
 

Repositório ISCTE-IUL
 
Deposited in Repositório ISCTE-IUL:
2025-09-04

 
Deposited version:
Accepted Version

 
Peer-review status of attached file:
Peer-reviewed

 
Citation for published item:
Ferreira, M. A. M. (2024). Transient behavior of M|G| systems: Mean and variance from the start of
busy periods with applications to epidemics and unemployment. In El-Sayed Mohamed Abo-Dahab
Khedary;  (Ed.), Research updates in mathematics and computer science. (pp. 21-31).: B P
International.

 
Further information on publisher's website:
10.9734/bpi/rumcs/v7/344

 
Publisher's copyright statement:
This is the peer reviewed version of the following article: Ferreira, M. A. M. (2024). Transient
behavior of M|G| systems: Mean and variance from the start of busy periods with applications to
epidemics and unemployment. In El-Sayed Mohamed Abo-Dahab Khedary;  (Ed.), Research updates
in mathematics and computer science. (pp. 21-31).: B P International., which has been published in
final form at https://dx.doi.org/10.9734/bpi/rumcs/v7/344. This article may be used for non-
commercial purposes in accordance with the Publisher's Terms and Conditions for self-archiving.

Use policy

Creative Commons CC BY 4.0
The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-profit purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in the Repository

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Serviços de Informação e Documentação, Instituto Universitário de Lisboa (ISCTE-IUL)
Av. das Forças Armadas, Edifício II, 1649-026 Lisboa Portugal

Phone: +(351) 217 903 024 | e-mail: administrador.repositorio@iscte-iul.pt
https://repositorio.iscte-iul.pt

https://dx.doi.org/10.9734/bpi/rumcs/v7/344


 

 

TRANSIENT BEHAVIOR OF M|𝑮|∞ SYSTEMS: MEAN AND 

VARIANCE FOM THE START OF BUSY PERIODS WITH 

APPLICATIONS TO EPIDEMICS AND UNEMPLOYMENT  

Manuel Alberto M. Ferreira 
 

Iscte-Instituto Universitário de Lisboa, ISTAR-IUL, Lisboa, Portugal 
 

manuel.ferreira@iscte-iul.pt 
 

                                         

ABSTRACT 
The M|𝐺|∞ queue system transient probabilities, with time origin at the beginning of a 
busy period, are determined. It is highlighted the obtained distribution mean and 
variance study as time functions. In this study it is determinant the service time hazard 
rate function and two induced differential equations. Also, we will show how the 
results obtained can be applied in modeling epidemic and unemployment situations.     
 
Keywords: M|𝐺|∞, hazard rate function, differential equations, epidemic, 
unemployment. 
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1.INTRODUCTION 

In M|G| queue systems, customers arrive according to a Poisson process at rate 𝜆, 

receive a service which time is a positive random variable with distribution function 

𝐺(∙) and mean 𝛼 and, when they arrive, find immediately an available server1. Each 

customer service is independent from the other customers’ services and from the 

arrivals process. The traffic intensity is: 

                                                           𝜌 = 𝜆𝛼   (1.1). 

Call 𝑁(𝑡) the number of occupied servers (or the number of customers being served) 

at instant 𝑡, in a M|G| system. From [1], as 𝑝0𝑛(𝑡) = 𝑃[𝑁(𝑡) = 𝑛|𝑁(0) = 0],  𝑛 =
0,1,2, . . .,  

 

                      𝑝0𝑛(𝑡) =
(𝜆 ∫ [1−𝐺(𝑣)]𝑑𝑣

𝑡
0 )

𝑛

𝑛!
𝑒−𝜆 ∫ [1−𝐺(𝑣)]𝑑𝑣

𝑡
0 ,    𝑛 = 0,1,2, . ..       (1.2).   

               
So, the transient distribution when the system is initially empty, is Poisson with mean: 
 

𝜆 ∫ [1 − 𝐺(𝑣)]
𝑡

0
𝑑𝑣. 

