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Resumo 

 

Cada vez mais a valorização de produtos derivados é um tópico que tem atraído atenção 

dos investidores especialmente nas últimas décadas, quer seja pelos potencias lucros 

alavancados obtidos pela incorreta valorização destes contratos ou, devido a atividades de 

cobertura de risco. Os contratos de opções não são exceção, com o acesso liberalizado à 

negociação de Long-Term Equity Anticipation Securities através de plataformas focadas no 

pequeno investidor, a correta precificação destes produtos nunca foi tão importante. No entanto, 

existem poucos estudos efetuados na valorização destes contratos, tornando esta tarefa difícil. 

Desta forma, foram desenvolvidos diversos modelos de valorização destes instrumentos, 

nomeadamente o Black-Scholes Model (1973) e Merton (1973), contudo a maioria destes 

apresentam fragilidades nas premissas que estabelecem, assumindo a ausência de memória de 

longo prazo do parâmetro da volatilidade, sobre a qual incide o foco desta dissertação, e a 

normalidade dos retornos logarítmicos, a qual é inverificável nos mercados (Taleb, 2007). Por 

sua vez, em 1999 Hu e Øksendal, visando este problema sugeriram introduzir o Fractional 

Black-Scholes Model, que propõe o uso do Fractional Brownian Motion o qual postula uma 

nova classe de movimento Browniano que exibe correlação entre as volatilidades passadas e 

recentes. 

Este estudo propõe aplicar o Fractional Black-Scholes Model na valorização de opções 

europeias de longo-prazo (Long-Term Equity Anticipation Securities). Para isso, recolheu-se 

uma amostra de opções do S&P 500 com maturidades acima de um ano e diferentes strikes, e 

comparou-se o impacto da volatilidade fractal na avaliação destes contratos com os valores 

obtidos através do modelo Black-Scholes.  
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Fractional Black-Scholes Model 
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Abstract 

 

In recent decades, the valuation of derivative products is a topic that has increasingly caught 

the interest of investors, whether due to the potential leveraged profits obtained from the 

incorrect valuation of these contracts or, in some cases, due to risk hedging activities. Options 

contracts are no exception, with the liberalized access to Long-Term Equity Anticipation 

Securities trading through platforms focused on individual investors, the correct assessment of 

the price attributable to these products has never been more important. However, there are still 

very few studies conducted on the valuation of such contracts, making this task challenging. 

Consequently, various valuation models have been developed for these instruments, namely 

the well-known Black-Scholes Model (1973) and Merton (1973). However, the majority exhibit 

weaknesses in the inherent assumptions, presuming no long-term memory of the volatility 

parameter, which is the focus of this dissertation, and accommodating the normality of 

logarithmic returns, which is unverifiable in real markets (Taleb, 2007). In 1999, Hu and 

Øksendal suggested addressing this issue by introducing the Fractional Black-Scholes Model, 

which proposes the use of Fractional Brownian Motion, a new class of Brownian motion that 

exhibits correlation between past and recent volatilities.  

This study proposes applying the Fractional Black-Scholes Model to assess the effects of 

volatility for the valuation of long-term European options (Long-Term Equity Anticipation 

Securities). For this purpose, using a sample of the S&P500-based contracts with maturities 

exceeding one year and different strikes, this dissertation examines the impact of the fractional 

volatility versus that of the Black-Scholes model. 

 

 

 

Key-words: Pricing, Options, LEAPS, volatility, Black-Scholes-Merton Model, Fractional 

Black-Scholes Model 
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Chapter 1: Introduction 

 

1. Contextualization 

The inception of option pricing theory can be traced back to the work of Fischer Black and 

Myron Scholes that in 1973 published in “The Journal of Political Economy” a paper with the 

first steps for what is now known as the Black-Scholes option pricing formula. The work 

established a model with fundamental assumptions such as no-dividend paying stock, 

underlying that followed a log-normal distribution relatively to its price, as well as a constant 

and known short-term interest rate and volatility. In the same year, Robert Merton formalized 

and extended Black-Scholes theoretical and mathematical foundation, by independently 

deriving the same option pricing formula using Ito’s Lemma later called Black-Scholes-Merton 

Model, an enhanced framework with major contributions from the areas of continuous-time and 

stochastic processes. This adapted model postulated too the introduction of the underlying’s 

dividend; an assumption disregarded by the previous authors. 

An initial concern emerging with Black-Scholes-Merton model were the fixed parameters 

such as the interest rate and in the core of our subject the standard deviation of stock returns (or 

volatility). Later on, more specifically in 1997, based on fractal mathematics, Mandelbrot 

introduced for the first time in finance the concepts of self-similarity (where an object is 

expanded or compressed by the same degrees without losing its resemblance) and self-affinity 

(where an object is expanded or compressed in different degrees without losing its 

resemblance), suggesting some kind of memory in financial markets. The fundamental 

assumptions of this rescaling effect impacted vastly the conceptualized BSM, since based on a 

previous paper published in 1968 from the same author titled " Fractional Brownian motions, 

fractional noises and applications”, Mandelbrot implemented a new series of Gaussian random 

functions designated as fractional Brownian Motion, these reinterpreted the GBM by using the 

Hurst exponent (1965), this new adjustment unlocked the uses of resemblance, a so far 

unexplored characteristic of time-series in the diffusion process of a financial asset, making the 

volatility of the underlying dependent onto a fractional parameter H. 
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Based on this new approach, Hu and Øksendal in the year 1999, derived a close form 

solution for the Black-Scholes formula incorporating the fractional Brownian motion, the result 

led to the revolutionary model known as the Fractional BSM, which was free from strong 

arbitrage and demonstrated completeness, though the model was only valid for Hurst 

parameters between ½ and 1, imposing some limitations as Hurst exponents can vary from [0;1[ 

, nevertheless  for the current purpose of this dissertation the previous restriction does not 

neglect the Hu and Øksendal  fBSM application , since has proved Bayraktar et al. 2004 over 

the period decurrent from 1997 to 2000 S&P 500 exhibited a  𝐻 > 1/2. Further improvements 

to this initial formulation where made, namely those performed by Rostek and Schöbel, that 

through a conditional expectation and an equilibrium pricing approach derived in 2010 a 

formula for the fBSM that admitted 0 < 𝐻 < 1, though not discussed in the current dissertation. 

The framework to price European options under stochastic fractional volatility was 

completed. 

A few decades before, the Chicago Board Option Exchange (CBOE) introduced the term 

LEAPS (or Long-Term Equity Anticipation Security) more specifically in 1990 and it was used 

to describe options with long-term maturities above 1 year (Shirazi, S. and Ismail, I., 2011), 

depending on the market scenario for the common investor this could represent a potential 

opportunity to substitute the holding of the underlying stock for a fraction of the price. This 

notion further ads to the importance of pricing these contracts correctly. 

2. Definition of the Research Question and Clarification of its importance 

Hence, assuming constant volatilities with no long-term memory for maturities over 1 year, 

like in the case of LEAPS, is imprudent. Therefore, in this work we propose to study the effects 

of fractional volatility on LEAPS contracts, through the use of the Fractional Black-Scholes 

Model on a sample of S&P500 long-maturity index contracts. 

3. Research Hypothesis 

Following this idea, the succeeding hypothesis were established: 

H1: Demonstrate that the fBSM through Hu and Øksendal pricing formula improves the pricing 

of S&P500 LEAPS 

H2: No evidence corroborates that the fBSM through Hu and Øksendal pricing formula leads 

to improvements in the pricing of S&P500 LEAPS 
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4. Statement of Research Questions and Objectives  

Consequently, pursuant the objective and hypothesis settled for this dissertation, the main 

focus of this paper is to: 

1. Compute S&P500 index option prices under the BS and fBSM for contracts with 

maturities over 1 year. 

2. Plot the BS corresponding Volatility surfaces. 

3. Assess the effects of the Hurst exponent on S&P500 LEAPS. 

4. Compare the performance of the Models with real market data. 
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Chapter 2: Literature Review 

2.1 The Black-Scholes Model (1973) 

The option pricing theory gained its momentum mostly after in 1973 Fischer Black and 

Myron Scholes published in “The Journal of Political Economy” a paper with the first steps for 

the derivation of the now known as the Black-Scholes option pricing formula. This model 

assumed a market with only two assets: 

1. DEFENITION 2.1. A risky asset whose price is represented by 𝑆𝑡, where it’s change can 

be defined by the following stochastic equation: 

 𝑑𝑆𝑡 =  μ𝑆𝑡 𝑑𝑡 + 𝜎𝑆𝑡 𝑑𝑊𝑡 ~ 𝑁(μ𝑆𝑡 𝑑𝑡, 𝜎2𝑆𝑡
2 𝑑𝑡), (1) 

for 𝑡 ≥ 0 and 𝜎 > 0 , where 𝑊𝑡 is defined as a Standard Brownian Motion, the price 

change with mean equal to 𝜇𝑆𝑡 𝑑𝑡 and variance equal to  𝜎2𝑆𝑡
2 𝑑𝑡. 

DEFENITION 2.2. The process W of the standard Brownian Motion (Barbosa, 2022) with the 

following properties:  

1. 𝑊0 =  0. 

2. 𝑊𝑡2
− 𝑊𝑡1

 ~ N(0, 𝑡2 − 𝑡1), ∀𝑡2> 𝑡1, or in other words the process increments follow 

a normal distribution with mean equal to 0 and variance equal to 𝑡 =  𝑡2 −  𝑡1, for 

which 𝑊𝑡 = √𝑡𝜀, considering 𝜀 ~ 𝑁(0,1). 

3. 𝑊𝑡2
− 𝑊𝑡1

 𝑎𝑛𝑑 𝑊𝑡4
− 𝑊𝑡3

 𝑎𝑟𝑒 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡𝑙𝑦 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑑. 

4. The W increments are continuous in time and assume no jumps. 

 

2. DEFENITION 2.3. And a riskless asset represented by 𝐵𝑡 for which we have the following 

differential equation (Rodrigues, 2022):  

 

 𝑑𝐵𝑡 =  𝑟𝐵𝑡 𝑑𝑡, for 𝑟 ≥ 0. (2) 

In the case of this dissertation, we assume that 𝑆𝑡 is the S&P500 index quotation at moment 

𝑡, where for a riskless asset 𝐵0 =  1 the expected value for any risk-free investment is  𝐵𝑡 =

 𝑒𝑟𝑡 (Rodrigues, F. 2022). Applying assumption 2) of the Brownian Motion and considering 

μ = r we get that: 
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THEOREM 2.1. Under the standard Brownian motion the price at time t of a risky asset 𝑆 is 

given by: 

(see Appendix A) 

 
𝑆𝑡 = 𝑆0 exp [(r −

1

2
𝜎2) 𝑡 + 𝜎√𝑡𝜀] , 𝑓𝑜𝑟 𝜀 ~𝑁(0,1) 

(3) 

 

where (𝑟 −
1

2
𝜎2) 𝑑𝑡 is the drift term and 𝜎𝑑𝑊𝑡 is the stochastic component. 

