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Abstract

Creating engaging narratives from visual data is crucial for automated digital media
consumption, assistive technologies, and interactive entertainment. This survey covers
methodologies used in the generation of these narratives, focusing on their principles,
strengths, and limitations. The survey also covers tasks related to automatic story genera-
tion, such as image and video captioning, and Visual Question Answering. These tasks
share common challenges with Visual Story Generation (VSG) and have served as inspi-
ration for the techniques used in the field. We analyze the main datasets and evaluation
metrics, providing a critical perspective on their limitations.

Keywords: Visual Story Generation; image captioning; visual question answering;
storytelling

1. Introduction

In this document, we survey the field of story generation from visual inputs, covering
techniques, related tasks, and challenges. Stories are fundamental to human experience,
serving as a bridge between imagination and reality [1]. They represent the art of telling
tales, whether real or imagined, and present a sequence of events that can captivate, inform,
and provoke thought. Storytelling has been an essential part of human culture for millennia,
serving as a means of communication, entertainment, education, and moral guidance. The
art of storytelling has evolved over time, beginning with the practice of narrating stories
through spoken words, advancing to written literature, and, more recently, transitioning
to digital media formats. Stories have played a crucial role in shaping societies, passing
down knowledge and values from one generation to another. Whether told around a
campfire, written in books, or shared through videos and interactive platforms, storytelling
continues to captivate and connect people, transcending time and technology [2]. The
field of story generation has gained attention, fueled by advances in Natural Language
Processing (NLP) [3] and computer vision [4]. The goal is to create systems capable of
generating novel and engaging stories, similar to those produced by humans [5]. With
the increasing availability of images and videos, there is a growing interest in generating
stories based on this visual data [6]. We refer to this task as VSG.

1.1. Definition and Challenges

VSG is the task of automatically creating coherent and engaging stories grounded on
visual inputs, such as images or videos. It extends beyond simple image captioning or
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video description, requiring an understanding of complex relationships, temporal progres-
sion, and implicit context within the visual data. The generated narrative must not only
accurately represent the visual content, but also encapsulate the essence of the underlying
story, thereby crafting an engaging experience for the audience. VSG serves as a robust
indicator of machine comprehension of visual content and poses several challenges, some
of which are as follows:

¢ Understanding visual content: The recognition of objects and scenes in the visual data,
as well as understanding the relationships between them, is crucial for generating
coherent and meaningful narratives [7].

¢ Temporal coherence: A story is inherently sequential and maintains a temporal order.
Therefore, generated narratives should respect time progression, even if not in a linear
manner (e.g., they may involve flashbacks, foreshadowing, or other such mechanisms),
and ensure that events are narrated in a logically consistent manner.

¢  Contextual understanding: Often, elements of a story can be implicit or inferred from
the context. Effective generation approaches must be capable of understanding and
incorporating implicit information in the narrative.

¢  Engagement and creativity: One of the main goals of a story is to engage the audience.
Therefore, the generated narrative should not only be accurate and coherent, but also
creative and engaging.

*  Evaluation: Determining the effectiveness of a VSG system is a challenge in itself. Met-
rics originally developed for tasks such as machine translation and image captioning
have been adapted for VSG. However, these metrics are not appropriate to capture the
creativity and engagement aspects of a story.

1.2. Background and Motivation

The motivations for VSG are numerous. For example, VSG can provide an interactive
component to media consumption. Users could potentially influence the direction of the
story by choosing different sequences of images or videos, creating a unique, personalized
narrative. This could be particularly beneficial in areas like interactive gaming and movies,
educational platforms, or even in digital marketing, where personalized narratives can
greatly enhance user engagement and satisfaction. VSG can also be used in journalism: it
can be used to summarize large amounts of visual data, giving insights into the underlying
patterns and relationships, and assisting in content creation.

The growing interest in this area is also motivated by its potential to contribute to
the understanding of human cognition and creativity. By developing models that emulate
human-like storytelling abilities, researchers can gain insights into the cognitive processes
involved in story creation, as well as explore the underlying mechanisms of creativity.
These approaches can further lead to novel applications, such as more engaging virtual
experiences [8,9].

These use cases represent only a fraction of the potential applications of VSG. As
research in this field progresses, we anticipate that more applications will emerge, spanning
an even broader range of domains.

1.3. Scope and Structure of the Survey

We start by defining the core elements of a story in Section 2, as they are essential for
understanding the structure and dynamics of a story. Section 2 presents these elements and
discusses their significance in storytelling. It also clarifies the distinctions between story,
narrative, and plot, illustrating how a single story can be narrated in multiple ways to yield
diverse experiences.
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In Section 3, we then explore the main datasets used in story generation, and the
various metrics used to assess their performance. We address the limitations that current
evaluation metrics face in such an open-ended task and discuss potential directions for
future research in this regard.

The connection of VSG with computer vision tasks such as Visual Question Answering
(VQA) and image/video captioning is also acknowledged, since they share core challenges,
such as visual understanding and narrative generation. Thus, they have contributed with
useful techniques to the field. Section 4 explores this convergence between computer vision
and NLP.

Concerning VSG proper, we aim to present a balanced perspective on current method-
ologies, emphasizing opportunities and challenges for future research. The inclusion of
a detailed analysis of deep learning methodologies with a broader review of additional
and earlier techniques ensures broad coverage of the field. Section 5 presents a broad
perspective on the state of the art of VSG.

Section 6 examines the real-world applications of VSG. Finally, Section 7 presents the
key findings of this survey and proposes directions for future research.

2. The Elements of Stories

Stories connect events and experiences through narration, ranging from personal tales
to cultural epics. While the terms story, narrative, and plot are often used interchangeably,
they have distinct meanings: a story is the chronological sequence of events (the “what”),
the narrative is how these events are presented (the “how”), and the plot is the specific
sequence as experienced by the audience [10].

A single story can be told through multiple narratives, each offering different per-
spectives and experiences. Narratives may follow linear structures with chronological
progression, or nonlinear approaches using flashbacks, flash-forwards, or parallel storylines
that create complexity and require audience interpretation [11,12].

Story elements—character, conflict, theme, setting, plot, and mode—form the founda-
tion for crafting and analyzing narratives. Understanding these elements is crucial for both
human storytellers and automated story generation systems. In the following subsections,
we detail each element and its significance in VSG.

2.1. Character

Characters are the entities through which stories unfold, with their decisions and
actions propelling the plot forward [13]. Through actions and speech, characters convey
motives and emotions that shape audience perception and emotional connection. Initial
character impressions influence audience expectations about future behavior. Characters
who deviate from established patterns can create surprise or confusion, challenging audi-
ence understanding. Stories center around protagonists who encounter central conflicts,
undergo personal growth, or acquire new knowledge. Antagonists add complexity and
tension, often opposing the protagonist’s goals. Traditional narratives feature heroes bat-
tling for moral causes against villains who perpetrate evil. Character development and
evolution throughout the narrative engages audiences and drives story progression. The
range of character types contributes to story depth and dynamics.

