

Contents lists available at ScienceDirect

International Journal of Intercultural Relations

iournal homepage: www.elsevier.com/locate/iiintrel

Love, culture, and well-being: How values moderate the link between relationship status and well-being across 57 countries

Magdalena Śmieja ^{a,*}, Alicja Walczak ^{a,b}, Jakub Cacek ^{a,b}, Maciej R. Górski ^{c,d}, Michael Harris Bond ^e, Biljana Gjoneska ^f, M. Azhar Hussain ^{g,h}, Mohsen Joshanloo ⁱ, Ewa Szumowska ^{a,j}, Julien Teyssier ^k, Victoria Wai Lan Yeung ¹, Brian W. Haas ^m, Farida Guemazⁿ, Mahmoud Boussenaⁿ, Ángel Sánchez-Rodríguez^o, Nuha Iter^p, Olha Vlasenko ^q, Vivian Miu-Chi Lun ^r, Liman Man Wai Li ^s, Nur Amali Aminnuddin ^t, İdil Işık ^u, Laina Ngom-Dieng ^v, Márta Fülöp ^{w,x}, David Igbokwe ^y, Mladen Adamovic^z, Ragna Benedikta Garðarsdóttir^{aa}, Natalia Soboleva^{ab}, Fumiko Kano Glückstad ^{ac}, Joonha Park ^{ad}, Plamen Akaliyski ^{ae}, Grace Akello ^{af}, Marwan Al-Zoubi ^{ag}, Anna Almakaeva ^{ab}, Petra Anić ^{ah}, Lily Appoh ^{ai}, Arno Baltin ^{aj}, Patrick Denoux^k, Alejandra Domínguez Espinosa^{ak}, Vladimer Gamsakhurdia^{al}, Magdalena Garvanova am, Alin Gavreliuc an, Eric Raymond Igou ao, Natalia Kascakova ^{ap,aq}, Agata Kocimska-Bortnowska ^{ar}, Nicole Kronberger ^{as}, J. Hannah Lee at, Alexander Malyonov au, Arina Malyonova au, Fatma Mokadem , Oriana Mosca ^{av}, Elke Murdock ^{aw}, Katarzyna Myślińska-Szarek ^{c,ax}, Martin Nader ^{ay}, Ayu Okvitawanli ^{az}, Mateusz Olechowski ^c, Ewa Palikot ^c, Zoran Pavlović ^{ba} Iva Poláčková Šolcová bb, Adil Samekin bc, Heyla Selim bd, David Sirlopú be, Boris Sokolov ab, Chien-Ru Sun bf, Claudio Torres bg, Kiều Thi Thanh Trà bh, Vladimir Turjačanin bi, Wijnand van Tilburg bj, Christin-Melanie Vauclair bk, Arkadiusz Wasiel^c, Cai Xing^{bl}, Belkacem Yakhlef^{bm}, Jae-Won Yang^{bn}, June Chun Yeung^c, John Zelenski bo, Kuba Krys^c

E-mail address: magdalena.smieja-necka@uj.edu.pl (M. Śmieja).

^a Institute of Psychology, Jagiellonian University in Kraków, Kraków, Poland

^b Doctoral School in the Social Sciences, Jagiellonian University in Kraków, Kraków, Poland

^c Institute of Psychology, Polish Academy of Sciences, Warsaw, Poland

^d Faculty of Psychology, University of Warsaw, Warsaw, Poland

e Department of Management and Marketing, Faculty of Business, Hong Kong Polytechnic University, Hong Kong, China

f Macedonian Academy of Sciences and Arts, Skopje, North Macedonia

g Department of Finance and Economics, College of Business Administration, University of Sharjah, Sharjah, United Arab Emirates

^h Department of Social Sciences and Business, Roskilde University, Roskilde, Denmark

i Department of Psychology, Keimyung University, South Korea

^j University of Maryland, College Park, United States

^k Département Psychologie Clinique Du Sujet, Université Toulouse II, Toulouse, France

¹ Department of Psychology, Lingnan University, Hong Kong, China

^m Department of Psychology, University of Georgia, Athens, United States

n Department of Psychology and Educational Sciences, University of Mohamed Lamine Debaghine, Setif 2, Setif, Algeria

^{*} Corresponding author.

