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Resumo

Num cenario interconectado atual, a ciberseguranca representa um pilar indispensavel
para o avancgo tecnoldgico, enquanto as ameagas cibernéticas evoluem na mesma veloci-
dade que os sistemas que visam comprometer. O surgimento de vetores de ataque cada vez
mais sofisticados desafia os paradigmas tradicionais de seguranca, demandando aborda-
gens inovadoras para deteccao e mitigagao de ameacgas. Dentre essas ameacas, destacam-se
os ataques direcionados as comunicagoes sem fio, capazes de comprometer infraestruturas
criticas e servigos essenciais em diversos setores.

Com o aumento da complexidade das redes de comunicagao, a Inteligéncia Artifi-
cial (TA)) e o aprendizado de maquina emergem como ferramentas essenciais para a analise
de seguranca e a identificacao de ameacas. Essas tecnologias permitem a implementacao
de mecanismos de monitorizagao e resposta adaptativa em tempo real, fundamentais para
a protegao de sistemas sem fio modernos. Contudo, a implementacao de medidas de segu-
ranca eficazes, sem comprometer a eficiéncia operacional, apresenta desafios significativos,
especialmente em ambientes com recursos limitados.

A integragao da tecnologia quinta geragao de comunicagoes méveis (5G) em Veiculos
Aéreos Nio Tripulados (VANTS) exemplifica esses desafios, ampliando as capacidades
dessas plataformas por meio de comunicacoes mais rapidas, baixa laténcia e elevada fi-
abilidade. Apesar dessas vantagens, a dependéncia de comunicacoes sem fio avancadas
torna os [VANTSY vulnerdveis a ataques de interferéncia (jamming), uma ameaga critica
que pode comprometer suas operacoes. A interferéncia ocorre quando sinais sao emitidos
com o objetivo de bloquear ou degradar os links de controlo e dados dos VANTS.

Nas aplicacoes dos VANTS como vigilancia, entrega de bens e gestao de desastres, a
interferéncia pode acarretar problemas significativos, incluindo perda de controlo, falha
na execucao de missoes e comprometimento da integridade dos dados. Essas ameacas sao
particularmente criticas em setores como defesa e seguranca piblica, nos quais os VANTS
desempenham papéis estratégicos.

A identificacao de interferéncias em [VANTS é especialmente desafiadora devido & mo-
bilidade dessas plataformas, a dinamica dos ambientes e a complexidade do espectro
de alta frequéncia associado ao 5G. Agentes mal-intencionados podem utilizar técnicas
avancadas, como jamming inteligente e spoofing, para explorar frequéncias ou canais de
comunicagao especificos, dificultando ainda mais a detecgao.

Métodos eficazes de identificacao de interferéncias dependem, em grande medida, de
abordagens baseadas em [Al que incluem andlise espectral em tempo real e deteccao

avancada de anomalias. A [[A] possibilita a andlise de grandes volumes de dados de rede



para identificar padroes que indiquem interferéncias, mesmo quando estas sao subtis ou
adaptativas. Utilizando modelos de aprendizagem de maquina, sistemas de[VANTS podem
classificar e prever, em tempo real, ameacas de potenciais interferéncias.

A interferéncia em tem o potencial de comprometer missoes e gerar riscos de
seguranga significativos. Assim, estratégias proativas de deteccao e mitigagao sao indis-
penséveis para proteger as operacoes de [VANTSH e manter a confianca nas aplicacoes su-
portadas pela tecnologia 5G. A possibilidade de garantir a resiliéncia contra interferéncia,
nao apenas salvaguarda os[VANTS mas também fomenta a adocao mais ampla do 5G em
sistemas criticos, promovendo um avango seguro e sustentdavel na era das comunicagoes

sem fio.
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Abstract

In today’s interconnected landscape, cybersecurity is an indispensable pillar of techno-
logical advancement, while cyber threats evolve at a pace equivalent to the systems they
are trying to compromise. The emergence of increasingly sophisticated attack vectors
challenges traditional security paradigms, requiring innovative approaches to detect and
mitigate threats. Among these threats, attacks targeting wireless communications are
particularly concerning, as they have the potential to compromise critical infrastructures
and essential services across various sectors.

As communication networks become more complex, Artificial Intelligence (AI) and
Machine Learning (MLl have emerged as essential tools for security analysis and threat
identification. These technologies enable the implementation of real-time monitoring and
adaptive response mechanisms, which are crucial to protecting modern wireless systems.
However, the implementation of effective security measures without compromising op-
erational efficiency presents significant challenges, particularly in resource-constrained
environments.

The integration of fifth Generation (BGI) wireless technology into Unmanned Aerial Ve-
hicles (UAVs) exemplifies these challenges, improving the capabilities of these platforms
through faster communication, low latency, and high reliability. Despite these advan-
tages, reliance on advanced wireless communications makes UAVs vulnerable to jamming
attacks, a critical threat that can compromise their operations. Jamming occurs when
signals are emitted to block or degrade the control and data links of UAVs.

In UAV applications such as surveillance, goods delivery, and disaster management,
jamming can cause significant issues, including loss of control, failure to complete missions,
and compromise of data integrity. These threats are especially critical in sectors such as
defense and public security, where UAVs play a strategic role.

Detecting jamming in UAVs is particularly challenging due to their mobility, dynamic
environments, and the complexity of the high-frequency spectrum associated with BGL
Malicious actors may employ advanced techniques, such as intelligent spoofing and jam-
ming, to exploit specific communication frequencies or channels, further complicating
detection efforts.

Effective jamming identification methods are heavily based on artificial intelligence-
based approaches, including real-time spectral analysis and advanced anomaly detection.
Al facilitates the analysis of large volumes of network data to identify patterns indicative
of jamming, even when the interference is subtle or adaptive. By leveraging [MI] models,

UAV systems can classify and predict potential jamming threats in real time.
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Jamming into UAVs has the potential to compromise missions and pose significant
security risks. Therefore, proactive detection and mitigation strategies are essential to
protect UAV operations and maintain confidence in bGlenabled applications. Ensuring
resilience against jamming not only protects UAVs but also promotes the broader adoption
of in critical systems, fostering safe and sustainable progress in the era of wireless
communications.
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CHAPTER 1

Introduction

The rapid evolution of wireless communications and the increasing prevalence of in-
terconnected devices have fundamentally reshaped how systems interact, making cyber-
security a critical concern across all technological domains [1], [2], [3]. As networks grow
in complexity and interconnectedness, the attack surface available to malicious actors
continues to expand, introducing new vulnerabilities and security challenges. Traditional
security paradigms, such as perimeter-based defenses, are no longer sufficient in the mod-
ern dynamic threat landscape, where sophisticated attacks often bypass conventional pro-
tective measures [4],[2],[5].

ML [6], [7] has emerged as a powerful tool for addressing contemporary security chal-
lenges, offering the capability to detect and respond to threats in real-time [8]. These
approaches enable the identification of patterns and anomalies that are difficult or im-
possible to detect using traditional rule-based systems, providing a more adaptive and
robust security framework [8]. However, the application of to security contexts intro-
duces its own set of challenges, particularly in resource-constrained environments where
computational efficiency is paramount.

The integration of Artificial Intelligence (All) with security has led to an ongoing
arms race between attackers and defenders, with both sides leveraging increasingly so-
phisticated techniques [9]. This competition has driven the development of innovative
[10] methodologies for threat detection, classification, and response, which can adapt
to evolving attack strategies [11], [12]. In particular, attacks targeting the availability
and reliability of communications, such as jamming and interference [13], pose significant
threats to system performance and safety, [14], [15].

To address these pressing challenges, this research proposes several complementary
approaches. One such approach is a categorical encoder based on Principal Component
Analysis (PCA]) [16] that enables efficient processing of high-dimensional data while pre-
serving critical information for security analysis. This method is particularly valuable in
resource-constrained Internet of Things ([oT]) and [JAV] systems, where real-time threat
detection is crucial.

Another contribution of this research is the development of latent space transform-
ers, which provide a novel framework for information sharing between deep networks.
This approach improves interoperability, optimizes computational resources, and main-
tains robust security capabilities across distributed systems. Within the broader security
landscape, the integration of [JAV] into EGl networks introduces unique challenges [17].

[TAVE, increasingly used for applications such as emergency response, package delivery,
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and surveillance, require secure communication to ensure reliable operation [18], [19],[20],
[21], [22]. Among the security threats facing UAV communications, jamming attacks are
particularly concerning [11]. These attacks range from basic power jamming, which aims
to overwhelm legitimate signals, to advanced smart jamming techniques that employ fre-
quency targeting and adaptive power allocation. Furthermore, mobility-based attacks,
where attackers optimize their position to maximize interference, add another layer of
complexity [23] .

The evolution of jamming detection techniques has paralleled the sophistication of
attack methodologies. Modern detection methods leverage multiple technologies, includ-
ing [MT] and statistical analysis [24], [25], [26], [27]. Techniques such as Deep Neural
Networks (DNNJ))s, Convolutional Neural Networks (CNNJ)s, and Support Vector Ma-
chines (SVM])s have shown promise in identifying and classifying jamming attacks. These
[MI] models are often complemented by statistical methods [28], [29], such as time series
decomposition and pattern recognition, to create robust hybrid detection systems[30],
[31].

For specific detection tasks, this research introduces a deep attention recognition ar-
chitecture that analyzes network parameters to identify jamming attempts in [JAV] com-
munications. Using metrics such as Signal-to-Interference-plus-Noise Ratio (SINR]) and
Received Signal Strength Indicator (RSSI)), this approach achieves reliable detection across
diverse channel conditions common in [UAV] operations.

The research culminates in a hybrid approach that combines deep neural networks with
traditional [MI] techniques. This unified framework addresses uncertainty while maintain-
ing high detection accuracy, offering a practical solution for real-world deployment in [TAV]
security applications. Together, these methodologies form a comprehensive framework for
securing [JAV] communications against jamming attacks on [EGl networks. The proposed
solutions strike a balance between security performance and practical constraints, mak-
ing them suitable for implementation in resource-limited environments while ensuring the
rapid response times required for [JUAV] operations.

This research contributes significantly to the field of [JUAV] security by demonstrating
how advanced [MI] techniques can be effectively adapted for resource-constrained envi-
ronments. Highlights the potential of these methods to maintain high detection accuracy
and reliability, ultimately enhancing the security and resilience of [JAV] communications
in GGl networks.



1.1. Motivation

The growing prevalence of jamming threats in [TAV] communications necessitates ro-
bust and adaptive detection methodologies to ensure the security and reliability of these
systems. This section explores two critical aspects: the evolving landscape of jamming
threats, including power, smart, and mobility-based attacks, and the modern detection
approaches designed to counter them. By addressing both the challenges posed by sophis-
ticated jamming techniques and the advancements in detection technologies such as [MI]
and hybrid systems, this discussion highlights the importance of comprehensive frame-

works to safeguard [JAV] operations against these escalating threats.

1.1.1. Jamming Threats in UAV Communications

Among the various security threats facing [JAV] communications, jamming attacks
represent a particularly critical challenge. These attacks manifest themselves in multiple
sophisticated forms, each presenting unique challenges to detection and mitigation [27],
[32].

Power jamming represents the most straightforward approach, where attackers at-
tempt to overwhelm legitimate signals through brute force. This technique focuses on
degrading communication quality and disrupting control links between [JAVk and their
ground stations, potentially leading to complete loss of control over the aerial vehicle.

Smart jamming has emerged as a more sophisticated threat, employing intelligent
techniques to maximize impact while minimizing probability detection. These attacks
utilize selective frequency targeting and adaptive power allocation to efficiently interfere
with communications. Pattern-based interference techniques allow attackers to synchro-
nize their jamming activities with legitimate transmissions, making them particularly
difficult to identify and counter using traditional detection methods [33], [31], [29] .

Mobility-based attacks represent the latest evolution in jamming threats, taking
advantage of the dynamic nature of [JAV] operations. These attacks involve sophisticated
positioning strategies where attackers actively track and follow their targets, optimiz-
ing their jamming effectiveness through strategic placement. The emergence of coordi-
nated multi-attacker scenarios has further complicated the defense landscape, as multiple
jammers can work in concert to create more effective and harder-to-detect interference
patterns [34], [35].

1.1.2. Modern Detection Approaches

The evolution of jamming detection techniques has necessarily paralleled the advance-
ment of attack methodologies. Contemporary approaches integrate multiple technologies,
creating layered defense systems capable of identifying and responding to various attack
types. [MI solutions have emerged as a powerful tool in this domain, with [DNNk, [CNNk,
and [SVME demonstrating remarkable success in identifying subtle attack patterns that

5



might elude traditional detection methods. These [MIJ] approaches are particularly effec-
tive in scenarios where attack signatures evolve rapidly, as they can be trained on new
data to recognize emerging threat patterns|24], |25], [26], [27].

Statistical analysis continues to play a crucial role in jamming detection, offering ro-
bust and interpretable results through time series decomposition and pattern recognition
techniques. These methods excel at identifying anomalies in communication patterns that
may indicate ongoing attacks. Statistical approaches provide the advantage of clear con-
fidence intervals and significance levels, making them particularly valuable in scenarios
where decision-making must be thoroughly justified. Time series analysis, in particu-
lar, has proven effective in detecting periodic jamming attempts and understanding the
temporal characteristics of such attacks[28], [29].

The combination of statistical approaches with [MI] has led to the development of
powerful hybrid methodologies that leverage the strengths of both approaches. These
hybrid systems have demonstrated superior performance compared to single-methodology
approaches, as they can simultaneously utilize the pattern recognition capabilities of [MTJ
and the statistical rigor of traditional analysis. The fusion of these methodologies allows
for more nuanced detection capabilities, where models identify complex patterns,
while statistical analysis provides verification and validation of the findings.

Hybrid systems typically employ multi-layer detection architectures, combining tra-
ditional statistical analysis with advanced [ML techniques. This layered approach begins
with basic statistical measures to identify potential anomalies, followed by more sophisti-
cated [MI] analysis to classify and characterize detected threats. The multi-layer architec-
ture allows for progressive refinement of detection accuracy, with each layer contributing
additional insights into the nature and severity of potential jamming attempts. This ap-
proach has proven particularly effective in reducing false positives while maintaining high
detection rates [30], [31].

Adaptive threshold techniques enable these systems to maintain effectiveness across
varying operating conditions by automatically adjusting detection parameters based on
environmental factors and observed communication patterns. This adaptability is crucial
in real-world deployments, where network conditions, interference levels, and legitimate
usage patterns may fluctuate significantly. Threshold adjustment mechanisms typically
incorporate both short-term and long-term historical data to establish appropriate base-
line conditions, ensuring that detection sensitivity remains optimized for current operating
conditions.

The integration of these various components creates a comprehensive detection frame-
work capable of responding to both known and novel jamming attacks. The system’s
ability to combine multiple detection methodologies, adapt to changing conditions, and
maintain high accuracy across different scenarios represents a significant advancement in

jamming detection capabilities. This integrated approach enables reliable detection of



sophisticated attacks while retaining the ability to identify and respond to simpler, tra-
ditional jamming attempts. The framework’s flexibility and adaptability ensure its con-

tinued effectiveness as new attack methodologies emerge and network conditions evolve.

1.2. The Role of 5G] Networks

The integration of [TAVk into networks introduces both novel opportunities and
complex security challenges. This dynamic interaction between [JAV] operations and
infrastructure necessitates careful consideration of vulnerabilities and defensive capabili-
ties during the design and implementation of these systems [36], [37].

Modern GGl network architectures, characterized by dense small-cell deployments and
advanced beam forming technologies, create a multifaceted operational environment.
While the dense deployment of small cells enhances granular coverage and control, it si-
multaneously increases the number of potential attack vectors. Similarly, advanced beam
forming techniques, which focus energy in specific directions to mitigate interference and
counter jamming attempts, demand robust security protocols to safeguard the integrity
of these mechanisms [3§].

Performance requirements in BGl networks impose stringent constraints on security
solutions, necessitating ultra-reliable communications with minimal latency. [TAV] appli-
cations, particularly those involving critical operations, often require real-time response
capabilities with latency as low as 1 millisecond. Consequently, security protocols must
ensure robust protection while adhering to these temporal constraints. This has driven
the development of lightweight yet effective security measures optimized for low-latency
environments [39].

Balancing high throughput with minimal security overhead is another critical consider-
ation. Modern [UAV] applications, such as those involving high-definition video streaming
or real-time sensor data transmission, generate substantial data volumes. Security mecha-
nisms must efficiently process these high data rates without imposing significant additional
overhead, which could compromise overall system performance. To address this, novel en-
cryption methods have been developed to operate at line speed while maintaining strong
security guarantees [38].

The integration of networks also expands the scope of security considerations
beyond traditional concerns. Enhanced authentication mechanisms and comprehensive
interference management systems are now essential components of EGlenabled [TAV] op-
erations. These systems must dynamically adapt to evolving threat landscapes and oper-
ational demands [40] [41].

Quality of Service guarantees remain critical, even in the presence of active jam-
ming attempts. Achieving this requires seamless coordination between security systems
and network management functions. Real-time monitoring and response mechanisms are
essential to detect and mitigate interference while preserving essential communication
links. The incorporation of [All and [MI] algorithms has significantly improved these capa-
bilities, enabling accurate threat detection and automated responses to emerging threats.
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In summary, the interplay between [JAVk and BG] networks necessitates innovative
security solutions [40] capable of meeting the stringent performance requirements and
dynamic threat landscapes inherent in modern network environments. Continued ad-
vancements in Al-driven analytics, low-latency protocols, and high-throughput encryp-
tion technologies are pivotal to ensuring the secure and reliable integration of [TAVk into
ecosystems.

1.3. Goals

The primary goal of this research is to advance data processing and resource optimiza-
tion in [UAV] security systems. This work aims to develop highly efficient categorical data
encoding techniques specifically tailored for resource-constrained [oT] devices and [TAV]
platforms. By employing innovative [PCAlbased methods, the research seeks to achieve
significant dimensionality reduction while maintaining exceptional classification accuracy.
A critical objective is to optimize these processes for real-time operations, enabling [TAVk
to perform complex security classifications with minimal computational overhead. This
foundational goal addresses the core challenge of balancing processing efficiency with se-
curity effectiveness in aerial systems.

Another crucial objective is network architecture standardization. This involves es-
tablishing standardized frameworks to enable seamless interoperability among deep net-
works within communication systems. The research focuses on creating modular
network components with standardized latent spaces, thereby facilitating efficient infor-
mation sharing and significantly reducing latency and bandwidth consumption. The scope
of this objective extends beyond technical standardization to include practical implemen-
tation considerations, ensuring that these frameworks are deployable across diverse [JAV]
communication systems.

In the domain of jamming detection and classification, this research pursues a so-
phisticated multi-layered approach. The goal is to develop advanced systems capable of
accurately distinguishing between intentional jamming attacks and environmental inter-
ference. This entails creating robust detection methods that combine traditional statistical
analysis with cutting-edge Deep Learning (DL techniques. The objective is to achieve
unprecedented accuracy in identifying various jamming scenarios while maintaining adapt-
ability to evolving threat landscapes. Special focus is placed on designing systems capable
of countering sophisticated jamming techniques aimed at evading detection.

Energy efficiency is another critical goal within the research framework. Given the
inherent battery limitations of [JAV] platforms, the study emphasizes developing detec-
tion systems that deliver high accuracy with minimal power consumption. This involves
designing lightweight algorithms that optimize computational efficiency without compro-
mising detection capabilities. The research aims to strike an optimal balance between
performance requirements and operational constraints, ensuring that security measures
do not significantly impact flight duration or operational range.

8



Integration and standardization form additional cornerstones of the research objec-
tives. The study seeks to establish comprehensive evaluation frameworks and performance
metrics to enable systematic comparisons of different detection approaches. This includes
the development of standardized testing methodologies and benchmarks for assessing real-
world effectiveness. These standards aim to accelerate the development and adoption of
improved solutions across the industry while ensuring reliable performance measurements
under diverse operational conditions.

The development of autonomous operational capabilities is a forward-looking objective
of this research. The aim is to create self-adaptive detection systems capable of automat-
ically adjusting their parameters based on operational conditions and threat levels. This
involves designing systems that seamlessly integrate with [JAV] navigation and control
mechanisms, enabling autonomous responses to detected threats while maintaining mis-
sion objectives within safety constraints. Furthermore, the research focuses on developing
intelligent systems that learn and adapt from experience, continuously enhancing their
detection capabilities.

Lastly, a comprehensive framework development goal drives the integration of multi-
ple detection approaches into cohesive systems. This involves implementing sophisticated
pre-processing and post-processing techniques to enhance reliability across various oper-
ational scenarios. The research seeks to develop real-time processing techniques capable
of handling complex threat scenarios while maintaining system stability. The framework
is designed to be flexible enough to incorporate new detection methods while maintaining

backward compatibility with existing systems.

1.4. Contributions

This work presents several significant contributions to the field of [JAV] communication
security and jamming detection, advancing both theoretical understanding and practical

implementation capabilities:

e Novel Deep Learning Architecture
We introduce Deep Attention Recognition (DALRI) framework, representing a
fundamental advancement in jamming detection for [JAV] communications. This
architecture uniquely combines Convolutional neural networks with self-attention
mechanisms, enabling more effective processing of temporal patterns in commu-
nication signals. Our approach reduces the total number of trainable parame-
ters to under 100,000 while maintaining high detection accuracy, making it suit-
able for deployment on resource-constrained [JAV] platforms. The architecture
demonstrates superior performance, particularly in complex urban environments,
achieving 90.80% accuracy in Line-of-Sight (LoS]) conditions and 83.07% accuracy
in Non-Line-of-Sight (NLoS|) scenarios.
e Advanced Preprocessing and Post-processing Techniques
We develop two complementary techniques that significantly enhance detec-

tion capabilities:



— Time Series Augmentation (T'SAl): This novel preprocessing approach
enhances signal data by generating augmented versions of the original signal
while preserving critical jamming signatures.

— Majority Voting Algorithm (MVAI): A robust post-processing frame-
work that reduces false positives while maintaining high detection sensitivity.

When combined, these methods improve overall detection accuracy by 15% in
challenging conditions compared to baseline approaches.
e Comprehensive Testing Framework
Our work establishes a rigorous evaluation methodology for jamming detec-
tion systems, incorporating multiple channel conditions, attacker configurations,
and environmental scenarios. We develop a synthetic dataset comprising over
2,400 distinct test cases, covering various jamming attack patterns and [JAV] op-
erational scenarios. This testing framework enables systematic comparison of
different detection approaches and provides benchmarks for future research in
this field.
e Performance Analysis and Metrics
We propose new metrics for evaluating jamming detection performance, in-
cluding the Reliability Score (RS), which quantifies the relationship between de-
tection confidence and accuracy. Our analysis provides detailed insights into
system behavior across different operational scenarios, establishing new bench-
marks for performance evaluation in [UAV] security systems. The work includes
comprehensive statistical analysis of detection performance under varying chan-

nel conditions and attack patterns.
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in IoT Devices,” in 2022 IEEE Globecom Workshops (GC Wkshps), Rio de Janeiro,
Brazil, 2022, pp. 789-795, doi: 10.1109/GCWkshps56602.2022.10008757.

9. H. Farkhari et al., “Latent Space Transformers for Generalizing Deep Networks,” in
2021 IEEE Conference on Standards for Communications and Networking (CSCN),
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10. M. J. Lopez-Morales et al., “MOOC on ’Ultra-dense Networks for 5G] and its Evolu-
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pean Association for Education in Electrical and Information Engineering (EAEEIE),
Coimbra, Portugal, 2022, pp. 1-6, doi: 10.1109/EAEEIE54893.2022.9819989.

1.6. Thesis Organization

This thesis begins with a comprehensive examination of the challenges associated with
categorical data processing in [T device security systems. A key innovation is introduced
through the development of a [PCAlbased Category Encoder, which significantly reduces
computational overhead while maintaining high classification accuracy. This novel encod-
ing approach demonstrates exceptional efficiency in handling high-cardinality categorical
variables, achieving up to an 98.81% reduction in dimensionality compared to traditional
one hot encoding method. Extensive experimental validation using the NSLKDD dataset
highlights how this method enables resource-constrained [[0T] devices to perform complex
security classifications with minimal computational resources while maintaining accuracy
rates exceeding 89%.

The research advances to address fundamental challenges in deep network interoper-
ability through the introduction of an innovative framework for latent space DNNk. This
groundbreaking framework establishes a standardized approach for information sharing
between deep networks in BG] communication systems, enabling seamless integration of

11


https://doi.org/10.1109/VTC2022-Fall57202.2022.10012726
https://doi.org/10.1109/VTC2022-Spring54318.2022.9860816
https://doi.org/10.1109/VTC2022-Spring54318.2022.9860816
https://doi.org/10.48550/arXiv.2211.09706
https://doi.org/10.1109/GCWkshps56602.2022.10008757
https://doi.org/10.1109/CSCN53733.2021.9686099
https://doi.org/10.1109/EAEEIE54893.2022.9819989

diverse network architectures. The framework demonstrates how complex deep networks
can be modularized into components with standardized latent spaces, facilitating efficient
information exchange while reducing computational demands.

In the context of specific security applications, the thesis presents two complementary
methods for jamming identification in [JAVK. The first approach uses advanced time
series analysis via Seasonal Trend Decomposition (STLI), achieving an 84.38% detection
accuracy for high-power jamming attacks. The second method employs a meticulously
designed (CNNILong Short-Term Memory (LSTM])) architecture, which achieves 99.99%
accuracy in identifying various jamming scenarios. These methods are validated using a
comprehensive synthetic dataset that simulates realistic [JAV] communication scenarios,
encompassing a range of jamming powers, distances, and channel conditions.

The research further extends its technical contributions through the development of
a Convolutional attention-based deep learning architecture. This solution specifically ad-
dresses the challenges posed by dynamic channel conditions and sophisticated jamming
attacks in environments. By incorporating innovative attention mechanisms, the ar-
chitecture enables precise feature extraction from complex signal patterns, demonstrating
significant improvements in detection accuracy under varying channel conditions. The
system achieves consistent performance even in challenging scenarios involving multiple
interferers and dynamic channel characteristics.

Building upon these foundations, the thesis introduces [DAtR] framework optimized
for attack identification in [JUAV] communications. This framework integrates advanced
attention mechanisms with efficient neural network architectures, enabling real-time at-
tack detection while maintaining low computational overhead. The system demonstrates
robust performance across diverse operational scenarios, maintaining high accuracy even
under adverse conditions, such as low signal-to-noise ratios and multiple simultaneous
attacks.

A hybrid approach to jamming identification is also presented, combining traditional
[MT]with advanced deep learning methods. This integrated solution leverages the strengths
of multiple detection approaches, including statistical analysis and signal processing tech-
niques. The hybrid system exhibits superior reliability across diverse operational scenar-
ios, achieving consistent detection rates above 95% while maintaining false alarm rates
below 1%, even under challenging environmental conditions.

Throughout the thesis, a strong emphasis is placed on practical implementation con-
siderations, particularly with respect to the unique constraints of [JAV] platforms and
EGl network environments. Each technological advancement is meticulously evaluated
in terms of computational requirements, power efficiency, and real-world applicability.
Detailed analyses of implementation trade-offs, including processing latency, resource uti-
lization, and detection accuracy, are provided for various operational conditions.

The research concludes with the integration of these components into a comprehen-

sive security framework for [JAV] communications. This synthesis demonstrates how the
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combination of efficient data processing, standardized network architectures, and sophis-
ticated detection methods creates a robust and practical solution. The integrated system
achieves superior performance in real-world scenarios, with validation results indicating
sustained high accuracy across different attack types, channel conditions, and operational
scenarios. This framework lays a solid foundation for future advancements in secure [UAV]

communications while ensuring practical applicability in current network environments.
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CHAPTER 2

Papers

2.1. Article #1: PCA-Featured Transformer for Jamming Detection in 5G]
UAV Networks

This article presents a novel transformer-based approach to jamming detection in GGl
[TAV] networks, incorporating [PCAl features with a U-shaped architecture. The research
focused on developing a reliable detection framework capable of effectively identifying
jamming attacks in both and [NLoS| scenarios. The study introduced innovative
feature engineering and training optimization techniques in time series data, and setting
new benchmarks for jamming detection accuracy in [JAV] communications.

The primary contributions of this work to the present thesis are as follows:

e Development of the[PCAlfeatured transformer architecture, integrating PCAl fea-
tures with transformer models in a novel manner;

e Introduction of fundamental deep neural network training techniques such as
chunking for time series data and batch size scheduling, which significantly en-
hanced jamming detection performance;

e Achievement of 90.33% accuracy in[LoS| conditions and 84.35% in[NLoSlscenarios,

surpassing conventional methods by approximately 4%.

The study demonstrated the effectiveness of these methods by applying them to re-
alistic [JAV] network scenarios with varying numbers of attackers, power levels, and user
densities. The proposed architecture was rigorously evaluated against baseline and
the XGBoost classifier, providing robust validation of its efficacy.

Article Detalils

e Title: PCAlFeatured Transformer for Jamming Detection in EGI[TAV] Networks

e Date: 12-2024 (submission date)

e Authors: Joseanne Viana, Hamed Farkhari, Pedro Sebastiao, Victor P. Gil
Jimenez

e Status: Submitted

e Journal: IEEE Open Journal of The Communications Society

e DOI: -

The significance of this paper lies in its introduction of a comprehensive transformer-
based approach addressing key challenges in BGI[UAV] jamming detection while maintain-
ing practical implementation feasibility. The research established foundational concepts
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in combining [PCA]l features with transformer architectures, which are anticipated to influ-
ence future advancements in wireless security and signal processing for attack detection

systems.
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ABSTRACT Unmanned Aerial Vehicles (UAVs) face significant security risks from jamming attacks, which
can compromise network functionality. Traditional detection methods often fall short when confronting
Al-powered jamming that dynamically modifies its behavior, while contemporary Machine Learning (ML)
approaches frequently demand substantial feature engineering and struggle with temporal patterns in attack
signatures. The vulnerability extends to 5G networks employing Time Division Duplex (TDD) or Frequency
Division Duplex (FDD), where service quality may deteriorate due to deliberate interference. We introduce
a novel U-shaped transformer architecture that leverages Principal Component Analysis (PCA) to refine
feature representations for improved wireless security. The training process is regularized by incorporating
the output entropy uncertainty into the loss function, a mechanism inspired by the Soft Actor-Critic
(SAC) algorithm in Reinforcement Learning (RL) to enable robust jamming detection techniques. The
architecture features a modified transformer encoder specially designed to process critical wireless signal
features, including Received Signal Strength Indicator (RSSI) and Signal-to-Interference-plus-Noise Ratio
(SINR) measurements. We complement this with a custom positional encoding mechanism that specifically
accounts for the inherent periodicity of wireless signals, enabling a more accurate representation of temporal
signal patterns. In addition, we propose a batch size scheduler and implement chunking techniques to
optimize training convergence for time series data. These advancements contribute to achieving up to
a ten times improvement in training speed within the advanced U-shaped encoder-decoder transformer
model introduced in this study. Experimental evaluations demonstrate the effectiveness of our entropy-
based approach, achieving detection rates of 89.46% under Line-of-Sight (LoS) conditions and 85.06% in
non-Line-of-Sight (NLoS) scenarios. The method significantly outperforms existing solutions, surpassing
XGBoost (XGB) classifiers by approximately 4.5% and other Deep Learning (DL) approach by more than
2%.

INDEX TERMS UAVs, Security, Transformers, Deep Learning, Jamming Detection, Jamming Identifica-
tion, Unmanned Aerial Vehicles, 5G, 6G.

I. Introduction

The intersection of Unmanned Aerial Vehicles (UAVs) and
wireless communication systems represents a rapidly evolv-
ing research domain with significant technological and se-
curity implications. As UAVs transition from specialized

$Collaborative authors with equal contribution

military applications to widespread commercial deployment,
their integration into communication networks introduces
novel challenges and opportunities [1], [2], [3], [4], [5], [6].
Base stations mounted on UAVs demonstrate potential for
applications including emergency response, surveillance of
borders, and providing temporary network coverage [7], [8],

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/
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[9], [4]. However, when UAVs function as end-devices in
services such as package delivery, they introduce distinct
security vulnerabilities within 5G networks [10], [11]. A
critical concern is the vulnerability of UAV communication
systems to sophisticated jamming attacks, which can manip-
ulate Time Division Duplex (TDD) and Frequency Division
Duplex (FDD) systems, resulting in severe service disrup-
tions with impacts reaching up to 99% in TDD uplink and
82% in FDD downlink scenarios [12], [13], [14]. Jamming
can affect private networks, compromising the integrity and
availability of mission critical communications in industrial,
corporate, and specialized operational environments where
UAVs are increasingly deployed.

Machine learning, particularly deep learning approaches,
offers promising avenues for developing more effective and
proactive jamming detection systems [15], [16], [17]. Convo-
lutional Neural Networks (CNNs) have shown effectiveness
in extracting spatial features from signal data [18], [19], [20],
while Long Short-Term Memory (LSTM) networks excel at
modeling temporal patterns in wireless communications [21],
[22], [23].

Several studies have advanced this field. The authors in
[24] developed a branched deep neural network architecture
for simultaneous jamming detection and link scheduling in
dense wireless networks. Their system employs two special-
ized subnetworks: one leverages geographical information
and signal power measurements to detect and locate jam-
mers, while the other optimizes link scheduling based on
jamming detection results to maximize network throughput
under adverse conditions. The authors of [25] proposed
neural networks for compound jamming signal recogni-
tion, while [26] introduced a singular value decomposition
approach for jamming identification in Global Navigation
Satellite System (GNSS)-based systems.

Addressing cognitive radio vulnerabilities, [27] created
a one-dimensional convolutional neural network operating
directly on raw signal data to detect primary user emulation
and jamming attacks. This approach eliminates the manual
feature engineering required by traditional methods, as noted
by [28]. Their architecture incorporates three convolutional
layers with Rectified Linear Unit (ReLU) activation func-
tions, followed by dense and softmax output layers.

More recently, [29] developed a deep learning system
using ensemble techniques for detecting jamming attacks
in 5G networks, combining RF domain and physical layer
features with a Temporal Epistemic Decision Aggregator
to enhance detection reliability despite signal impairments
and carrier frequency offset. Similarly, [30] proposed a
feature- and spectrogram-tailored machine learning approach
for jamming detection in Orthogonal Frequency-Division
Multiplexing (OFDM)-based UAVs.

Despite advances in CNN-based and LSTM-based jam-
ming detection methods, these models exhibit fundamental
architectural limitations that hinder their effectiveness in
modern UAV scenarios. CNNs are inherently constrained by

fixed-size receptive fields, limiting their ability to adaptively
capture jamming patterns that occur over variable time
scales—from millisecond-level pulse jamming to sustained
interference lasting minutes. While LSTMs are designed for
sequential modeling, they suffer from vanishing gradients in
long sequences and require inherently sequential processing,
which creates computational bottlenecks that are unsuitable
for real-time UAV applications. These limitations reduce
the effectiveness of both approaches in heterogeneous and
dynamic RF environments, where sophisticated jamming
may span irregular time intervals, exhibit non-stationary
behavior, or fluctuate unpredictably in amplitude and fre-
quency. In contrast, transformer architectures leverage self-
attention mechanisms to dynamically model dependencies
across entire input sequences, regardless of their temporal
or spectral distance. Their parallel processing capability and
adaptive attention allocation make transformers particularly
well-suited for detecting evolving, intermittent, and multi-
modal jamming attacks particularly in heterogeneous envi-
ronments that incorporate both 5G New Radio (NR) and
Narrowband Internet of Things (NB-IoT) interfaces [31],
[32], [13], [33].