2.2. Conflict

Conflict generates tension and drives character actions, shaping narrative trajectory
and audience engagement [2]. How conflicts are introduced, developed, and resolved
determines story progression and emotional depth. Conflict resolution provides closure to
the central problem and marks the culmination of narrative tension. Conflict encompasses
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any tension influencing characters, from the protagonist’s main challenge to secondary
internal struggles like anxiety or indecisiveness. These layers add complexity to character
journeys and story depth. Longer narratives involve multiple conflicts that occur alongside
the primary tension. Common conflict types include the following: Character vs. Character
(opposition), Character vs. Nature (natural forces), Character vs. Society (social norms),
Character vs. Unavoidable Circumstances (fate), and Character vs. Self (internal dilemmas).

2.3. Theme

Themes are the major underlying ideas of a story, often abstract and open to interpre-
tation [14]. Unlike concrete story elements, themes invite discussion and allow for multiple
interpretations and conclusions. They function as exploratory concepts that encourage
audience reflection on deeper meanings.

Themes can evolve as narratives unfold, revealing new dimensions and allowing
audiences to develop personal interpretations of the story’s messages. Different audience
members may reach varying conclusions that differ from or exceed the creator’s original
intent. Understanding themes in narrative generation creates dynamic, thought-provoking
storytelling experiences.

2.4. Setting

Setting encompasses the time, place, and context in which the story unfolds [15]. It
includes physical and temporal surroundings, as well as social or cultural conventions that
influence character actions and decisions. Setting can act dynamically, possessing specific
traits and undergoing changes that affect the plot. This allows it to evolve throughout the

story, reflecting and impacting narrative progression. Hogwarts School in the “Harry Potter”
series exemplifies an evolving setting that influences plot and character development [16].

2.5. Plot

Plot is the sequence of events that propels the story from beginning to end [17]. Each
plot point represents a moment of change that influences character understanding, deci-
sions, and actions. This progression typically involves protagonists encountering conflict
and attempting resolution, creating emotional stakes and suspense for both characters
and audience. Plot advancement deepens audience investment in character fate. Stories
can have multiple plots representing different event sequences or perspectives. Plot struc-
ture follows cause and effect, where character actions and events lead to reactions and
consequences, forming a chain that moves the story forward.

2.6. Mode

Mode encompasses the choices and techniques authors use to frame narratives [18].
A single story can be narrated using different modes, each offering distinct audience per-
spectives and experiences. Mode includes information scope, language style, medium, and
the extent of narrative exposition and commentary. A key component is point of view or
perspective. First-person narratives use personal pronouns like “I” and “me,” directly en-
gaging audiences with the character’s perspective. Third-person narratives avoid personal
pronouns, offering more detached viewpoints. These perspectives exemplify narration tech-
niques that explicitly tell stories through spoken or written commentary. While narration is
common in written narratives, it can be optional in visual or interactive media.

3. Benchmark Datasets and Evaluation Metrics

This section presents and discusses benchmark datasets used for story generation and
evaluation metrics that assess the performance of story generation models. Table 1 provides
a compilation of the datasets documented in the literature for VSG. Among these datasets,
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VIST [19] is prominently utilized by the research community. This dataset serves as a
primary benchmark, and most publications in this field report their experimental results
on it. The VIST-Edit dataset [20] provides human-edited versions of machine-generated
stories, offering insights into human preferences for story quality. The Visual Writing
Prompts dataset [21] is noteworthy for its focus on stories that are visually grounded on
the characters and objects present in the images. These datasets allow for the exploration of
more complex and imaginative narrative structures, serving as a resource to train models
to generate fictional stories.

Table 1. Visual Story Generation datasets, key works, and methods.

Dataset No. of Stories Key Works Notes
NY City [22] 11,863 Park et al. [22] (VGG + BiRNN) 11,863 blog posts /78,467 images
Disneyland [22] 7717 Park et al. [22] (VGG + BiRNN) 7717 blog posts/ 60,545 images

Rohrbach et al. [23] (CNN + LSTM),

LSMDC [23] 118,114 Yu et al. [24] (Faster R-CNN + GPT-2) 202 movies, video captioning
Huang et al. [19] (AlexNet + GRU),
Wang et al. [25] (ResNet-152 + BiGRU), . .
VIST [19] 50,000 Yu et al. [24] (Faster R-CNN + GPT-2), f,ls%%zr‘jcr}‘:g‘;ilfh"tos' primary
Zheng et al. [26] (Mask R-CNN +
BERT + BART)
. . Human-edited
VIST-Edit [20] 14,905 Hsu et al. [20] (CNN + RNN variants) . .
machine-generated stories
Visual Writing 12.000 Hong et al. [21] (Swin 5 to 10 images/story,
Prompts [21] ! Transformer + GPT-2) character-grounded
. Cartoon videos with
PororoQA [27] 27,328 Kim et al. [27] (CNN + LSTM) scene/dialogue/QA pairs
YouCook2 [28] 2000 Zhouetal. [28] BD-CNN + LSTM) ~ “\verage length of 526 min,

cooking videos

The evaluation metrics, used to assess the performance of VSG models, provide
quantitative measures of the quality of generated narratives. Most of these metrics were
originally developed for machine translation or summarization but have been adopted
by the community for other tasks such as image captioning and story generation: instead
of comparing a generated text with a reference translation or summary, the generated
text is compared with a reference caption in the case of image captioning, or with a
reference story in the case of story generation. These metrics include Bilingual Evaluation
Understudy (BLEU) [29], Self-BLEU [30], Metric for Evaluation of Translation with Explicit
ORdering (METEOR) [31], Consensus-based Image Description Evaluation (CIDEr) [32],
Recall-Oriented Understudy for Gisting Evaluation (ROUGE) [33], Perplexity [3], and Bert
Score [34]. These metrics guide the development and refinement of VSG models by offering
insights into their linguistic fluency, textual diversity, and mostly lexical overlap with
reference texts. They focus on specific linguistic and content-related aspects, providing
quantitative measures for precision, recall, and consensus. However, they are limited by
their focus on surface-level textual similarities rather than deep narrative alignment: since
a story can be retold in various ways, employing different perspectives while preserving
the original message, the corresponding generated text might deviate significantly from
the reference text in terms of specific wording.

Huang et al. [19] conducted an analysis to evaluate how well BLEU and METEOR
correlate with human judgment in the context of VSG according to different metrics. The
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results in Table 2 show that METEOR, which places a strong emphasis on paraphrasing, has
higher correlation with human judgment than BLEU. Nevertheless, in spite of METEOR
showing the highest correlation with human judgment, this value is still low, suggesting
that a large gap still exists between automatic metrics and human judgment.

Table 2. Correlations of automatic scores against human judgements, p-values in parentheses [19].

Metric METEOR BLEU

Pearson 0.22 (2.8 x 10728) 0.08 (1.0 x 1079)
Spearman 0.20 (3.0 x 10731) 0.08 (8.9 x 10706)
Kendall 0.14 (1.0 x 10733) 0.06 (8.7 x 107%8)

To evaluate VSG models, additional metrics that capture the creative aspects of story-
telling may be necessary. These metrics might assess the uniqueness, novelty, and diversity
of generated narratives, ensuring that models produce stories that go beyond mere data
memorization. Coherence metrics could delve deeper into the logical flow of events,
ensuring that generated narratives maintain a consistent and plausible storyline.

The proliferation of diverse Large Language Models (LLMs), such as the GPT [35-38],
Llama [39,40], Mistral [41,42], and Claude [43-46] families, has led to the development
of systematic scoring systems, aiming for objective assessments across a wide array of
language understanding tasks. These scoring systems include Multi-turn Benchmark (MT-
Bench) [47] and Chatbot Arena [47], briefly described below. While they were initially
developed for the evaluation of chatbots by human evaluators, they have been adapted
to operate using a LLM as the evaluator achieving results close to those obtained by
human evaluators.

