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ABSTRACT Augmented reality systems in dynamic environments still struggle with the challenge of
what information should be displayed at which time. This work focuses on the case of Mobile Pervasive
Augmented Reality Systems (MPARS) and their use in dynamic environments such as outdoor sports. An
open-source proof-of-concept for a machine learning-based architecture to implement an MPARS on a
specific use case of outdoor usage in a sports environment is presented. The new design for the system relies
on heuristics that combine technology acceptance indicators, sensing, and information volume criteria to
show the user a contextually meaningful subset of information. The information to the user is displayed in
close-to-real-time, and the system can adjust and customise to prevent information overload. A first set of
experiments was carried out based on end-user preferences to show the feasibility of the proposed system.
To provide meaningful feedback, i.e., the right information when needed or wanted, to sports users on their
MPARS experience, a predictive model was trained and shown to be able to estimate when information
should be displayed to the user.

INDEX TERMS Mobile Pervasive Augmented Reality System, Machine Learning, Sensing, Context-
awareness, Information Modeler Learning, Adaptable system.

. INTRODUCTION

UGMENTED Reality (AR) is a technology that inte-

grates images, information (e.g., situational informa-
tion), and other types of digital objects. AR products are
now being applied in several areas, like sports, games, health,
industry, culture, tourism, and education [1] [2] [3]. Over
two decades, AR systems evolved from dedicated devices
or personal computers to be used on heterogeneous mobile
platforms, such as desktops, tablets, smartphones, and note-
books [4]. In fact, Cao et al. advocate that mobile augmented
reality systems (MARS) have to be adaptable to address
several on-demand user interactions with various IoT devices
in smart environments and for different application areas [3].

Meeting the requirements of technology adoption for AR,
such as customisation, adaptability, and familiarity (i.e., end-
user experience), is made possible by the intelligent data
generated by appropriate devices such as smart glasses,
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smartphones, or other AR devices. A key aspect of ensuring
that AR becomes ubiquitous is making it human-centric. This
requires the underlying technology to add value in terms of
Quality of Experience (QoE) [5] [6].

While AR holds great promise for enhancing our percep-
tions and helping us to see, hear, and feel our environment in
new and enriching ways, there are still issues to overcome.
These include a better acceptance of the technology and
the ability to achieve a higher QoE. Some of the current
challenges are (i) how to properly calibrate and adjust the
data, (ii) how to take user preferences into account when
providing information, and (iii) how to measure the amount
of information to be displayed [7].

Another relevant point to be made for successful technol-
ogy adoption and useful use of AR is the question of what
information to display and when. This relates to the concept
of information overload, which here means that a user is
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“receiving too much information” [8]. These issues become
critical for the integration of MPARS in mobile devices
and, in particular, for mobile outdoor activities, where the
adoption of AR is expected to grow at a higher rate [3] [9].

The motivation behind this work is to provide a better
Quality of Experience (QoE) to the user through the auto-
mated and continuous integration of user preferences into
the AR system. To this end, this work focuses on Mobile
Pervasive Augmented Reality Systems (MPARS) [10],1.e., AR
systems that are carried by the user and that are capable of
adapting the information to be displayed over time and space,
based on situational and contextual awareness.

To achieve such a level of automation, an MPARS should
consider user preferences, context awareness, and also sit-
uational awareness. This enables an MPARS to provide
meaningful feedback to end-users in different environments,
by displaying the right information at the right time, thus
avoiding information overload. To this end, a new archi-
tecture is proposed and tested using a specific use case of
outdoor sports environment usage. Previously, an MPARS
was defined as an information manager for specific sports
activities, with an automatic activity recognizer in outdoor
environments [10] [11], but now the new MPARS Architec-
ture has a complement and help of machine learning, capable
of persistent adaptation of information for each specific user
within the same sports activity. See Figure 1 with an original
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FIGURE 1: Representation of the original MPARS diagram
and its subcomponents.

The main contributions of the work are two-fold:

« A functional description of a novel MPARS architecture
capable of adapting its feedback to the user context in
outdoor environments.

« A context assessment model based on real user prefe-
rences, which can be used as a basis to assist future
work to define adaptation variables based on realistic
user preferences.

To address issues relating to the increase of QoE expec-
tations by reducing information overload in an AR for out-
door activities, this work focuses on the following research
questions: (i) How can QoE be improved by automatically
adjusting the information displayed/suggested to the user in
real time? and (ii) What is the feasibility of using a Machine
Learning (ML) algorithm to predict and adjust meaningful
feedback?

Research into these issues led to an improved AR-
adjustable MPARS architecture, which is discussed in this
paper and validated through an experimental ML approach
involving field tests combined with end-user surveys.

The rest of the paper is organised as follows. Section II
addresses the related applicability and needs of MPARS
applications. Section III presents the MPARS architecture.
Section IV provides examples of scenarios where MPARS
can be used. Section V presents the performance evaluation
with measurements, machine learning, and an analysis of the
results. Finally, Section VI presents the conclusions high-
lighting directions for future work.