- O Department of Social Psychology and Anthropology, Faculty of Psychology, University of Salamanca, Salamanca, Spain
- P Faculty of Arts and Educational Sciences, Palestine Technical University Kadoorie, Tulkarm, Palestine
- ^q Institute of Education Science, Osnabriick University, Osnabriick, Germany
- ^r Department of Applied Psychology, Lingnan University, Hong Kong, China
- ⁵ Department of Psychology and Centre for Psychosocial Health, The Education University of Hong Kong, Hong Kong, China
- ^t Sultan Omar 'Ali Saifuddien Centre for Islamic Studies, Universiti Brunei Darussalam, Jalan Tungku Link, Brunei
- ^u Department of Psychology, Bahçeşehir University, Istanbul, Turkive
- v Faculty of Arts and Humanities, Cheikh Anta Diop University, Dakar, Senegal
- $^{
 m w}$ Institute of Psychology, Károli Gáspár University of the Reformed Church in Hungary, Budapest, Hungary
- x HUN-REN Research Centre of Natural Sciences, Institute of Cognitive Neuroscience and Psychology, Budapest, Hungary
- y Department of Psychology, Baze University, Abuja, Nigeria
- ^z King's Business School, King's College London, London, United Kingdom
- aa Faculty of Psychology, University of Iceland, Reykjavík, Iceland
- ab Ronald F. Inglehart Laboratory for Comparative Social Research, Higher School of Economics, Moscow, Russia
- ac Department of Management, Society & Communication, Copenhagen Business School, Frederiksberg, Denmark
- ad Graduate School of Education, Kyoto University, Kyoto, Japan
- ^{ae} Department of Sociology and Social Policy, Lingnan University, Hong Kong, China
- af Faculty of Medicine, Gulu University, Gulu, Uganda
- ^{ag} Department of Psychology, Faculty of Arts, University of Jordan, Amman, Jordan
- ah Department of Psychology, Faculty of Humanities and Social Sciences, University of Rijeka, Rijeka, Croatia
- ^{ai} Faculty of Nursing and Health Sciences, Nord University, Bodø, Norway
- ^{aj} School of Natural Sciences and Health, Tallinn University, Tallinn, Estonia
- ^{ak} Psychology Department, Iberoamerican University, Mexico City, Mexico
- al Department of Psychology, Ivane Javakhishvili Tbilisi State University, Tbilisi, Georgia
- am Department of Information Systems and Technologies, University of Library Studies and Information Technologies, Sofia, Bulgaria
- ^{an} Department of Psychology, West University of Timișoara, Timișoara, Romania
- ao Department of Psychology, University of Limerick, Limerick, Republic of Ireland
- ^{ap} Olomouc University Social Health Institute, Palacky University, Olomouc, Czechia
- ^{aq} Psychiatric Clinic Pro Mente Sana, Bratislava, Slovakia
- ar Department of Psychology, SWPS University, Wrocław, Poland
- as Institute of Education and Psychology, Johannes Kepler University Linz, Linz, Austria
- at Department of Psychology, Indiana University Northwest, Gary, Indiana, United States
- au Department of General and Social Psychology, Faculty of Psychology, Dostoevsky Omsk State University, Omsk, Russia
- ^{av} Department of Education, Psychology, Philosophy, University of Cagliari, Cagliari, Italy
- aw Research Unit INSIDE, University of Luxembourg, Esch-sur-Alzette, Luxembourg
- ^{ax} Department of Psychology, SWPS University, Sopot, Poland
- ay Department of Organizational Management, Universidad ICESI, Cali, Colombia
- ^{az} Faculty of Psychology, Universitas Sebelas Maret, Surakarta, Indonesia
- ba Department of Psychology, Faculty of Philosophy, University of Belgrade, Belgrade, Serbia
- bb Institute of Psychology, Czech Academy of Sciences, Prague, Czechia
- bc School of Liberal Arts, M. Narikbayev KAZGUU University, Astana, Kazakhstan
- bd King Saud University, Riyadh, Saudi Arabia
- be Faculty of Psychology and Humanities, Universidad San Sebastián, Concepción, Chile
- bf Department of Psychology, National Chengchi University, Taiwan
- ^{bg} Institute of Psychology, University of Brasilia, Brasília, Brazil
- bh Department of Psychology, HCMC University of Education, Ho Chi Minh City, Viet Nam
- bi Faculty of Philosophy, University of Banja Luka, Banja Luka, Bosnia and Herzegovina
- bj Department of Psychology, University of Essex, Colchester, United Kingdom
- ^{bk} Instituto Universitário de Lisboa, Lisbon, Portugal
- ^{bl} Department of Psychology, Renmin University of China, Beijing, China
- bm École Normale Supérieure of Constantine, Constantine, Algeria
- bn Department of Psychology, The Catholic University of Korea, Gyeonggi-do, South Korea
- bo Department of Psychology, Carleton University, Ottawa, Canada

ARTICLE INFO

Keywords: Well-being Relationship status Singles Schwartz values Culture

ABSTRACT

This study examines the interplay between relationship status, well-being, and values across 57 countries. We hypothesized that individuals in romantic relationships would report higher wellbeing (measured as happiness, harmony, and meaning in life) compared to singles. We anticipated that in cultures prioritizing relationships, the benefits of being coupled would be amplified, while in societies emphasizing autonomy, the well-being gap would diminish. Specifically, we posited that values prevalent in WEIRD societies (Western, Educated, Industrialized, Rich, and Democratic)-such as self-direction and achievement-would positively moderate the association between relationship status and well-being, whereas values characteristic of non-WEIRD societies-such as tradition and conformity-would have a negative moderating effect. Our findings support that coupled individuals generally report higher well-being; however, the moderating effects of cultural values were more complex than expected. Cultural classifications of WEIRD and non-WEIRD did not consistently explain the well-being gap. Interestingly, in cultures emphasizing conformity, single and coupled individuals both reported greater meaning, leading to an overall decrease in the well-being gap. Conversely, higher self-direction values were associated with a

wider well-being gap, with singles experiencing decreased happiness and meaning. These findings suggest that values such as conformity and self-direction exert domain-specific effects on well-being, influenced by broader social context and individual perceptions. Our research highlights the necessity of integrating cultural and individual factors in well-being research to achieve a more nuanced understanding of the quality of life for singles and those in relationships.