Transformer architectures, with their self-attention mech-
anisms [34], have improved sequential data analysis and
offer significant potential for jamming detection [35]. These
models are particularly well-suited for identifying long-range
dependencies in wireless signal data, enabling the detec-
tion of sophisticated jamming patterns across various time
scales and frequency bands [36]. The multi-head attention
mechanism further enhances this capability by simultane-
ously analyzing diverse signal attributes, from immediate
interference to subtle, persistent disruptions, making trans-
formers especially effective against energy-efficient selective
jamming techniques.

With the accelerating deployment of 5G networks and
increasingly complex security threats [37], [38], there is
a need for advanced jamming detection methods that can
preemptively identify and counteract these attacks [39],
[40]. Integrating transformers with other machine learning
techniques offers promising new approaches for addressing
these challenges, establishing foundations for more resilient
network security frameworks [41], [42].

This paper introduces an innovative transformer-based
architecture specifically designed for UAV-integrated 5G net-
works, focusing on early detection of jamming attacks, [13].
By incorporating Principal Component Analysis (PCA)-
derived features [43], [44], our approach enables efficient
analysis of critical signal metrics, including Received Signal
Strength Indicator (RSSI) and Signal to Interference plus
Noise Ratio (SINR) [45]. Multi-head attention mechanisms
allow the model to identify and classify complex jam-
ming patterns, while computational optimizations make the
framework suitable for edge device deployment [46], [47].
This work not only advances the current state of jamming
detection but also proposes techniques to improve training
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time in machine learning integrated wireless communications
[48], [49].

Furthermore, our proposed solution addresses gaps in ex-
isting research by prioritizing real-time detection capabilities
[50], [51] through a transformers models. The architecture’s
adaptability allows it to function effectively across various
deployment scenarios, ensuring broad applicability for di-
verse UAV applications in both civilian and defense contexts
[52], [53], [54]. As UAV technology continues to expand
[55], [56], ensuring communication system security and
reliability remains essential. Our work makes a meaningful
contribution toward this goal, providing a robust and scalable
solution to one of the most pressing challenges in modern
wireless communication.

Contributions and Motivation

Recent advancements in cellular networks, particularly in
UAV and 5G technologies, have revealed significant vulnera-
bilities to jamming attacks. While research exists on various
detection methods, there remains a critical gap in leveraging
transformer architectures for jamming detection. This paper
presents the listed key contributions:

e Developed an innovative transformer-based architecture
for detecting jamming attacks in UAV-integrated 5G
networks. The system features a custom deep neural
network that combines state-of-the-art CNNs with spe-
cialized activation functions in a U-Net architecture,
optimized for analyzing jamming signatures across 5G
NR interfaces. Previous research consider deep network
approaches using CNNs, LSTMs and attention layers in
specialized designed architectures.

e Introduced time-series PCA-features and efficient to-
kenization method for detecting jamming patterns in
UAV-integrated 5G networks.

e Proposed incorporating the output entropy uncertainty
into the loss function.

e Optimized deep network training algorithm by intro-
ducing batch_size scheduler and chunking (grouping)
in the training dataset.

e Comprehensive experimental validation demonstrating
superior detection capabilities compared to existing
methods deep learning and machine learning methods
for jamming attacks.

Il. System Model

The system model consists of an authenticated UAV oper-
ating within a small cell network environment designed to
detect malicious jamming activities through power variation
analysis. In order to train our model, we generated a dataset
that has two distinct communication scenarios: Line-of-
Sight (LoS) and Non-Line-of-Sight (NLoS). Each scenario
category contains four unique experimental configurations
that vary key parameters including UAV mobility patterns,
operational speeds, attack intensities, and network user den-
sity. The dataset architecture specifically accounts for urban
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environment dynamics, where building structures and other
obstacles can significantly impact signal propagation. To en-
sure robust detection capabilities, we simulate various attack
patterns using different numbers of hostile UAVs (ranging
from 1 to 4 attackers) with varying transmission powers.
The dataset inherently presents an unbalanced distribution
between attack and non-attack scenarios, necessitating care-
ful preprocessing to maintain classification accuracy. Each
simulation captures temporal sequences of received power
measurements of RSSI and SINR.

A. Channel Attenuation

The wireless channel between aerial platforms and ground
stations experiences signal degradation through multiple
mechanisms. We characterize the total channel attenuation as
the superposition of deterministic distance-dependent losses
and stochastic variations. The aggregate channel loss H(r, f.)
in decibels can be expressed as:

H(r, fo) =Ya(r fo) + & 6]

where W, (r, f.) represents the distance-dependent attenu-

ation component for a link spanning distance r (measured

in kilometers) at carrier frequency f. (in MHz), while Q

captures the random fluctuations arising from environmental

factors such as shadowing effects caused by buildings and
vegetation.

B. Propagation State Classification
Urban A2G channels exhibit distinct propagation character-
istics depending on the presence or absence of obstructions
between transmitter and receiver. We categorize the prop-
agation environment into two fundamental states: Line-of-
Sight (LoS) conditions where an unobstructed propagation
path exists, and Non-Line-of-Sight (NLoS) scenarios where
intermediate objects block the direct signal path. This binary
classification forms the foundation for modeling distance-
dependent attenuation and statistical channel variations.
The distance-dependent attenuation component adapts
based on the prevailing propagation conditions. Under LoS
conditions, the path loss reflects the maximum between free-
space propagation and near-ground effects:

W (r fo) = max{Pree (1, o), Prear (r o)} ()
The free-space propagation component follows the funda-
mental Friis transmission equation:

Wriee (1, fo) = 32.454201og,o(r) +201l0g,o(f.)  (3)

Near-ground propagation introduces altitude-dependent ef-
fects that modify the path loss exponent:

Whear (1, fo) = Ao+ A1 logo(r) +201ogo(f2) )

where the coefficients Ag = 30.9 and A; = 22.25 —
0.51og;((z) depend on the UAV altitude z measured in me-
ters. For NLoS propagation scenarios, additional attenuation
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occurs due to diffraction and scattering phenomena. The
effective path loss under NLoS conditions incorporates both
the LoS component and obstruction-induced losses:

‘PdNLOS (nfe)= max{lpbos (1 fe)s Phtockea(r, fe) } - (5)

The blockage-induced attenuation exhibits stronger dis-
tance dependence and altitude sensitivity:

Whiocked (13 fc) = Bo + Bilog o(r) +201ogo(fe)  (6)

with parameters By = 32.4 and B; = 43.2 —7.6log;,(2)
calibrated for urban environments.

C. Statistical Channel Fluctuations

Beyond deterministic path loss, the wireless channel expe-
riences random variations due to shadowing effects from
buildings, vegetation, and other urban structures. These
fluctuations follow log-normal distributions with standard
deviations that depend on both the propagation state and
UAV altitude. For LoS conditions, the shadowing standard
deviation decreases exponentially with altitude, reflecting
reduced interaction with ground-level obstructions:

05°S = max{5exp(—0.01z),2} [dB] )

In contrast, NLoS scenarios exhibit more severe and
altitude-independent shadowing with GSLOS = 8 dB. These
parameters remain valid for UAV operations within the
altitude range of 22.5 to 300 meters, encompassing typical

low-altitude urban flight scenarios.

D. Propagation State Probability

The occurrence of LoS or NLoS conditions follows a
stochastic model based on the geometric relationship be-
tween UAV position and urban topology. The probability of
a LoS link decreases with horizontal distance and increases
with UAV altitude, capturing the intuitive notion that higher-
flying UAVs experience fewer obstructions. We model the
LoS probability as:

Pros :é—kexp <_rxy) <1—€1) 8)
I'xy 52 T'xy

where r,, denotes the horizontal projection of the three-
dimensional link distance. The altitude-dependent param-
eters & = max{294.05logy(z) — 432.94,18} and & =
—233.9810g;((z) —0.95 ensure appropriate limiting behavior
at both low and high altitudes. The complementary NLoS
probability follows directly as Pnros = 1 — Pros-

E. Multipath Channel Structure

Small-scale fading arises from the constructive and destruc-
tive interference of multiple signal replicas arriving via
different propagation paths. We adopt a clustered delay line
approach where multipath components group into clusters,
each characterized by specific delay, power, and angular

properties. The multipath contribution ®(N,,N,) depends on
the number of clusters N, and rays per cluster N,, with
parameters including azimuth and elevation spreads for both
arrival and departure angles. This geometric channel model
enables accurate characterization of spatial correlation and
antenna pattern effects in multi-antenna systems.

F. Signal Power and Quality Metrics

The received signal power at the aerial platform incorporates
transmit power, antenna gains, and all channel attenuation
mechanisms:

Pr:P[+Gt+Gr7H(r7fg)7(b(NC7Nr) [dBm]  (9)

where P, denotes the transmit power in dBm, while G;
and G, represent the transmit and receive antenna gains in
dBi, respectively.

In the presence of interference from co-channel users and
intentional jamming sources, the signal quality degrades ac-
cording to the signal-to-interference-plus-noise ratio (SINR):

p— Pr
No+ X5 | Ik
where Ny represents the thermal noise power and I

denotes the interference power from the k-th source among

K total interferers.

Network infrastructure commonly reports the Received
Signal Strength Indicator (RSSI) as a measure of total
received power across the allocated spectrum. Unlike metrics
focused solely on the desired signal, RSSI captures contri-
butions from all sources:

Y 10)

K
RSSIypm = 1010g10 (Iji}inear+ lelcinear+N(l)inear> (11)
k=1
The proposed channel model is valid for UAV operations
at altitudes between 22.5 and 300 meters, encompassing
typical urban flight profiles below controlled airspace. It is
applicable to standard cellular frequency bands and assumes
single-antenna configurations at both the UAV and ground
station. Extensions to multi-antenna systems are straightfor-
ward, leveraging the geometric structure of the multipath
model [13], [57].

G. Dataset on Jamming Detection

A sample from the dataset on the jamming effects is pre-
sented in figure 1. These simulation results capture the
signal propagation characteristics under both LoS and NLoS
conditions. The RSSI measurements (a) show four distinct
traces over 300 samples: LoS without attack (green) main-
taining stable values around -83 dBm, LoS under attack (red)
fluctuating around -81 dBm with occasional spikes, NLoS
without attack (blue) exhibiting significant variability with
deep fades to -95 dBm, and NLoS under attack (orange)
showing consistently degraded performance near -95 dBm.
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The LoS scenarios demonstrate relatively stable RSSI pat-
terns, while both NLoS conditions suffer from severe signal
attenuation, with the attack scenario showing more consistent
degradation.

The SINR measurements (b) display corresponding signal
quality metrics for the same four scenarios. LoS without
attack (green) shows highly variable SINR values ranging
from -5 to +12 dB, while LoS under attack (red) exhibits
similar variability between -8 and +14 dB. NLoS without
attack (blue) maintains relatively constant SINR around -
11 to -12 dB, and NLoS under attack (orange) shows the
most severely degraded SINR values at approximately -16
dB with minimal variation. The measurements demonstrate
a clear ordering of signal quality: LoS no attack > LoS attack
> NLoS no attack > NLoS attack. To enable reliable data col-
lection even under degraded conditions, the connection was
maintained throughout, even during periods of low SINR.
More comprehensive information regarding the dataset, the
quantity of jamming UAVs, and signal parameters can be
found in [13] and [57].

(a)

—— LoS No Attack

— LoS Attack

—— NLoS No Attack
NLoS Attack
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-95 4 ||/
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—— NLoS No Attack
NLoS Attack

SINR (dB)

0 50 100 150 200 250 300
Samples

FIGURE 1: RSSI and SINR measurements for wireless
communication: (a) RSSI in dBm and (b) SINR in dB for
LoS and NLoS scenarios with and without jamming attacks.

A distribution of the dataset on the jamming is presented
in figure 2, which illustrates the distributions of RSSI and
SINR.
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FIGURE 2: RSSI and SINR with jamming experienced by
the UAV receiver.
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The RSSI measurements exhibit a distinct bimodal dis-
tribution pattern between LoS and NLoS conditions. The
NLoS signals demonstrate a concentrated distribution with
Urssi = —95.7 dBm, indicating substantial signal attenuation.
Conversely, the LoS signals present a more dispersed dis-
tribution centered at p,s; = —84.0 dBm, reflecting superior
signal strength characteristics typical of direct path propa-
gation. The NLoS distribution’s pronounced, narrow peak
suggests consistent attenuation patterns, while the broader
LoS distribution indicates more diverse signal propagation
paths despite maintaining direct visibility.

The SINR distributions effectively illustrate the jamming
environment’s impact on signal quality. NLoS signals exhibit
multiple distinct peaks in the range of -50 dB to -20 dB,
with a mean value of L, = —31.2 dB, demonstrating severe
interference effects. The LoS signals display a more favor-
able distribution extending into positive values, characterized
by Usinr = —7.7 dB. The broader, right-skewed distribution
observed in LoS conditions indicates that despite direct vis-
ibility, jamming significantly degrades signal quality, albeit
to a lesser extent compared to NLoS scenarios.

H. Jamming Detection algorithm for UAVs

The proposed approach combines PCA features with trans-
former architectures to create an efficient and robust detec-
tion system.
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1) Feature Engineering with PCA for Time Series Data
Direct application of PCA to time series data often fails to
capture temporal dependencies effectively, resulting in sub-
optimal performance. In our initial experiments, training the
model solely with PCA components did not yield satisfactory
results. To overcome this limitation, we utilized PCA to
generate additional features, which were then integrated with
the raw data. This approach improved classification accuracy
by up to 5% for both LoS and NLoS datasets.

a: Sample Creation

For each time series signal S (either RSSI or SINR), we
transformed the 1D signal into a 2D sample matrix. Using
a rolling window of size 300, a signal S of length N was
converted into a matrix X of shape (N —299,300), where
each row represents a sample of 300 consecutive time steps.

b: Transformations for Feature Enhancement
To capture diverse temporal patterns in the 2D sample matrix
X, we applied a series of transformations. These include:

e The original samples X,

e Moving averages with window sizes of 2, 3, and 5,
adjusted via slicing to align output dimensions,

e Sub-sampled versions of X by selecting every 2nd or
3rd feature, with varying starting indices to account for
phase shifts.

In total, nine distinct transformations per signal were gen-
erated. For the precise definitions and implementation de-
tails of each transformation, refer to Algorithm 1 (Feature
Creation Algorithm). These transformations enhance the
temporal representation of the data, preparing it for the
subsequent PCA-based feature extraction step.

c: PCA Application and Feature Extraction
For each of the nine transformed matrices:

1) A PCA model was fitted to the data, retaining the
principal components (PCs) that collectively explain
99% of the total variance.

2) For further process, the first five principal components
were selected to reducing the feature dimensionality
while retaining a significant portion of the data’s vari-
ability.

This process generated up to five PCA features for each
transformation applied to the RSSI and SINR signals. Given
that a total of nine transformations were applied to each
signal, this resulted in a maximum of 45 features for each
original signal (RSSI or SINR). Consequently, for both RSSI
and SINR combined, a total of 90 features were obtained
for LoS scenarios, whereas for NLoS scenarios, a total of
54 features were derived. This discrepancy arises because,
in some transformed signals, only a single PC captured the
entire variance of the transformation.

d: Feature Scaling and Integration
Each of the 45 PCA feature columns per signal was nor-
malized to the range of the original sample matrix X

using the MinMaxScaler, with the feature range set to
(min(X), max(X)). The scaled PCA features were then con-
catenated with the original samples X along the feature axis,
creating an enhanced feature set. This integration preserved
the original data structure and avoided modifications to the
tokenization process.

Algorithm 1 PCA-Based Feature Creation for Time Series
Signals

: Input: Time series signals Srssr and SsiNg

: Output: Enhanced feature sets for RSSI and SINR

: for each signal S in {SRSSLSSINR} do
X « rolling_window(S, size = 300)

samples, shape: (|S| —299,300)

:l}b)l\)'—

> Create

5: Define transformation set .7:

6: h(X)=X > Original samples

7: T>(X) = moving_average(X,n =2)[:,2] >
Window 2, columns 2 to end

8: T3(X) = moving_average(X,n = 3)[:,3 ] >
Window 3, columns 3 to end

9: T4(X) = moving_average(X,n = 5)[:,5 ] >

Window 5, columns 5 to end

10: T5(X)=X[;,= } > Every 2nd point, start at O

11: To(X)=X[:,1::2] 1 Every 2nd point, start at 1

12: T7( ) =X[:,: ] > Every 3rd point, start at 0

13: T3(X)=X[:,1::3] > Every 3rd point, start at 1

14: Th(X)= [.,2 i 3] > Every 3rd point, start at 2

15: for each transformation 7; in .7 do

16: Fit PCA; on T;(X) with ncomponents Tetaining 99%
variance

17: end for

18: Xpca concatenate([PCA,.transform(7;(X))[:,:
5] fori=1to 9],axis=1)

19: miny, maxy < min(X),max(X) © Global min and
max of X

20: Xpca < scale(Xpca, range = [miny, maxy]) > Scale
each column

21: Xenhanced — concatenate([X, Xpcal, axis = 1)

22: end for

23: return Xephanced for each signal

e: Tokenization

The data processing pipeline of the proposed transformer
model begins with the collection of enhanced variants of
RSSI and SINR derived via Algorithm 1. Each enhanced
signal is discretized into 50 equal-sized bins using percentile-
based discretization, ensuring a uniform distribution across
the data range. This process assigns a unique integer value to
each bin, yielding 50 tokens per signal type. Consequently,
two sets of 50 bins are produced—one for RSSI and one
for SINR—resulting in a total of 100 distinct tokens rep-
resenting the wireless signal characteristics. The selection
of 50 equal-sized bins was determined through systematic
hyperparameter optimization, where bin counts ranging from
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25 to 100 were evaluated based on the model’s classification
performance metrics.

To construct the token vocabulary, additional utility tokens
are incorporated: CLS (assigned index 1), MASK (index 4),
and binary classification tokens NO_ATTACK (index 5) and
ATTACKED/JAMMED (index 6). Other indices until 9 are
reserved for potential future use, while the RSSI and SINR
tokens span indices 9 to 109. This configuration results in
a total vocabulary size of 110 tokens, with the maximum
index capped at 110 for consistency across both LoS and
NLoS scenarios. For training data, Time-Series Augmenta-
tion (TSA) techniques, inspired by [13], are applied to the
discretized RSSI and SINR signals to enhance robustness.
The input sequence is then formed by concatenating the
CLS token, the discretized enhanced RSSI, the discretized
enhanced SINR, and the label token. For LoS, this yields
an input length of 143454345+ 1 = 692 tokens, while
for NLoS, the length is 1+ 345+ 309+ 1 = 656 tokens,
reflecting differences in signal characteristics between the
two scenarios.

2) Deep Network Design

Building upon prior work on multi-headed deep networks
with attention mechanisms [13], we propose a U-shaped deep
network architecture, illustrated in figure 3, designed to de-
liver state-of-the-art performance in NLoS scenarios without
reliance on post-processing techniques. Inspired by the U-
Net architecture [58], this model incorporates modifications
to integrate multi-headed attention and variable embedding
dimensions across layers, enhancing its capability for robust
signal analysis.
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The architecture consists of an encoder pathway with three
stages, a corresponding decoder pathway with three stages,
and residual skip connections that link the two. These skip
connections enable direct gradient propagation from deeper
to shallower layers, mitigating gradient degradation during
backpropagation. The model processes input features and
generates output tokens that encapsulate predictions, achiev-
ing competitive performance without additional refinement
steps.

Input processing begins with the integration of RSSI mea-
surements, SINR values, and PCA-derived features. These
inputs are transformed into high-dimensional representations
via a token embedding layer, preparing them for subsequent
transformer-based processing.

The encoder pathway, depicted in red in figure 3, com-
prises sequential blocks that progressively refine input rep-
resentations. Each block integrates Convolutional Neural
Network (CNN) modules for local feature extraction, multi-
headed attention mechanisms for selective signal focus, and
Root Mean Square Normalization (RMSNorm) layers [59]
for training stability. These components are complemented
by Multi-Layer Perceptron (MLP) units featuring a Linear-
SwiGLU-Linear activation sequence, forming a robust fea-
ture extraction pipeline [60].

The decoder pathway, shown in blue, mirrors the encoder’s
structure while incorporating skip connections from the cor-
responding encoder layers to preserve critical information.
Symmetry between the encoder and decoder is maintained,
with the decoder leveraging similar components to recon-
struct and interpret encoded features for classification. This
U-shaped configuration enhances multi-scale feature analysis
within the transformer framework.
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Within each block, parallel processing paths enhance
feature extraction: direct Linear-SiLU-Linear transforma-
tions[61] operate alongside CNN layers, while multiple
Query-Key-Value (QKV) attention mechanisms [34] process
distinct signal aspects concurrently. Inspired by the Diff
Transformer from [62], differential computations are applied
to the attention outputs of specific heads (e.g., heads 6
and 7) to enrich feature representations. A final MLP layer
integrates these diverse features for comprehensive analysis.

RMSNorm is employed at multiple stages to ensure
consistent normalization and training stability, enabling the
model to focus on pertinent signal characteristics while
suppressing noise. Skip connections further preserve gra-
dient flow, enhancing training efficiency. The architecture
culminates in a classification layer that leverages these rich
feature representations to accurately predict jamming threats,
capturing both overt and subtle attack patterns.

This design excels in processing multiple input feature
types simultaneously while preserving their interrelation-
ships. The U-shaped structure facilitates hierarchical feature
extraction, and skip connections ensure information retention
across processing stages, making the model well-suited for
complex signal analysis tasks.

a: Detailed Architecture Specification
The encoder and decoder blocks operate at varying embed-
ding dimensions, defined as follows:
o Encoder Dimensions: 256, 128, 64
o Decoder Dimensions: 64, 128, 256
Each block comprises:
e An RMSNorm layer for normalization.
e A CNN layer with kernel size 3 and padding 1 for local
feature extraction.
e A Linear-SiLU-Linear transformation sequence.
e An 8-headed attention mechanism with differential
computations.
e Residual connections paired with SwiGLU-activated
MLP blocks.
The hierarchical reduction of embedding dimensions in the
encoder is symmetrically reversed in the decoder, maintain-
ing structural balance.

b: Attention Mechanism and Differentiation
The multi-headed attention mechanism processes embed-
dings through distinct groups:
e Heads 0 and 1 directly process normalized inputs.
e Heads 2 and 3 process CNN-transformed embeddings
via an MLP.
e Heads 4 and 5 rely solely on CNN transformations.
e Heads 6 and 7 compute differences between normalized
inputs and CNN-transformed outputs.
This configuration, combined with differential attention in-
spired by [62], enhances the model’s ability to capture
nuanced signal variations, contributing to its effectiveness
in identifying jamming patterns.

3) Proposed Training Algorithm

In this work, we propose a robust training framework for
time series data that accelerates convergence and improves
generalization. The framework integrates four key com-
ponents: (i) a chunking strategy for data sampling, (ii)
dynamic batch size scheduling combined with learning rate
adjustment, (iii) an Exponential Moving Average (EMA) for
model weights with an integrated restoration mechanism, and
(iv) mixed precision training with gradient clipping. These
components are detailed in the following sections.

a: Chunking Strategy

To mitigate temporal correlations and reduce training time,
we adopt a chunking strategy that partitions the training
dataset into a fixed number of chunks (e.g., 10). In each
epoch, a subset is selected from the dataset by choosing
every nth sample with an offset determined by a randomized
permutation. This ensures that samples used in a mini-
batch maintain a minimum temporal gap, thereby promoting
diversity and reducing overfitting. The pseudocode for the
chunking algorithm is provided in Algorithm 2.

Algorithm 2 Chunking Strategy for Data Selection

Require: Number of chunks n, current epoch e, training
dataset Diain

1: Set n+ 10 > User-defined number of chunks

2: Compute s <— e mod n

3: if s =0 then

4: Generate a new random permutation P of
{0,1,...,n—1}

5: set s 0

6: else

7: Set s < Pls]

8: end if

9: Select subset: Dgypset < Dyrain[s @ 7]

10: return Dgypet

In each epoch, the subset Dgypst 1S used for training,
ensuring that samples are minimally correlated (with a gap
of at least 10 time steps) and that the overall data diversity
is maintained.

b: Dynamic Batch Size Scheduling and Learning Rate
Adjustment

To optimize convergence, our framework employs a dy-
namic batch size scheduler that adjusts the effective batch
size via gradient accumulation. Initially, the scheduler is
deactivated. If validation loss and accuracy fail to improve
over successive epochs, the scheduler increases the effective
batch size by modifying the gradient accumulation steps.
This approach enables the network to benefit from larger
batch sizes without incurring additional memory overhead.
Concurrently, a learning rate scheduler with a warmup phase
(e.g., 8 epochs) adjusts the learning rate dynamically. The
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combination of these schedulers accelerates convergence and
enhances validation performance. [63]

c: Weight Moving Average and Restoration Mechanism

To stabilize training and improve generalization, an EMA
of the model parameters is maintained. When validation
performance improves, the current model state is saved as
the best checkpoint. The EMA is then updated according to:

Wnew =a- Wprev + (l - (X) : Wcurrenta (12)

where « is a small factor (e.g., & = 0.001), Wyey denotes the
previously maintained weight vector, and Weyren: represents
the current weights

- Parameter Selection and Initialization: The factor o =
0.001 was selected based on established EMA practices in
deep learning [64] and provides robust performance without
extensive tuning. Initialization is straightforward: the EMA
vector is initialized using the model’s parameters after the
first epoch, ensuring the moving average begins with mean-
ingful weights rather than random values. This value bal-
ances training stability (preventing noise amplification) with
adaptation responsiveness (allowing genuine improvements
to influence the averaged weights).

In cases where validation metrics degrade for two consec-
utive epochs (tracked via a restoration counter), the model is
restored to the best checkpoint and a modified weight update
is applied with @ = 0.005 to accelerate recovery from perfor-
mance degradation. This parameter was determined through
empirical evaluation during our preliminary experiments and
eliminates the need for manual parameter tuning in practical
applications, as the system automatically adjusts between
conservative averaging (o = 0.001) and aggressive adapta-
tion (@ = 0.005) based on training dynamics. This restoration
mechanism ensures that the training process remains stable
despite fluctuations in performance while providing built-in
robustness without requiring hyperparameter optimization.

Our implementation includes several key features that
informed this decision: 1. Dual validation criteria: The model
checkpoint is saved when either validation loss decreases
OR validation accuracy improves, providing flexibility in
optimization trajectories. 2. Soft restoration mechanism:
When patience is exceeded, we don’t simply revert to the
best weights. Instead, we apply exponential moving average
(EMA) with a factor of 0.005, blending 99.5% of the
best model weights with 0.5% of the original initialization.
This approach helps maintain some exploration capacity
while primarily focusing on the proven good configuration.
3. Adaptive batch size scheduling: Upon restoration, we
enable batch size scheduling, which provides an additional
mechanism for escaping local minima through gradient noise
modulation.

d: Mixed Precision Training and Gradient Clipping

To improve computational efficiency, the training process
employs mixed precision training using PyTorch’s Auto-
matic Mixed Precision (AMP) framework. Computations
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are performed in bfloat16 precision on CUDA devices,
and a gradient scaler is used to avoid numerical underflow.
Furthermore, gradient clipping with a maximum norm of 1.0
is applied to prevent exploding gradients, thereby ensuring
stable and robust model updates.

e: Loss Function with Entropy Regularization

Inspired by the maximum entropy reinforcement learning
framework underpinning the SAC algorithm [65], we adapt
the entropy regularization principle to supervised classifica-
tion. In Soft Actor Critic (SAC), the policy is optimized not
only to maximize expected reward but also to maximize the
entropy of the action distribution, promoting stochasticity
that leads to better exploration and robustness in high-
dimensional environments.

While SAC operates in the reinforcement learning domain,
the underlying principle of entropy regularization translates
effectively to supervised learning for uncertainty quantifi-
cation [66], [67]. In our classification context, the entropy
term serves an analogous purpose: encouraging the model
to maintain prediction uncertainty when the evidence is
ambiguous, thereby preventing overconfident predictions on
noisy or adversarial inputs. This approach has been shown
to improve generalization in classification tasks, particularly
in domains with high noise or distributional shift

The entropy regularization in our loss function thus
adapts SAC’s exploration strategy to the supervised learning
paradigm, promoting robustness against jamming attacks that
may not perfectly match training scenarios. The standard
classification loss is augmented with an entropy regularizer.
The modified loss function is defined as

_ Lbase - AentropyI'I (X )

L , (13)
Naccum
where Ly, is the standard cross-entropy loss,
n
H(X)=—Y P(x;)logP(x;) (14)
i=1

14

denotes the entropy of the predicted probability distribu-
tion, Acnropy (€.g., 0.4) is a hyperparameter controlling the
regularization strength, and N,ccym i the number of gradient
accumulation steps. By incorporating an entropy regularizer
into the classification loss, we encourage the model to main-
tain higher predictive entropy—avoiding overly confident or
deterministic output distributions unless strongly supported
by the data. This entropy regularization promotes better
generalization by mitigating overfitting, particularly in low-
data or noisy settings, and aligns with recent findings that
uncertainty-aware models tend to perform more robustly. In
practice, if the computed loss becomes non-finite (e.g., NaN
or infinity), the corresponding batch is skipped to ensure
stable and reliable training. This approach adapts SAC’s
entropy-based regularization from reinforcement learning to
supervised classification in a principled way, preserving the
core benefit of uncertainty-driven learning dynamics.
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Scenario Parameters Values

Terrestrial Users 0,5, 10

Authenticated UAVs 1

Small Cells 10

Small cell height 10 m

Attackers 0,1,2,3,and 4

Speeds 10 m/s

Small cell power 4 dBm

Authenticated UAV power 2 dBm

Attackers power 0, 2, 5, 10, and 20 dBm
Authenticated UAV position ~ URD*

Attackers position URD*

Small cells position URD*

Distance 100, 200, 500, and 1000 m
Central Frequency 3.5¢9

Bandwidth 20e6

Noise Figure 5dB

*URD - Uniformly Random Distributed.
TABLE 1: Dataset Parameters. [13]

f: Summary

The integration of a data chunking strategy, dynamic batch
size and learning rate scheduling, an EMA with a restora-
tion mechanism, and mixed precision training with gradient
clipping results in a comprehensive framework for training
models on time series data. Experimental results demonstrate
that this approach not only accelerates convergence but also
enhances generalization, yielding improved validation and
test performance.

lll. Results

a: Experimental Setup and Methodology

This section presents the results and performance analysis
of our proposed U-shaped transformer architecture with
PCA-enhanced features against established baseline meth-
ods. We evaluate our approach against seven comparison
algorithms: DNN, DNN+M1, DNN+M2, and XGBoost clas-
sifiers from [13], CNN architecture from [68], and our
proposed transformer variants with and without entropy
regularization. All experiments employ consistent dataset
partitioning with 70% training, 15% validation, and 15%
testing using temporal stratification to prevent data leakage.
The proposed transformer architecture follows the configu-
ration parameters detailed in Tables 1 and 2, respectively.

A. Classification Comparison with Other Algorithms
Table 3 presents the comparative performance of our pro-
posed approaches against seven different baseline methods
for classification accuracies in both NLoS and LoS scenarios.
The entropy-enhanced model ("Proposed + entropy")
achieves the highest detection rate in NLoS conditions at
85.06%, significantly outperforming all competing meth-
ods. This performance underscores the effectiveness of our
uncertainty-based regularization technique in challenging

Parameter LoS and NLoS
Block size (LoS, NLoS) (692, 656)
Layer number 6
Learning Rate 1x107*
Heads number 8
Vocab size 110
Encoder Embedding [256, 128, 64]
Decoder Embedding [64, 128, 256]
Dropout 0.4
Batch Size 64
Noise 0.03
(Rand. Mask Prob., Target Mask Prob.) (training) (0.25, 0.85)
(Rand. Mask Prob., Target Mask Prob.) (prediction) (0.0, 1.0)
Model Parameters 22 M

TABLE 2: U-shaped Transformer Model configuration

Category NLoS LoS
Proposed + entropy 85.06 89.46
Proposed 79.10  87.37
DNN [13] 75.60  89.59
DNN+MI [13] 83.07  89.98
DNN+M2 [13] 79.00  90.80
XGBoost [13] 80.58  86.33
CNN + entropy [68] 68.21 79.89
CNN [68] 64.88  81.86

TABLE 3: Classification accuracy (%) with window size
300. Best results are in bold.

signal environments where direct paths are obstructed. In
LoS conditions, our entropy-enhanced model achieves a
competitive 89.46% detection rate, while the DNN+M2
approach from [13] shows marginally better performance at
90.80%.

The results demonstrate that entropy-based regularization
consistently improves detection capabilities, as evidenced
by the performance gap between our basic and entropy-
enhanced models (79.10% vs. 85.06% in NLoS, and 87.37%
vs. 89.46% in LoS). This pattern is also observed in CNN-
based methods in [68], where entropy integration shows
mixed effects depending on the signal environment. Notably,
our proposed method without entropy regularization ("Pro-
posed") reaches 87.37% in LoS scenarios, outperforming
both XGB (86.33%) and CNN-based approaches (81.86%
and 79.89%), further validating the effectiveness of our U-
shaped transformer architecture even without the additional
entropy component. When comparing our approach with
DNN variants in [13], we observe that our entropy-enhanced
model provides more balanced performance across both
LoS and NLoS conditions. While DNN+M1 and DNN+M?2
achieve strong results in LoS scenarios (89.98% and 90.80%
respectively), they demonstrate more significant performance
degradation in the challenging NLoS environment (83.07%
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FIGURE 4: Performance comparison of jamming classification algorithms under different signal propagation conditions. The
matrices illustrate classification accuracy with and without entropy-based feature enhancement, demonstrating the impact
of both propagation environment and algorithm selection on jamming detection performance.

and 79.00%). This highlights the robustness of our proposed
U-shaped transformer architecture with entropy regulariza-
tion, which maintains high detection rates even under adverse
signal conditions, making it a reliable solution for real-world
wireless security applications such as the UAV non-line-sight
applications.

B. Confusion matrix with entropy and no entropy

Figure 4 illustrates the performance matrices for our signal
jamming classification framework evaluated under varied
propagation environments. Our investigation contrasts tra-
ditional classification techniques against our novel entropy-
enhanced methodology across both NLoS and LoS transmis-
sion scenarios.
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In the NLoS condition (Figure 4a), the standard clas-
sification approach achieves a true positive rate of 0.46
for attack detection and a true negative rate of 0.34 for
non-attack classification. However, the relatively high false
positive rate of 0.16 indicates a tendency to misclassify legit-
imate transmissions as attacks. When the entropy-enhanced
approach is applied, we observe a significant improvement
in discrimination capability. While the true positive rate
remains comparable at 0.45, the true negative rate increases
substantially to 0.40, with a corresponding reduction in
false positives to 0.09. This represents a 43.8% decrease in
false alarms, which is crucial for practical deployment of
jamming detection systems where false positives can lead to
unnecessary countermeasures and system disruption.
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For LoS configurations (Figure 4b), both methodologies
exhibited enhanced performance relative to NLoS conditions,
due to the more consistent signal properties characteris-
tic of direct-path transmission. The conventional approach
recorded a true positive rate of 0.47, true negative rate of
0.40, and false positive rate of 0.09. Our entropy-enhanced
algorithm further refined these metrics: increasing the true
positive rate to 0.48, true negative rate to 0.42, while re-
ducing false positives to 0.08. Although these improvements
appear incremental compared to the NLoS scenario, they
consistently validate the efficacy of entropy-based feature
incorporation across diverse propagation conditions.

The performance variations between NLoS and LoS en-
vironments highlight how propagation characteristics fun-
damentally influence jamming detection reliability. NLoS
configurations introduce significant challenges through mul-
tipath propagation effects, signal degradation, and high vari-
ability—factors that can mask the characteristic of jamming
activities. Our entropy-enhanced approach demonstrates par-
ticular effectiveness in addressing these challenges through
the implementation of our entropy-augmented loss function.