Il. RELATED WORK

On AR in sports

We start by looking at how AR is transforming fan engage-
ment and experience in sports, highlighting AR’s ubiquity,
technological challenges, and applications on personal de-
vices. The tracking and interaction in AR are analyzed, high-
lighting mobile sensors for activity recognition. However,
information overload in AR impacts the user experience.
Studies suggest that ML can filter and personalize data, but
adaptation to user preferences is still limited. Sawan et al.
provide a concise and systematic literature review, analysing
how mixed reality and AR are providing a growing number of
applications in the world of sport. The authors believe that the
introduction of this technology in sports can implement and
greatly improve fan engagement strategies and experience in
the world of e-sports [12].

Kim et al. discuss concepts of AR applications and high-
light the need for technology efficiency [13]. They describe
a variety of new AR applications and the issues that arise
in the development of these basic technologies and applica-
tions. AR is present today on most personal devices, such as
smartphones and tablets, and thus it is ubiquitous [14] [13].
A representative case of ubiquity is the continuous display of
images and other types of information superimposed on the
real environment [13].

On the interplay of AR and sensing

Billinghurst et al. explore some areas of AR, such as track-
ing and display, development tools, input and interaction,
and social acceptance. A requirement of AR technology
for virtual image superimposition on the real view is the
existence of a tracking system to locate the user’s point of
view seamlessly blending the real and the virtual images.
Mobile devices for AR, like smartphones and smart glasses,
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present new opportunities for hybrid tracking, as they are
today capable of performing integrated sensing based on a
variety of sensors such as accelerometers, gyroscopes, GPS,
and wireless interfaces, thus resulting in a higher degree of
accuracy in the context of activity recognition [15].

In fact, smartphones today integrate several sensors, of
which the accelerometer is one of the most popular and is
used to detect end-user activities. In a prior work [11], the
authors investigated sensors for data acquisition in outdoor
contexts, finding that good results could be achieved by using
only the accelerometer and GPS for activity recognition in
sports environments. The authors also investigated criteria
for selecting the information to be provided to the user un-
der specific conditions and activities to prevent information
overload. The results show that potential users’ interests in
feedback vary with the type and level of effort of the activity
being performed, and the authors concluded that information
overload is directly related to user speed. Concerning func-
tionalities/actions preferred when in an outdoor activity, users
also expressed preferences varying with the activity [11].

Bayat et al. carried out an experiment with the smart-
phone’s accelerometer sensor to identify human physical
activities, such as walking, running, dancing, etc. The system
used an ML approach for the detection of the activity being
performed and tested several classifiers, each achieving good
performance in recognising the activities [16].

About adaptive machine learning systems

ML techniques are important for predicting future events,
such as sports. Regarding automated feedback, while most
of the work focuses on automatic control loops, some works
relate to adapting feedback information to the user. Schmitt
et al. propose using static decisions based on rules and first-
order logic to define situations in terms of the basic context
but built with ML techniques [17]. The authors recognise that
to provide self-adaptive services, it is necessary to capture
contextual information from sensors and use the collected
information to reason and classify situations [17].

Liu and Li present a study on an intelligent computer-
based sports learning system with predictive control that can
provide feedback and adjust in next to real-time based on
the athlete’s performance to improve training efficiency and
results. The experimental results show that this intelligent
learning system has great potential for application in sports
training and competition, improving athletes’ skill levels
and performance. The system aims to provide information
volume adjustments for efficient feedback to improve sports
training and competition [18].

The work of Stacchio et al. makes an important contribu-
tion to support the need for dynamic interface adjustment in
AR systems to assist users during activities. Suitable for out-
door sports, the authors present Magic AuGmentEd Workout,
a dynamic AR guidance system for outdoor running that
can adapt a workout scenario to a user’s performance and
manage a sequence of different activities: running, sprinting,
bodyweight, and rest. The system follows a workout plan
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and then adjusts its intensity based on the user’s current
performance [19].

Another approach that helps support the need and op-
portunity for dynamic tuning of an MPARS system is the
one proposed by Soltani et al.. The authors reviewed the
current literature and found that using AR provides additional
information and feedback on the learning of sporting skills
can be used to encourage practice, offering supplemental
advantages when compared to other technologies [20].

On Information Overload

While there is a strong focus today on using AR in personal,
pervasive systems, related work regarding information over-
load is scarce. Existing work usually aims to improve image
transmission or the decluttering of objects when information
is transmitted [21] [3] [22].

Information overload is a critical aspect to handle in
the context of QoE improvement and directly relates to
perception. Miller describes the so-called inelastic limit of
human capacity or cognitive ability [23]. If the amount of
information received exceeds certain thresholds, the human
ability to process information quickly degrades [23]. Sawyer
et al. investigate the use of AR in the context of driving [5].
AR can distract drivers, as the results show that messaging
using a Google Glass or a smartphone-based messaging
interface impaired driving compared to driving without mul-
titasking [5]. As explained by Bawden et al., information
overload is currently a major barrier to successful MPARS
adoption. The strategy for providing meaningful information
can go through filtering and removing information noise,
establishing balanced useful information [24]. In this regard,
ML can be a useful tool to adjust the information to be
received so that it is relevant and timely [25] [26].