Introduction

Individuals in long-term relationships often report higher well-being and life satisfaction compared to their single counterparts (Apostolou et al., 2019; Girme et al., 2016). Recent research suggests that lower life satisfaction among singles arises not only from unmet emotional needs but also from the lack of societal acceptance (Girme et al., 2022b). We hypothesize that values emphasized in a given culture significantly moderate the link between relationship status and various dimensions of well-being. Societies that prioritize traditional norms may pose challenges for singles, while those emphasizing independence and autonomy may create a more supportive environment for them. This study investigates the role of cultural values in shaping the well-being of individuals in relationships and singles, drawing on data from 57 countries, including both WEIRD (Western, Educated, Industrialized, Rich, Democratic) and non-WEIRD societies (Henrich et al., 2010).

Relationships and well-being

Romantic love is a universal aspect of human experience, shaping emotions, behaviors, and cognitions across cultures and history (Karandashev, 2015). Beyond its emotional appeal, romantic relationships are pivotal to individual well-being. Research consistently shows that individuals in romantic partnerships report higher happiness compared to their single counterparts (Kislev, 2018; Waite, 2000). Empirical evidence indicates that a caring partner who expresses love, gratitude, and appreciation can provide emotional support and alleviate loneliness (Waite & Gallagher, 2001). The greater subjective well-being among those in relationships may also stem from higher sexual satisfaction (Lucas, 2008; Diener et al., 2000). Romantic relationships fulfill needs for social integration (Coyne & DeLongis, 1986), mitigate stress (Markey et al., 2007), and reduce unhealthy behaviors (Whitton et al., 2013). As a result, married or cohabiting individuals tend to experience better mental and physical health (Gove et al., 1983; Holt-Lunstad et al., 2008).

In many societies, romantic relationships are seen as essential for happiness and a sense of purpose in life (DePaulo & Morris, 2005). This belief is rooted in the assumption that the need to belong is a fundamental human motivation (Baumeister & Leary, 2017). Marriage and family structures are often viewed as sources of emotional security, love, and care (Kaiser & Kashy, 2005). Beyond emotional benefits, individuals in committed relationships frequently enjoy socioeconomic advantages, such as greater financial stability, access to resources, and enhanced social security (Byrne & Carr, 2005; Finkel et al., 2014). Partnerships may also boost well-being through the valued social status they provide (Amato, 2014). In contrast, single individuals may have fewer opportunities to satisfy their attachment needs (Baumeister & Leary, 2017; Deci & Ryan, 2000), experience more negative emotions (Adamczyk & Segrin, 2015), and face negative health outcomes, all of which diminish their overall well-being (Holt-Lunstad et al., 2015).

Singlehood as a social stigma

Recent research indicates that lower well-being reported by uncoupled individuals is influenced not only by the absence of emotional bonds they need and desire but also by the intolerance they encounter in society (Girme et al., 2022a). In many contexts, singles face institutional discrimination in areas such as housing, healthcare, and taxation, where benefits are typically reserved for married couples and families (DePaulo, 2007; Morris et al., 2008). Social stereotypes further exacerbate these challenges, portraying singles as less sociable, attractive, or well-adjusted, while attributing higher levels of neuroticism to them (Greitemeyer, 2009). These stereotypes contribute to experiences of discrimination and stigmatization (Byrne & Carr, 2005; Girme et al., 2022a), which mediate the link between relationship status and well-being (Girme et al., 2022a) Collectively, this evidence suggests that social context characterized by institutional and interpersonal discrimination, along with the lack of emotional support, may undermine the well-being of single individuals.

Cross-cultural differences in perspectives and values

Although romantic love is a universal experience, its expression varies widely across cultures (Karandashev, 2015). Rituals, social norms and expectations surrounding relationships are often deeply rooted in cultural contexts. In societies experiencing economic or political instability, family and marriage often function as mechanisms for safety, stability, and mutual support. In these contexts, which are typically categorized as non-WEIRD, strong social norms emphasize the centrality of family and marital relationships to individual identity and well-being. This cultural emphasis can result in the stigmatization of singlehood, potentially diminishing the well-being of individuals who do not conform to these expectations. Consequently, cultures that prioritize traditional values may exacerbate the challenges faced by single individuals.

In contrast, societies characterized by stable political and economic conditions and a cultural shift toward individualism, often classified as WEIRD, tend to emphasize self-expression and personal autonomy over traditional family structures (Kislev, 2018). In

such societies, where self-realization is regarded as a virtue rather than a fault, the normative pressure to marry and maintain lifelong romantic relationships is reduced. Additionally, the increasing rates of separation and divorce contribute to the normalization of singlehood, further alleviating societal stigma associated with being unmarried (Girme et al., 2022b; Kislev, 2019). Individual-centered cultures are thus likely to provide a more supportive environment for singles, potentially mitigating the negative effects of singlehood on well-being. Evidence from post-materialist societies supports this notion, with studies showing that single individuals in these contexts often report higher levels of well-being compared to their counterparts in more family-oriented cultures (Girme et al., 2022a).

