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ABSTRACT This work addresses the open question of implementing fault-tolerant QRLCs with feasible
computational overhead. We present a new decoder for quantum random linear codes (QRLCs) capable of
dealing with imperfect decoding operations. A first approach, introduced by Cruz et al., only considered
channel errors, and perfect gates at the decoder. Here, we analyze the fault-tolerant characteristics of
QRLCs with a new noise guessing decoding technique, when considering preparation, measurement,
and gate errors in the syndrome extraction procedure, while also accounting for error degeneracy. Our
findings indicate a threshold error rate (pthreshold) of approximately 2× 10−5 in the asymptotic limit, while
considering realistic noise levels in the mentioned physical procedures.

INDEX TERMS Fault-tolerance, noise guessing decoding, quantum error correction, quantum random
linear codes, syndrome extraction.

I. INTRODUCTION
It is known that classical random linear codes (RLCs) are

capacity-achieving [1], however, until the advent of guessing
random additive noise decoding (GRAND) their decoding
was not practical, apart some decoders based on trellises (as
pointed out in [2]). GRAND has been proposed with the aim
of reducing end-to-end latency in coded wireless systems,
which has been a drawback for a long time. The rationale
in the original proposal of GRAND was that by using short
codewords, the so-called interleavers, used to make the
errors independent and identically distributed (iid), would
no longer be required [3]. Using short blocks in wireless
systems also helps to better adapt to the channel variations
when applying precoding techniques [4]–[6]. In the quantum
realm, due to technical limitations in manipulating qubits,
short block codes appear as natural candidates for quantum
error correction codes (QECCs) [7]–[11]. These limitations
also necessitate the development of fault-tolerant techniques
to handle noise and errors in quantum operations [12].

Likewise classical RLCs, quantum random linear codes

(QRLCs) attain the capacity of the quantum channels, but no
practical decoder existed for them until the advent of quan-
tum guessing random additive noise decoding (QGRAND),
which allowed to numerically assess their performance for
the first time [2]. A recent work also used a GRAND-like
approach to decode several families of structured quantum
codes which are based on stabilizer codes [13]. QGRAND
has also been applied to the purification of quantum links,
taking advantage of the connection between purification and
error correction [14], which will have great implications on
the way routing is implemented in quantum networks [15]–
[18].

QRLCs are a much more flexible solution than other
structured quantum codes for QECCs, with advantages in
respect to the state-of-the-art solutions designed to detect
and correct errors in quantum setups [19], [20]. In contrast
to structured codes, which may only exist for a very
limited number of code rates and codeword lengths [21],
[22], QRLCs can exist for a wide range of coding rates
and codeword lengths that may better fit some particular
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applications. A method to generate QRLCs efficiently was
proposed in 2013 [23], however, almost no practical method
existed until recently to decode them until the proposal in
[2].

The channel model used in that work was a Shannon-
like channel, where errors occur only in the channel and
all the decoding process is perfect. However, in all current
technologies implementing qubits, the errors that take place
in the quantum gates of the decoding circuit cannot be
ignored. Hence, a practical challenge remained after [2]:
can a QRLC-QGRANDf system be made practical in the
presence of the extra errors coming from the quantum gates,
enabling fault-tolerant QECCs based on QRLCs?

This paper shows that, surprisingly, due to the particular
way that the syndrome extraction takes place in codes based
on stabilizers, some heavy reduction of the effects of those
errors takes place, making the whole system viable. Building
on previous work [2], [14], we present a comprehensive
analysis of fault-tolerant QRLCs, incorporating the effects of
preparation, measurement, and gate errors. Our results show
that QRLCs, decoded with the proposed method, exhibit
robust error correction capabilities with a threshold error
rate pthreshold of approximately 2× 10−5. This advancement
paves the way for practical implementations of QRLCs in
quantum error correction, contributing to the development
of scalable and resilient quantum systems.

While recent work by Nelson et al. [24] has addressed
fault-tolerant quantum error correction using low-depth ran-
dom circuit codes, our work focuses on quantum random
linear codes (QRLCs) decoded with the QGRAND tech-
nique. Both approaches work with stabilizer codes generated
through random constructions, but differ in their specific
code constructions, decoding methods, and target applica-
tions. Their work addresses fault-tolerant state preparation
and distillation protocols for quantum memory applications,
while our approach focuses on fault-tolerant syndrome de-
coding for error correction.

Although our results suggest that QGRAND could in
theory enable a fault-tolerant implementation of QRLCs,
some challenges remain that limit its usefulness in that
regime. QGRAND is most suitable for situations where
the noise entropy is relatively low, in which case decoding
becomes computationally efficient. However, in the fault-
tolerant regime where n may be considered to be consid-
erably large or it is necessary to iteratively apply error
correction to suppress errors, the noise entropy can be
considerably high. In this regime, the optimal procedure
described in this paper becomes infeasible, and suboptimal
heuristics would have to be introduced. Nonetheless, this
work paves the way for applications of QGRAND whenever
the considered noise types all have low entropy, which
encompasses setups with realistic noise conditions.

This paper is organized as follows. In Section II we intro-
duce the setup considered in the analysis, and in particular
its noise model. In Section III, we define some useful error
notation terms and set the notation used throughout the

FIGURE 1. Noise model considered.

paper. Section IV presents the decoding method, extended
form [2] to account for degenerate errors. In Section V, we
present an analysis of the codes’ performance for various
qubit counts, and in Section VI we present some final
thoughts on our results. To help the reader, a notation
summary is listed in Table 1.

II. SETUP AND NOISE MODEL
We use the same setup as in [2], but consider the fault-

tolerant regime, where the constituent quantum gates in the
circuit may be affected by error. We consider an initial
k-qubit |ψ⟩ quantum state, to be encoded into n > k
qubits. [23] presents a method of generating a random
qubit encoding, which we use in this work. One starts by
randomly selecting Clifford unitaries from the C2 group (i.e.,
Clifford unitaries for 2 qubits). There are |C2| = 11 520
such unitaries, and all of them can be built by simple
combinations of the Hadamard (H), phase (

√
Z), and CNOT

gates, which have efficient physical implementations in
virtually any quantum setting [25]. In matrix form, these
are defined as

H =
1√
2

(
1 1
1 −1

)
,
√
Z =

(
1 0
0 i

)
, CNOT =

(
I 0
0 X

)
,

(1)
with X,Y, and Z the Pauli matrices, and I the 2×2 identity
matrix.

After selecting these random unitaries from C2, one
successively applies each of them to a random pair of qubits,
taken from the set of n qubits.

This process leads to an encoding unitary for our stabi-
lizer code which, when applied to the initial k qubits and
(n − k) extra |0⟩ qubits added, returns a n-qubit encoded
quantum state. As shown in [23], as long as O

(
n log2 n

)
gates are used, with a circuit depth of O

(
log3 n

)
, the

construction leads to a highly performant (n, k) code, and
from [26] it is already known that these complexity orders
can be further lowered.

We use these QRLCs to construct stabilizer codes. Com-
pared to the approach in [2], in this work, we consider a
noise model that is more realistic by also including prepara-
tion, measurement, and gate errors. Given that, in practical
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TABLE 1. Notation summary.

Variable Description Relationships
U Unitary encoding circuit for a quantum error-correcting code
Si The ith minimal stabilizer of the code (1 ≤ i ≤ n− k ) Si = UZi+kU

†

X̄j Logical X operator on the jth encoded qubit (1 ≤ j ≤ k) X̄j = UXjU
†

Z̄j Logical Z operator on the jth encoded qubit (1 ≤ j ≤ k) Z̄j = UZjU
†

N List of all possible errors Ei in the noise model, with associated
probabilities pi

EB
i A base error (error affecting a single qubit or gate)
ω The number of base errors that compose a compound error Ej = EB

i1
· · ·EB

iω

eli Local error pattern corresponding to a base error EB
i

C,B Unitary components of a syndrome extraction circuit, applied be-
fore/after an error EB

i occurs
V = CB

VE Syndrome extraction circuit affected by error EB
i VE = CeliB

ei Propagated error pattern on the main qubits after EB
i and subsequent

circuit operations
ei = (CeliC

†)m

esi Propagated error pattern on the ancilla qubits after EB
i and subsequent

circuit operations
esi = (CeliC

†)a

A Quantum check matrix of the code (binary representation in [X|Z]
format)

ei Binary representation of the main error pattern ei (in [Z|X] format)
L Logical error group generated by X̄j and Z̄j

Li One of the 22k logical error patterns in L ei = EiSiLi
S Stabilizer group generated by Sj

Si One of the 2n−k stabilizer patterns in S ei = EiSiLi
Ei Error pattern with the same syndrome as ei ei = EiSiLi
0 Vector representing zero syndrome (n− k zero bits)
ŝi Syndrome associated with a (propagated) error pattern ei ŝi = eiA

T

D A degenerate set: A set of error patterns with the same syndrome that
can be corrected similarly

edi Representative of the errors in a degenerate set D edi = EiLi
g Index of the syndrome extraction where an error EB

i occurred
s̃i Syndrome acquired in the same extraction as error EB

i s̃i = compX(bin(esi ))
ŝi Syndrome acquired in a subsequent extraction after EB

i occurred ŝi = compX(bin((V eiV †)a))
si Measured syndrome in a particular syndrome extraction
s List of all acquired syndromes over multiple extractions: {s1, . . . , sq}

Q(Ej) Syndrome sequence expected for a compound error Ej Q(Ej) = si1 ⊕ · · · ⊕ siω

applications, the error of 2-qubit entangling gates generally
dominates over single-qubit gate errors [10], we focus on the
former type of error. We further analyze the appropriateness
of our model in Appendix L. We assume that every gate
in both the encoding and syndrome extraction steps is
decomposed into the Clifford gates

{
CNOT, H,

√
Z
}

.

For the noise statistics, we consider the model similar to
the one in [10], but without single-qubit gate errors (see
Fig. 1).

• CNOT gate errors: After the ideal implementation of
the CNOT(a, b) gate, with qubit a controlling b, it is
assumed that one of the 15 errors of the form

OaOb (2)

with Oa, Ob ∈ {I,X, Y, Z} and excluding OaOb ̸=
IaIb, occurs with probability p/15. Here, I is the
identity gate, and X,Y, Z are the Pauli matrices.

• Preparation errors: While setting the (n− k) ancilla
qubits (for each syndrome extraction) to |0⟩, each qubit
has (independently) a probability p of being prepared
in the state |1⟩ instead.

• Measurement errors: While measuring each ancilla
qubit to extract the syndrome, each measurement bit
has a probability p of being misread, so that a zero bit
is read as a 1, and vice-versa.

Unlike the model in [2], to demonstrate the fault-tolerant
properties of this model, we exclude a source of error
between the encoding and syndrome extraction sections (i.e.,
the “transmission error” in Fig. 1), and instead focus on the
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case where the CNOT gate error stemming from the syn-
drome extraction dominates the noise statistics of the circuit.
This simpler model facilitates the study of the QGRAND
decoding approach in the fault-tolerant regime, which is the
focus of this work. While possible (see Appendix A), we
make no further modifications to the circuit implementation.

III. ERROR CORRECTION OVERVIEW
In the fault-tolerant regime with a noisy gate model, de-

generate errors play a significant role in the error correction
capabilities of the code [27]. As a result, the approximation
made in [2], where codes were approximated to be non-
degenerate, is no longer accurate, as it would significantly
underestimate the code’s capabilities.

Additionally, in the fault-tolerant regime, we must con-
sider an iterated application of the syndrome extraction pro-
cedure, instead of a single application, in order to capably
detect the errors being introduced by the syndrome extrac-
tion procedure itself. This is a common approach [19], [28]
to quantum error correction when gate and measurement
errors are non-negligible, and the decoding procedure has
into account not just the syndrome from one extraction
process, but the whole history of syndrome measurements.

As a result of this added complexity, in this section we
clarify the notation we use in this work. We use X̄j , Z̄j to
represent the logical operators corresponding to the unen-
coded operators Xj , Zj , respectively. Given an encoding U
(see Fig. 1), the choice of minimal stabilizers Si and logical
operators is not unique. Without loss of generality (W.l.o.g.),
we consider the minimal stabilizer Si (for 1 ≤ i ≤ n − k)
and logical operators X̄j , Z̄j (for 1 ≤ j ≤ k) to be given
by

Si = UZi+kU
† (3)

X̄j = UXjU
† (4)

Z̄j = UZjU
†. (5)

Following Section II, the noise model enables us to create
a list N = {(p0, E0), (p1, E1), . . .} of all the errors Ei

that the encoded quantum state may be subjected to, along
with its respectively probability pi of occurring. An error
Ei refers to the qualitative process that occurred physically,
such as “a X2Z3 error occurred in the CNOT(2, 3) gate,
and no other errors”, for example.

An error Ei that corresponds to either only one wrongly
prepared qubit, or one wrongly measured qubit, or one noisy
CNOT gate, is called a base error, and may be explicitly
labeled as EB

i . Every other error in the noise model of
Section II can be described as a combination of base errors.