Concluding remarks

In a nutshell, the use of sensing in AR systems concerns
the integration or classification of aspects related to human
behaviour in different activities. Previous related work pro-
posed using sensing to provide additional information (con-
text) into AR systems to improve QoE and the overall system
performance regarding the system’s main goals. However,
none of the found works considers context awareness, not
just based on information that can be sensed to understand
the activity, but also integrating user preferences, i.e., em-
ploying a user-centric calibration of the system, which may
bring into play the issue of information overload. Activity
recognition in this setting must consider the personalisation
of AR systems to improve QoE. The present work brings
complementarity by (i) using user preferences to provide
finer customisation, (ii) proposing an ML-based solution to
improve the type and volume of information that should
be provided to the user based on external conditions, the
specific activity being performed, and (iii) encompassing and
adjusting to the user’s preferences, in order to diminish as
much as possible the occurrence of information overload and
providing the right information at the right time.
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The gap in research lies in the lack of adaptation of AR
to individual user preferences. Although there are studies on
ML engagement, tracking, and information filtering, there is
still little exploration of dynamic personalization of informa-
tion based on external conditions and user preferences, which
impacts the experience and can lead to cognitive overload.

Ill. MPARS ARCHITECTURE

This section presents a new proposal designed to provide
meaningful feedback, i.e., useful and timely information to
the mobile user in the outdoor activity context. As previously
noted, the system is designed to be adjustable via context and
user preference awareness. To best illustrate the proposal,
a dynamic environment, namely an outdoor sports environ-
ment, is considered. In this environment, the information
provided in the MPARS display must be adapted to the
type of activity in progress and the user’s surroundings, also
considering the user’s preferences.

Users interact with the MPARS by performing specific
actions (e.g., taking photos, filming, calling, messaging, or
using social networks) and by requesting information ele-
ments (e.g., weather, location, biometric counts, and social
information). Therefore, the MPARS requires a set of work-
ing modules to build an adaptive AR layout, as shown in
Figure 2.

In the first step (Data Acquisition), the system acquires
(via sensing and the direct user input) information related to
the user (personal information), contextual data and sensing
data from the available sensors.

The second step (Tech Adoption Variables) concerns
the data processing aspects. Namely, technology adoption
metrics derived from authors’ previous work [11] are used
to calibrate a set of weights or technology adoption vari-
ables. Currently, the proposed proof-of-concept considers
the following metric categories: convenience (contributing
to expectation, experience), adjustable system to avoid infor-
mation overload, and familiarity contributing to expectation,
experience, auto adjustment.

The third step (Context Adaptation Weighting) consists
of calibrating the weights used to adapt the contextual in-
formation to be provided to the user, to establish a rela-
tionship between the contextual information and the user’s
preferences for the information to be displayed, using the
acceptance weights derived from the previous step. Data
relating to each type of information (weather, location, social
information, or biometric signal counts) to be displayed
on the MPARS screen are aggregated into elements. Each
element is then weighted in terms of preference to provide a
more fine-grained QoE and avoid information overload. For
example, Comfort includes several weather elements such as
ambient temperature, wind speed, weather outlook, relative
humidity, and barometric pressure, as well as heart rate and
calories burned. Data aggregation is therefore performed on
each element based on a proposed weighting to reduce the
information to be transmitted and displayed. The different
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weighting adjustments for the acceptance variables are based
on the results obtained in [11] and are combined for the
initial configuration of the layout shown in the experimental
application, as seen in Figure 2 at the bottom left.

For instance, previously expressed preferences can be con-
verted into percentages, giving an initial preference weight
of 30,45% for showing geographic information elements,
24,57% for biometrical, 26,30% for weather, and 18, 68%
for social information. Geographical, demographic and per-
sonal data, as well as time of use, will therefore contribute to
an initial setup that can be further enhanced through real-time
dynamic tuning, such as geolocation for Points of Interest
(PoD).

The fourth step (Learning and Inference) ensures that
the system can provide meaningful feedback to the user.
This step involves two main phases: (i) activity tracking
detection, which identifies the sporting activity taking place
at the moment, and (ii) inference, which decides what type
of information is most relevant to provide to the user at
each moment. The ML modules (i) and (ii) help to feed the
output with meaningful information that is reflected in the
final layout by training a model on the data of preferences
for classes of information elements given by a dataset that
can be updated with the user’s latest preferences (Final Cal-
ibration). After using (i) to determine what activity is being
performed, module (ii) infers from different classes what
type of feedback is most appropriate for the user’s current
state: "Alerts", "Advice/Suggestions", "Points of Interest" or
"Encouraging Goals".

The use of multiple sensors for activity tracking, particu-
larly in the context of outdoor sports, is an important con-
sideration. Today, most smart systems, gadgets, [oT devices
and smartphones have internal sensors that can be used to
recognise the required sports activity in a non-intrusive way,
generating smart data [10] [27]. The main sensors used for
these types of activities are a) accelerometer, b) GPS, c) gy-
roscope, and d) other sensors such as compass, microphone,
camera, proximity sensor, light sensor, temperature sensor,
pressure sensor [28]. Mobile sensing should be reduced to
a few sensors to minimise the device’s power consumption.
Ideally, no more than two sensors should be used [29] [30].

