains data related to the curricular
unit such as class, number of students, and schedule. The attributes and properties are
defined as shown in Figure 4.1.

4.2.2. Problem Structure and Modeling

The IntegerSchedulingProblem class, which extends AbstractIntegerProblem, and
the DoubleSchedulingProblem class, which extends AbstractDoubleProblem from the
jMetal framework, model and define the instance of the optimization problem in their re-
spective types. It is in these components that the objective functions and evaluation logic
are implemented, including the calculation of penalties associated with the constraints
defined in Section 3.2.

4.2.3. Algorithms and Hybrid Strategies

Customized versions of the NSGAII, NSGAIII, and MOEA/D algorithms were developed,
integrating the BasicLocalSearch intensification technique native to the jMetal framework.
Each version extends the respective class of each algorithm, allowing for the incorporation
of additional strategies such as the use of a heuristic initial population and the optional
application of local search, as well as the implementation of the same stopping criterion
for all algorithms.

4.2.3.1. Local Search
The local search technique was integrated into the EMO algorithms using the BasicLo-
calSearch class provided by the jMetal framework, configured with an Integer Polynomial
Mutation operator, a standard dominance comparator (DefaultDominanceComparator),
and the reference to the modeled problem.

The polynomial mutation was parameterized with a probability of 1
n
, where n is the

total number of genes per chromosome, and a distribution index of 20.0. The dominance
comparator was responsible for evaluating whether the locally generated new solution
dominates the current one. The local search was configured to generate a single neighbor
per iteration. If this neighbor shows better quality according to the dominance criteria,
it replaces the current solution, making the evolutionary process more effective.

4.2.3.2. Constructive Population
To increase the effectiveness of the initial solutions and provide higher quality heuristics to
the chromosome, a constructive method (constructHeuristicSolution) was implemented.
This method assigns each class to a room based on the hard constraints.

The implemented logic can be formally described as follows:
Let C = {c1, c2, . . . , cn} be the set of classes and R = {r1, r2, . . . , rm} the set of

available rooms. For each class ci ∈ C, the heuristic tries to find the first room rj ∈ R

such that:
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capacity(rj) ≥ students(ci)

¬overlap(ci, rj, Di)

where:

• capacity(rj) is the capacity of room rj,
• students(ci) is the number of students in class ci,
• Di represents the day on which class ci occurs,
• overlap(ci, rj, Di) is a function that checks if there are already classes assigned to

room rj on day Di with overlapping times.

If no viable room exists, a random room is chosen:

rj ← rand(R)

4.2.3.3. Stopping Criterion Based on HyperVolume Plateau
Instead of using a fixed number of iterations as a stopping criterion, a mechanism based
on the hypervolume HV quality indicator was introduced. That is, at each generation, the
HV of the current PF is calculated and compared with the best value obtained so far. If
there is no significant improvement over a predefined number of consecutive generations,
the algorithm terminates early, avoiding unnecessary iterations.

The operation follows these steps:

• Initialization:
– The hypervolume of the initial population is calculated: bestHV =

HV (Generation 0).
• During each generation:

– The current hypervolume of the front is calculated: hvNow.
– It is compared with the best known value bestHV.
– If the improvement is greater than a small threshold ε, that is:

hvNow > bestHV + ε with ε = 10−6

then:
∗ Update the best value: bestHV← hvNow;
∗ Reset the counter: plateauGens← 0.

Otherwise:
∗ Increment the counter: plateauGens ++.

• Stopping criterion:
– The algorithm stops when:

1. The maximum number of iterations is reached; or
2. The number of generations without improvement reaches the limit:

plateauGens ≥ MAX_PLATEAU_GENS (e.g., 100)
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4.2.4. Integer Linear Programming Model

This Integer Linear Programming model aims to allocate schedules to rooms in an optimal
way, ensuring a single strict constraint: each schedule must be allocated to exactly one
room (ROB). To ensure the total feasibility of the model, a dummy room was introduced,
whose use is heavily penalized in the objective function.