Cultural differences are embodied in the values prioritized within a society. At the individual level, values shape self-concept and guide attitudes and behaviors (Adamczyk et al., 2024). At the collective level, the dominant values within a community become defining characteristics of its culture. These culturally-shaped value orientations play a significant role in defining what constitutes the "good life" across different societies (Krys et al., 2021). In Schwartz's (1992) widely accepted framework for understanding values, two core values— self-direction and achievement—are closely associated with individualistic cultures, while tradition and conformity are more prominent in collectivist societies. It seems that values emphasizing personal autonomy may promote conditions in which being single is easier, while traditional values may reduce the well-being of singles.

Multidimensionality of well-being

Most research on well-being relies on the construct of subjective well-being (Diener, et al., 1999), which encompasses three components: 1) life satisfaction—a cognitive evaluation of one's overall life, 2) the presence of positive emotional experiences, and 3) the absence of negative emotional experiences. Similarly, most studies validating Diener's (1984) theory have been conducted predominantly in WEIRD societies (Henrich et al., 2010). Meanwhile, recent findings (e.g., Górski et al., 2024) highlight that well-being is a multidimensional phenomenon, incorporating components such as a sense of meaning, harmony, spirituality, and happiness. These dimensions vary significantly across cultures, particularly in contexts where maximizing happiness is not an idealized goal (Krys et al., 2024a, 2024b). Given that our study is uniquely positioned to capture the complexity of well-being in both WEIRD and non-WEIRD populations, we aim to move beyond the traditional conceptualization of well-being as a balance of positive and negative emotions by addressing three dimensions to provide a more comprehensive understanding of cultural differences in well-being.

The present research

Most studies on the association between relationship status and well-being have focused on WEIRD samples, often reinforcing heteronormative narratives surrounding family and marriage (Henrich et al., 2010). To address this limitation, the current study investigates well-being of single and partnered individuals across 57 countries, including both WEIRD and non-WEIRD populations. We examine two key questions: (1) Does the association between being single and well-being vary across cultural contexts? (2) Do the values emphasized in different cultures moderate the association between relationship status and well-being?

Based on previous findings (e.g., Apostolou et al., 2019; Apostolou et al., 2024; Diener et al., 2015; Hsu & Barrett, 2020), we hypothesize that being single, as opposed to being in a committed relationship, is associated with lower well-being. We expect that the well-being gap between singles and those in relationships will be smaller in countries categorized as WEIRD, and larger in those that do not belong to this category. This cultural diversity should also become evident when, instead of relying on the WEIRD classification, we analyze the predominant values in specific countries. Accordingly, we predict that the association between relationship status and well-being will be moderated by four specific values from Schwartz's value framework (Schwartz, 1992). Self-direction and achievement, values prevalent in individually-oriented WEIRD societies, are expected to positively moderate the association between relationship status and well-being. In contrast, tradition and conformity – values characteristic of non-WEIRD societies – are anticipated to moderate it negatively. In other words, we expect the association between being single and lower well-being to be weaker in cultural contexts where individual-oriented values are promoted and stronger in those where traditional values dominate.

Method

Participants

We analyzed data from a large cross-cultural study examining the psychological aspects of societal development and ideal types of well-being. The data were collected from 70 diverse cultures between 2022 and early 2024 (N = 24,053). Collaborators from various countries translated the template English version of the questionnaire into their respective languages and administered it to convenience samples, including university students, research panel participants, and snowball samples. Informed consent was obtained from all participants.

Because the current study examined only selected variables related to well-being, relationship status and Schwartz values (Schwartz, 1992), we included into analyses only those countries where at least 30 respondents had answered either negatively or positively to the question, "Are you currently in a long-term relationship?" and passed all attention checks. This criterion reduced the dataset to 57 countries: Algeria, Australia, Australia, Azerbaijan, Bosnia and Herzegovina, Brazil, Bulgaria, Canada, Chile, China, Colombia, Croatia, Czechia, Ecuador, Estonia, France, Georgia, Germany, Ghana, Hungary, Iceland, Indonesia, Ireland, Italy, Jordan, Kazakhstan, Kenya, Korea South, Luxembourg, Madagascar, Malaysia, Mexico, Morocco, Nigeria, Palestine, Peru, Philippines, Poland, Portugal, Romania, Russia, Saudi Arabia, Senegal, Serbia, Slovakia, South Africa, Spain, Suriname, Taiwan, Trinidad and Tobago,

Turkey, Uganda, Ukraine, United Kingdom, United States of America, Venezuela, Vietnam. (N = 15,206). These countries were grouped into seven cultural regions, as proposed by (Krys et al., 2024a, 2024b). In the final sample, 8725 participants identified as women, 5004 as men, 111 chose 'other,' 121 chose 'I don't want to answer this question,' and 1245 constituted missing data. Ages of participants ranged from 19 to 90 (M = 30.80, SD = 12.40). The mean age for women was 29.90 (SD = 11.60), while for men it was 32.50 (SD = 13.50).

Measures

Relationship status

Relationship status was assessed with a question "Are you currently in a long-term relationship?" with possible answers "Yes" or "No".