 
1Considering a queue system with infinite servers does not mean that the physical presence of infinite servers is required, which is 
materially impossible. It means that when a customer arrives at the queue, they immediately find a server available. That is why these 
queuing systems are said to be lossless and without waiting. Two ways, among others, of ensuring this availability are: 
-The existence of a sufficiently large number of reserve servers, in a state of readiness, 
-Each customer is their own server, as happens, for example, in supermarkets when customers collect the goods they are going to buy. 
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The stationary distribution is the limit distribution2: 
 

                                   𝑙𝑖𝑚
𝑡→∞

 𝑝0𝑛(𝑡) =
𝜌𝑛

𝑛!
𝑒−𝜌,   𝑛 = 1,2, . ..                  (1.3). 

 
This queue system, as any other, has a sequence of busy periods and idle periods. A 
busy period begins when a customer arrives at the system finding it empty. 
Be 
 
                              𝑝1′𝑛(𝑡) = 𝑃[𝑁(𝑡) = 𝑛|𝑁(0) = 1′], 𝑛 = 0,1,2, . . ., (1.4)  
 
meaning 𝑁(0) = 1′ that the time origin is an instant at which a customer arrives at the 
system, jumping the number of customers from 0 to 1. That is: a busy period begins. 
At 𝑡 ≥ 0 possibly: 
 
-The customer that arrived at the initial instant either abandoned the queue system 
with probability 𝐺(𝑡), or goes on being served, with probability 1 − 𝐺(𝑡); 
 
-The other servers, that were unoccupied at the time origin, either go on unoccupied 
or occupied with 1, 2, ... customers, being the probabilities 𝑝0𝑛(𝑡), 𝑛 = 0,1,2, . . .. 
 
Both subsystems, the one of the initial customer and the one of the servers initially 
unoccupied, are independent and so, see  [2]: 
 

𝑝1′0(𝑡) = 𝑝00(𝑡)𝐺(𝑡)

𝑝1′𝑛(𝑡) = 𝑝0𝑛(𝑡)𝐺(𝑡) + 𝑝0𝑛−1(𝑡)(1 − 𝐺(𝑡)), 𝑛 = 1,2, . .
    (1.5). 

 
  

It is easy to see that: 
 

                         𝑙𝑖𝑚
𝑡→∞

 𝑝1′𝑛(𝑡) =
𝜌𝑛

𝑛!
𝑒−𝜌,   𝑛 = 0,1,2, . ..    (1.6).                                       

 
Denoting 𝜇(1′, 𝑡) and 𝜇(0, 𝑡) the distributions (1.5) and (1.2) mean values, 
respectively, 
 

 𝜇(1′, 𝑡) = ∑ 𝑛𝑝1′𝑛
∞
𝑛=1 (𝑡) = ∑ 𝑛𝐺∞

𝑛=1 (𝑡)𝑝00(𝑡) + ∑ 𝑛𝑝0𝑛−1
∞
𝑛=1 (𝑡)(1 − 𝐺(𝑡)) = 

     𝐺(𝑡)𝜇(0, 𝑡) + (1 − 𝐺(𝑡)) ∑ (𝑗 + 1)∞
𝑗=0 𝑝0𝑗(𝑡) = 𝜇(0, 𝑡) + (1 − 𝐺(𝑡)),  

 
resulting             

                                𝜇(1′, 𝑡) = 1 − 𝐺(𝑡) + 𝜆 ∫ [1 − 𝐺(𝑣)]
𝑡

0
𝑑𝑣        (1.7).   

 

 
2 𝛼 = ∫ [1 − 𝐺(𝑣)]

∞

0
𝑑𝑣, since the service time is a positive random variable. 