The need for this fictitious room arose due to the existence of some schedules for which
no real one meets the minimum requirements. A practical example occurs with the course
Data Analysis in Human Resource Management III, which has 59 students enrolled in a
shift that requires a space with the characteristics of a computer lab. However, all such
rooms, in any building, have a maximum capacity of only 50 seats. Thus, without the
introduction of the dummy room, the model would become infeasible.

For this reason, unlike the implementation with jMetal, constraints H1 (ROB) and
H2 (RO) were not enforced as hard in the ILP model. Their enforcement would render
the model infeasible in scenarios with physical limitations, such as the unavailability
of rooms with sufficient capacity. Therefore, they were modeled as strongly penalized
soft constraints, enabling the model to produce feasible solutions even under exceptional
circumstances.

The objective function minimizes penalties associated with the following soft con-
straints:

• RCCC — Change of room between consecutive classes.
• SD — Relocation of students due to inadequate room capacity.
• MCRA — Incompatibility between the type of room requested and the type of

room assigned.
• CRA — Assignment of rooms with capacity lower than the number of students

enrolled.
• EDIF — Use of multiple buildings by the same group.
• DUMMY — Use of the dummy room, heavily penalized so that it is avoided

whenever possible.

The model was implemented in Python, using the Pyomo library, and the ILP solver
Gurobi.

4.2.5. Execution

Execution is orchestrated by the Main class, which performs data reading, problem con-
figuration, parameter definition as per Table 5.4, and algorithm execution. This structure
enables experiments with different approaches and instances.
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CHAPTER 5

Experiments and Parameters

This section describes the details of the experimental setup adopted to evaluate the pro-
posed approaches for solving the room and timetable allocation problem at Iscte.

5.1. Data Used

To validate the effectiveness of the proposed algorithms, two categories of instances were
used:

• Iscte Instance: The data provided by the institution represent a realistic sce-
nario of one semester, with characteristics and specific constraints of the institu-
tion, as shown in Table 5.1.

Table 5.1. Description of the Iscte Instance

Element Description

Source University Institute of Lisbon (ISCTE)
Period One full academic semester
Number of students Approximately 10,000
Number of classes 26,020
Number of rooms 126
Room types 23 distinct types (e.g., auditorium,

laboratory, standard classroom, etc.)

• Benchmark Instance (ITC2007 – comp02.ctt): This instance was used to
compare the results obtained and validate the performance of the EA and ILP
methods. Table 5.2 indicates the characteristics of the dataset.
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Table 5.2. Description of the Benchmark Instance (comp02.ctt – ITC2007)

Element Description

Source International Timetabling Competition
2007 (ITC2007)

Instance comp02.ctt
Number of courses 72
Number of classes 522
Number of days 5
Total number of periods 30
Number of rooms 16

5.2. Experimental Settings

The experiments conducted were based on two distinct approaches for solving the room
and timetable allocation problem: EMO and Integer Linear Programming (ILP).

The EMO-based approach used the same three algorithms in all configurations:
NSGAII, NSGAIII, and MOEA/D. Four different experimental setups were carried out,
varying based on the use of hybrid strategies (with local search) and the application of a
heuristic (constructive) initial population.

Table 5.3 summarizes the main settings adopted in each experiment.

Table 5.3. Summary of configurations used in the different experimental setups

Experiment Hybrid (Local Search) Constructive Population Runs

Experiment 1 Yes No 25
Experiment 2 No No 25
Experiment 3 Yes Yes 25
Experiment 4 No Yes 25

5.3. Parameters of the Evolutionary Algorithms

The parameters used in the configuration of the algorithms and experiments of the Evolu-
tionary Algorithms are presented in Table 5.4, which summarizes the values for the main
operators and stopping criteria.
54



Table 5.4. Algorithm configurations

Parameter NSGA-II NSGA-III MOEA/D

Population size 200 200 200

Max evaluations 80,000 N/A 80,000

Max iterations N/A 400 N/A

Mutation
operator

Integer Polynomial
Mutation

Integer Polynomial
Mutation

Polynomial
Mutation

Mutation
probability

1
n
, where n is the

total number of
genes per individual

1
n
, where n is the

total number of
genes per individual

1
n
, where n is the

total number of
genes per individual

Distribution
index (mutation)