Happiness

Happiness was measured using 5 items from Diener et al., (1985) *Satisfaction with Life Scale*. Participants responded to statements such as "You are satisfied with your life" on a 5-point scale from 0 (*doesn't describe me at all*) to 4 (*describes me exactly*). The measure demonstrated good reliability (Cronbach's α for the full sample =.71).

Harmony

Harmony was assessed using *The Harmony in Life Scale* (Kjell et al., 2015). It consists of 4 items, such as "Most aspects of your life are in balance", to which participants respond using a 5-point scale from 0 (*doesn't describe me at all*) to 4 (*describes me exactly*). The scale also showed good reliability, with Cronbach's $\alpha = .69$.

Meaning in Life

Meaning in Life was measured using the "Presence" subscale from *The Meaning in Life Questionnaire* (Steger et al., 2006). It comprises 4 items, e.g., "Your life has a clear sense of purpose", assessed on a 5-point scale from 0 (*doesn't describe me at all*) to 4 (*describes me exactly*). The scale exhibited good reliability (Cronbach's $\alpha = .78$).

Schwartz's values

We measured Schwartz's values (Schwartz, 1992) using the Short Schwartz's Value Survey (Lindeman & Verkasalo, 2005). The short version of the scale comprises 10 values, each accompanied by relevant items (in parentheses) out of which we analyzed four, i.e.,: achievement (success, capability, ambition, influence on people and events), self-direction (creativity, freedom, curiosity, independence, choosing one's own goals), tradition (respect for tradition, humbleness, accepting one's portion in life, devotion, modesty), and conformity (obedience, honoring parents and elders, self-discipline, politeness). Participants were asked to rate the importance as a life-guiding principle of the selected values by assessing the corresponding value items on a 9-point scale ranging from 0 (opposed to my principles), 1 (not important), 4 (important), to 8 (of supreme importance). We aggregated the value scores to the country level and computed the mean for each value within each of the 57 countries. All the selected values, except for achievement crossed the accepted threshold of ICC = 0.05 (see Table 1).

Control variables

Gender and age were used as control variables for the models. Gender was assessed with a single item "What is your gender?" with possible answers: female, male, other and "I don't want to answer this question". Due to a small number of answers for the "other" option, only female and male were used for the models, and other questions were coded as lack of data. Male gender was coded as –0.5 and female as 0.5. Age was standardized.

Statistical approach

Given the complexity of our data (i.e., varying sample sizes, multiple variables entered as random effects in the models), we decided to employ the Bayesian approach, as it is more flexible when handling complex data than the commonly used frequentist approach (Kruschke & Liddell, 2018; Etz & Vandekerckhove, 2018). Unlike the frequentist approach, which relies on single point estimates, the Bayesian approach approximates the parameters based on probability distributions. This allows for calculating models that would otherwise not converge when applying the frequentist approach. The Bayesian approach expresses results through probabilistic statements, e.g., via providing 95 % Bayesian Credible Intervals (CIs), which define the range of parameter values that have a 95 %

Table 1 ICC values for the selected Schwartz's values.

Value	ICC
Achievement	0.04
Self-Direction	0.10
Tradition	0.12
Conformity	0.19

probability of being true, given the priors and data observed (Valori et al., 2020). This differentiates it from the null hypothesis significance testing, focused on rejecting or failing to reject a null hypothesis based on p-values. Through the emphasis on uncertainty and probabilistic interpretation, the Bayesian approach provides more thorough insights into the data analysis (McElreath, 2015; Valori et al., 2020).

For the analysis of the difference in well-being between single and coupled individuals, we used Welch *t*-test and estimated Cohen's *d*. For between-country analysis, we employed Bayesian mixed-effects models with brms package in R (Bürkner, 2017). We used weakly informative priors (student-*t* distribution with 3 degrees of freedom, a mean of 0, and a scale of 10), 4 chains and 8000 iterations per chain, as well as a 2,000-iteration warm-up. All reported models had more than 1000 effective samples, and scale reduction factor (*rhat*) was below 1.01 for each parameter. Random intercepts and slopes for relationship status, gender, and age were modeled to account for clustering within countries. For moderation analysis, we included the aggregated Schwartz values as moderators of the random effect of relationship status.

Results

Descriptive statistics

Table 2 presents descriptive statistics (means, standard deviations) for the three measures of well-being (Happiness, Harmony and Meaning in Life) among single and coupled individuals. We also provide the average age of the participants, and the percentage of participants identifying as women in both groups.

Main effect: relationship status and well-being

Results of the Bayesian mixed models for three components of well-being are presented in Table 3. Coupled (vs. single) individuals had higher levels of happiness, harmony and meaning in life.

We further compared coupled and single individuals in each country using the Welch t test. Results are presented in Fig. 1. Coupled and single individuals significantly differed in happiness in 32 countries ($M_d = -0.36$, $SD_d = 0.21$, from -0.83 – to 0.03). Differences in harmony were observed in 25 countries ($M_d = -0.30$, $SD_d = 0.20$, from -0.91–0.06). In terms of meaning in life, significant differences were observed in 28 countries ($M_d = -0.30$, $SD_d = 0.23$, from -0.77–0.24). In all significant comparisons single individuals declared lower levels of well-being than their coupled counterparts. Detailed results of all comparisons are presented in the Appendix (Appendix: Table 2).