We consider the errors Ei to be disjunctive, so only
one error in N may occur, and their probability sums to
1. When using the base error notation EB

i , we implicitly
refer only to the specific base error that occurred, without
making claims about the occurrence of other base errors.
For example, using the noise model in Section II, the
base error EB =“X2Z3 error in the CNOT(2, 3) gate”

would have a probability of occurring of p/15, while the
corresponding error E =“X2Z3 error in the CNOT(2, 3)
gate, and no other errors” would have a probability of
(p/15)× P (no other base error occurs), which would pos-
sibly be much lower. We may use the shorthand notation
ÊB := E for errors where only one base error occurs.

Compound errors may be represented by their own sym-
bol or as the product of errors that compose it. That is, for
simplicity, given base errors EB

i and EB
j , we also have the

compound error notation

Er = EB
i ∩ EB

j ∩

 ⋂
m̸=i,j

EB
m

 =: EB
i E

B
j (6)

An error Ej is said to be of order ω if ω base errors suffice
to describe it, so that Ej = EB

i1
· · ·EB

iω
. Note that the

constituting base errors may stem from different syndrome
extractions.

Given a base error, let el be the local error pattern
corresponding to the error that occurred locally. In the
example above, we would have eli = X2Z3. In general, for
gate errors affecting only one CNOT gate, we would have
an error pattern from (2). For preparation and measurement
errors, el would be represented by X operators in the
appropriate ancilla qubits.

Unless the error EB
i occurs at the end of a syndrome

extraction process, it will propagate through the rest of
the quantum circuit, possibly impacting other qubits. Let
V be the unitary corresponding to one noiseless syndrome
extraction process, minus the final measurement step of
the ancilla qubits. We may partition V into the unitaries
B and C, corresponding to the portion of the syndrome
extraction circuit that occurs before and after the error EB

i ,
respectively. If the syndrome extraction affected by EB

i is
given by the unitary VE , we have

V = CB (7)

VE = CeliB = (esi ⊗ ei)V. (8)

The resulting (propagated) error pattern may affect non-
trivially both the main n qubits (main error pattern ei) and
the (n− k) ancilla qubits (ancilla error pattern esi ).

A Pauli string of n qubits is an operator that is the product
of the Pauli operators X,Y , and Z on those qubits. It has
the form

ei
π
2 ϕO1O2 · · ·On, (9)

with Oj ∈ {X,Y, Z, I} and ϕ ∈ {0, 1, 2, 3}.
As eli is a Pauli string, and C is a Clifford unitary, then
both ei and esi are Pauli strings. Similarly, following (3)
to (5), the minimal stabilizers and logical operators are also
Pauli strings, since U is a Clifford unitary as well. A Pauli
string is said to have weight t if it acts on t qubits, that is,
if its Pauli string contains t Pauli operators (excluding the
identity).

For the previous example with EB
i , we would have esi ⊗
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FIGURE 2. Simple example, with two syndrome extractions (SE). The error is
not detected by the first syndrome extraction process, but it is detected by the
second extraction.

ei = C(X2Z3)C
†. While the effect of esi is removed by the

syndrome measurement, the same cannot be said of ei. As
EB

i propagates through the circuit, the pattern ei is picked
up by subsequent syndrome extractions, and is ultimately the
error pattern that our correction process needs to consider
to undo the effect of EB

i on the main n qubits. See Fig. 2
for an example.

In Fig. 2, we showcase a simple example, with two
syndrome extractions (SE), where there is only one minimal
stabilizer S1 = X1X2. An error occurs in the first CNOT
gate, so E = “Z1I2 error in first CNOT gate, and no other
errors”. The error is not detected by the first syndrome
extraction process, so s = s̃ = 0. By the end of the
first syndrome extraction, the evolved uncorrected error is
e = Z1I2. It is now detected by the second extraction, so
s = ŝ = 1. If it is not corrected, subsequent extractions will
behave similarly to the second one, returning the syndrome
1.

Since Y = iXZ, any Pauli string of n qubits can also be
written in the form

ei
π
2 φ
(
OX

1 · · ·OX
n

)(
OZ

1 · · ·OZ
n

)
, (10)

with OX
j ∈ {X, I}, OZ

j ∈ {Z, I} and φ ∈ {0, 1, 2, 3}.
The Pauli string may then be encoded as a binary row

vector. In [X|Z] format, it takes the form[
bX1 bX2 · · · bXn bZ1 bZ2 · · · bZn

]
, (11)

with bPj =

{
1, if Oj = P

0, if Oj = I
and P ∈ {X,Z}. (12)

In [Z|X] format, the bXj entries are swapped with bZj . By
default, binary vectors and matrices are represented in bold.
We may use the functions

bin(e) := e, op(e) := e (13)

compP (e) :=
[
bP1 · · · bPc

]
, (14)

with P ∈ {X,Z} and c = |e|/2, to indicate the conversion
to and from binary representation, and to refer to a particular
component of e, respectively. Calculations using binary are
performed in F2, that is, using modular arithmetic mod 2.
The functions bin and op stand for the transformations of
Pauli operators from and to, respectively, binary arrays.

Let A be the quantum check matrix [29], a (n− k)× 2n
binary matrix (in [X|Z] format) where each row j encodes
the minimal stabilizer Sj of the code. This is a compact
way of representing the encoding used. Let ei be the binary
representation of the error pattern ei as a 2n-sized row
vector, in [Z|X] format. Any evolved error pattern ei can
be written as

ei = EiSiLi, (15)

where Li is one of the 22k logical error patterns in the
logical error group L generated by the logical operators
X̄j , Z̄j , 1 ≤ j ≤ k; Si is one of the 2n−k stabilizers in
the stabilizer group S generated by the minimal stabilizers
Sj , 1 ≤ j ≤ n − k; and Ei is some error pattern with the
same syndrome ŝ = eiA

T as ei [29]. We use 0 to represent
the syndrome with all entries equal to zero. W.l.o.g., for the
decomposition, we assume the phase factor φ (see (10)) to
be zero, since neglecting it adds at most a global phase to
the encoded quantum state, which can be disregarded. As a
result, we consider each error pattern to equal its inverse.

The decomposition in (15) is not unique, and is dependant
on the choice made for the particular logical operators,
minimal stabilizers, and Ei patterns to use. For the sake
of simplicity in the notation, in this work, it is assumed
that such a decomposition is the unique one obtained
deterministically by following the procedure described in
Section IV. Consequently, we assume that, associated with
each error pattern ei, there is a unique set of operators Ei, Si,
and Li. In particular, for patterns with ŝ = 0, the operator
Ei is the identity. Since all error patterns with the same
syndrome will have the same error component E, we use Eŝ
to indicate the error component of the error patterns with
syndrome ŝ.

Compound error patterns, such as er = eiej , may be
easily encoded in binary form by using the modular sum
(i.e. XOR), so that er = ei ⊕ ej and ŝr = ŝi ⊕ ŝj . Given
two error patterns ei, ej with the same syndrome ŝ, their
product er has syndrome ŝk = ŝ ⊕ ŝ = 0, so Er is the
identity operator. Therefore, there is a unique S ∈ S, L ∈ L
such that ei = ejSL, with S = SiSj and L = LiLj .

A degenerate set D is a set of evolved error patterns that
can be treated similarly, for correction purposes. This set
depends on ŝ and L. Although all error patterns with the
same syndrome ŝ have the same representative error pattern
Eŝ, not all can be corrected similarly. For that to be the
case, their logical error component L must be the same.
Since we know that two error patterns are degenerate if
eiej ∈ S , we may verify this by computing er = eiej =
(EiSiLi)(EjSjLj) = (EiEj)(SiSj)(LiLj) = ErSrLr. For er
to be in S, we must have Er = Lr = I , which is only
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the case if Ei = Ej and Li = Lj . The former is true if ei
and ej have the same syndrome ŝ, while the latter is more
complicated to verify, but we know that there are only 22k

possibilities in L to consider. Ultimately, we may index the
degenerate sets based on their syndrome and logical error
component, both represented by the tuple (ŝ, L). We use
edi = EiLi to refer to the actual representative of ei (and its
degenerate equivalents) during the correction process, since
we know that if we can correct edi by applying the unitary
(edi )

† to the circuit, so can we indirectly also correct ei,
since (edi )

†ei = Si, and stabilizers act as the identity on the
encoded quantum state.

For an error Ei arising from syndrome extraction g, there
are two associated syndromes of interest, instead of one. The
syndrome

ŝi = eiA
T (16)

corresponds to the syndrome obtained from a subsequent
noiseless syndrome extraction after extraction g, that is, after
the error has occurred. In this case, we can consider the
error model to be similar to the one used in [2], where the
(propagated) error pattern ei is present before any stabilizer
is applied for the syndrome extraction process. Instead
of using (16), we may alternatively compute ŝi by first
computing the ancilla error pattern. If we think of ei as
a different local error pattern elj , then, following (8), we
must have

V eiV
† = V eljV

† = esj ⊗ ei, (17)

and ŝi is given by the X component (i.e. second half in
[Z|X] format, see (11)) of esj . This type of syndrome is
always zero for preparation and measurement errors, since
measurement errors do not affect subsequent extractions.
Under this latter formalism, we may observe this by noting
that if ei = I , then necessarily esj = I and ŝi = 0.

Beyond this typical syndrome, we also have the syndrome
s̃i obtained from the same extraction g where the error
EB

i occurred. For instance, if the error occurs at the last
implemented CNOT gate, it is likely that s̃i = 0. Unlike ŝi,
this syndrome is non-zero for simple measurement errors.
In general, this syndrome contains less information than
ŝi, since, for errors later in the extraction, many of the
syndrome bits will be zero, as the stabilizers were applied
before the error occurred. Following the second approach
previously presented to compute ŝi (see (17)), we have that
s̃i is given by the X component of the original ancilla qubit
pattern esi (in binary form).

Both s̃ and ŝ refer to a (n−k) bit string, corresponding to
the syndrome that could be obtained from a single syndrome
extraction. As both these syndromes can be deterministically
obtained from the error E of interest, we use the simple
notation s to specifically refer to the syndrome that is
measured during the syndrome extraction. As previously
stated, for errors stemming from only one extraction (labeled
g), we have either s = s̃ (if the measured syndrome
comes from the noisy extraction), s = 0 (if it comes from

a previous extraction) or s = ŝ (if from a subsequent
extraction).

In general, compound errors may stem from multiple syn-
drome extractions. We use superscript notation to indicate
the extraction index, in order to distinguish it from the error
index (which is a subscript). When there are q syndrome
extractions, we refer to the total list of measured syndromes
by s :=

{
s1, . . . , sq

}
. If some base error EB,g

i occurs at
extraction g, we expect to measure the syndrome sequence
given by

si = {. . . ,0g−1, s̃gi , ŝ
g+1
i , . . . , ŝqi }. (18)

Note that, for compound errors, the syndrome sequences of
the constituting errors may be combined. If Er = EiEj ,
then sr = si ⊕ sj , where the modular sum operation is
applied element-wise, to all q syndromes. Then, for Ej =
EB

i1
· · ·EB

iω
, we have

Q(Ej) := sj = si1 ⊕ · · · ⊕ siω . (19)

In particular, if errors Ei and Ej occur at extractions g and
h (h > g), respectively, and no other errors occur, then we
would expect to measure the syndrome sequence

s = {. . . ,0g−1, s̃gi , ŝ
g+1
i , . . . ,

ŝh−1
i , ŝhi ⊕ s̃hj , ŝ

h+1
i ⊕ ŝh+1

j , . . .}. (20)

As a result, we observe that s̃i, s̃j , ŝi, ŝj do not directly pro-
vide the full information necessary to identify the compound
error Eg

i E
h
j that occurred. In the general case where there

are q syndrome extractions, we may require all q measured
syndromes to optimally correct errors.

For compound errors Er stemming from multiple syn-
drome extractions, the syndrome s̃r is undefined, but ŝr may
still be defined as

ŝr =

ω⊕
j=1

ŝij , (21)

where ŝij are the syndromes of the constituting base errors.
Similarly, er = ei1 · · · eiω . The decomposition in (15) and
subsequent analysis is also applicable.

The notation is summarized in Fig. 3, with an example
given in Fig. 2. The mappings Vs, V , Ĥ, H̃, FE and
FL are mostly independent, and generally non-injective.
V and Vs stem from (8), and provide the main and an-
cilla error patterns ei and esi . Concretely, we have ei =
V(eli) = (CeliC

†)m and esi = Vs(eli) = (CeliC
†)a,

where m and a stand for the main and ancilla subspaces,
respectively. Using (17) yields H̃ and Ĥ. The latter can
also be implemented by using (16). Concretely, we have
ŝi = Ĥ(ei) = bin(ei)AT = compX(bin((V eiV †)a)) and
s̃i = H̃(esi ) = compX(bin(esi )) (see (13) and (14)). The ŝi
and si obtained by the syndrome extraction process can then
be used to try and determine edi , the representative pattern
of the degenerate set to which ei belongs. By applying edi
to the noisy quantum state, we correct the effect of the error
Ei. The mappings FE and FL are quite involved, so their
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FIGURE 3. Relations between the different quantities of interest. For
simplicity, every error represented is assumed to be a base error. The notation
is explained in the last paragraph of Section III.

description is delegated to Section IV.