20.0 20.0 20.0

Crossover
operator

Integer SBX
Crossover

Integer SBX
Crossover

Differential
Evolution Crossover

Crossover
probability

0.9 0.9 CR = 0.5

Distribution
index (crossover)

18.0 18.0 F = 1.0

Selection
operator

Ranking And
Crowding Distance
Comparator

Ranking And
Crowding Distance
Comparator

N/A

Divisions
(NSGA-III)

N/A 4 N/A

Decomposition
type

N/A N/A FunctionType.
TCHE

* NSGA-II and MOEA/D were limited by a maximum number of evaluations (80,000), while NSGA-
III was limited by a maximum number of iterations (400 generations), with population size 200.

5.4. Execution Environment Setup

The experiments were conducted in an environment with the following specifications:

• Processor: AMD Ryzen 7 7840HS with 8 physical cores and 16 logical threads;
• RAM: 40 GB;
• Operating System: Windows 11 64-bit;
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• IDE: IntelliJ IDEA (Java) and VS Code (Python);
• Software: For the evolutionary algorithms, the jMetal 6.1 framework (Java version) was used.

Python 3.12 was used with Pyomo and Gurobi for the ILP model;
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CHAPTER 6

Results and Discussion

This chapter presents the results obtained from the experiments conducted with the EA and the ILP,
using data from Iscte and the comp02.ctt instance from ITC2007.

6.1. Tests of the Evolutionary Algorithms with the Iscte – Instituto Universitário de
Lisboa Dataset

As previously mentioned, the objective of this work is to carry out a benchmarking process to solve the
room allocation problem for schedules at the Iscte institution. The tests for the variants described in
Section 5.2 are presented below.

6.1.1. Experiment 1 – Without Constructive Population and With Local Search

This experiment followed the setup defined in Section 5.4, using local search but without a heuristic
initial population. The execution time was 16 hours and 40 minutes with 25 runs per algorithm.

Table 6.1 summarizes the mean and standard deviation values of the NHV and Generalized Spread
Indicator (GSPREAD) indicators.

Table 6.1. Problem 1 – Mean and standard deviation of NHV and
GSPREAD for each algorithm

Algorithm NHV (mean ± std) GSPREAD (mean ± std)

MOEA/D 0.998 ± 0.005 1.002 ± 0.067
NSGA-II 0.550 ± 0.128 0.405 ± 0.030
NSGA-III 0.591 ± 0.090 0.636 ± 0.073

Figure 6.1 presents the NHV values, where the MOEA/D algorithm achieved the best result, with a mean
of 0.998, close to the ideal (1.0), and with low variation between runs, as the standard deviation was
0.005, demonstrating high stability and solution quality. The NSGAIII showed intermediate performance
with 0.591 ± 0.090, while the NSGAII had the worst result with 0.550 ± 0.128, indicating lower PF
coverage and higher dispersion.
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Figure 6.1. HV values

In Figure 6.2, which displays the GSPREAD values, it is observed that NSGAII achieved the lowest
mean value (0.405 ± 0.030), indicating a good distribution of solutions. NSGAIII showed intermediate
performance, with greater dispersion and some outliers. Meanwhile, MOEA/D, despite its excellent NHV
result, presented the highest value (1.002 ± 0.067), reflecting difficulties in maintaining diversity along
the PF.

Figure 6.2. GSPREAD values

Figure 6.3 shows the parallel coordinates plot for the 25 runs, where it can be observed that MOEA/D
exhibits greater variability, especially in the hard constraints (ROB and RO). On the other hand, NSGAII
and NSGAIII display more clustered curves, demonstrating greater consistency across runs. Although
MOEA/D reaches favorable extreme solutions, its global instability may be associated with the random-
ness in the generation of the initial population.

Regarding the ILP, a very stable behavior is observed, with good results on hard constraints, very
close to zero. Despite the good performance on soft constraints as well, the generation of a single solution
limits the exploration of trade-offs among objectives.
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Figure 6.3. Reference front plotting for six objectives room allocation
UCTP – Experiment 1

6.1.2. Experiment 2 – Without Local Search, with Constructive Population

This experiment used a heuristic initial population without applying local search. The execution time
was 14 hours and 10 minutes, with 25 runs per algorithm.