 

 

As,  ∑ 𝑛2∞
𝑛=0 𝑝1′𝑛(𝑡) = 𝐺(𝑡) ∑ 𝑛2∞

𝑛=1 𝑝0𝑛(𝑡) + (1 − 𝐺(𝑡)) ∑ 𝑛2∞
𝑛=1 𝑝0𝑛−1(𝑡) =

𝐺(𝑡)(𝜇2(0, 𝑡) + 𝜇(0, 𝑡)) + (1 − 𝐺(𝑡))(𝜇2(0, 𝑡) + 3𝜇(0, 𝑡) + 1) = 𝜇2(0, 𝑡) +

(3 − 2𝐺(𝑡))𝜇(0, 𝑡) + 1 − 𝐺(𝑡), 

 
denoting  𝑉(1′, 𝑡) the variance associated to the distribution defined by (1.5), it is 
obtained: 
 
                                            𝑉(1′, 𝑡) = 𝜇(0, 𝑡) + 𝐺(𝑡) − 𝐺2(𝑡)     (1.8). 
 
The main target is to study 𝜇(1′, 𝑡) and 𝑉(1′, 𝑡) as time functions. It will be seen that, 
in its behavior as time functions, plays an important role the hazard rate function 
service time given by, see for instance [3 − 5], 

 

                                                  ℎ(𝑡) =
𝑔(𝑡)

1−𝐺(𝑡)
                                          (1.9) 

 
where 𝑔(∙) is the density associated to 𝐺(∙).  
Two differential equations, induced by this study, are considered allowing very 
interesting conclusions. 
 
2. APPLICATION IN EPIDEMIC AND UNEMPLOYMENT SITUATIONS 
 
M|𝐺|∞,systems have great applicability in modeling real-life problems. See, for 
instance, references [4 − 11]. The presented in this paper are very interesting and the 
results that will be shown in the sequence are particularly adequate to its study: 
 
-Epidemic 
 
In this case the customers are the people hit by an epidemic. They arrive at the system 
when they fall sick, and their service time is the time during which they are sick. The 
time the first one falls sick, may be the beginning of an epidemic, is the beginning of a 
busy period. An idle period is a period of disease absence. The service hazard rate 
function is the rate at which they get cured. See [12]. 
 
-Unemployment 
 
Now the customers are the unemployed in a certain activity. They arrive at the system 
when they lose their jobs, and their service time is the time during which they are 
unoccupied. An idle period is a full employment period. A busy period begins with the 
first worker losing his job. The hazard rate function is the rate at which the 
unemployed workers turn employees. See [13]. 
 
In both cases (1.4) is applicable. It must be checked if the people fall sick or lose their 
jobs according to a Poisson process. The failing of this hypothesis is more expectable in 
the unemployment situation. In some situations, maybe it is more adequate to 
consider a mechanism of batch arrivals. 



 

 

The beginning of the epidemic or of the unemployment periods can be determined 
today with a great precision. 
The results that will be presented can help to forecast the evolution of the situations. 
Finally, it is necessary to adjust the time distributions adequate to the disease and 
unemployment periods. In this last case the situation may not be the same for the 
various activities. 
 
                  

3. 𝝁(𝟏′, 𝒕) STUDY AS TIME FUNCTION 
 
Proposition 3.1: 
 
If 𝐺(𝑡) < 1, 𝑡 > 0 continuous and differentiable and  

 
                                              ℎ(𝑡) ≤ 𝜆, 𝑡 > 0                   (3.1) 
 

𝜇(1′, 𝑡) is non- decreasing. 
 

Dem.: 

It is enough to note, according to (1.7), that 
𝑑

𝑑𝑡
𝜇(1′, 𝑡) = (1 − 𝐺(𝑡))(𝜆 − ℎ(𝑡)). □ 

                          
Obs.: 
-If the rate at which the services end is lesser or equal than the customers arrival 
rate, 𝜇(1′, 𝑡) is non- decreasing. 
- Epidemic: If the rate at which people get cured is lesser or equal than the rate at 
which they fall sick, the mean number of sick people is a non-decreasing time function. 
- Unemployment: If the rate at which the workers lose their jobs is lesser than the rate 
at which they turn employees, the mean number of unemployed people is a 
nondecreasing time function. 

-For the M|M|3 system (3.1) is equivalent to  
 
                                                 𝜌 ≥ 1        (3.2). 