As immediately noticeable this stochastic element leads the underlying 𝑆𝑡 logarithmic 

returns to consider a constant volatility, which value for each maturity is computed based on 

the probability of the Cumulative Distribution Function for the standard normal distribution. 

Which for equation (7) raises 1 main problem, especially over long maturities, the mispricing 

of the contract.  

Considering the GBM with its assumption of risk-neutral environment, the underlying asset 

price at moment t can be described via equation (3). As a result, the present value of a call future 

conditional cash-flow is deductible. 

 THEOREM 2.2. For a European call the present value of its future conditional cashflow under 

a risk-neutral environment is: 

(Barbosa, 2022) 

 𝑐0 = 𝑒−𝑟𝑇𝐸𝑄[(𝑆𝑇 − 𝐾)𝐼𝑆𝑇>𝐾|ℱ0] for a put is (𝐾 − 𝑆𝑇) for 𝑆𝑇 < 𝐾. (4) 

This expected value leads therefore to 𝑑2 and 𝑑1, that under the standard normal cumulative 

distribution function (CDF) represent respectively the probability of the call/put to be exercised 

at maturity, and the contract delta or its sensitivity to the underlying price changes. Please find 

the respective derivations in Appendix B (equation (1) & equation (2)). Subsequently steering 

us to the Fischer Black and Myron Scholes well known 𝑑2 and 𝑑1 formula. 

THEOREM 2.3. Under the Black-Scholes pricing formula the auxiliary variables 𝑑1 and 𝑑2 are 

defined as: 

(Barbosa, 2022)
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  𝑑2 =  
ln

𝑆0

𝐾 + (r −
1
2 𝜎2) 𝑇

𝜎√𝑇
 (5) 

  

𝑑1 = 𝑑2 + 𝜎√𝑇 =  
ln

𝑆0

𝐾 + (r +
1
2 𝜎2) 𝑇

𝜎√𝑇
 

 

(6) 

where K represents the option strike, 𝑆0 the spot price at moment 0, 𝑆𝑇 the future unknown 

underlying asset price at expiry, 𝑇 is regarded as the time to maturity, 𝑟 is the annual constant 

risk-free interest rate, and 𝜎 is the annual constant standard deviation of the underlying return. 

Applying the previous probabilities to equation (4), the Black-Scholes Model for European 

options pricing appears: 

THEOREM 2.4. The Black-Scholes pricing formula that calculates the theoretical present value 

of an option is defined as: 

(see Appendix C)  

 (Barbosa, 2022)  𝑣0 = 𝜙𝑆0𝑁(𝜙𝑑1) − 𝑒−𝑟𝑇𝜙𝐾𝑁(𝜙𝑑2)  (7) 

𝑤ℎ𝑒𝑟𝑒 𝜙 𝑖𝑠 𝑒𝑞𝑢𝑎𝑙 𝑡𝑜 1 𝑖𝑛 𝑡ℎ𝑒 𝑐𝑎𝑠𝑒 𝑜𝑓 𝑎 𝑐𝑎𝑙𝑙 𝑜𝑟 − 1 𝑖𝑛 𝑡ℎ𝑒 𝑐𝑎𝑠𝑒 𝑜𝑓 𝑎 𝑝𝑢𝑡 

 

The above option pricing formula established in 1973, the following main assumptions:  

1. The option was European-style. 

2. Constant and known short-term interest rate. 

3. No-dividend paying stock. 

4. The stock follows a random walk process in continuous time, with a log-normal 

distribution of stock prices.  

5. Constant variance rate of the stock returns. 

6. No transaction costs assumed in buying or selling the underlying or the contract. 

7. No adverse effects to short selling. 

8. Possibility to borrow at the short-term interest rate any fraction of the price of a security. 
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2.1.1 The Black-Scholes-Merton Model (1973) 

 

The original Black-Scholes model presented major flaws one of them was the non-dividend 

assumption that in practice represented a significant element of option pricing, specially when 

considering dividend-paying stocks. In 1973, Merton by independently deriving what would 

become to be known as the Black-Scholes-Merton formula introduced the stock discount factor 

𝑒−𝑞𝑇 that considered the impact of the underlying’s dividends in the stock price. 

THEOREM 2.5. The Black-Scholes and Merton pricing formula that calculates the theoretical 

present value of an option is defined as: 

 

 𝑣0 = 𝜙𝑆0𝑒−𝑞𝑇𝑁(𝜙𝑑1) − 𝑒−𝑟𝑇𝜙𝐾𝑁(𝜙𝑑2) (8) 

with, 

 

𝑑1 =  
ln

𝑆0

𝐾 + (r − q +
1
2 𝜎2) 𝑇

𝜎√𝑇
 𝑎𝑛𝑑 𝑑2 = 𝑑1 − 𝜎√𝑇 

(9) 

 

𝑤ℎ𝑒𝑟𝑒 𝑞 𝑖𝑠 𝑡ℎ𝑒 𝑑𝑖𝑣𝑖𝑑𝑒𝑛𝑑 𝑦𝑖𝑒𝑙𝑑 

 

2.2 Fractal Mathematics in Finance 

 

In 1962, while analysing cotton prices, Mandelbrot discovered that those didn’t follow a 

Gaussian stationary random walk, he demonstrated that price changes on financial assets 

followed a Lévy stable distribution (which can be represented by a power law) unlocking a 

conceptual structure capable to represent objects that exhibited long-term dependence. In his 

book “The Misbehaviour of Capital Markets” (2004), Mandelbrot compared this distribution 

with the Cauchy-Lorentz curve, where large data points contribute and dominate the rest, and 

the Gaussian curve, where no data point dictates the statistical outcome of the rest, and then 

combined the two approaches by changing the parameters in each (namely alpha) to produce 

more symmetric, asymmetric, or squatter/taller curves, that could assume the presence of things 
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such as fat tails. In the early 20’s Paul Lévy, a French mathematician, introduced stable 

distributions that largely contributed significantly to fractal Mathematics, since they exhibited 

meaningful properties such as scale invariance. The three main attributes of Lévy stable 

distribution (SD) are: (1) Invariance under addition, (2) Possession of their own domain of 

attraction, and (3) Admitting a canonical characteristic function. Although, Lévy SDs are not 

central in this work, since the fractal pricing models rely on the standard Gaussian distribution 

adapted to include fractal properties, the main focus of the current work will reside in the 

conceptual structure for what it’s called a fractal – “a pattern or shape whose parts relate with 

the whole” (Mandelbort, 2004) - this dependence structure was characterized by four main 

properties: 

-Self-similarity: resizing in the same scale 

for all directions. 

- Self-Affinity: resizing in different scales 

for divergent directions. 

- Monofractality: scaling of fractals in the 

same way at different points. 

- Multifractality: scaling of fractals in 

different ways at different points. 

This last attribute was used in the genesis of the Multifractal Model of Asset Returns 

(MMAR) that falls outside of the current dissertation scope, which accordingly to Mandelbrot, 

Fisher and Calvet (1996) was an alternative ARCH model for the distribution of prices. This 

methodology still contains long-tails as in Mandelbrot (1963) and long dependence Mandelbrot 

and Van Ness (1968), though not implying necessarily the existence of infinite variance. This 

model like fBm enabled too the return distribution’s moments under time-rescaling.  

2.3 Fractional Brownian Motion 

 

Until 1968, the core of the Black-Scholes and Merton formula for European options pricing 

was the Geometric Brownian motion, that encapsulated the standard Brownian process on its 

stochastic component. This as discussed above lead to major flaws in volatility pricing, since 

as unveiled by Mandelbrot in 1962, prices and many other phenomena do not follow a standard 

Gaussian distribution, instead, they are ruled by a Lévy Stable Distribution, a power law 

distribution (that assumes fat tails, self-similarity or long-term memory, and infinite variance). 

As a result, the fractional Brownian Motion came as a generalization of the standard Brownian 

process in the sense of self-similarity. Though in the fractional Brownian Motion there still is a 

Gaussian distribution, this is an adaption of the Gaussian process that includes a zero-mean 
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self-similar diffusion with stationary increments, guarantying a proper generalization and, 

therefore, ensuring assumptions such as the path’s continuity over time. Subsequently it’s 

gained flexibility through a dependence structure that approximates to the concept of memory 

and still assures the independence of increments for H=1/2 (Serrano, F. 2016). Consecutively, 

Mandelbrot and Van Ness (1968) defined the Fractional Brownian motion as: 

DEFENITION 2.4. Considering the following probability space (𝛺, ℱ, ℙ) with a right-continuous 

and increasing filtration 𝐹 = (ℱ𝑡)0≤𝑡≤𝑇, where 𝜔 is the set of all values of a random function 

and belongs to 𝛺 the sample space, for which 𝐵𝐻(𝑡, 𝜔) is the reduced fractional Brownian 

motion, we’ve: 

1. 𝐵𝐻(0, 𝜔) =  𝑏0 = 0. 

2. 𝔼[𝐵𝐻(𝜔)]  =  0 . 

3. The covariance function is represented as 𝔼[𝐵𝐻(𝑡, 𝜔), 𝐵𝐻(𝑠, 𝜔)]  =  
1

2
(𝑡2𝐻 + 𝑠2𝐻 −

|𝑡 − 𝑠|2𝐻) , for 0 < 𝑠 < 𝑡, where if  H=1/2 then the covariance is the same as the 

standard Brownian motion (see Appendix D). 

4. The variance of the fBm is 𝑉𝑎𝑟[𝐵𝐻(𝑡, 𝜔)]  =  𝑡2𝐻   (see Appendix E). 

5. 𝐵𝐻(𝑡2, 𝜔) − 𝐵𝐻(𝑡1, 𝜔) is independent of 𝐵𝐻(𝑡4, 𝜔) − 𝐵𝐻(𝑡3, 𝜔), considering no 

overlapping of intervals (𝑡1, 𝑡2) and (𝑡3, 𝑡4) for 𝑡1 < 𝑡2 ≤ 𝑡3 < 𝑡4, if and only if H=1/2, 

otherwise there is dependency  (see Appendix. F).  

6. The stochastic integral for the Fractional Brownian Motion as given in Appendix G. 

7. Their increments are self-similar  {𝑋(𝑡0 + 𝜏, 𝜔) − 𝑋(𝑡0, 𝜔)} ≜  {ℎ−𝐻𝑋(𝑡0 + 𝜏, 𝜔) −

𝑋(𝑡0, 𝜔)} for h >0. 