As LLMs continue to improve, they show potential in replacing human annotators
in many tasks [48]. Metrics to evaluate stories could be developed based on LLMs [47],
possibly following the underlying principles discussed above.

MT-Bench is a benchmark tailored to test the multi-turn conversation and instruction-
following capabilities of LLM-based chat assistants. It includes 80 high-quality multi-turn
questions distributed across diverse categories such as writing, roleplay, reasoning, and
knowledge domains. In the MT-Bench evaluation process, the user is presented with
two distinct conversations, each generated by a different LLM-based chat assistant and
is then tasked with deciding which assistant, A, B, or indicating a tie, better followed the
instructions and answered the questions. For VSG evaluation, this framework could be
adapted by using an LLM as an automated judge to compare stories generated by different
models, evaluating them based on criteria such as narrative coherence, visual grounding,
and creativity.

Chatbot Arena introduces a crowd-sourcing approach, fostering anonymous battles
between LLM-based chatbot models. Users interact with two anonymous models simul-
taneously, posing identical questions to both and subsequently voting for the model that
provides the preferred response. The Elo rating system [47] is employed to rank the models
based on their performance in these battles. This rating system assigns a numerical score
to each model based on their battle outcomes, adjusting these scores higher or lower after
each encounter to reflect their relative ability to satisfy user queries effectively compared to
their opponents. A similar automated evaluation system for VSG could employ an LLM
judge to assess pairs of generated stories given the same image sequence, ranking models
based on story quality across multiple dimensions without requiring human annotators.
For VSG adaptation, MT-Bench-style prompts could evaluate stories on visual grounding,
narrative coherence, and creativity dimensions. A VSG Chatbot Arena could present story
pairs from identical image sequences for comparative ranking.
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In summary, while current metrics provide insights into specific dimensions of VSG,
the development of new metrics may be necessary to holistically evaluate creativity, co-
herence, and emotional engagement, ensuring a more comprehensive understanding of
the capabilities and limitations of these models. While LLMs show promise as automated
evaluators, their use requires addressing several challenges. Prompt sensitivity can affect
consistency, model updates may change evaluation criteria, and training data biases may
favor certain narrative styles. Subjective dimensions like creativity remain difficult to cali-
brate. Rigorous validation is needed, including correlation studies with human judgments,
inter-annotator reliability testing, and robustness evaluation. Despite these limitations,
LLMs offer potential for scalable evaluation frameworks if properly validated.

4. From NLP to Computer Vision

This section provides an overview of areas at the intersection of computer vision and
Natural Language Processing (NLP) that are relevant to the topic of VSG, namely image
and video captioning and Visual Question Answering (VQA). These tasks share a common
challenge: they require the understanding of visual content and the ability to generate text
based on that visual content. Some of the techniques used in these tasks have been adapted
to VSG.

4.1. Image and Video Captioning

The transition from image and video captioning to VSG represents a shift from describ-
ing individual images or video segments to narrating image sequences or video segments.
While the former focus on what is in images or videos, the latter also considers why and
how, capturing the underlying narrative that links a series of images or video frames.

VSG models need to understand the temporal progression of events, causal relation-
ships, and the ability to construct cohesive and engaging stories. VSG can also speculate
on the motivations and emotions of characters since such interpretations do not contradict
the visual content. Therefore, they build upon the foundational principles of image and
video captioning, incorporating both the interpretation of visual data and the generation of
coherent, contextually appropriate narratives.

The tasks of image and video captioning consist in generating descriptive, human-
readable sentences that represent the content of an image or video, identifying the main
components in a visual scene and their relationships, alongside the ability to express these
details in natural language.

One notable contribution in this domain was the application of encoder-decoder
architectures, known as the ‘show and tell” approach [49-51]. This technique employs
Convolutional Neural Networks (CNNs) as encoders to extract visual features. Specifically,
2D-CNNs are employed for image processing, where the model interprets two dimensions:
height and width. On the other hand, for video processing, 3D-CNNs are typically used,
where an additional dimension, time or depth, is taken into account to perceive the temporal
dynamics in video sequences. Then, Recurrent Neural Networks (RNNs) or their improved
variants, Long Short-Term Memory networks (LSTMs) [52] and Gated Recurrent Units
(GRUs) [53], known for their ability to effectively model sequential data, are commonly
used as decoders in image and video captioning tasks, enabling the generation of coherent
and contextually meaningful textual captions and descriptions from the visual features
extracted by the CNNs. This combination of CNNs and RNNs effectively bridges the gap
between vision and language.

In the realm of image captioning, Transformers [54] have been used as encoders to
process visual features extracted from images. Leveraging the self-attention mechanism
inherent in Transformers, these models are able to capture relationships between visual
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elements, attending to relevant regions in the image, and highlighting visual cues and their
interdependencies [55-58]. Transformer models also demonstrate the ability to generate
precise and elaborate textual descriptions, significantly improving the overall quality of
image captions.

Similarly, Transformers have made contributions to video captioning, addressing the
challenges associated with understanding and describing temporal dynamics in videos.
By treating video frames as a sequential series of images, Transformers can leverage their
attention mechanism to capture long-range dependencies across frames [59,60] This enables
the models to map the temporal progression of events, infer causal relationships, and grasp
the underlying narrative structure within the video.

The integration of Transformers in image and video captioning has yielded improve-
ments that surpass the performance of traditional encoder-decoder architectures [57,59].
Transformers not only generate semantically accurate captions but also exhibit enhanced
coherence and contextual relevance. Their attention mechanism allows for a incorporation
of local and global context, enabling a more holistic understanding of the visual content
and facilitating caption generation.

The use of Transformers in image and video captioning holds great promise, but there
are challenges to be addressed. Efficient fusion of visual features with textual informa-
tion [56], handling long-term dependencies in video sequences [59], and ensuring temporal
coherence in caption generation for longer videos are among the ongoing research topics.

4.2. Visual Question Answering

Visual Question Answering (VQA) combines computer vision and NLP to enable
the extraction of information from visual content, identifying objects, scenes, actions, and
comprehending context, and provide meaningful answers to questions about that content.
Both VQA and VSG involve understanding visual content and generating meaningful
responses and the developments in VQA can be directly applied in VSG tasks. Through
the use of VQA techniques, VSG models can gain valuable insights into the content and
context of images and videos, improving the overall quality of their visual narratives.

Encoder—classifier deep learning VQA models encode visual and textual inputs and
select an answer from a predefined set using a classification process. Image encoders,
typically pretrained CNNSs, extract visual features from the input images. Question en-
coders, often RNNs, processes the input questions, converting them into fixed-length latent
representations. Fusion techniques combine the visual and textual features, creating a fused
representation that captures their interactions that is then classified using Fully Connected
layers, mapping them to possible answer classes. Traditional VQA models are trained
using supervised learning with large-scale datasets, where image—question-answer triplets
are provided as training examples. The parameters are optimized to minimize the loss
between predicted answers and ground truth answers during training. Some examples are
BUTD [51], that uses an attention-based model that combines bottom-up and top-down
mechanisms to improve performance in image captioning and Visual Question Answering
tasks, and “Show, Ask, Attend, and Answer” [61], that combines LSTMs with multiple
attention layers.