Table 6.2 presents the mean and standard deviation values for the NHV and GSPREAD indicators.

Table 6.2. Problem 1 – Mean and standard deviation of NHV and
GSPREAD for each algorithm

Algorithm NHV (mean ± std) GSPREAD (mean ± std)

MOEA/D 0.999 ± 0.001 0.911 ± 0.127
NSGA-II 0.798 ± 0.046 0.404 ± 0.026
NSGA-III 0.376 ± 0.107 0.371 ± 0.023

As shown in Figure 6.4, MOEA/D once again achieved the best NHV (0.999 ± 0.001), with nearly unitary
results across all runs, almost entirely covering the PF. NSGAII demonstrated good performance (0.798
± 0.046), with low variability. Meanwhile, NSGAIII registered the worst result (0.376 ± 0.107), with
high dispersion and difficulty in reaching regions near the reference point.

Figure 6.4. HV values
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Figure 6.5 shows that NSGAIII achieved the lowest mean GSPREAD value (0.371 ± 0.023), reflecting a
uniform distribution of solutions. NSGAII maintained similar performance to the previous experiment,
also displaying good diversity. Regarding MOEA/D, although efficient in convergence, it produced the
worst result (0.911 ± 0.127), indicating a less balanced front.

Figure 6.5. GSPREAD values

In Figure 6.6, the parallel coordinates plot reinforces the observed patterns, that is, MOEA/D shows
greater variability, especially on the ROB and RO constraints. In contrast, NSGAII and NSGAIII main-
tain greater consistency across runs. MOEA/D continues to obtain high-performing extreme solutions
but with pronounced instability.

In this second experiment, the heuristic population proved effective, guiding all algorithms to near-
zero minimizations of the hard constraints, even surpassing the ILP. For the soft constraints, the results
were similar, suggesting that a good initial population significantly impacts solution feasibility.

Figure 6.6. Reference front plotting for six objectives room allocation UCTP.

6.1.3. Experiment 3 – With Local Search and Constructive Population

This experiment combined the heuristic initial population with local search. The execution time was 15
hours and 48 minutes, with 25 runs per algorithm.

Table 6.3 presents the mean and standard deviation values for the NHV and GSPREAD indicators.
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Table 6.3. Problem 3 – Mean and standard deviation of NHV and
GSPREAD for each algorithm

Algorithm NHV (mean ± std) GSPREAD (mean ± std)

MOEA/D 0.998 ± 0.001 1.031 ± 0.105
NSGA-II 0.800 ± 0.040 0.469 ± 0.033
NSGA-III 0.418 ± 0.137 0.417 ± 0.024

Figure 6.7 shows that MOEA/D again led in NHV (0.998 ± 0.001), repeating the pattern of strong
coverage of the PF. NSGAII once again obtained a high value (0.800 ± 0.040), with low variation.
NSGAIII showed the lowest NHV (0.418 ± 0.137), with high dispersion and instability.

Figure 6.7. HV values

Regarding GSPREAD, Figure 6.8 shows that NSGAIII stood out with the best value (0.417 ± 0.024),
suggesting well-distributed solutions. NSGAII maintained consistency (0.469 ± 0.033). Meanwhile,
MOEA/D again produced the worst result (1.031 ± 0.105), reflecting difficulty in maintaining diversity.

Figure 6.8. GSPREAD values
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The plot in Figure 6.9 confirms the previous patterns where MOEA/D shows greater variability, mainly
in the ROB and RO constraints. Although with some fluctuations, NSGAII and NSGAIII exhibit more
cohesive curves in the objective functions.

The combination of constructive population with local search did not yield significant improvements.
The high quality of the initial population appears to have reduced the utility of local intensification.

Figure 6.9. Reference front plotting for six objectives room allocation UCTP.

6.1.4. Experiment 4 – Without Local Search and Without Constructive Population

This experiment did not use any form of intensification, nor a heuristic initial population. The execution
time was 13 hours and 30 minutes, with 25 runs per algorithm. Table 6.4 summarizes the results obtained.