8. The increments are stationary with parameter H. 

 

To define any Gaussian process, it’s necessary to address its second-order statistics (the 

process mean and covariance function). Hence, the following conditions must be fulfilled: (1) 

its expected value must have a mean of zero, which was already seen in the second condition 

of a fractional Brownian motion, and (2) the covariance function must be non-negative (see 

proof in Sottinen, 2003).   The contributions of Hurst and Mandelbrot on Fractal Mathematics, 

then led to the utilization of fBm in Finance redefining the baseline assumptions of stochastic 

differential equations, and the foundation of option pricing theory. Additionally, Duncan, Hu, 

Pasik-Duncan (1991), found that fBm was not a semimartingale for 𝐻 ≠ 1/2. Therefore, the 

Itô-based stochastic calculus could no longer be applied, subsequently Ducan et. Al (2000) 
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introduced the fractional Itô Theorem. Moreover, in 1994 Delbaen and Schachermayer proved 

that if the stochastic process isn’t considered a semimartingale, like in fBm, there exists a weak 

form of arbitrage. To surpass that, Cheridito (2002) demonstrated that by considering arbitrarily 

small amounts of time between transactions one can exclude arbitrage from the model.  As a 

result, the fBm representation was complete, with its foundation in the fractional white noise 

depicting its derivative, which will not be reviewed in much detail (please read Duncan, Hu, 

Pasik-Duncan (1991), Hida, Kuo, Potthoff and Striet (1993) and Grothaus, Kondratiev, Georgi 

and Dep. of Mech. and Math, Kiev Univ. (1998)), the process enabled to capture the long-term 

self-similarity in financial products that Mandelbrot and Van Ness defended. 

2.3.1 Hurst Exponent 

 

The hurst exponent was developed by the hydrologist Harold Edwin Hurst, that in 1906 

while addressing a problem concerning the Nile River floods, found out that in most of the 

cases when plotting the number of years versus the maximum and minimum range of each data 

collection, the range widened exhibiting a three fourths-power law (K = 0.72). This differed 

from the expected squared root increase for the respective length of the time interval, similarly 

to the Brownian motion, arriving to the exponential relationship between the series length and 

R. 

THEOREM 2.6. The dam required height R derived from the 𝜎 the standard deviations of 

discharges from one year to the other can be defined as: 

(see Appendix H) 

 
𝑅 = 𝜎 (

𝑁

2
)

𝐾

 
(10) 

where 𝑁 represents the number of years and the 𝐾 the scaling exponent. 

This formula had major impacts not only in hydrology, but also in other fields like finance. 

Mandelbrot later renamed the Hurst exponent by using the letter H instead, for seeming more 

appropriate than the initial K, in his book “The Misbehaviour of Capital Markets” (2004) he 

explains that by replacing the time elapsed square root power by H the underlying process 

assumes wider possibilities of exhibiting its full long-memory characteristics, being so he added 

that when H equal to ½ the data is perceived as independent, the stock memory is considered 

Gaussian following a standard GBM where no fat tails are considered and price increments are 
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detached from one another. Adversely, when H < ½ the stock process it’s said to have an 

antipersistent memory, or in other words the underlying repeatedly reverses its trend. Finally, if 

H > ½ the stock follows a persistent movement, displaying a reinforcing memory on one certain 

direction. 

2.3.2 Rescaled Range Analysis 

 

In 1969, Mandelbrot and James developed a non-parametric test know as Rescaled Range 

Analysis (R/S) to assess the long-term dependence in data series. This method does not rely in 

data normal fitting, resulting in the significant improvement of the suitability for financial 

products since they do not display in most cases normality. Additionally, this tool aims to 

validate whether over varying periods of time, the amount by which the data changes from 

maximum to minimum is greater or smaller than what was expected in case each data point 

were independent of the previous (its formula is provided in Appendix I). Therefore, for the 

purpose of this dissertation, the R/S statistic is going to be used in the computation of the 

optimal Hurst exponent for the provided data. Subsequently, similarly to the Hurst exponent 

interpretation when the ratio equals to ½ the data is perceived as independent, in case H > ½ 

data is persistent, in contrast, if H < ½ the series are anti-persistent. 

2.4 Fractional Black-Scholes Model 

2.4.1 Hu and Øksendal fBSM Pricing Formula (1999) 

 

In the year 1999, following the Fractional Brownian Motion as presented by Mandelbrot, 

Hu and Øksendal derived, based on Wick Itô type integration, what became to be known as the 

Fractional Black-Scholes option pricing formula. The model made several assumptions: 

1. DEFENITION 2.5. For a fractional Brownian environment, the change of a risky asset 

whose price is represented by 𝑆𝑡 can be defined by the following stochastic differential 

equation: 

 𝑑𝑆𝑡 =  μ𝑆𝑡 𝑑𝑡 + 𝜎𝑆𝑡 𝑑𝐵𝑡
𝐻 , with 𝑆0 =  𝑠 > 0 

 

(11) 

for 𝑡 ≥ 0 and 𝜎 > 0 , where 𝐵𝑡
𝐻 is defined as a Fractional Brownian Motion, the price 

change with mean equal to 𝜇𝑆𝑡 𝑑𝑡 and variance equal to  𝜎2𝑆𝑡
2 𝑑𝑡. 
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2. A constant Hurst parameter within the range of [
1

2
; 1]. 

3. Stochastic differentials performed under Wick Itô. 

4. The parameters volatility, drift and risk-free interest rate are constant. 

5. The portfolio is defined using the Wick product. 

6. DEFENITION 2.6. The portfolio is Wick Itô admissible being self-financed and with:  

𝜈 ⋄ 𝑆 ∈ ℒ̂𝛷
1,2(ℝ) where ℒ̂𝛷

1,2(ℝ) is the space defined similarly to ℒ𝛷
1,2(ℝ) though with 

𝐵𝑡
𝐻 and 𝜇𝛷 are substituted by 𝐵̂𝑡

𝐻 and 𝜇̂𝛷, and finally 𝜐 is the amount that is invested in 

the stock. 

7. DEFENITION 2.7. The portfolio is considered Wick self-financed, where for 𝑡 ∈ [0;  𝑇]: 

 

 𝑑𝑍𝜃(𝑡, 𝜔) = 𝑢𝑡𝑑𝐴𝑡 + 𝜈𝑡 ⋄ 𝑑𝑆𝑡 

= 𝑢𝑡𝑑𝐴𝑡 + 𝜈𝑡 ⋄ (μ𝑆𝑡 𝑑𝑡 + 𝜎𝑆𝑡 𝑑𝐵𝑡
𝐻) 

= 𝑢𝑡𝑑𝐴𝑡 + μ𝜈𝑡 ⋄ 𝑆𝑡 𝑑𝑡 + 𝜎𝜈𝑡 ⋄ 𝑆𝑡 𝑑𝐵𝑡
𝐻 

 

(12) 

for which we consider that 𝜐𝑡 is the amount invested in the stock at time t and 𝑢𝑡 is the 

amount invested in the money account. 

8. Short selling can be considered. 

9. No-dividend.  

10. Environment with no transaction costs or taxes. 

11. Trading is continuous. 

12. Securities are perfectly divisible. 

THEOREM 2.7. Accordingly, to Hu and Øksendal at time 0 the price of a Fractional Black-

Scholes European Call/Put is given by the following formula:  

(Ostaszewicz, 2012)  

 𝑣𝐻(0, 𝑆0) = 𝜙𝑆0𝑁(𝜙𝑑1
𝐻)  −  𝜙𝐾𝑒−𝑟𝑇𝑁(𝜙𝑑2

𝐻) (13) 

𝑤ℎ𝑒𝑟𝑒 𝜙 𝑖𝑠 𝑒𝑞𝑢𝑎𝑙 𝑡𝑜 1 𝑖𝑛 𝑡ℎ𝑒 𝑐𝑎𝑠𝑒 𝑜𝑓 𝑎 𝑐𝑎𝑙𝑙 𝑜𝑟 − 1 𝑖𝑛 𝑡ℎ𝑒 𝑐𝑎𝑠𝑒 𝑜𝑓 𝑎 𝑝𝑢𝑡 

and,
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𝑑1
𝐻 =

𝑙𝑛 (
𝑆0

𝐾 ) +  𝑟𝑇 +  
1
2 𝜎2𝑇2𝐻

𝜎𝑇𝐻
 

(14) 

 

𝑑2
𝐻 =

𝑙𝑛 (
𝑆0

𝐾 ) +  𝑟𝑇 −  
1
2 𝜎2𝑇2𝐻

𝜎𝑇𝐻
 

(15) 

 

2.4.2 Li and Chen fBSM calibration (2014) 

 

In 2014, Li and Chen formulated two new methods to derive the Hurst exponent and the 

fractional volatility. The first method relied on the fBSM inversely to derive Implied Hurst 

exponent and Fractional Volatility though this methodology was model dependent. Conversely 

the second approach by considering the model-free implied volatility as formulated by Britten 

– Jones & Neuberger (2000), surpassed the initial biases that appeared due to the introduction 

of Implied Volatility derived from BSM in the Fractal Ordinary Least Squares regression to 

extract the fractional volatility and the Hurst exponent. However, the model-free approach 

assumed that randomness followed a classical Brownian motion, which does not hold in the 

fractional Brownian market as randomness obeys to fBm. Besides the limitations, the authors 

derived expected variance without depending on any pricing model or any type of randomness 

by integrating option prices with different strikes (see Appendix K), using the fractional Itô 

Lemma (Bender 2003a). Subsequently, Li and Chen suggested the introduction of the expected 

variance in the dependent variable of the Ordinary Least Squares regression equation (18), to 

estimate fractal volatility and hurst exponent.
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Chapter 3: Data & Methodology 

3.1 Data Extraction 

 

The pricing of an option contract based on the standard BSM approach requires six main 

variables: 

1. Strike 

2. Spot 

3. Maturity 

4. Volatility 

5. Interest Rate 

6. Dividend Yield 

In the case of the fBSM, an additional variable should be considered, the Hurst exponent, 

computed through the Rescaled Range methodology for its initial guess as previously described, 

using further the Li and Chen (2014) model calibration procedure to estimate both fractional 

volatility and Hurst variable based on the different contract maturities. Further, as already 

mentioned in the literature review, the Hu and Øksendal (1999) fBSM model considers no 

dividend environment. To make the outputs comparable we’ve derived the BS model based IV 

without the dividend effect (the results are displayed in the Table 3.1. & 3.2. as well as in Figures 

4.1 & 4.2 of Chapter 4).  