IV. DECODING

The error pattern statistics given by the noise model of
Section II lead to a very high number of degenerate error
patterns (see Appendix B for examples). As a result, the
approximation made in [2], where codes were approximated
to be non-degenerate, is no longer accurate, as it would
significantly underestimate the code’s capabilities. In this
section, we modify the decoding procedure in [2] to account
for error degeneracy. The modified procedure is optimal in
principle. It has previously been shown that such optimal
procedures must be #P-complete in general [30]–[32]. Since
we are applying the decoding procedure to random codes
with no exploitable structure, our decoding procedure has
poor scaling capabilities for high entropy noise and large
code sizes. Nonetheless, following [2], we hope to show
it to be of interest in regimes of small code size or low
entropy, so it is still worth exploring the decoding properties
of this optimal procedure. It is also possible (though not
covered in this work) for the decoding complexity to be
greatly improved with simpler approximations and heuristics
to the optimal approach. The optimal decoding procedure is
summarily presented in Algorithm 1.

Algorithm 1 Optimal decoding
Require: N
Ensure: A decoding table T

1: Initialize empty decoding table T
2: D ← DATA(N )
3: for all entry s in D do
4: Set T [s] as the pattern ed with highest p in D[s]
5: end for

Algorithm 2 Error processing
Require: N
Ensure: A data table D

1: Initialize empty data table D
2: for all (pi, Ei) ∈ N do
3: Compute ei, ŝi, and si
4: Compute Li associated with ei
5: Compute edi
6: if edi not in any entry in D[si] then
7: Store (edi , pi) in D[si]
8: else
9: Add pi to p in entry (edi , p)

10: end if
11: end for

When considering this optimal decoding procedure, we
note that, while we focus on the noise model in Fig. 1,
the decoding procedure is naturally applicable to models
where there are additional sources of error independent of
the syndrome extractions themselves. For that case, the noise
statistics would simply include those additional errors.

Moreover, the decoding procedure presented in this sec-
tion does incorporate any assumptions about the underlying
nature of the noise, as it meant to be a fully general
procedure. In particular, we do not wish to assume that
higher order errors are less likely than lower order ones,
as there may be practical regimes where particular high
order errors dominate the noise statistics (such as burst
errors). In subsection Appendix H, we adapt the general
decoding procedure to the particular noise model described
in Section II.

For the decoding, we require a procedure that, given
a syndrome sequence s, outputs the error pattern ed that
needs to be applied to the circuit to correct the most likely
source of error. Since we are interested in the analysis of the
decoding procedure in the optimal case, and less concerned
about practical limitations, we assume that such a procedure
corresponds to a decoding table T , storing the s, ed pairs.

The decoding table T may be obtained as follows (see Al-
gorithms 1 and 2 for pseudo-code, and Fig. 8 in Appendix F
for an example):

1) For each error Ei (with corresponding probability pi),
we compute its syndrome sequence si, and also ei and
ŝi (corresponding to the mapping Q in (19), and the
mappings V and Ĥ ◦ V , respectively, in Fig. 3, for
base errors). Since the circuit is a stabilizer circuit, it
can be efficiently simulated [33], and these quantities
efficiently computed.

2) We compute Ei = FE(ŝi) and Li = FL(ei). As we
already know ŝi, we end up with the degenerate set
(ŝi, Li) (and its representative edi = EiLi), to which ei
belongs.

3) We repeat steps 1 and 2 for all errors in N . Starting
with an empty data table D, for each error Ei, we
add (edi , pi) to the entry D(si). If an entry with edi
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already exists, we add pi to the entry’s probability. This
procedure results in the data table D.

4) For each syndrome sequence s =
{
s1, . . . , sq

}
in

D, we choose the degenerate set with the highest
associated probability as the actual coset leader, that
is, the one that is corrected if s is measured.

5) The resulting syndrome table T then acts as our de-
coding method.

This decoding is optimal because, for any given syndrome,
there is no other way for the decoding to be more suc-
cessful than as described here, since this method already
picks the most probable degenerate set (ŝ, L), given the
only information available a priori, which is N and the
observed syndrome s. It is optimal under the reasoning that
we consider any unsuccessful correction to be a complete
failure, with no possible partial success.

While the procedure as described is done in series,
iteratively traversing the Ei errors, it can be trivially parallel,
by splitting the error list across multiple parallel workers.
(See Appendix E for a full description, including the pseudo-
code for the parallel implementation, in Algorithm 4.)

To implement the decoding procedure (in particular step
2), a priori, we require the efficient implementation of two
functions:

• A function FE : ŝ 7→ Eŝ that, for a given code, and
taking a syndrome ŝ as input, outputs a deterministic
error pattern Eŝ that can act as a coset leader for
the syndrome ŝ. That is, any error pattern ei with
syndrome ŝ can be decomposed (following (15)) using
the error component Eŝ. Having access to this function
considerably reduces the required serialized processing
for the decoding, and the required memory, as we don’t
need to keep track of tentative coset leaders as we
iterate through the errors Ei, and we can be sure that
different parallel workers have the coset leader in the
same degenerate set (in fact, we can be sure that they
are equal).

• A function FL : ei 7→ Li that, for a given code, and
taking an error pattern ei as input, deterministically
outputs the logical component Li of the degenerate set
to which this error pattern belongs to.

These functions are described in detail in Sections IV-A
and IV-B.

A. FUNCTION FE

When analyzing the code, instead of working with the
(n − k) minimal stabilizers {Si} we extracted from the
encoding U (see (3)), we work with a different set {Si,rre}.
Each stabilizer in this new set can be thought of as some
combination of the stabilizers in {Si}. To be more specific,
considering that Si corresponds to row i of the quantum
check matrix A (with size (n−k)×2n), {Si,rre} corresponds
to row i of A in reduced row echelon form (also known as
canonical form). We can convert A to reduced row echelon
form because products of stabilizers are still stabilizers.

Since we are in F2, adding or subtracting rows of A is
equivalent to multiplying stabilizers. As long as the resulting
matrix is full rank (which is always the case, since the
procedure for converting to reduced row echelon form
preserves rank), the resulting new matrix Arre encodes a
new set of minimal stabilizers, {Si,rre}, in its rows.

In practice, we can imagine that the measured syndrome
s gets converted to the “reduced row echelon” syndrome
srre, which can be done with a (n − k) × (n − k) matrix
that encodes the steps needed to convert A to reduced row
echelon form. Let this matrix be J. We have Arre = JA
and srre = Js.

Working with Arre, let hi be the index of the pivot of
row i (it’s not guaranteed that hi = i, since the pivots may
not all be along the main diagonal of Arre). Since {Si,rre}
comes from reduced row echelon form, the stabilizer Si,rre
will be the only minimal stabilizer with a nonzero entry at
index hi. Then, if 1 ≤ hi ≤ n, the error Zhi

necessarily
yields the syndrome bit 1 for Si,rre and zero for all other
minimal stabilizers in {Si,rre}. If n + 1 ≤ hi ≤ 2n, the
error Xhi−n necessarily yields the syndrome bit 1 for Si,rre
and zero for all other minimal stabilizers. Consequently,
we can use these (n − k) errors as a basis to construct a
deterministic error pattern Eŝ for every syndrome ŝ. Let Ei
be the error associated with Si,rre (Ei equals Zhi

or Xhi−n,
as described). Since the code is linear, for any syndrome
srre, if i1, . . . , ik are the indices where the syndrome srre is
1, then the compound error e = Ei1 . . . Eik must necessarily
have syndrome srre. In other words, srre = eArre

T .
Since e = Esrre when using the minimal stabilizers

{Si,rre}, and J is a linear transformation, then we must have
e = Eŝ when using the minimal stabilizers {Si}. Therefore,
if the code has stabilizers {Si}, then FE implements the
procedure

ŝ =⇒ srre =⇒ e = Eŝ. (22)

Because of the construction of e, for all error patterns with
the same syndrome, the same error component is computed.
The error Eŝ then acts as the error component for all error
patterns with syndrome ŝ, for the decoding.

B. FUNCTION FL

For the function FL, we need to consider the different
degenerate sets. We know that each error ei can be decom-
posed in terms of the coset leader Ei, some stabilizer Si,
and some logical operator Li (see (15)). There are 4k logical
operators (including the identity) and each identifies one of
the 4k degenerate sets associated with each syndrome ŝ.

Consequently, we can create a one-to-one mapping be-
tween the logical operators and the degenerate sets. Since
we can determine the tentative coset leader Ei with FE ,
we only need to determine the logical component Li that
composes our input error pattern.

With this in mind, we continue the approach from Sec-
tion IV-A. We use the row echelon form of A, that is, Arre,
so we work with {Si,rre} instead. We perform the same
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procedure to the logical operators. Let X̄i and Z̄i be the
binary row vector representations of X̄i and Z̄i, respectively
(see (4) and (5)), in [X|Z] format. Let L be the 2k × 2n
binary matrix that encodes the original 2k minimal logical
operators (see (4) and (5)), that act as generators to the 4k

total logical operators. Row i of L is given either by X̄i, if
1 ≤ i ≤ k, or by Z̄i−k, if k + 1 ≤ i ≤ 2k.

Just as with the stabilizers, we know that products of
logical operators are also logical operators. Moreover, prod-
ucts of a logical operator with stabilizers correspond to the
same logical operator. Since we are working in F2, adding
or subtracting rows of Arre or L is equivalent to multiplying
stabilizers and operators in Pauli string form. Considering

the augmented (n + k) × 2n matrix
[
Arre
L

]
, by using the

rows of Arre and L, we may put the L component in its
row echelon form, Lre. We can then put Lre in reduced
row echelon form using only the rows of Lre, yielding Lrre.
Note that we cannot use the rows in Lre to further simplify
Arre, as the resulting rows would no longer correspond to
stabilizers. The procedure may be represented as[

Arre
Lrre

]
=

[
In−k 0
0 JL

][
Arre
Lre

]
(23)

=

[
In−k 0
0 JL

][
In−k 0
JA I2k

][
Arre
L

]
, (24)

with Ip a p×p identity matrix. The matrices JA and JL are
of size 2k× (n−k) and 2k× 2k, respectively, and just like
J in Section IV-A, they represent the linear transformation
required to put the matrix in reduced row echelon form.

The resulting rows of Lrre correspond to 2k (possibly
different) generators for the logical operators. These gener-
ators may no longer satisfy the anti-commutation relations
expected of X̄ and Z̄, but they are not required to. The final
Lrre matrix is such that the columns with the same index as
the pivots of Arre are zero, and the columns with the pivots
of Lrre have only one non-zero element, its pivot.

For every error pattern ei with syndrome si, we know that
its error component Ei (given by FE) is such that eiEi =
SiLi =: e′i, for some unknown Si and Li. Consequently,
to determine the degenerate set to which ei belongs, we
only need to decompose e′i into its Si and Li components.
Concretely, we are looking for the unique row vectors uA

(of size n− k) and uL (of size 2k) such that

e′i,[X|Z] =
[
uA uL

][Arre
Lrre

]
. (25)

where e′i is exceptionally in [X|Z] format. Since Arre and
Lrre are already in reduced row echelon form, finding the
two vectors is straightforward. The procedure is described
in Algorithm 3. Once the uA and uL row vectors are
determined, the Si and Li components are simply given by
(see (13))

Si = op(uAArre) (26)
Li = op(uLLrre). (27)

Algorithm 3 Finding logical component
Require: e′i,Arre,Lrre
Ensure: Vectors uA,uL,v

′

1: Initialize uA,uL to zero vectors
2: Let v ← e′i
3: Let HA (resp. HL) be an ordered list of pivot positions

of Arre (resp. Lrre)
4: for all hi in HA do
5: if entry hi of v is 1 then
6: Subtract row i of Arre from v (mod 2)
7: [uA]i ← 1
8: end if
9: end for

10: Let v′ ← v
11: for all li in HL do
12: if entry li of v is 1 then
13: Subtract row i of Lrre from v (mod 2)
14: [uL]i ← 1
15: end if
16: end for
17: return uA,uL

18: (if the computation was correct, then v should equal 0)

Alternatively, we may simply skip the computation of uL

in Algorithm 3. Let v′ equal the computed row vector v just
after uA is computed, but before the iteration through the
pivots of Lrre. Then, we equivalently have Li = op(v′).

The full procedure

ei =⇒ eiEi =⇒ uL (or v′) =⇒ Li (28)

corresponds to the function FL.

V. ASYMPTOTIC REGIME
We can estimate the optimal performance we can obtain

from the decoding procedure by looking at how it performs
as the number of extractions considered is increased. We
are interested in computing the limit where we have infinite
extractions, where the decoding would be optimal. Although
this regime is impossible to attain in practice, we expect
that, as we increase the number of extractions, the decoding
dynamics should converge to the asymptotic corresponding
to that optimal case, allowing us to estimate the code’s
performance in that regime.