 
-lim 

𝑡→∞
𝜇(1′, 𝑡) = 𝜌. 

-Epidemic: If an epidemic lasts a very long time, the mean number of sick people will 
be closer and closer from the traffic intensity. 
-Unemployment: If an unemployment period lasts a very long time, the mean number 
of unemployed people will be closer and closer from the traffic intensity. 

 
Defining 𝜉(∙) through the differential equation (note that (3.1) can be written in form 
ℎ(𝑡) − 𝜆 ≤ 0, 𝑡 > 0) 

 
 
                                          𝜉(𝑡) = ℎ(𝑡) − 𝜆         (3.3)        
 

 
3 The second M means exponential service times. 



 

 

it is obtained as solution the following collection of service time distribution functions: 
 

   𝐺(𝑡) = 1 − (1 − 𝐺(0))𝑒−𝜆𝑡−∫ 𝜉(𝑢)
𝑡

0 𝑑𝑢, 𝑡 ≥ 0,
∫ 𝜉(𝑢)𝑑𝑢

𝑡
0

𝑡
≥ −𝜆       (3.4). 

 
 

So, evidently, 
 
Proposition 3.2:  
 
If 𝜉(𝑡) = 0 

 

                     𝐺(𝑡) = 1 − (1 − 𝐺(0))𝑒−𝜆𝑡,  𝑡 ≥ 0          (3.5) 

 
and   
 
𝜇(1′, 𝑡) = 1 − 𝐺(0) = 𝜌,   𝑡 ≥ 0. □ 
 
Obs.: 
- Epidemic: If the time that a patient is sick is a random variable, with a distribution 
function given by (3.5) the mean number of sick people is equal to the traffic intensity. 
-Unemployment: If the time of unemployment is a random variable, with a 
distribution function given by (3.5) the mean number of unemployed people is equal 
to the traffic intensity. 
 
Exemplifying for some service time distributions: 
 
-Deterministic with value 𝛼 

 
 

                             𝜇(1′, 𝑡) = {
1 + 𝜆𝑡, 𝑡 < 𝛼
𝜌, 𝑡 ≥ 𝛼

              (3.6), 

 
-Exponential 

 

                              𝜇(1′, 𝑡) = 𝜌 + (1 − 𝜌)𝑒−
𝑡

𝛼           (3.7), 
 
 

-Collection4 𝐺(𝑡) = 1 −
(1−𝑒−𝜌)(𝜆+𝛽)

𝜆𝑒−𝜌(𝑒(𝜆+𝛽)𝑡−1)+𝜆
, 𝑡 ≥ 0, −𝜆 ≤ 𝛽 ≤

𝜆

𝑒𝜌−1
  

 
 

    𝜇(1′𝑡) =
(1−𝑒−𝜌)(𝜆+𝛽)

𝜆𝑒−𝜌(𝑒(𝜆+𝛽)𝑡−1)+𝜆
+ 𝜌 − 𝑙𝑛(1 + (𝑒𝜌 − 1)𝑒−(𝜆+𝛽)𝑡)     (3.8). 

 
 

4 For this collection of service time distributions, the busy period is exponentially distributed with an atom at the origin, see [14]:       
                

                                                 𝐵𝛽(𝑡) = 1 −
𝜆+𝛽

𝜆
(1 − 𝑒−𝜌)𝑒−𝑒−𝜌(𝜆+𝛽)𝑡, 𝑡 ≥ 0, −𝜆 ≤ 𝛽 ≤

𝜆

𝑒𝜌−1
      (3.9). 

 



 

 

 
4. 𝑽(𝟏′, 𝒕) STUDY AS TIME FUNCTION 

 
Proposition 4.1 
 
If 𝐺(𝑡) < 1, 𝑡 > 0, continuous and differentiable and  

 

                                      ℎ(𝑡) ≥
𝜆

2𝐺(𝑡)−1
           (4.1) 

 
𝑉(1′, 𝑡) is non-decreasing. 
 