Consequently, within the purpose of this dissertation, it was collected through Refinitiv a 

daily sample of SPX index option prices, for maturities ranging from 1 year to 5 years, the 

observation period will be of 4 weeks incurred from 1st to the 29th of April 2022, and will feature 

accordingly different Spots, Strikes and Implied Volatilities.  

 

#Number of Data Points 20 124                 

#Number of Calls 10 062                 

#Number of Puts 10 062                 

SPX Filtered Dataset - Main Statistics
Moneyness < 0,5 1,95%

0,5 < Moneyness < 1 47,77%

1 < Moneyness < 1,5 44,70%

1,5 < Moneyness < 2 5,58%

2 < Moneyness 0,00%

Moneyness (S/K) - Calls/Puts
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Table 3.1. Key Statistics SPX Filtered Options Dataset (Maturities > 1 year) 

 

The dataset has the same number of calls and puts, with most calls within the slightly OTM 

(0.5 < Moneyness < 1:  47.77%) and most puts slightly ITM (0.5 < Moneyness < 1:  47.77%). 

In terms of Maturities most are in the 1 to 1.5 years range (47.16%), with the average being 

around 1.968 years.  

Additionally, the above dataset was filtered in order to ensure the remotion of any contracts 

that didn’t fulfilled the following arbitrage conditions: 𝐶𝑚𝑎𝑟𝑘𝑒𝑡 > 𝑚𝑎𝑥(𝑆0  −  𝐾𝑒−𝑟𝑇; 0) or 

𝑃𝑚𝑎𝑟𝑘𝑒𝑡 > 𝑚𝑎𝑥( 𝐾𝑒−𝑟𝑇 − 𝑆0; 0). 

The data above was filtered from the following dataset, containing the full length of 

maturities: 

 

 

Table 3.2. Key Statistics SPX Full Options Dataset  

It’s worthwhile mentioning its composition as it will be used to calibrate the model. 

Subsequently, most maturities (or 93.5%) are below 1 year indicating the market clear 

preference for these. On the other hand, in terms of Moneyness there is a great concentration in 

the 0.5 to 1.5 range (or 98.8%) slightly tending for the ITM calls and OTM puts with 51.8%. 

Avg. Maturity 1.968

1 < Maturity < 1,5 47.16%

1,5 < Maturity < 2 24.71%

2 < Maturity < 2,5 0.00%

2,5 < Maturity < 3 9.32%

3 < Maturity 18.81%

Maturities in years - Calls/Puts

#Number of Data Points 308 670              

#Number of Calls 154 335              

#Number of Puts 154 335              

SPX Full Dataset - Main Statistics

Avg. Maturity 0.3522

 Maturity < 0.5 82.27%

0.5 < Maturity < 1 11.21%

1 < Maturity < 1.5 3.07%

1.5 < Maturity < 2 1.61%

2 < Maturity < 2.5 0.00%

2.5 < Maturity < 3 0.61%

3 < Maturity 1.23%

Maturities in years - Calls/Puts

[Min; Max] Calls [0.14816 ; 0.45081]

[Min; Max] Puts [0.078856 ; 0.5539]

[Min; Max] Calls [0.096204 ; 0.30601]

[Min; Max] Puts [0.1755 ; 0.43647]

BSM based Implied Volality (w/ dividend)

BSM based Implied Volality (w/o dividend)

[Min; Max] Calls [0.0974 ; 10.8226]

[Min; Max] Puts [0.0648 ; 12.3124]

[Min; Max] Calls [0.096204 ; 8.1211]

[Min; Max] Puts [0.06475 ; 7.2186]

BSM based Implied Volality (w/ dividend)

BSM based Implied Volality (w/o dividend)

Moneyness < 0.5 0.13%

0.5 < Moneyness < 1 47.00%

1 < Moneyness < 1.5 51.75%

1.5 < Moneyness < 2 1.04%

2 < Moneyness 0.08%

Moneyness (S/K) - Calls/Puts
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For the underlying applying the same tool as the one utilized in the collection of SPX data, daily 

quotes of the S&P500 Index (Ticket: ^GSPC) in the time interval ranging from the 5th of April 

2018 to the 29th of April 2022 will be gathered in order to provide sufficient data for the 

parameter estimation, capturing the long-term resemblance patterns we are looking for. 

 

Table 3.3. Key Statistics S&P500 Index Dataset 

3.2 Methodology 

 

To address the hypothesis defined under the introductory part of this work, it’s proposed to 

use the following quantitative/statistic methods:  

1. Use the Mandelbrot and James (1969c) Rescaled Range Analysis values and input them 

in an OLS regression to determine the initial guess for the Hurst parameter. 

 

2. Validate the non-existence of H ≤ 1/2 during the sample period, for the implementation 

of the Hu and Øksendal (1999) model. 

 

3. Estimate both fractional volatility and Hurst variable through the use of Li & Chen 

(2014) calibration methodology for the different contract maturities, this will be 

achieved by integrating different option prices for different strikes and maturities to 

obtain the model free expected variance, as previously described see equation (6) in 

Appendix K, and then running the OLS regression using equation (18) to obtain the 

fractional variance and hurst exponent.  

 

PROOF. Let  𝜎2 𝑇2𝐻 be the unknown fractional time scaled variance, the inverse of the 

call option price can be written as: 

 𝜎2 𝑇2𝐻 = 𝑓−1(𝐶; 𝑆0, 𝐾, 𝑇, 𝑟) 

 

(16) 

then,  

 

#Number of Data Points 1 024

Avg. Quotation 3415.14

[Min; Max] Quotation [2 246.30 ; 4 796.45]

S&P500 Dataset - Main Statistics
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𝑉𝑎𝑟 (𝑙𝑛 (

𝑆𝑇

𝑆0
)) = 𝜎2 𝑇2𝐻 (17) 

 

Taking logarithm of the variance, Li & Chen (2014) obtained the OLS equation for the 

application of the model free variance calibration methodology:  

 

 𝑙𝑛(𝑉) = 𝑙𝑛( 𝜎2) +  𝐻 𝑙𝑛( 𝑇2) 

 

(18) 

 

4. Compute the BS based IV surface during selected days over the observation period. 

 

5. Input the values resultant from the calibration of the sampled SPX data on the Hu and 

Øksendal (1999) derived fBSM pricing formula and extract the sample period outputs. 

 

6. Compare with BS based market data for the same interval, using the MAPE statistics 

(Hyndman and Athanasopoulos, 2018): 

 

THEOREM 2.8. The Mean Absolute Percentage Error between the Forecast and Actual 

values is given by: 

 

 
𝑀𝐴𝑃𝐸 = 100 ×

1

𝑛
∑ |

(𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑒𝑑 −  𝐴𝑐𝑡𝑢𝑎𝑙)

𝐴𝑐𝑡𝑢𝑎𝑙
| (17) 

 

where 𝑛 represents the sample size. 

7. Compute the time-scaled volatility structure for ITM and OTM options under the 

fractional and market scenarios. 
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Chapter 4. Obtained Results 

 

In the following section the exhibited results were computed using the MATLAB R2024b 

and Microsoft Excel software’s version 2411, without any special add-ons for extra tools 

besides the ones available in each program.   

The first step was made by testing the model adequacy. This was achieved through the 

implementation of the Rescaled Range analysis for the collected underlying data. For this 

purpose, a 512, 256, 128, 64, 32, 16, 8 and 4 days window was chosen to input the cumulative 

deviate 𝑟 returns between the 𝑘  maximum 𝑗 shorter periods in the R/S formula as described by 

Mandelbrot and James, 1969. These time ranges were chosen once the R/S method requires that 

the number of observations is a logarithm of base 2 (in our case 1024 daily quotes of the S&P 

500). This resulted in the following initial guess for Hurst parameter:  

 

Table 4.1. R/S Analysis – S&P 500 

 

 As one can see by the p-value computed through the {=T.DIST.2T} excel function, the 

Hurst exponent of 0.6219 is significantly different from 0.5 (the baseline GBM) for all 

significance levels above 1%, thus corroborating the long-term persistence trend of the S&P500 

and the necessity of using a time scaled fractional volatility in the option pricing of LEAPS. 

Additionally, this step provides us with the necessary evidence to implement Hu and Øksendal 

(1999) option pricing formula, once the underlying exhibits a Hurst exponent superior to 0.5.  

Sumsamples 2 4 8 16 32 64 128 256

Observations (n) 512 256 128 64 32 16 8 4

Average R/S 30.86 22.95 13.28 9.24 6.4 4.23 2.58 1.43

log (R/S) 3.4295 3.1335 2.5865 2.2234 1.8558 1.4423 0.9485 0.3602

log (n) 6.2383 5.5452 4.8520 4.1589 3.4657 2.7726 2.0794 1.3863

Hurst Exponent 0.6219

Standard Error 0.0190

Expected Hurst (GBM) 0.50

t-stat 6.4046

Number of Obs 8           

Degrees of freedom 6           

p-value 0.0683%

R/S Analysis - S&P 500

y = 0.6219 x - 0.3734
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 On the other hand, as described in the literature review, Hu and Øksendal (1999) option 

pricing formula (like others please see Necula, 2002) does not allow dividend yield, since the 

extracted data from Refinitiv provided us IV values computed considering the SPX dividend 

yield, for comparison reasons we had to compute the no-dividend BS based IV, the volatility 

surfaces of the first and last trading day of each analysed month are as follows: 

 

Figure 4.1. BS based IV surface - Last trading day (29th of April 2022) 

 

 

 

 

 

 

 

 

Figure 4.2. BS based IV surface -First trading day (1st of April 2022) 
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The figures obtained above were generated in MATLAB using the {scatteredInterpolant} 

function with the natural neighbour interpolation method. As one may notice for the two 

moments, both surfaces for each option type look very similar with calls presenting greater 

changes from the 1sr of April to the 29th as volatilities eased. Additionally, both types (calls and 

puts) have less extreme IVs as time to maturity increases. In terms of moneyness, the OTM in 

the puts and the DITM calls have highest IV values, with the lowest being in the ITM puts and 

OTM calls. 

In order to compute the most approximate results to the market values, the Hu and Øksendal 

(1999) calibration is critical. For that purpose using a fractional OLS regression equation (18), 

on the full length maturities of the option chain for the sample period, the fBSM parameters can 

be settled, where the model free expected market variance is the dependent variable and the 

maturity squared is the independent term with fractional variance being the constant. By 

determining the slope of this line the calibrated hurst parameter is obtained.  