Overall, the results suggest that coupled individuals generally experience higher levels of well-being, however, this relationship varies significantly across different countries.

Moderation by values

Out of 12 moderation analyses (three components of well-being * four Schwartz values), we observed three, where the effects did not include zero in their 95 % credible intervals (see Table 4). Interaction effects of these models are presented in Fig. 2.

For two components of well-being, self-direction moderated the impact of relationship status. The difference between single and coupled individuals increased with the increase in self-direction. For happiness, the impact of self-direction contained zero for people in relationships (B = 0.02, 95 % CI [-0.05, 0.11]), and singles (B = -0.04, 95 % CI [-0.13, 0.06]), but due to the opposite direction of trends, the differences increased. In case of meaning, self-direction was negatively associated for both singles (B = -0.19, 95 % CI [-0.26, -0.13]) and coupled individuals (B = -0.13, 95 % CI [-0.19, -0.08]), but for singles this relationship was stronger. Overall, the results suggest that the difference between single and coupled individuals in two components of well-being is larger, when self-direction is higher.

Conformity moderated the impact of the relationship status for meaning, but not for happiness or harmony. Conformity was positively associated with meaning for both coupled and single individuals, but the association was stronger for singles (B = 0.19, 95% CI [0.12, 0.25]) than for people in relationships (B = 0.13, 95% CI [0.07, 0.18]). Overall, the results suggest that the difference in meaning between singles and coupled individuals decreases, when conformity increases.

Tradition and achievement did not moderate the effect of relationship status on any components of well-being (see Table 4).

Table 2Descriptive statistics for single and coupled individuals.

Variable	Single	Coupled
Age (years)	M = 27.52 (SD = 10.36)	M = 33.94 (SD = 13.31)
N	4291	4432
Female (%)	64 %	64 %
Happiness	M = 1.95 (SD = 0.82)	M = 2.25 (SD = 0.76)
Harmony	M = 2.31 (SD = 0.82)	M = 2.52 (SD = 0.76)
Meaning in Life	$M = 2.42 \ (SD = 1.01)$	$M = 2.70 \ (SD = 0.91)$

Table 3
Mixed model analysis examining the impact of relationship status on components of well-being (happiness, harmony, and meaning in life), controlling for gender.

	Happiness		Harmony		Meaning		
Predictors	Est	CI (95 %)	Est	CI (95 %)	Est	CI (95 %)	
Intercept	0.03	-0.05, 0.11	0.02	-0.04, 0.09	0.03	-0.04, 0.10	
Relationship status	0.31	0.26, 0.37	0.23	0.19, 0.28	0.24	0.19, 0.30	
Age (z)	0.05	0.02, 0.07	0.09	0.05, 0.11	0.13	0.11, 0.16	
Gender	0.05	0.01, 0.10	-0.03	-0.08,0.01	-0.04	-0.08, -0.00	
ICC	0.10		0.07		0.08		
N	57 Countries		57 Countries		57 Countries		
Observations	13662		13662		13662		
Marginal R ² / Conditional R ²	0.03/ 0.12		0.03 / 0.08		0.04 /		
_					0.10		

Note. In "Relationship status" being single was coded as 0 and being in relationship was coded as 1. Male gender was coded as –0.5 and female as 0.5. Credible estimations are in bold.

Discussion

In this study, we examined the interplay between relationship status, values, and well-being. Guided by the existing literature, we hypothesized that individuals in romantic relationships would report higher levels of well-being, specifically, greater happiness, harmony and a sense of meaning – compared to singles. We further posited that values emphasized in specific cultures would moderate this association. Specifically, we anticipated that values prevalent in WEIRD societies—such as self-direction and achievement—would mitigate the negative impact of being single on well-being, whereas values more typical of non-WEIRD countries—such as conformity and tradition—could reinforce these challenges, leading to a greater gap in well-being between singles and individuals in relationships. Our analysis, which included data from 57 countries spanning both WEIRD and non-WEIRD populations, provided nuanced insights into these dynamics.

Relationship status and well-being in different cultures

Consistent with prior research, coupled individuals reported significantly higher levels of well-being compared to single individuals across all dimensions assessed. Among the 57 countries analyzed, singles reported lower levels of happiness in 32 countries, lower levels of harmony in 25 countries, and lower levels of meaning in life in another 28 countries. However, contrary to our expectations, the countries where the effect was significant were not exclusively non-WEIRD. On the contrary, many WEIRD countries were included in this group. This unexpected result may have several possible explanations. First, broad cultural categorizations, such as the WEIRD/non-WEIRD dichotomy, may not fully capture the observed patterns. Factors such as industrialization and education may play more critical roles than wealth or political structure in shaping social norms and expectations surrounding relationships. This might explain why countries like Ukraine and China are included alongside Australia and Poland, despite differences in other cultural dimensions. On the other hand, some countries where the effect was not observed share characteristics with those where it is present, suggesting that a limited number of WEIRD traits may not effectively differentiate the groups. It is possible that other hidden factors, unrelated to the WEIRD characteristics, distinguish countries where the effect is significant from those where it is not (see, for example, Kowal et al., 2024). We also cannot rule out the possibility that non-cultural factors, such as sampling strategy, influenced the strength of the observed effect.