C. Distance Based Accuracy Comparison
The bar graph in figure 5 compares the accuracy performance
of seven neural network methods at four UAV distances from

a base station: 100m, 200m, 500m, and 1000m. The methods
include three DNN variants (standard DNN, DNN Method 1,
DNN Method 2) and four testing approaches (U-shape and
CNN tests, each with and without an entropy regularizer).
At 100m, all methods achieve between 65-80% accuracy,
with DNN Method 1 and U-shape Test with entropy show-
ing slightly better performance. As distance increases to
200m, a performance gap emerges with U-shape Test with
entropy reaching 88.2%, while CNN Test without entropy
drops to about 66.9%. The 500m distance marks the peak
performance point for most methods, with U-shape Test
with entropy exceeding 90.9% accuracy, closely followed
by U-shape Test without entropy at around 87.1% and DNN
Method 1 at approximately 85%. Both DNN Method 2 and
standard DNN also perform well at this distance, while
CNN tests remain significantly lower. At the maximum
tested distance of 1000m, DNN Method 1 achieves the
highest accuracy at approximately 89.3%, followed by DNN
Method 2 and U-shape Test with entropy at about 84%.
This suggests DNN Method 1 has superior performance
at extreme distances, while CNN-based approaches con-
sistently show the poorest results across all tested ranges.
The consistent superiority of entropy-incorporated methods
across all distances indicates that entropy provides valuable
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information for the neural network classification process in
this UAV application context.

D. Comparison with entropy and no entropy

Figures 6a and 6b present a comparative analysis of U-shape
and CNN network architectures for UAV communications at
varying distances from the base station. For clarity, other
algorithms were omitted from the visualizations.

Methods

—# - U-shape Validation (with entropy) —& - CNN Validation (with entropy)
—-= U-shape Validation (without entropy) —-= CNN Validation (without entropy)
—Je— U-shape Test (with entropy) —J— CNN Test (with entropy)

—e— U-shape Test (without entropy) —e— CNN Test (without entropy)
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FIGURE 6: U_shaped and CNN [68] model’s Entropy and
Non-Entropy analysis using validation data under LoS and
NLoS conditions.
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The analysis is presented in two distinct scenarios: LoS
conditions (upper panel) and NLoS conditions (lower panel).
Under LoS conditions, 6a, the U-shape architecture demon-
strates high resilience, with accuracy initially climbing from
78% at 100m to peak at 97% at 500m before stabilizing
at 96% at 1000m. In contrast, the CNN architecture shows
lower overall performance and greater sensitivity to distance,
dropping to its minimum of 75% at 500m before partially
recovering to 88% at 1000m. In Non-LoS environments 6b,
performance degradation is evident for both architectures.
The U-shape model maintains superiority with accuracy
ranging from 75-90%, while CNN performance declines dra-
matically with increasing distance, falling to approximately
60% at distances beyond 500m. The integration of entropy-
based mechanisms (marked with stars in both panels) proves
to be a critical enhancement factor across all tested configu-
rations. For both U-shape and CNN architectures, entropy
incorporation consistently yields higher accuracy values
compared to their standard counterparts. This improvement is
particularly pronounced in challenging scenarios, suggesting
that entropy-based approaches effectively capture uncertainty
in signal processing, leading to more robust classification
performance in variable UAV communication environments.
Additionally, the validation metrics (dash-dot lines) typi-
cally exceed test performance (solid lines), suggesting some
degree of model generalization challenges. These results
emphasize the U-shape architecture’s superior robustness for
UAV communication applications, particularly in challenging
long-distance and NLoS environments where reliability is
critical, with entropy-based approaches further enhancing
performance across all experimental conditions.

E. Alternative Methods and Validation

We also experimented with alternative methods for creating
derived signals, such as first and second differentiation.
However, PCA applied to these signals resulted in a large
number of PCs, with the leading components capturing only
a small proportion of the signal variance. Consequently, these
methods were not included in our final approach.

The methods we adopted ensured that the new PCs cap-
tured over 70% of the signal variance, indicating that the
derived features were both informative and valuable. These
extra features approach improved the overall model accuracy
and performance.

IV. Conclusion

The study presents a novel transformer-based framework
for jamming attack identification within UAV-integrated 5G
networks, augmented through dimensional reduction via
PCA and entropy regularization techniques. The incorpo-
ration of a modified cross-entropy objective with entropy-
based regularization effectively mitigates prediction over-
confidence, yielding substantial enhancements in detection
capability. Our architecture attains peak detection efficacy of
85.06% in NLoS environments, with our entropy-enhanced
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variants surpassing traditional machine learning approaches
like XGBoost by approximately 4.5% and contemporary
deep learning methodologies by roughly 2%. The architec-
ture’s effectiveness stems from its sophisticated processing
of multidimensional wireless indicators, including RSSI and
SINR measurements, combined with attention mechanisms
that effectively capture temporal correlations within signal
patterns.

The comparative analysis demonstrates our approach’s
resilience across varied propagation conditions. Within chal-
lenging NLoS environments, our entropy-enhanced archi-
tecture significantly outperforms alternative methodologies,
while maintaining competitive performance in LoS scenar-
ios—validating the efficacy of our entropy regularization
strategy in complex transmission environments. These find-
ings illuminate the considerable potential of transformer
architectures in strengthening wireless security frameworks,
particularly for unmanned aerial systems where jamming
vulnerabilities continue to proliferate.

Several promising research directions emerge from this
work. Future investigations should address computational op-
timization for deployment in resource-constrained environ-
ments, enhance adaptability to emerging jamming strategies,
and evaluate applicability within next-generation wireless
frameworks. As UAV integration within communication net-
works accelerates, the demand for sophisticated interference
detection systems will intensify correspondingly. While our
proposed architecture represents a meaningful advancement
in wireless security, continued research remains essential to
address evolving threats, strengthen resilience against novel
attack vectors, and ensure efficient implementation across
heterogeneous operational environments.
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2.2. Article #2: A Hybrid Approach to Reliable Jamming Identification in
UAV Communications Using Combined DNNs and ML Algorithms

This article presents a novel hybrid approach to jamming detection in [TAV] commu-
nications, combining with [MT] algorithms. The primary objective was to develop a
reliable detection framework capable of enhancing the accuracy and reliability of binary
classification [DNNk by effectively managing uncertainty levels. This research introduced
innovative preprocessing and post-processing techniques, which paved the way for more
robust jamming detection methodologies in [UAV] communications.

The key contribution of this work to the present thesis lies in the development of the
hybrid detection framework itself, as well as the foundational principles underlying its de-
sign. Specifically, the research demonstrated that by strategically integrating [DNNk with
[MTJ algorithms and employing novel preprocessing and post-processing techniques, sig-
nificant improvements in jamming detection reliability could be achieved. A particularly
noteworthy contribution was the introduction of calibration error metrics, confidence val-
ues, and the [RS] which quantifies the disparity between Mean Accuracy (MA]) and Mean
Confidence (MC).

The effectiveness of these methods was demonstrated through application to simu-
lated real-world scenarios, showcasing improvements in jamming detection reliability for
[TAV] communications. The proposed algorithms were rigorously evaluated against base-
line and enhanced with the eXtreme Gradient Boosting (XGB]) classifier,
providing robust validation of the hybrid approach.
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e Title: A Hybrid Approach to Reliable Jamming Identification in [JTAV] Commu-
nications Using Combined and [MTJ] Algorithms

e Date: 2024
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bastiao, Victor P. Gil Jimenez, Rui Dinis
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The significance of this paper lies in its introduction of a comprehensive hybrid ap-
proach that addresses key challenges in [JUAV] jamming detection while maintaining practi-
cal implementation feasibility. Furthermore, this work established fundamental concepts
that would be expanded upon in subsequent research, particularly in the areas of attention

mechanisms and uncertainty management in detection systems.
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ABSTRACT Deep Neural Networks (DNNs) have gained prominence due to their remarkable
accomplishments across various domains, including telecommunications and security. Their integration into
decision-making processes within 5G telecommunication systems and UAV security is noteworthy. However,
the iterative nature of DNN data processing can introduce uncertainties in classification decisions, impacting
their reliability. This paper presents novel combined preprocessing and post-processing techniques designed
to enhance the accuracy and reliability of binary classification DNNs by managing uncertainty levels. The
study evaluates these methods through calibration error metrics, confidence values, and the Reliability
Score (RS), which quantifies the disparity between Mean Accuracy (MA) and Mean Confidence (MC).
Additionally, the effectiveness of these methods is demonstrated by applying them to simulated real-world
scenarios to improve jamming detection reliability in UAV communications. The proposed algorithms’
impact is compared against baseline DNNs and DNNs augmented with the eXtreme Gradient Boosting
(XGB) classifier, as well as the latest research to validate our approach. This paper comprehensively
overviews the experimental setup, dataset, deep network architecture, preprocessing and post-processing
techniques, evaluation metrics, and results. By addressing uncertainty in XGB and DNN outputs, this study
improves the trustworthiness of ML-DNN-based decision-making processes in 5G UAV security scenarios.

INDEX TERMS Unmanned aerial vehicle, deep neural networks, machine learning, uncertainty, reliability,
jamming identification, eXtreme gradient boosting (XGB) classifier, 5G, 6G.

I. INTRODUCTION
The associate editor coordinating the review of this manuscript and Deep Neural Networks (DNNs) have gained significant
approving it for publication was Xiao-Sheng Si . prominence due to their remarkable achievements across

© 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.
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various domains, including telecommunications and secu-
rity [1], [2], [3]. These models are increasingly integrated into
decision-making processes within 5G telecommunication
systems and Unmanned Aerial Vehicle (UAV) [4] security.
Notably, Machine Learning (ML) mechanisms, including
DNNS, are anticipated to be incorporated into the standards
of 6G telecommunication systems [1]. Extensive research has
also focused on leveraging deep learning for decision-making
in the physical layer [2]. In the 5G UAV security realm, DNN’s
offer capabilities such as universal function approximation,
exceptional logic for complex time series modeling chal-
lenges, and potential for parallel data processing, contingent
upon their design [5], [6]. However, the iterative nature
of DNNs’ data processing during classification tasks can
lead to output probabilities accompanied by uncertainties,
raising concerns regarding the reliability of classification
decisions. Addressing the calibration of DNNs to ensure high
accuracy and reliable output decisions is critical, as discussed
in [7]. The authors present various calibration techniques that
enhance these parameters by leveraging well-known datasets
such as CIFAR-10 and ImageNet and pre-trained DNNs
such as ResNet, WideNet, and LeNet. As augmentation
techniques are integrated into the original data preprocessing
stage, understanding concepts such as risk, uncertainty, and
trust in a model’s output becomes increasingly vital. In [8],
the authors propose that preprocessing and post-processing
techniques can enhance DNNs’ performance. Furthermore,
they introduce methods that improve classification accuracy
while reducing uncertainty, accompanied by mathematical
approaches to compute metrics like Expected Calibration
Error (ECE) and Maximum Calibration Error (MCE).
In this paper, we present novel combined preprocessing
and post-processing techniques to enhance the accuracy
and reliability of binary classification DNNs by managing
uncertainty levels. Our main contributions are as follows:

« We introduce combined preprocessing and
post-processing algorithms that improve the reliability
and accuracy of ML-DNN outputs for jamming
identification in 5G UAV scenarios.

« We provide a comprehensive overview of the experi-
mental setup, dataset, deep network architecture, pre-
processing and post-processing techniques, evaluation
metrics, and results, highlighting improvements in trust-
worthiness for DNN-based decision-making processes
in 5G UAV security scenarios.

« We propose a Time-Series Augmentation (TSA) tech-
nique as part of the preprocessing phase, generating
diverse versions of each sample to provide diversity for
post-processing techniques.

« We evaluate the effectiveness of our proposed methods
through calibration error metrics, confidence values, and
the Reliability Score (RS), quantifying the disparity
between Mean Accuracy (MA) and Mean Confidence
MO).

« We demonstrate that the proposed methods can be
directly applied to real-world scenarios to enhance the

reliability of jamming detection in UAV communi-
cations. A comparative analysis is performed against
baseline DNN and Enhanced ML-DNN using the
eXtreme Gradient Boosting (XGB) classifier.

The structure of the paper is as follows: Section II
provides a comprehensive description of all the components
involved in the experiment. The dataset is explained in
Subsection II-A. In Subsection II-B, the deep network
used in the study is discussed. Subsection III delves into
the combined preprocessing and post-processing techniques
and elucidates how they enhance reliability and accuracy.
Subsection I1I-B presents the metrics employed to evaluate
the reliability of each method. Section IV presents the results
for the proposed system. Finally, Section V summarizes the
main conclusions drawn from the study and presents some
topics for future work.

Il. SYSTEM MODEL

We consider the DNN jamming classification system based
on the Received Signal Strength Indicator (RSSI) and Signal
to Interference-plus-Noise Ratio (SINR) signals as described
in [9]. The scenario depicted in Figure 1 involves up to four
attackers randomly positioned within a designated area, while
the UAV maintains a connection to the base station via 5G.

Area
. 200m?

W Attackers in Random locations |

= uav
Q)

Base Station

FIGURE 1. Jamming scenario.

The dataset utilized for this research is sourced from the
same reference, and the classification is conducted using
either a designed DNN or an XGB classifier algorithm.
This system enhances accuracy and reliability by integrating
preprocessing and post-processing algorithms, as illustrated
in Figure 2. The proposed system comprises four main com-
ponents, arranged from the upper left to right in the figure:
the preprocessing algorithm, the primary classifier, the post-
processing algorithms, and the auxiliary classifier. The
preprocessing algorithm processes the input sample sample;
and augmented samples generated via the TSA technique.
The post-processing algorithm incorporates Methods 1, 2,
and 3, each with their respective auxiliary algorithms. The
system includes the “No Method” block for comparative
purposes. At the end of the post-processing algorithm,
we perform feature classification and independently evaluate
the accuracy and reliability of each algorithm by analyzing
the classification results from the primary and auxiliary
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FIGURE 2. Schematic representation of the integrated preprocessing and post-processing algorithms, in which the DNN is the
primary algorithm, and ML is the supporting algorithm. The DNN architecture is based on the work by [9].

classifiers. In our study, we employ the XGB classifier
algorithm due to its superior performance in detecting the
presence or absence of attacks across various scenarios
and configurations, as detailed in the dataset discussed in
Section II-A and described in [9] and [10].

A. DATASET

Our dataset consists of two signal parameters: RSSI and SINR
measurements. These measurements are collected when an
authenticated UAV connects to a small cell through the
5G communication system while being subjected to power
attacks from other UAVs. Both values were collected from
NS3 5G-Lena Simulator in [11]. We transform these two
time series variables into supervised samples by employing a
rolling window of 300 values. Additionally, other terrestrial
users are connected to the network. Consequently, the mea-
sured parameters in the authenticated UAV exhibit variations
as interference from other devices fluctuate. The dataset
includes up to four attackers and 30 terrestrial users connected
simultaneously. As part of our research, we are also investi-
gating and analyzing other open-source datasets, including
WSN-DS [12] and [13], to obtain a diverse dataset with
mature data. Further details regarding the dataset construction
and its potential applications can be found in [9] and [14].

B. DEEP NETWORK ARCHITECTURE

In this paper, our primary focus is to conduct a comprehensive
analysis of the confidence values within the XGB and
deep network, particularly assessing its reliability. Detailed
discussions regarding the design and parameters of the DNN
utilized in this study are available in previous works [9], [10].

Ill. DESIGNED SOLUTION

This section presents an overview of the proposed prepro-
cessing and post-processing algorithms, precisely Method 1,
Method 2, and Method 3, as well as the implementation of
the overall solution.

1) PREPROCESSING TECHNIQUE
In the TSA technique, the time series sequence of each sample
is inverted to generate a new augmented sample. For example,
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the RSSI and SINR will include the original sequence and
its inverted counterpart within an appropriate rolling window.
During the preprocessing phase, each variable’s original and
inverted sequences are combined to create four new samples.
Generally, the technique can generate 2Mvriables augmented
samples, where Nygrighies 1S the number of variables the
DNN uses as input. All original and augmented samples are
used to train our ML and DNN, as depicted in Figure 2.
After the primary classifier processes the augmented version
of each sample, the results are utilized as inputs in the
post-processing algorithms. Table 1 provides an example
of generating the four new augmented samples using the
preprocessing algorithm.

TABLE 1. Output of the TSA.

Sample Sequence 1 (RSSI)  Sequence 2 (SINR)
Sample 1 Same Same
Sample 2 Same Flipped
Sample 3 Flipped Same
Sample 4 Flipped Flipped

2) POST-PROCESSING METHODS

In the preprocessing step of the proposed method, the
TSA technique is applied to each instance, generating all
augmented samples as outlined in Table 1. Subsequently,
the primary classifier produces output for each sample,
including its augmented versions. This paper introduces
three post-processing techniques for the proposed system
designated Methods 1, 2, and 3 (M1, M2, and M3). Each
method leverages the main classifier outputs of all augmented
samples generated in the preprocessing phase, as described
in subsection III-1, to evaluate the classification output.
These post-processing techniques aim to enhance the primary
classifier’s classification accuracy and reliability, providing
greater flexibility in selecting the optimal approach for a
given classification task. Method 1, Method 2, and Method
3 utilize the outputs from the primary classifier to classify
each augmented sample into Class 1, Class 2, or Rejected. For
samples rejected by Methods 1, 2, or 3, an auxiliary classifier
is employed to refine these classifications further, thereby

3



IEEE Access

H. Farkhari et al.: Hybrid Approach to Reliable Jamming Identification in UAV Communications

improving overall accuracy and reliability. The auxiliary
classifier processes only the rejected results to produce the
final classification output. Each classification occurs inside
an interval range defined in Section III-3.

3) FILTERS INTERVAL

The primary classifier produces probability outputs for N
classes. A filter range encompassing all N probability values
is defined for post-processing analysis. In binary classifi-
cation, a sample is considered accepted if its confidence
value exceeds the upper limit of the filter interval and the
probability of other classes is below the lower limit of the
filter interval. Conversely, a sample is rejected if at least one
of the output vector probabilities falls within the filter range.
Figure 3a shows the proportion of accepted and rejected
samples per filter interval, while Figure 3b illustrates the
accuracy of accepted samples after applying the filter. Adopt-
ing this filtering approach, the primary classifier can produce
more refined outputs and ensure high-quality classification
results. This method also facilitates the identification of
samples that meet specific criteria, offering a more nuanced
evaluation of model performance. In all figures, utilizing
a filter range of 0.5-0.5 where the rejected samples are
0% signifies the exclusive application of methods on the
main algorithm without conditions for rejecting samples.
Consequently, no accepted samples are transmitted to the
second auxiliary algorithm.

4) METHOD 1

In Method 1, the initial step identifies whether a sample is
accepted or rejected and assigns the corresponding class label
if accepted. This step involves checking the filter interval
conditions for all four samples. If all four augmented versions
are rejected, the sample is classified as rejected, and the
process terminates. The output of Method 1 is the average
probability per class for the accepted samples. The filter
interval condition for this output is then re-evaluated, and
the result is categorized as accepted or rejected. Finally, the
accepted samples are classified into their respective classes,
while the rejected samples are forwarded to an auxiliary
classifier for final classification as in algorithm 1.

Algorithm 1 Method 1
Require: 0 <yp; < 1forje{l1,2,3,4},iel,...,N
Ensure: Accepted || Rejected < Assign ypj;
(B1, B2) < B filter range
ifyplj S :31 ”132 S yplh v.] € {1’ 27 39 4} then
ypi < Average;(ypi;)
end if
if ypi < B1llB2 < ypi then
Accepted < yp;
else
Rejected < yp;
end if

5) METHOD 2

Method 2’s filter interval conditions for each augmented
output are not individually checked. Instead, the average
probability per class is computed across all four results. This
average is then evaluated against the filter interval conditions
to determine whether the sample should be accepted or
rejected. This approach contrasts with Method 1, in which
the filter interval conditions for each augmented output are
matched before computing the average probability per class
for the accepted samples. The detail of Method 2 is presented
in algorithm 2.

Algorithm 2 Method 2
Require: 0 <yp; <1forje{1,2,3,4},iel,...,N
Ensure: Accepted || Rejected < Assign ypj;
(B1, B2) < B filter range
ypi < Average;j(yp;j),Vj € {1,2,3,4}
if yp; < BillB2 < ypi then
Accepted < yp;
else
Rejected < yp;
end if

6) METHOD 3

Method 3, as detailed in Algorithm 3, explores three
distinct techniques. The first technique, M3-max, involves
selecting the output with the highest confidence. The second
strategy, M3-min, applies a minimum trust threshold to
reject samples with low confidence when integrating this
method into the primary algorithm. In M3-N, augmented
samples with the highest and lowest confidence values are
initially eliminated due to concerns of overconfidence and
underconfidence. Subsequently, the remaining augmented
versions are averaged. Finally, averaging is performed over
all enriched samples without removal when no augmented
outputs remain after excluding high and low-confidence
results. All techniques are summarized in Table 2. Section IV
presents the results of Method 3.

7) CONFIDENCE VALUES

In DNNs, the softmax layer is typically employed as the
output layer to generate a probability distribution over a
set of classes for each input sample. The resulting output
is a one-hot encoded vector, where each element represents
the probability of the corresponding category. To determine
the correct class for each sample, only the maximum value
in the vector is considered as one, indicating the most
probable class, while the rest are rounded to zero. Our study
posits that the confidence level of a sample’s classification
in N-class problems can be determined by considering
the maximum probability value of its corresponding one-
hot vector. This approach results in confidence values
ranging from 0.5 to 1 in binary classification. A minor
difference between the confidence score and its rounded
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Algorithm 3 Method 3
Require: 0 <yp; < 1forje{l1,2,3,4},iel,...,N
Ensure: Accepted || Rejected || Output < Assign yp;;
(B1, B2) < B filter range
confp, < confidence base
if confy, is Max then > Method 3-max
ypi < arg max confidence;(yp;j), Vj € {1, 2,3, 4}
else if conf, is Min then > Method 3-min
ypi < argmin confidence;j(yp;;), Vj € {1, 2, 3, 4}
else > Method 3-N
J1 < argmax confidence;(yp;;)
J2 < argmin confidence;(yp;;)
ypi < Averagej(yp;j),Vj € {1,2,3,4} — {j1, )2}
if yp; is {} then
ypi < Averagej(yp;j), Vj € {1, 2, 3, 4}
end if
end if
if g filter defined then
if yp; < B1llB2 < ypi then
Accepted < yp;
else
Rejected < yp;
end if
else
Output < yp;
end if

value indicates higher reliability for correctly classified
samples. By leveraging this confidence value, one can assess
the quality of the classification output and evaluate the
classifier’s performance.

8) OVERFITTING-UNDERFITTING OVER SAMPLES

One of the motivations for introducing M3-N is the observed
impact of M3-Max and M3-Min on our experimental results.
While M3-Max involves selecting samples with the highest
confidence, it does not improve accuracy. Instead, it leads
to unstable uncertainty when combined with different algo-
rithms, as evidenced in Table 2. Conversely, M3-Min results
in a significant decrease in the quality of the final results,
suggesting overfitting on samples with the highest confidence
and underfitting on instances with the lowest confidence. M3-
N is an initial step in studying this effect and attempts to
enhance reliability by mitigating this phenomenon. Further
research is required on different datasets and deep networks
with equitable augmentation on sampling. We propose using
proper augmentation, where all augmented versions contain
similar information, such as the flipping technique, and
avoiding using lossy augmentation like cropping to study this
phenomenon.

A. ALGORITHM COUPLING AND FINAL SETUP

The final classification results are obtained by integrating
the outputs of Deep Neural Networks (DNN) and Machine
Learning (ML) using the aforementioned methods. Two
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FIGURE 3. Flexible ranges with a resolution of 0.02 between the accuracy
of accepted samples as classes 1 or 2 and the portion of rejected samples
based on the g filter ranges: (a) Samples versus g (b) Accuracy versus f.
The results of ML(M1) and ML(M3_max) were removed due to the worst
achievement.

distinct scenarios are considered. In the first scenario, a fast
ML algorithm is the primary classifier, while the DNN is
an auxiliary classifier. Conversely, in the second scenario,
the DNN is the primary classifier, with the ML algorithm
acting as an additional classifier. During our experiments,
the second scenario neither yielded significant improvements
nor justified the additional complexity introduced to the final
design. After thorough analysis, this scenario was ultimately
discarded due to its suboptimal results. The rationale for the
first scenario is that a faster ML algorithm can efficiently
handle simple samples. If the ML algorithm lacks confidence,
the more precise DNN can manage the complex samples,
ensuring a balance between speed and accuracy. Various
metrics are evaluated in the context of the following hybrid
combinations:
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« The output of only the main classifier as a baseline;

« The output of the primary classifier after applying either
Method 1, Method 2, or Method 3, followed by using a
secondary classifier for the rejected samples.

We have implemented the trained machine learning algo-
rithms within the UAV to meet the fast-processing require-
ments essential for enabling the UAV to make timely and
effective decisions while accomplishing its mission.

B. EVALUATION METRICS

We employ widely recognized metrics proposed by [7]
to assess the model’s uncertainty, accuracy, and quality,
enabling a comparison of the improvements made by
different methods. The following section provides a detailed
explanation of these metrics:

1) ACCURACY PER CONFIDENCE

The visual representation of this metric is utilized to analyze
the calibration and uncertainty characteristics of the DNN
model. This chart, commonly called the “reliability diagram”
by the authors in [15] and [16], evaluates the model’s reli-
ability. The metric is computed by partitioning the samples
into groups based on their confidence values within specified
interval ranges and subsequently estimating the accuracy
of each group. Our deep network architecture employs a
one-hot encoding output scheme with a softmax activation
function and binary cross-entropy loss function. Given that
the DNN under study produces results in one-hot encoding
probabilities, the maximum probability value among the
predicted output classes is assigned as the confidence score.
The confidence values are then grouped within interval
ranges from 0.5 to 1, with each interval defined by the user.

2) MEAN CONFIDENCE AND MEAN ACCURACY

These metrics, Mean Confidence (MC) and Mean Accuracy
(MA), represent the total weighted average of confidence
and accuracy for the number of samples within each
confidence interval. In a fair scenario concerning reliability
and accuracy, these two values should be equal. However,
in DNN architectures, it is often observed that these values
tend to exhibit biases towards one extreme or the other.
Over-confidence arises when the Mean Confidence surpasses
the Mean Accuracy, indicating excessive confidence in the
model’s predictions. Conversely, Under-confidence occurs
when the Mean Accuracy exceeds the Mean Confidence,
indicating a lack of confidence in the model’s predictions.
Calibrating uncertainty can bring the model’s probabilistic
outputs closer to the desired levels. This calibration process
aims to minimize or eliminate any loss in accuracy values
while achieving optimal confidence levels.

3) RELIABILITY SCORE

The distinction between the MC and MA values is defined
in this paper by a metric referred to as the Reliability Score
(RS). When the RS equals zero, the DNN achieves an optimal
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balance of accuracy and reliability. Over-confidence arises
when the MC surpasses the MA, while Under-confidence
occurs when the reverse condition holds. Previous research
conducted by the authors in [7] demonstrates that DNNs with
N classes and M inputs tend to exhibit overconfidence. Our
study proposes that the implementation of simple preprocess-
ing and post-processing algorithms has the potential to alter
this behavior.

4) EXPECTED AND MAXIMUM CALIBRATION ERRORS

In the context of this paper, the error per confidence interval
is determined by measuring the accuracy deviation from
the center of the interval. The Expected Calibration Error
quantifies the weighted error across all intervals [17], while
the Maximum Calibration Error represents the maximum
error observed among all intervals. In an ideal scenario, both
errors would be zero.

5) NORMALIZED NEGATIVE LOG LIKELIHOOD LOSS (NLL)
The metric referred to as cross-entropy loss is employed as a
loss function for DNNs [18], [19]. Furthermore, it serves as a
metric for evaluating the efficacy of probabilistic models [20].
Initially, for each sample output from the DNN, the negative
logarithm of the predicted probability of the ground truth
class is computed. Then, these values are normalized per
sample and summed together.

6) BRIER SCORE LOSS (BSL)

This metric is formulated as the mean squared error between
the predicted probability, which ranges from zero to one,
and the actual outcome, restricted to values of O or 1. The
primary objective is to minimize this metric, aiming for a
value that approaches zero as closely as possible [7]. While
the metric inherently falls within the zero to one range, it is
presented as a percentage to enhance the comparability of
our research findings. To expand the applicability of the
BSL and accommodate multiclass classification scenarios,
we employ a computation method that compares the predicted
output, represented as probabilities using one-hot encoding,
with the corresponding ground truth output. The ground
truth output is also encoded using a one-hot representation
comprising zeros and ones. By calculating the squared
difference between these two sets of values, we obtain
the BSL for multiclass classification, averaged across all
samples [21]. The computation of the BSL follows the
formulation presented in Eq. (1), where M signifies the total
number of samples. The variable N denotes the number of
classes involved in the classification task. Furthermore, yp
indicates the predicted probability for each class, while yg
represents the ground truth encoded in one-hot form, with
values of either zero or one for each class.

1 M N
BSL =22 > Opij—y8i)’. (1

i=1 j=1
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TABLE 2. Performance evaluation of Methods 2 and 3 with varied output selection approaches in Validation and Test Pairs without considering Filter
Range. Key performance parameters for various metrics are compared. M2 uses the average of augmented samples, M3-Max selects the output with
maximum confidence, M3-Min selects the output with minimum confidence, and M3-N performs averaging while excluding the highest and lowest
confidence values. The best test values in each column for DNN and ML are bold.

Val., Test Accuracy (%) AUC ECE (%) MCE (%) BSL (%) NLL RS=MA-MC
DNN 94.58, 90.98 0.95, 091 4.61, 348 7.8, 6.81 7.95, 12.64 0.13, 0.2 4.61, 1.21
DNN (M2) 94.85, 91.15 0.95, 0.92 4.95, 3.77 10.3, 7.59 7.58, 12.27 0.13, 0.19 491, 14
DNN (M3-Min) 94.34, 90.84 094,091 6.79, 4.04 18.25, 4.99 8.81, 124 0.15, 0.2 6.8, 3.76
DNN (M3-Max) 94.86, 91.14 0.95, 0.92 4.13, 3.75 8.93, 16.28 7.58, 13.37 0.13, 0.22 8.93, 16.28
DNN (M3-N) 94.84, 91.12 0.95, 0.92 4.81, 3.79 9.52, 7.93 7.57, 12.31 0.13, 0.19 4.79, 1.25
ML 87.2, 85.5 0.89, 0.87 5.17,691 23.71, 27.37 21.06, 24.4 0.5, 0.6 -5.17, -6.91
ML (M2) 88.48, 86.36 0.89, 0.88 1.61, 3.77 14.54, 18.89 17.43, 21.04 0.35, 0.42 -1.6, -3.77
ML (M3-Min) 85.7, 84.08 0.87,0.86 3.14,4.26 17.07,22.16  19.58, 22.35  0.35, 0.41 -2.61, -4.26
ML (M3-Max) 88.53, 86.28 0.9, 0.88 6.24, 8.52  32.25, 33.21 21.88, 26.38  0.69, 0.85 -6.24, -8.52
ML (M3-N) 88.03, 85.93 0.89, 0.88  2.99,493  23.16, 27.87 18.68, 22.3 0.4, 0.5 -2.84, -4.93

Considering the utilization of the softmax function in our
deep network for binary classification, our output predictions
were binary but represented in the form of one-hot encoding.
As a result, we have employed Eq. (1) as the method for
computing the BSL.

IV. EXPERIMENTAL RESULTS

This section presents the outcomes of the two hybrid
combinations and the scenario that uses fast ML as a primary
classifier and DNN as the secondary classifier described
in Section III-A. For each combination of algorithms and
methods, results are produced for various filter choices in the
test sets. Given that the filter variable is a hyperparameter,
an appropriate filter is selected based on the validation
results. These results are then utilized to assess the extent
of divergence and disparity between the validation and test
sets. Since relying on a single metric is insufficient for
selecting the optimal filter choice, a comprehensive analysis
is provided using all metrics outlined in Section III-B.
Variations in the filters are determined by comparing these
metrics and evaluating each result. The average deep neural
network prediction from 10 runs is employed in this analysis.

A. FILTERING EFFECT

Despite combining different methods and algorithms, one
of the most straightforward strategies involves altering the
number of classes by introducing an additional category
for rejected samples. This approach allows us to focus on
classifying only highly reliable instances while categorizing
the remaining samples into a separate neutral class. As a
result, the percentage of rejected samples in both the
validation and test sets remains nearly identical. Similarly,
the achieved accuracy for accepted samples exhibits a similar
behavior between the validation and test sets, albeit with
slight variations in percentage. The percentage of rejected
samples for the test set is illustrated in Figure 3a, and the
accuracy for accepted samples for the test set is indicated
in Figure 3b. Applying Methods 1 and 3-max on the DNN
in this context yields similar results, while Methods 3-min
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and 2 produce more substantial changes. When comparing
various methods on DNN using the narrowest filter range
of 0.02 to 0.98, the utilization of Method 1 or 3-max
results in a notable enhancement in accuracy, increasing
from 90.98% to 99.39%. This improvement is achieved
by discarding approximately 32.5% of the test set’s data.
Conversely, Method 2 attains an accuracy of 99.94%;
however, it necessitates a higher proportion of data rejection
in the test set, approximately 44.5%. Moreover, when the
same filter range is applied to other methods, such as M3-
N and M3-min, the rejection of 41% and 51% of the test set
data leads to achieved accuracies of 99.9% and 99.97%. The
suboptimal results obtained from the application of Method
1 on ML necessitate its removal from Figure 3. Consequently,
the Method 1 approach is not recommended for the extra class
strategy when ML is used as the primary classifier. Moreover,
Method 2 significantly improves ML outputs, raising the
accuracy from 86% to 95.67% when the same filter range of
0.02 to 0.98 is employed. In this case, the rejected sample
rate is approximately 30%. We recommend the neutral class
strategy tasks where AI’s decision-making can be bypassed
in hazardous situations, deferring to human experts or
alternative algorithms. Consequently, the subsequent analysis
will focus on applying another method or algorithm to the
neutral class (rejected samples) to ensure the classification
of all samples and examine its impact on reliability and
accuracy, considering various calibration metrics.

B. ACCURACY ANALYSIS

Table 2 demonstrates that analyzing the combination of
techniques and algorithms while considering their impact on
uncertainty can lead to a slight increase in overall accuracy
but negatively affects most calibration metrics (specifically
in ML) or, to a lesser extent, in DNN. Given these
observations, the necessity of conducting a comprehensive
metrics analysis beyond accuracy becomes evident when
comparing the effects of different methods. This approach
allows for a more precise selection of combination methods
and filter ranges to enhance most metrics or, at the very
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FIGURE 4. Accuracy per filters for the combination of algorithms and
methods, using fast ML (XGB) as the primary classifier and DNN as the
complementary algorithm.

least, improve accuracy while minimizing sacrifices in other
metrics. In Figure 4, three combinations of methods and
algorithms are presented for various filters, highlighting fast
ML as the primary algorithm. Adjusting certain filters enables
achieving test accuracy above 90% for two combinations.
The impact of this combination on uncertainty analysis for
a potentially favorable filter range will be further examined.
However, according to Table 2, if Method 3-Max is applied,
no improvement in uncertainty is expected, as Method
3-Max itself adversely affects uncertainty. Based on the
findings from Table 2, the detrimental effect of M3-Max on
uncertainty metrics prompts the exclusive use of the M3-
N version for subsequent analysis to mitigate the decline in
reliability. The selection of the M3-N version over M3-Max is
driven by the need to minimize adverse effects on uncertainty
metrics. This decision is informed by observed outcomes and
the aim to uphold a higher level of reliability throughout the
analysis. Using the M3-N version ensures that the analysis
prioritizes reducing negative impacts on reliability while
maintaining consistency in evaluating uncertainty metrics.
When filters demand higher confidence, more samples are
transferred to DNN, increasing accuracy. As anticipated from
Figure 3, the combination of ML (Method 2) yields the most
significant changes in accuracy. The combination of ML
(Method 2) + DNN indicates a slightly superior effect on
accuracy compared to employing ML (Method 3) + DNN.