Figure 4.3. Fractional OLS regression (from 5th to 29th of April 2022) – Full-length maturities 

 

Figure 4.4. Fractional OLS regression (from 5th to 29th of April 2022) - Sample maturities > 1 year 
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For the obtained results both p-values for the coefficient and Intercept on the Full-length 

and above 1 year Maturities appear equal to zero indicating their statistical significance for all 

significance levels above 1%, though in our case the statistical test of the regression outputs 

should be done versus the baseline scenario of the GBM, for which the time-scaled Implied 

volatility has and Hurst exponent of 0.5. As a result, the best way to access the significancy of 

each coefficient is by implementing the following hypothesis:  

𝑯𝟎: 𝑇ℎ𝑒 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟 𝑖𝑠 𝑒𝑞𝑢𝑎𝑙 𝑡𝑜 0.5 

𝑯𝒂: 𝑇ℎ𝑒 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟 𝑖𝑠 𝑛𝑜𝑡 𝑒𝑞𝑢𝑎𝑙 𝑡𝑜 0.5   

The specified test obtained the following results: 

 

 

Table 4.2 Fractional OLS regression (from 5th to 29th of April 2022) – Full-length maturities 

 

 

Table 4.3. Fractional OLS regression (from 5th to 29th of April 2022) - Sample maturities > 1 year 

 

As represented in both tables, the outputs of the test suggest that the coefficients are 

statistically different from 0.5, as for a significance level of 1% >  p-value is smaller lead to 

the null hypothesis rejection. Additionally, for the full-length maturities there was too a one tail 

test performed with the following hypothesis: 

𝑯𝟎: 𝑇ℎ𝑒 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟 𝑖𝑠 𝑏𝑒𝑙𝑜𝑤 𝑜𝑟 𝑒𝑞𝑢𝑎𝑙 𝑡𝑜 0.5 

𝑯𝒂: 𝑇ℎ𝑒 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟 𝑖𝑠 𝑎𝑏𝑜𝑣𝑒 0.5   

In this test the p-value obtained was 0.000 leading to the rejection of the null hypothesis 

stating that the coefficient is below or equal to 0.5. 

These results clearly leave us with a biased looking for the LEAPS scenario as fewer 

options are traded for longer maturities, resulting in a slope of the full-length maturities with 

Coefficient of log_T_squared 0.52081
t-statistic: 94.3216
p-value: 0.000

Coefficient of log_T_squared 0.34865
t-statistic: -356.137
p-value: 0.000
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most of its data contribution coming from the range of expiries below 1 year, has options with 

shorter maturities have higher trading volumes/demand. On the case of LEAPS, the authors Li 

and Chen (2014) are not clear in the requirement of the full-length maturities to derive the 

implied fractional volatility and implied Hurst exponent.  Furthermore, for the underlying the 

results of the R/S Analysis point to a Hurst parameter of 0.6219, which goes against the market 

sentiment for the sampling period. Additionally, the proposed model (fBSM - Hu and Øksendal 

1999) points only to Hurst parameters within the persistency range [0.5; 1], clearly leaving us 

with no choice but to use the parameters derived from the full-length Fractional OLS regression, 

in order to test the adequacy of Hu and Øksendal (1999) fBSM pricing formula for the LEAPS 

options.  

Subsequently, the Hu and Øksendal (1999) pricing formula given by equation (13) will be 

used for the calibrated Implied fractional volatility and Hurst parameters 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 =

 𝑙𝑛( 𝜎𝑓
2) ⇔  𝜎𝑓 =   𝑒𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡/2 =  𝑒−2.8317/2 = 0.2427 and 𝐻 =  0.5208, assumed to be 

constant for all strikes and maturities. The following results were obtained comparing the given 

fBSM pricing formula with the market prices: 

 

 

Table 4.4. MAPE statistics for fBSM Hu and Øksendal (1999) – Hurst and fractional vol. calibrated for all maturities 

 

fBSM MAPE results for European Calls

0.42 - 0.64 0.64 - 0.86 0.86 - 1.08 1.08 - 1.30 1.30 - 1.53 1.53 - 1.75

1.00 - 1.62 835.78% 412.15% 34.13% 1.43% 0.94% 0.23%

1.62 - 2.24 492.71% 250.82% 29.39% 2.75% 0.50% 0.67%

2.24 - 2.86 534.02% 176.43% 30.23% 7.38% 3.69% 2.81%

2.86 - 3.48 NaN NaN NaN NaN NaN NaN

3.48 - 4.10 468.88% 136.29% 31.41% 11.11% 6.53% 5.05%

4.10 - 4.72 447.45% 109.66% 32.43% 14.31% 9.27% NaN

fBSM MAPE results for European Puts

0.42 - 0.64 0.64 - 0.86 0.86 - 1.08 1.08 - 1.30 1.30 - 1.53 1.53 - 1.75

1.00 - 1.62 0.55% 5.44% 8.67% 28.32% 64.00% 85.05%

1.62 - 2.24 0.27% 6.87% 8.02% 20.70% 52.18% 72.20%

2.24 - 2.86 0.87% 9.80% 8.26% 13.23% 35.65% 54.26%

2.86 - 3.48 NaN NaN NaN NaN NaN NaN

3.48 - 4.10 1.80% 11.47% 8.77% 8.79% 27.10% 42.30%

4.10 - 4.72 2.72% 12.23% 9.10% 5.85% 21.17% NaN
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For a threshold of 5%, the MAPE statistics were analysed Table 4.4 indicates that there is 

a strong relationship between accuracy and Moneyness, since for options more in the DITM 

region Hu and Øksendal (1999) calibrated fBSM pricing formula exhibits significantly better 

results than the displayed for the OTM scenarios. On the other hand, the pricing of DITM calls 

seems to be more precise than the values obtained in the DITM puts. 

Though not compatible with the proposed pricing formula, for comparison reasons, the 

introduction of the calibrated LEAPS only Hurst exponent (𝐻 = 0.3487) and respective 

fractional volatility (𝜎𝑓 = 0.2475) obtained through the Li and Chen (2014) methodology was 

made, this less biased parameter clearly enhances the Hu and Øksendal (1999) fBSM model 

performance with options closer to the ITM area getting smaller MAPE errors: 

 

Table 4.5. MAPE statistics for fBSM Hu and Øksendal (1999) – Hurst and fractional vol. calibrated for maturities above 1 year 

The MAPE statistics displayed in Table 4.5 clearly suggest that the utilization of the Hurst 

exponent derived from LEAPS options only (instead of the full-length maturities) enhances the 

overall ITM strikes for both puts and calls when considering the same threshold as per above. 

On the other hand, the results for OTM strikes get worse for both scenarios when considering 

the LEAPS anti-persistency trend.  

Furthermore, once the only parameters that differ between the fBSM and the BS are the 

fractional volatility/ BS based IV and the Implied Hurst exponent (which is equal to ½ for the 

fBSM MAPE results for European Calls

0.42 - 0.64 0.64 - 0.86 0.86 - 1.08 1.08 - 1.30 1.30 - 1.53 1.53 - 1.75

1.00 - 1.62 859.72% 418.54% 34.67% 1.40% 0.91% 0.23%

1.62 - 2.24 343.20% 191.91% 20.54% 1.07% 0.61% 0.33%

2.24 - 2.86 238.92% 103.10% 13.37% 1.10% 0.70% 1.26%

2.86 - 3.48 NaN NaN NaN NaN NaN NaN

3.48 - 4.10 181.77% 65.82% 10.56% 2.13% 1.84% 2.25%

4.10 - 4.72 150.84% 44.39% 9.18% 3.35% 3.15% NaN

fBSM MAPE results for European Puts

0.42 - 0.64 0.64 - 0.86 0.86 - 1.08 1.08 - 1.30 1.30 - 1.53 1.53 - 1.75

1.00 - 1.62 0.54% 5.50% 8.83% 27.85% 63.63% 84.86%

1.62 - 2.24 0.48% 4.36% 6.09% 31.35% 62.46% 80.18%

2.24 - 2.86 1.28% 2.26% 8.80% 36.12% 59.38% 75.20%

2.86 - 3.48 NaN NaN NaN NaN NaN NaN

3.48 - 4.10 1.74% 1.17% 14.55% 39.41% 59.53% 72.59%

4.10 - 4.72 2.48% 4.41% 19.50% 42.03% 60.11% NaN
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Moneyness
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standard BS model), to evaluate mispricing the comparison between the two was made. 

Moreover, since the BS derived market IV is a non-constant parameter that is dependent on the 

option maturities and moneyness as changing variables comparing it with the calibrated 

constant fractional volatility would distort the analysis of the fBSM model. Additionally, it 

would be unfair to do so once the advantage of the fractal environment lies on the time-scaled 

volatility. Subsequently, contrasting in terms of Moneyness the time-scaled volatility structure 

of the fBSM (represented by 𝜎𝑓𝑇𝐻) vs. the BS Market derived time-scaled IV (represented by 

𝜎𝐼𝑉√𝑇), can give us a better localized snapshot of the way the non-constant BSM based IVs 

behave against the constant fractional volatility: 

Full length Maturities derived fractional vol. and Implied Hurst - For Moneyness = 0.88 

 

Figure 4.5. Full length Maturities derived fractional vol. and Implied Hurst - Moneyness = 0.88 

Full length Maturities derived fractional vol. and Implied Hurst - For Moneyness = 1.13 

 

Figure 4.6. Full length Maturities derived fractional vol. and Implied Hurst - Moneyness = 1.13 



25 
 

Please consider that the outputs presented in this section do not encompass the average 

time-scaled volatility per month, instead they exhibit momentums of the option chain for which 

a certain moneyness level was observed. Following this notice, though some of the deviations 

may result from the snapshot not considering the effect of the different momentums with the 

same moneyness level, pulling/pushing away the average time-scaled Implied volatility 

closer/further to the calibrated time-scaled fractional volatility, the overall trend is presented 

where we can see for the Moneyness = 0.88 that puts have a greater accuracy than calls has 

presented in Table 4.4 with the error for OTM calls appearing to increase as maturities get 

larger, going against Table 4.4 findings as errors on average terms tend to decrease with the 

increase in time to maturity. For the Moneyness = 1.13, the put options display overall better 

pricing (which contradicts the overview obtained through Table 4.4) with larger expiries getting 

more accurate, on the other hand calls as expected start by having a greater pricing for T close 

to 1, diverging as maturities approach 4.7. 