The fifth and final step (Customized Feedback) involves
feedback to the system when the user validates the active
information elements received in the visible layout. In this
way, customisation occurs by having the user validate the
information presented in the dynamic layout according to
their preferences simply by answering ’yes’ or 'no’. This is
done more frequently at the beginning of the user’s interac-
tion with the system and less frequently over time. This in-
teraction helps to tailor the MPARS to each user, calibrating
the weights of the information elements and tuning the ML
module to approximate the ideal for each user, i.e., improving
the QoE of the MPARS usage. An example of the changes
in the information displayed after this adaptive AR layout
process can be observed in Figure 3 (previous layout) versus
Figure 4 (after incorporating the user’s preferences).
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FIGURE 4: Representation in the final AR layout.

IV. MPARS ILLUSTRATIVE USE-CASES

The proposed MPARS architecture (rf. to Section III) has
been devised considering the requirements of a use-case
based on outdoor usage. In this scenario, a mobile user
performs activities and may require continuous adjustment
of information received based on the surroundings, personal
status, and user preferences. It should be highlighted that
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the choice of scenario can be applied to different domains,
like outdoor sports, smart cities, manufacturing, and health,
among others. Next, the usage of the MPARS architecture
proposal in the previous section is illustrated via three use
cases.

The first scenario relates to a smart city application and
gaming-on-the-go. Bob, a 50-year-old user, is carrying his
smartphone holding an MPARS gaming application, for
which Bob gets continuous rewards based on the level of
interaction with the game. The interaction requires Bob to
provide regular updates on the city’s historical path, e.g.,
historical landmarks and sightseeing. The MPARS directs
Bob to perform specific tasks (like walking towards a specific
area to obtain more points). Bob’s surroundings (e.g., out-
doors), geo-location, and even walking speed are some of the
contextual aspects being considered. Based on these aspects,
the MPARS adapts the information to be displayed to Bob’s
device layout. For instance, if Bob is sitting in a coffee shop,
the MPARS may ask for more information to be sent, and the
type of information (e.g., a simple click or sending a photo)
may change.

A second scenario, focused on health, targets well-being
awareness. Anne is on her daily run and carries an MPARS
integrated into her smart glasses. The health MPARS app
provides Anne with the usual fitness information, similar to
several personal gadgets that exist today. The key difference
is that based on situational awareness and sensed information
(such as geo-location), the MPARS may suggest alternative
routes to reach her goals or allow Anne to be more motivated
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to reach her goals based on her interests. The required in-
formation adaptation in this case will be strongly related to
Anne’s interests and also to her context - user behaviour and
specific health condition.

The third example focuses on outdoor sports usage. Martin
is a mountain biker equipped with an MPARS on a smart-
watch. While biking, he interacts with the MPARS via voice
commands. The MPARS replies with specific routes based
on the current location, weather, road conditions, Martin‘s
interests, and heart rate. The type of information provided is
adjusted by Martin‘s measurable physical and surrounding
conditions. The focus is on reducing information based on
situational awareness and user preferences.

The described use cases help explain that the proposed
architecture has been designed to allow its use across dif-
ferent usage scenarios in different outdoor applications. In
the following, a use case focused on outdoor sports activities
has been elected to illustrate the usage of an MPARS, the
feasibility of the proposed system architecture and the power
of user preferences towards information overload reduction.
However, this focus does not undermine the broader scope
of the proposed architecture, which can easily be adapted for
other scenarios such as the ones described in this section.

V. SYSTEM’S FEASIBILITY EVALUATION

In order to establish a proof-of-concept on the viability of
developing the proposed architecture and testing the integra-
tion of user preferences for costumisation and reducing in-
formation overload, a real-world experiment was conducted
based on developed middleware. A simple application was
designed and implemented to run on a smartphone' to pro-
vide the user with an initial layout that displays some AR
elements and supports the user’s ability to request some
common functionalities, like taking a photo, making a phone
call or opening a social media application while on the move.

This allowed the collection of a first set of data expressing
user preferences for receiving several classes of information.

Sports activities performed with the MPARS app involve
dynamic mobility, so sports in static facilities, such as aero-
bics and football, were excluded. Other outdoor sports (such
as swimming, diving, and climbing) were also excluded since
users may be unable to safely interact with a ubiquitous
mobile system (in this case, a mobile phone)?

Figure 5 shows the layout of the middleware developed
with all informational elements. The remaining elements are
functionalities that allow for user interaction (taking photos,
filming, calling, sending messages, and social interaction) or
prototype-related elements.