Table 6.4. Problem 3 – Mean and standard deviation of NHV and
GSPREAD for each algorithm

Algorithm NHV (mean ± std) GSPREAD (mean ± std)

MOEA/D 1.000 ± 0.000 1.026 ± 0.098
NSGA-II 0.946 ± 0.040 0.447 ± 0.032
NSGA-III 0.675 ± 0.219 0.455 ± 0.036

In Figure 6.10, MOEA/D reached the maximum value of NHV (1.000 ± 0.000), indicating that the
generated solutions fully cover the dominated region of the PF. NSGAII also showed high performance
(0.946 ± 0.040) and low variability, demonstrating good exploration capability and consistency between
runs. On the other hand, NSGAIII had the worst performance (0.675 ± 0.219) with high dispersion,
including extreme values, highlighting difficulty in reaching regions close to the reference point.
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Figure 6.10. HV values

Regarding GSPREAD, as shown in Figure 6.11, NSGAII obtained the best distribution (0.447 ±
0.032). NSGAIII had a slightly higher value (0.455 ± 0.036), yet still with stable distribution among
runs. On the other hand, MOEA/D, despite the excellent NHV performance, again presented the highest
value (1.026 ± 0.098), confirming its pattern of low diversity.

Figure 6.11. GSPREAD values

In relation to Figure 6.12, it can be observed that MOEA/D continues to show high dispersion in
the hard constraints, while NSGAII and NSGAIII maintain greater stability. Nevertheless, MOEA/D
continues to reach solutions with extreme performance, as evidenced by its maximum NHV.

Even without intensification mechanisms, this experiment revealed that MOEA/D is capable of ef-
fectively exploring the search space. However, the absence of a well-structured initial population com-
promised the diversity of the solutions.
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Figure 6.12. Reference front plotting for six objectives room allocation UCTP.

6.1.5. Conclusions of the Evolutionary Algorithms Tests

The analysis of the tests revealed clear patterns in performance across different configurations. MOEA/D
demonstrated high convergence capability, as expressed by the elevated NHV indicator values. However,
this performance was accompanied by limitations in terms of diversity and stability in the hard constraints.
This behavior suggests that although it effectively explores the objective space, MOEA/D tends to
generate solutions concentrated in specific regions, with high variability between runs.

NSGAII showed good consistency, demonstrating a balance between convergence and diversity. Its
performance remained stable even in scenarios without additional mechanisms, indicating strong ro-
bustness. NSGAIII, on the other hand, although less effective in terms of convergence, revealed good
capability for preserving diversity, as shown by the low GSPREAD values, especially when a heuristic
initial population was used.

The introduction of a constructive population had a direct impact on the feasibility and quality
of solutions from the first generations, allowing better fulfillment of hard constraints. In contrast, the
application of local search had a limited effect, especially when the initial population already guided the
evolution toward promising regions of the search space.

Overall, the results indicate that the initialization strategy plays a more decisive role than local in-
tensification in the global effectiveness of the EA in this experiment. These tests reinforce the importance
of good heuristics for the initial population in problems with many constraints.

Another relevant point to highlight is that the algorithms developed for MaOO problems—i.e., with
four or more objectives—such as MOEA/D and NSGAIII, did not demonstrate significantly superior
performance compared to NSGAII, which was originally designed for MOO problems. Despite their
advanced strategies based on decomposition and reference directions, the MaOO algorithms did not
show a clear advantage in this specific problem, which involves six objectives and a substantially large
population of around 26,020 classes. This result suggests that, in certain contexts, classic MOO algorithms
may remain competitive, also offering high-quality solutions with lower computational complexity and
greater stability across executions.

6.1.6. Results on the comp02.ctt Instance from ITC2007

This section presents the results obtained with the NSGAII, NSGAIII, and MOEA/D algorithms on the
benchmark instance comp02.ctt from the ITC2007 competition. According to Di Gaspero et al. [48], the
objective is to validate the ability of the algorithms to generate feasible solutions in accordance with the
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criteria defined by the benchmark, i.e., solutions with null or negative penalties in the hard constraints
(ROB and RO).

6.1.6.1. Experiment 1 – Without Constructive Population and With Local Search

In this experiment, no constructive initial population was used, but local search intensification was
applied. The total execution time was approximately 16 minutes.