LEAPS derived fractional vol. and Implied Hurst - For Moneyness = 0.88 

 

Figure 4.7. LEAPS derived fractional vol. and Implied Hurst - Moneyness = 0.88 
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LEAPS derived fractional vol. and Implied Hurst - For Moneyness = 1.13 

 

Figure 4.8. LEAPS derived fractional vol. and Implied Hurst - Moneyness = 1.13 

For the OTM call and ITM put (with Moneyness = 0.88), both types exhibit errors though 

calls, as expected by the output obtained in Table 4.5, have greater deviations from the 

calibrated fractional volatility and Hurst exponent, while puts tended to be closer with greater 

errors near the maturities of 1 and 4.7 years. In contrast, for the OTM put and ITM call (with 

Moneyness = 1.13), the market derived fractional volatility and Hurst parameter appeared way 

more accurate in the ITM calls diverging slightly as maturities increase, with OTM puts 

showing the same divergent behaviour has T gets larger. For the most part, as concluded in the 

MAPE section the localized results unveil too better accuracy in the LEAPS derived fractional 

vol and Implied Hurst versus the full-length maturities. 
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Chapter 5. Conclusion 

 

The present work studied the effects of the Fractional Black-Scholes model on the pricing 

of SPX LEAPS applying the Hu and Øksendal (1999) methodology. Overall, considering the 

market derived Hurst parameters and fractional volatility the model derived using only 

maturities above 1 year exhibited a clear outperformance versus the one obtained through the 

full spectrum of maturities available for the sampling period in SPX option chain. Despite of 

that, the obtained Hurst exponent was below the range defined by Hu and Øksendal (1999) ( 

H= [0.5 ; 1] ), standing for a clear violation of the model assumptions, using the local tests 

performed by comparing time-scaled BSM based IV versus time-scaled fractional volatility, the 

recorded snapshots displayed once again improvements from the usage of calibrated parameters 

through LEAPS only. Therefore, we can safely conclude that the Implied Hurst parameter for 

LEAPS might diverge significantly from the other maturities as these contracts have their own 

dynamics.  

In terms of pricing this translates in a biased outlook for the Hu and Øksendal (1999) 

formula when aiming for all the available maturities, with results expected to be enhanced if a 

LEAPS only Implied Hurst and fractional volatility are implemented. As a result, for future 

studies we suggest that the implementation of Li and Chen (2014) calibration methodology in 

the LEAPS sample should be the first approach, as the persistency of the SPX underlying may 

not be in line with the Implied Hurst for long-term maturities. 
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Appendix 

 

A. BSM – Stochastic Process  

 

PROOF.  

(Rodrigues, 2022) 

If we now consider a process 𝑋𝑡 for which: 

(𝑖) 𝑑𝑋𝑡 = μ(𝑡, 𝑋𝑡)dt + 𝜎(𝑡, 𝑋𝑡)𝑑𝑊𝑡     

(𝑖𝑖) 𝐴𝑛𝑑 𝑔(𝑡, 𝑋𝑡) 𝑖𝑠 2 𝑡𝑖𝑚𝑒𝑠 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝑖𝑎𝑏𝑙𝑒 

Using the Itô’s lemma we get: 

(Rodrigues, 2022) 

 
𝑑𝑔 = (

𝜕𝑔

𝜕𝑡
+ μ(𝑡, 𝑋𝑡)

𝜕𝑔

𝜕𝑥
+

1

2
𝜎2(𝑡, 𝑋𝑡)

𝜕2𝑔

𝜕𝑥2
) 𝑑𝑡 + 𝜎(𝑡, 𝑋𝑡)

𝜕𝑔

𝜕𝑥
𝑑𝑊𝑡 (1) 

 

Which for  𝑔(𝑥) = log (𝑥) considering 𝑆𝑡 means as proven below that 
𝑆𝑡

𝑆0
 is lognormal 

with mean (μ −
1

2
𝜎2) 𝑡 and variance 𝜎2𝑡: 

 

 
𝑑log (𝑆𝑡) = (μ −

1

2
𝜎2) 𝑑𝑡 + 𝜎𝑑𝑊𝑡 

(2) 

 
𝑆𝑡 = 𝑆0exp [(μ −

1

2
𝜎2) 𝑡 + 𝜎𝑊𝑡] (3) 

 

considering 𝑊𝑡  = √𝑡𝜀 

 
𝑆𝑡 = 𝑆0 exp [(r −

1

2
𝜎2) 𝑡 + 𝜎√𝑡𝜀] , 𝑓𝑜𝑟 𝜀 ~𝑁(0,1)  (4) 
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B. d1 and d2 – BSM 

 

PROOF.  

(Barbosa, 2022) 

 

 

 𝐸𝑄(𝐼𝑆𝑇>𝐾|ℱ0) = 𝑄(𝑆𝑇 > 𝐾) 

 

= 𝑄(𝑆0𝑒(r−
1
2

𝜎2)𝑇+𝜎√𝑇𝜀 > 𝐾) 

 

= 𝑄(ln 𝑆0 + (r −
1

2
𝜎2) 𝑇 + 𝜎√𝑇𝜀 > ln 𝐾) 

 

= 𝑄 (𝜀 > −
ln

𝑆0

𝐾 + (r −
1
2 𝜎2) 𝑇

𝜎√𝑇
) 

 

= 𝑄 (𝜀 <
ln

𝑆0

𝐾
+ (r −

1
2

𝜎2) 𝑇

𝜎√𝑇
) = 𝑁(𝑑2) 

(1) 

 

 

 
𝐸𝑄(𝑆𝑇𝐼𝑆𝑇>𝐾|ℱ0) = 𝐸𝑄 (𝑆0𝑒(r−

1
2

𝜎2)𝑇+𝜎√𝑇𝜀𝐼𝑆𝑇>𝐾|ℱ0) 

 

= 𝑆0𝑒(r−
1
2

𝜎2)𝑇𝐸𝑄(𝑒𝜎√𝑇𝜀𝐼𝑆𝑇>𝐾|ℱ0) 

 

= 𝑆0𝑒(r−
1
2

𝜎2)𝑇𝐸𝑄 ∫ 𝑒𝜎√𝑇𝜀𝐼𝑆𝑇>𝐾𝜙𝑝𝑑𝑓(𝜀)𝑑𝜀
∞

−∞

 

 

= 𝑆0𝑒(r−
1
2

𝜎2)𝑇𝐸𝑄 ∫ 𝑒𝜎√𝑇𝜀𝜙𝑝𝑑𝑓(𝜀)𝑑𝜀
∞

−𝑑2

 

(2) 
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where 𝜙𝑝𝑑𝑓(𝜀) denotes the standard normal pdf 𝜙𝑝𝑑𝑓(𝜀) =
𝑒

−
𝜀2

2

√2𝜋
  

 

= 𝑆0𝑒(r−
1
2

𝜎2)𝑇 ∫ 𝑒𝜎√𝑇𝜀
𝑒−

𝜀2

2

√2𝜋
𝑑𝜀

∞

−𝑑2

 

= 𝑆0𝑒(r−
1
2

𝜎2)𝑇 ∫
𝑒−

𝜀2−2𝜎√𝑇𝜀
2

√2𝜋
𝑑𝜀

∞

−𝑑2

 

= 𝑆0𝑒(r−
1
2

𝜎2)𝑇 ∫
𝑒−

𝜀2−2𝜎√𝑇𝜀+𝜎2𝑇−𝜎2𝑇
2

√2𝜋
𝑑𝜀

∞

−𝑑2

 

= 𝑆0𝑒(r−
1
2

𝜎2)𝑇𝑒
𝜎2

2
𝑇 ∫

𝑒−
(𝜀−𝜎√𝑇)2

2

√2𝜋
𝑑𝜀

∞

−𝑑2

 

= 𝑆0𝑒𝑟𝑇 ∫
𝑒−

(𝜀−𝜎√𝑇)2

2

√2𝜋
𝑑𝜀

∞

−𝑑2

 

replacing 𝜀 − 𝜎√𝑇 by θ, 

= 𝑆0𝑒𝑟𝑇 ∫
𝑒−

θ2

2

√2𝜋
𝑑θ

∞

−𝑑2−𝜎√𝑇

 

= 𝑆0𝑒𝑟𝑇 ∫ 𝜙𝑝𝑑𝑓(θ) 𝑑θ
𝑑2+𝜎√𝑇

−∞

 

= 𝑆0𝑒𝑟𝑇𝑁(𝑑1) 

 

C. Price of an European Option using BSM 

PROOF.  

 

(Barbosa, 2022) 

 𝑣0 = 𝑒−𝑟𝑇𝐸𝑄[(𝜙𝑆𝑇 − 𝜙𝐾)𝐼𝜙𝑆𝑇>𝜙𝐾|ℱ0] 

 

= 𝑒−𝑟𝑇[𝐸𝑄(𝜙𝑆𝑇𝐼𝜙𝑆𝑇>𝜙𝐾|ℱ0) − 𝜙𝐾𝐸𝑄 (𝐼𝜙𝑆𝑇>𝜙𝐾|ℱ0)] 

 

= 𝑒−𝑟𝑇[𝜙𝑆0𝑒𝑟𝑇(𝑆𝑇𝐼𝜙𝑆𝑇>𝜙𝐾|ℱ0) −𝜙𝐾𝐸𝑄 (𝐼𝜙𝑆𝑇>𝜙𝐾|ℱ0) 

 

(1) 
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= 𝑒−𝑟𝑇[𝜙𝑆0𝑒𝑟𝑇𝑁(𝜙𝑑1) −𝜙𝐾𝑁(𝜙𝑑2) 

 

= 𝜙𝑆0𝑁(𝜙𝑑1) −𝑒−𝑟𝑇𝜙𝐾𝑁(𝜙𝑑2) 

 

 

𝑤ℎ𝑒𝑟𝑒  𝑖𝑠 𝑒𝑞𝑢𝑎𝑙 𝑡𝑜 1 𝑖𝑛 𝑡ℎ𝑒 𝑐𝑎𝑠𝑒 𝑜𝑓 𝑎 𝑐𝑎𝑙𝑙 𝑜𝑟 − 1 𝑖𝑛 𝑡ℎ𝑒 𝑐𝑎𝑠𝑒 𝑜𝑓 𝑎 𝑝𝑢𝑡 

 

D. Covariance fBm 

 

PROOF.  

(Ostaszewicz, 2012) 

 

 

For H=1/2 consider the following covariance function: 

 

 
𝔼[𝐵𝐻(𝑡, 𝜔), 𝐵𝐻(𝑠, 𝜔)]  =  

1

2
(𝑡2 

1
2

 + 𝑠2 
1
2 − |𝑡 − 𝑠|2 

1
2) 

=  
1

2
(𝑡 + 𝑠 − |𝑡 − 𝑠|)  =

1

2
(2𝑠) = 𝑠 = 𝑚𝑖𝑛(𝑠, 𝑡) 

(1) 

 

E. Variance fBm 

 

PROOF.  