The transition from encoder—classifier methods to Transformer methods in VQA was
driven by the Transformer’s ability to capture long-range dependencies and global con-
textual information. Transformers offered the potential to more efficiently capture the
interactions between visual and textual modalities, enabling a more comprehensive under-
standing of the relationship between images and questions. In these VQA models, images
and questions are encoded using Transformer encoders and self-attention mechanisms
capture the dependencies between words and the visual features, allowing the model to
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focus on relevant image regions while processing the question. The fused encoded represen-
tations are then fed into classification layers to generate answers [62-65]. Recent advances
in VQA also explore new models that approach the task as a generation problem rather
than a classification one, allowing for a more flexible and diverse range of answers [66].

5. Visual Story Generation

VSG combines computer vision and NLP to create coherent narratives from sequences
of images or videos. This task extends beyond simple image captioning by requiring
models to understand temporal relationships, infer causal connections between visual
scenes, and generate engaging stories that capture the underlying narrative flow. Unlike
video captioning, which focuses on objective description of visual content, VSG can also
speculate on the motivations and emotions of characters since such interpretations do not
contradict the visual content.

The field has evolved from early encoder-decoder architectures using CNN and RNN
to Transformer-based models that leverage large-scale pretraining. These approaches
must address challenges including visual understanding, temporal coherence, and nar-
rative creativity while maintaining grounding in the provided visual content. The fol-
lowing subsections present the key methodologies and their contributions to advancing
VSG capabilities.

5.1. Visual Storytelling with Convolutional and Recurrent Neural Networks

Huang et al. [19] proposed a dataset of sequential vision-to-language mappings, SIND
v.1 (later renamed to VIST), with 81,743 images in 20,211 sequences, with both descriptive
(captions) and story language, and aiming at facilitating research, from understanding
individual images to comprehending image sequences that narrate events over time.

This work also proposed models for generating stories based on image sequences,
using a sequence-to-sequence RNN approach, which extended the image captioning tech-
nique. It extracts features from each image using a pretrain CNN called AlexNET [67].
It then encodes image sequences by using a GRU over the features of each individual
image. The story decoder model consists of another GRU and generates narratives word by
word. Four different decoding methods, shown in Table 3, were considered: beam search,
greedy search, greedy search with removal of duplicates, and greedy search with removal
of duplicates and incorporation of grounded words.

Table 3. Results of each decoding approach using evaluated using METEOR scores on the VIST [19]
dataset. Red indicates the lowest score, green the highest.

Method METEOR Score
Beam =10 23.13
Greedy 27.76
Greedy — Duplicates 30.11
Greedy — Duplicates + Grounded 31.42

Results indicate that beam search alone does not perform well in generating high-
quality stories. This contrasts with the results for image captioning, where beam search is
more effective than greedy search. The reason is that generating stories with beam search
results in generic high-level descriptions such as “This is a picture of a dog” originating
from the label bias problem. On the other hand, by using a beam size of 1 (greedy search)
there is an improvement in the quality of the generated stories.

Since stories generated using a greedy search may sometimes contain repeated words
or phrases that can adversely affect textual quality, a duplicate-removal heuristic was
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added to ensure that content words cannot be produced more than once on a given story.
Finally, to further improve quality, the previous approach was extended to include “visually
grounded” words. These are words that are authorized for use by the story model only
if they are licensed by the caption model: for a word to be included in the story, it must
have appeared with some frequency in the captions generated by the caption model
for the sequence of images. Figure 1 shows an example of the generated stories for an
image sequence.

Figure 1. Sequence of images used to generate stories using different decoding methods. Beam
search: This is a picture of a family. This is a picture of a cake. This is a picture of a dog. This is a
picture of a beach. This is a picture of a beach. Greedy: The family gathered together for a meal. The
food was delicious. The dog was excited to be there. The dog was enjoying the water. The dog was
happy to be in the water. Greedy — duplicates: The family gathered together for a meal. The food
was delicious. The dog was excited to be there. The kids were playing in the water. The boat was
a little too much to drink. Greedy — duplicates + grounded words: The family got together for a
cookout. They had a lot of delicious food. The dog was happy to be there. They had a great time on
the beach. They even had a swim in the water. Adapted from [19].

5.2. Visual Storytelling with Convolutional and Bidirectional Recurrent Networks Networks

Park et al. [22] proposed Coherent Recurrent Convolutional Network (CRCN), inte-
grating various neural network components to bridge the gap between visual content and
textual narrative: VGGNet [68] as image encoder and Bidirectional Recurrent Networks
(BRNN) to capture contextual information from both the forward and backward directions
within a given text sequence. CRCN also introduces a local coherence model that focuses
on maintaining coherence and context within the generated sentence sequences. It also
utilizes parse trees to detect grammatical roles and structural attributes, ensuring that the
generated sentences integrate with the broader narrative context. During training, correctly
aligned image-sentence pairs are given higher scores than misaligned pairs.

The evaluation of CRCN considered several automatic metrics and several baseline
works, including one that excludes the entity coherence model. Table 4 shows the results
for the NY City [22] and Disneyland [22] datasets. Both datasets were introduced by
Park et al. [22] and consist of image sequences with the corresponding blog posts. In these
datasets, results were superior to all baselines. The exception, where it was a close second,
was with the baseline without entity coherence and in only certain metrics. The work was
further validated by user studies conducted via Amazon Mechanical Turk (AMT), showing
that human evaluators prefer CRCN-generated sequences over several baselines.

Table 4. Performance metrics of CRCN on New York City and Disneyland Datasets. Green values
represent state-of-the-art results at the time. B stands for BLEU, C for CIDEr, M for METEOR, and R
for Recall [22].

Metric B-1 B-2 B-3 B4 C M Re@l R@5 Re@10
NY City 2683 537 257 208 309 769 11.67 3119 43.57
Disneyland 2840 6.88 4.11 349 527 878 1429 3129 43.20

Figure 2 shows an example of a sequence of images and the corresponding gener-
ated sentences.
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(M (2 ©) 4) 6)

Figure 2. Sequence of images used by CRCN in a story. (1) One of the hallway arches inside of the

library. (2) As we walked through the library I noticed an exhibit called lunch hour nyc it captured
my attention as I had also taken a tour of nyc food carts during my trip. (3) Here is the top of the
Chrysler building everyone’s favorite skyscraper in new york. (4) After leaving the nypl we walked
along 42nd st. (5) We walked down fifth avenue from rockefeller centre checking out the windows in
saks the designer stores and eventually making our way to the impressive new york public library.
Adapted from [22].

In addition to the work by Park et al. [22], which was the first to use a bidirectional
RNN for visual storytelling, other works have also employed bidirectional RNNs archi-
tectures. XE [25] and AREL [25] have proposed models for visual storytelling that use
bidirectional RNNs on the VIST dataset.

5.3. Transitional Adaptation of Pretrained Models for Visual Storytelling

Yu et al. [24] proposed Transitional Adaptation of Pretrained Model (TAPM), aimed
at refining the generation of textual descriptions for visual content, particularly in the
context of VSG tasks. It aims at bridging the gap between pretrained language models
and visual encoders. In contrast with previous models for vision-to-language generation
tasks, which typically pretrain a visual encoder and a language generator separately and
then jointly fine-tune them for the target task, TAPM proposes a transitional adaptation
task to harmonize the visual encoder and language model for downstream tasks like VSG,
mitigating discord between visual specificity and language fluency arising from separate
training on large corpora of visual and text data. TAPM introduces an approach that adapts
multimodal modules through a simpler alignment task focusing solely on visual inputs,
eliminating the need for text labels.