A. DATA COLLECTION

Measurements using the user’s smartphone sensors were
recorded in a controlled outdoor environment in Lisbon,

IMPARS  Layout:
MPARS_wireframe.pdf
2Demo and data at: https:/github.com/ruilupas/MPARS

https://github.com/ruilupas/MPARS/blob/master/
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FIGURE 5: Middleware layout example. Informative ele-
ments are indicated by the blue boxes, system-related ele-
ments by white boxes, and functional elements by the grey
ones.
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Portugal, between February and September 2022. Outdoor
sporting activities were carried out at different times of the
year, covering all regular seasons in Lisbon, Portugal (winter,
spring, summer, and autumn)? The volunteers performed four
independent activities. Each activity was carried out for two
minutes.

Volunteers installed the application on a smartphone with
the Android operating system and at least 4GB of RAM.
Then they had to enable the app’s permissions and turn on
the GPS. While looking at the information on the smartphone
display, volunteers were also asked to perform at least one
function of their choice (take a photo, make a film, make
a phone call, send a message, or interact on a social net-
work). Finally, each participant was asked to indicate their
preference for receiving an alert, a suggestion (a POI or
advice, for instance), or encouragement to achieve a goal. For
example, if a heart rate higher than a threshold is detected, the
app could provide an alert by displaying a message such as
"Reduce your speed".

One hundred end-users participated in the experiment
using this prototype of MPARS and completed a specially
designed questionnaire after the field test*. The questionnaire
integrates eight questions that range from having experienced
information overload to what users prefer about the (type of)
information that an MPARS application in an outdoor sports
context should convey during the activity. The questions also
include demographic and gender diversity information, and
the duration of the prototype test. The remaining questions
aimed to understand which functionalities were chosen and
to grade the level of importance of the information displayed.
The volunteer should also indicate the frequency of the sport-
ing activity. The participants are volunteers from an academic
community in Lisbon, Portugal, with an average age of 36
years, an average weight of 74 kilograms, and an average

3Data set available at: https://github.com/ruilupas/MPARS/blob/master/
logs_mpars_total.xIsx.

4Questionnaire available at: https:/github.com/ruilupas/MPARS/blob/
master/mpars-questionnaire.pdf
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height of 1.71 meters, displaying a heterogeneous universe in
terms of sexes. The participation was promoted via academic
communities’ mailing lists and online social networks of
Iscte Instituto Universitdrio de Lisboa and University Lusé-
fona, and research centers (ISTAR_ Iscte’, COPELABS®,
and CISUC?). These channels reach the general university
population and are not targeted at any specific discipline.

B. SURVEY RESPONSE ANALYSIS

After collecting all the responses to the questionnaire, a
descriptive and exploratory analysis was carried out. The
percentages of positive responses regarding the prototype
functionalities and of users’ preference towards receiving
several kinds of feedback information are shown in the fol-
lowing figures. In particular, there have been found obvious
differences in the answers originating from volunteers less
than 37 years of age and those remaining, which can be
observed especially in Figures 6, 7, and 9.

By observation of the plot at the right of Figure 6 (Feed-
back), it is clear that the respondents are very receptive to re-
ceiving feedback in almost all existing classes. Nevertheless,
they express that an alert might not be relevant, especially
for the respondents over 36 years of age. In terms of func-
tionalities (plot at the left), the receptiveness varies. While
the main preference is for taking photos (86%), followed by
social media (73%), the remaining functionalities are not as
expressive as the former: sending messages reaches 55% of
preferences, and the less preferred are filming and calling,
whose expressed preferences are below 40%. Interestingly,
the preferences for using functionalities during training are
always lower for users older than 36 than for the youngest

users.
90%
——
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88%
30%
——
3%
I 17%
Advices Alerts

@ Walking Age < 36

Functionalities Feedback

91% 95%
87%

——
3% 94% 95%
92% 4000

| | ||

Suggestions  Places of Goals
Interest

@ Walking Age > 37

95%

73%

86%
—_——
76% 79%
55%
——
o 66%
39% 39%
52% ——
6% 3%
32%
2% I
Photo Film Message

call Social App

8 Walking Age < 36 B Walking Age > 37

FIGURE 6: Walking: preferred functionalities and feedback
information.

However, the walking scenario responses contrast with the
results from other activities results. While at the different
activities, the respondents still prefer to receive informa-
tion about personal goals (92% for biking and 95% for
running and race-walking), the remaining feedback classes

Shttp://istar.iscte-iul.pt/
Shttp://copelabs.ulusofona.pt/
https://www.cisuc.uc.pt/
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preferences vary between the different activities. For exam-
ple, when cycling (Figure 7), places of interest (89%) and
warnings are considered to be very important (88%). The
least preferred feedback information is suggestions (55%)
and advice (42%), which are basically in the same category
of informational content. In terms of functionalities, calling
and recording are the most preferred, with 80% and 69%
respectively, while the remaining functionalities only reach
about 10% preferences each.

Functionalities Feedback

92%
89%

—
80% 91%
——
85% 83% 88%
5% 74%
55%
59% —
2% 56%
54%
a9%
36%
13%
10% 9%
4%
T 4% 12%
i ‘.
cal Places of

Photo Film

96%
29%

Message Social App Advices Alerts Suggestions Goals

aces of
Interest

 Biking Age < 36 B Biking Age > 37 B Biking Age < 36 ® Biking Age > 37

FIGURE 7: Biking: preferred functionalities and feedback
information.