(Ostaszewicz, 2012) 

 

 𝑉𝑎𝑟[𝐵𝐻(𝑡, 𝜔)] = 𝔼[𝐵𝐻(𝑡, 𝜔)2] −  𝔼[𝐵𝐻(𝑡, 𝜔)]2 = 

= 𝔼[𝐵𝐻(𝑡, 𝜔)𝐵𝐻(𝑡, 𝜔)]  =  
1

2
(𝑡2 𝐻 + 𝑡2 𝐻 − |𝑡 − 𝑡|2 𝐻) = 𝑡2 𝐻  

(1) 
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F. Dependence structure fBm 

 

PROOF.  

 (Serrano, 2016) 

 

Considering the following increments 𝐵𝐻(𝑡2, 𝜔) − 𝐵𝐻(𝑡1, 𝜔) and 𝐵𝐻(𝑡4, 𝜔) −

𝐵𝐻(𝑡3, 𝜔), for no overlapping time intervals (𝑡1, 𝑡2) and (𝑡3, 𝑡4) for 𝑡1 < 𝑡2 < 𝑡3 < 𝑡4, 

the covariance function between both increments leads to the ensuing expression: 

 

 𝔼[𝐵𝐻(𝑡2, 𝜔) − 𝐵𝐻(𝑡1, 𝜔) , 𝐵𝐻(𝑡4, 𝜔) − 𝐵𝐻(𝑡3, 𝜔)] =

=
1

2
((𝑡3 − 𝑡2)2𝐻 + (𝑡4 − 𝑡1)2𝐻

− (𝑡4 − 𝑡2)2𝐻 − (𝑡3 − 𝑡1)2𝐻) 

 

(1) 

For which, if H=1/2: 

 

 𝔼[𝐵1/2(𝑡2, 𝜔) − 𝐵1/2(𝑡1, 𝜔) , 𝐵1/2(𝑡4, 𝜔) − 𝐵1/2(𝑡3, 𝜔)] =

=
1

2
((𝑡3 − 𝑡2)2∗1/2 + (𝑡4 − 𝑡1)2∗1/2

− (𝑡4 − 𝑡2)2∗1/2 − (𝑡3 − 𝑡1)2∗1/2)  

=
1

2
((𝑡3 − 𝑡2) + (𝑡4 − 𝑡1) − (𝑡4 − 𝑡2) − (𝑡3 − 𝑡1))

=
1

2
((𝑡3 − 𝑡2) + (𝑡4 − 𝑡1) − 𝑡4 + 𝑡2 − 𝑡3 + 𝑡1)

= 0   

(2) 

 

Regarding the correlation function 
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 𝐶𝑂𝑅(𝐵𝐻(𝑡2, 𝜔) − 𝐵𝐻(𝑡1, 𝜔) , 𝐵𝐻(𝑡4, 𝜔) − 𝐵𝐻(𝑡3, 𝜔)) =

=
𝐶𝑂𝑉(𝐵𝐻(𝑡2, 𝜔) − 𝐵𝐻(𝑡1, 𝜔) , 𝐵𝐻(𝑡4, 𝜔) − 𝐵𝐻(𝑡3, 𝜔))

𝑆𝐷(𝐵𝐻(𝑡2, 𝜔) − 𝐵𝐻(𝑡1, 𝜔))𝑆𝐷(𝐵𝐻(𝑡4, 𝜔) − 𝐵𝐻(𝑡3, 𝜔))

=
0

𝑆𝐷(𝐵𝐻(𝑡2, 𝜔) − 𝐵𝐻(𝑡1, 𝜔))𝑆𝐷(𝐵𝐻(𝑡4, 𝜔) − 𝐵𝐻(𝑡3, 𝜔))

= 0 

 

(3) 

In which case for H=1/2 the increments are independent, as proved above. 

Let’s now consider the subsequent increments of 𝐵𝐻(𝑡, 𝜔), for the instants 0 to 1 from 

the instants 𝑡 to 𝑡 + 1, for 𝑡 ≥ 1, the covariance function γ(n) between those increments 

is given by: 

 

 
γ(t) =  

1

2
((𝑡 + 1)2𝐻 − 2𝑡2𝐻 + (𝑡 − 1)2𝐻) , considering t ≥ 1 (4) 

 

For H=1/2, the increments are still independent γ(t) = 0. Though if t tends to infinity 

the following ratio becomes 1: 

 

 

lim
𝑡→∞

1
2

((𝑡 + 1)2𝐻 − 2𝑡2𝐻 + (𝑡 − 1)2𝐻)

𝐻(2𝐻 − 1)𝑡2𝐻−2
= 1,  

 

𝑓𝑜𝑟 𝐻 ≠  1/2 𝑖𝑛 𝑡ℎ𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 (0,1) 𝑎𝑛𝑑 𝑡 > 1 

(5) 

 

Leading to the ensuing conclusion: 

 

 γ(t) ~ 𝐻(2𝐻 − 1)𝑡2𝐻−2 𝑎𝑠 𝑡 → ∞ 𝑓𝑜𝑟 𝑡 > 1 (6) 

 

Consequently, from equation (6) one can state that if 𝐻 <  
1

2
  then γ(t)  < 0 and 

∑ |γ(t)|∞
𝑡=1  < ∞ , converging to a finite value, with increments exhibiting negative 

correlation and therefore short-range dependence. Adversely, if 𝐻 >  
1

2
  => γ(t)  > 0 
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and ∑ |γ(t)|∞
𝑡=1  = ∞, diverging with 𝑡 → ∞, with increments displaying positive 

correlation and consequently long-range dependence.  

 

G. Stochastic Integral for the fBm 

 

LEMMA 2.1. Let the stochastic integral representation of the fractional Brownian 

motion 𝐵𝐻  (𝑡) be defined as: 

 

(Ostaszewicz, 2012) 

 

  𝐵𝐻  (𝑡) =  𝐵𝐻  (𝑡, 𝜔)  −   𝐵𝐻  (0, 𝜔) =

= 𝑐𝐻 (∫ [(𝑡 −  𝑠)𝐻 − 
1
2

  − ( − 𝑠)𝐻 − 
1
2

 ]  𝑑𝐵(𝑠)
0

−∞

+ ∫ (𝑡 −  𝑠)𝐻 − 
1
2

  𝑑𝐵(𝑠)
𝑡

0

) 

 

(1) 

where 𝑐𝐻 is the normalizing constant and it assumes the following expression: 

 

 

𝑐𝐻 = √
2𝐻 Γ( 3/2 − 𝐻)

Γ(𝐻 +  1/2) Γ(2 − 2𝐻)
 (2) 

 

For which H ranges between 0 and 1 (non-inclusive of zero), and t and s designate the 

times of the time interval with 𝑡 > 𝑠 ≥ 0. 

It’s easily deductible that for 𝐵1/2  (𝑡) 𝐻 = 1/2 we’ve the standard Brownian Motion 

𝐵(𝑡). 

 

 

 

 

 

 



38 
 

H. Hurst - Power law (dam dimensions) 

 

THEOREM 2.8. The Hurst exponent 𝐾 for 𝜎 standard deviation of river outflows during 

N number of years under study is given by: 

(Mandelbrot and Hudson, 2004) 

 

𝐾 =  
𝑙𝑜𝑔 (

𝑅
𝜎)

𝑙𝑜𝑔 (
𝑁
2)

 (1) 

 

where R represents the required dam dimensions to avoid floods. 

I. Rescaled Range Formula 

 

THEOREM 2.9. The Hurst exponent 𝐾 for 𝜎 standard deviation of river outflows during 

N number of years under study is given by: 

(Mandelbrot and Hudson, 2004) 

 

 

𝑅/𝑆 =  
Max

0≤𝑘≤𝑛
∑ (𝑟𝑗  − 𝑟̅𝑛)𝑘

𝑗=1 − Min
0≤𝑘≤𝑛

∑ (𝑟𝑗  − 𝑟̅𝑛)𝑘
𝑗=1

[
1
𝑛

∑ (𝑟𝑗  − 𝑟̅𝑛)2
𝑗 ]

1/2
 (1) 

 

where 𝑛 is the full period under analysis, with 𝑘  maximum 𝑗 shorter periods and 𝑟𝑗  for 

the corresponding shorter return, which is deducted from the average stock return for 

𝑛 => 𝑟̅𝑛. And the denominator represents the standard deviation of the assessed series.  

The denominator when compared with the numerator responsible for the range between 

max and minimum accumulated deviations, results in a long-term dependence metric. 

 

 

J. Hu and Øksendal Price of a European Call Option using fBSM 

 

PROOF.  

(Ostaszewicz, 2012) 
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 Accordingly, to Hu and Øksendal at time T the price of a Fractional Black-Scholes 

European Call is given by the following formula: 

 

 𝐹(𝜔) =  max{S(T, 𝜔)  −  𝐾, 0}  (1) 

 

Considering, the formula derivation is provided as bellow: 

 𝐶𝐻(0, 𝑆0) = 𝑒−𝑟𝑇𝐸μ̂Φ
[𝐹] (2) 

 

  

= 𝑒−𝑟𝑇𝐸μ̂Φ
[𝑚𝑎𝑥{𝑆(𝑇, 𝜔) −  𝐾),0}] 

= 𝑒−𝑟𝑇𝐸μ̂Φ
[𝑚𝑎𝑥{𝑆0𝑒𝑥𝑝(𝜎𝐵𝑇

𝐻  +  𝜇𝑇 −  
1

2
𝜎2𝑇2𝐻)  −  𝐾),0}] 

= 𝑒−𝑟𝑇𝐸μ̂Φ
[𝑚𝑎𝑥{𝑆0𝑒𝑥𝑝(𝜎𝐵̂𝑇

𝐻  +  𝑟𝑇 −  
1

2
𝜎2𝑇2𝐻)  −  𝐾),0}] 

= 𝑒−𝑟𝑇𝐸μΦ
[𝑚𝑎𝑥{𝑆0𝑒𝑥𝑝(𝜎𝐵𝑇

𝐻  +  𝑟𝑇 −  
1

2
𝜎2𝑇2𝐻)  −  𝐾),0}] 

= 𝑒−𝑟𝑇𝐸μΦ
[𝑆𝑇1𝑆𝑇>𝐾]  −  𝑒−𝑟𝑇𝐾 𝐸μΦ

[1𝑆𝑇>𝐾] 

Solving the boundary we’ve: 

𝑆0𝑒𝑥𝑝(𝜎𝑧 +  𝑟𝑇 −  
1

2
𝜎2𝑇2𝐻)  >  𝐾 ⇔ 

⇔ 𝑧 >  
𝑙𝑛 (

𝑆0

𝐾
) −  𝑟𝑇 +  

1
2

𝜎2𝑇2𝐻

𝜎
=  

= − 
𝑙𝑛 (

𝑆0

𝐾 ) +  𝑟𝑇 −  
1
2 𝜎2𝑇2𝐻

𝜎
 

𝑑̂1 =
𝑙𝑛 (

𝑆0

𝐾 ) +  𝑟𝑇 −  
1
2 𝜎2𝑇2𝐻

𝜎
 

Setting the first expectation as: 
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𝐸μΦ