TAPM components aim at enhancing the quality of textual descriptions for visual
content in storytelling tasks. They are a visual encoder, a language generator, adaptation
training, sequential coherence loss, training with adaptation loss, and a fine-tuning and
inference process. The visual encoder, a pretrained model, extracts features from images or
videos. In TAPM, it becomes integral during the adaptation phase, where it integrates with
the language generator to fuse visual and textual information. The pretrained language
generator model is responsible for converting visual information into textual descriptions.
During the adaptation phase, it generates video and text embeddings, aligning textual
representations with the corresponding visual features, based on a sequential coherence
loss function.

The loss function divides sequential coherence into three components: past, current,
and future matching losses. The past matching loss uses a Fully Connected (FC) layer f, to
project the text representation bs, of video i, drawing it nearer to the visual representation
vp, , of the preceding video i — 1 and distancing it from those of non-sequential videos. The
future matching loss projects bs; via a distinct FC layer f, aligns with the subsequent visual
representation vy, . The current matching loss then aligns the current visual representation
oy, with bs; through another FC layer f.. These components are unified by the FC layer
projections in their respective visual spaces, pulling the embeddings of correct matches
closer and pushing incorrect matches further apart. Margin ranking losses are utilized
to implement this concept, contrasting correct matches with incorrect ones. The final
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sequential coherence loss for a given video i is formulated as shown in Equation (1), where
cos is the cosine similarity, and j represents indices of incorrect matches.

Li= ) max(0,1+ cos (v, fp(bs;)) — cos(vy,_,, fp(bs;)))

jA

+ ) ‘max(0,1+ cos(vy,, fe(bs;)) — cos(vy,, fe(bs;))) (1)
j#i

+ Y max(0,1+ cos(vy,, ff(bs;)) — cos(vy,,,, fr(bs;))),
jAi+1

TAPM uses a split-training strategy to optimize model performance. Initially, the
visual encoder undergoes adaptation training with the adaptation loss, while the text
encoder and language generator remain fixed. Subsequently, all components are jointly
updated with the generation loss, allowing the model to optimize the adaptation task
before addressing the more challenging generation objective. After the adaptation and split-
training phases, TAPM undergoes fine-tuning. The model is then ready for the inference
phase, generating captions for unseen visual inputs.

Tables 5 and 6 show results for TAPM against selected baselines on the LSMDC 2019
and VIST datasets. Table 7 shows human evaluation results in which TAPM surpasses
adversarial baselines on LSMDC 2019. On VIST, it surpasses the XE [25] and AREL [25]
baselines in relevance, expressiveness, and concreteness, as shown in Table 8. These results
highlight the strengths in word choice and contextual accuracy, showcasing its ability to
capture causal relationships between images. However, the score is still far from human
performance, indicating that there is still room for improvement.

Table 5. Quantitative results on the VIST test set. C stands for CIDEr, M for METEOR, and R for
ROUGE-L. Green indicates the highest score, red the lowest.

Models C M R

Huang et al. [19] - 31.4 -

AREL [25] 9.4 35.0 29.5
StoryAnchor [69] 9.9 35.5 30.0
HSRL [70] 10.7 35.2 30.8
INet [71] 10.0 35.6 29.7
TAPM 13.8 37.2 33.1

Table 6. Quantitative results on LSMDC 2019 public and blind test set. C stands for CIDEr and R for
ROUGE. Green indicates the highest score, red the lowest. Adapted from [24].

Models Public Test Blind Test

C R C R
Baseline [72] 7.0 12.0 6.9 11.9
XE [25] 7.2 11.5 - -
AREL [25] 73 11.4 - -

TAPM 10.0 12.3 8.8 12.4
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Table 7. Human evaluation results on the LSMDC 2019 blind test set according to a Likert scale from
5 (worst) to 1 (best), where lower is better. Green indicates the highest score, red the lowest. Adapted
from [24].

Models Scores
Human 1.085
Official Baseline [72] 4.015
TAPM 3.670

Table 8. Human evaluation results on VIST. Higher is better. Green indicates the highest score, red
the lowest. Adapted from [24]

TAPM vs. XE TAPM vs. AREL
Choice (%) TAPM XE Tie TAPM AREL Tie
Relevance 59.9 34.1 6.0 61.3 32.8 5.9
Expressiveness 57.3 32.3 10.4 57.3 34.0 8.7
Concreteness 59.1 30.3 10.7 59.6 30.4 10.0

5.4. Interactive and Creative Visual Storytelling

Building upon the foundational CNN and RNN approaches, interactive and creative
visual storytelling represents an important evolution in the field, introducing intermediate
approaches that bridge visual comprehension with narrative creativity. These methods
combine elements of image captioning and VQA while introducing narrative structure and
creative interpretation, addressing limitations of purely technical approaches.

Lukin et al. [73] introduced a three-module pipeline for creative visual storytelling
that systematically approaches the challenge of generating narratives from visual content.
Their pipeline consists of object identification, single-image inferencing, and multi-image
narration, that serve as a preliminary design for building a creative visual storyteller. The
approach defines computational creative visual storytelling as one with the ability to alter
the telling of a story along three aspects: to speak about different environments, to produce
variations based on narrative goals, and to adapt the narrative to the audience. This
modular approach demonstrates how the foundational capabilities of image captioning
and VQA can be systematically extended and combined to support more complex narrative
generation tasks. The pipeline explicitly separates visual understanding from narrative
construction, allowing for more systematic development and evaluation of each component
while maintaining the overall coherence required for storytelling.

Interactive visual storytelling has also explored user engagement and personalization
in narrative generation. Halperin and Lukin [74] examined how creative visual storytelling
can serve as an anthology for narrative intelligence, investigating the intersection of human
creativity and automated story generation through an analysis of 100 visual stories from
authors who participated in a systematic creative process of improvised story building
based on image sequences. Their work on surreal visual storytelling [75] further explores
how visual narrative systems can handle ambiguous or dreamlike imagery, investigating
Al “hallucination” by stress-testing a visual storytelling algorithm with different visual
and textual inputs designed to probe dream logic inspired by cinematic surrealism. These
approaches highlight the importance of modularity in visual storytelling systems, where
different components can be optimized independently while contributing to the overall
narrative coherence. The integration of creative elements with systematic visual analysis
provides a foundation for more sophisticated VSG systems that can balance factual visual
description with imaginative narrative construction.
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5.5. Knowledge-Enhanced Visual Storytelling

A challenge in VSG is the tendency of end-to-end approaches to produce monotonous
stories with repetitive text and limited lexical diversity. This limitation arises because
existing approaches are constrained by the vocabulary and knowledge available in single
training datasets. To address this challenge, researchers have explored knowledge enhanced
approaches that leverage external resources to enrich the story generation process.