C. ECE AND MCE ANALYSIS

The analysis of ECE behavior, where ML assumes a primary
role while employing DNN as a secondary algorithm,
is depicted in Figure 5a. The most effective approaches
identified within hybrid algorithms and methodologies are
ML(M2)+DNN and ML(M3)+DNN. When comparing dif-
ferent hybrid algorithms that integrate ML(M2) or ML(M3)
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FIGURE 5. ECE and MCE per filters for the combination of algorithms and
methods, using fast ML (XGB) as the main algorithm and DNN as the
complementary algorithm.

as the main component, it is evident that employing ML(M?2)
yields superior outcomes.

The MCE analysis offers valuable insights when con-
sidering ECE analysis, leading to more comprehensive
conclusions. As depicted in Figure 5b, it is advisable to
narrow the filter range from 0.2-0.8 to 0.02-0.98 to restrict the
MCE values while simultaneously achieving improvements
in this metric. The intersection of the new filter range
is determined by considering ECE, MCE, and accuracy
transitions. Based on Figure 5b, the analysis of MCE
indicates that for all hybrid algorithms combining ML with
DNN using various methods, it is feasible to obtain reliable
MCE values by adjusting the range from 0.02-0.98 to 0.1-0.9.
This adjustment is based on the validation results, which are
also valid for the test set. This new tightened range handles
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FIGURE 6. NLL and Brier Score per filters for the combination of
algorithms and methods, using fast ML (XGB) as the main algorithm and
DNN as the complementary algorithm.

around 70 to 80% of the data by ML. It transfers only
around 20 to 30% of samples to DNN for classification as
demonstrated in 5b, leading to a total accuracy of 89.5 to 91%.

D. NLL AND BSL ANALYSIS

The NLL and BSL are reliable indicators of model quality.
Figures 6a and 6b illustrate their comparable behavior across
different algorithms and methods applied per filter. Lower
values of these metrics correspond to higher model quality.
When XGB assumes the primary role and the filtered samples
are fed into the DNN, an improvement in model quality is
expected with an increase in the number of samples analyzed
by the DNN. However, contrary to this expectation, the results
indicate that the ML(M1) + DNN combination does not
yield satisfactory performance based on the overall metrics.
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Therefore, Method 1 is not recommended for implementation
when ML is the main algorithm. Different combinations
utilizing Method 2 or 3 for XGB significantly demonstrate
improved model quality. Specifically, when the filter range is
closer to 0.02-0.98, the ML(M2)+DNN combination exhibits
enhanced model quality.

E. FILTER RANGE SELECTION

Based on various metrics, when selecting an appropriate
range for beta filters with ML playing the principal role, it is
preferable to choose the left side of the filter range, spanning
from 0.02-0.98 to 0.1-0.9. If a particular use case assigns
greater importance to one of these metrics over the others,
these recommendations may need to be adjusted accordingly.

V. CONCLUSION
In the context of 5G and 6G UAV communication systems,
integrating fast Machine Learning (ML) and Deep Neural
Networks (DNN) mechanisms is highly anticipated. Con-
sequently, it is essential to comprehend the uncertainties
associated with their utilization and assess their reliability
when used individually or in combination. This paper
explores the uncertainties of ML and DNN algorithms in
these systems, considering different filtering ranges based on
uncertainty metrics. By examining the reliability and total
accuracy, we demonstrate that combining a DNN algorithm
with ML can enhance overall accuracy. However, to ensure
reliability is not compromised, limiting the contribution of
the ML algorithm is crucial. As ML algorithms exhibit faster
processing than DNN, employing a fast ML algorithm as
the primary algorithm and DNN as an auxiliary can mitigate
the negative impact of DNN prediction latency in 5G/6G
networks while improving overall accuracy and reliability.
We study and analyze various probabilistic-based combi-
nations to identify the most reliable and accurate combina-
tion, considering uncertainty metrics. We define a probability
filtering range and introduce different methods for combining
outputs within this reliable range. Furthermore, we demon-
strate that augmentation techniques can enhance reliability in
this combination approach. Our study proposes three main
combined methods to concurrently increase accuracy and
reliability in binary classification applied to UAV security
scenarios. We aim to identify the optimal range and the most
reliable combination based on analyzing reliability metrics.
By implementing suitable preprocessing techniques, such as
Time-Series Augmentation (TSA), for classification tasks,
we demonstrate the generation of diverse versions of each
sample, providing diversity for post-processing techniques.
Ultimately, while the proposed methods successfully
improve accuracy, not all enhance reliability. Therefore,
network engineers and developers must exercise caution
when designing DNN architectures and thoroughly analyze
them for accuracy and reliability. Our study focuses on the
collaborative utilization of DNN and ML algorithms, such
as when the ML algorithm serves as the main algorithm and
the DNN as an auxiliary. The objective of this study does
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not encompass simultaneous or parallel combinations of both
DNN and ML algorithms or the usage of different DNN or
ML algorithms for parallel predictions. These topics may be
considered for future research, requiring the development of
appropriate methods and algorithms to explore their effects.
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2.3. Article #3: Deep Attention Recognition for Attack Identification in (5G]
UAYV Scenarios: Novel Architecture and End-to-End Evaluation

This article presents an advanced framework for the identification of attacks in UAV
communications by introducing [DATRl The primary objective was to develop a robust
detection system capable of identifying attacks in realistic BGI[JAV] scenarios under [LoS),
[NLoSl, and probabilistic combinations of these conditions. The research focused on imple-
menting a compact deep network embedded in authenticated [UAVE, capable of processing
observable parameters such as and to recognize attacks under various chal-
lenging conditions.

The main contributions to this thesis are summarized as follows:

e Development of the novel [DALR] architecture that integrates convolutional neural
networks with self-attention mechanisms to improve detection accuracy;

e Introduction of two new pre-processing and post-processing techniques designed
to improve accuracy while maintaining computational efficiency;

e Comprehensive experimental validation across multiple scenarios, demonstrating

the framework’s effectiveness in real-world conditions.

Extensive validation of the proposed framework was performed using calibration er-
ror metrics, confidence values, and detailed performance analyzes in various operational
scenarios. A detailed comparison with six widely used classifiers highlighted the superior
performance of the proposed approach, with notable improvements in detection accuracy
under challenging conditions. Furthermore, the research included novel implemen-
tations to optimize resource usage and energy efficiency, critical considerations for [JAV]

platforms.

Article Details
e Title: Deep Attention Recognition for Attack Identification in EGI[TAV] Scenar-

ios: Novel Architecture and End-to-End Evaluation

e Date: January 2024

e Authors: Joseanne Viana, Hamed Farkhari, Pedro Sebastiao, Luis Miguel Cam-
pos, Katerina Koutlia, Biljana Bojovic, Sandra Lagén, Rui Dinis

e Status: Accepted in a major international journal with rigorous peer review

e Journal: I[EEE Transactions on Vehicular Technology
e DOI: 10.1109/TVT.2023.3302814

The significance of this paper goes beyond technical innovations in attack detection
to address practical implementation challenges in [TAV] systems. It establishes a compre-
hensive framework for evaluating and implementing security solutions in real-world [TAV]
deployments, balancing detection accuracy with resource utilization. This research pro-
vides a foundation for future advancements in attention-based security systems for aerial

platforms, emphasizing practical deployment considerations in EG] networks.
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Deep Attention Recognition for Attack Identification
in 5G UAV Scenarios: Novel Architecture and
End-to-End Evaluation

, Hamed Farkhari
, Sandra Lagén

Joseanne Viana
Biljana Bojovic

Abstract—Despite the robust security features inherent in the
5G framework, attackers will still discover ways to disrupt 5G
unmanned aerial vehicle (UAV) operations and decrease UAV con-
trol communication performance in Air-to-Ground (A2G) links.
Operating under the assumption that the 5G UAV communications
infrastructure will never be entirely secure, we propose Deep At-
tention Recognition (DAtR) as a solution to identify attacks based
on a small deep network embedded in authenticated UAVs. Our
proposed solution uses two observable parameters: the Signal to
Interference plus Noise Ratio (SINR) and the Received Signal
Strength Indicator (RSSI) to recognize attacks under Line-of-Sight
(LoS), Non-Line-of-Sight (NLoS), and a probabilistic combination
of the two conditions. Several attackers are located in random
positions in the tested scenarios, while their power varies between
simulations. Moreover, terrestrial users are included in the network
to impose additional complexity on attack detection. Additionally
to the application and deep network architecture, our work in-
novates by mixing both observable parameters inside DAtR and
adding two new pre-processing and post-processing techniques
embedded in the deep network results to improve accuracy. We
compare several performance parameters in our proposed Deep
Network. For example, the impact of Long Short-Term-Memory
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(LSTM) and Attention layers in terms of their overall accuracy, the
window size effect, and test the accuracy when only partial data is
available in the training process. Finally, we benchmark our deep
network with six widely used classifiers regarding classification
accuracy. The eXtreme Gradient Boosting (XGB) outperforms all
other algorithms in the deep network, for instance, the three top
scoring algorithms: Random Forest (RF), CatBoost (CAT), and
XGB obtain mean accuracy of 83.24 %, 85.60 %, and 86.33 % in LoS
conditions, respectively. When compared to XGB, our algorithm
improves accuracy by more than 4% in the LoS condition (90.80 %
with Method 2) and by around 3% in the short-distance NLoS
condition (83.07 % with Method 1).

Index Terms—4G, 5G, convolutional neural networks, deep
learning, jamming detection, jamming identification, security,
UAV, unmanned aerial vehicles.

I. INTRODUCTION

NMANNED aerial vehicles (UAVs) have the potential to
U bring revolutionary changes that will fulfill consumer de-
mands in several industry verticals [1]. UAVs will play a crucial
role in emergency response [2], [3], package delivery in the
logistics industry, temporal events [3] and remote areas [4], [5].
UAVs are becoming more common and reliable [6] due to tech-
nological advancements [7], [8], as well as the improvements
in energy-efficient UAV trajectory optimization algorithms [9],
[10], [11] that are able to be executed in practice to take into
account the dynamics of the UAV as a parameterized method.
Thus integrating UAVs into 5G and 6G networks will increase
telecommunication coverage and reduce costs for businesses
willing to invest in this technology. However, UAVs can easily
be hacked by malicious users [12] throughout their wireless
communication channels, which might divert delivery packets
from their destinations. This can have disastrous consequences
in unfortunate climate events where UAVs are transporting
people to hospitals or in cases of criminal investigations. A
jamming attack can lead to loss of UAV communication control,
UAV robbery, UAV destruction, and property damage in urban
areas, which would generate problems for business leaders. The
authors in [13], [14], [15], [16] emphasize the need for research
on new robust methods for attack detection and its associated
challenges in 5G UAV communications. The ability to recognize
different patterns in communication connectivity plays a vital
role in the UAV security paradigm. Therefore, a Self-Identifying
Solution against Attacks (SISA) becomes essential for UAV

0018-9545 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
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communication control. Furthermore, According to [17], iden-
tifying interference must be the basis for selecting anti-jamming
solutions. Statistical models have recently been recognized as a
viable way to monitor network activity in wireless communica-
tions and detect suspicious attacks through wireless parameters.
Using Bayesian estimators, Cheng et al. [ 18] employ a sequential
change point detection algorithm to detect the state changes in
the time series. The authors of [19] present a jamming detection
approach based on a Naive Bayes classifier trained on a small
sample of data and addresses just noise effects. Lu et al. [20]
propose the message invalidation ratio as a new metric for
evaluating performance under jamming attacks in time-critical
applications. In [21], the authors offer a jamming detection
strategy for Global Navigation Satellite System (GNSS) based
trained localization that makes use of Singular Value Decompo-
sition (SVD). However, most research needs to account for the
effects of the wireless propagation channel in their solutions.

Concerning machine learning, Krayani et al. use a Bayesian
network to identify jammers [22]. Youness et al. [23] create a
dataset based on signal property observations and use Random
Forest (RF), Support Vector Machines (SVM), and a neural
network algorithm to classify the features extracted by the jam-
ming signal. [24] also uses an SVM and a Self-Taught Learning
method to identify attacks in UAV Networks. In [25], the authors
utilize a Machine Learning Intrusion Detection System (ML-
IDS) based on SVM to identify jamming in the Cloud Radio
Access Network (C-RAN). Deep Learning (DL) has been used
to create models with high-level data abstraction by utilizing
numerous layers with activation function processing.

In DL, Deep Neural Networks (DNNs), such as Convolutional
Neural Networks (CNNs), can define trends and seasonality
in time series data [26], [27], [28]. These characteristics make
deep network-based algorithms helpful in discovering patterns
in wireless networks by analyzing time series and spatial in-
formation [29]. The authors in [30] identify jamming samples
using signal-extracted features and 2D samples and pre-trained
networks, such as AlexNet, VGG-16, and ResNet-50. In [31],
the authors also use pre-trained deep networks to develop a
three-step framework to identify jamming in radar scenarios.
In [32], the signal features in the time domain, frequency domain,
fractal dimensions, and deep networks are used to recognize
jamming attacks. Nevertheless, DL presents its own challenges
when applied in the wireless context:

1) It is challenging to collect network parameters for DL
input layers. All deep learning algorithms need training
and testing. In each phase, the DNN’s input layer com-
prises the parameters of the data samples. The greater the
sample coverage in terms of data qualities, the better the
DL can identify network features. However, some wireless
data may be missing due to the stochastic nature of the
communication paths. Consequently, DL. models should
be built to tolerate missing parameters, data errors, and
out-of-range values in their input layers;

2) UAVs have constraints in memory, CPU capabilities, and
available batteries. In addition, complex algorithms cannot
be programmed into their current protocols because DL is
iterative in nature. This may prolong system response time.

The DL algorithms should use techniques to save memory
space without increasing the number of layers, nodes,
or trainable parameters. Also, the algorithms should be
optimized to minimize execution time;

3) DL needs entire or nearly complete training samples to
effectively detect network patterns. However, because of
the difficulty of collecting so many data points for each
potential network condition, the training samples may be
relatively restricted. This dictates that DL should be capa-
ble of adding additional samples after failing to recognize
a new pattern. The fresh samples may help to increase the
accuracy of the DL models;

4) Furthermore, network engineers/programmers are re-
quired to carefully design the DL data formats since
various network parameters have extremely distinct data
properties and formatting requirements. The correct nu-
merical representations and data normalization algorithms
must be explicitly stated to combine numerous network
parameters into the same DL input layer;

A. Objectives and Contributions

In this article, we study the attack identification problem in
authenticated UAVs in 5G communications. To enable UAVs
to cope with jamming recognition, we propose a deep network
called DAtR (Deep Attention Recognition) that uses only two
observable parameters: Signal to Interference plus Noise Ratio
(SINR) and Received Signal Strength Indicator (RSSI). We
demonstrate that utilizing these two parameters as inputs to our
deep neural network (DNN) enables precise and reliable identi-
fication of jamming attacks because channel variations impact
both values, and their values include information regarding the
wireless channel state. The SINR represents the ratio of the
desired signal power to the combined interference and noise
power. In the presence of channel variations, such as fading,
multipath propagation, and interference, the SINR can fluctuate,
leading to changes in the quality and reliability of the received
signal. The RSSI quantifies the power level of the total received
signal, considering the useful signal plus interference and noise
components. Channel variations can cause fluctuations in the
RSSI value, as the received signal power may vary due to factors
like distance, obstacles, fading, and interference.

5G communication networks provide these measurements
in the receivers in Line-of-Sight (LoS), Non-Line-of-Sight
(NLoS), and probabilistic LoS and NLoS conditions in the deep
network and compare the accuracy for each channel condition
case. We use a neural network that includes Attention layers with
optimized parameters to decrease the chances of low accuracy
when adding users and attackers to the network. We demon-
strate that the DAtR can recognize jamming attacks from other
malicious aerial agents in complex urban environments where
terrestrial users are connected to the network. The final goal is
to demonstrate that it is possible to identify attacks in the UAV’s
receiver that deal with the temporal dynamic behavior of the 5G
network using learning techniques, such as deep network archi-
tectures, which have significantly fewer layers than well-known
pre-trained networks. Also, the deep network does not rely on
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Simulation scenario.

transfer learning techniques, and it could provide better accuracy
than other well-known classifiers.

Taking these into account, the main contributions of this work
are highlighted in the following:

1) A novel, robust, and effective Convolutional Attention
deep network for UAVs, named DAtR, detects jamming
in complex environments under LoS and NLoS conditions
and tolerates incomplete raw data inputs. To the best of
the authors’ knowledge, this is the first time an Attention
model has been proposed to detect jamming in LoS, NLoS,
and hybrid conditions;

2) Two new complementary methods are named Time Se-
ries Augmentation (TSA) and Majority Voting Algorithm
(MVA) to improve classification accuracy and detect false
alarms for deep networks.;

3) A study of deep network architectures for UAVs consid-
ering Long Short-Term-Memory (LSTM) and Attention
layers for 5G UAV communication data;

4) An accuracy comparison with six other state-of-the-art
machine learning classifiers;

5) An analysis of the trade-offs between accuracy and added
latency in the model while identifying attacks;

The remaining parts of this article are organized as follows.
Section II presents the preliminaries and the attack identification
problem in authenticated UAVs. Additionally, it describes the
transmission and channel models, as well as the observable
parameters of SINR and RSSI and the attacks dataset we
developed. Section III illustrates the proposed deep network
architecture for jamming identification where we discuss the
layer’s selection and implementation in detail. Section IV de-
scribes the novel proposed pre-processing and post-processing
techniques that we embed in the deep network to improve
accuracy results. Section V presents the accuracy analysis
of the network simulation results, comparisons of parameter
configurations, comparisons between the proposed deep net-
work with six different classifiers, and the average process-
ing time for each classifier. Finally, Section VI includes our
conclusions. Table I summarizes the abbreviations used in this
article.

II. PRELIMINARIES AND PROBLEM FORMULATION
A. Scenarios

Fig. 1 illustrates the UAV simulation environment. In addi-
tion, it identifies the adopted X-Y-Z Cartesian coordinates. We
consider a scenario where authenticated UAVs fly in a 1 km X
1 km square area while they are connected to a serving small
cell through Air-to-Ground (A2G) 5G wireless data links. In this
environment, we include authenticated terrestrial users placed
on the ground. UAV attackers are placed in predetermined, ran-
domly assigned spots. They fly towards the authenticated UAV's
inside the coverage area of the small cell. To create our model,
we assume that the authenticated UAV transmission power is
fixed during each simulation, and we use Clustered Delay Line
(CDL) channels, including slow and fast fading components, to
model their propagation conditions. UAV attackers use the same
propagation models as authenticated UAVs [33], [34]. For the
terrestrial users, we follow the 5G wireless terrestrial propaga-
tion models defined in [34] instead. Fig. 1 shows a configuration
example with two authenticated UAVs, three terrestrial users,
three UAV attackers, and one small cell.

For the sake of simplicity, the authors considered the UAV
to be a “flying antenna”; assuming that the UAV’s mechanical
components are not considered for this experiment and the
antenna location in the UAV is ideal.

When UAV attackers move, their speed is kept constant, and
they head toward the authenticated UAV's getting closer to them
as simulation time evolves. The attackers’ and authenticated
UAVSs’ positions are at higher altitudes and follow the losses
according to the standards in [33] and [34]. Our research pre-
sumes that terrestrial users may likewise be in fixed locations or
can change their positions according to mobility models [35].
The small cells are configured with an antenna height of 10 m,
typically seen in urban environments.

Table II displays the four different experimental setups we
created, in which basically multiple combinations of mobility
for UAV attackers and/or terrestrial users are considered. During
the simulations, as further explained in Section V, we vary the
scenarios to account for different mobility/speed options, as well
as different distances between the small cells and authenticated
UAVs, UAV attacker power, number of UAV attackers, and
number of terrestrial users.

The authenticated UAVs try to identify if there are any at-
tackers attempting to disrupt the communication link by using
the proposed DAtR mechanism, which is fed with the RSSI
and SINR measurements that are available in the receiver. For
each scenario listed in Table II, we create a dataset with 600
files, including up to four attackers and thirty terrestrial users
connected at the same time. We group them together to form
a complete dataset composed of 2400 files split into RSSI and
SINR parameters in constant LoS condition. Then, we change
the channel condition in the dataset and check if it is possible
to identify the attackers in persistent NLoS condition, and in
randomly combined LoS and NLoS conditions through the
3rd Generation Partnership Project (3GPP) stochastic models
in [33] and [34]. In the end, we have three datasets with 2400
files each, corresponding to LoS, NLoS, and hybrid LoS/NLoS
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TABLE I
ABBREVIATION LIST

Abbreviation  Definition Abbreviation  Definition
ASA Azimuth Spread of Arrival LSTM Long Short-Term Memory
ASD Azimuth Spread of Departure MVA Majority Voting Algorithm
A2G Air to Ground NLoS Non-Line-of-Sight
CAT CatBoost OFDM Orthogonal Frequency Division Multiplexing
CDL Clustered Delay Line RF Random Forest
CNN/ConvlD  Convolutional Neural Network RSSI Received Signal Strength Indicator
CPU Central Processing Unit SINR Signal to Interference plus Noise Ratio
C-RAN Cloud Radio Access Network SISA Self-Identifying Solution against Attacks
DAtR Deep Attention Recognition SVD Singular Value Decomposition
DL Deep Learning SVM Support Vector Machines
DNN Deep Neural Network TSA Time Series Augmentation
GNB Gaussian Naive Bayes UAV Unmanned Aerial Vehicle
GNSS Global Navigation Satellite System UMi Urban Micro Scenario
MH-DNN Multi-Headed Deep Neural Network URD Uniformly Random Distributed
ML-IDS Machine Learning Intrusion Detection System XGB eXtreme Gradient Boosting
LoS Line-of-Sight ZSA Zenith Spread of Arrival
LR Logistic Regression ZSD Zenith Spread of Departure
TABLE II over the carrier frequency f (in MHz), n® is the shadowing (in
SPEED CONFIGURATION SCENARIO dB), and arreflects the LoS and NLoS conditions, i.e., « € {LoS,
Scenario Attackers configured Users configured NIIOS}‘ o N )
with speed with speed n A2G communications, the path loss PL%(d, f) in (1) de-
None Speed N N pends on the high/low altitude configurations and the LoS/NLoS
Attackers Speed Y N conditions. We compute it as follows:
Users Speed N Y Los )
Both Speed Y Y PLY, f) = PLY™5(d, f) ifLoS @
' PLINYS(d, f) if NLoS.

conditions. Additional information on the dataset’s development
and possible applications are available in [36], [37]. The study of
the attacks in urban environments is an intriguing problem due
to the fact that in LoS cases, channel variations and terrestrial
users increase the difficulty of self-identifying attacks. The
deep network must distinguish grounded users from intruders
considering the channel variations due to speed and environ-
ment changes over time. Under the NLoS condition, the lower
received power makes it more challenging to recognize the UAV
attackers. Finally, let us notice that the connection link between
the authenticated UAV and the small cell exists during the entire
simulation, even in low SINR circumstances.

B. Communication Model

We consider an A2G connection between the small cell and
the authenticated UAVs, as depicted in Fig. 1. The scenario
consists of an urban environment where buildings, trees, and
other structures may cause significant path loss and shadowing
degradation. We define the A2G large-scale effect with two
components, i.e., path loss and shadowing, as follows:

L(d, f) = PL*(d, f) +n® [dB], (D

where PL%(d, f) is the path loss at distance d from the authenti-
cated UAV to the respective small cell (in km) when transmitting

For urban UAV scenarios, the path loss in the LoS condition
is given by the maximum between high/low altitude path loss
computations:

PLLOS(da f) - maX(PLh(da f)7 PLl(d7 f))a
PLy(d, f) = 201log(d)+201log( f)4+20log(4m/c), 3)
PLi(d, f) =30.94(22.25-0.5log(h)) log(d)+201log(f),

where c is the speed of light (in m/s), h is the altitude (in m),
PLy(d, f) is the free space path loss for high altitudes, and
PL(d, f) is the low altitude path loss.

Under NLoS condition, the path loss is given by the maximum
between the LoS path loss and the NLoS path loss expression:

PLN"5(d, f) = max (PL*S(d, f), PL,(d, f)), 4)
PL,(d, f)a = 32.4+(43.2-7.6log(h)) log(d)+20 log(f).

In our scenario, we assume that all the UAVs fly with a height
within the margin of 22.5 m < A < 300 m. With that in mind,
the remaining shadowing component (<) in (1) is defined by
3GPP as an additional variation over the path loss with a certain
standard deviation, depending on LoS/NLoS conditions as well.
Table III includes the shadowing characterization for LoS and
NLoS.
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TABLE III
SHADOWING FOR UAVS IN UMI [33], [34]

Std. deviation (dB)

LoS max(5 x exp(—0.01h), 2)
NLoS 8

Altitude (m)

22.5 < h < 300
22.5 < h < 300

To determine the LoS or NLoS condition for each commu-
nication link, 3GPP uses a stochastic model. The probability of

being in LoS (pLos) is given by:
d; )
-, 5
drp

d —d
pLoS_1+eXp< 2D> (1
dap D

where p = —233.98 log;(h) — 0.95, his the height of the UAV,
d; = max(294.05 logyy(h) — 432.94,18), and dpp is the 2D
distance between the UAV and the small cell. Accordingly, the
probability of being in NLoS is pnpos = 1 — pros. For small-
scale fading, we adopt CDL models, as in [34] and [33]. 3GPP
defines in tabular mode the parameters that model the fading,
including the powers, delays, Angle of Arrival (AoA), and Angle
of Departure (AoD) that contain spreads in Azimuth Spread of
Arrival (ASA), Azimuth Spread of Departure (ASD), Zenith
Spread of Arrival (ZSA), and Zenith Spread of Departure (ZSD)
of each cluster for the UAV scenario. The scenario assumes large
and small-scale fading in the link between the UAVs and the
small cells. Given this model, the received power at the UAV
with no jammers or interferences can be expressed as:

Puow = P+ G— L%, f) — S(n,m), 6)

where P is the transmission power, G is the overall antenna
gain in the link considering UAV and small cell antenna gains,
ie., G = (Guaw + Gse), and S(n, m) is the small-scale fading
effect, which corresponds to the superposition of 7 clusters with
m rays in the communication link, as per [33], [34]. Our model
considers single antenna elements in the small cell and the UAVs.
The simulation in this work uses CDL-A and CDL-D models for
small-scale fading in the NLoS and LoS conditions. In this case,
each CDL comprises 23 clusters with 20 multi-path components
(rays) each. Each cluster has an AoA and an AoD. These values
are used to create the rays’ AoAs/AoDs according to the az-
imuth/zenith arrival/departure spreads (ASA/ASD, ZSA/ZSD),
respectively.

The SINR, I',.., between the authenticated UAV and the
small cell at distance d, in the presence of interference coming
from jammers and terrestrial users, is given by:

Puav
¢+ XL Pia+ X1 P
1=1 — user 7j=1 " jammer

where P, and P mer Tepresent the received power at the UAV
coming from the i-th user and the j-th jammer, respectively,
which act as interfering signals (including the channel gain with
the authenticated UAV, (2 is the noise power, U is the total
number of terrestrial users transmitting at the same time as the
authenticated UAV, and .J is the number of jammers transmitting

in the scenario. A is the RSSI which includes the linear average

Fu(w = 5 (7)

of the total received power in Watt from all sources, including
co-channel serving and non-serving cells, adjacent channel in-
terference, thermal noise, etc. Considering A\ as the RSSI value
at a reference distance, we have

A= No — 10plog(d), (8)

where p = L*(d, f) + S(n, m) includes path loss and fast fad-
ing components, and d is the link distance.

We considered the inclusion of additional parameters, such as
the Reference-Signal-Receive-Power (RSRP). However, our ex-
perimental analysis revealed that RSRP parameter did not make
a significant contribution to the overall results. This outcome
was expected, as RSRP and SINR are closely related to each
other.

C. Problem Formulation and Dataset

The SISA goal for the authenticated UAV is to quickly identify
malicious changes in the received power caused by UAV jam-
mers in the environment. For that, we use a small deep network,
where the number of trainable parameters 7' is smaller than
100 k (T’ < 10%), that is composed of a combination of layers,
including CNNs, Attention, Dropout, and Batch Normalization,
among others. The details of the DNN architecture are provided
in Section III.

First, we study the case where UAV attackers try to disrupt
communication when the UAV and the small cell can directly
see each other (LoS condition). Then, we simulate the NLoS
condition, where buildings and other elements in the city may
block the direct communication between the UAV and the small
cell. Finally, we study a probabilistic combination of LoS and
NLoS conditions. As such, we assume the following in the three
datasets we create for the experiment:

e [oS: The UAV is always in LoS condition throughout all

the simulations available in the dataset;

® NLoS: The UAV is in NLoS condition for the entire time

during all the simulations included in the dataset;

® LoS and NLoS: The link between the UAV and the small

cell is in either LoS or NLoS condition with a probability
of pros and PnLes = 1 — pros (according to (5)) for all the
simulations in the dataset.

Table II describes the four scenarios in each dataset. The
differences between the scenarios inside the dataset relate to
the following parameters: the UAVs’ and terrestrial users’ mo-
bility and speed, the distance between the small cell and the
authenticated UAVs, the number of attackers and their power,
and the number of terrestrial users in the network. It is important
to note that the scenarios in the dataset, such as Attackers’
Speed,Users’ Speed,Both speed, and None Speed
are unbalanced, meaning that the proportion between attackers
and no attackers in the raw data is different. For example,
the dataset has data for 1, 2, 3, and 4 attackers, while for no
attacks, there is O attacker data. Therefore, to avoid bias toward
the classification, it is necessary to implement countermeasures
to balance the data during the pre-processing phase. Our deep
network design aims to achieve maximum performance. To this
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(MH-DNN) by integrating TSA and MVA techniques, which
results in the proposed DAtR. We benchmark our DAtR with six (a)
other well-known ML algorithms and analyze other parameters, ( serf ) ) ( A ) [ Global
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Multi-Headed Deep Neural Network (MH-DNN) architecture. Note the switch from LSTM to Attention layers.

the latency added due to the DAtR processing time. (b)
[ LSTM l » [ Dropout . Batch Normalizationl
III. CONVOLUTIONAL ATTENTION-BASED ATTACK DETECTION ©
C

The proposed SISA model is based on an MH-DNN. The
proposed architecture is shown in Fig. 2. It contains (i) three
CNN blocks and (ii) an Attention or an LSTM block in each
head. The body of the deep network consists of: (i) a Con-
catenate and Reshape layer, (ii) three CNN blocks, (iii) two
Fully connected blocks, and (iv) the output layer (Softmax) for
two classification classes. Although RSSI and SINR measure
different parameters from the telecommunication perspective,
both values may be related. For example, when RSSI increases,
SINR may decrease; The multi-headed structure of the MH-
DNN allows the extraction of the essential characteristics of the
RSSI and SINR separately before combining both signals in the
MH-DNN body. Also, it enables scalability when considering
other telecommunication parameters such as Reference Signal
Received Power (RSRP) by adding another head with the same
structure and using transfer learning of the existing RSSI and
SINR heads. This method can save the training process in the
future for a new M-headed DNN while utilizing the advantage
of the current pre-trained DNN.

Using our proposed MH-DNN, we can simultaneously extract
features from both parameters in each head at each window
size. The window size defines the length of each sequence that
the deep network will receive as an input in each head. Fig. 3
presents the components of each block illustrated in Fig. 2. Each

(d)

Fig. 3. Detailed block components in the proposed MH-DNN model.
(a) Convolutional block, (b) Attention block, (c) LSTM block, (d) Dense block.

Convolutional block sequentially aggregates Conv1D, dropout,
batch normalization, and the Relu layers. The Attention block
contains Self-Attention, dropout, and batch normalization layers
followed by the global average pooling 1D layer. The LSTM
block includes the LSTM, the dropout, and the batch Normal-
ization layers, and the Dense block encloses the same structure
as the Convolutional block, except that the ConvlD layer is
replaced by the Dense layer. Each block component performs
an essential function to facilitate the MH-DNN head and body
integration. The supplementary layers also keep the output sizes
consistent and reduce the over-fitting chances. For example,
adding dropout immediately after the main layers (i.e., Conv1D,
Self-Attention, LSTM, and Dense) is one of the techniques
that we used to avoid the MH-DNN over-fitting. The dropout
configuration value D is the same for all blocks (D = 0.4).
It defines the probability of each output node to be enabled
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TABLE IV
COMPARISON BETWEEN TRAINABLE AND TOTAL PARAMETERS IN MH-DNN
WITH ATTENTION OR LSTM BLOCKS

Trainable Total

parameters ~ parameters
Attention (4, 4) 57,936 58,540
Attention (8, 8) 64,368 64,972
Attention (16, 16) 90,096 90,700
LSTM (16) 59,984 60,588

temporally and randomly during the training process. In other
words, it prevents the deep network from memorizing the input
parameters instead of learning the patterns in the sequences. The
Batch normalization layer speeds up convergence by normaliz-
ing data for the next input layer. Note that batch normalization
is applied after the dropout layer to prevent information leakage
from one layer to another.

In the Convolutional block, we convolute both signals in each
head in the three CNN layers, as Fig. 2 indicates. Each layer
creates a Convolution kernel that is convoluted with the layer
input over a single temporal dimension to produce a tensor of
outputs. Thanks to the configuration of strides and kernels, this
operation returns a single tensor with several channels (i.e., 1 X
width x channel). The Convolution operation extracts different
features from the time series sequences available in each head.
The result from the Convolutional blocks is computed in parallel
in the Attention layer.

The Attention layer utilizes an auxiliary vector to selectively
weight the input features by computing a set of Attention weights
based on the information from the previous and current states.
These weights are then used to adjust the importance of different
input parts when making predictions [38]. For example, the
Attention mechanism may look for parts of the signal which
might contain attack characteristics. The input tensor in the
Attention block has the shape of batch size by width by
filters (i.e., 32 x 50 x 16), and the global average pooling
layer reduces dimensionality to batch size by filters (i.e.,
32 x 16). The width dimension is related to the window size
of input sequences of each head of MH-DNN. In a similar
architecture, we use the LSTM block with 16 units for the
LSTM layer instead of the Attention block to compare these
two different blocks in performance. A fair comparison between
LSTM and the Attention layer’s overall performance requires
that both blocks’ output create almost the same tensor size. The
LSTM layer with 16 units creates the same output tensor shape as
the Attention block (i.e., 32 x 16). Another metric to compare is
the number of MH-DNN parameters generated with Attention
or LSTM blocks. For example, Table IV compares trainable
and total parameters of the MH-DNN configured with LSTM
blocks (16 units) and Attention configured with different heads
and keys. According to Table IV, the first two Attention settings
(4 x 4) and (8 x 8) produce a number of parameters close to
the MH-DNN embedded with the LSTM (16). However, there
is a high leap when the MH-DNN uses the Attention blocks
with (16 x 16) heads and keys. Therefore, based on the knee
(elbow) rule, we choose the Attention configuration (8 x 8), the

TABLE V
MH-DNN CONFIGURATION PARAMETERS

Deep network Parameters Values
Number of input heads 2
Base learning rate 2.5 x 1072
Base batch size 32
Optimizer Adam
Heads
Conv1D (filters, kernel size, stride) 8, 6,2
Conv1D (filters, kernel size, stride) 16, 6, 1
Conv1D (filters, kernel size, stride) 16, 5, 2
Self-Attention (heads, keys) 8, 8
(or LSTM) (16)
Body
Conv1D (filters, kernel size, stride) 8,3, 1
Conv1D (filters, kernel size, stride) 16, 2, 1
Conv1D (filters, kernel size, stride) 16, 2, 1
Fully connected (Dense) 100
Gaussian noise 0.3
Fully connected (Dense) 50
Softmax 2
blocks
Dropout layers 0.4
L2 regularization for ConvID, and LSTM layers 1 x 1076
L2 regularization for Dense and Attention layers 1 x 107°

highest configuration before the leap in the amount of trainable
parameters related to the attention layer. Notice that, even though
Attention produces more trainable parameters than LSTM, the
benefits in accuracy in NLoS scenarios compensate for this
difference.