[𝑆𝑇1𝑆𝑇>𝐾] = ∫
1

𝑇𝐻√2𝜋
𝑒𝑥𝑝 (−

𝑦2

2𝑇2𝐻
) 𝓍 𝑒𝑥𝑝(𝜎𝑦 +  𝑟𝑇 

∞

−𝑑̂1

−  
1

2
𝜎2𝑇2𝐻)𝑑𝑦 

(3) 

  

Since the variance of 𝐵𝑡
𝐻 is 𝑇2𝐻 and the mean is 0, using the Gaussian character of the 

fractional Brownian motion we’ve: 

𝐸μΦ
[𝑆𝑇1𝑆𝑇>𝐾] = 𝑒𝑟𝑇 ∫

1

𝑇𝐻√2𝜋
𝑒𝑥𝑝 (−

𝑦2

2𝑇2𝐻
+ 𝜎𝑦  − 

1

2
𝜎2𝑇2𝐻) 𝓍 𝑑𝑦

∞

−𝑑̂1

 

= 𝓍𝑒𝑟𝑇 ∫
1

𝑇𝐻√2𝜋
𝑒𝑥𝑝 (−

1

2𝑇2𝐻
(𝑦2  −  2𝜎𝑦𝑇2𝐻   + 𝜎2𝑇4𝐻))  𝑑𝑦

∞

−𝑑̂1

 

= 𝓍𝑒𝑟𝑇 ∫
1

𝑇𝐻√2𝜋
𝑒𝑥𝑝 (−

1

2
(

𝑦 −  𝜎𝑇2𝐻

𝑇𝐻
)

2

)  𝑑𝑦
∞

−𝑑̂1

 

Let 

 
𝑧 =  

𝑦 −  𝜎𝑇2𝐻

𝑇𝐻
⟹ 𝑦 =  𝑧𝑇𝐻 + 𝜎𝑇2𝐻   

(4) 

   

differentiating we get 

𝑑𝑦 =  𝑇𝐻𝑑𝑧 

subsquently, 

 

𝐸μΦ
[𝑆𝑇1𝑆𝑇>𝐾] = 𝓍𝑒𝑟𝑇 ∫

1

𝑇𝐻√2𝜋
𝑒𝑥𝑝 (−

1

2
(𝑧)2) 𝑇𝐻 𝑑𝑧

∞

−𝑑̂1 − 𝜎𝑇2𝐻

𝑇𝐻

 
(5) 

 

= 𝓍𝑒𝑟𝑇 ∫
1

√2𝜋
𝑒𝑥𝑝 (−

1

2
(𝑧)2)  𝑑𝑧

𝑑̂1 + 𝜎𝑇2𝐻

𝑇𝐻

−∞

 

= 𝓍𝑒𝑟𝑇𝑁 (
𝑑̂1  +  𝜎𝑇2𝐻

𝑇𝐻
) 
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= 𝓍𝑒𝑟𝑇𝑁(𝑑1
𝐻) 

where, 

 
𝑑1

𝐻 =
𝑑̂1  +  𝜎𝑇2𝐻

𝑇𝐻
 

  

(6) 

=

𝑙𝑛 (
𝑆0

𝐾 ) +  𝑟𝑇 −  
1
2 𝜎2𝑇2𝐻

𝜎  +  𝜎𝑇2𝐻

𝑇𝐻
 

=
𝑙𝑛 (

𝑆0

𝐾 ) +  𝑟𝑇 +  
1
2 𝜎2𝑇2𝐻

𝜎𝑇𝐻
 

 

Regarding the second expectation: 

 

𝐸μΦ
[1𝑆𝑇>𝐾] = ∫

1

𝑇𝐻√2𝜋
𝑒𝑥𝑝 (−

𝑦2

2𝑇2𝐻
)   𝑑𝑦

∞

−𝑑̂1

 (7) 

If 

𝜔 =  
𝑦

𝑇𝐻
⟹ 𝑦 =  𝜔𝑇𝐻 

Then 

𝑑𝑦 =  𝑇𝐻𝑑𝑧 

Resulting in 

 

𝐸μΦ
[1𝑆𝑇>𝐾] = ∫

1

𝑇𝐻√2𝜋
𝑒𝑥𝑝 (−

1

2
𝜔2) 𝑇𝐻 𝑑𝜔

∞

−𝑑̂1

𝑇𝐻

 

  

(8) 

= ∫
1

√2𝜋
𝑒𝑥𝑝 (−

1

2
𝜔2)  𝑑𝜔

𝑑̂1

𝑇𝐻

−∞

 

= 𝑁 (
𝑑̂1

𝑇𝐻
) = 𝑁(𝑑2

𝐻) 
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For which we’ve 

 

𝑑2
𝐻 =

𝑙𝑛 (
𝑆0

𝐾 ) +  𝑟𝑇 −  
1
2 𝜎2𝑇2𝐻

𝜎𝑇𝐻
 

  

(9) 

 

The price of a European call is then: 

 𝐶𝐻(0, 𝑆0) = 𝑆0𝑁(𝑑1
𝐻)  −  𝐾𝑒−𝑟𝑇𝑁(𝑑2

𝐻) 

 
(10) 

For which, when H = 1/2 it’s obtained the classical Black-Scholes formula. 

 In other words, 

 𝑣𝐻(0, 𝑆0) = 𝜙𝑆0𝑁(𝜙𝑑1
𝐻)  −  𝜙𝐾𝑒−𝑟𝑇𝑁(𝜙𝑑2

𝐻) (11) 

𝑤ℎ𝑒𝑟𝑒 𝜙 𝑖𝑠 𝑒𝑞𝑢𝑎𝑙 𝑡𝑜 1 𝑖𝑛 𝑡ℎ𝑒 𝑐𝑎𝑠𝑒 𝑜𝑓 𝑎 𝑐𝑎𝑙𝑙 𝑜𝑟 − 1 𝑖𝑛 𝑡ℎ𝑒 𝑐𝑎𝑠𝑒 𝑜𝑓 𝑎 𝑝𝑢𝑡 

 

 

K. Li and Chen fBSM calibration methodology 

 

PROOF. Let 𝐹(𝑇, 𝑆𝑡) be a twice differentiable function under the fractional itô lemma, 

applied to a Stochastic process 𝑆𝑡: 

(Li and Chen, 2014) 

 
𝐹(𝑇, 𝑆𝑡) = 𝐹(𝑡, 𝑆𝑡) + ∫

𝜕

𝜕𝑢
𝐹(𝑢, 𝑆𝑢)𝑑𝑢

𝑇

𝑡

+ 𝜇 ∫
𝜕

𝜕𝑆
𝐹(𝑢, 𝑆𝑢)𝑆𝑢𝑑𝑢

𝑇

𝑡

+ 𝜎 ∫
𝜕

𝜕𝑆
𝐹(𝑢, 𝑆𝑢)𝑆𝑢𝑑𝐵𝑢

𝐻
𝑇

𝑡

+ 𝐻𝜎2 ∫
𝜕2

𝜕𝑆2
𝐹(𝑢, 𝑆𝑢)𝑆𝑢

2𝑢2𝐻−1𝑑𝑢     
𝑇

𝑡

 

 

  

(1) 
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Taking derivatives, 

 
𝑑𝐹(𝑇, 𝑆𝑡) =

𝜕

𝜕𝑡
𝐹(𝑡, 𝑆𝑡)𝑑𝑡 +

𝜕

𝜕𝑆
𝐹(𝑡, 𝑆𝑡)𝜇𝑆𝑡𝑑𝑡 +

𝜕

𝜕𝑆
𝐹(𝑡, 𝑆𝑡)𝜎𝑆𝑡𝑑𝐵𝑡

𝐻

+
1

2

𝜕2

𝜕𝑆2
𝐹(𝑡, 𝑆𝑡)𝜎2𝑆𝑡

2𝑑𝑡2𝐻        

 

(2) 

Introducing 𝐹 = 𝑙𝑛(𝑆𝑡): 

 
𝑑𝑙𝑛(𝑆𝑡) = 𝜇𝑑𝑡 + 𝜎𝑑𝐵𝑡

𝐻 −
1

2
𝜎2𝑑𝑡2𝐻  

 

(3) 

  

Moving for the 𝑆𝑡 left side of the fBm SDE, we obtain: 

 

 𝑑𝑆𝑡 =  μ𝑆𝑡 𝑑𝑡 + 𝜎𝑆𝑡 𝑑𝐵𝑡
𝐻 

𝑑𝑆𝑡

𝑆𝑡
=  μ 𝑑𝑡 + 𝜎𝑑𝐵𝑡

𝐻 

 

 

(4) 

Subtracting equation (4) by equation (3) we have  

𝑑𝑆𝑡

𝑆𝑡
 −  𝑑𝑙𝑛(𝑆𝑡)  =

1

2
𝜎2𝑑𝑡2𝐻 

If we take the expectations of both sides from 0 to T, we get: 

 
2 𝐸 [∫

𝑑𝑆𝑡

𝑆𝑡
 𝑑𝑡

𝑇

0

−  𝑙𝑛 (
𝑆𝑡

𝑆0
)]  = 𝐸 [∫ 𝜎2𝑑𝑡2𝐻

𝑇

0

] 

 

(5) 

Then through the insertion of the results from a replication strategy discussed by 

Demeterfi et al. (1999) on the first term of equation (5), the authors arrived to a formula 

where they can derive expected variance (second term of the previous equation) for 

different strikes without depending on any specific model: 
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𝐸(𝑉) = 2 [𝑟𝑇 −

𝑆0𝑒𝑟𝑇 − 𝑆∗

𝑆∗
− 𝑙𝑛 (

𝑆∗

𝑆0
) + 𝑒𝑟𝑇  ∫

1

𝐾2
𝑃(𝐾)𝑑𝐾

𝑆∗

0

+ 𝑒𝑟𝑇  ∫
1

𝐾2
𝐶(𝐾)𝑑𝐾

∞

𝑆∗

]  

 

(6) 

where 𝑆∗ is ATM strike with P(K) and C(K) being the prices of put and call options for 

strike K. 

Subsequently, in this work it will be used the above integration of different option prices 

for different strikes to obtain the model free expected variance as per equation (6) and 

by running the fractional OLS regression (see equation (18) - Chapter 3) obtain the 

fractional variance and hurst exponent. 