Hsu et al. [76] introduced KG-Story, a three-stage framework that allows VSG systems
to take advantage of external knowledge graphs to produce more diverse stories. The frame-
work implements a distill-enrich—-generate approach: first distilling a set of representative
words from input prompts, then enriching the word set using external knowledge graphs,
and finally generating stories based on the enriched word set. This framework allows the
use of external resources not only for the enrichment phase, but also for the distillation
and generation phases. The KG-Story framework operates through three distinct stages.
In stage 1, an image-to-term model distills representative terms from each input image,
creating conceptual representations that capture the essential elements of the visual content.
In stage 2, external knowledge graphs are utilized to identify possible connections between
the extracted term sets from different images, generating enriched term paths that capture
relationships and associations not explicitly visible in the images. In stage 3, a Transformer
architecture transforms these term paths into coherent stories, incorporating techniques
such as length difference positional encoding and repetition penalties to improve narrative
quality. Evaluation results demonstrate that stories generated by KG-Story are on average
ranked better than previous state-of-the-art systems in human ranking evaluations. The ap-
proach successfully addresses the vocabulary limitations of traditional end-to-end methods
while maintaining narrative coherence.

Interactive approaches to knowledge-enhanced storytelling have also been explored.
Hsu et al. [77] introduced Dixit, an interactive visual storytelling system that allows users
to iteratively compose stories through term manipulation. The system extracts text terms
describing objects and actions from photos, then allows users to add new terms or remove
existing ones before generating stories based on these modified term sets. Behind the scenes,
Dixit uses an LSTM model trained on image caption data to distill terms from images and
utilizes a Transformer decoder to compose context coherent stories. This approach opens
up possibilities for interpretable and controllable visual storytelling, allowing users to
understand the story formation rationale and to intervene in the generation process.

These knowledge-enhanced approaches represent an important advancement in VSG,
demonstrating how external knowledge resources can be systematically integrated to
overcome the limitations of purely data-driven methods. By explicitly modeling the
relationship between visual content and broader conceptual knowledge, these systems
can generate more diverse, engaging, and contextually rich narratives while maintaining
controllability and interpretability.

5.6. Iterative and Planning-Based Approaches

Traditional VSG models typically generate stories in a single forward pass. However,
creative writers use their knowledge and worldview to put disjointed elements together
to form a coherent storyline, and work and rework iteratively toward perfection. VSG
models, however, make poor use of external knowledge and iterative generation when
attempting to create stories. This observation has motivated the development of iterative
and planning-based approaches that more closely mirror human creative writing processes.
Hsu et al. [78] introduced PR-VIST (Plot and Rework Visual Storytelling), a framework
that represents the input image sequence as a story graph in which it finds the best path
to form a storyline. PR-VIST then takes this path and learns to generate the final story
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via a re-evaluating training process. The framework draws inspiration from the human
creative writing process, which involves plotting (planning the overall narrative structure)
and reworking (iteratively refining the story content).

The PR-VIST framework operates through two main stages that correspond to the
plotting and reworking phases of creative writing. In stage 1 (story plotting), the system
constructs a story graph from the input image sequence using external knowledge graphs,
including VIST and Visual Genome knowledge graphs. A storyline predictor model
identifies the best path through this graph to form a coherent storyline, creating a structured
narrative plan that connects the images through meaningful conceptual relationships. This
plotting stage essentially creates a roadmap for the story that will be generated. In stage 2
(story reworking), the framework generates the actual story text based on the predicted
storyline path. The approach uses a length-controlled Transformer that is first pretrained
on the ROC Story dataset and then fine-tuned on the VIST dataset with a discriminator
component to encourage higher quality story generation. The re-evaluating training process
allows the model to iteratively improve the story generation by learning from feedback
about narrative quality and coherence.

Evaluation results demonstrate that this framework produces stories that are supe-
rior in terms of diversity, coherence, and humanness, per both automatic and human
evaluations. An ablation study shows that both plotting and reworking contribute to the
model’s superiority. The explicit separation of planning and generation phases allows for
better control over narrative structure while maintaining the flexibility needed for creative
story generation. This planning-based approach represents an important advancement
toward more human-like story generation, demonstrating how computational systems
can benefit from explicitly modeling the structured creative processes that human writers
naturally employ.

5.7. Combining LLMs (GPT-2) and Character Features

Hong et al. [21] proposed CharGrid (Character-Grid Transformer), a Transformer
model that integrates diverse input features, from global image attributes to character-
specific details. It takes a sequence of input tokens, including global image features obtained
using Swin Transformer’s [57], character features extracted by cropping character instances,
a character grid for coherence assessment, and text features introduced incrementally
during processing. The trainable image and character encoders process the image feature
inputs. The character grid is flattened and fed to a FC layer. The Transformer module then
processes these inputs, generating an output as a probability distribution over potential
tokens using a pretrained Generative Pretrained Transformer (GPT)-2 tokenizer. The model

LS

architecture is shown in Figure 3.
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Figure 3. CharGrid architecture: the blue boxes are pretrained components where the parameters are
fixed. Adapted from [21].

During training, model parameters, excluding the vision backbone, are randomly
initialized. The training objective involves maximizing the likelihood of image sequence—
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story pairs through backpropagation. Nucleus sampling [79] is employed for validation,
and the METEOR score is used for evaluation.

CharGrid has two additional variants: ObjGrid (Object-Grid Transformer) and Enti-
Grid (Entity-Grid Transformer). ObjGrid replaces character features with object features.
This model incorporates global features and object features, with an object grid representing
coherence based on the similarity between global image features and object features. It is
similar to CharGrid but includes both character and object features. EntiGrid incorporates
global, character, and object features, with an entity grid representing coherence through
the similarity between global image features and both character and object features. These
variants explore the impact of different input feature combinations on model performance.
CharGrid, with its emphasis on character coherence, serves as the primary model, while
ObjGrid and EntiGrid address the contributions of object-related features.

The results in Table 9 show that CharGrid outperforms TAPM with character features
and GPT-2 with character features on various metrics, emphasizing the effectiveness of
character grid representations for coherence in VSG. A crowd-sourcing experiment was
conducted with 28 workers to obtain binary judgments on grammaticality, coherence,
diversity, and visual groundedness of the generated stories. The results in Table 10 show
that TAPM with character features excels in visual groundedness over plain TAPM, while
CharGrid surpasses TAPM with character features across all metrics. Two-sided binomial
tests support that the character grid representation yields superior stories, affirming the
reference-based metrics findings.

Table 9. Results using different input features on the test set of Visual Writing Prompts (VWP).
Superscripts !, 2, and 3 indicate 1/2/3 standard deviations away from the CharGrid mean. Global
features are always included. “+ obj” and “+ char” represent that object and character features are
also included, respectively. BLEU (B), METEOR (M), ROUGE-L (R-L), and CIDEr (C) values are
averages of three runs with different random seeds. Green indicates the highest score, red the lowest.
Adapted from [21].

Model B-1 B-2 B-3 B-4 M R-L C
GPT-2 38.65°% 20.28°% 9783 4682 31.64°% 24241 1663
GPT-2 + obj 40.65% 21.35% 1023 4872 31.69% 2405! 1853
GPT-2 + char 39.953 21.04% 10113 492! 31852 24.19! 1573
GPT-2 + obj,char 40413 21443 10563 5.06' 32032 2438 1.873
TAPM 39.853 2173 10.72% 519 3238! 2509 1483
TAPM + obj 40863 22.13% 10.833 525 32341 2491 1.823
TAPM + char 40.03% 21.68% 1066°% 518 3242! 2488 143
TAPM + obj,char 40873 21.993% 10723 5.06' 3248! 2487 1593
ObjGrid + obj 4766 2526 1195 542 3283 2442 468
EntityGrid + obj,char 4583  24.85  12.11 5.7 3268 2489 353!
CharGrid + char 4771 2533 1195 542 3303 2501  4.83

Table 10. Human binary judgments in percentage of generated stories between TAPM and TAPM
with character features (TAPM + char), TAPM + char, and CharGrid on the test set of VWP across
four criteria: Grammaticality (G), Coherence (C), Visual Groundedness (VG), and Diversity (D). The
numbers are percentages. * means p-value < 0.05. ** means p-value < 0.01. Adapted from [21].