We consider the total probability of correction failure
Ptotal to correspond to the probability that an error is not
completely corrected. That is, the correction chosen does
not correspond to the right degenerate set. Note that this
definition provides a lower bound on the fidelity F of the
resulting quantum state, given by

F ≥ 1− Ptotal, (29)

since it effective treats any unsuccessful correction as pro-
ducing a state with zero fidelity, whereas in practice the
uncorrected error may not produce an orthogonal quantum
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FIGURE 4. Model considered to compute the asymptotic regime, where
q → ∞.

state. Nonetheless, it is a useful lower bound often used in
the literature [2], [10], and that we choose to use here as
well.

Let P∞ be the asymptotic limit of Ptotal when the number
of syndrome extractions q goes to infinity (see Fig. 4).
Since there are L = 22k degenerate sets associated to each
syndrome sequence s, then, regardless of the encoding used,
for a given s, the probability p of an error having occurred
that is in the most likely degenerate set satisfies p ≥ 1/L.
If eci is the error pattern representative of the most likely
degenerate set for si, then we must have

P∞ = 1−
∑
i

p(eciei ∈ S|Ei)p(Ei) (30)

≤ 1−
∑
i

(1/L)p(Ei) (31)

= 1− 1/L (32)

= 1− 2−2k, (33)

with equality achieved for the case of maximum noise
entropy.

When comparing two setups, A and B, with qA and
qB = qA + h (h > 0) syndrome extractions, respectively,
we necessarily have

Ptotal(A) ≤ Ptotal(B) (34)

since introducing h additional noisy syndromes extractions
introduces additional errors in the model, which may or may
not be correctable.

We are interested in determining the failure probability
Pfailure induced by a single additional syndrome extraction,
preceded and succeeded by an arbitrarily high number of
extractions. In the context of fault-tolerance, we wish to
determine if, for a given p, Pfailure increases or decreases
with increasing qubit count n. We expect, for low (resp.
high) values of p, Pfailure decreases (resp. increases) with n,
with a phase transition at some pthreshold, to be determined.

Since we do not have direct access to Pfailure, it must be
computed from the measured value of Ptotal. We develop an
effective model to quantitatively relate the two quantities.

Consider a variant of the B setup above, labeled B′,
where the first qA extractions are solely used to identify
and correct errors stemming from implementing those ex-

tractions, and similarly, the last h extractions are solely used
to deal with errors resulting from the h extractions, for a
total of qB = qA + h, as before. In other words, in the
B′ setup, the procedure is partitioned into to separate and
independent decoding processes.

We expect
Ptotal(B) ≤ Ptotal(B

′). (35)

since, in the B setup, the last h extractions also provide
information about errors in the previous extractions, which
can lead to a more successful decoding. The B′ setup does
not use this information.

In fact, if an error occurs at extraction qA, we expect
that a lower number h of subsequent extractions will result
in higher failure rates (per extraction), since the decoding
process has less information to correctly identify the error.
Since we are interested in the limiting case where the
number of subsequent extractions is infinite (for any given
extraction where an error can occur), we wish to discount the
effect of limited syndrome information from the calculated
probability of failure Pfailure. We label the errors that could
have been successfully corrected with h→∞ but were not
with low h escaped errors.

For low q, we expect (see [28]) that escaped errors
(in particular errors with s̃ = 0 but ŝ ̸= 0) can be
identified with additional syndromes from more subsequent
extractions, so that each new extraction reduces the number
of escaped errors by a factor δ. Of course, new extractions
also introduce new escaped errors, and errors at the end
extractions are more likely to escape correction.

Consider a setup with q extractions as a setup with q− 1
extractions preceded by one additional extraction. The errors
of this additional extraction will be detected by the q − 1
subsequent extractions, so that only a factor δq−1 escape
through the whole setup incorrectly identified. Therefore,
applying the reasoning recursively for q extractions, we
expect the probability of an error passing through the
extractions undetected to be given by

Pu(p, q) ≃ Pu(p, q − 1) + δq−1Pu(p, 1) (36)

≃ Pu(p, 1)
1− δq
1− δ . (37)

For q ≫ 1, we expect that the probability of successful
correction with q extractions Psucc(p, q) will be approxi-
mately the probability of success with q−1 extractions times
the per-extraction probability of success (which accounts for
the additional extraction). We have

Psucc(p, q) ≃ Psucc(p, q − 1)(1− Pfailure(p)) (38)
= (1− Pfailure(p))

q (39)
with Psucc(p, 0) = 1. (40)

However, since Pfailure does not incorporate escaped errors,
the true probability of success P ′

succ is given by

P ′
succ(p, q) = Psucc(p, q)(1− Pu(p, q)), (41)
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FIGURE 5. Experimental Ptotal, and resulting fit by (43). We observe the
experimental data matching the qualitative description of the theoretical
analysis, with R2 > 0.999 for all cases.

yielding

Ptotal(p, q) ≃ 1− (1− Pfailure(p))
q(1− Pu(p, q)). (42)

If δ ≪ 1, which is expected, then, when using q ≫ 1 total
extractions, we may approximate Pu(p, q) ≃ Pu(p,∞),
leading to

Ptotal(p, q) ≃ 1− C(p)(1− Pfailure(p))
q, (43)

with C(p) := 1− Pu(p,∞), (44)

where C incorporates the escaped errors. See Fig. 5 for a
numerical verification of this model. Once more, note that
we discount these errors, and their probability Pu, from the
failure probability Pfailure, since we are interested in the per-
extraction failure probability, and Pu constitutes a global
effect. As previously indicated, if a syndrome extraction
is followed by h → ∞ extractions, then the probability
that an error stemming from that extraction goes completely
undetected is δhPu(p, 1)→ 0.
Pfailure is the asymptotic contribution of each syndrome

extraction to the probability of failure. We have that, by
fitting, for each p,

Y = mX + b, (45)
with Y := log(1− Ptotal(p, q)), X := q, (46)

then, from (43),

Pfailure(p) = 1− em, (47)

C(p) = eb, (48)

for each p considered.
The results are are presented in Fig. 6. We observe

pthreshold ≃ 2× 10−5, suggesting the QGRAND technique
can be used in the fault-tolerant regime. Nonetheless, we
note that this optimal decoding procedure is not scalable
for high entropy noise models, such as those given by
p ≳ pthreshold. Therefore, to use these techniques, we are
forced to either simplify our model, turning the decoding
procedure suboptimal, or to focus on a regime where it can
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FIGURE 6. Performance of QRLCs with k = 1, using fault-tolerant QGRAND.
We observe that the asymptotic version presents a threshold around
p ≃ 2 × 10−5. The shaded regions denote a 60% confidence interval (from
50 samples), and the dots are the median performance observed. The vertical
line indicates the pthreshold value. The dashed lines at the top correspond to the
uncoded case, which is plotted for reference.

be applied in practice.
For reference, we also estimate the performance of the

uncoded case. Considering the number of noisy CNOT gates
present in a circuit with q iterations to be NCNOT(q), we get

Pfailure, uncoded(p) ≃ 1− (1− p)NCNOT(1). (49)

NCNOT doesn’t include preparation and measurement errors,
as these don’t propagate throughout the circuit.

The simulation is performed for ω < ωmax, and ap-
proximated for the higher ω values. For high ω, we use
the reasonably accurate assumption that error patterns are
uniformly assigned to the syndrome sequences. Therefore,
before computing Pfailure, we modify Ptotal with the correc-
tion

P ′
total = Ptotal −

P (ω > ωmax)

2n+k
, (50)

where 2n+k is the number of degenerate sets associated
with each syndrome sequence. The correction is negligible
for high n, but may play a noticeable role for p ≃ 1.
Based on our analysis in Appendix K, we find that for
the n values considered, the minimum error order that non-
trivially contributes to the failure probability never exceeds
2. This justifies using ωmax = 2 for exact simulation in the
parameter regimes studied. The effect of higher orders can
be reasonably accounted for using (50).

VI. DISCUSSION AND CONCLUSIONS
In this work, we extend the decoding procedure for

QRLCs introduced in [2] to explicitly account for error
degeneracy. Consequently, our technique constitutes a max-
imum likelihood decoding procedure, which is guaranteed
to be optimal. We analyze the fault-tolerant characteris-
tics of QRLCs with the presented decoding technique, by
accounting for preparation, measurement, and gate errors
in the syndrome extraction procedure itself, and observe
a pthreshold ≃ 2× 10−5 in the asymptotic limit. To the
best of our knowledge, this work presents the first fault-
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tolerant decoding technique specifically applying QGRAND
to QRLCs in the presence of preparation, measurement, and
gate errors during syndrome extraction.

We note that this decoding procedure is not equivalent to
finding the lowest weight error pattern associated with each
syndrome, as might be done by more standard algorithms,
since a faulty CNOT gate error effect can propagate con-
siderably through the circuit before being possible to detect
it, so that, by the time it is detected, its error pattern is no
longer low weight.

In this work, we have removed the channel errors present
in [2] and considered only the main error sources associ-
ated with the syndrome extraction process. In particular,
we considered preparation and measurement errors in the
ancilla qubits, and two-qubit gate errors. Although this
is a common approach to take when studying the fault-
tolerance capabilities of different codes [10], it leads to
unrealistic results for high code rates. In the limit when
R → 1, the syndrome extraction process has a negligible
number of minimal stabilizers, and as a result negligible
error sources, under this noise model. Consequently, in this
regime, higher code rates lead to lower Pfailure, not because
of better correction capabilities, but because error sources
decrease faster than the correction capabilities do, as the
code rate increases.

Moreover, we have analyzed the asymptotic regime of
infinite syndrome extractions. Although impractical, these
asymptotic results enable us to study the behavior of
the optimal decoding procedure, as previously described.
Nonetheless, practical limitations might impose suboptimal
steps in the decoding process, and obviously a finite number
of syndrome extractions.

To account for these limitations, we must consider that,
in practice, there are non-trivial computing steps performed
between syndrome extractions (such as logical gates for
quantum computing, and Bell-pair creation for quantum
communication) that introduce their own errors indepen-
dently from the syndrome extraction steps. When accounting
for this additional error source, we expect the pathological
behavior for high code rates to disappear. In future work, we
intend to study these more practical regimes. Furthermore,
we assumed that all-to-all connectivity (between any of the
n qubits) is possible in practice. This assumption is required
for the scaling results in [23], and is used in this work.
Nonetheless, it may be dropped for practical reasons, as the
more recent results in [26] suggest.

As previously mentioned, the noise guessing decoding
procedure is expected to be viable only in situations of low
noise entropy and low n. Even disregarding the limitations
imposed by the asymptotically large number of syndrome
extraction, it is also the case that the noise entropy increases
rapidly as n → ∞ and k = 1, as considered for the fault-
tolerance analysis. This is a known limitation of the decod-
ing procedure. For this reason, and for the fact that better
known codes, such as surface codes, have higher pthreshold
values, we do not expect the decoding procedure described

in this work to be competitive in those regimes. Although
it remains to be confirmed in future work, we conjecture
that, given the optimal decoding properties of the described
procedure, it may be worthwhile to employ in scenarios
where code versatility is needed, the noise statistics are
not approximately fixed, and the code rate is desired to be
very high. In those cases, we expect the method to have
similar use cases to those previously described in [2], as
the additional gates used by the syndrome extraction process
would not have a strong impact on decoding performance.

Beyond the straightforward approach described in Algo-
rithm 1, we may also wish to sacrifice the decoding optimal-
ity for the sake of decoding throughput, or lower hardware
requirements, rendering the decoding process more easily
scalable. This can be achieved with either known techniques,
such as compressive sensing or deep learning, or with more
straightforward approaches, such as greedy variants of the
method. For instance, for the Bernoulli noise model in
this work, if we take the coset leader to be the first error
pattern associated with a syndrome, we will end up with
a suboptimal version of Algorithm 1, equivalent to [2], but
one which reduces the memory requirements by as much as
a factor of 4k. There are also specific simplifications that
can be used to implement the decoding procedure faster
when the noise model has some exploitable structure, as is
the case with the noise model considered here. We plan to
cover some of these approaches in future work.

.

APPENDIX A REDUCING STABILIZER WEIGHT
Although we are working with quantum random linear

codes, which have little exploitable structure a priori, we
note that the minimal stabilizers can be efficiently chosen
to have weight lower than the average of 3n/4. To do so,
we may take the original minimal stabilizer arising from the
technique described in [2], represent them with the parity
check matrix, and put the matrix in canonical form, which
is equivalent to reduced row echelon form. The new simpler
minimal stabilizers correspond to the rows of the resulting
matrix.

If the pivots of the matrix in reduced row echelon form
are all in the first n columns, then this technique reduces the
weight of the non-Z components of each minimal stabilizer
to at most 1+k, and 1+k/2 on average. If k is low and n is
large, this technique can result in a considerable reduction
in the weight of the minimal stabilizers, as their average
weight goes from 3n/4 to 3k/4 + (n − k − 1)/2 + 1 =
(2n+k+2)/4. Instead of each term being equally distributed
between I,X, Y, and Z as before, here only the indices
greater than n− k maintain that distribution, and we have,
for Si, index i equally distributed between X and Y , and
index j ≤ n − k, j ̸= i equally distributed between I and
Z.