Another explanation for these unexpected findings lies in the interaction of factors influencing the well-being of single individuals. Given that Western societies are experiencing an epidemic of loneliness (Jeste et al., 2020), particularly among young people (Shovestul et al., 2020), we may suspect that the reduced societal pressure to marry or have children does not compensate for the suffering associated with the lack of intimate companionship. In WEIRD societies, singles may feel less discriminated against but more lonely.

Despite greater acceptance of their lifestyle, the deprivation of close interpersonal connections may significantly reduce their overall well-being. This contrasts with collectivist cultures, where, as described by Krys et al., 2019, the "basic unit of survival" is the group rather than the individual. In such contexts, the positive impact of support from family and friends may outweigh the negative impact of social pressure.

Undoubtedly, both cultural and individual factors contribute meaningfully to well-being, although their effects may counterbalance one another. Our results highlight the complexity of cultural and psychological influences on the well-being of single individuals.

Moderating role of values

We hypothesized that certain values emphasized in individual-centered cultures—such as self-direction and achievement—would alleviate the life challenges faced by singles, whereas collectivist values—such as conformity and tradition—might exacerbate these challenges. Our results revealed an almost opposite trend. The higher the value placed on conformity within a society, the greater the sense of meaning experienced by single individuals. This positive relationship also extended to the sense of meaning among individuals

Fig. 1. Difference in well-being (happiness, harmony and meaning in life) between coupled and single individuals. Note. Difference is shown in Cohen's d. Panel A) shows difference in happiness, B) in harmony and C) in meaning of life. CI 95 %.

in relationships. Overall, the disparity in meaning in life between singles and those in relationships decreased as the level of conformity increased. Does this imply that cultures valuing obedience and self-discipline provide a more favorable environment for singles? Is it possible that a higher level of conformity enhances singles' sense of meaning in life? These findings imply that a collective orientation, characterized by norms that provide structure and hierarchy, may benefit singles, mitigating the well-being gap. However, these associations may not stem from the causal link between conformity and well-being. Instead, they might arise from a shared preference for structure, order, and hierarchy, which align with the pursuit of meaning in life. It is plausible that in cultures where conformist values are prioritized, individuals are better equipped to find meaning in life because these values resonate with their psychological needs. The lack of significant associations between conformity and happiness or harmony supports this interpretation, indicating that the influence of conformity is domain-specific rather than universally enhancing well-being.

Table 4Interaction effects between relationship status and Schwartz's values for well-being.

Schwartz value	Happiness		Harmony		Meaning	Meaning		
	Est	95 % CI	Est	95 % CI	Est	95 % CI		
Self-direction	0.07	0.01, 0.12	0.03	-0.01, 0.08	0.06	0.01, 0.11		
Conformity	-0.05	-0.10,0.01	-0.02	-0.07,0.03	-0.06	-0.11, -0.002		
Tradition	-0.04	-0.09, 0.01	-0.02	-0.06, 0.03	-0.04	-0.09, 0.02		
Achievement	-0.05	-0.10,0.005	-0.04	-0.08,0.005	-0.04	-0.10, 0.01		

Note. Credible estimations are in bold.

The results showed that self-direction was not directly associated with happiness levels in either singles or coupled individuals. However, opposing trends within the two groups—where self-direction increased happiness for those in relationships but decreased it for singles—led to a widening gap in happiness between them. In both groups, self-direction was associated with lower levels of meaning. Overall, it appears that a lower societal emphasis on self-direction may be more beneficial for singles in terms of their sense of meaning and happiness. Surprisingly, in societies where independence is less valued, singles tend to feel better. This finding is particularly striking, as it challenges the common assumption that greater emphasis on independence universally enhances well-being. A possible interpretation of this finding is that a strong societal emphasis on freedom of choice may burden singles with a sense of "blame" for being single, while a reduced focus on individual choice might ease this pressure. In societies where freedom and individual choice are less valued, singlehood may be attributed more to external circumstances or limited opportunities rather than personal choice. Paradoxically, such societies might stereotype singles less and offer them greater support. By reducing the attribution of singlehood to personal responsibility, these cultures may create an environment where singles experience less social pressure and greater acceptance, positively influencing their well-being.

However, the interpretation of the significant associations should not cloud our understanding of the broader picture of the results. Of the four values identified as particularly characteristic of a given cultural context (WEIRD: self-direction and achievement; non-WEIRD: tradition and conformity), two proved to be insignificant, while two had significant effects—but in the opposite direction to our initial hypotheses. Conformity and self-direction were related to happiness and meaning in life, but not to harmony. Many of the significant effects were similar for singles and individuals in relationships. Also, additional analyses conducted on the remaining six values from Schwartz's model revealed only 3 significant correlations (out of 18 possible ones) with the well-being of singles or individuals in relationships (see Appendix: Table 3, Fig. 1). This suggests that the impact of values on an individual's well-being is neither strong nor direct. Our results indicate rather that the association between the dominant values within a given culture and individuals' well-being, as influenced by their relationship status, is complex. Traditional values do not directly reduce the well-being of singles, nor do values related to independence, or the achievement of individual goals significantly enhance it. Paradoxically, although more traditional cultures may impose pressure to adopt conventional social roles, they may also provide substantial support for uncoupled individuals through strong family or neighborhood ties. In contrast, cultures promoting autonomy and independence may offer fewer opportunities to fulfill the need for closeness in other social relationships, which can significantly diminish the well-being of singles. Overall, our results suggest that factors related to fulfilling personal needs for intimate relationships and cultural influences operate simultaneously, likely counterbalancing each other's effects.