The concatenation procedure merges the features extracted
from RSSI and SINR in each head, and the reshape method
prepares them for the following CNN blocks. After using the
CNN blocks in the body, we apply two Dense blocks. The first
one is followed by an additive Gaussian noise N (N = 0.3).
Additive noise injection during the training process increases
our model’s stability and robustness. Moreover, it performs as
a regularizer to prevent over-fitting and improve generaliza-
tion [39]. We ended our MH-DNN with a Softmax layer with two
nodes for binary classification and the categorical cross entropy
as a loss function. Table V shows the main parameters for the
MH-DNN. Notice that we did not employ padding for any of
the Convl1D layers, since it decreases the output width after
each Convolutional block. We apply L2 regularization only in
the Convolutional, Attention, LSTM, and Dense layers weights
with no bias decay. Also, we use the batch normalization layers
with no regularization, as recommended by [40].

IV. IMPROVEMENTS IN MH-DNN ROBUSTNESS

In this section, we introduce the TSA method combined
with the MVA to improve the performance of our deep neural
network under the NLoS condition, which tends to present lower
total received power compared to the LoS condition. Fig. 4
summarizes the significant additions to the MH-DNN to include
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Proposed Majority Voting Algorithm (MVA)
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Fig. 4. Deep Attention Recognition (DAtR), including TSA and MVA Techniques - methods 1 and 2.

TABLE VI
OUTPUT OF THE TSA

RSSI SINR
Sequence  Sequence

Sample 1 Same Same
Sample 2 Same Flipped

Sample 3 Flipped Same
Sample 4  Flipped Flipped

these two new methods. After incorporating both techniques into
the system, we named the new system DAtR.

A. Time Series Augmentation Technique

TSA aims to supplement the original dataset with additional
augmented samples for the MH-DNN to process further. We
create the additional data using data augmentation and flipping
techniques applied in the training set to increase data diversity
and prevent over-fitting during the training process. Also, we use
this technique in both training and test sets combined majority
voting method, which converts binary classification into three
classes in Section IV-B. As Fig. 4 shows, we transform the input
samples into four augmented samples. In Table VI, we display
an example of generating the four new expanded instances
according to TSA.

By randomly inverting each RSSI and SINR sequence, we
can generate four different augmented samples from each oc-
currence. Other data augmentation strategies could also be con-
sidered to generate the extended data. After pre-processing the
dataset, which converts the data to augmented samples with an
appropriate rolling window, each augmented instance has two
data sequences representing the RSSI and the SINR. Then, we
feed the extended samples to MH-DNN, as in Fig. 4

B. Proposed Majority Voting Algorithm

DAR uses TSA and MVA as pre-processing and post-
processing techniques, respectively. After feature classification
is done in the Softmax layer, we use the MVA to reclassify the
features to have better accuracy.

MVA divide into two methods (see Fig. 4). In Method 1, MVA
uses one hot encoding probability values between 0 and 1 as
input from the MH-DNN classification prediction and rounds

Algorithm 1: Majority Voting Algorithm.

Require: 7, Aug
Ensure: Assign 7 to Classes 1 or 2 or 3
Class 1 || Class 2 < Classify Aug
if 3Aug/4 > Class 1, then
Class 1 < Classify 7
else if 3Aug/4 > Class 2, then
Class 2 < Classify 7
else if Aug/2 == Class 1 and another
Aug/2 == Class 2 then
Class 3 < Classify 7
end if

them. This process applies to all augmented instances made
from the previously explained TSA method for each sample.
Next, the mean of all four results is calculated and used to
classify the sample into three classes. Suppose the sample is
classified in class 1 (attack) or 2 (no attack). In that case, the
code finishes, the classification achieves high accuracy, minimal
false alarms, and the number of features in class 3 (no decision)
is low. However, if the feature is classified in class 3, we try to
reclassify using other ML algorithms. In Method 2, we try to
classify the samples as class 1 or 2 by inverting the algorithm
order. Instead of rounding them first and then calculating the
mean, we calculate the mean of probability values and then round
them. If after Method 2, the feature can not be classified in class
1 or 2, we apply other well-known ML algorithms to classify
the features that methods 1 or 2 could not classify. Notice that
although the proposed DATR results are efficient in LoS channel
conditions (as will be demonstrated in Section V), the motiva-
tion for using pre-processing and post-processing techniques in
MH-DNN arises from the fact that the attack detection accuracy
might decrease in cases of low received power conditions, as
they happen in NLoS channel conditions. As such, we target
to increase accuracy by applying TSA and MVA. In the end,
DAItR proved to be efficient also in LoS conditions. Algorithm 1
illustrates the details of methods 1 and 2, where 7 is the primary
sample, and Aug represents the four augmented samples for
the 7 example. When categorizing features into classes in the
Softmax layer is impossible, the algorithm tries to classify them.
For example, a sample classifies as a specific class 1 or 2 if 3 of
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TABLE VII
NETWORK PARAMETERS

Values

0, 3, 5, 10, 20, and 30

Scenario Parameters

Terrestrial Users

Authenticated UAVs 1

Small Cells 10

Small cell height 10 m

Attackers 0,1,2, 3, and 4

Speeds 10 m/s

Modulation scheme OFDM

Small cell power 4 dBm

Authenticated UAV power 2 dBm

Attackers power 0, 2,5, 10, and 20 dBm
Authenticated UAV position URD*

Attackers position URD*

Small cells position URD*

Scenario UMi

Distance 100, 200, 500, and 1000 m
Simulation time 30 s

*URD - Uniformly Random Distributed.

its four augmented instances classify in the same class. In the
case of a draw, the feature goes into class 3.

V. SIMULATION RESULTS

In this section, we present the performance evaluation of the
proposed DAtR. In particular, we provide five experimental out-
comes related to the robustness of the DAtR. First, we conduct
a comparative study on the efficacy of different layers, such as
Attention and LSTM, in the MH-DNN architecture. Then, we
study the effect of the window size on the DAtR’s accuracy. In
addition, we examine the performance of the proposed DAtR
when we remove parts of the dataset from training, and we
benchmark the DAtR’s accuracy against six machine learning
alternatives. All these experiments evaluate LoS and NLoS chan-
nel conditions separately. To evaluate the DAtR’s performance,
we compare the overall accuracy based on the various parameters
available in the dataset. Initially, we analyze the accuracy as a
function of the number of attackers and attackers’ power. After
that, we analyze the accuracy as a function of the attackers’
distance and power. These simulations set all three conditions
presented in the article: LoS, NLoS, and a combination of both.
For this section, we adopt attacker amount N, attacker power
P4, users amount N,,, and distance d. Table VII presents the
parameters used in the simulation. The speed remains the same
for all scenarios, and the distances in Table VII refer to the
distances between the small cell and authenticated UAVs.

A. The Window Size Impact

Fig. 5(a) and (b) show the window size impact on the final
accuracy for LoS and NLoS conditions using the MH-DNN (no
improvements, no TSA, and no MVA).
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Fig. 5. Impact of the window sizes w = 100 and w = 300 (a) In LoS condi-
tion, (b) In NLoS condition.

Fig. 5(a) indicates that the accuracy range for w = 100 is
roughly 65% to 90%, whereas the range for w = 300 is ap-
proximately 75% to 95%. In the NLoS case (see Fig. 5(b)),
the MH-DNN achieves a range of about 67% to 85% when
w = 100, and the percentage ranges from 70% to 87% when
w = 300. Both figures demonstrate that the accuracy is directly
proportional to the window size, independently of the channel
condition. It is worth noting that there is a small trade-off
between the time it takes to calculate the estimate for each class
and the available resources, as will be demonstrated later in
Fig. 12.

B. Attention vs. LSTM

Both the LSTM and Attention layers are trying to solve the
same problem. They keep track of the old input sequences in
the current node or state. For example, the information flowing
from ty to (t —n) is available in a modified/partial form in
the state at time ¢. The algorithm uses the modified form to
establish a relationship with the incoming data. We compare
LSTM and Attention regarding window size and final accuracy
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TABLE VIII
DIFFERENCES IN THE OVERALL ACCURACY FOR EACH CONDITION AND FOR
EACH WINDOW SIZE (w)

w 50 100 200 300
Log _Attention 8226 8304 8835 89.59
LSTM __ 79.62 84.67 8651 88.06

Z [ NLos _Aftention 7258 7300 74.12 75.60
a LSTM 6943 7146 6576 68.67
Both Attention 7631 79.59 79.19 82.77
LSTM 7607 78.19 77.10 77.29

= | .g _Attention 8388 8431 8848 89.98
I LSTM _ 83.65 84.38 8710 88.34
Z [ NLos _Attention 8281 8253 8294 83.07
% LSTM __ 81.87 83.05 81.27 80.19
Z [ goq _Attention 80.50 8127 79.1383.66
a LSTM 7982 79.67 7895 79.02
| g _Attention 8410 8477 8999 90.80
I LSTM 8134 8626 8847 89.49
Z [ NLos _Attention 75.66 7607 77.13 7900
% LSTM 7220 7385 68.60 73.10
Z [ goq, _Attention 7861 8152 8051 84.65
a LSTM 7828 80.11 7922 79.59

TABLE IX

ACCURACY MEASUREMENTS USING THE XGB ALGORITHM FOR EACH
CONDITION WITH DIFFERENT WINDOW SIZES (w)

w 50 100 200 300

LoS 83.27 83.69 8557 86.33
NLoS | 83.04 82.58 83.41 80.58
Both | 79.65 79.47 78.40 78.85

improvements in LoS and NLoS conditions for each proposed
algorithm in the article.

The trainable parameters do not change between the dif-
ferent window sizes or conditions. In our example, the MH-
DNN configured with LSTM has 59,984 trainable parameters
compared to 64,368 in the one with the Attention. However,
most well-known deep neural networks, such as VGG [41] and
ResNet [42], employ more than one million trainable parameters
in their architectures, which increases the overall training time
and, consequently, the prediction time. Also, they require more
computation capabilities. Therefore, we only interchange the
Attention and LSTM layers using Table V settings and the
proposed DAtR. Table VIII shows the differences in the overall
accuracy between the Attention and LSTM layers for differ-
ent window sizes (ranging from w = 50 to w = 300), various
channel conditions (LoS, NLoS, and both), and the three pro-
posed methods (MH-DNN, MH-DNN + Method 1, MH-DNN
+ Method 2). Table IX compares results to the reference XGB
algorithm for different window sizes and channel conditions.
The XGB performs poorly when the hybrid dataset is applied to
the algorithm in contrast to the results obtained with the DNN
and DNN with methods 1 and 2. In comparing the LSTM with
Attention, except for four states, better results are almost seen

in the Attention layer. For example, in MH-DNN + Method 1 in
NLoS condition with window size w = 100, LSTM performs
slightly better, where its difference with Attention is around
0.52%.

Moreover, we notice that an increase in the window size
positively impacts the overall accuracy when using Attention
layers. For LSTM in NLoS conditions, it has the opposite effect
when w > 100. Pattern recognition in NLoS is generally hard
to extract due to the low power received in the authenticated
UAV. Still, for this particular case, when w > 100, it decreases
the overall accuracy. Concerning the LoS, NLoS, and Both
conditions, LoS presents the best accuracy because there is no
decrease in the received power due to obstacles and objects
between the authenticated UAV and the small cell. Therefore, the
deep network could learn the attacker pattern even in cases with
channel variations and more users in the network. The combined
condition presents the second-best results; as expected, NLoS
shows the worst. Notice that by adding more nodes and layers,
the deep network can learn this pattern; however, there is a
trade-off in terms of memory and energy consumption, which is
outside the scope of this work. The most significant impact of
the MVA and TSA in the DNN is in NLoS conditions. Method
1 increases the overall accuracy by more than 10% when using
LSTM and by approximately 10% with Attention. Among the
methods in the study, the MH-DNN + Method 2 performs better
for LoS, whereas the MH-DNN + Method 1 performs better
for NLoS conditions. Fig. 6 depicts the accuracy against the
distance between the authenticated UAV and the small cell in
the network for two different window sizes using Attention and
LSTM layers for (a) LoS and (b) NLoS channel conditions.
For each condition, we present the results for MH-DNN with no
additional methods. Fig. 6(a) shows that, for LoS, both Attention
and LSTM configurations with window size 300 (w = 300)
outperform the structures with window size 50 (w = 50). In
the NLoS condition, see Fig. 6(b), the DNN embedded with the
Attention layer performs better independently of the window
size.

C. Comparison With Other Machine Learning Classifiers

Fig. 7 compares the proposed DAtR (composed by MH-DNN,
Method 1, and Method 2) with three other machine learning
methods, namely RF, CAT, and XGB, over the distances between
the small cell and the authenticated UAV available in the dataset,
in LoS and NLoS conditions, separately.

We eliminate GNB and LR from the charts because they fail to
achieve 70% accuracy across the range of distances and SVM be-
cause its performance is comparable to the other ML algorithms
for shorter distances but dropped to 75% accuracy for those
with d > 200 in LoS conditions. In Fig. 7(a), we show that even
our primary classifier, which is the MH-DNN embedded alone
with the Attention layer, consistently outperforms well-known
classifiers such as RF, CAT, and XGB, while Method 1 and 2
present an additional improvement, especially for considerable
distances. CAT and XGB perform similarly, while RF decreases
its accuracy for significant distances. Compared to all the ac-
curacies obtained from other algorithms, the proposed DAtR
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Fig. 6. Comparison between Attention and LSTM algorithms for w = 50
and w = 300, N, = 20, Ng¢t = 2, and P, = 5 dBm. (a) In LoS condition,
(b) In NLoS condition.

achieves an accuracy range from 80% up to 95% overall distance
ranges. The mean accuracy that the DAtR achieves is 89.97%,
while the RF, CAT, and XGB achieved 83.24%, 85.60%, and
86.33%, respectively. Fig. 7(b) presents the results for the NLoS
channel condition. This Fig. shows that Method 1, in this case,
is more effective in short distances. However, note that the
DAtR and Method 2 outperform the benchmark schemes for
short distances but lose accuracy for higher distances. As such,
Method 1 appears to achieve a good compromise between small
and large distances. Comparing both charts, DAtR can more
easily identify attackers in LoS, but it can also be implemented
in NLoS or mixed conditions depending on the link distance.

D. Attacker Number and Power

Fig. 8 presents the accuracy over the number of attackers and
their power in (a) LoS, (b) Combined, and (c) NLoS conditions.
If we look closely at the individual charts, we see that the
accuracy increases with more attackers and more power for LoS
and combined conditions. In the NLoS case, the low accuracy
is centered in the scenario with two attackers when both are
configured with power less than 5 dBm. After that, it increases
for more and fewer attackers, and as the attacker increases, power
rises.

In the LoS case, the scenario with one attacker is the hardest
for the proposed algorithms to learn. In the Combined condition,
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Fig. 7. Comparison between the proposed MH-DNN with MH-DNN +

Method 1, MH-DNN + Method 2, RF, CAT, XGB. w = 300, N,, = 20, Nt =
2, Pyt = 5 dBm. (a) In LoS condition, (b) In NLoS condition.

0 and 1 attacker scenarios are complicated for the algorithms
to understand, and for the NLoS condition, the most complex
scenario is with two attackers. In LoS and Combined cases, the
changes in the power presented improvements in the accuracy of
around 5%. The low accuracy when there are fewer than three
attackers in the scenario might be justified by the stochastic
channel models available in 5G UAV cases where the channel
adjustments experienced by the UAV can change approximately
30 dB from one channel update to another. The amount of users
affects the total received power reducing the DAtR’s overall
accuracy. In the NLoS case, the fact that no straight rays are
feeding into the receiver impacts the overall power received and
decreases the accuracy of results. By comparing all the results,
the NLoS simulation presents the lowest overall accuracy from
all conditions, but the best accuracy it can achieve is 93% with
four attackers configured with 20 dBm power.

E. Confusion Matrices

Fig. 9(a) and (b) illustrate the confusion matrices resulting
from the proposed algorithms: MH-DNN, MH-DNN + Method
1 + ML algorithm, and MH-DNN + Method 2 + ML algorithm,
for LoS and NLoS, respectively. In addition, we utilize the XGB
as an ML algorithm for Methods 1 and 2.

We compare the results of MH-DNN with Method 1 and
Method 2 with the results of MH-DNN alone. We notice that
MH-DNN + Method 2 + XGB increases the accuracy in LoS
scenarios, while MH-DNN + Method 1 + XGB is more suitable
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Fig. 8. Accuracy vs. Attackers Number and Attacker Power, N,, = 20, d =
100 m, w = 300, (a) In LoS condition only, (b) In LoS and NLos conditions,
(c) In NLoS condition only.

for NLoS settings. For example, Fig. 9(a) highlights the differ-
ence between the two True Negative (True Neg) when we sub-
tract Method 1 and Method 2 values from the MH-DNN. Method
1 + XGB results in —0.64% less accuracy, while with Method 2 +
XGB, there is +0.38% better accuracy. Also, Method 1 increases
the chances of False Positive (False Pos) by +0.63%, while
Method 2 decreases the likelihood of False Pos by —0.39%.
We see the opposite effect in Fig. 9(b). Method 1 + XGB has
better values for True Neg and False Pos than Method 2
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Fig. 9. Overall Confusion Matrices of the proposed MH-DNN, MH-DNN +

Method 1 and ML algorithm, and MH-DNN + Method 2 and ML algorithm,
w = 300, (a) In LoS condition, (b) In NLoS condition. Green arrows indicate
enhancement, while the red ones refer to reduction.

+ XGB when comparing both to the Deep Network. Regarding
LoS, the MH-DNN + Method 2 performs better than the other
approaches in the research, but the MH-DNN + Method 1 is
the clear winner when it comes to NLoS. Taking into account
the best outcomes that we have so far, specifically, MH-DNN
configured with Attention + Method 2 for LoS or + Method
1 for NLoS and XGB algorithm, except when explicitly men-
tioned, we use this configuration to show detailed performance
evaluation considering all cases and parameters available in
the dataset using DAtR. In the combined condition, we used
MH-DNN configured with Attention + Method 1 for NLoS
and XGB algorithm. The accuracy presented in the confusion
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matrix is the average accuracy from all the scenarios in the
dataset. It significantly impacts the specific cases, as shown in
the following sections.

F. Attacker Power and Distance

Fig. 10 shows the accuracy over distance and attackers’ power
ratios during training for the three conditions: LoS, Combined,
and NLoS. In the three conditions, attackers with lower power
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Fig. 11. Comparison with data that is not in the training Ng+ = 2, N,, = 20,
and d = 500 m (a) In LoS condition, (b) In NLoS condition.

are more challenging for the deep network to recognize. In
the LoS conditions, the deep network can identify attacks even
though the base station is 1000 m away from the authenticated
UAV and the attacker power is lower than 5 dBm with 96%
accuracy. Of course, there are improvements when the power
increases, but we achieve better results when increasing distance.
In addition, the user interference decreases at this position so that
the deep network can achieve high accuracy. In the Combined
condition, we see the impact of power on accuracy more clearly
than in LoS. For example, when the attacker power is set to
15 dBm, the accuracy is 85% when the distance between the
authenticated UAV and the Base station is 100 m. However, we
see a peak accuracy when the distance is 500 m and the attacker
power is 15 dBm. While it is easier to identify attackers for the
other conditions when the attacker power is higher than 5 dBm,
in the NLoS condition, the attacker power needs to be adjusted

to 15 dBm so the deep network can have approximately 84%
accuracy.

G. Comparison With Data That is not in the Training

Fig. 11(a) and (b) depict the accuracy results based on the
attacker power when the network users are N, = 20, for a
distance of 500 m, and two attackers. We remove the data related
to the attacker power of 2 dBm and 10 dBm from the training.
Therefore, the deep network sees both these pieces of data for
the first time during testing. We executed this simulation for LoS
and NLoS conditions.
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TABLE X
PREDICTION TIMING VERSUS WINDOW SIZE (w) FOR THE PROPOSED DEEP NETWORK AND THREE OTHER ML CLASSIFIERS

w 50 100 200 300
DNN-Attention | 30.9 ms £ 248 us  30.9 ms + 335us 31.9 ms + 656us 30.8 ms + 391us
DNN-LSTM 313 ms = 1.03 ms 31 ms & 351 us 312 ms £ 311 pus  30.5 ms £ 393 us
CAT 0.52 ms + 561 ns  0.82 ms + 744 ns 1.49 ms + 939 ns 2.19 ms £ 2.02 us
RF 71.6 ms £ 1.28 ms 748 ms £ 1.63 ms 76.6 ms £ 1.66 ms 79.4 ms £ 1.76 ms
XGB 0.66 ms + 224 pus  0.67 ms = 225 us  0.68 ms 4+ 23.9 us  0.74 ms + 21.6 us
80 4 - W50 proposed a small deep network system denominated DAtR,
% 70 = W100 that can cope with the attack Self-Identifying problem, and we
£ = W200 verified its accuracy through extensive simulation campaigns.
£ 60 . W300
g Along with the application and deep network design, our work
350 innovates by combining both RSSI and SINR signals within
240 the deep network and incorporating two novel pre and post-
T 30 processing methods to increase accuracy. Our research examined
é 204 five major implementation issues related to the deep network:
£ 10 how the key parameters, such as the window size, impact the
deep network accuracy, the impact of different layers on the
DNN-Attention DNN-LSTM CAT RF XGB overall performance (i.e., Attention vs. LSTM)), its performance

Algorithms

Fig. 12.  Average processing time for each classifier.

Fig. 11(a) demonstrates the outcomes for LoS. A comparison
of training with all and removed samples noticed a proportional
decrease in all instances. This difference is around 1.5%. For the
NLoS case, illustrated in Fig. 11(b), there is a difference more
significant than 0.5% only when the attacker was set up with
20 dBm power. There are no significant differences for the other
cases, which shows the robustness of our proposed algorithm.

H. Average Processing Time

Fig. 12 compares the average prediction time after training
for the three baseline classifiers (RF, CAT, and XGB) and the
proposed MH-DNN configured with Attention or LSTM for
different window sizes to classify each sample. Table X shows
the average values with their respective standard deviations.
The prediction time is essential because it shows the latency
in discovering attacks using such UAV algorithms. All timing
tests were done using an Nvidia RTX 3090 GPU system.

In Fig. 12, we can see that the window size has a negligible
effect on the XGB and the MH-DNN configured with Attention
or LSTM. However, it has a more significant impact on CAT
and RF. For example, the prediction time for CAT increases
four times when the window size is 300 (w = 300). For RF,
the impact of the window size is smaller than CAT, but it still
increases by approximately 10% for the same window size
(w = 300). There is a minor difference between the LSTM and
Attention prediction times. The RF algorithm displays the high-
est prediction time. Our proposed method has a good trade-off
between accuracy and prediction time.

VI. CONCLUSION

This article studied the attacks Self-Identifying problems in
5G UAV networks assuming scenarios with LoS, NLoS, and a
probabilistic combination of both conditions. Specifically, we

compared to other machine learning alternatives for classifica-
tion, the robustness of our deep network using data that is not
available in training, and the prediction timing for the proposed
DAtR. Compared to six popular classifiers available in the litera-
ture, we showed that the proposed system is a competitive option
for the attack classification for all distance ranges in LoS con-
ditions and for short-range distances in NLoS conditions. The
comparison between LSTM and Attention shows that increasing
the window size in the LSTM setup reduced the performance,
while with Attention, it boosted performance. Attention layers
in DAtR outperformed the same system configured with LSTM.
Finally, we present the performance graphs we created for each
case study. Results have demonstrated that our deep network
reliably identifies attacks across all possible configurations.
Identifying attacks in simulations with three or more attack-
ers, fewer users, and a power of 10 dBm or higher was more
straightforward. The identification accuracy was also affected
by the three-dimensional distance between the small cell and the
authenticated UAV. Here, the chances of identification improved
with increasing distances since there was less interference.

REFERENCES

[1] B. K. S. Lima et al., “Aerial intelligent reflecting surfaces in MIMO-
NOMA networks: Fundamentals, potential achievements, and challenges,”
1IEEE Open J. Commun. Soc., vol. 3, pp. 1007-1024, 2022.

[2] W. Jin, J. Yang, Y. Fang, and W. Feng, “Research on application and
deployment of UAV in emergency response,” in Proc. IEEE 10th Int. Conf.
Electron. Inf. Emerg. Commun., 2020, pp. 277-280.

[3] G. Geraci et al., “What will the future of UAV cellular communications

be? A flight from 5G to 6G,” IEEE Commun. Surv. Tut., vol. 24, no. 3,

pp. 1304-1335, Thirdquarter 2022.

X. Wang et al., “Joint flying relay location and routing optimization for 6G

UAV & IoT networks: A graph neural network-based approach,” Remote

Sens., vol. 14, no. 17, 2022, Art. no. 4377. [Online]. Available: https:

/Iwww.mdpi.com/2072-4292/14/17/4377

H. Kang, X. Chang, J. Misi¢, V. B. Misi¢, J. Fan, and J. Bai, “Improv-

ing dual-UAV aided ground-UAV bi-directional communication security:

Joint UAV trajectory and transmit power optimization,” IEEE Trans. Veh.

Technol., vol. 71, no. 10, pp. 10570-10583, Oct. 2022.

[4

[inr}

[5

—_

Authorized licensed use limited to: b-on: ISCTE. Downloaded on November 25,2024 at 19:47:31 UTC from IEEE Xplore. Restrictions apply.



VIANA et al.: DATR FOR ATTACK IDENTIFICATION IN 5G UAV SCENARIOS: NOVEL ARCHITECTURE AND END-TO-END EVALUATION

[6]

[7]

[8]

[91

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

M. M. Azari, F. Rosas, and S. Pollin, “Cellular connectivity for UAVs:
Network modeling, performance analysis, and design guidelines,” IEEE
Trans. Wireless Commun., vol. 18, no. 7, pp. 33663381, Jul. 2019.

B. Li, Z. Fei, and Y. Zhang, “UAV communications for 5G and beyond:
Recent advances and future trends,” IEEE Internet Things J., vol. 6, no. 2,
pp. 2241-2263, Apr. 2019.

M. Vaezi et al., “Cellular, wide-area, and non-terrestrial [oT: A survey on
5G advances and the road toward 6G,” IEEE Commun. Surv. Tut., vol. 24,
no. 2, pp. 1117-1174, Secondquarter 2022.

B. Li, Q. Li, Y. Zeng, Y. Rong, and R. Zhang, “3D trajectory optimiza-
tion for energy-efficient UAV communication: A control design perspec-
tive,” IEEE Trans. Wireless Commun., vol. 21, no. 6, pp. 4579-4593,
Jun. 2022.

B. Li, J. Zhang, L. Dai, K. L. Teo, and S. Wang, “A hybrid of-
fline optimization method for reconfiguration of multi-UAV forma-
tions,” IEEE Trans. Aerosp. Electron. Syst., vol. 57, no. 1, pp. 506-520,
Feb. 2021.

K. L. Teo, B. Li, C. Yu, and V. Rehbock, Applied and Com-
putational  Optimal Control. Berlin, Germany: Springer, 2021,
doi: 10.1007/978-3-030-69913-0.

N.I. Mowla, N. H. Tran, I. Doh, and K. Chae, “AFRL: Adaptive federated
reinforcement learning for intelligent jamming defense in FANET,” J.
Commun. Netw., vol. 22, no. 3, pp. 244-258, 2020.

N. Liu, X. Tang, R. Zhang, D. Wang, and D. Zhai, “A DNN framework for
secure transmissions in UAV-relaying networks with a jamming receiver,”
in Proc. IEEE 20th Int. Conf. Commun. Technol., 2020, pp. 703-708.

N. Souli, P. Kolios, and G. Ellinas, “An autonomous counter-drone system
with jamming and relative positioning capabilities,” in Proc. IEEE Int.
Conf. Commun., 2022, pp. 5110-5115.

D. Darsena, G. Gelli, I. Tudice, and F. Verde, “Detection and blind chan-
nel estimation for UAV-aided wireless sensor networks in smart cities
under mobile jamming attack,” IEEE Internet Things J., vol. 9, no. 14,
pp. 11932-11950, Jul. 2022.

O. Sharifi-Tehrani, M. F. Sabahi, and M. Danaee, “GNSS jamming de-
tection of UAV ground control station using random matrix theory,”
ICT Exp., vol. 7, no. 2, pp. 239-243, 2021. [Online]. Available: https:
/Iwww.sciencedirect.com/science/article/pii/S2405959520303040

D. Su and M. Gao, “Research on jamming recognition technology based
on characteristic parameters,” in Proc. IEEE 5th Int. Conf. Signal Image
Process., 2020, pp. 303-307.

M. Cheng, Y. Ling, and W. B. Wu, “Time series analysis for jamming
attack detection in wireless networks,” in Proc. IEEE Glob. Commun.
Conf., 2017, pp. 1-7.

Y. Shi, X. Lu, Y. Niu, and Y. Li, “Efficient jamming identification in
wireless communication: Using small sample data driven naive Bayes
classifier,” IEEE Wireless Commun. Lett., vol. 10, no. 7, pp. 1375-1379,
Jul. 2021.

Z. Lu, W. Wang, and C. Wang, “Modeling, evaluation and detection
of jamming attacks in time-critical wireless applications,” IEEE Trans.
Mobile Comput., vol. 13, no. 8, pp. 1746-1759, Aug. 2014.

J.-C.Li,J. Liu, B.-G. Cai, and J. Wang, “Jamming identification for GNSS-
based train localization based on singular value decomposition,” in Proc.
IEEE Intell. Veh. Symp., 2021, pp. 905-912.

A. Krayani, A. S. Alam, L. Marcenaro, A. Nallanathan, and C. Regazzoni,
“Automatic jamming signal classification in cognitive UAV radios,” IEEE
Trans. Veh. Technol., vol. 71, no. 12, pp. 12972-12988, Dec. 2022.

Y. Arjoune, F. Salahdine, M. S. Islam, E. Ghribi, and N. Kaabouch, “A
novel jamming attacks detection approach based on machine learning
for wireless communication,” in Proc. IEEE Int. Conf. Inf. Netw., 2020,
pp. 459-464.

M. P. Arthur, “Detecting signal spoofing and jamming attacks in UAV
networks using a lightweight IDS,” in Proc. IEEE Int. Conf. Comput., Inf.
Telecommun. Syst., 2019, pp. 1-5.

M. Hachimi, G. Kaddoum, G. Gagnon, and P. Illy, “Multi-stage jamming
attacks detection using deep learning combined with kernelized support
vector machine in 5G cloud radio access networks,” in Proc. IEEE Int.
Symp. Netw., Comput. Commun., 2020, pp. 1-5.

H. Ismail Fawaz, G. Forestier, J. Weber, L. Idoumghar, and P.-A. Muller,
“Deep learning for time series classification: A review,” Data Min. Knowl.
Discov., vol. 33, no. 4, pp. 917-963, Jul. 2019.

A. Vaswani et al., “Attention is all you need,” in Proc. 31st Int. Conf.
Adv. Neural Inf. Process. Syst., 2017, pp. 6000-6010. [Online]. Available:
http://papers.nips.cc/paper/7181-attention-is-all-you-need

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

145

B. Zhao, H. Lu, S. Chen, J. Liu, and D. Wu, “Convolutional neural
networks for time series classification,” J. Syst. Eng. Electron., vol. 28,
no. 1, pp. 162-169, 2017.

H. Sun, X. Chen, Q. Shi, M. Hong, X. Fu, and N. D. Sidiropoulos, “Learn-
ing to optimize: Training deep neural networks for interference man-
agement,” [EEE Trans. Signal Process., vol. 66, no. 20, pp. 5438-5453,
Oct. 2018.

Y. Li et al., “Jamming detection and classification in OFDM-based UAVS
via feature- and spectrogram-tailored machine learning,” IEEE Access,
vol. 10, pp. 16859-16870, 2022.

J. Gao, M. Wang, L. Chen, B. Hui, C. Wang, and H. Fan, “DRFM jamming
mode identification leveraging deep neural networks,” in Proc. IEEE Int.
Conf. Control, Automat. Inf. Sci., 2021, pp. 444—449.

F. Ruo-Ran, “Compound jamming signal recognition based on neural
networks,” in Proc. IEEE 6th Int. Conf. Instrum. Meas., Comput., Commun.
Control, 2016, pp. 737-740.

“3GPP - Technical specification group radio access network; study
on enhanced LTE support for aerial vehicles,” 2018. [Online].
Available: https://portal.3gpp.org/desktopmodules/Specifications/Speci
ficationDetails.aspx ?specificationld=3231

“3GPP - Technical specification group radio access network; study
on channel model for frequencies from 0.5 to 100 GHz,” 2020. [On-
line]. Available: https:/portal.3gpp.org/desktopmodules/Specifications/
SpecificationDetails.aspx ?specificationld=3173

L. F. Henderson, “The statistics of crowd fluids,” Nature, vol. 229,
no. 5284, pp.381-383, 1971. [Online]. Available: https://doi.org/10.
1038%2F229381a0

J. Viana et al., “A convolutional attention based deep learning solution
for 5G UAV network attack recognition over fading channels and interfer-
ence,” in Proc. IEEE 96th Veh. Technol. Conf., 2022, pp. 1-5.

H. Farkhari, J. Viana, P. Sebastido, L. Bernardo, S. Kahvazadeh, and R.
Dinis, “Accurate and reliable methods for 5G UAV jamming identification
with calibrated uncertainty,” in Proc. 17th Int. Conf. Research Challenges
Inf. Sci., 2023. [Online]. Available: http://hdl.handle.net/10071/28846

S. Ruder, “Deep learning for NLP best practices,” 2017. [Online]. Avail-
able: http://ruder.io/deep-learning-nlp-best-practices/

N.I.Levi, I. M. Bloach, M. Freytsis, and T. Volansky, “Noise injection node
regularization for robust learning,” in Proc. 11th Int. Conf. Learn. Repre-
sentations, 2023. [Online]. Available: https://openreview.net/forum?id=
egmSZ-GPNY6

T. He, Z. Zhang, H. Zhang, Z. Zhang, J. Xie, and M. Li, “Bag of tricks
for image classification with convolutional neural networks,” in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2019, pp. 558-567.
Keras, “VGG16 and VGG19,” 2022. [Online]. Available: https://keras.io/
api/applications/vgg/

Keras, “RESNet and RESNetv2,” 2022. [Online]. Available: https://keras.
io/api/applications/resnet/

Joseanne Viana received the bachelor’s degree in
telecommunication engineering from the University
of Campinas, Campinas, Brazil. He is working to-
ward the Ph.D. degree with Signal Processing and
Communications Department, University Carlos III
de Madrid, Getafe, Spain She is an Early-Stage Re-
searcher in the project TeamUpSG, a European Train-
ing Network in the frame of (MSCA ITN) of the
European Commission’s Horizon 2020. Her research
focuses on wireless communications applied to inter-
connected systems such as UAVs, aerial vehicles, and
non-terrestrial devices.