This structure simplifies the application of the syndrome
extraction process, as it reduces the number of CNOT gates
from ∼ 3n(n−k)/4 to (2n+k+2)(n−k)/4, and similarly
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FIGURE 7. For the example code in Fig. 2, we may observe the three forms of
degenerate errors. Considering Ei as the error showcased in the top left
circuit, the identical, pseudo-identical, and non-identical errors can be seen in
subfigures (a), (b), and (c), respectively.

reduces the number of 1-qubit gates. Despite these benefits,
in our numerical analysis we have not assumed such an
approach was taken in the circuit implementation, in order
not to introduce unwarranted structure in the noise statistics,
as we are interested in analyzing the more general scenario.

Nonetheless, as explained in Sections IV-A and IV-B, we
have used this simplification in our decoding implemen-
tation, when given the noise statistics associated with the
unsimplified stabilizers. As they generate the same stabilizer
group, they are mathematically equivalent for the same given
noise statistics, and we expect either approach to lead to
similar numerical results.

APPENDIX B DEGENERACY ANALYSIS
Regarding degeneracy, following the notation introduced

in Section III, we consider errors Ei and Ej to be degenerate
if and only if eiej ∈ S. Nonetheless, we may describe three
types of degenerate errors, all prevalent in the noise model
considered in this work.

a: Identical errors.
These are errors such that ei = ej and esi = esj . For

example, since we are considering the model implementa-
tion where the CNOT gates of the conditional stabilizer are
implemented in succession, with the control always being
the ancilla qubit (see Fig. 1), then any error of the form
ZcIt (with c and t the control and target qubit indices,
respectively) will commute with subsequent CNOT gates
controlled by the qubit c. Therefore, this component does
not add any error terms to the main n qubits, and instead

simply negates the measured ancilla qubit. As a result, for
any error term without this component, there is an error
term with this component where the error pattern in the
main n qubits is the same, and the ancilla qubit is simplify
negated. Given this degeneracy, the problem reduces to two
scenarios: one where there is an even number of such errors,
where the syndrome is unaffected, and one with an odd
number of such errors, where the ancilla bit is negated.
Among these two classes, all errors are not only degenerate,
but identical.

b: Pseudo-identical errors.
Besides the identical errors, we also observe cases where

ei = ej but esi ̸= esj (with compX(esi e
s
j) = 0, otherwise the

errors would have different syndromes).

c: Non-identical errors.
We also have the more general case where ei ̸= ej (with

either esi = esj or esi ̸= esj), while still retaining eiej ∈ S.
See Fig. 7 for an example. There, the code’s sole non-

trivial stabilizer is X1X2. We have esi = esa = asc = X ,
esb = Y (ignoring the phase), ei = ea = ab = I1I2, and
ec = X1X2.

APPENDIX C ANALYTICAL THRESHOLD WITHOUT
DEGENERACY

For this analysis, we disregard preparation and measure-
ment errors, as the derivation can be readily extended to the
complete model.

Keeping k constant, the value of n will determine the
number of CNOT gates (NCNOT) in the circuit, and the
code’s correction capabilities. We may estimate its perfor-
mance by considering the approximation given by random
ideal codes, as in [2].

For S =: 2n−k ≫ 1 and N the number of distinct errors,
the equation

f =
S

N + 1

[
1−

(
1− 1

S

)N+1
]

(51)

may be approximated by

f ≃ 1− e−r

r
, r :=

N + 1

S
(52)

=⇒ f ≃ 1− (1− r + r2/2)

r
= 1− r

2
for r ≪ 1, (53)

since, from (51), we have

f =
1

r

[
1−

[(
1− 1

S

)S
]r]

(54)

≃ 1

r

[
1− (e−1)r

]
. (55)

Since S = 2n−k, this indicates that

f ≥ 1− ϵ (56)

⇐⇒ N ≲ 2n−k+1ϵ. (57)

VOLUME 4, 2016 13

This article has been accepted for publication in IEEE Transactions on Quantum Engineering. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TQE.2025.3595778

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

 For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



Cruz et al.: Fault-tolerant noise guessing decoding of quantum random codes

W.l.o.g., consider that each CNOT gate can only suffer
from a specific error, instead of 15. For the Bernoulli noise
model we are considering, the error order ω is given by the
binomial distribution

ω ∼ B(NCNOT, p) (58)

For p fixed, and as NCNOT → ∞, this distribution can be
approximated by

N (NCNOTp,NCNOTp(1− p)) (59)

using the De Moivre-Laplace theorem.

Suppose we start by correcting the lowest order errors
(which are more likely to occur), and we wish to correct the
errors up to order ωmax such that we have the probability
(1 − ϵ) of correcting an error we observe. For a normal
distribution, this is given by the quantile function

Q(p) = µ+ σ
√
2erf−1(2p− 1). (60)

The error function erf cannot be easily approximately.
Nonetheless, we may observe that it can approximated by

erf(x) ≃ 1− α exp
(
−(x− β)2

)
, for x≫ 1, (61)

leading to

erf−1(x) ≃ β +

√
log

(
α

1− x

)
for 1− x≪ 1. (62)

For simplicity, we consider α = 1, β = 0, which does
not meaningfully affect our conclusions here. The quantile
function then becomes

Q(1− ϵ) ≃ µ+ σ
√
2

(
β +

√
log
( α
2ϵ

))
(63)

≃ µ+ σ

√
2 log

(
1

2ϵ

)
(64)

with

µ = NCNOTp (65)

σ =
√
NCNOTp(1− p) (66)

≃
√
NCNOTp. (67)

Now that we have ωmax = Q(1 − ϵ), we need to estimate
the number of errors Ñ up to order ωmax, given by

Ñ =

ωmax∑
j=0

(
NCNOT
j

)
. (68)

Unfortunately, there is no closed form expression for this
value. However, for ωmax ≪ NCNOT, this is roughly equal

to

Ñ ≃
(
NCNOT
ωmax

)
(69)

≃ NCNOT
NCNOT

ωmax
ωmax(NCNOT − ωmax)NCNOT−ωmax

×
√

NCNOT

2πωmax(NCNOT − ωmax)
. (70)

This may be simplified down to

Ñ = 2NCNOTh2(ωmax/NCNOT)

√
1

2πωmax
, (71)

where h2 is the Shannon entropy.
From (57) and (71), we therefore conclude that

logN ∼ Õ(n) (72)

log Ñ ∼ Õ(NCNOT), (73)

where Õ denotes Big-O notation up to log factors. Since
N indicates the code’s correction capabilities, while Ñ
indicates the necessary number of errors that the code needs
to correct to preserve Pfailure, then we must have N ≳ Ñ
and consequently NCNOT ∼ O(n). This is verified for
some common codes, such as surface codes, but for our
implementation we have

NCNOT =
3

4
n(n− k) ∼ O

(
n2
)
, (74)

so we conclude that, if all errors are non-degenerate, the
code does not have a visible pthreshold, since an increase in
n increases Pfailure, regardless of p.

However, we actually observe a threshold for QRLCs.
This is thanks to the fact that the noise statistics given
by the noise model of Section II actually lead to a very
high number of degenerate errors. Therefore, in practice, the
number of distinct errors grows with O(n) and not O

(
n2
)

as indicated by the analysis above. We later confirm this
scaling for escaped errors, in Appendix K.

With this insight in mind, we modify the QGRAND
algorithm in [2] to account for the possibility of degenerate
errors. The modified algorithm is presented in Section IV.

APPENDIX D APPLYING ERROR CORRECTION
Certain QECCs, such as surface codes, are designed

so that a physical error correction is actually unnecessary
to implement, as all changes can be made in software,
classically [10]. If the whole quantum circuit is unitary,
then this procedure can actually be implemented in general:
instead of correcting the error, we leave the affected state
as is and simply XOR any subsequent syndrome s with the
identified error syndrome e, that is, s 7→ s⊕ e. As a result
of this, we only need to keep track of these detected errors
classically, in order to correct the subsequent syndromes.

In any case, since the correction portion is always single-
qubit gates, we assume that their contribution to the total
error is negligible, so we can disregard this trick for now,
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Algorithm 4 Parallel decoding
Require: N ,W
Ensure: A decoding table T

1: Initialize empty data table D and decoding table T
2: Split N into W sets (almost) equal in size, labeled Nw

(1 ≤ w ≤W )
3: for all w parallel workers do
4: Initialize empty data table Dw

5: Dw ← DATA(Nw)
6: end for
7: D ← ⋃

wDw

8: for all entry s in D do
9: Set T [s] as the pattern ed with highest p in D[s]

10: end for
11: return T

FIGURE 8. Optimal decoding of the code in Fig. 2 (but with only one
syndrome extraction), as described in Algorithm 1.

for the sake of simplicity. As a result, the procedure to apply
the error correction is the same as in [2].

APPENDIX E PARALLEL DECODING
The decoding procedure described in Section IV can

be performed in parallel. If there are W parallel workers
available, we start by splitting the entries in N into W parts
of equal size, labeling each Nw, 1 ≤ w ≤W . Each set Nw

is then processed independently by an individual procedure
according to the procedure described in the Section IV,
thereby yielding the data table Dw.

All the W data tables Dw may then be merged to generate
the full data table D, from which the decoding table T
can be straightforwardly computed. See Algorithm 4 for a
description of the parallel decoding procedure.

APPENDIX F FULL DECODING EXAMPLE
For the example in Fig. 8, we consider the encoding gate

to be U = CNOT(2, 1)H2, with the starting qubit at index
1. P and M stand for preparation and measurement error

in the only ancilla qubit a, respectively. ABj) is the error
corresponding to “error AaBj occurred at CNOT gate j”.
Following Algorithm 1, we iterate through the errors in N
and, using the functions FE and FL, determine where to
put them in the table D. Once we have iterated through all
errors, we compute the optimal (ŝ, L) entry, or alternatively,
ed representative, and delete the remaining entries, yielding
the decoding table T .

Given U , and following (3) to (5), the minimal stabilizer
is S1 = X1X2, and the logical operators are X̄ = I1X2

and Z̄ = Z1Z2. This choice of encoding leads to minimal
stabilizers and logical operators such that the augmented
matrix is[

A
L

]
=

AX̄
Z̄

 =

1 1 0 0
0 1 0 0
0 0 1 1

 =

[
Arre
Lrre

]
, (75)

since, in this simple example, we already have A = Arre
and L = Lrre, so J = I . Here, A, X̄, and Z̄ are the
binary representations of the minimal stabilizers and logical
operators, in

[
X|Z

]
format.

Following the procedure in Section IV-A, we have

E0 = I1I2 E1 = Z1I2. (76)

Let’s consider the full procedure in Section IV applied to
the specific error in Fig. 2, such as

E = “Error IaZ1 in CNOT gate 1”. (77)

Associated to this error, we have the quantities

s̃ = 0 (78)
e = Z1I2 (79)

e =
[
0 0 1 0

]
(80)

ŝ = eAT = 1 (81)
ŝrre = ŝ = 1 (82)
eEŝ = I1I2 = SL (83)

=⇒ L = I1I2 = I. (84)

Applying the procedure in Section IV and Algorithm 1,
we obtain the tentative decoding table in Table 2. In the
table, for the sake of simplicity, we represent preparation
and measurement errors by P and M , respectively. ABi

represents the CNOT gate error where error AaBi occurs
just after the noiseless CNOT gate. For simplicity, com-
pound error are not shown.

The preparation and measurement errors have probability
p of occurring, and the gate errors have probability p/15. If
we assume that it is very unlikely that no error has occurred
(i.e. p is high), then the final decoding table (when only
considering errors of order 1) is given by Table 3. In the
table, if s = 0 is measured, the most likely degenerate
set to have occurred is (0, X̄), with probability 4p/15
(see Table 2). We assume that p is such that the no-error
case is unlikely, otherwise (0, Ī) would be the most likely
degenerate set. If s = 1 is measured, the most likely
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TABLE 2. Decoding for the code in Fig. 2.

(ŝrre, L) ed s = 0 s = 1
(0, I) I1I2 ∅, XI2, XX1 P,M,ZI2,ZI1,Y X1,Y I2
(0, X̄) I1X2 IX1,XI1,IX2,XX2 ZX1, Y I1, ZX2, Y X2

(0, Ȳ ) Z1Y2
(0, Z̄) Z1Z2

(1, I) Z1I2 IZ1, XY1 ZZ1, Y Y1
(1, X̄) Z1X2 XZ1, IY1 Y Z1, ZY1
(1, Ȳ ) Z1Y2 IY2, XY2 ZY2, Y Y2
(1, Z̄) I1Z2 IZ2, XZ2 ZZ2, Y Z2

TABLE 3. Final decoding table for Fig. 2.

s = 0 s = 1
(0, X̄) (0, I)
↓ ↓

E0X̄ = I1X2 E0I = I1I2

degenerate set to have occurred is (0, Ī), with probability
34p/15. For each case, the error pattern that should be
applied to the quantum state to correct the error is given
by ed = EŝL.