For the race-walking activity, respondents ignore all func-
tionalities except for the call functionality. Even then, they
only reach 53% (Figure 8). Users also express that they
are most interested in receiving information about goals,
alerts, and suggestions with 95%, 89%, and 88% respectively.
Running presents a preference scenario very similar to race-
walking, but with a significant decrease in receiving sug-
gestions, reaching only 55% of user preferences (Figure 9),
while alerts are perceived as more relevant (92%).

Functionalities Feedback

95%

89% 88% 98%

90% 8o%  8s% 89%

53%
——
57%
49%
38%
3%
a8 3% %
—
13% 27%
—_— 10% 24%
W T TP
12%
11% 9% % o
i n e =
. --

Photo Film call Message  Social App Advices Alerts Suggestions  Places of Goals
Interest

@ Race-Walking Age < 36 B Race-Walking Age 237 @ Race-Walking Age < 36 B Race-Walking Age > 37

FIGURE 8: Race-walking: preferred functionalities and feed-
back information.

The higher the intensity of the physical effort, the fewer
users care about receiving optional information. In this case,
users prefer to receive information about targets (almost 95%
of preferences) and warnings (about 90%). It is also clear
that age influences the preferences expressed for the different
information to be received for each activity, although more
so for some sports (such as cycling) than others.
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FIGURE 9: Running: preferred functionalities and feedback
information.

C. ADAPTIVE FEEDBACK RESPONSE MODULE
EVALUATION

The answers to the survey show that preferences for mean-
ingful feedback vary with the activity being performed and
are influenced by the age of the practitioner. Furthermore,
the expressiveness of preferences may also depend on the
location where the activity is performed or other contextual
factors. It is therefore important to understand whether the
proposed MPARS system, fed with contextual information
and end-user expressed preferences, can successfully adapt
the information in the layout. The idea is to provide the
user with some type of information — suggestion, advice,
alert — in a way that is adjusted in time and space, to the
situation and context of the user. As such, a proof-of-concept
has been developed for testing the viability of the proposed
MPARS architecture adaptive feedback module where, once
the activity being performed is detected, the opportunity for
giving a certain type of feedback to the user is decided by an
ML module trained on the feedback preferences data set.

Using the data collected with the questionnaire, selected
classification methods have been tested with the aim to under-
stand their accuracy in terms of determining which feedback
information should be used in a given context and at a given
time. Simple tests of the predictive power of the system were
carried out. This was done using the data collected in the field
test described in Subsection V-A on preferred information
feedback during each activity.

However, even with 100 participants testing the system,
the data obtained resulted in very fine-grained data and small
data sets. The original data collected consisted of 2,401
logs for each outdoor sports activity, with 24 logs per user
collected every 5 seconds, for a total of 9,604 logs. To
better understand the behaviour, user logs were concatenated
into 30-second observations: based on 4 logs per user, the
previous 5-second logs were logged into a 30-second log to
get the accumulated trend of logs of user interactions. This
gives a total of 772 logs of real data observations (a reduction
of the original 9, 604 logs).

Based on the original 772 logs, a second synthetic data set
containing in total of 1.632 logs has been generated. Hence,
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the synthetic data set consisted of 2.404 logs, that is, 601
logs per sporting activity. This means that, for each one of
the real data observations, four new synthetic instances have
been created 5.

Synthetic data was created using random functions, such
as the Microsoft Excel RANDBETWEEN() function, and data
analysis techniques to create systematic samples. For exam-
ple, when creating a new instance from an existing one, a new
data age value was created by imputing a random number
generated in the range [y — 5, y + 5], where y is the real data
instance value. Similarly, for temperature, a random value
was generated in the range +5 degrees Celsius, and for wind
speed, the new value was drawn from +10 km/h. Relative
humidity and air pressure depend on the weather forecast
(clear sky, clouds, rain). Thus, the last two were created
conditionally according to the weather outlook previously
drawn (e.g. for a clear sky, lower relative humidity and higher
air pressure should be drawn).

Table 1 shows the real and mixed (real + synthetic) data
distributions of users’ preferences for features and feedback
information. Note that the final preference distributions are
slightly different from the real data distributions because
the synthetic data was drawn uniformly using a predefined
randomisation function.

To understand the predictive power of the data to decide on
meaningful feedback, several experiments were conducted
with models trained on a dataset consisting of the concate-
nation of real and synthetic data for all the different outdoor
sports activities, using the Orange Data Mining tool’

It is assumed that a specific activity detection technique
has already established the activity being performed. For
the final adjustment, the system will rely on trained models
to decide if any type of meaningful information should be
displayed in the AR layout. As a proof-of-concept, the results
obtained by fixing Biking as the activity being performed
and using a predictive model trained on a binary feedback
option target, i.e., one of the expressions of preferences
for feedback: either Advices, Alerts, Suggestions, Interesting
Places, or Goals are considered.