Hamed Farkhari is working toward the Ph.D. de-
gree with ISCTE - Lisbon University Institute,Lisbon,
Portugal. He is an Early-Stage Researcher with the
TeamUp5G group, a European Training Network in
the frame of (MSCA ITN) of the European Com-
mission’s Horizon 2020. He is also a Researcher and
Developer with PDMFC Company, Lisbon, Portugal.
His research interests include cybersecurity, machine
learning, deep learning, data science, meta-heuristic,
and optimization algorithms.

Authorized licensed use limited to: b-on: ISCTE. Downloaded on November 25,2024 at 19:47:31 UTC from IEEE Xplore. Restrictions apply.



146 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 73, NO. 1, JANUARY 2024

Pedro Sebastidio received the Ph.D. degree in elec-
trical and computer engineering from IST. He is
currently a Professor with Information Science and
Technology Department, ISCTE — University Insti-
tute of Lisbon, Lisbon, Portugal. He is also the Board
Director of AUDAX-ISCTE - Entrepreneurship and
Innovation Center, ISCTE, responsible for the LABS
LISBOA Incubator and Researcher with the Institute
of Telecommunications. He has oriented several mas-
ter’s dissertations and doctoral theses. He is the author
or co-author of more than 200 scientific articles, and
is responsible for several national and international Research and Development
projects. He is an expert and evaluator of more than one hundred national and
international Civil and Defense Research and Development projects. He was
the recipient of scientific, engineering, and pedagogical awards. He has also
organized or co-organized more than 55 national and international scientific con-
ferences. He planned and developed several postgraduate courses in technologies
and management, entrepreneurship and innovation, and transfer of technology
and innovation. He supported several projects involving technology transfer and
the creation of startups and spinoffs of value to society and the market. He
developed the professional activity in the National Defense Industries, initially
in the Office of Studies and later as the Board Director of the Quality Department
of the Production of New Products and Technologies. He was also responsible
for systems of communications technology in the Nokia-Siemens business area.
His research interests include monitoring, control, communications of drones,
unmanned vehicles, planning tools, stochastic processes (modeling and efficient
simulations), the Internet of Things, and efficient communication systems.

Luis Miguel Campos received the B.Tech. degree
from the Instituto Superior Técnico, Lisbon, Portu-
gal, in 1992, the M.S. degree in information and
computer science from the University of California,
Irvine, CA, USA, in 1995, and the Ph.D. degree in
information and computer science, in 1999. With
25 years of experience managing companies from
the startup stage to medium size, he is focused on
creating a self-sustainable virtuous cycle ecosystem
1 of business angel funds, venture capital funds, active
investors, researchers, and entrepreneurs, which will
cover all stages of creation and growth until IPO. He has founded and led
several companies, some of which have been sold to large companies, namely
ZPX Interactive Software. He currently leads the Research and Development
Team, PDMFC, Lisbon. He is involved in 12 European-funded research projects
(Horizon2020) and five national research projects (Portugal2020).

Katerina (Aikaterini) Koutlia received the B.Sc.
degree in electronics engineering from the Tech-
nological Institution of Thessaloniki, Thessaloniki,
Greece, in 2009 and the M.Sc. degree with distinction
in wireless communication systems from the Brunel
University, Uxbridge, U.K., in 2011. In 2016, she
received the Ph.D. degree with honors (supported
by a grant from the Spanish Ministry of Education,
Culture, and Sport) from the Polytechnic University
of Catalonia (UPC), Barcelona, Spain. She was a
Postdoctoral Researcher with the Mobile Communi-
cation Research Group, UPC, where she has been involved in several European
and National Projects. In 2018, she was with CTTC, where she is currently a Re-
searcher. Her main activities include developing and studying existing and novel
3GPP 4G, 5G, and B5G standard-compliant features using the LENA/5G-LENA
system-level simulators and the maintenance and extension of the simulators
under the framework of European International and Industrial projects.

Biljana Bojovic received the M.Sc. degree in elec-
trical and computer engineering from the Faculty of
Technical Sciences, Novi Sad, Serbia, in 2008 and
the Ph.D. degree in networking engineering from
the Polytechnic University of Catalonia, Barcelona,
Spain, in 2022. She is the Developer and Maintainer
of the LTE, NR, and NR-U modules of the ns-3
network simulator and the Principal Author of the
LAA and LTE-U modules. She held LTE and NR
module tutorials at the ns-3 workshops in 2016 and
2022 and CONFTELE in 2021. In addition, she was a
Mentor of ns-3 GSoC on several occasions. In 2020, she was the recipient of the
ACM SIGCOMM Networking System Award. She worked on many research
projects for industrial clients, such as Wi-Fi Alliance, SpiderCloud, Interdigital,
US Department of Defense, and NIST, Facebook. She is the Co-Author of
one patent application (US20200314906A1). Her research interests include XR
traffic enhancements for 5G-Advanced, MIMO simulation models for ns-3, and
unlicensed/shared spectrum.

Sandra Lagén (Senior Member, IEEE) received the
Telecommunications Engineering, M.S., and Ph.D.
degrees from Universitat Politecnica de Catalunya
(UPC), Barcelona, Spain, in 2011, 2013, and 2016,
respectively. In 2017, she was with CTTC, Castellde-
fels, Spain, where she is currently a Senior Re-
searcher and Head of the Open Simulations (Open-
Sim) research unit. She has participated in outstand-
ing projects within the industry, leading to the design
and development of the open-source end-to-end 5G-
LENA simulator. Her research interests include wire-
less communications, spectrum and interference management, and optimization
theory. She was the recipient of the dissertation best national Ph.D. thesis on
high-speed broadband mobile communications (2017) and a Special Doctoral
Award from UPC (2019). She was also the recipient of IEEE WCNC 2018 and
WNS3 2020 best paper awards. Since 2021, she has been a Member of the
executive board of the ns-3 consortium.

Rui Dinis (Senior Member, IEEE) received the Ph.D.
degree from the Instituto Superior Técnico (IST),
Technical University of Lisbon, Lisbon, Portugal, in
2001. He was a Researcher with Centro de Anélisee
Processamento de Sinal, IST, from 1992 to 2005 and
Instituto de Sistemas e Robdtica from 2005 to 2008.
He is currently a Senior Researcher with Instituto de
Telecomunicagdes, Aveiro, Portugal and a Full Pro-
fessor with FCT, Nova University of Lisbon, Lisbon.
He is or was the Editor of the IEEE TRANSACTIONS ON
WIRELESS COMMUNICATIONS, IEEE TRANSACTIONS
ON COMMUNICATIONS, IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY,
IEEE OPEN JOURNAL ON COMMUNICATIONS, and Physical Communication
(Elsevier). He is an IEEE VTS Distinguished Speaker and an IEEE ComSoc
Distinguished Lecturer.

Authorized licensed use limited to: b-on: ISCTE. Downloaded on November 25,2024 at 19:47:31 UTC from IEEE Xplore. Restrictions apply.



2.4. Article #4: A Convolutional Attention-Based Deep Learning Solution
for Gl UAV Network Attack Recognition

This paper introduces a novel deep learning approach for detecting attacks in BEG
[TAV] networks using a convolutional attention-based architecture. The research focuses
on realistic scenarios that include multiple terrestrial users, interference, and static and

moving attackers.

Key Contributions

e Development of an attention-based deep learning architecture for attack detec-
tion;

e Comprehensive analysis of [JAV] networks with multiple terrestrial users;

e Evaluation of both static and moving attack scenarios;

e Implementation of efficient processing techniques for real-time detection.
The proposed architecture processes two key parameters:

o [RSSI

.

Performance Evaluation
The system demonstrated robust performance in various scenarios:

e Overall accuracy of 84% during training and 74% during testing;
e Effective detection with up to 20 terrestrial users;
e Successful identification of static and moving attackers;

e Performance maintained across different power levels and distances.

A significant innovation of this work is the implementation of the attention mechanism,
which reduced the trainable parameters by approximately 50% compared to [LSTM}based
solutions while maintaining comparable performance. This makes the solution particularly

suitable for resource-constrained [UAV] platforms.

Experimental Validation
The experimental validation included the following configurations:
e Various attacker configurations (0-4 attackers).
e Different power levels (0-20 dBm).

e Multiple user scenarios (0-20 users).

e Both static and dynamic scenarios.

Article Details

e Title: A Convolutional Attention-Based Deep Learning Solution for EGl UAV
Network Attack Recognition
e Date: 2022
e Authors: Joseanne Viana, Hamed Farkhari, Luis Miguel Campos, Pedro Se-
bastiao, Katerina Koutlia, Sandra Lagén, Luis Bernardo, Rui Dinis
63



e Status: Accepted in a Conference
e Conference: [EEE VTC Fall 2022
e DOI: 10.1109/VTC2022-Fall57202.2022.10012726
This research advances the field of [TAV] security by demonstrating the effectiveness
of attention mechanisms in attack detection while maintaining computational efficiency.
The comprehensive evaluation in realistic BGl scenarios with multiple users and moving

attackers provides valuable insights for practical implementations.
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Abstract—When users exchange data with Unmanned Aerial
Vehicles - (UAVs) over Air-to-Ground - (A2G) wireless commu-
nication networks, they expose the link to attacks that could
increase packet loss and might disrupt connectivity. For example,
in emergency deliveries, losing control information (i.e., data
related to the UAV control communication) might result in
accidents that cause UAV destruction and damage to buildings
or other elements. To prevent these problems, these issues must
be addressed in 5G and 6G scenarios. This research offers a
Deep Learning (DL) approach for detecting attacks on UAVs
equipped with Orthogonal Frequency Division Multiplexing -
(OFDM) receivers on Clustered Delay Line (CDL) channels
in highly complex scenarios involving authenticated terrestrial
users, as well as attackers in unknown locations. We use the
two observable parameters available in 5G UAV connections:
the Received Signal Strength Indicator (RSSI) and the Signal to
Interference plus Noise Ratio (SINR). The developed algorithm
is generalizable regarding attack identification, which does not
occur during training. Further, it can identify all the attackers in
the environment with 20 terrestrial users. A deeper investigation
into the timing requirements for recognizing attacks shows that
after training, the minimum time necessary after the attack
begins is 100 ms, and the minimum attack power is 2 dBm, which
is the same power that the authenticated UAV uses. The developed
algorithm also detects moving attackers from a distance of 500
m.

Index Terms—Cybersecurity, Convolutional Neural Networks,
Deep Learning, Jamming Detection, Jamming Identification,
Unmanned Aerial Vehicles, 5G;

I. INTRODUCTION

Unmanned Aerial Vehicles - (UAVs) will integrate into 5G
and 6G networks to provide delivery services, security, general
and risky inspections, emergency services, and other functions
inside and outside the network. The logistics industry will
benefit first from using UAVs in their ecosystem, followed
by all other vertical industries. In addition to coverage, high
throughput, and low latency requirements, there is an increas-
ing demand for secure and reliable connections with powerful
data protection [1]. We expect that emergency and high-value
transportation, whose success depends on the capacity to com-
municate reliably and securely, will employ UAVs to provide
high-quality services at lower costs [3]. Due to their aerial
nature, UAVs provide faster and more flexible network services
at higher data rates since they have complete control over their
movement and a high probability of establishing robust Line-
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of-Sight (LoS) communication links. However, the vulnerabil-
ity of wireless Air-to-Ground - (A2G) communication links
make UAVs susceptible to attacks that increase packet loss or,
even worse, completely lose communication. In order to keep
UAV communications safe, it is crucial to detect potential risks
and implement countermeasures. There is extensive research
on Anti-Jamming techniques. Two established approaches to
identify jamming are: analyzing the packet delivery ratio and
the received signal strength. Both mechanisms deal with a
high amount of lost information before detecting the attack. In
ultra-dense networks, the overall amount of connected devices
might hide the presence of local jammers. Finding other ways
to address security issues in UAV networks is vital.

Currently, researchers are adopting machine learning tech-
niques for sequence prediction problems with spatial inputs
and pattern recognition [2]. As a part of machine learning,
Deep Learning (DL) research exploits algorithms to make
models with high-level data abstractions by using multi-
ple processing layers with complex structures. Deep Neural
Networks (DNNs) such as Convolutional Neural Networks
(CNNs) [3], [4] with Long Short-Term Memory (LSTM) or
attention layers are used for temporal modeling, and to define
universal functions in complex wireless scenarios. [5] [4].
These characteristics make them suitable for applications that
deal with time series and spatial data, such as interference
identification in wireless networks. The signal under analy-
sis uses specific features to detect anomalies. The authors
in [6] add an attention layer in their CNN to track long
temporal variations in the time domain gradients. Some pre-
trained networks do not require re-design because they use
transfer learning methods to learn classification procedures.
For example, the authors in [7] use pre-trained networks
(i.e., AlexNet, VGG-16, ResNet-50) to identify jamming using
spectral images of the received signal in the UAV. These
networks can be vast and require extensive processing to sort
information, making them unsuitable for use by UAVs.

Even though embedded deep network techniques in the
cloud or edge can monitor and evaluate channel degradation
due to interference, fading, and jamming attacks, anti-jamming
procedures and non-traditional approaches to avoid jamming
are the focus of most research on this topic rather than
recognizing attacks. As a result, there is a lack of publicly
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available research on attack detection in UAV communications.
We intend to detect attacks against authenticated UAVs when
the UAVs are providing delivery services in highly complex
environments such as the realistic ones in big urban centers.
We aim to add terrestrial and aerial users connected to small
cells that produce interference and simulate blockages that
represent buildings. In this environment, the UAV is equipped
with a unique deep network design with fewer layers than
pre-trained networks typically use to identify attacks.

We organize this paper as follows: Section II details the
system model. It explains the channel model, the dataset, and
the architecture of the intended deep network. Section III
summarizes the results of the performance evaluation of the
deep network, and Section IV concludes this paper.

A. Contributions and Motivation

There is a lack of research and data on the detection and
prevention of jamming using deep network techniques in UAV
scenarios. In order to expand the literature on this topic, we
present the following key contributions of this paper:

o A comprehensive case research model that assumes inter-
ference and blockages in the scenario with authenticated
UAVs in 5G networks and the presence of other UAV
attackers;

e An analysis of the identification of static and moving
attackers in the network with and without terrestrial users;

o A smaller Convolutional Neural-Attention Based Net-
work - (CNN-Attention) architecture to detect jamming;

« Insights into the deep network hyperparameters configu-
ration;

o Comparison between deep network performances using
attention or LSTM layers;

o Results on attack detection accuracy with and without
terrestrial users in both static and moving scenarios;

Finally, we offer a visual representation of the confusion
matrix for both the training and test datasets.

II. SYSTEM MODEL

We consider a deep learning approach to detect attacks over
UAV networks when there are V (I € N £ {1,2, ..., V}) au-
thenticated UAVs connected to private networks in A2G links,
S small cells serve U ground users, and M attackers exist with
a fixed index i € N = {1,2,...,5}, j € N = {1,2,...,U},
k € N £ {1,2,.... M}, respectively. The attackers are in
unknown locations in the air and they can deliberately jam
the signal received by the authenticated UAVs. The X-Y-Z
Cartesian coordinate established between the small cells and
the authenticated UAVs are defined as ||pps — Puav||?. All the
elements in the network follow slow fading and fast fading
propagation characteristics according to [8] and [9]. The users
are in random fixed positions and they can move when the
proper configuration is set up. The small cells follow the
same random location positioning strategy as the users. Fig 1
illustrates a top view of the simulation scenario. We define a
total (1.0kmX1.0km) area that includes buildings of different
sizes and heights, which are represented by rectangles. The
7z” identifies the fixed S small cells available for connection.
Some of the small cells are on the tops of the buildings. 7 ¢”
represents the authenticated terrestrial users, "+" illustrates the
attackers, and a variety of colors distinguishes the authenti-
cated UAVs from the attackers. For the sake of simplicity, the

authenticated UAVs stay connected to the same base station
during the entire simulation. We assume there is sufficient
space between all devices and other objects in the city in
order to avoid collisions and that all devices are in outdoor
locations. The small cells do not overlap coverage signals, and
all the authenticated terrestrial users are always connected to
the closest small cell available.
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Fig. 1: Scenario Top View.

The authenticated UAVs connect to the small cells and
generate downlink signals while the attackers attempt to jam
the link. The jamming UAVs are able to adjust their power
and position throughout the simulation. They aim to disrupt
the UAV signal using decentralized capabilities and the least
resources possible. The attackers utilize the same propagation
models as the authenticated UAVs. They move towards the
target UAVs when they are set up with moving capabilities.

TABLE I: Network Parameters.

Scenario Parameters Value
Terrestrial Users 0,3,5,10,20
Authenticated UAVs 1

Small Cells 10

Small cell height 10 m
Attackers 0,1,2,3,4
Speeds 10 m/s
Modulation scheme OFDM

Small cell power 4 dBm
Authenticated UAV power 2 dBm
Attackers power 0,2,10,20 dBm
Authenticated UAV position random
Attackers position random

Small cells position random
Scenario UMi

Distance 100, 200, 500 m
Simulation time 20 s

We define an urban scenario for our experiment based on the
complex interference and obstruction patterns that we find in
a city. Additionally, this is the most common environment for
the UAV emergency delivery use case. The channel between
the UAVs and the small cells use a wireless fading model
which is modeled after A2G channels, and the transmission
uses the OFDM modulation scheme. The deep network takes
the fading and interference of wireless data into consideration
using s subchannels for a total of N¢ time slots, where
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s < Nz (in practice, we typically have s << Ni). The urban
scenarios limit the small cell’s height. We use the heights
and distances in Table I and we create scenarios with both
LoS and Non-Line-of-Sight (NLoS) conditions. Note that the
distance in Table I is the distance between the small cell and
the authenticated UAV.

A. Channel Model

The 3GPP standards [8] and [9] describe the losses and
fading in 5G UAV wireless communications. Specifically,
small-scale and large-scale fading in rural and urban scenarios.
The UAV norm adds the logarithm’s height component losses
to the overall calculation to differentiate the UAV links from
well-known wireless connections. Regarding the mathematical
modeling of the small-scale fading effect, known as fast
fading, there are two channel models available in the standard:
the Tapped Delay Line (TDL) and the Clustered Delay Line
(CDL). The second model comes from the first one. UAV
fast fading models are frequently described as CDL channels.
In addition, there is another subcategory for LOS and NLoS
conditions in the model highlighted by the letters "ABCDE"
after the model’s name. For example, the CDL-D includes
line-of-sight components while "ABC" represent models with
NLoS components. Due to the line-of-sight characteristics of
the UAV links, they are usually modeled using CDL-D. The
major difference compared to terrestrial wireless links is that
the UAV is at substantially higher altitudes considering the
average rooftop height in a city, whereas the antenna is at
positions below the same reference points, which means that
the angular spreads in the departure and arrival devices swap.

B. The Dataset

As an extension of our previous work [10], we study deep
network identification and generalization algorithms for jam-
ming attacks under fading and interference when UAV attack-
ers have static and moving configurations. We use sequential
datasets, such as the time-series network parameters that the
authenticated UAV generates during its mission. Specifically,
we analyse two observable parameters: the Received Signal
Strength Indicator (RSSI) and the Signal to Interference plus
Noise Ratio (SINR) as inputs. Both parameters are collected
from the authenticated UAV’s receiver side. The dataset con-
tains 2400 folders. Each folder has two files, one for RSSI
data and one for SINR. The folders are classified into four
configuration groups namely: None Speed, Attacker Speed,
User Speed, and Both Speed. The None Speed group
collects RSSI and SINR data when there are no changes in the
initial position of the elements in the network over time. In the
Attacker speed configuration, the attackers are able to change
their speed according to Table I. In the third case named U ser
speed, only the users are able to move in the simulation over
time, and in the Both speed case, both elements (the attackers
and the users) are able to move according to predefined speeds
during the simulation time. The RSSI parameter defines the
total interference power in the network, and the SINR param-
eter measures the link quality (with the ratio of useful signal
power over interference plus noise power). Both parameters
are available in the authenticated UAV after the initial access

synchronization.
For classification purposes, the dataset use the following
nomenclature: " Yes Jamming", "No Jamming", "Moving

Jamming", and "Fixed Jamming". Yes Jamming implies that
at least one attacker has been discovered by the authenticated
UAV in the network. No Jamming indicates the absence of
jamming and suggests that the network is secure. Moving Jam-
ming denotes that the jammer is approaching the authenticated
UAV over time and Fixed Jamming suggests that the jammer
is in a fixed position over time. The jammers change their
transmission power values during the experiment.

C. The Designed Deep Network

In the this section, we describe the deep network char-
acteristics that recognize attacks in realistic scenarios. The
motivation behind the use of a deep network solution is to
learn the characteristics of networks while it is under attack.
The two headed DNN solution receives two sequences from
the observable signals RSSI and SINR and then it produces
just a single classified output. The architectural design contains
the following in both of the two heads: (i) three CNNs
layers, (i) a LSTM or Multi-headed-attention layer, and (77)
a drop-layer. The body of the deep network consists of: (7)
three convolutional layers, (i7) a Drop out layer, (i) a fully
connected layer, and (iv) the output layer for two classes
classification as in figure 2. After the first classification, we
run another deep network with the same structure to classify
the moving and non-moving jammers.

SINR —Observable
Parameter

Input layer

3-Convolutional layers |

RSSI - Observable
Parameter

Input layer

‘ 3-Convolutional layers ‘ |

| LSTM/Self-Attention layer | | LSTM/Self-Attention layer |

| Drop out ‘ | Drop out ‘

‘ 3-Convolutional layers |

‘ Drop out |

| Fully connected layer ‘
Output layer

2 Classes Classification

Yes No
Jamming Jamming

A 4

2 Classes Classification

Fixed
Jamming

Moving
Jamming

Fig. 2: Multiheaded Deep Network proposed architecture
with two configurations: all structure with LSTM layer or all
structure with self-attention layer

First, we use the auto correlation function to find the
window size hyperparameter for the time-series data. For the
other hyperparameters such as the number of CNN filters,
kernel sizes, stride lengths, batch size, learning rate, and
the number of regularization terms we use the grid search
algorithm and other insights from our previous paper [10]. Our
training data is fed into the Adam optimizer, which reduces
the classification error for each new batch of commands.
The Attention layer is applicable in this context because it
provides the ability to capture temporal information since the
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nodes in the layers are weighted by the sum of the row
vectors that hold the information over several time steps, which
increases robustness similar to the LSTM layer, but with fewer
trainable parameters. At the end, we trained the deep network
with 5-fold cross validation technique to assure correctness
and prevent overfitting. The deep Network model is trained
and tested on a computer system with a Nvidia RTX 3090
that has a 25GB RAM Graphics Processing Unit (GPU). All
the Convolutional layers, self-attention, and drop out groups
follow the same structure and parameters mentioned in Table
II. The main deep network parameters are available in Table
1L

TABLE II: Deep Network Configuration Parameters.

Deep network Parameters Value
Base learning rate 2.5x1072
Base batch size 32
Conv-1 filters, kernel size, strides 8, 8,2
Conv-2 filters, kernel size, strides 8,4,2
Conv-3 filters, kernel size, strides 8, 3,1
Self-Attention head-number, key-dimensions 8, 8
(or LSTM) 50
Drop-out 0.4
Fully connected layer 100
Softmax 2

III. EXPERIMENTAL RESULTS

In this section, we present the results of our synthetic UAV
attack dataset executed in our designed deep network. Except
when explicitly mentioned, all the network and deep network
parameters used are described in Table I and in Table II,
respectively. For each attacker number, we ran a simulation
based on the attacker power, distance, and users amount, which
generated 4800 files (2400 for RSSI and 2400 for SINR).
We fed this data into the deep network and we analysed the
classification results. First, we calculated the overall accuracy
considering all the scenarios. Our deep network was able
to correctly classify approximately 84% of the scenarios
regarding Yes Jamming and No Jamming labels in the
training and 74% in the test.

The training results showed that the deep network mis-
categorized 11,407 training samples from No Jamming
to Yes Jamming and vice-versa out of a total of 72288
training samples generated from all folds cross validation.
For validation, we used roughly 14,000 samples. During the
testing, we observed 80,537 misclassifications out of a total of
315,800. The relatively high misclassification number found
in the training can be justified by taking into account the
abrupt changes in the stochastic channel model and the random
nature of the simulation. Moreover, the fact that we did not
use samples from the same configuration in the test as the ones
that we used in the training might justify the increased number
of miscategorized samples. Figure 3 presents the confusion
matrix for all scenarios.

Tables III and IV illustrate additional information regarding
the experiment’s accuracy and f-score parameters for training
and testing, respectively.

In order to simplify the 2-steps-classification in the deep
network architecture in figure 2, we tried a 1-step classifica-
tion with 3-classes, the labels were No Jamming, Fixed
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Fig. 3: The binary classification Confusion Matrix for all
scenarios.

TABLE III: Precision, recall, and fl-score in training.

precision recall fl-score support
No Jamming 0.79 092 0.85 36144
Yes Jamming 0.91 0.77  0.83 36144

TABLE IV: Precision, recall, and fl-score in testing.

precision recall fl-score support
No Jamming  0.68 094  0.79 157900
Yes Jamming 0.90 0.55 0.68 157900

jamming, and Moving Jamming, but the accuracy results
decreased approximately 11% reaching 72%. In the binary
classification test, it became clear that the CNN layers were
critical to reduce the number of trainable parameters. After
replacing the LSTM with the self-attention layers, we noticed
that the number of trainable parameters reduced down to
approximately half of the initial amount (i.e., from 43000 to
22000), but maintained the same good performance in training
and validation. We observed that accuracy increased roughly
by 2% (i.e., 73.15 to 75.13) during testing using the attention
layers.

Figure 4 depicts the accuracy results based on the number
of terrestrial users connected to the network for training and
testing. The overall accuracy decreased according to the
number of users connected to the network. For example,
when there were no users in the network, training accuracy
was about 90%, but with 20 users it was around 83%. The
accuracy decreased because of the interference generated by
the connection between the users and the small cells over
time. The slow fading values changed when the users were
configured to move and the additional users made it hard to
differentiate whether the RSSI and SINR changes were caused
by attackers or users. The accuracy of the 5-users simulation
was lower (roughly 75%) compared to the other cases with
fewer and/or more users because the related data was new to
the deep network. These results assured the robustness of our
deep network with respect to data that was not in the training.

Figure 5 shows the accuracy over distance and attackers
power ratios during training. Attackers with lower power are
harder to be identified by the deep network. Both simulations
where the attacker power was configured to 2 dBm and the
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distance was set up to 200 m were removed from the training.
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Fig. 5: Accuracy over power and distances.

Table V presents the overall results of each scenario consid-
ering all distances, powers, and attackers. The deep network
achieved the highest accuracy in the Attacker speed scenario
(when only the attackers move toward the authenticated UAV),
but the accuracy difference compared to the other scenarios
was small (i.e., 0.25% compared to None speed, 1.15% in
User Speed, and 3.24 % in Both speed).

TABLE V: Accuracy in fixed and moving scenarios.

Scenario Accuracy (%)
None speed 77.35
Attacker speed 77.60
User speed 76.45
Both speed 74.36

Figure 6 depicts the accuracy across the number of attackers
and their respective power. It is difficult for the deep network
to identify a small number of attackers or an attacker with
limited power because The CDL channel model can fluctuate
30 dB depending on the configurations in the fast fading
parameters.

IV. CONCLUSION

This article offered a solution based on deep networks for
identifying jamming attacks in UAVs networks. We were able
to embed the deep network with self-attention layer in the UAV
because after training and testing the processing capacity of
the generalized deep network matched the limited processing
capacity of the UAV. In general, our deep network was able to
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Fig. 6: Accuracy over the number of attackers in the network.

recognize attacks in all scenarios’ configurations. Simulations
with 3 or more attackers, fewer users, and power greater than
10 were easier to be identified. Furthermore, the 3D distance
between the small cell and the authenticated UAV impacted
the identification accuracy. In our case, as the distance grew,
the chances of identification increased because the interference
decreased.
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2.5. Article #5: Two Methods for Jamming Identification in [JAV] Networks
Using a New Synthetic Dataset

This paper presents two complementary approaches to detect jamming attacks in[JAV]
networks: a statistical method using ST} and a [CNNHLSTMI architecture. The research
addresses the critical vulnerability of [[AV] transmissions to jamming attacks due to the

open nature of air-to-ground (A2G) wireless communication networks.

Key Contributions
The key contributions of this work include:

e Development of a new synthetic dataset that incorporates realistic channel effects;
e Statistical model based on time series analysis for jamming detection;
e Simplified [CNNHLSTM] architecture requiring minimal computational resources;

e Comprehensive performance evaluation across various scenarios.

Statistical Approach
The statistical approach uses STLl to decompose the received signals into trend, sea-

sonal and residual components. This method achieved 84.38% accuracy in identifying at-
tacks when the attacker was 30 meters from the[JAV] Although its effectiveness decreased
with distance and lower jamming power ratios, the low computational requirements of the
method make it suitable for real-time [JAV] applications.

Deep Learning Approach

The [CNNHLSTM] solution demonstrated superior performance, achieving 99.99% ac-
curacy for jamming powers greater than 2 dBm and distances less than 200 meters. The

key features of the architecture include the following;:

e Three convolutional layers with optimized filter configurations;
e An[LSTM] layer for temporal pattern recognition;

e An efficient design with only 53k trainable parameters.

Experimental Validation
The experimental validation considered various factors, including:

e Jamming power ratios (1-20);
e Distances between [JAV] and base station (10-350 meters);

e Channel conditions and shadowing effects.

Significance

The combined approach offers a practical solution for [TAV] networks. The statistical
model provides rapid detection with minimal resources, while the deep learning model
offers higher accuracy when computational resources are available. This research demon-
strates the feasibility of implementing effective jamming detection in resource-constrained
[TAV] environments.
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The significance of this work lies in its practical approach to [TAV] security, provid-
ing lightweight and sophisticated solutions that can be implemented based on available
resources. The comprehensive evaluation across different scenarios and conditions estab-

lishes a strong foundation for future research in [JAV] network security.
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2.6. Article #6: Latent Space Transformers for Generalizing Deep Networks

This paper introduces a novel concept for interoperability in deep networks using
standardized latent space transformers, aimed at facilitating information sharing between

different deep learning models.

Key Contributions

e A novel framework for sharing information between trained deep networks;
e A method for combining networks using latent space transformers;
e An approach to reducing retraining requirements in network adaptation;

e Application scenarios for BGl network optimization.

Proposed Approach
The proposed approach involves:

e Splitting deep networks into two parts with standardized latent spaces;
e Using transformer blocks to convert between different latent spaces;
e Enable network combination with minimal retraining;

e Optimizing edge cloud processing in 5G] networks.

Applications and Benefits
Applications and benefits of the proposed approach include:

e Reduced training processing costs;
e Improved network security integration;
e Enhanced resource allocation in BGl networks;

e Efficient data handling between edge and cloud systems.

Article Detalils

e Title: Latent Space Transformers for Generalizing Deep Networks

e Authors: Hamed Farkhari, Joseanne Viana, Luis Miguel Campos, Pedro Se-
bastidao, Albena Mihovska, Purmina Lala Mehta, Luis Bernardo.

e Status: Accepted in a Conference

e Conference: 2021 IEEE Conference on Standards for Communications and Net-
working

e DOI: 10.1109/CSCN53733.2021.9686099
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Abstract—Sharing information between deep networks is not
a simple task nowadays. In a traditional approach, researchers
change and train layers at the end of a pretrained deep network
while the other layers remain the same to adapt it to their
purposes or develop a new deep network. In this paper, we
propose a novel concept for interoperability in deep networks.
Generalizing such networks’ usability will facilitate the creation
of new hybrid models promoting innovation and disruptive use
cases for deep networks in the fifth generation of wireless
communications (5G) networks and increasing the accessibility,
usability, and affordability for these products. The main idea is
to use standard latent space transformation to share information
between such networks. First, each deep network should be
split into two parts by creators. After that, they should provide
access to standard latent space. As each deep network should
do that, we suggest the standard for the procedure. By adding
the latent space, we can combine two deep networks using the
latent transformer block, the only block that needs to train while
connecting different pretrained deep networks. The results from
the combination create a new network with a unique ability.
This paper contributes to a concept related to the generalization
of deep networks using latent transformers, optimizing the
utilization of the edge and cloud in 5G telecommunication,
controlling load balancing, saving bandwidth, and decreasing
the latency caused by cumbersome computations. We provide
a review of the current standardization associated with deep
networks and Artificial Intelligence in general. Lastly, we present
some use cases in 5G supporting the proposed concept.

Index Terms—Deep learning, sharing information, latent space,
standardization

1. INTRODUCTION

Recommendable advances in Machine Learning (ML) al-
gorithms, computational capacities, processing, preprocessing
techniques, and computer hardware have resulted in efficient
training methods for Deep Neural Networks (DNNs). In
addition, deep feedforward networks have recently provided
enhanced acoustic modelling [1]. As a result, the number
of use cases for the DNNs in varied fields will witness
exponential growth in the future. Increasing demands will
make processing time and techniques, parallel computing, and
latency highly critical to the connected users. Technologies
such as 5G- Ultra-Reliable Low Latency Communications

(URLLC), edge, and cloud computing enable the development
of applications using deep networks to provide high Quality
of Services (QoS) for users with these needs. At the same
time, researchers increase the utilization of the mixed deep
networks to achieve better performance and higher accuracy.
In addition, the innovations with computational techniques and
training models will result in evolving neural networks.

To have seamless integration beyond the fifth generation
of wireless communications (5G) networks and deep hybrid
networks have some open challenges. Standards support inno-
vations, research organizations to build new training models
and network architecture to facilitate enormous data and
processing capabilities. It is speculated that standardization on
latent space will boost research activities towards innovative
hybrid networks with reduced or no retraining requirements.
Latent spaces define the data representation in another domain
space. For instance, it is the space that resulted in modifying
some data features like the mathematical transformations.
For example, selecting, extracting, and transforming to new
domains happens automatically in deep networks, and there are
no rules on the number of layers and units per layer. However,
because these variables are hyper-parameters and based on
the performance achieved. Thus, we propose to use the latent
space to reduce the amount of retraining by separating deep
networks. The contributions of this paper are the following:

1) A concept for sharing information between several
trained deep networks from different fields (e.g. text
and speech and images, resource allocation and security
algorithms and, others) is able to decrease latency and
computation requirements in deep networks applications
reducing training processing costs;

2) New concepts for training techniques to create hybrid
networks from pretrained networks;

3) New transfer learning methods for using pretrained deep
networks with small datasets.

This paper is organized as follows. Section II discusses
the state-of-the-art and Section III presents the standardization
activities concerning the Al, ML, and deep networks. Section
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IV provided limitations of state-of-the-art associated with
standardization activities, and Section V addressed the novel
concept of reducing the retraining activity and proposes the
new concept for sharing information between deep networks.
Section VI discusses an integrated view between the proposed
idea and the uses cases for 5G networks. Finally, Section VII
presents the main conclusions of this work.

II. STATE-OF-THE-ART

Artificial Neural Networks (ANN) are networks of con-
nected nodes guided by the associated weights to facilitate the
implementation of Artificial Intelligence (Al) to solve real-life
problems. ANNs are useful in designing prediction models,
automation and control, and applications requiring trained
datasets to make decisions or identify patterns. ANNs are
adaptive to the learnings from the information they carry. This
information is processed using mathematical/ computational
models. The nodes are assembled into layers that perform
transformation operations to the inputs [2]. Information travels
through multiple layers. ANNs are trained by adapting to
network parameters and environment. There are various ways
to train a network, for example, supervised learning, unsu-
pervised learning, reinforcement learning, self-learning and,
so on [3]. Deep Learning (DL) is an approach where the
network observes, identifies, and learns the representations
required to process and categorize the raw data. A multi-
layered ANN capable of modelling complex linear or non-
linear relationships is a Deep Neural Network (DNN). DNN
formulates compositional models from the structured or un-
structured input datasets and extracts features from different
layers. These networks are well-versed to create approximate
models with the provided data input. The data flow from the
input layer to the output layer, and thus, these networks are
also called feedforward networks.