APPENDIX G SIMPLIFIED NOISE STATISTICS
When considering a Bernoulli noise model, such as in

Appendix H, including preparation and measurement errors
into the noise model breaks some of the structure of the
noise statistics, since not all base errors will be equally
likely. It also makes the decoding process harder to simulate.
In the simpler setup where only gate errors occur, if we
have g CNOT gates affected with an error, with each error
having probability pCNOT/15 of occurring, then the number
of errors and their individual probability would be given by

NE(g) = 15g
(
NCNOT
g

)
(85)

P (g) =
(pCNOT

15

)g
(1− pCNOT)

NCNOT−g. (86)

These formulas stem from the fact that each CNOT gate
has 15 associated errors, and only one of these may occur
at a time. For preparation and measurement errors, there is
only one error pattern per ancilla qubit: either there is a bit
flip, or there isn’t. If there are A ancilla qubits (generally,
A = n−k), and a preparation or measurement error occurs
with probability pM , these same quantities are given by

NE(ω) =

ω∑
g=0

15g
(
NCNOT
g

)(
2A
ω − g

)
(87)

P (ω, g) =
(pCNOT

15

)g
(1− pCNOT)

NCNOT−g (88)

× pω−g
M (1− pM )2A−ω+g, (89)

where ω indicates the total error order, and g indicates
the error order when ignoring preparation and measurement
errors. Note that these expressions are somewhat more

complicated. In particular, for errors of order ω, we now
need to keep track of the distinct number of CNOT (g) and
preparation/measurement (ω − g) base errors that occurred,
instead of just one parameter.

Fortunately, if we are using optimal decoding (that prop-
erly accounts for degenerate errors), there is a quick-and-
dirty way to mimic the simpler noise statistics associated
with only having gate errors. If we use pM = pCNOT =: p
(which is a relatively common choice in the literature, see
[10], and the one used in Section II), then we can consider
that each preparation and measurement error is a CNOT
gate error. Instead of there being only one error per qubit
(corresponding to the possible bit flip), we consider that
there are 15, all equal in nature, and each occurring with
probability pM/15. These cloned errors will be degenerate
among themselves, so the optimal decoding procedure will
analyze this setup correctly. The total number of error
patterns NE(ω) will be overcounted, but we never actually
use it directly for the decoding procedure, so the overcount-
ing does not constitute an issue. In this formulation, we
may pretend that we have no preparation and measurement
errors, and that we have instead

ÑCNOT := NCNOT + 2A (90)

CNOT gates in the syndrome extraction circuit. The proba-
bility associated with each error will be correct, yielding

P (ω) =
( p
15

)ω
(1− p)ÑCNOT−ω. (91)

APPENDIX H BERNOULLI NOISE MODEL
IMPROVEMENTS

For the special case where each CNOT gate has the same
probability p of suffering an error, as described in Section II,
the decoding procedure can be made much more efficient.
This procedure may be adapted to other Bernoulli-like noise
statistics, but here we focus on this error model. We can
optimize this decoding process in order to avoid having to
iterate through all compound errors. Since the technique
relies on the inherent structure of errors with the same
probability, here we employ the reformulation detailed in
Appendix G to treat preparation and measurement errors as
additional gate errors.

The procedure for the list of base errors (with ω = 1) is
similar to the one described in the beginning of Section IV.
Instead of using the full noise statistics N , instead we
consider a list of base errors

B :=
{
EB

1 , E
B
2 , . . .

}
. (92)

Given the Bernoulli noise model, all base errors have the
same associated probability of occurring, given by p/15, so
it doesn’t need to be stored in B (we exclude the no error
case). Once we have the data table D1 for ω = 1, we can
start to optimize the analysis for compound errors. Instead
of iterating through compound errors individually, we iterate
through the degenerate sets obtained in the ω = 1 step.
We also preserve the probability associated with observing
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an error pattern from each degenerate set in the table. For
ω = 1, and given the reformulation of Appendix G, all
errors ÊB

i may be considered to have a probability P (1) of
occurring (see (91)), so the probability associated with each
degenerate set in the data table is given by

pi := NiP (1), (93)

where Ni is the number of errors Ei that can be corrected by
applying the coset leader edi associated with the degenerate
set of ÊB

i . In summary, we may restructure the data table
D1 obtained with Algorithm 1 (before the final degenerate
set selection)

D1 = {s1 :
{
(ed11, p11), (e

d
12, p12), . . .

}
,

s2 :
{
(ed21, p21), (e

d
22, p22), . . .

}
, . . .} (94)

to encode the count Ni instead of pi, and to store a list of
error counts for different orders, yielding

D̃1 = {s1 :
{
ed11 : n11, e

d
12 : n12, . . .

}
,

s2 :
{
ed21 : n21, . . .

}
, . . .} (95)

with
ni := (0, Ni, 0, . . .) (96)

a list of size (ω + 1), where only the second entry of the
list (corresponding to ω = 1) starts with non-zero entries.
The first entry is only non-zero for the E0 = I case, when
s = ŝ = 0 and L = I , corresponding to the case where no
error occurs. We represent the entry of order g by ni(g).

Under the formulation of (95), instead of iterating through
the combinations

{
EB

1 E
B
2 , E

B
1 E

B
3 , . . . , E

B
2 E

B
3 , . . .

}
as we

could do with the naive implementation of Algorithm 1, we
iterate through the degenerate sets in D̃1 as a whole.

Consider the data table D̃ω−1 that includes the errors up
to order ω − 1. To obtain the table for errors up to order
ω, we iterate through the combination of the degenerate
sets in D̃ω−1 and D̃1. If the noise statistics are highly
degenerate (which is generally the case following the noise
model in Section II), we can have considerable computa-
tional savings, since we only need to perform |D̃ω−1||D̃1|
computations instead of 15ω

(
NCNOT + 2(n− k)

ω

)
(see Ap-

pendix G). While we expect the latter to grow quickly with
O
(
n2ω
)
, the former approach should grow, at worst, with

O(nω), and it may grow more slowly in practice.
With this approach we generally overcount the number

of errors Ni associated with each degenerate set. There are
three types of overcounting:

• Counting permuted copies: Consider an order-(ω − 1)
error EB

i1
EB

i2
. . . EB

iω−1
(with i1 < i2 < i3 < . . .),

coming from D̃ω−1, and the error ÊB
j , coming from

D̃1. W.l.o.g., suppose j < i1. Then, for D̃ω , we will
not only count the error EB

j E
B
i1
EB

i2
. . . EB

iω−1
, but also

that same error coming from the combination of the
errors EB

j E
B
i1
EB

i2
. . . EB

iω−1
\EB

ik
and EB

ik
. In total, we

Algorithm 5 Data table D̃1 for Bernoulli noise
Require: B
Ensure: A data table D̃1

1: Initialize empty data table D̃1

2: n0 ← (1, 0)
3: Store {I : n0} in D̃1[{0, . . . ,0}]
4: for all EB

i in B do
5: Compute ei, ŝi, and si
6: Compute Li associated with ei
7: Compute edi
8: if edi not in D̃1[si] then
9: ni ← (0, 0)

10: ni(1)← 1
11: Store {edi : ni} in D̃1[si]
12: else
13: ni(1)← ni(1) + 1
14: Update {edi : ni} in D̃1[si]
15: end if
16: end for
17: return D̃1

overcount each order-ω error ω times.
• Recounting lower order errors: for the error
EB

i1
EB

i2
. . . EB

iω−1
, composing with any EB

ik
(1 ≤ k ≤

ω − 1) reduces the error to one of order ω − 2, which
was previously counted. Each order-(ω − 2) error we
counted before will be recounted ζω−1,1 times, where
ζ is given in (100).

• Counting two errors occurring in the same CNOT gate:
an error of order ω stems from base errors that occurred
on ω CNOT gates. When composing this error with
another, the resulting compound error may have more
than one base error occurring at one or more CNOT
gates. As this compound error is impossible, it should
be discounted.

We can extend this approach further. Instead of construct-
ing the data table in one order increments, if we already have
D̃ω , we may combine it with itself to obtain D̃2ω , thereby
requiring exponentially fewer iterations, as ω increases, as
long as ω is such that the codes capabilities are not yet
saturated, i.e., not all syndromes are assigned to a degenerate
set.

In general, if we compute the noise statistics of errors of
order a and b to compute those of order ω = a+b, we have

ni(ω) =
1

Ra,b

[
ñi(ω)−

∑
0<k+r≤b
k,r≥0

ζa,b(k, r)ni(c)
]
, (97)

with c := a+ b− 2k − r, (98)

where ñi(ω) is the count obtained for order ω before the
overcounting correction. The auxiliary functions are given
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Algorithm 6 Data table D̃a+b

Require: D̃a, D̃b

Ensure: A data table D̃a+b

1: Initialize empty data table D̃a+b

2: for all (si, edi ,ni) in D̃a do
3: for all (sj , edj ,nj) in D̃b do
4: ñij ← ni ∗ nj (convolution)
5: nij ← ñij with overcounting correction
6: if edi edj not in D̃a+b[si ⊕ sj ] then
7: Store {edi edj : ñij} in D̃a+b[si ⊕ sj ]
8: else
9: Add ñij to vector in edi e

d
j entry in D̃a+b[si⊕sj ]

10: end if
11: end for
12: end for
13: for all (sr, edr ,nr) in D̃a+b do
14: nr ← ñr with overcounting correction
15: Store {edr : nr} in D̃a+b[sr]
16: end for
17: return D̃a+b

Algorithm 7 Decoding table Ta+b

Require: D̃ω

Ensure: A decoding table Tω
1: Initialize empty decoding table Tω
2: for all s in D̃ω do
3: (j, p)← (−1, 0)
4: for all (edi ,ni) in D̃ω[s] do
5: Using ni, compute pi ((102))
6: (j, p)← (i, pi) if pi > p
7: end for
8: Set T [s] as the pattern edj , which has the highest p in

D[s]
9: end for

10: return Tω

by

Ra,b :=

(
a+ b
a

)
(99)

ζa,b(k, r) := Kk(K − 1)rξa,b(k, r) (100)

ξa,b(k, r) :=

(
ÑCNOT − c

k

)(
c

r, a− k − r, b− k − r

)
,

(101)

where K is the number of distinct errors per CNOT gate (in
our case, always 15). Note the use of binomial and multi-
nomial coefficients. To incorporate the effect of preparation
and measurement errors, we use ÑCNOT = NCNOT+2(n−k)
and not NCNOT, as explained in Appendix G. See Appendix I
for a derivation of these expressions.

The probability associated with the degenerate set with

list ni is given by

pi =

ω∑
j=0

ni(j)P (j). (102)

Given this procedure to obtain D̃ω , we may obtain the
decoding table Tω by following Algorithms 5 to 7.

APPENDIX I DERIVATION OF DECODING FORMULAS
FOR BERNOULLI NOISE

As stated in Appendix H, a straightforward implementa-
tion of the procedure described will overcount the number
of errors associated to any given syndrome sequence. There
are three types of overcounting, which we may analyze
separately.

A. RECOUNTING LOWER ORDER ERRORS
Suppose we have already computed the correct error

count ni(j) for 0 ≤ j ≤ ω − 1 (for all degenerate sets),
and we are currently trying the determine ni(ω).

For the error EB
i1
EB

i2
. . . EB

iω−1
, composing with any EB

ik
(1 ≤ k ≤ ω − 1) reduces the error to one of order
ω − 2, which was previously counted. To determine how
many errors stem from this dynamic, we may note that
any fake compound error of order ω has a corresponding
error of order ω − 2, which has already been counted in
ni(ω−2). Similarly, any error Ei counted in ni(ω−2) has
a corresponding set of fake compound errors that appear in
ni(ω). As Ei stems from ω − 2 base errors, each affecting
a different CNOT gate, these fake compound errors must
correspond to an error of the form EiE

B
j E

B
j , where EB

j

is a base error from a CNOT gate not present in Ei. For
each CNOT gate there are K = 15 associated base errors,
so there are a total of

ζω−1,1(1, 0) = K(ÑCNOT − (ω − 2)) (103)

fake error compounds that associated with the error Ei.
Alternatively, defining ω = a + k, with k = 1, we may
also write the total as

ζa,1(1, 0) = K(ÑCNOT − (a− k)). (104)

The same principle applies to higher order combinations.
If a order-a error Ei is composed with a order-k error Ej

(a ≥ k), and the base errors composing Ej all stem from
CNOT gates whose same base errors already compose Ei,
then the resulting compound error will have order a − k,
instead of a + k. The total number of errors is now given
by

ζa,k(k, 0) =
1

k!

k−1∏
j=0

K(ÑCNOT − (a− k)− j) (105)

= Kk

(
ÑCNOT − (a− k)

k

)
. (106)

Note, however, that, when composing a order-a error Ei

with a order-b error Ej (a ≥ b ≥ k), it may be the case
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that only some, and not all, of the base errors composing
Ej appear in Ei. In general, there will only be k base errors
in common, for all 1 ≤ k ≤ b.

In this case, to cover all possible fake errors, we must
choose not k CNOT gates out of the ÑCNOT− (a−k) gates
not related to the order-(a−k) error (as in (106)), but instead
choose k CNOT gates out of the gates not related to both
the order-(a − k) error, but also the (b − k) base errors in
Ej that are valid. Therefore, there are a total of ÑCNOT −
(a−k)−(b−k) CNOT gates from which we must consider
k invalid base errors.