The mixed dataset (real data plus synthetic data) con-
sisting of 601 (mixed) data instances corresponding to the
cycling activity was uploaded into an Orange workflow. The
dataset consists of 20 features with information on personal
attributes (age, sex, height, and weight), biometric attributes
representing measurements during the activity (such as heart
rate, calorie consumption, steps), speed (km/h), distance
traveled (m), and weather conditions (ambient temperature
(hPa), wind speed (km/h), as well as weather outlook (clear,
some clouds, cloudy, rain, relative humidity), and binary
expressions of preferences (true or false) for Advice, Alerts,
Suggestions, Interesting Places and Goals. Each data point is
also marked as real or synthetic.

8Data available at: https://iscteiul365-my.sharepoint.
com/:x:/g/personal/rmspl_iscte-iul_pt/EbOkS9QRkalLn_
qTNv4Z61ABIn--iC2K3ufVgU6HKudbmw?e=DzBIMT

9 https://orangedatamining.com/
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TABLE 1: Comparison of distributions for preferred feedback between real data and mixed data (real + synthetic) by age.

Activity Age Advices Alerts Suggestions POIL Goals
Real | Mixed | Real | Mixed | Real | Mixed | Real | Mixed | Real | Mixed
Walking <36 0.92 0.82 0.43 0.41 0.93 0.88 0.92 0.95 0.94 1.00
> 37 0.88 0.89 0.17 0.17 0.82 0.70 0.90 0.89 0.95 0.99
Race- <36 0.38 0.25 0.90 0.85 0.88 0.86 0.27 0.27 0.98 1.00
Walking > 37 0.38 0.29 0.89 0.86 0.89 0.84 0.24 0.19 0.92 0.97
Running <36 0.31 0.22 0.90 0.86 0.56 0.38 0.28 0.29 0.91 0.99
>37 0.31 0.20 0.94 0.97 0.54 0.35 0.24 0.38 0.97 1.00
Biking <36 0.49 0.30 0.83 0.79 0.56 0.48 0.88 0.86 0.89 0.84
> 37 0.36 0.23 0.92 0.77 0.54 0.47 0.91 1.00 0.96 1.00
Average preferences 0.50 0.40 0.75 0.71 0.72 0.62 0.58 0.60 0.94 0.97

500 469
450
400
350
Z 300
g
$ 250
g
& 200
150 132

100
50
0

FIGURE 10: Biking activity dataset: distribution of the pre-
ferences for the binary target Alerts.

m FALSE
TRUE

The first experiment involved predicting whether an alert
would be issued (true) or not (false) for a new data instance,
so the target feature will be Alerts. Therefore, a hold-out set
was randomly sampled from the previously described dataset
by sampling a small portion of each target class (approxi-
mately 10%). It should be noted that this is an unbalanced
classification problem since the distribution of preferences in
the examples for the feature Alerts consists of 132 negative
observations (false labels) and 469 true labels (Figure 10).
Consequently, the hold-out sample consists of 61 instances,
of which 46 are true labels and 15 are not. A more balanced
dataset has been selected for training. The true label class was
randomly sampled and contributed 208 observations, which
were concatenated with the 117 false label observations to
create a training dataset containing 325 instances.

In a recent work [31], the authors’ findings suggest that
personalisation is most effective when applied with tradi-
tional ML techniques rather than deep learning ones, which
supports our proposal to use an ML approach for personalisa-
tion. Thus, several ML algorithms were used to train models
using this more balanced dataset and most of the features
described above. Unused features were: the binary indication
of whether it was a real or synthetic data point, Outdoor
Activity, the remaining feedback-giving options (Goals, In-
teresting Places, Advice, and Suggestions), and the attributes
Sex, Heart Rate, and Footsteps. The latter is due to the
fact that the activity analysed is cycling, and, of course, the
number of steps is usually zero. On the other hand, the sex
of the user was not used because the distribution of the target
values is very similar between the sexes. Finally, heart rate
was not considered because it is consistent throughout the
set.

The models have been tested using the hold-out instances.

VOLUME 1, 2023

TABLE 2: Models’ evaluation using usual metrics averaged
over both classes: AUC (area under the curve), CA (classifi-
cation accuracy), F1 (Fl1-score), Prec (precision), Recall, and
MCC (Matthews correlation coefficient).

Model AUC CA F1 Prec | Recall | MCC
Gradient Boosting 0.981 | 093 | 0.94 | 0.94 0.93 0.83
kNN 093 | 0.85 | 0.86 | 0.89 0.85 0.68
Tree 0.83 | 0.82 | 0.83 | 0.85 0.82 0.57
Random Forest 0.84 0.79 | 0.79 | 0.80 0.79 0.47
Logistic Regression 0.62 0.69 | 0.70 | 0.72 0.69 0.25
Naive Bayes 0.65 | 0.66 | 0.68 | 0.74 0.66 0.28

Overall, they have achieved good performance, as can be seen
in Table 2. The best performance is achieved by a scikit-
learn [32] Gradient Boosting '° model, which took 0.105
seconds to train its model and 0.004 seconds to test. The
confusion matrix in Figure 11 shows that the performance is
good, not only in terms of accuracy but especially because of
a very interesting balance between precision and recall, both
above 93%.