Table 6.5. Objective function values of the best solution (ROB and RO
= 0) – Experiment 1

Algorithm ROB RO RCCC SD MCRA CRA

NSGA-II -30 -53 72 4 35 446
NSGA-III -28 -43 67 0 55 482
MOEA/D -79 -130 158 96 150 552

6.1.6.2. Experiment 2 – Without Local Search, With Constructive Population

In this case, a constructive heuristic population was used, but without applying local search. The total
execution time was approximately 9 minutes and 30 seconds.

Table 6.6. Objective function values of the best solution (ROB and RO
= 0) – Experiment 2

Algorithm ROB RO RCCC SD MCRA CRA

NSGA-II 0 0 75 0 20 510
NSGA-III -7 -9 69 0 20 502
MOEA/D -72 -123 168 345 135 492

6.1.6.3. Experiment 3 – With Local Search and Constructive Population

This experiment combined the use of a heuristic constructive population with local search. The total
execution time was approximately 11 minutes and 20 seconds.

Table 6.7. Objective function values of the best solution (ROB and RO
= 0) – Experiment 3

Algorithm ROB RO RCCC SD MCRA CRA

NSGA-II -16 -34 72 1 35 460
NSGA-III -32 -52 70 0 60 422
MOEA/D -69 -132 155 233 135 448
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6.1.6.4. Experiment 4 – Without Local Search and Without Constructive Population

In this final scenario, neither local search nor constructive initial population was used. The execution
time was approximately 9 minutes and 20 seconds.

Table 6.8. Objective function values of the best solution (ROB and RO
= 0) – Experiment 4

Algorithm ROB RO RCCC SD MCRA CRA

NSGA-II -13 -11 76 0 50 470
NSGA-III -19 -48 70 0 10 458
MOEA/D -76 -135 151 279 115 422

It is observed that all algorithms were able to generate feasible solutions according to the ITC2007
criteria, with null or negative penalties in the hard constraints. NSGAIII presented the best overall
results among the pure multi-objective approaches, with lower aggregate values in the soft constraints
and good feasibility. On the other hand, MOEA/D, although demonstrating superior robustness in hard
constraints, produced solutions with significantly higher penalties in the soft constraints.

These results reinforce the viability of using multi-objective evolutionary algorithms in the context
of the UCTP, and validate the compliance of the solutions with the standards defined by the ITC2007
competition.
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CHAPTER 7

Conclusion

This dissertation presented a comparative analysis of approaches for solving the timetabling problem at
Iscte – Instituto Universitário de Lisboa, with a specific focus on classroom allocation. Currently, the
construction and management of timetables is performed manually, since the available software does not
meet the institutional requirements. This process is time-consuming and inefficient, highlighting the need
for automated, scalable solutions that are more suited to the complexity of Iscte academic context.

The research was conducted based on the initially defined questions, which were answered as follows:

• Q1: What are the most widely used approaches to solving the UCTP?
To answer this question, a systematic literature review was conducted using five scientific
repositories aligned with the objectives of the study. The analysis revealed that the most
recurring approaches involve metaheuristics, with emphasis on evolutionary algorithms and
swarm intelligence methods. Among these, hybrid methods that combine such algorithms with
local search techniques proved to be the most effective, representing 35% of the successful
approaches.

• Q2: What are the main advantages, disadvantages, and limitations associated with
these approaches?
The review analysis showed that metaheuristics approaches are highly effective in generating
near-optimal solutions and are highly adaptable to different institutional contexts. However,
these approaches require careful parameter tuning and may present high computational costs.
On the other hand, exact methods such as Integer Linear Programming offer greater precision
and guarantee optimal solutions, but face serious scalability limitations when applied to large
problem instances.

• Q3: What innovations and improvement opportunities have been identified in the
literature?
Based on the systematic review carried out, the following innovations stand out:

– The use of hybrid algorithms that combine the exploratory capacity of metaheuristics with
local intensification techniques such as Simulated Annealing or Variable Neighborhood
Search.