Dem.: 
 
It is enough to note, according to (1.8), that:  

 
𝑑

𝑑𝑡
𝑉(1′, 𝑡) = 𝜆(1 − 𝐺(𝑡)) + 𝑔(𝑡) − 2𝐺(𝑡)𝑔(𝑡) = 𝜆(1 − 𝐺(𝑡)) + 𝑔(𝑡)(1 − 2𝐺(𝑡)) = 

 
(1 − 𝐺(𝑡))(ℎ(𝑡)(1 − 2𝐺(𝑡)) + 𝜆), 

 
from where it follows the condition (4.1). □ 

 
Obs: 

-Obviously 2𝐺(𝑡) − 1 > 0 ⇔ 𝐺(𝑡) >
1

2
, 𝑡 > 0. If this does not happen the condition 

(4.1) is trivial. 
-Epidemic:If the rate at which people get cured, the rate at which they fall sick and the 
sickness duration distribution function hold (4.1) the variance of the number of sick 
people is a non- decreasing time function. 
-Unemployment: If the rate at which the workers lose their jobs, the rate at which 
they turn employees and the unemployment duration distribution function hold (4.1) 
the variance of the number of sick people is a non- decreasing time function. 
-𝑙𝑖𝑚
𝑡→∞

𝑉(1′, 𝑡) = 𝜌. 

-Epidemic: If an epidemic lasts a very long time, the number of sick people variance 
will be closer and closer from the traffic intensity. 
- Unemployment: If an unemployment period lasts a very long time, the mean number 
of unemployed people will be closer and closer from the traffic intensity. 
-Epidemic: If an epidemic lasts a very long time the number of sic people is distributed 
according to a Poisson distribution with mean ρ, see (1.6). 

• Unemployment: If an unemployment period lasts a very long time the mean number 

of unemployed people is Poisson distributed with mean ρ, see (1.6). 
 

Defining 𝜁(∙) as 𝜁(𝑡) = ℎ(𝑡) −
𝜆

2𝐺(𝑡)−1
, (4.1) is equivalent to ℎ(𝑡) −

𝜆

2𝐺(𝑡)−1
≥ 0,                   

it results the following differential equation in 𝐺(∙): 
 



 

 

𝑑𝐺(𝑡)

𝑑𝑡
=  (𝜁(𝑡) −

𝜆

2𝐺(𝑡) − 1
) (1 − 𝐺(𝑡)), 𝑡 ≥ 0             (4.2). 

 
Note that  𝐺(𝑡) = 1, 𝑡 ≥ 0  is a trivial solution of equation (4.2). And, for this case, it is  
easy to check after (1.8) that 𝑉(1′, 𝑡) = 0, 𝑡 ≥ 0. 
 
Proposition 4.2: 
 

If  𝜁(𝑡) −
𝜆

2𝐺(𝑡)−1
= 𝑘(const. ) > 0, the solution of equation (4.2) is 

 

                                      𝐺(𝑡) = 1 − (1 − 𝐺(0))𝑒−𝑘𝑡, 𝑡 ≥ 0         (4.3) 

 
and   
 

                                          𝜁(𝑡) =
𝜆

2(1−𝐺(0))𝑒−𝐾𝑡−1
+ 𝑘            (4.4).                            

 
In consequence 
 

𝑉(1′, 𝑡) =
𝜆

𝑘
(1 − 𝐺(0))(1 − 𝑒−𝑘𝑡) + (1 − 𝐺(0)𝑒−𝑘𝑡 − (1 − 𝐺(0)2𝑒−2𝑘𝑡   (4.5). □ 

 
Obs.: 
 

-After (4.5) is concluded that lim
𝑡→∞

𝑉(1′, 𝑡) =
𝜆

𝑘
(1 − 𝐺(0)) = 𝜌. 