Moreover, associated with the order-(a−k) error from Ei,
there are several possible valid (b−k) base errors stemming
from Ej . The total number of fake errors is then given by

ζa,b(k, 0) = Kk

(
ÑCNOT − (a− k)− (b− k)

k

)
(107)

×
(
(a− k) + (b− k)

b− k

)
(108)

= Kk

(
ÑCNOT − c

k

)(
c

b− k

)
, (109)

with c := a+ b− 2k. (110)

Note that, for b = k, we have c = a − k, so that (109)
trivially reduces to (106). The resulting lower order error
will have order c. We would need to discount its affect on
ni(ω) to obtain the correct count. Unfortunately, it would
be difficult to determine the original syndromes of the errors
that combined to result in the impossible error, as they may
have different origins. As an approximation, we use ni(c) to
estimate the error count. The resulting correction is achieved
by subtracting ni(c) times ζ from ni(ω).

B. COUNTING IMPOSSIBLE ERRORS

If a order-a error Ei is composed with a order-r error
Ej (a ≥ r), and the base errors composing Ej all stem
from CNOT gates already associated with the base errors
that compose Ei, then the resulting compound error will be
impossible, since it will contain at least two different base
errors associated with the same CNOT gate (one from Ei

and one from Ej).
For r = 1, each error in ni(a) will have

ζa,1(0, 1) = (K − 1)a (111)

associated impossible order-(a + 1) errors, since Ei is
composed of a base errors, and for each base error, there are
(K − 1) different base errors associated to the same CNOT
gate.

For a general r, we have, for each order-a error

ζa,r(0, r) = (K − 1)r
(
a
r

)
(112)

associated impossible errors.
When composing a order-a error Ei with a order-b error

Ej (a ≥ b), it may be the case that only r < b base errors

composing Ej are impossible, with the remaining (b − r)
base errors stemming from CNOT gates not related to Ei.

To estimate the number of impossible errors, we may look
at ni(a+ b− r). As before, we must choose r CNOT gates
out of the a gates related to Ei to count the number of
impossible errors. But, as seen in the previous subsection,
to must also count the possible (b − r) base errors in Ej

that are valid. These factors result in

ζa,b(0, r) = (K − 1)r
(
a
r

)(
a+ b− r
b− r

)
(113)

= (K − 1)r
(

c
r, a− r, b− r

)
, (114)

with c := a+ b− r (115)

and
(
x+ y + z
x, y, z

)
:=

(x+ y + z)!

x!y!z!
(116)

the multinomial coefficient. Again, note that (114) trivially
reduces to (112) when b = r. The resulting lower order error
will have order c, so, for this case, we would also need to
discount its affect on ni(ω) by subtracting ni(c) times ζ.

C. COUNTING PERMUTED COPIES
Consider an order-(ω − 1) error EB

i1
EB

i2
. . . EB

iω−1
(with

i1 < i2 < i3 < . . .), coming from D̃ω−1, and the error
ÊB

j , coming from D̃1. W.l.o.g., suppose j < i1. Then, for
D̃ω , we will not only count the error EB

j E
B
i1
EB

i2
. . . EB

iω−1
,

but also that same error coming from the combination of
the errors EB

j E
B
i1
EB

i2
. . . EB

iω−1
\EB

ik
and EB

ik
. In total, we

overcount each order-ω error ω times.
In general, for every order-ω error, any possible combi-

nation of order-a errors and order-b errors that can generate
it (with ω = a+ b) will appear in the counting. Since there
are

Ra,b :=

(
ω
a

)
=

(
ω
b

)
(117)

ways for order-a and order-b errors to generate an order-
ω error, the final counting (after discounting the previous
overcounting cases) should be reduced by a factor of Ra,b.

D. FULL EXPRESSION
In general, the erroneous errors that the decoding proce-

dure may containing not only repeated base errors (k > 0),
but also base errors stemming from the same CNOT gate
(r > 0). Therefore, these two factors need to be considered
together.

Combining the analyses of the previous subsections, we
conclude that, when composing a order-a error Ei with a
order-b error Ej (a ≥ b), we can have k base errors Ej

already appearing in Ei, and r base errors in Ej sharing
the same origin CNOT gate as a base error in Ei, with
k + r ≤ b.

To count all these errors, we may look that the errors with
order c = (a+ b− 2k− r), from which we can generate all
the invalid order-ω errors. As before, the k repeated base
errors are chosen from those associated with CNOT gates
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that are not related to a valid base error in the compound
error. There are ÑCNOT− c such gates, and each one has K
associated base errors.

Moreover, the from the c base errors, we may consider
that a−k−r (resp. b−k−r) correspond to the base errors
in Ei (resp. Ej) that raise no issue, with the remaining r
errors corresponding to base errors stemming from CNOT
gates that also originated invalid base errors in Ej .

Grouping all three overcounting issues, we end up with

ζa,b(k, r) = Kk(K − 1)rξa,b(k, r) (118)

with

ξa,b(k, r) :=

(
ÑCNOT − c

k

)(
c

r, a− k − r, b− k − r

)
,

(119)
and c := a+ b− 2k − r, (120)

which generalizes (109) and (114).
The corrected count is consequently given by

ni(ω) =
1

Ra,b

[
ñi(ω)−

∑
0<k+r≤b
k,r≥0

ζa,b(k, r)ni(c)
]
, (121)

with c := a+ b− 2k − r, (122)

as indicated in (97), with ñi(ω) being the original count
from the optimized decoding process. As previously indi-
cated, since the estimate of the impossible errors is not
exact, this formula is approximate.

APPENDIX J ALTERNATIVE DEFINITIONS OF FE AND
FL

Instead of using the formulation described in Sec-
tions IV-A and IV-B, we may consider an alternative
formulation that, while less computationally efficient, is
conceptually more straightforward. Under this formalism,
the components Ei and Li can be computed at once from
ei, so there is less of an need to separate the two processes.

For a given error Ei, we compute ei. Taking the encoding
U , we compute

eui := U†eiU. (123)

The unencoded error pattern eui corresponds to the effect
of ei on the quantum state if it were decoded. We may
decompose it into

eui := Eui S
u
i L

u
i , (124)

with

Eui = U†EiU, (125)

Sui = U†SiU, (126)

Lui = U†LiU. (127)

We may also decompose it into the Pauli string for the first
k data qubits (eDi ) and the additional (n − k) redundancy
qubits (eRi ),

eui =: eDi ⊗ eRi . (128)

From (3) to (5), we have that

Zi+k = U†SiU (129)

Xj = U†X̄jU (130)

Zj = U†Z̄jU. (131)

Therefore, decoding ei into eui cleanly separates the different
components. Lui corresponds to the components of eui in the
first k qubits. We have

Lui := eDi ⊗ In−k (132)

=

 k∏
j=1

X
bXj
j

 k∏
j=1

Z
bZj
j

 (133)

=⇒ Li = U(eDi ⊗ In−k)U
† (134)

=

 k∏
j=1

X̄
bXj
j

 k∏
j=1

Z̄
bZj
j

, (135)

where bXj and bZj are the X and Z components of eDi ,
respectively.

Let eR,X
i and eR,Z

i be the X and Z components of eRi ,
respectively (where the Y components have been decom-
posed into X and Z, as in (10)), so that eRi = eR,X

i eR,Z
i

(disregarding the phase factor). We have

Eui := Ik ⊗ eR,X
i (136)

=

n∏
i=k+1

X
bXi−k

i (137)

=⇒ Ei = U(Ik ⊗ eR,X
i )U† (138)

=

n∏
i=k+1

(UXiU
†)b

X
i−k , (139)

and

Sui := Ik ⊗ eR,Z
i (140)

=

n∏
i=k+1

Z
bZi−k

i (141)

=⇒ Si = U(Ik ⊗ eR,Z
i )U† (142)

=

n∏
i=k+1

(UZiU
†)b

Z
i−k . (143)

where bXi−k and bZi−k are the X and Z components of eR,X
i

and eR,Z
i , respectively. As this procedure is deterministic,

we obtain unique components Ei, Si, and Li associated with
the error pattern ei.

Regarding runtime complexity, the method presented in
Section IV-A requires just O(n− k) steps per error Ei,
in order to assemble Ei from the precomputed Zhi

and
Xhi−n terms. The method presented in Section IV-B is
more involved. Computing e′i requires 2n steps. Determining
its stabilizer component Si requires identifying the pivots
in e′i (O(n) steps) and then multiplying the constituting
stabilizers by e′i. As it is constituted byO(n− k) stabilizers,
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and accounting for each takes at most (2n − (n − k −
1)) = n + k + 1 steps, the whole stabilizer part takes
O((n− k)(n+ k + 1)) steps. For the logical component,
there are O(2k) components in e′i, and the whole each
operator takes (2n− (n− k)− 2k + 1) = n− k + 1 steps,
for a total of O((2k)(n+ k − 1)) steps. The full procedure
requires

O(n+ (n− k)(n+ k + 1) + (n− k + 1)(2k)) (144)

∼ O
(
n2, k2

)
∼ O

(
n2
)

(145)

steps per error Ei to compute Li. The computation for NE

errors requires
O
(
NEn

2
)

(146)

steps.

For this simpler technique, the greatest computational
expense comes from computing eui for each error Ei, as
the remaining steps can be precomputed and subsequently
applied to all errors.

To facilitate the calculation, we may precompute the eu

patterns associated with all base errors, and use those to
compute the pattern eui for each error Ei.

From [33], simulating a stabilizer circuit (i.e. U ) with
N gates takes O

(
n2N

)
steps. Since U is built from

O
(
n log2 n

)
Clifford gates, we have that the full precom-

putation associated with the base errors scales as

O
(
NCNOTn

3 log2 n
)
. (147)

The cost of computing eui for each Ei then scales as

O(nω) (148)

where ω is the order of the error. The full computation for
NE errors requires

O
(
NEnω +NCNOTn

3 log2 n
)

(149)

steps. For cases where NE ≫ NCNOT, the simpler approach
may lead to a faster implementation, while, for smaller
cases, the main approach is faster, as it doesn’t require
precomputation.

APPENDIX K ANALYSIS OF NUMERICAL RESULTS

To get a good understanding of the performance of the
decoding method, we consider an equidistant range for h,
and we sample p using the expression

p = 10h. (150)

For that reason, most of the fits in this section are performed
after applying a logarithmic transformation to both the
dependent and independent variables. That is, we prefer to
work with log(p) than p directly, as it is more numerically
stable.

In this section, we verify that C(p) and Pfailure scale as

C(p) ≃ e−γNCNOTp (151)
≃ 1− γNCNOTp (152)

Pfailure(p) ≃ 1− e−µpη

, for η ∈ N (153)
≃ µpη, (154)

for p≪ 1. µ and γ are positive real parameters, and η is the
lowest order that the code cannot fully correct. We analyze
these expressions separately in the next subsections.

A. ESCAPED ERRORS

We start by considering Pu(p, 1). For the noise model in
Section II, we expect that the probability of finding escaped
errors will be given by

Pu(p, 1) ≃
NCNOT∑
i=1

(
NCNOT
i

)
(γp)i(1− γp)NCNOT−i (155)

=

NCNOT∑
i=1

(−1)i+1

(
NCNOT
i

)
(γp)i (156)

= 1−
NCNOT∑
i=0

(
NCNOT
i

)
(−γp)i, (157)

where γ reflects the fraction of errors that can escape. For
p≪ 1, the lower order terms dominate, so we may use the
approximation(

NCNOT
i

)
≃ NCNOT

i

i!
, for NCNOT ≫ i, (158)

and we have

Pu(p, 1) ≃ 1−
NCNOT∑
i=0

(−NCNOTγp)
i

i!
(159)

≃ 1−
∞∑
i=0

(−NCNOTγp)
i

i!
(160)

= 1− e−γNCNOTp. (161)

Given (37) and (44), we end up with (151),

C(p) ≃ e−γNCNOTp, (162)

where γ is an unknown parameter. Since we are considering
p≪ 1, this expression may be further simplified into

C(p) ≃ 1− γNCNOTp. (163)

In order to perform a fit, we consider a more general
version of this expression, given by

C(p) ≃ exp(−γNCNOTp
ηC ), (164)

and we fit the function

log10(− log(C(p))) = ηC log10(p) + log10(γNCNOT)
(165)

=⇒ log10(−b) = ηC log10(p) + β, (166)
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FIGURE 9. Fit of the various parameters, averaged over 50 random codes for
each n.

TABLE 4. Fitted parameters for β.

Variable Value

b1 0.4494
nβ 3.6453
b2 0.7505

where β = log10(γNCNOT) and b stems from (48). We use
log10 to keep the figures more legible.

We may now study the behavior of ηC and β for different
n. See Fig. 9 for the results. As expected, we observe that
ηC ≃ 1, regardless of n.

From Appendix C, we have that NCNOT ∼ O
(
n2
)
. If we

assume that γ ∼ O(poly(n)), then β should scale as

β = b1 log(n− nβ) + b2. (167)

with η0 = 1. We assume this expression for its fit. The fitted
parameters are given in Table 4.