Model G C VG D

TAPM + char vs. TAPM +2.45 +1.99 +3.99 * +1.69
CharGrid vs. TAPM + char +6.49 ** +8.41 ** +6.25 * +11.06 **
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5.8. Visual Story Generation using Graphs for Event Ratiocination

Zheng et al. [26] introduced Hypergraph-Enhanced Graph Reasoning (HEGR) for
“visual event ratiocination”, a task that involves generating interpretations and narratives
for events that precede, coincide with, or follow a visual scene, as well as discerning the
intents of depicted characters. The work addresses several downstream tasks, including
VSG. The work introduces a framework to improve the integration and interpretation of
visual and textual data, using hypergraphs to address challenges in multimodal interactions
and temporal dynamics. Figure 4 shows this architecture.
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Figure 4. Architecture of HEGR by Zheng et al. Adapted from [26].

The method begins with feature extraction: visual features are extracted using Mask
R-CNN [80] to detect objects and their spatial characteristics within images. Textual features
are extracted from associated descriptions or captions using BERT [81], capturing semantic
information. In the second phase, semantic graphs are constructed for each modality: nodes
represent detected features or semantic tokens, while edges depict relationships within the
same modality. To capture dependencies between modalities and across various temporal
segments, hypergraphs are employed, linking semantic graphs based on contextual and
temporal relevance, forming a high-dimensional interaction map. In the third phase, graph
convolution is used to update node representations within each graph, allowing contextual in-
formation aggregation through learned adjacency matrices. Hypergraph convolution extends
this to include higher-order relationships across multiple graphs and temporal instances. In
the fourth phase, a self-attention mechanism refines graph representations by dynamically
adjusting the significance of nodes within and across modalities. This process focuses on the
most relevant features for narrative generation. Finally, the event ratiocination generator uses
the enriched feature representations to generate narratives using BART [82].

The method was evaluated on the VIST dataset, achieving state-of-the-art performance in
terms of BLEU-4, ROUGE-L, and METEOR scores achieving 16.4, 37.4, and 37.8, respectively.

5.9. Discussion

The works presented in this section have made substantial contributions to the
field of VSG, establishing robust benchmarks for the assessment of emerging models
and methodologies.

Specifically, the first three techniques, presented in Sections 5.1-5.3, employed a CNN
encoder for visual feature extraction and a RNN decoder for language generation. The
methods detailed in Sections 5.1 and 5.3 offered a comparative analyses on the VIST dataset,
with METEOR scores of 31.4 and 37.2, respectively. Notably, the latter technique surpasses
the former, which can be attributed to its transitional training approach.

The study outlined in Section 5.7, CharGrid, does not present findings on the VIST
dataset. However, this method is benchmarked against the method detailed in Section 5.3,
TAPM, on the VWP dataset, where it demonstrates superior performance across all eval-
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uated metrics. This comparison is shown in Table 9, specifically within the rows labeled
“TAPM + obj,char” and “CharGrid”. This method differentiates itself from the previous by
focusing on the extraction of object-level features from visual inputs rather than employing
a CNN to encode the entire visual input. Furthermore, it leverages the capabilities of an
LLM, using its extensive world knowledge to enhance language modeling, illustrating a
novel integration of visual and linguistic elements in story generation.

Finally, the method discussed in Section 5.8, HEGR, introduces a different approach
that uses hypergraphs to model the contextual and temporal relationships between visual
and textual data. This approach is explicitly able to model some story elements, namely the
characters and the setting.

Table 11 summarizes the performance of the methods described above, along with
other methods from the literature that contributed to the field of VSG. The listed models
range from earlier methods using CNNs and RNNs to more recent advances that integrate
object detection models like Faster R-CNN [83] and Mask-RCNN [80], and LLMs like
GPT-2 [84] and BART [82]. The first two methods by Park et al. (2015) [22] and Park et al.
(2019) [72] are not comparable to the other methods as they do not use the VIST dataset.
The remaining methods are evaluated on the VIST dataset, with the exception of CharGrid
(2023) [21] that is evaluated on the VWP dataset. The authors of CharGrid trained and
evaluated the performance of TAPM on the VWP [21] dataset, making the two methods
directly comparable. It is, however, not possible to know if CharGrid would perform better
than HEGR on the VIST dataset without further experiments.

Table 11. Analysis of Visual Story Generation works. The columns “B-4”, “R-L”, and “M” represent
the BLEU-4, ROUGE-L, and METEOR scores, respectively. Green indicates the highest score and
red indicates the lowest score for each metric within each dataset. All works, except Huang et al.
(2015) [19] and CST (2018) [85], use attention mechanisms. All works use images as input, except
ActivityNet [86] (it uses videos). The mark 1 indicates works that used extra training data (direct
comparison may not be fair). The mark ? indicates works that explicitly model some story elements,
namely the characters by the detection of objects in the case of CharGrid (2023) [21] and HEGR (2021)
[26] and the setting in the case of HEGR (2021) [26].

Model Encoding Decoding Dataset B-4 R-L M

Park et al. (2015) [22] CNN, Bi-RNN RNN Blog Posts 3.49 - 8.78
Park et al. (2019) [72] Resnet-101/152, LSTM LSTM ActivityNet 9.91 - 16.48
Huang et al. (2015) [19] CNN, GRU GRU VIST - - 31.4
Xu et al. (2015) [7] VGGNet LSTM VIST - 2894 32.98
Yu et al. (2017) [87] ResNet-101, Bi-GRU GRU VIST - 29.53 34.12
CST (2018) [85] CNN, LSTM LSTM VIST 127 292 344
AREL (2018) [25] ResNet-152, Bi-GRU GRU VIST 14.1 29.5 35.0
HSRL (2019) [70] ResNet-152 LSTM VIST 12.32 30.84 3523
GLACNet (2019) [88] ResNet-152, Bi-LSTM LST™M VIST - - 30.63
StoryAnchor (2020) [69] ResNet-152, Bi-GRU GRU VIST 140 300 355
INET (2020) [71] CNN, GRU GRU VIST 147 297 355
AOG-LSTM (2023) [89] RestNet-152 LSTM VIST 12.9 30.1 36.0
CoVS (2023) [90] RestNet-152, GRU GRU VIST 152 308 365
TAPM (2021) [24] ! Faster R-CNN, ResNet-152 GPT-2 s VIST - 33.1 37.2
HEGR (2021) [26] Mask-RCNN, BERT BART VIST l64 374 378
TAPM (2021) [21] Faster R-CNN, ResNet-152 GPT-2 VWP 519 25.09 3238
CharGrid (2023) [21] 2 Mask-RCNN, GPT-2 VWP 542 2501 33.03

SwinTransformer
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6. Real-World Applications

As VSG technologies mature, they are increasingly being deployed in real-world
scenarios. These applications demonstrate the practical potential of VSG systems and high-
light new challenges that arise when deploying these technologies in dynamic, context-rich
environments. This section explores emerging applications that integrate visual storytelling
with contextual information, location awareness, and real-time data processing.