The flow of data can be expressed as follows;

1) The weights of neurons in a DNN is initialized by the
random numbers.

2) The output is generated using the activation function
after multiplying the inputs with the associated weights.

3) An optimization algorithm will update the weights if the
desired accuracy is not achieved.

A. Hybrid Deep Networks and Sharing Information

The researchers mention two kinds of hybrid deep net-
works in the literature—the combination of one deep network
followed by machine learning algorithms such as Support
Vector Machines (SVMs). For example, in [4], the hybrid
combination of Convolutional Neural Network (CNN) and
Long Short-Term Memory (LSTM) with SVM is compared
to achieve higher accuracy for sentiment analysis. In different
methods like in [5], several deep networks such as CNN,
LSTM, Bidirectionally Long Short-Term Memory (BiLSTM),
Gated Recurrent Unit (GRU) were used separately to extract
the features, and by concatenating all of these features fol-
lowed by the Softmax layer, the hybrid network was created
and was used for sentiment classification. In another way of

the combination of deep networks as a series, one followed
after another like [6], the authors for analysis Human Activity
Recognition (HAR), used the CNN network followed by
another RNN network type, e.g., LSTM, BiLSTM, GRU, and
Bidirectional Gated Recurrent Unit (BiGRU). In the other
fields, such as security, we were using hybrid deep networks
increasing. Another hybrid method was used in [7] for attack
detection in the Internet of Things (IoT). As in [6], they
used the LSTM network after extracting futures by the CNN
network. The recent researchers proved that using hybrid deep
networks can improve the performance in many different use
cases.

This paper proposes a new concept for standardization
related to sharing information between the deep networks
without changing the last layers, developing a new individual
network, or retraining the pretrained networks. Standards for
deep networks are critical because several fields use such
networks nowadays (e.g., health, telecommunications, gam-
ing). With standardization, the use cases of deep networks
are publicly available, which promotes dissemination and
broad application. Furthermore, standardization helps prevent
market fragmentation, which inhibits growth, and mutually
incompatible solutions are avoided.

III. STANDARDIZATION ACTIVITIES

Standards are essential to driving research, innovations, pol-
icymakers, and industries. They form a set of guidelines that
validate requirements specifications and assure quality [8]. In
addition, they align various approaches to have interoperable
solutions as we are advancing every day with technology and
its vast usages.

There are different types of Standards Development Orga-
nizations (SDOs) working towards standards for Al applica-
tions. SDOs are categorized at International, National, and
Regional levels. Some of the renowned SDOs are ISO (Inter-
national Organization for Standardization), IEC (International
Electrotechnical Commission), ITU (International Telecom-
munication Union), European Telecommunications Standards
Institute (ETSI), etc. In addition, organizations like the 3rd
Generation Partnership Project (3GPP), Institute of Electrical
and Electronics Engineers (IEEE), and oneM2M are examples
of Standard Initiatives groups that collaborate and coordinate
standardization efforts on different subjects [8].

A. Standards in Artificial Intelligence

Table I summarizes some of the ongoing standardization
initiatives concerning AI/ML architectures and techniques.
For the AI ecosystem, standards and specifications are
indispensable as they ensure a safer and reliable future.
Furthermore, the connected, intelligent devices generate
enormous data and the information required for the training
models. Furthermore, data is critical and essential in intelligent
environments as they include personal as well professional
details. For instance, in healthcare scenarios, data cannot be
shared or used for training purposes [20]. Thus, it is of utmost
importance to have a specified requirement to regulate data
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TABLE I
STANDARDIZATION ACTIVITIES CONCERNING AI/ML/DL
Standards Summarized Activities
}Flzlcalllanilgjl%l?r,arifsg?]r(d afr?é This standard defines the framework and architecture for the training model using multi-source encrypted data in a
. trusted third-party environment. Its emphasis is on the use of a third-party execution environment to process encrypted
1 | Requirements of Shared . . . . . . .
. . data. The standard intends to provide a verifiable basis for trust and security and outlines functional components,
Machine Learning ITU T . X . .
workflows, security requirements, technical requirements, and protocols.
Y.3172 [9]
P3333.1.3/D2-IEEE This standard is dedicated for defining deep learning-based metrics of content analysis and quality of experience
Draft Standard for the | (QoE) assessment for visual content. It targets to contribute to an enhanced user experience. To achieve high QoE,
5 Deep Learning-Based | this working group is focused on areas concerning perceptual quality and virtual reality (VR) cybersickness. Its DL
Assessment  of  Visual | models count for affecting human factors, reliable test methodology and a database construction procedure. It also
Experience  Based on | defines cases for deep analysis of clinical and psychophysical data, deep personalized preference assessment of visual
Human Factors [10] contents, and building image and video databases.
FG-ML-5G is an ITU-T Study Group 13 (SG13) Focus Group on Machine Learning for Future Networks including 5G.
It has documented 10 technical specifications for ML for future networks, including interfaces, network architectures,
protocols, algorithms, and data formats. It was active from January 2018 until July 2020. Following are some of the
. relevant contributions from this focus group concerning the proposed work.
Focus Group on Machine . . L . .
Learning for Future Net- 1) ITU-T Y.3172: Architectural framework for machine learning in future networks including IMT-2020.
3 works including 5G (FG- 2) ITU-T Y.3173: Framework for evaluating intelligence levels of future networks including IMT-2020.
MLS5G) [11] 3) ITU-T Y.3174: Framework for data handling to enable machine learning in future networks including IMT-
2020.
4) ITU-T Y.3176: ML marketplace integration in future networks including IMT-2020.
5) Serving framework for ML models in future networks including IMT-2020.
ITU-T Y.3172 provides an architectural framework for machine learning in future networks including IMT-2020. It
4 | ITU-T Y.3172 [12] specifies a set of architectural requirements, components and, their integration guidelines. It defines an ML pipeline,
ML management and, orchestration functionalities.
ITU-T Y.3173 specifies a framework for evaluating the intelligence of future networks including IMT-2020 and
5 | ITU-T Y.3173 [13] introduces a method for evaluating the intelligence levels of future networks including IMT-2020. It defines an
architectural view for evaluating network intelligence levels based on the recommendation in ITU-T Y.3172.
ITU-T Y.3174 Framework for data handling to enable machine learning in future networks including IMT-2020. It
6 | ITU-T Y.3174 [14] describes the requirements for data collection and processing mechanisms in various usage scenarios for ML and
drafts a generic framework for data handling and examples of its realization on specific underlying networks.
7 | ITU-T Y.3176 [15] ITU-T Y.3176 provides ML marketplace integration in future networks including IMT-2020 and provides a high-level
’ requirements and the architecture for integrating ML marketplaces based on the requirements in ITU-T Y.3172.
AI Ecosystem Standardiza- IEC and ISO organized a workshop on the AI Ecosystem Standardization Program to fully exploit the potential of
tion Program at the Eu- s . P . PR SR
8 . Al across Europe and guarantee Europe’s leading position in Al It summarizes varied initiatives in individual EU
ropean Commission Work- . - L X .
shop [16] nations and provides an initial snapshot of the European AI landscape.
Securing Artificial Intelli- | ETSI GR SAI 005 focuses on deep learning and explores the existing mitigating countermeasure attacks. It describes
9 | gence [ETSI GR SAI 005) | the workflow of machine learning models where the model life cycle includes both development and deployment
[17] stages.
The ITU/WHO Focus Group on Artificial Intelligence for Health focuses on creating a standardized assessment
framework for Al methods in health. The FG constitutes members from various research organizations, government
10} ITU-WHO FG AI4H [18] agencies, healthcare facilities, and many more. FG AI4H is a joint initiative from ITU and World Health Organization
(WHO).
ITU-WHO EG AI4NDM The ITU/WMO/UNEP Focus Group on Artificial Intelligence for Natural Disaster Management (NDM) focuses on
11 [19] establishing a roadmap for an effective and secure use of AI methods for NDM. The FG activities include data
collection and handling, improving modelling across spatiotemporal scales, and providing effective communication.

sharing and analysis. IEEE is working towards the Ethically IV. SHORTCOMINGS
Aligned Design for AI [21], and also European Union’s
(EU) General Data Protection Regulation (GDPR) [22] sets
regulations on how the data can be used. Al and ML is an
extensive and open area where the details at each level are

crucial.

In the following, we summarize the limitations in the current
standardization related to deep networks, which motivate us to
propose new standards related to sharing content between such
networks.
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Fig. 1.

A. Limitations on the State of the Art

There are limited algorithms like SVMs supported by
a solid mathematical background in machine learning and
deep networks literature. However, these methods still need
user intervention in selecting some hyper-parameters such as
kernel-trick mode or the value of regularization, which are
difficult to define in deep networks. These parameters are
tuned commonly by grid searching on all possible domain
values. This limitation causes the training of deep networks
to be computationally costly for researchers, and improving
the deep networks is possible for only a few organizations or
labs that have access to enough hardware and data resources.
Based on this lack, the methods like transfer learning were
invented to retrain the pretrained deep networks by the new
small datasets used by different researchers. However, these
replacement methods suffer from complexity and also low
compatibility with new other datasets. Based on the number
of samples contained in each new dataset and the similarity
between the original dataset used to train the deep network
and the new dataset, which will be used on the same network,
this complexity can be varied. It can cause to change only a
few last deep network layers and train only them, or retrain
the whole deep network.

B. Limitations on the Standards

Studying various standardization activities concerning Al
and ML, few standards are available for defining the architec-
ture for preprocessing data and preparing them for machine
learning algorithms. Also, there is some guidance for using
different blocks and techniques in the typical programming
frameworks like Pytorch or TensorFlow for deep networks.
However, improving the performance of deep networks needs
some standardization beyond the existing ones. The two usual
ways for enhancing the existing deep networks are using more
data or adding more layers. Nonetheless, methods such as
distillation may help reduce the size of deep networks, but
they are not enough. Therefore, new standardization needs to
separate Deep networks into independent parts. These parts

| >

Latent Transformer to Mix Two Deep Networks with Different Purposes (e.g. speech and face scanning)

enable researchers with low resources to use the parts, im-
proving or replacing parts of their networks without training.
In addition, the combination of different trained parts from
several deep networks will be provided.

V. PROPOSED IDEA

According to [23], latent space is a different domain space
where data can be decreased to represent new optimal features
adequately. The new features may be more distinguishable
per each class which facilitates solving classification prob-
lems. Typically, when we modify data features, such as some
mathematical transformation, those features will be converted
to another domain known as latent space In deep networks,
features selection and extraction happen automatically. After
each layer, the features are converted into a new domain known
as latent space. There are no rules on the number of layers and
units per layer. Moreover, the result of each layer may depend
on the data availability.

Both the number of units and layers are hyper-parameters
and, based on the performance achieved in results, will be
changed and are varied from one researcher to another. The
concept of separating deep networks into at least two parts is
to access latent space defined by a specific standard. However,
this latent space should follow some rules and standards,
and the number of network layers before it should provide
some required quality. A practical example of this idea can
be the deep hybrid networks using the encoder parts of
autoencoders to transfer features in the new latent space, but
not standardized, and then feeding to another deep network.

This specification offers a new level of generality for the
latent spaces and the network layers before and after them. In
addition, these parts of deep networks will be made reusable
without needing retraining by the new dataset. By doing these
changes, new transfer learning techniques will emerge, and
interoperability between deep networks with different datasets
will be possible.

Figure 1 depicts the procedure to mix two deep networks
with different purposes (e.g., speech and face scanning) by
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only training the latent transformer unit, using the elements
of two deep networks with the different tasks using the latent
transformers. The arrows include the process steps and the
parts which were chosen from each deep network. In the
first path, the source generates speech data, followed by pre-
processing. It is fed in the first part of the deep network - DL1
and then converted to latent spacel. Traditionally, the data
would be fed to the second part of the deep network 1 - DL1
and, after classification/regression, we would be able to see the
results. The face-scanning data would follow the same method
in input 2 toward the deep network 2. Using standarized latent
spaces, the latent transformer block could convert data from
one latent space to another. This conversion makes it possible
to create two other paths using the first part from one network
and the second part from another network, as highlighted in
Figure 1. Using latent transformers and conversion from one
latent space to another enables multiple types of data accepted
as input or be created as output. By dividing the pipeline into
small parts and replacing only some elements may improve the
performance and accuracy of the whole process significantly
because the raw data is pre-processed and prepared in the deep
network’s first part. Furthermore, adding new features and
maintenance may be more accessible. Besides mixing both
networks, we can create mixed data, increasing the feeling
analysis. This new technique also works for parallel-connected
deep networks. For example, in the ensemble technique, only
the first part of each network needs to be used. By ensemble
latents, the amount of prediction calculation in ensembling
methods will be expected to decrease because there is no
need for the second part of the networks while the final
performance increases. It causes the latency prediction of
networks also to be improved. A critical implementation of
standard latent spaces is providing information sharing and
transforming between different deep networks. The idea is that
instead of training networks for particular purposes, we can use
the combination of general networks, and only the transformer
units between them should be trained. It will be happening by
generalization provided by standardization of latent spaces in
deep networks under the same framework.

The importance of using parts of one deep network com-
bined with the elements of another deep network will be
revealed while enough edge computation or bandwidth will not
be available for the users. In this situation, the different latent
spaces of deep networks with various fields produce different
data sizes in latent space. So, this combination can make the
same result but with lower edge computation or bandwidth for
transferring.

With this standard related to latent spaces available in
the research community and between European countries, the
ability to use the series of deep networks by using latent trans-
formers will be possible. It makes the complicated tasks more
manageable than before, which concludes the integration of
multi-services. For example, by combining different elements
of deep speech transcription, deep translation, profound text
to speech, and finally, deep fake technology, we can have the
users from various countries and languages communicating

their native languages. It is only one example of how we can,
with less effort, facilitate the interaction between humans in
real-time. To achieve this, the latent transformers need to be
trained and create the required compatibility. This process also
can make the new generation of transfer learning for deep
networks. Recording data of one latent space can further be
analyzed by other techniques and deep networks later.

VI. GENERALIZATION OF DEEP NETWORKS IN 5G
COMMUNICATIONS

Deep Networks generalization by standards in Research
and Development (R&D) reduces training processing costs,
increases investment in security, provides an innovative so-
Iution with information advantage over future competitors in
5G markets and provided experience exchange with essential
participants in the standardization process. Thus, standard-
ization generates innovation, expands business access, and
internationalizes new technological advances.

The development of the telecommunication systems 5G
coincides with the emergence of the IoT, extended reality
new use cases, and improvements in deep learning techniques,
leading to the development of applications combining them
in the future to provide high Quality of Services (QoS).
Therefore, it affects accessing the high bandwidth with low
latency will be required more than before, and cause to
creating the massive amount of transferred data from the edge
to cloud for processing. Splitting deep network parts between
edge and cloud and transferring the represented latent data
can provide a new opportunity for developers to create and
improve the new cloud services based on the standard latent
domains for deep networks.

Conversion data into common latent space should happen on
the edge side to remove the redundancy from data, decrease the
data dimension, and apply the super compression techniques
as illustrated in Figure 2. The deep network that implements
resource allocation algorithms is integrated with the security
in the edge using latent spaces transformers and the neural
network processing computes the result of the mixed deep
network in the cloud. These steps of data reduction followed
by the existing or new security standards can provide a
high level of personal data protection without significantly
increasing the amount of final data rather than the initial for
transferring to the cloud. Also, other deep networks related
to resource allocation and security techniques can be merged
creating, a new secure, optimized algorithm. This process is
expected to create an innovative competition between several
industries to improve and create better standards for latent
spaces or improve the following parts based on the existing
latent standards.

In the future, we envisage that a latent space with high
quality of service will be a commodity that people will rent
or buy to provide services. Hence, we can expect different
versions of latent spaces with various QoS requested by the
users or the available network bandwidth. This concept also
fits the described solution to be compatible with different
network bandwidths.
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Fig. 2. Use Case for 5G using Deep Networks

VII. CONCLUSIONS

Generalizing deep networks by sharing information between
them using latent transformers may reduce the costs of the
training process. This generalization can be implemented
throughout standardization. Additionally, it might create an
opportunity for innovation by combining pretrained deep net-
works to generate other hybrid networks for new purposes, re-
search, and development. There are several standards available
for Artificial Intelligence and Deep Learning. However, none
of them considers the possibility of using latent transformers
blocks for sharing information. Unfortunately, the standards
activities are not public, so researchers do not have easy
accessibility to all developments and proposed frameworks.
Therefore, at this point, assuming the area that we are covering
is not in the standards, it is an open research area, and we
propose the requirements and related guidelines to develop our
concept. Moreover, we showed several use cases applications
for this standard (e.g., processing image and sounds, mixing
security and resource allocation algorithms in 5G networks and
IoT devices, ensembling multiple deep networks and extended
reality scenarios).
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2.7. Article #7: New PCA-based Category Encoder for Efficient Data

Processing in IoT Devices

This paper introduces a novel computational preprocessing method designed to convert
categorical variables into numerical representations for [MIJ algorithms. The approach is

specifically tailored for devices on the [oT] with constrained computational resources.

Key Contributions

e Development of a new category encoding method using conditional probabilities
combined with [PCA}

e The method requires only two hyperparameters: a threshold value and [PCA]
representativeness;

e Validation of the approach using the NSLKDD cybersecurity dataset;

e Comprehensive comparison with 17 existing category encoders in 10 different

classifiers.

The proposed method demonstrates superior performance, particularly for categorical
variables of high cardiac intensity, while maintaining minimal computational require-
ments. The core methodology involves the following.

e Converting categorical variables to numerical formats using conditional proba-
bilities;
e Applying [PCAl to reduce dimensionality while preserving essential information;

e Balancing training and performance testing using harmonic average metrics.

Experimental Validation

The experimental results highlight the following achievements:

e Achieved the highest test accuracy of 89.64% using an classifier;

e Demonstrated an optimal trade-off between training and testing performance;

e Outperformed traditional encoding methods in terms of accuracy and efficiency;
e Provided efficient dimensionality reduction suitable for resource-constrained de-

vices.

Article Details
e Title: New PCA-based Category Encoder for Efficient Data Processing in IoT
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Abstract—Increasing the cardinality of categorical variables
might decrease the overall performance of machine learning
(ML) algorithms. This paper presents a novel computational
preprocessing method to convert categorical to numerical vari-
ables ML algorithms. It uses a supervised binary classifier to
extract additional context-related features from the categorical
values. The method requires two hyperparameters: a threshold
related to the distribution of categories in the variables and
the PCA representativeness. This paper applies the proposed
approach to the well-known cybersecurity NSLKDD dataset
to select and convert three categorical features to numerical
features. After choosing the threshold parameter, we use con-
ditional probabilities to convert the three categorical variables
into six new numerical variables. Next, we feed these numerical
variables to the PCA algorithm and select the whole or partial
numbers of the Principal Components (PCs). Finally, by applying
binary classification with ten different classifiers, we measure the
performance of the new encoder and compare it with the other 17
well-known category encoders. The new technique achieves the
highest performance related to accuracy and Area Under the
Curve (AUC) on high cardinality categorical variables. Also,
we define the harmonic average metrics to find the best trade-off
between train and test performances and prevent underfitting and
overfitting. Ultimately, the number of newly created numerical
variables is minimal. This data reduction improves computational
processing time in Internet of things (IoT) devices connected to
future networks.

Index Terms—Categorical Encoders, Dimensionality Reduc-
tion, Internet of things, Feature Selection, Machine Learning,
NSLKDD, Principal Component Analyses

I. INTRODUCTION

Machine learning (ML) prediction problems require giving
the model relevant features to represent the problem accurately.
Consequently, data preparation and feature engineering are
critical activities for all machine learning algorithms [1]. In
Internet of Things (IoT) devices: processing capacity, energy
consumption, and resource availability all limit the execution
of deep learning algorithms. As the amount of accessible data
rises, the degree of diversity of the features increases and this
expansion impacts categorical variables. When the number of
features grow, the cardinality, which is the number of unique
values detected in each feature, increases [2]. The challenge

978-1-6654-5975-4/22/$31.00 ©2022 IEEE

of appropriately and effectively encoding categorical features
influence the machine learning model’s performance. Handling
the conversion from categorical characteristics to numerical
features is a well-known issue in data science and machine
learning since many methods require numerical input [3].
This problem has several solutions. Specific categorical data
encoding schemes are more suitable than others depending on
the type of problems i.e. classification or regression. These
encoders are critical when processing large volumes of data,
especially in IoT devices, at the edge, and in cloud computing
because errors and outliers are more common when using
these devices to process data. Due to these errors and outliers,
reliable statistical estimations are challenging to compute.

One Hot Encoding is the most well-known encoding for
low-cardinality categorical features. This yields orthogonal and
equidistant vectors for each of the categories. Integers are
picked at random because they have no inherent order. An
alternate encoding method is Label/Ordinal Encoding, which
uses a single column of integers to represent multiple category
values. Both encoding techniques present high-dimensional
encoding limitations, but Label Ordinal Encoding forces the
categories into a particular order. This makes it more difficult
for the model to extract valuable information. Regarding the
assessment of ML algorithms’ success, researchers have used
a variety of methodologies such as Recall, Precision, F-Factor
area under the curve, true positive rate (TPR), true negative
rate (TNR) and accuracy [4]. In most cases, the focus is
on specific attributes that matter in the context for which
the measure was developed. For example, when Information
Retrieval (IR) algorithms are evaluated on Recall, Precision,
and F-Factor, erroneous predictions are often overlooked in
favor of the accurate ones.

We present a different approach to solving the categorical
encoders’ modelling problem using conditional probability in
supervised learning and Principal Component Analysis (PCA).
Further, we compare the performance of our method with
several available categorical encoders and classifiers using the
same dataset. Finally, we show that our method achieves the
best performance by adjusting only two parameters. Our algo-
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rithm, which outperforms current machine learning algorithms
and reduces the dimensionality of the data, may be a viable
choice for IoT devices and cybersecurity algorithms embedded
in sensors, UAVs, and other devices. This paper is organized
as follows: First, we introduce our novel method to convert
categorical to numerical variables considering the probability
relationships between categories and target classes in super-
vised classification. Then, we add a description of the metrics
that select the best combinations between them and propose
a new metric based on the harmonic averages to highlight
the improvements in accuracy during training. After that, we
analyze the results from 17 different categorical to numerical
encoders using ten different classifiers. We compare the results
using the accuracy, the Area Under the Curve (AUC) and
the harmonic averages, highlighting the improvements in
accuracy during training.

A. Contributions and Motivation

Traditional categorical encoders do not provide the pa-
rameters to adjust them to the classifiers. Considering this
constraint, below is a summary of the main contributions of
this paper:

« A new method to encode categorical features using only
two hyperparameters: a combination of threshold and
PCA that adjusts to different classifiers for maximum
performance achievement.

o A supervised category encoder which is suitable for both
linear and nonlinear classification algorithms.

¢ A new metric for measuring training gains in accuracy
using Harmonic Averages calculations.

e A comparison between the proposed solution and the
available categorical encoders using accuracy, AUC and
the proposed metric based on harmonic averages.

In high cardinality categorical variables, our method achieves
the highest performance using the lowest possible dimension-
ality, specifically, when the categories exist in the test set
and not in the train set. Furthermore, it is possible to prevent
or decrease underfitting and overfitting. Also, we define new
metrics using a different set of hyperparameters which makes
adjustments in the classifiers during the preprocessing steps to
improve the performance of our encoder.

II. THE PROPOSED METHOD

The scheme offers a unique computational preprocessing
approach for converting categorical to numerical variables
for machine learning (ML) methods. Table I shows the
dataset with categorical variables named from Variable; to
Variabley and each variable contains different numbers of
categories. It is required that the target variable defines a
binary classification, with two complementary classes.

Using the variables and the target in Table I, we define the
conditional probabilities for each unique category using binary
classification. The calculation for each category is based on the
numbers of its occurrences for each class Cy and Cy per its
total occurrences as (1) and (2) illustrates :

Variabley | --- |
Categoryi,1
Categoryi 2

Variabley |
Categoryn,1
Categoryn 2

Target

Class Cq or Cs
(Binary
Classification)

Categoryy  ; Categoryn ;

TABLE I: Categorical variables with different categories in
binary classification.

P1; ; = P(Target = Cy|Variable; = Category; ;), (1)
P2, ; = P(Target = Ca|Variable; = Categoryiﬁj). )

Before applying the threshold parameter, for each unique
Category; ; the following condition holds:

Pl;; + P2 =1, 3)

where i,j are defined as Vi, jli € {1,2,...,N},j €
{1,2,..., M;}, N is the number of total categorical variables,
and M; is the number of unique categories for variable i.
N and M; are fixed for each variable. Thus, each category
Variable; will produce two new numerical variables with
three states.

. New New .
Variable; Varl; | Var2; Conditions
If P1; ; > P2 j,
Category; ;| 1 0 AND P2; ; > threshold.
It Pliyj < PQi’j,
Category; ;| 0 1 AND P1; ; > threshold.
o If P1; ; < threshold,
Categoryi;| 0 0 OR P2; ; < threshold .

TABLE II: Converting each categorical variable to two
numerical variables with conditions for each category.

In Table II, Variable;, NewVarl; and NewVar2; refers
to categorical Variable;, and the first and second newly
created numerical variables for Variable;, respectively. New
numerical variables will be created based on the probability
conditions in (1), (2), and the threshold value. Each categori-
cal value of a database element is converted to the NewVarl;
and NewVar2; values, where the elements’ Category is used
to select the value of j in Table II.

A. Threshold

The threshold defines the first hyperparameter, which
specifies a minimum occurrence probability for a cate-
gory considered in the binary classification. Probabilities
P1l;; and P2;; are calculated using (1) and (2) based
on the classification of C7 and C5 of the database sam-
ples. Our method creates two new numerical variables for
each categorical variable using the equations specified in
Table II. Categories with rare elements from one class
(with a probability below the threshold) are mapped into
(NewVary, NewVary) = (0,0). Otherwise, the variables
contain the majority class, Cy, (NewVary, NewVary) =
(1,0), or Cs, (NewVary, NewVars) = (0,1).
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B. Principal Component Analysis

The second hyperparameter is the number of Principal
Components (PCs) available after the PCA processing. The
main objective of PCA in our methodology is to remove the
correlation between the 2N new numerical features in Table
I, where N defines the number of categorical variables. The
number of PCs, denoted as K, can vary from 1 to 2N. K
can be the minimum number of PCs necessary to capture all
data variances, which might be below 2N if some numerical
variables contain only one unique value for all categories (i.e.,
only ones or zeroes) or can be written as combinations of other
numerical variables. By choosing a lower K, the cumulative
data variance will be less than one. We describe the variety of
the first and second hyperparameters in the grid search section.

C. Scaling

Usually, scaling is applied before PCA to prevent the feature
dominance effect where some features overshadow others
because they have different scales. In our method, there is
no need for scaling because the new numerical features are
normalized between zero and one. However, after the PCA
process, the standardization scale using mean and standard
deviation is applied for faster convergence in some classifiers,
such as Support Vector Machines (SVMs).

D. Dataset

We choose the NSLKDD dataset [5] to test different
encoding methods and classifiers because it is common in
cybersecurity research (for instance, for network intrusion
detection). The NSLKDD is divided into four different par-
titions: KDDTrain+, KDDTrain+_20Percent, KDDTest+, and
KDDTest-21. All partitions are available for downloading from
[5S]. We use the KDDTrain+ exclusively for training, and
the KDDTest+ as a complete test dataset for test purposes
which includes all the test instances. A quick analysis of
the NSLKDD shows that the KDDTrain+, KDDTest+, KD-
DTrain+_ 20Percent, and KDDTest-21 contain 125973, 22544,
25192, and 11850 samples, respectively. There are only three
categorical variables in the dataset namely: protocol_type,
service, and flag. We convert the categorical variables to nu-
merical using different encoders to compare the performance
of each method in binary classification.

E. Categorical Encoders Dimensionality

One the the main challenges related to high cardinality cat-
egorical variables is their high dimensionality after converting
them to numerical features. The One Hot Encoding method
presents such constraints. In our proposed method, the number
of dimensions of new numerical features varies from a range
of one to six. The protocol_type and flag variables in both
KDDTrain+ and KDDTest+ sets contain the same cardinality.
However, the cardinality of the service variable is greater and
different between the train and test sets which may lead to
a low performance of the available encoder. Table III shows
the differences of dimensionality for newly created numerical
features for each of the encoding schemes. The categorical

encoders used are from the category_encoders library version
2.2.2. According to Table III, other encoder schemes create at
least three dimensions for the new numerical features. In our
system, it is possible to reduce them to one.

Encoding Scheme (abbreviation) Dim.
(Proposed) 1-5
Backward Difference Encoder (Backward Difference) [6]
BaseN Encoder (BaseN) [7]

Binary Encoder (Binary) [8]

Cat Boost Encoder (Cat Boost) [9]

Count Encoder (Count) [10]

Generalized Linear Mixed Model Encoder (GLMM) [11]
Hashing Encoder (Hash) [12]

Helmert Encoder (Helmert) [6]

James-Stein Encoder (James-Stein) [13]

Leave One Out Encoder (LOOE) [14]

M-estimate Encoder (MEestimate) [15]

One Hot Encoder (One Hot) [6]

Ordinal Encoder (Ordinal) [6]

Polynomial Encoder (Polynomial) [6]

Sum Encoder (Sum) [6]

Target Encoder (Target) [15]

Weight of Evidence Encoder (WOE) [16]

o]
—

(98]

—_
(98]

(98]

(98]

—_

X~

—_ —

LI| W] OO OO W] OO LI| WI| W| OOf OO W

TABLE III: Comparing dimensionality of new numerical
features created by each Encoding scheme.

FE. Classifiers

We use ten classifiers with different configurations in Python
v3.6.9 and Sci-kit learn library v0.23.2 to compare the re-
sults. Table IV presents the classifiers with hyperparame-
ters. For replication purposes, the seed value of randomness
(random_state) in all classifiers is zero.

Classifiers hyperparameters

Logistic Re- | solver = ’saga’, penalty = ’12°, ¢ = 1.0

gression (LR)

Multilayer solver = “adam’, alpha = 0.0001,

Perceptron hidden_layer_sizes = 100, activation =

(MLP) relu, learning_rate_init =  0.001(’constant’),
batch_size=200

SVM 1 kernel = rbf, gamma = ’auto’, c=1.0

SVM 2 kernel = poly, gamma="auto’, c=1.0, degree=5

SVM 3 kernel = linear, c=1.0

Decision max depth=5, split quality measure = ‘gini’, max

Tree(DT) features considered for each best split = min(8,
number of new numerical features)

Ada Boost | base_estimator=DecisionTreeClassifier

Classifier (max_depth=1), n_estimators=50

(ADA 1)

Ada Boost | base_estimator=DecisionTreeClassifier

Classifier (max_depth=5), n_estimators=10

(ADA 2)

Random For- | max depth =5, no. of estimators = 10, split quality

est (Forest) measure = ‘gini’, max features considered for each
best split = min (5, number of new numerical
features)

Gaussian default sci-kit learn parameters

Naive Bays

(GNB)

TABLE IV: 10 Classifiers with hyperparameters used for
classification.
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G. Metrics

Metrics such as accuracy can simply be measured in multi-
class problems. However, other metrics such as precision, re-
call, FPR, F1-Score, and the sum of the Area Under the Curve
(AUC) of the Receiver Operating Characteristic (ROC) cannot
be easily calculated [17]. Thus, in practice, accuracy may be
enough to check performance in multi-class problems. It is
essential to choose the proper metrics to compare the results
between the available encoders and the proposed system. We
use binary classification and divide the target labels associated
with attacks and regular Internet traffic (normal labels). The
proportions of attack and normal labels in the train set is
46.54% and 53.46%. In the test set, the ratios are 56.92% and
43.08%, respectively. The percentages of labels in two of the
classes show that the number of instances in the train and test
sets are balanced. On one hand, balanced classification usually
uses accuracy and AUC. On the other hand, unbalanced
classification uses precision, Fl-score, and other metrics.

H. New Metrics

Commonly, the attacks and normal data in the train and
test datasets are not equal. For example, the NSLKDD test
set contains only 15% of the total data. The unbalanced
test data has an impact on the evaluation of the algorithm’s
learning capabilities. Even if the test set exhibits an excellent
performance, it does not guarantee that the same performance
will occur in the training data set and vice versa. We should
therefore consider a trade-off between the performances of
train and test sets. The effect of changing the amount of data
available for the test by 1% is less noticeable that in the
train. If the accuracy of the algorithm changes 1% in the
test, it affects only 15% of total data, for our data set is 22544
samples. Nevertheless, a 1% change in the training data affects
the other 85% of data containing 125973 samples. For the first
time, we want to define new metrics to consider both train and
test performances because extensive changes may occur in the
train when we ignore minimal changes in test performance. In
cybersecurity, these changes mean our systems can detect more
attacks, and protection increases. We define new metrics and
compare our system’s performance using both the previous
and the new metrics in light of the above explanation. The
new metrics are the distance to the ideal point as the error
to calculate mean squares errors (MSE) and the harmonic
average of the same metrics in the train and test sets. Using
only one of these three metrics is adequate for sorting encoder
performance and fine-tuning hyperparameters in our proposed
encoder. In addition, using these metrics avoids overfitting or
underfitting problems, which the following sections discuss.
Equations 4, 5, and 6 use the new metrics to estimate perfor-
mance:

e Mean Square Errors (MSE) to the ideal point for
accuracy:

MSE = 0.5[(100 — a)* 4 (100 — b)?]; “)

o Mean Square Errors (MSE) to the ideal point for AUC:
d)’l; (5)

o Harmonic average of the same metrics (accuracy or
AUCQC) in train and test:

MSE = 0.5[(1 —¢)* 4 (1 —

(2.e.f)
(e+ 1)
where in (4), a and b are percentage accuracies in train and
test data. In (5), ¢ and d are AUC's, for the same data. The
harmonic averages in (6) defines e and f using accuracy
or AUC'’s in the data, respectively. The harmonic average is
defined to calculate the average between train and test sets
for the same metrics. We apply our method to the NSLKDD
dataset containing three categorical variables. We use one
unique threshold for all of them due to the similar distribution
of the classes in the category of the three categorical variables.
All threshold values are represented as percentages.

(6)

Harmonic_avg =

III. EXPERIMENTAL RESULTS

We apply our method to the NSLKDD dataset containing
three categorical variables. We use one unique threshold for
all of them due to the similar distribution of the classes in
the category of the three categorical variables. All threshold
values are represented as percentages.

A. Categorical Encoders Comparison

We measure the performance of a combination of 17 dif-
ferent encoders, plus ours from Table III, with the ten clas-
sifiers from Table IV, to compare our new proposed encoder
algorithm with the other existing encoders. Table V identifies
the 18 Encoders by their abbreviations and summarizes their
performance results. Each column in the table V associates the
encoding scheme with the best suitable classifier according to
the train or test for accuracy or AUC. In the fourth column,
we use the maximum harmonic averages of train and test
accuractes to compare the results and sort the encoders from
best to worst performance. For example, the test accuracy
for the Polynomial encoder is 88.9549%, which is the highest
accuracy that this encoder achieves using the GNB classifier.
All the encoders are tested with all classifiers and table V
presents the classifier with the highest performance. In our
method, the hyperparameters Thre(1.87) and PCs(3) represents
a threshold of 1.87 % and the top three principal components,
respectively. Our algorithm achieves the highest test accuracy
of 89.638041 % by feeding only the first principal component
to the SVM2 classifier from Table IV, and with the two
different thresholds of 3.64 % and 5.45 %. This accuracy is
the highest out of all combinations of categorical encoders and
classifiers and puts our encoder in the first place. Our method
is placed second after Polynomial Contrast coding by choosing
the Harmonic average of accuracies as a sorting metric, as is
shown in Table V.