We may alternatively write β as

β ≃ log10(5.630 · (n− 3.6453)1.035) (168)

Given the dependence between β and NCNOT, we may
conclude that

γNCNOT ∼ O
(
n1.035

)
≃ O(n), (169)
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FIGURE 10. Fit of (166), for a random example with n = 20. We fit only using
values below 10−6, where it is safe to assume p ≪ 1. As expected, the fit
worsens for higher p.

despite the actual NCNOT count scaling with O
(
n2
)
. These

results are in line with the expectations from the theoretical
analysis of Appendix C, indicating that we may observe a
visible pthreshold.

B. DIRECT PFAILURE EXTRAPOLATION
We may apply a similar procedure to Pfailure. We empiri-

cally observe that (153) holds. However, unlike the previous
section, it is no longer the case that ηC ≃ 1.

If a code is able to correct all errors of order ω < η, then
we expect Pfailure to be given by

Pfailure =

NCNOT∑
i=1

fi(p,NCNOT)

(
NCNOT
i

)
pi(1− p)NCNOT−i

(170)

≃
NCNOT∑
i=η

f̃i

(
NCNOT
i

)
pi(1− p)NCNOT−i, for p≪ 1

(171)

≃ f̃η
(
NCNOT
η

)
pη(1− p)NCNOT−η, for p≪ 1,

(172)
= µpη, for p≪ 1. (173)

for some unknown µ, where f̃i is an approximation of
fi(p,NCNOT), which is the unknown function. In the ap-
proximation in (171), we consider f̃i as a scalar.

In order to perform a fit, we consider an equivalent
version of this expression for p≪ 1, given by

Pfailure(p) ≃ 1− exp(−µpη), (174)

and we fit the function

log10(− log(1− Pfailure)) = η log10(p) + log10(µ) (175)
= η log10(p) + α, (176)

where α = log10(µ). As before, we use log10 to keep the
figures more legible. See Fig. 10 for an example.
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FIGURE 11. Plot of η and α. We fit a linear function to α for the higher n
values.

We may now study the behavior of η and α for different
n. See Fig. 11 for the results. In this case, we have different
η values, and the values cluster around integers. Since the n
values we tested are relatively low, we only observe η equal
to either 1 or 2. As these cases display notably different
behavior, we separate their data before fitting.

As before, we fit η to an expression of the form

η = η0 + d1 log(1 + exp(d2 · (n− nP ))). (177)

We empirically observe that the α variable is better fitted
by a simple linear expression

α = a1n+ a2. (178)

The fitted parameters are given in Table 5.
We may also have a look at the probability of having

different η values. The empirical results can be seen in
Fig. 12 and Table 6. We observe that, for low n values,
the fraction of random codes with η = 1 and η = 2 is
roughly constant, since the code’s capabilities are not large
enough to generally correct all ω = 1 errors. As n increases,
the probability that the code corrects all order-1 errors also
increases, and we so the fraction of η = 2 cases increases.
Its behavior follows a sigmoid-like function, of the form

s1

(
1

1 + e−s2(n−nf )
− 1

2

)
+ s3. (179)

TABLE 5. Fitted parameters for α.

Variable η0 = 1 η0 = 2

a1 −0.0074 0.0838
a2 −0.8170 2.8530
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FIGURE 12. Fraction of the simulations with different η0 values.

The errorbars indicate the standard deviation, which stems
from the finite number (48) of samples taken for each n
value. Also, note the symmetry in the parameters in Table 6,
reflecting the fact that the fractions must add up to one.

TABLE 6. Fitted parameters.

Variable η0 = 1 η0 = 2

s1 −0.7206 0.7206
s2 0.8665 0.8665
nf 16.5506 16.5506
s3 0.4673 0.5327

For very low n ≤ 12, we observe that about 20%
of the codes have η = 2. On further inspection, their
seemingly high performance does not stem from strong
correction capabilities, but from the fact that, due to random
chance, the stabilizers of these codes have relatively low
weight, leading to a very low number of CNOT gates in the
syndrome extraction circuit, and consequently fewer errors
needed to consider. In a more complex setting where there
are additional sources of error, we would expect these codes
in particular to perform poorly.

C. EXTRAPOLATING BEHAVIOR FOR LARGER N

We may take the results above and use them to extrapolate
the performance for larger n values. We also incorporate
the uncertainty observed in the numerical data by using the
standard deviation observed for the sampled n to estimate
the deviation for larger n.
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APPENDIX L SINGLE-QUBIT GATE ERROR MODEL
CONSIDERATIONS

Standard circuit-level noise models typically include
single-qubit gate errors, particularly identity gate errors from
qubit idling [34]. The exclusion of these errors in the present
work represents a limitation of the current theoretical analy-
sis. Including comprehensive single-qubit gate errors would
likely reduce our reported threshold values, and we consider
it as important future work.

We deliberately use a simple, unoptimized stabilizer
implementation to avoid confounding our theoretical re-
sults with circuit-specific optimizations, as indicated in
Appendix A. While gate count and idling could be reduced
through circuit optimization techniques, we chose not to
incorporate such optimizations to maintain the generality
of our theoretical analysis.

Our model would be more realistic for trapped-ion sys-
tems where idling errors (due to relaxation or decoher-
ence) are significantly lower (∼ 10−6) compared to su-
perconducting qubits (∼ 10−4). In trapped-ion platforms,
coherence times are typically much longer, making idling
errors less significant compared to active gate operations.
This platform-dependent behavior suggests that our simpli-
fied model captures the dominant error sources for certain
quantum computing architectures.

Nonetheless, in the rest of this section we show that many
of the single-qubit gate errors can be absorbed into our
model through mathematical equivalences.

A. HADAMARD GATE ERRORS
The circuit contains, for each ancilla qubit, a Hadamard

gate after preparation and before measurement. If we model
this gate as suffering an error corresponding to an additional
Pauli gate, then it can be shown that the error can be
absorbed into preparation and measurement errors, respec-
tively.

For the Hadamard gate after preparation, a Z-type error
is equivalent to an X error before the Hadamard gate (since
HX = ZH), which is equivalent to a flip preparation bit. A
X-type error similarly corresponds to a Z-type error before
the Hadamard gate, i.e., right after preparation. Since the
prepared qubit is initially either in the state |0⟩ or |1⟩, a
Z-type error does not introduce additional errors, since it
acts as the identity.

For the Hadamard gate before measurement, a Z-type
error is similarly irrelevant, since the measurement is done
in the computational basis. A X-type error is equivalent to
a measurement error, where the measurement bit flips.

For both cases, a Y -type error is a combination of
both error types. Therefore, if the probability of a prepa-
ration/measurement error is pM , and the probability of a
specific Hadamard gate error is pH/3, then we can model
Hadamard gate errors by simply using the equivalent prob-
ability p′M = pM

(
1− 2pH

3

)
+ 2pH

3 (1 − pM ) ≃ pM + 2pH

3 .
Since, in practice, pM ≫ pH , disregarding the Hadamard
gate errors does not significantly affect the analysis.

B. 1-QUBIT GATE ERRORS

For the 1-qubit gates we consider in our model, possibly
appearing before and after the target of a CNOT gate, we
can similarly map them so that the errors actually arise from
the associated CNOT gate, while assuming that the 1-qubit
gates are perfect. If their error rate is pG, then the equivalent
error rate for the CNOT gates incorporating the 1-qubit Pauli
gate errors is p′ ≃ p+ pG. Similarly to before, p≫ pG, so
their exclusion from our model does not significantly affect
the analysis.

C. IDLING ERRORS

For comprehensive circuit-based error models, it is stan-
dard to also include errors coming from idle qubits changing
over time, either due to relaxation, decoherence, or more
complex dynamics (e.g., crosstalk). This scenario can be
modeled by assuming that identity gates are applied to the
circuit, and that these gates get converted to a Pauli gate
when an error occurs.

Unlike the previous scenarios, it is harder to map these
errors to equivalent errors in the CNOT gates. We can evolve
the idling errors forward in the circuit up to the first CNOT
error they encounter, where they can potentially increase in
weight. In our formulation, if we assume that each identity
gate with error pI takes as long as a CNOT gate application,
then the errors can compound quickly. Since the stabilizer
application is not optimized, if we apply the n−k stabilizers
in series, and each stabilizer affects w := λn qubits (where
λ = 3/4 in our implementation, and ≃ 1/2 in the optimized
version in Appendix A), then for each main qubit there are
on average

≃ λn
[
1 + 2(1− λ) + 3(1− λ)2 + · · ·

]
(180)

=
n

λ
=: m (181)

identity gates between CNOT gates.

During every idle slot the qubit is acted on by a
single-qubit depolarizing channel DpI

(
ρ
)
=
(
1 − 3pI

4

)
ρ +

pI

4

∑
α∈{X,Y,Z}αρα.

In the Pauli frame each gate independently applies

Ej =

{
I, with probability 1− q,
X, Y or Z, each with probability q/3,

(182)

q := 3pI

4 . (183)

Because the non-trivial Pauli operators modulo a phase
form the abelian group V4 = {I,X, Y, Z}, the net error
after the m idle slots is the group product E := Em· · ·E1.
A standard character argument for random walks on V4 gives

Pr[E = I] = 1
4

[
1 + 3(1− q)m

]
. (184)
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Hence, the equivalent identity error is

p′I = 1− Pr[E = I] (185)

=
3

4
[1− (1− q)m] (186)

=
3

4

(
1−

(
1− 3pI

4

)n/λ
)

(187)

≃ 9

16
npI/λ, for npI/λ≪ 1. (188)

Since we expect pI to be about one order of magnitude
lower than p (except for trapped-ion platforms, where pI is
much lower), even relatively low values of n make idling
non-negligible. Nonetheless, we can show that, in a more
realistic setting, where the gate implementation is optimized,
idling can be largely removed, thereby making this error
source negligible.

In an optimized setting, besides implementing the stabi-
lizer optimizations in Appendix A, we would also parallelize
the CNOT gates associated with the different stabilizers
as much as possible. In general, it would be possible to
parallelize CNOT gates associated with different stabilizers
whenever their target qubits are different.

To quantify how much circuit parallelization is possible
we model the scheduling of the CNOT gates associated with
the t := (n − k) ≃ n stabilizers. Write A = {a1, . . . , at}
for the ancilla (control) qubits and B = {b1, . . . , bn} for the
data (target) qubits. Every CNOT is an edge e = (ai, bj) in
the bipartite graph G = (A ∪ B,E). For the code families
considered here

• each ancilla participates in w = λn edges (λ = 1
2 or

3
4 );

• for a fixed data qubit bj the number of incident edges
Xj is a random variable Xj ∼ Binomial

(
t, wn

)
=

Binomial(n, λ) with mean µ = E[Xj ] = λn = w.

A single time step (“layer”) of the circuit is a matching
of G: a set of edges with no common end–points, so that
no qubit is touched twice in the same layer. Partitioning
E into the minimum number of such matchings is the
edge–colouring problem; for every bipartite graph, Kőnig’s
theorem gives

χ′(G) = ∆(G), (189)

where ∆(G) is the maximum vertex degree. Consequently

D = ∆(G) = max
{
w, max

1≤j≤n
Xj

}
(190)

is the optimal CNOT depth.
Let Mn := maxj Xj . A standard Chernoff bound gives,

for any a > 0,

Pr[Xj ≥ µ+ a] ≤ exp
(
− a2

2(µ+a/3)

)
. (191)

Choosing a =
√
2µ lnn and union-bounding over the n data

qubits,
Pr
[
Mn ≥ µ+

√
2µ lnn

]
−−−−→
n→∞

0, (192)

so that, with high probability,

Mn ≤ w +
√
2w lnn.

Because Mn ≥ w always, we may replace the order symbol
in Eq. (190) by its leading constant and write

E[D] = w +
√
2w lnn + o

(√
w lnn

)
(193)

≃ w +
√
2w lnn (194)

= λn+
√
2λn lnn. (195)

Along any ancilla line exactly w CNOTs are executed
in D layers, so the number of idle layers on that qubit is
D−w. Averaging the gap between successive CNOTs over
the w − 1 internal intervals gives

NI =
D − w
w − 1

(196)

≃
√
2w lnn

w
(197)

=

√
2 lnn

w
=

√
2

λ

lnn

n
. (198)

Hence, keeping only the first-order term,

NI ≃
√

2

λ

lnn

n
. (199)

This value is lower than 1 and quickly converges to 0 for
high n. Therefore, similarly to before, we could consider an
equivalent p′ ≃ p+NIpI to model idling errors.

D. EQUIVALENT THRESHOLD
Accounting for these errors, and considering that they

are at least one order of magnitude lower than CNOT,
preparation and measurements, leads to an equivalent error
rate that is around 10% higher. Consequently, in this more
complex model, with the necessary circuit optimizations, we
would get a pthreshold that is 10% lower. We note however
that this setup would not be sensible, since our empirical
threshold stems from an purposefully unoptimized stabilizer
implementation. It is possible that an implementation with
optimized stabilizers (which is outside the scope of this
work) would lead to a naturally higher threshold, regardless
of the 1-qubit gate and idling errors.
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