Predicted
false true }
Actual false 933% 6.7% 15
true 65% 93.5% 46
b3 17 44 61

FIGURE 11: Confusion matrix resulting from the test of the
model Gradient Boosting.

Notably, the second best model is the 5-kNN model, whose
confusion matrix is shown in Figure 12. Compared with
Gradient Boosting, the kNN model loses sensitivity, increas-
ing the number of false negatives. Nevertheless, the model
correctly predicts the true label in more than 82% of the
cases.

The good performance of KNN was an interesting result.
Since this technique is very light in terms of retraining the
model with new labelled examples, it is suitable for the
MPARS implementation, where user feedback is used for
system adaptation and tuning. The MPARS proposed here
relies on the computational power of the underlying device

10https://orangedatamining.com/widget-catalog/model/gradientboosting/
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Predicted
false true 3
Actual false 933% 6.7% 15
true 174 % 826 % 46
)3 22 39 61

FIGURE 12: Confusion matrix resulting from the test of the
model 5-kNN.

for the continuous adaptation of the AR layout, so the easier
the retraining of the ML model, the better. In this sense, Naive
Bayes would be preferable, but its performance in this test is
quite inferior.

These are very simple experiments where no special prepa-
ration was used to train the models, and they demonstrate
the feasibility of the MPARS system proposed in Section III,
where models trained on data without any special prepa-
ration and preprocessing show good performance in terms
of reducing information overload. In fact, the results of the
models Gradient Boosting and KNN (Figures 11 and 12,
respectively) are quite accurate for both true positive and
true negative hits but are particularly robust for true negative
results (over 93%). This suggests the feasibility of a working
MPARS prototype capable of real-time adaptation based on
expressed user preferences and ML techniques.

VI. CONCLUSIONS

This work proposes a first architectural framework for the
implementation of a mobile pervasive augmented reality
system or MPARS specifically designed for dynamic out-
door environments involving sports activities, taking into
account technology acceptance indicators derived from end-
users. The work also provides a proof-of-concept for the
feasibility of the proposed MPARS prototype architecture,
which is capable of real-time adaptation based on a collected
sample of end-user preferences and volume of information
criteria indicators to allow adaptation of the system and avoid
information overload in the augmented reality display. The
indicators considered in this work are based on geographical,
meteorological, biometric and social information. Together
with personal and biometric data, these elements work in a
real-time adaptation system to adjust the volume of infor-
mation and reduce information overload to provide the right
information at the right time, thus improving end-user QoE
in AR sports environments.

From the analysis of the questionnaire obtained after a field
test, it is clear that aspects such as age or activity impact
the interest in getting specific information. Speed, integrally
linked with the activity, is, naturally, an additional factor of
impact in information preferences, which is directly related
to the user’s speed, as users feel more overloaded when per-
forming dynamic activities such as running and cycling than
when performing less dynamic activities such as walking.
The higher the intensity of the physical effort, the lower
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the intention to receive optional information. Furthermore,
on average, the expressed preferences tend towards receiving
information on personal Goals (94%), Suggestions (close to
81%) and Alerts such as weather or route conditions (close to
75% of preferences), indicating that this information should
be prioritised.

The MPARS framework proposed here is that of a context-
aware system both in terms of its user and in terms of
the surrounding environment and activity. All variables that
determine the information elements of the layout are to be
adapted both from data obtained via the end user’s device
(e.g., accelerometer) and from other online sources (e.g.,
weather data). Calibration of the user with personal data
(such as age and height) is also essential to better adapt the
system to the user. The final calibration of the AR layout is
determined by an intelligent module based on the device’s
sensors, the determination of the activity being performed,
the end user’s personal calibration, and trained models for
controlling the information elements to be displayed at any
given moment.

The findings of this work open opportunities for future
work in the field of real user preferences, serving as a basis
for realistically approximating preferences for outdoor sports
activities for a greater diversity of users. It will also be
relevant to better explore the possibility of encouraging goals
by introducing a gamification component, to help users fulfill
sporting objectives, especially when competing with other
users.

As usual, this work has its limitations. In order to imple-
ment a functional prototype, a more operational application
needs to be developed and distributed to a larger cohort of
volunteers to be used over a wider range and duration of
sporting activity types and to allow a more in-depth investiga-
tion of the system’s performance. Furthermore, comparative
investigations should be implemented to validate the usability
of the proposed MPARS vs. a solution that does not support
adaptation and collection of user feedback. This research
should also address the use of device resources in terms of
energy and computational load. The implementation of ML
modules presents its challenges. Unlike activity detection,
where a large number of approaches already exist, the same
cannot be said for automated adaptation systems. Especially
in the present case, where the feedback of information con-
cerns various possibilities for providing informational ele-
ments concurrently, a deeper and comprehensive investiga-
tion is needed, integrating all possible feedback elements
and a measure for the degree of information overload experi-
enced.
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