6.1. Location-Aware Visual Storytelling

Suwono et al. [91] introduced location-aware visual question generation with
lightweight models, representing an important advancement in spatially grounded narra-
tive applications. Their work addresses the challenge of generating contextually relevant
questions and narratives that are informed by geographical location, opening new pos-
sibilities for travel documentation, educational applications, and location-based social
media platforms. The location-aware approach integrates geographical metadata with
visual content analysis to create narratives that are visually grounded and spatially con-
textualized. This integration enables the generation of stories that can reference specific
landmarks, cultural contexts, and geographical features that would be meaningful to
users familiar with particular locations. The use of lightweight models addresses practi-
cal deployment constraints, making the technology suitable for mobile applications and
resource-constrained environments.

6.2. Automotive and Real-Time Context Integration

Belz et al. [92] explored story-driven approaches in automotive contexts, investigating
how real-time contextual information can enhance automated storytelling systems. Their
research represents a step toward practical deployment of VSG in everyday scenarios,
particularly in automotive systems where visual storytelling could enhance the driving
experience and provide meaningful documentation of journeys. The automotive application
domain presents challenges and opportunities for visual storytelling. In-car camera systems
continuously capture visual data, creating an opportunity for real-time narrative generation
that could help drivers and passengers understand and remember their journeys. The
integration of real-time context information—such as speed, location, weather conditions,
and traffic patterns—enables the generation of richer, more informative narratives that
extend beyond visual description. Their work demonstrates how dynamic contextual data
can be incorporated into storytelling algorithms, showing measurable improvements in
narrative relevance and user engagement when real-time information is provided. This
approach could lead to applications in autonomous vehicles, where passengers might
receive automatically generated travel narratives, or in fleet management systems where
journey documentation becomes an automated process. Deployment challenges include
processing continuous visual streams with limited computational resources, handling rapid
scene changes, and maintaining narrative coherence across extended journeys.

7. Conclusions

This survey reviewed the field of VSG, explaining its development and current meth-
ods. It started by explaining basic story elements, datasets, and evaluation metrics used to
judge the quality of the stories. The discussion pointed out the need for better metrics to
assess complex tasks like VSG accurately. The document also covered related areas like
image and video captioning and VQA, discussing how improvements in these fields have
helped enhance VSG. The discussion then moved on to the evolution of VSG methods,
starting with early approaches that used CNNs and RNNs to methods based on LLMs and
hypergraphs. Additionally, we examined emerging real-world applications that demon-
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strate the practical potential of these technologies in domains such as automotive systems
and location-aware storytelling.

Despite the advances, challenges remain for VSG. In the following subsections, we
discuss some of the key challenges and opportunities in the field that could guide future
research directions. We start with the ones that are more concrete and could influence the
field in the short term and end with the ones that are more abstract and could potentially
influence the field in the long term.

7.1. Exploring Large Language Models

The field of VSG using LLMs is under-explored, with only a few works delving into
this domain. To the best of our knowledge, the existing works predominantly rely on GPT-
2, which is an outdated LLM when compared to models such as Qwen3-235B-A22B [93],
which is the best performing open-source model on Chatbot Arena, or Gemini 2.5 Pro [94],
which is the best performing proprietary model. The scarcity of the integration of LLMs
with visual elements presents an opportunity for further research, exploring the potential
of these models in generating more coherent and contextually relevant stories.

7.2. Automatic Evaluation Metrics

The need for robust and efficient automatic evaluation metrics is emphasized in our
survey. While existing metrics like METEOR and CIDEr have been widely adopted, they
do not fully capture the nuances of story quality. The metrics mostly focus on the similarity
between the generated text and the reference text. A story can be retold in various ways,
employing different perspectives while preserving the original message. Consequently,
a generated text might deviate significantly from the reference text in terms of specific
wording and still deliver the same story in a coherent way. Thus, while these metrics
provide valuable insights into certain dimensions of text generation, they did not fully
encompass the multifaceted nature of storytelling. As LLMs continue to improve, they
show potential in replacing human annotators in many tasks [48] and so metrics to evaluate
stories could be developed based on LLMs. We advance that these metrics could be
based on the existing systematic scoring systems [47] that were developed to evaluate the
performance of LLM-based chat bots.

7.3. Decomposition of Story Generation

Addressing the complexity of stories, we underscore the importance of decomposing
the story generation process into modular components. Each module can focus on specific
attributes such as author goals, character interactions, consistency, etc. This decomposition
has already been explored with modeling characters in CharGrid [24] and the modeling
of characters and setting in HEGR [26]. We believe that explicit modeling of other story
elements and abstract concepts such as emotions and culture, possibly using hypergraphs
or similar structures, could further enhance the quality of generated stories.

7.4. Hybrid Systems and Knowledge Integration

Building on the decomposition concept, hybrid systems, combining planning-based
techniques and machine learning approaches, present an intriguing direction. Hypergraphs,
as seen in HEGR [26], could possibly be a starting point as a deep learning approach to
model the planning process replacing the traditional handcrafted planning systems. The
integration of multiple knowledge sources can enrich the diversity and quality of generated
stories, paving the way for more robust and context-aware narrative creation.
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7.5. Real-World Deployment and Context Integration

The transition from academic research to practical applications represents a crucial
next step for VSG technologies. Recent work in location-aware storytelling and automo-
tive applications demonstrates the potential for deploying these systems in real-world
scenarios. Future research should focus on developing robust systems that can integrate
multiple contextual information sources including location, temporal data, and real-time
sensor information while maintaining computational efficiency for deployment in resource-
constrained environments such as mobile devices and embedded systems. The success of
these real-world applications will ultimately determine the broader impact of VSG research
on society.

7.6. Ethical Considerations and Societal Impact

The deployment of VSG systems in real-world applications such as journalism, au-
tonomous vehicles, and personalized content generation raises important ethical considera-
tions that must be addressed by the research community. Dataset biases present a concern,
as many existing VSG datasets may lack demographic and cultural representativeness.
For example, VIST images are predominantly North American/European family/leisure
scenes, while LSMDC and PororoQA inherit scripted, gender-stereotyped roles. This
limitation can lead to systems that perform poorly for underrepresented communities
or perpetuate cultural stereotypes in generated narratives. The datasets listed in Table 1,
while foundational to the field, primarily reflect Western cultural contexts and may not
adequately represent global narrative traditions and perspectives. Such skews can surface
in stories, for instance, defaulting to Western names. The risk of generating misleading or
unverified content is relevant when VSG systems are applied in journalism or automated
news generation. These systems may extrapolate beyond what is directly observable in
visual content, potentially creating false narratives or misrepresenting events. Copyright
issues surrounding the images used for training present legal and ethical challenges. Many
datasets incorporate images from blogs, social media, and other sources without explicit
permission for machine learning applications. Privacy concerns are inherent in datasets
created from personal blogs and social media content. These sources may contain person-
ally identifiable information (faces, locations, blog text) or private moments that were not
intended for use in machine learning research, and may in some cases not comply with data
protection regulations such as GDPR. The VIST dataset and similar collections derived from
photo-sharing platforms raise questions about informed consent and data subject rights.
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