Figs 1 and 2 compare the accuracies and AUC's of the 18
encoders with ten different classifiers with respect to the train
versus test data. In fig 1, the point at [100, 100] represents
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Encoding Classifiers with Max. | Classifiers with | Classifiers Classifiers with Max. | Classifiers with
Scheme Train accuracy (%) Max. Test | with Max. | Train AUC Max. Test AUC
accuracy (%) harmonic_avg.
of accuracies (%)

Polynomial ADA2, 96.3167 GNB, 88.9549 GNB, 91.0538 ADA?2, 0.9629 GNB, 0.888
Proposed All  except GNB, | SVM2, Thre(3.64, | SVM3, Thre(1.87), | Al except GNB, | SVM2, Thre(3.64,

Thre(11.9), PCs(1-5), | 5.45), PCs(1), | PCs(3), 90.6161 Thre(11.9), PCs(1-5), | 5.45), PCs(1),

95.380756 89.638041 0.953976 0.893252
Ordinal ADAZ2, 96.3151 LR, 83.388 LR, 87.42 ADA2, 0.9629 LR, 0.8514
One Hot SVM1, 96.3127 DT, 83.7252 ADA2, 87.1133 SVMI, 0.9628 DT, 0.8274
Sum MLP, 96.3143 ADA?2, 79.5245 ADA2, 87.1133 MLP, 0.9628 Forest, 0.814
Target ADA2, 96.3167 ADA?2, 79.5067 ADA2, 87.1081 ADA2, 0.9629 ADA2, 0.808
Backward Differ- | ADA2, 96.315 Forest, 80.6112 ADA2, 87.1075 ADA?2, 0.9629 Forest, 0.8165
ence
Helmert ADA2, 96.3127 Forest, 81.2145 ADA2, 87.1038 ADA?2, 0.9628 Forest, 0.822
Base-N SVM2, 96.3127 GNB, 83.6542 ADAZ2, 87.1035 SVM2, 0.9628 GNB, 0.8534
Binary SVM2, 96.3127 GNB, 83.6541 ADA2, 87.1035 SVM2, 0.9628 GNB, 0.8534
James-Stein ADAZ2, 96.3167 ADA2, 79.4979 ADA2, 87.1028 ADA?2, 0.9629 ADA2, 0.808
Cat Boost ADA2, 96.3159 ADA2, 79.4979 ADA2, 87.1025 ADA2, 0.9629 ADA2, 0.808
GLMM ADA2, 96.3167 ADA2, 79.4934 ADAZ2, 87.1001 ADA2, 0.9629 GNB, 0.8148
LOOE ADAZ2, 96.3167 ADA?2, 79.4934 ADAZ2, 87.1001 ADA2, 0.9629 ADAZ2, 0.8079
WOE ADA2, 96.3151 ADA?2, 79.4934 ADA2, 87.0995 ADA2, 0.9629 ADAZ2, 0.8079
Count ADAZ2, 96.3143 ADA2, 79.4535 ADAZ2, 87.0752 ADA2, 0.9628 ADAZ2, 0.8074
MEstimate ADAZ2, 96.3159 ADA2, 79.112 ADA2, 86.8703 ADA2, 0.9629 ADA2, 0.8046
Hash MLP, 91.9959 GNB, 77.8921 GNB, 83.4566 MLP, 0.917 GNB, 0.792

TABLE V: 18 different encoders with the best classifier for each one, compared and sorted based on max harmonic average
of accuracies. The amount of thresholds for our proposed method are in percentage.
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Fig. 1: Scatter of train vs test sets accuracies achieved by
combination of 18 category encoders.

the maximum train and test accuracy which is the ideal point
of all encoders. After analyzing the available encoders, we
discover that the polynomial achieves the greatest train and
test accuracies with the ADA2(96.31%) and GNB(88.95%)
classifiers. Our method achieves the highest test accuracy
(89.64%) with the SVM2 classifier in comparison with the
polynomial (88.95%).

Using the harmonic average of accuracies, our method
achieves 89.11% during the test phase, which is still the
highest test accuracy, but lower than the previous test results
of 89.64% accuracy. However, the amount of train accuracy

1.0 1 L ]

® Proposed method_max test (0.9, 0.89)
% Proposed method_max Harmonic avg. (0.92, 0.89)
# Max Train(PolynomialEncoder_ADA2) (0.96, 0.81)
# Max Test (PolynomialEncoder_GNB) (0.93, 0.89)
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Fig. 2: Scatter of train vs test sets AUC' achieved by
combination of 18 category encoders.

increases from 89.5% to 92.18% and we lose 0.53 % in the
test. The difference between the prior test accuracy and the
harmonic average of accuracies is +2.68 % in the train set and
only -0.53% in the test set. The loss between the accuracy
and the harmonic average metrics for the test set is so minimal
and there are significant benefits in the training set which
implies that the harmonic average of accuracies is a better
metric choice. Fig 2 describes the results based on the AUC
metric for the same encoders and classifiers. The ideal point is
[1.0, 1.0] for the AUC's train and test sets. We show that the
polynomial and our encoder performances present nearly the
same results using the new and previous metrics considering
the approximation of two floating points for the test set. The
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Fig. 3: Scatter of train vs test sets accuracies, grid search of
two hyperparameters: Threshold and number of principal
components followed by 10 different classifiers.

performance for both of them is 0.89 in the test. The difference
is in the train in which the polynomial reaches 0.93 while our
method achieves 0.92.

B. Grid Search

As previous sections describe, our new proposed category
encoder contains two hyperparameters: the threshold and the
number of principal components of the PCA. We conduct
the grid search for all of the possible combinations of these
two parameters to find the best values for each one. For the
threshold, we check different values from 0.01% to 50%. Rare
categories appear in either less than 1% or less than 5% of
all instances. In our results rare categories occur a little more
than five percent. We achieve the best test accuracy of 89.64%
by choosing 5.45% or 3.64% as the threshold. We check all
numbers in the threshold range together with different PC
numbers that varies from 1 to 6 as the second hyperparameter.

Figs. 3 and 4 depict the scatter results of accuracies and
AUC's for the train versus test sets. Table V shows more
information about thresholds, PCs, and classifiers for gaining
maximum values for different metrics.

C. Dimensionality

Excluding our encoder, Table III shows the dimensionality
output of different category encoders which varies from 3 to
84. We sort the results of each one using different classifiers
from Table V. The results based on maximum test accuracy
shows that the available encoders with higher dimensionality
output have more chances for higher accuracy results. Our
method with only one output dimensionality using an SVM
classifier defeats all of the other encoders. Prior researchers
usually consider the number of PCs that capture 95% or 97%
of the variance in the train set for dimensionality reduction
problems which means they consider the variance dependency

Fig. 4: Scatter of train vs test sets AUC, grid search of two
hyperparameters: Threshold and number of principal
components followed by 10 different classifiers.

on of the PCs they define. Our results reveal that the number
of PCs directly affects the output performance independently
of the variance they capture and they should be considered a
hyperparameter.

IV. CONCLUSION

This paper proposed a new method for converting categor-
ical to numerical features, which can be adapted by choosing
the correct threshold and number of Principal Components for
different classifiers. Furthermore, it produced low dimensional
outputs from high cardinality categorical variables. We used
accuracy and AUC metrics to compare performances be-
tween our method and 17 available encoders. Additionally, we
defined new metrics to estimate the trade-off between train and
test set performances. Our results overcame the best encoder
available for the accuracy test and our method achieved
the same result for the AUC test with two floating points
approximations. Data preparation and feature engineering are
critical steps in every machine learning algorithm. Our encoder
can contribute to achieving better performances. Our method
involves data compression while translating categorical infor-
mation, which could be useful in hybrid telecommunication
networks such as 5G. Due to the power and resource con-
straints of IoT devices, our high-performance method may
be an attractive solution for particular implementations. We
can conclude that the new metrics provide a better trade-off
between train and test performances with these results.
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2.8. Article #8: MOOC on ”Ultra-dense Networks for 5G| and its

Evolution”: Challenges and Lessons Learned

This paper presents the development and implementation of a Massive Open Online
Course (MOQU]) focused on ultra-dense networks for BGl and its evolution. The course
was created as part of a European MSCA ITN project (TeamUpbG).

Key Aspects
The key aspects of the course include:

e A comprehensive course structure covering BGl technologies and future trends;
e Six modules with five items each, incorporating video content and assessments;
e Collaboration among 15 early-stage researchers and international supervisors;

e A focus on both theoretical and practical aspects of EGl networks.

MOOC Development Process
The development of the MOOC involved the following steps:

e Creating learning materials, including videos and textual content;
e Developing assessment methods and evaluation criteria;
e Ensure quality assurance through a multilayer review process;

e Integrating industry perspectives from non-academic partners.

Course Content
The course content covers the following topics:

e Ultra-dense networks and small cells;

e New transmission technologies;

e Management of interference and energy efficiency;
e Spectrum sharing and carrier aggregation;

e Use cases and prototyping;

e Future technologies and trends.

Article Details
e Title: MOOC on ”Ultra-dense Networks for [5Gl and its Evolution”: Challenges

and Lessons Learned.
e Authors: Lopez-Morales et al.
e Status: Accepted in a Conference.
e Conference: 2022 EAEEIE Annual Conference.
e DOI: 10.1109/EAEEIE54893.2022.9819989.
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Abstract—Many of the new mobile communication devices will
be things that power and monitor our homes, city infrastructure
and transport. Controlling drones thousands of miles away,
performing remote surgeries or being immersed in video with
no latency will also be a huge game changer. Those are some of
the few things that make the fifth generation (5G) a revolution
expected to be a thrust to the economy. To that end, the design
and density of deployment of new networks is also changing
becoming more dense, what introduces new challenges into play.
What else will it add to previous generations? The MOOC
about Ultra-dense networks for 5G and its evolution has been
prepared by the researchers of an European MSCA ITN, named
TeamUpSG, and introduces the most important technologies
that support 5G mobile communications, with an emphasis on
increasing capacity and reducing power. The content spans from
aspects of communication technologies to use cases, prototyping
and the future ahead, not forgetting issues like interference man-
agement, energy efficiency or spectrum management. The aim of
the MOOC is to fill the gap in graduation and post-graduation
learning on content related to emerging 5G technologies and
its applications, including the future 6G. The target audience
involves engineers, researchers, practitioners and students. This
paper describes the content and the learning outcomes of the
MOOC, the main tasks and resources involved in its creation, the
joint contributions from the academic and non-academic sector,
and aspects like copyright compliance, quality assurance, testing
and details on communication and enrollment, followed by the
discussion of the lessons learned.

Index Terms—Small Cells, energy efficiency, spectrum and
interference management, HetNets, IoT, massive MIMO, cell-
free, mmWave, VLC, prototyping, UAV, AR/VR, MOOC
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I. INTRODUCTION

A. Motivation and objectives

Massive Online Open Courses (MOOCs) are widely avail-
able for everybody with an internet connection. MOOCs are
designed to acquire new skills, develop your career, and pro-
vide high-quality educational experiences to a large audience
in a more affordable and flexible way. Millions of people
use MOOCs throughout the world, for professional progress,
career transition, and basically any professional training. Sev-
eral universities and institutions have created and shared
their own experience on virtual and remote content creation
through MOOC development over the years. Authors from [1]
submitted experimental findings from the Virtual Instrument
Systems in Reality laboratory. The authors of [2] compared
the results of several courses on signal processing and digital
communication they had created over the years. In [3], a study
about MOOCs’ effectiveness in improving undergraduate stu-
dents’ performance in a normal Digital Signal Processing
(DSP) class was conducted. There is also a discussion in [4]
on the advantages and disadvantages of MOOC courses for
microelectronics. The number of discussions in the literature
is large, but to the best of our knowledge, there was no MOOC
focusing on the 5'" generation of mobile communications (5G)
and its advancement, which led to the creation of the MOOC
addressed in this paper.

The project “New RAN TEchniques for 5G UltrA-dense
Mobile networks” (TeamUp5G) [5] is a prestigious Marie
Skilodowska-Curie Innovative Training Networks (MSCA
ITN) in the frame of the European Commission’s Horizon
2020 framework [6], with grant-agreement number 813391.
The team is investigating the evolution of the 5G wireless
communications and has been preparing an extensive MOOC
under the scope of "Ultra-Dense Networks for 5G and Its
Evolution". The goal is sharing the recent research advances
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and the knowledge about the main technological innovations
and new 5G mobile networks applications. Motivated by
MOOCs’ role in the scope of higher education while providing
a positive impact on student’s performance, a well-designed,
structured, and open comprehensive accessible online course
has been prepared by the TeamUp5G team. As an outcome
of this join effort, this paper provides the detailed steps and
procedures about the methodology adopted and experienced
during the preparation of the MOOC, highlighting the experi-
ence acquired, challenges, and potential opportunities.

B. Targeted audience

The MOOC was prepared to be simple, understandable and
intelligible to the majority of users. In this sense, it can be
used for professionals and students who are related to the
research and development of 5G New Radio networks and
their evolution. Based on the targets for learning outcomes,
the transfer of basic concepts is eloquently expressed for
beginners and students to make it easier to understand. People
with a background in telecommunications can be familiar
with the latest objectives and state-of-the-art research areas
in which the EU and related companies are willing to invest,
research, and develop. Finally, teachers who want to transfer
the fundamentals and basic concepts of the 5G networks to
their students can also benefit from this MOOC.

C. Content formatting

The "Ultra-dense Networks For 5G And Its Evolution"
MOOC [7] is prepared by 14 Early-Stage Researchers (ESRs)
under the supervision of an international team of highly qual-
ified professors from different backgrounds and disciplines.
The course is divided into six modules and each module
contains five different items to cover a wide range of concepts
and enabling technologies for the 5G and future 6G. For each
item, learning, evaluation, and motivational materials have
been created, as shown in Fig.1.

Video-recorded presentations and textual extensions are the
main learning materials. The script documents were prepared
to assist the presenter in recording the video and to make
text transcription easier on the edX platform. The textual
extensions have been devised to present students with both
reading and hearing information in addition to the video, along
with some extra information. The assessment procedure was
developed as a method for reviewing the educational material.
It is composed of four question types: true/false, multiple-
choice, drag and drop, and input number type. Additionally,
open questions after each module encourage students to reflect
more deeply on the subject through a forum discussion. In
this forum, the students and teachers can interact for learning
engagement purposes. In total, roughly 2 hours of material
was generated for each item, split among 10 minutes of
video content each week, 50 minutes of written information
to support the video material, plus 1 hour of questions and
forum discussion.

Learning and motivational materials

D
n Questionnare
Textual

Presentation Script R /
T Extension discussion \
Interviews

Video

Evaluation materials

00®
P22

Fig. 1. Block diagram of the content formatting to summarize the contents.

D. Paper Organization

The remainder of the paper is organized as follows: Section
IT outlines the objective of the MOOC, Section III describes
the available resources, Section IV presents the production
process, Section V addresses the beta testing and broadcast
and Section VI concludes the paper.

II. OBJECTIVE

The technological development has grown continuously and
fast, and the discoveries made by the scientific community
and the emergence of new patents bring new challenges at a
time when such innovations need to be inserted into people’s
daily lives. Qualified professionals capable of assimilating new
technologies and making good use of them in society are
needed. The ESRs, with the help of their supervisors, have
observed a gap between innovative evolutionary technologies
and the current students’ vision over 5G and beyond networks.
Addressing this gap is beneficial for students, professionals,
and researchers to get updated and understand the latest novel
technologies in communication and computer networks. In-
deed, after looking more closely at the scope of the necessary
road map of the target technologies and their evolution impact-
ing the telecommunications industry, we identified the gaps
that could be covered through our MOOC. It is worthwhile
to mention that there could be a mismatch between materials
provided at university bachelor levels and the online resources
from the internet. In general, they do not focus on summarizing
the target technologies in a well-developed plan. There is also
a mismatch between the research publications which need a
prior understanding of the related topic and a very high level of
knowledge. They would not be at the level of young students
and motivated target researchers.

The goal of this MOOC is to minimize these gaps through
efficiently disseminating current research by sharing it into
a simple and understandable way to students and young
researchers as illustrated in Fig.2. The aim is to deliver this
knowledge not only in a high-level view of the 5G mobile
network but also exploring the beyond enabling technologies
and technical aspects behind each. It is important to consider
the need for a creative method for such knowledge sharing
to attain effective results. Therefore, the production of the
current MOOC package efficiently covers the high-level vision
and digs into the technical perspective over the "Ultra-dense
Networks for 5G and its Evolution".

Authorized licensed use limited to: b-on: ISCTE. Downloaded on November 25,2024 at 19:45:51 UTC from IEEE Xplore. Restrictions apply.



y Qt» _ AN

b e L2200

gy .

/.T\ir,’?. ) Gaps o Q Ao
< Sl — 4?"=<M A

Technical materials not-synced with the
current 5G roadmap and its Evolution

Big pool of high level techyical
materials need prior knowledge
<>
“Ultra-dense Networks for
5G and its Evolution”

MooC

Focused overview and technical aspect over 5G and its
Evolution

Fig. 2. Showcasing of the objectives (created from free open license CC).

As learning outcomes, this MOOC focuses on understand-
ing, designing and optimizing the 5G heterogeneous small cell
ultra-dense networks. Several topics are covered mainly related
to 5G and its evolution, its system requirements and new
transmission technologies such as beamforming, full-duplex
communication, among other. Aspects of interference man-
agement and energy efficiency, low power networks, packet
and multi-band scheduling, data sensing, spectrum sharing,
carrier aggregation, use cases and prototypes (such as aug-
mented and virtual reality), security, unmanned aerial vehicles
(UAVs), simultaneous radar and communications (RADCOM),
followed by a vision on the future ahead (e.g., 6G and
terahertz communications) are also addressed in this MOOC.
Students, researchers and practitioners will understand how,
motivated by user needs, mobile networks are evolving toward
5G new radios, and how this evolution enable other industrial
sectors, such as medical science, transport, entertainment,
and education. Practical considerations on these topics are
complemented by development and deployment aspects.

Through our produced visionary MOOC, we target the
transfer of knowledge in a crystal-clear technical language.
After developing a good understanding of the vision for the
audience, we share the technical perspective of each key
technology player in a smooth manner. It would enable the
audience to get the readiness for understanding the latest
developments. So, their mind’s creativity for contribution in
their future careers would be enhanced.

ITII. RESOURCES
A. Team and project

TeamUpS5G is a multi-partner research training network
whose beneficiaries come from academic and non-academic
sectors to form a structured, international, intersectoral, and
interdisciplinary research and training environment for PhD
students and young researchers, which is spread in different
countries in Europe. It aims to optimize the existing 5G in
various domains in terms of throughput, energy and spectral
efficiency. Some challenges are the demand for increasing
data rates and users served per km? and the energy efficiency
of the entire system. The goal of the ETN is to propose

metrics and develop energy-aware algorithms and protocols
to enhance small cells in ultra-dense deployments, making
use of massive antenna solutions (mMIMO), millimeter wave
(mmWave) bands and Visible Light Communications (VLC),
in relevant scenarios, through a combination of analytical
work, simulation and prototyping. The details and information
regarding our ESRs, their works, and the hosting institutions
can be found in [5].

B. University facilities and prior experience

The technical team of Universidad Carlos III de Madrid
(UC3M) and some of the involved supervisors had prior ex-
perience creating and organizing MOOC:s [8]. UC3M provided
around 35 different MOOCs both in English and Spanish in
the edX and MiriadaX platforms. For instance, the course on
mobile communications from the Signal Theory and Commu-
nications department at UC3M is published in edX [9]. This
MOOC is open to the public, and targets an audience who have
no previous knowledge on mobile communications. UC3M
experience guided the journey of this MOOC and helped the
team to overcome the challenges.

The MOOC was fully recorded at UC3M, utilizing the in-
campus Audio/Video (AV) facilities. UC3M has three record-
ing studios, to allow university staff and students to generate
teaching materials for various purposes, such as MOOCs or
teaching innovation projects. The rooms are provided with all
the recording facilities such as HD cameras, a system for
mixing and compositing images in HD, special background
lighting for generating virtual background, and a teleprompter,
as shown in Fig. 3. Concerning the prior experiences in
MOOC production, UC3M has experienced staff for editing,
mixing, and processing videos. UC3M also provides support
for creative process such as covers, course images, and original
creation of materials, like animations or even small interactive
materials.

Fig. 3. Recording room facilities available at UC3M Leganés Campus.

C. ETN contributions and resources

The MOOC "Ultra-Dense Networks for 5G and its Evolu-
tion" results from a great teamwork, supervision and constant
guidance. In its production, 14 ESRs and 9 supervisors have
participated. From the 14 ESRs, 2 acted as both producers
and supervisors of the MOOC, as it happened with 3 of the
supervisors of the TeamUpS5G project. The other 12 ESRs
and the other 6 supervisors acted only as producers and
as supervisors of the MOOC, respectively. Each producer
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was responsible for the content of the MOOC relevant to
one’s research area. The contributions by the supervisors were
invaluable in coordinating the teams, reviewing and providing
continuous insights on improving the content. In Section 1V,
the MOOC’s structure and contents are discussed in detail. To
ensure high-quality videos and synchronization, UC3M took
the responsibility of recording and coordinating the MOOC.
Some producers could not travel to the UC3M premises
amid the COVID-19 pandemic. For this reason, some of the
producers residing in Madrid recorded most of the videos.

IV. PRODUCTION OF THE MOOC

This Section includes information about the timeline of
the main tasks, the creation of the material, the copyright
compliance, the contribution from the non-academic sector
and the quality assurance. Fig. 4 shows an overview of the
timeline, involved tasks, copyright, and quality processes of
the production of the MOOC.

A. Main tasks and timeline

The kick-off meeting was in early March 2021, when the
MOOC structure was defined. The two major goals were to
begin the video production phase in late July 2021 and to finish
the entire MOOC in January 2022, in order to begin the lessons
at the end of February 2022. Six different modules were
identified, each one divided into five items, spanning from
introductory topics to more technical ones. To structure the
overall work, a table of contents for each item was proposed
in April 2021. Based on this defined structure, the production
of the presentations and scripts of all the modules was carried
out during May and June 2021. A common template was used
to maintain a homogeneous environment throughout the entire
MOOC. We focused on having as less text as possible in the
videos, in order to keep an adequate level of attention. Also,
a great number of illustrations (both images and schematics)
were used to take advantage of visual learning. In the end,
this phase has proven to be the most challenging one, both
in terms of research and time. Since the maximum duration
for each video was set to 7 minutes, the use of written scripts
became essential to ensure compliance with this limitation.

The videos were recorded during June, July, and September
2021, supported by the presentations and scripts. Among the
parties involved, only the UC3M had adequate facilities for
multimedia production (i.e., filming and video production) and
the best way to have a centralized quality control was to record
all the videos in the UC3M, using a small selected group of
people, containing both instructors and speakers. The filming
process took about three months.

Apart from the video, a textual extension as additional
studying material was provided. The starting point for the
textual extensions was the previously written scripts. In addi-
tion, some particularly complex topics were further extended
to provide a more complete information. In order to provide
a homogeneous result, a common template was used for all
textual extensions. The textual extensions were created in
October and November 2021.

The evaluation questions were also created during these
months. Two different evaluation phases were defined: a test
related to each item and a more general test for the entire mod-
ule. The item-wise test contained 6 questions and a starting
point topic (including references) to be used for general dis-
cussion purposes. The module-wise test featured 10 questions
regarding every item included in the module. Both the item
and module tests featured different test modalities (true/false,
multiple-choice, drag&drop, and numerical answer), to avoid
them becoming tedious.

Besides, a forum discussion was proposed in each item to
motivate the active participation of all the students of the
MOOC. December 2021 was used as a quality assurance
month of the contents produced to correct them and to ensure a
proper quality. Finally, the beta testing was realized in January
and February 2022. Fig. 4 shows the general timeline of the
MOOC.

B. Organization and creation of the study material

The content of the MOOC was divided into six modules,
each with 5 items:

e Module 1 — "Ultra-dense networks and small cells" intro-
duces to the audience the ultra-dense network, 5G, new
scenarios as well as innovative applications. Besides, it
introduces the emerging technologies for 5G.

o Module 2 — "New transmission technologies" focuses on
the physical layer transmission technologies like massive
MIMO, beamforming and full-duplex technologies, as
well as VLC.

e Module 3 — "Interference management and energy ef-
ficiency" presents scheduling mechanisms, the cell-free
paradigm and approaches for energy efficiency.

e Module 4 — "Spectrum sharing and carrier aggregation”
introduces the fundamentals of Carrier Aggregation (CA),
the coexistence of small cells and Low Power Wide Area
Networks and architectures for spectrum sharing.

e Module 5 "Use cases and prototyping" presents
testbeds, the privacy issue in communications and some
insight about AR/VR and immersive rendering.

o Module 6 — "The future ahead" introduces emerging tech-
nologies like RADCOM, THz communications, and early
discussion about what 6G will be. Besides, it summarizes
the own experience of the TeamUp5G ETN.

The content for each of the items was created by the ESRs
and supervisors within the TeamUp5G ETN. Besides, it is
important to highlight that TeamUp5G members are spread
all over Europe. Therefore, the pandemic situation originated
by COVID-19 highly limited the planning and brainstorming
events for the MOOC. This meant that almost all the content
creation process was carried out online, mainly with email
exchange and teleconference meetings.

After defining the MOOC structure and recording capabili-
ties (i.e., facilities and human resources), the specific content
of each item was discussed between the members of each
module, targeting coherence, and avoiding content overlap
between items. This discussion was a nice experience that
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Fig. 4. Overview of the production timeline, involved tasks and copyright and quality processes of the production of the MOOC.

allowed ESRs and supervisors to share knowledge and find
ideas for networking. The next step was the writing of the
main ideas for the script of the video and initial structure of
the items. This initial content was reviewed by the supervisors
of each module and feedback was given to the researches
in charge of the items. The initial iteration identified several
issues like the heterogeneity of the slideshows (e.g., design,
animations, fonts, and number of slides) and the use of
images with poor quality or subject to copyright. Many of the
original images were used in the classroom during teaching
activities, so they did not fulfill the required quality for a
MOOC. Consequently, in a second iteration, a slideshow/video
template and specific guidelines were provided for the content
creation, which ensured homogeneity between items. When
the slideshows and scripts were ready, the video recording
process started, which led to the production team to provide
specific guidelines for recording, but induced changes in the
already approved slideshows. Some of the main issues found
were the use of a large amount of text in the slideshows.
Replacing it with illustrations was challenging because of
the copyright constraint of the MOOC, explained in the next
Section. The videos did not exceed the seven-minute timing
constraint and achieved the required presentation quality.

C. Copyright compliance

Any useful lecture requires well designed illustrations to
provide useful and complementary visual information to the
explained topic. Public and massive lectures as the one in
a MOOC not only require the quality and suitability of the
selected illustrations to be high, but also to ensure that all
of them, with no exception, are copyright compliant. The
selection process is more complex, as the content creators
not only need to find or produce high quality illustrations
but ensure only the ones with appropriate licensing are se-
lected. We mainly used the following sources: commercial
or license-free online repositories, proprietary academic or
industrial resources, and custom-made illustrations by the
MOOC contributors. Even though all the MOOC authors were
very cautious with the aforementioned requirements, all the
used resources were double checked by the UC3M production
team, which validated each resource’s license individually.

D. Contribution from the non-academic sector

The TeamUp5G consortium involves multiple non-academic
partners which contributed to give the MOOC a practical
approach:

« Nokia Bell Labs: the team from Madrid is focused on the
study of the most relevant use cases for 5G and beyond
ecosystems. Their research is focused on immersive me-
dia offloading and industry 4.0. They have produced or
revised the lectures related to the description and analysis
of 5G use cases.

« PDMFC: a Portuguese company with the goal of pro-
viding solutions in areas such as digital transformation,
big data, cloud or security. The contributing team have
developed the modules related to network security and
how it can be improved with the use of machine learning.

o IS-Wireless: a Polish company that targets software-
defined 4G and 5G deployments, with a strong support
to the Open RAN community. Their knowledge has been
gathered in a module focused on cell-free communica-
tions.

E. Quality assurance

A successful MOOC requires high quality content, which
demands updated and relevant topics, which have to be
adequately explained, up to date and with a professional
appearance. For this reason, we have followed a multi-layer
quality assurance approach. The first quality check came from
the authors themselves: we strongly encourage all the authors
to make a huge effort to produce high quality content with
the goal of reducing the overhead from successive quality
checks. Most of the authors were PhD students. Consequently,
the second checking layer were their supervisors, which had
a crucial role in the development of the MOOC. To add
an extra layer for quality checking, we used a peer-to-peer
approach, in which the authors and contributors had to check
other contributors’ work. In every production step, each author
had to review at least two other contributions. We believe
this process has helped us accelerating the production of the
MOOC while ensuring high quality standards. Finally, all the
content was checked by the production team, who was in
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charge of evaluating the quality from the audiovisual point of
view. Each of the mentioned layers involved several iterations:
feedback was given, and new versions were produced. Quality
assurance requires available time and effort, and in this MOOC
we have committed ourselves to both of them.

V. TESTS AND BROADCASTS
A. Beta-testing

After the MOOC was uploaded to edX, a beta-testing
process was done by the producers of the MOOC, to find
possible deficiencies. A total of 2 weeks were allocated to this
process, and the work was divided among the beta-testers, with
at least 3 beta testers (2 ESRs and 1 supervisor) per module, to
ensure enough people to review each module. After feedback
was provided, any remaining issues were corrected.

B. Communication and enrollment

The dissemination of the MOOC was mainly conducted via
social networks, email messages, and webpage announcement.
Announcements were done using the TeamUp5G project social
networks, and the researches involved in the creation of the
MOOC were also invited to advertise the MOOC. Several
colleagues in academia and industry were contacted, and the
MOOC was announced via specialized mailing lists, such as
that of the IEEE Communications Society. In each outreach
event where the TeamUp5G members participated, the MOOC
was advertised. The industry actors involved in the creation
of the MOOC were also involved in the communication.
The enrollment started 3 months before the broadcast, which
was scheduled for the 22"¢ of February 2022, and a strong
communication campaign started 3 weeks before this date, i.e.
the 157 of February 2022. A total of 144 students were enrolled
at the start date of broadcast, and it finished with a bit less
than 250 students, with a diverse geographical distribution of
about 65 countries/regions and a diverse education distribution
from secondary school to doctorate, with the masters being the
most representative and the secondary the less representative.

C. Broadcast

The broadcast started on February 22nd, 2022. Two ESRs
which were part of the main authors, were actively involved in
the forums to respond to doubts and to ensure no inappropriate
messages were posted. Active participation among students
was suggested and positively followed by them, and supported
by the two above mentioned ESRs, with positive feedback.
Some corrections were made during the broadcast whenever
necessary, by supporting on the comments from students.

VI. LESSONS LEARNED AND CONCLUSIONS

The production of a MOOC involves a great amount of
work. The most complex task was not only the production of
the content itself, but also the coordination of the producers
and supervisors. More than 20 people from 5 different coun-
tries have been involved in the production of this MOOC and
all the work has been carried out online. Therefore, although
our project is composed of great professionals, there were

some coordination and miscommunication problems between
the supervisors and the content producers causing some delays.
Besides, the resources to guarantee the recording quality were
available at the UC3M premises in Madrid. Hence, some items
were not recorded by the authors but by producers residing in
Madrid. All these coordination issues implied that efforts had
to be doubled to achieve a high-quality outcome.

MOOC planning is a crucial task. From the beginning, it is
necessary to have a well-defined structure with all the expected
content, and the resources available to produce this content.
The deadlines for the production, review, and acceptance of
the content with the expected quality should be properly
scheduled. Periodic monitoring should be planned to check
the work progress and to ensure there are no doubts on the
producers. In addition, the active cooperation of all authors
of the MOOC is essential. Although, in general, many of the
MOOC producers were not initially aware of the work required
to create high-quality content that meets the expectations of
a well-prepared audience, they all agree that it has been a
rewarding learning experience.

To conclude, the MOOC on "Ultra-dense Networks for 5G
and its Evolution" has been presented. We have addressed the
objectives, the resources that were available, the production of
the MOOC itself and its broadcast. Although there have been
some mistakes during content creation and recording, lessons
have been learned and important conclusions have been drawn
to improve future MOOC recordings.
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CHAPTER 3

Conclusions

The articles demonstrate the rapid evolution of approaches to detecting jamming at-
tacks on [JAV] communications, progressing from statistical methods to sophisticated deep
learning architectures. The initial research combined statistical analysis using Seasonal
Trend Decomposition (STLI) with networks, achieving 84.38% accuracy for
close-range jammers with the statistical approach and up to 99.99% accuracy with deep
learning for higher-power jamming scenarios. This established the superiority of ap-
proaches while highlighting the continued value of simpler statistical methods for resource-
constrained situations.

A significant advancement came with the development of the[DAtR]architecture specif-
ically designed for BGI[UAV] networks. This approach innovatively combined RSSI and
SINR measurements to detect attacks under both and conditions. The research
demonstrated robust performance in various scenarios, including multiple terrestrial users
and static and moving attackers, although performance degraded somewhat in [NLoS| con-
ditions and with lower-power jamming signals.

The most recent research introduced a hybrid approach combining with con-
ventional [MI] algorithms, particularly focusing on the reliability of detection decisions.
This work contributed to important innovations in pre-processing through [TSAl and post-
processing techniques to enhance accuracy and reduce false alarms. The hybrid approach
proved particularly effective in handling complex urban environments where multiple
sources of interference exist.

The articles collectively highlight several critical findings about jamming in [TAV] net-
works. First, the power and distance of the jammers significantly affect the detection
accuracy, with close-range high-power jammers being easier to detect. Second, channel
conditions play a crucial role, with scenarios presenting significantly greater chal-
lenges than conditions. Third, the presence of legitimate terrestrial users complicates
detection, requiring more sophisticated algorithms to distinguish between intentional jam-
ming and normal interference.

Implementation considerations emerged as a key theme in all papers. Research shows
that while deep learning approaches generally outperform simpler methods, they must
be carefully optimized for [JAV] deployment. Window size selection proves critical, with
larger windows improving accuracy but increasing latency and computational overhead.
The papers also demonstrate that hybrid approaches that combine multiple techniques

can provide better practical performance than single-method solutions.
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Looking specifically at jamming patterns, the research reveals that attackers with
power levels above 5 dBm are more easily detected, while low-power jammers (below
2 dBm) present significant detection challenges. Moving jammers introduce additional
complexity, though the [DALR] architecture showed promising results in tracking and iden-
tifying mobile threats. The articles also highlight the importance of considering multiple
attack scenarios, as jamming patterns and effectiveness vary significantly depending on
environmental conditions and network configurations.

These research papers collectively demonstrate significant progress in developing ro-
bust jamming detection solutions for [JAV] networks, while also highlighting remaining
challenges for future work. The evolution from statistical methods to hybrid Deep Learn-
ing architectures has enabled more accurate detection in diverse operating conditions,
with newer approaches achieving up to 99.99% accuracy in favorable scenarios. How-
ever, challenges persist in detecting low-power jammers, handling conditions, and
maintaining performance with limited computational resources. Future research direc-
tions should focus on further optimizing detection algorithms for resource-constrained
[TAV] platforms, improving performance in challenging urban environments, and devel-
oping standardized evaluation frameworks. As[[JAV] applications continue to expand in
both commercial and emergency response scenarios, the importance of reliable jamming
detection will only increase. The findings suggest that hybrid approaches combining mul-
tiple detection techniques, along with sophisticated pre-processing and post-processing

methods, currently offer the most promising path forward for practical implementation.
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