 

-With 𝑘 = 0, 𝜁(𝑡) =
𝜆

2𝐺(𝑡)−1
 and  𝐺(𝑡) = 1, 𝑡 ≥ 0  is also the solution of (4.2), resulting  

 
then that 𝜁(𝑡) = −𝜆 and 𝑉(1′, 𝑡) = 0, 𝑡 ≥ 0. 
 
For 𝜁(𝑡) = 0 the following proposition holds: 
 
Proposition 4.3: 
 
If 𝐺(. ) is implicitly defined as 

 

                                 
1−𝐺(𝑡)

1−𝐺(0)
𝑒2(𝐺(𝑡)−𝐺(0)) = 𝑒−𝜆𝑡, 𝑡 ≥ 0                      (4.6) 

 
𝑉(1′, 𝑡) = 𝜌, 𝑡 ≥ 0. □ 

 
Obs.: 
 
-The density associated to (4.6) is  

 

                                  𝑔(𝑡) = −
𝜆𝑒−𝜆𝑡(1−𝐺(0))

(1−2𝐺(𝑡))𝑒2(𝐺(𝑡)−𝐺(0))
                         (4.7) 



 

 

 
-After (4.7), denoting 𝑆 the associated random variable, it is easy to see that, with 

𝐺(0) >
1

2
 , 

 

               
(1−𝐺(0))𝑛!𝑒−2(1−𝐺(0))

𝜆𝑛 ≤ 𝛦[𝑆𝑛] ≤
(1−𝐺(0))𝑛!

(2𝐺(0)−1)𝜆𝑛 , 𝑛 = 1,2, . ..     (4.8).    

 
 
Exemplifying for some service time distribution 
 
-Deterministic with value 𝛼 

 

                                           𝑉(1′, 𝑡) = {
𝜆𝑡, 𝑡 < 𝛼

𝜌, 𝑡 ≥ 𝛼
            (4.9), 

-Exponential 
 

                                                   𝑉(1′, 𝑡) = 𝜌 (1 − 𝑒−𝑡
𝛼⁄ ) + 𝑒−

𝑡

𝜆 + 𝑒−
2𝑡

𝛼             (4.10), 

 
 

 -𝐺(𝑡) = 1 −
(1−𝑒−𝜌)(𝜆+𝛽)

𝜆𝑒−𝜌(𝑒(𝜆+𝛽)𝑡−1)+𝜆
, 𝑡 ≥ 0, −𝜆 ≤ 𝛽 ≤

𝜆

𝑒𝜌−1
 

 
 

 

              𝑉(1′, 𝑡) = 𝜌 − 𝑙𝑛(1 + (𝑒𝜌 − 1)𝑒−(𝜆+𝛽)𝑡) +
(1−𝑒−𝜌)(𝜆+𝛽)

𝜆𝑒−𝜌(𝑒(𝜆+𝛽)𝑡−1)+𝜆
+ 

 
 

                                           (
(1−𝑒−𝜌)(𝜆+𝛽)

𝜆𝑒−𝜌(𝑒(𝜆+𝛽)𝑡−1)+𝜆
)

2

                               (4.11). 

                   
 

5. CONCLUSIONS 
 
With very simple probabilistic reasoning, the 𝑀|𝐺|∞ transient probabilities, being the 
time origin the beginning of a busy period instant, were determined. It is enough to 
condition to the service lasting of the first costumer. 
It was possible to study μ (1´, t) and V (1´, t), as time functions, playing here an 
important role the service time hazard rate function. 
This model may be applied in modeling real situations being the difficulties the usual 
ones when theoretical models are applied to real-life situations. In this work we 
considered epidemics and unemployment. Note that here the service time hazard rate 
function reflects, and depends, on the measures taken to mitigate these situations, 
such as: 
-Epidemics 
Vaccination, medical care, decisions about confinements, ... 
-Unemployment 



 

 

Government support, investments, training, ... 
Finally note that, in epidemic application, the model is note applicable to contagious 
epidemics. In this situation it would be more realistic to consider arrival rates not 
constant, being not possible to have results as interesting and useful as those 
presented in this work, or else an appropriate average arrival rate. 
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