– The growing use of multi-objective evolutionary algorithms (Evolutionary Algorithms),
such as NSGAII, NSGAIII, and MOEA/D, which are particularly effective in solving
problems with multiple simultaneous criteria, as well as their integration with exact ap-
proaches like Integer Linear Programming.

– The introduction of clustering techniques and data mining to avoid conflicts and optimize
resource management in large volumes of information.

The main improvement opportunities identified include:
– The development of more flexible and adaptable models, capable of accommodating both

specific institutional constraints and human preferences, in order to ensure more person-
alized and realistic solutions.
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– The need to improve the evaluation metrics used, focusing on more robust indicators and
benchmarks that better represent institutional reality, allowing for more rigorous, fair,
and reproducible comparisons between different approaches.

– The encouragement of the development of algorithms that combine simplicity, computa-
tional efficiency, and adaptability, aiming at practical applications in educational envi-
ronments with varying levels of complexity.

• Q4: What recent trends have emerged in UCTP research?
A growing interest in multi-objective and many-objective evolutionary algorithms has been
observed, due to their ability to handle multiple evaluation criteria simultaneously — a central
characteristic of UCTP — as well as the increasing use of hybrid approaches.
There is also a growing emphasis on empirical validation, with the use of standardized bench-
marks such as those provided by ITC competitions. Furthermore, the need to develop simpler,
more efficient, and adaptable algorithms is highlighted, focusing on practical applicability and
scalability in real institutional contexts.

• Q5: How does the performance of metaheuristic algorithms compare to ILP tech-
niques in solving the UCTP?
To answer this question, customized versions of the NSGAII, NSGAIII, and MOEA/D algo-
rithms were implemented using the jMetal framework. These versions were enhanced with
constructive initialization strategies, local intensification operators, and a stopping criterion
based on the Hypervolume (HyperVolume) quality indicator.
In parallel, an Integer Linear Programming model was developed using the Pyomo library,
enabling a direct comparison between evolutionary algorithms and exact methods.
Using real data from Iscte, the problem was modeled with two hard constraints — room oc-
cupation and overlap — and four objective functions to be minimized: room changes between
consecutive classes (RCCC), student displacements (SD), room type incompatibility (MCRA),
and capacity waste (CRA).
The results showed that all approaches incorporating a heuristic initial population were able to
generate feasible solutions with respect to hard constraints. NSGAIII demonstrated the best
overall performance on the soft objectives, maintaining a good balance between convergence
and diversity. MOEA/D obtained the best NHV values, demonstrating strong coverage of the
Pareto Front (PF), although with lower solution diversity. NSGAII stood out for its consistency
and balanced performance.
As for Integer Linear Programming, it demonstrated high precision. However, it faced diffi-
culties in solving the problem when the input data did not fully meet the constraints defined
in the model. For example, if a course unit requires a computer lab with a capacity for 59
students, and the institution only has such rooms with a maximum of 50 seats, the model
becomes infeasible.
Overall, the results confirmed the effectiveness of Multi-Objective Optimization and Many-
Objective Optimization algorithms in solving the University Course Timetabling Problem, es-
pecially in its multi-objective formulation.

• Q6: What is the performance of the algorithms when applied to ITC2007 bench-
marks?
All algorithms were evaluated using the comp02.ctt file from the ITC2007 competition. The
results obtained demonstrated compliance with the standards established by the competition, as
described by Di Gaspero et al. [48], validating the robustness and effectiveness of the developed
solutions.
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It should be noted that this type of work provided an enriching experience, allowing for the consol-
idation of practical and theoretical knowledge in a consistent and structured manner, as well as aligned
with the practical challenges within this field.

7.1. Achievement of Objectives

The objectives defined at the beginning of this work were successfully achieved, namely:

• A literature review and a systematic review were carried out according to the guidelines of
Kitchenham & Charters (2007), allowing the identification of the most commonly used ap-
proaches to solve the University Course Timetabling Problem, providing a solid scientific foun-
dation for the study.

• The detailed analysis of the identified methodologies made it possible to outline the main
advantages, disadvantages, and trends.

• A benchmarking was developed between evolutionary algorithms and techniques based on Inte-
ger Linear Programming, using real data from Iscte – Instituto Universitário de Lisboa, allowing
the evaluation of the performance of different approaches.

• Customized versions of the Non-dominated Sorting Genetic Algorithm II, Non-dominated Sort-
ing Genetic Algorithm III, and Multi-Objective Evolutionary Algorithm Based on Decomposi-
tion algorithms were implemented, as well as an Integer Linear Programming model using the
Python Optimization Modeling Objects library, enabling a comprehensive comparison between
exact methods and metaheuristics.

• The algorithms were tested with a recognized international benchmark, the ITC2007, validating
the effectiveness of the proposed solutions in a standardized scenario.

• Finally, relevant innovations and opportunities for improvement were identified, such as: de-
velopment of more flexible models, more accurate evaluation metrics and benchmarks more
representative of reality, and encouragement of the creation of simpler, more efficient, and
adaptable algorithms.

7.2. Future Work

Despite the success achieved, some points must be considered. The high number of genes per chromosome
makes the Integer Linear Programming approach more difficult, since it is enough for there not to be a
room that meets all the requirements of a schedule for the model to become unfeasible, thus increasing the
effort required in the application of this approach. Regarding the parameter tuning of the Evolutionary
Algorithms, it was performed manually, requiring high computational cost.

Additionally, a graphical user interface (GUI) has been developed to facilitate interaction with the
proposed approach.

As future studies, the following points are highlighted:

• Exploration of metaheuristics approaches, combining Integer Linear Programming in order to
refine the solutions;

• Dynamic parameter tuning during the execution of Evolutionary Algorithms, in order to en-
hance convergence improvement;

• Application of the solution to the complete timetabling problem, not only to room allocation,
that is, integrating all dimensions of the University Course Timetabling Problem;

• Optimization with preferences using methods such as interactive and a priori techniques;
• Improvement of this GUI to support real-time feedback and integration with institutional plat-

forms.

In summary, this research reinforces the potential of the applied approaches, especially when con-
structive heuristics are applied. The solutions and benchmarkings contribute with relevant advances
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to the development of optimization strategies applied to academic planning as well as to the scientific
community.
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ANNEX A

Planning

Table A.1. Tasks Schedule for 2023 and 2024

Tasks October November December January February March April June July August September
1
2
3
4
5
6
7
8

1. In this task, a detailed literature review will be carried out to support the dissertation topic.
2. This task consists of researching and exploring works related to the dissertation topic and will

be conducted continuously throughout the project. The goal is to ensure a comprehensive and
ongoing analysis, contributing to a solid and updated foundation.

3. The state of the art will be compiled and analyzed based on the works identified previously,
aiming to determine the most suitable approaches to address the problem under study.

4. Customized algorithms will be implemented using the jMetal framework, along with the mod-
eling of the problem using ILP.

5. Benchmarking will be performed with the customized algorithms, evaluating their performance
in different scenarios.

6. The algorithms will be tested using the internationally recognized ITC2007 benchmark, vali-
dating the effectiveness of the proposed solutions in a standardized setting.

7. Dissertation revision.
8. Dissertation writing.
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ANNEX B

Participation in the AMiM’24 Event

As part of the validation and dissemination of the work developed in this dissertation, an abstract
of this dissertation was submitted and accepted for presentation at the Autumn Meeting of Industrial
Mathematics 2024 (AMiM’24) [49], held on October 4 and 5, 2024, in Foz do Arelho, Portugal. This
event brought together researchers and professionals interested in the application of Mathematics to solve
real-world problems in industrial and social contexts.

The paper entitled "University Timetabling Multicriteria Optimization Benchmarking Using Meta-
heuristics & ILP", was presented on October 5 by the author of this dissertation, with the presence of
the advisor Professor Dr. Vítor Basto Fernandes.

During the presentation, the approaches proposed in this work were discussed, with a central focus
on solving the room allocation problem in the UCTP. The participation allowed not only the sharing of
the obtained results but also contact with researchers in the field, reinforcing the scientific and practical
relevance of the study.

Participation in AMiM’24 was an enriching experience, providing an opportunity for external valida-
tion of the work. The event fostered the exchange of ideas, academic networking, and the dissemination
of the developed research within the scientific community [49].
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