Limitations and future directions

While our study offers valuable insights, it is not without limitations. The cross-sectional design limits our ability to draw causal inferences about the association between relationship status and well-being. The reliance on self-reported data may introduce biases, such as social desirability effects. Although the use of previously collected data offers undeniable advantages, it also entails certain drawbacks. A study specifically designed to test our hypotheses would likely include more comprehensive data regarding participants' relationship status. Most importantly, we would collect information on the extent to which being single is perceived as an unpleasant necessity versus a deliberate lifestyle choice. Previous research has demonstrated that the perception of singlehood, whether voluntary or involuntary, significantly impacts well-being. For instance, Hsu and Barrett (2020) found that while never-married, formerly married, and remarried individuals did not differ on negative well-being indicators, they did exhibit differences on positive indicators. Specifically, never-married singles reported the lowest levels of self-acceptance, purpose in life, and social relations, but the highest levels of autonomy compared to formerly married or remarried individuals. Similarly, Apostolou and colleagues (2024) showed that involuntarily single individuals report lower levels of emotional well-being than those who are either voluntarily single or between relationships.

Singles may desire a romantic relationship for various reasons, ranging from intrinsic motivations for connection to external pressures, such as family or societal expectations. For those who perceive their singlehood as voluntary, it may be experienced as a form of autonomy, competence, and freedom. In contrast, individuals who view their singlehood as involuntary may feel lonely and frustrated. It is possible that societal pressure to be in a relationship operates differently when it aligns with a frustrated desire for intimacy, compared to when it conflicts with personal lifestyle preferences. In societies emphasizing individual-oriented values, those who actively choose the single lifestyle and prioritize independence may exhibit higher levels of well-being. Conversely, this may not hold true for individuals who desire a partner but struggle to find one despite their efforts. Therefore, differentiating between voluntary and involuntary singlehood is crucial for understanding its impact on well-being and offers a more nuanced perspective on

Fig. 2. Schwartz's values as moderators of the association between relationship status and well-being. Note. Panels A) and B) show interaction of relationship status with self-direction, while panels C) with conformity. Panel A) shows effect for happiness, B) and C) for meaning.

this phenomenon.

Our study also lacked detailed information about two important aspects of participants' current relationships. The first pertains to the imprecise measurement of relationship duration and type. In future studies, the question of whether a participant is in a long-term relationship should be formulated with greater precision, capturing not only the participant's subjective understanding of what constitutes "long-term," but also the specific duration of the relationship. It would also be important to clarify the types of relationships participants are instructed to consider. Similarly, future research would benefit from asking about participants'specific relationship status—for example, whether they are married, cohabiting, divorced, or remarried—as this could shed light on meaningful differences among various forms of long-term romantic partnerships. The second aspect concerns relationship quality. Scholars have increasingly recognized that not all relationships are preferable to being single, and recent research underscores that relationship quality is a critical determinant of well-being. While individuals in satisfying relationships report higher well-being than singles, those in unsatisfying relationships experience lower well-being compared to typical singles (Pieh et al., 2020). Poor-quality relationships are associated with negative emotions and decreased well-being (Kiecolt-Glaser & Newton, 2001; Lemay et al., 2012). We suspect that the greater disparity in well-being observed between individuals in relationships and singles in WEIRD societies is partly attributable to the higher prevalence of high-quality relationships in these regions. In societies where social pressure to enter or remain in a relationship is lower, and barriers to dissolution are reduced, individuals are more likely to maintain satisfying relationships while leaving those that are unfulfilling or detrimental to well-being. In contrast, within collectivist societies, individuals may remain in relationships due to social expectations, financial dependency, or psychological reliance, which may result in relationships that do not enhance well-being. This suggests that the association between relationship status and well-being may be contingent upon relationship quality and the socio-cultural context. Future research should aim to collect more nuanced data on the underlying causes and types of relationship statuses, examining how these factors interact with cultural norms to influence individual well-being.

The limitations of our study also extend to sample selection and size. There was an unequal distribution of participants across countries and relationship status categories. This aspect would have been easier to control or address if the data had been collected specifically for this study. The sample size in some countries was small, which could have adversely affected the statistical significance of our results. Another limitation stems from the use of convenience sampling, which often leads to an overrepresentation of student populations and undercoverage of other demographic groups. Consequently, even in countries classified as non-WEIRD, this study may have included primarily educated individuals, neglecting less-educated populations. This sampling bias may distort results, as conclusions are based on data subsets that do not accurately reflect the broader population. Future research should prioritize the selection of balanced and representative samples, that proportionally reflect various regions of the world and include a more age-diverse population. This approach may shed light on differences in well-being among younger single and coupled individuals as opposed to their counterparts over the age of 40, who were underrepresented in the current study. Ensuring a more diverse and inclusive participant pool will contribute to a more robust and generalizable understanding of the phenomena under investigation.

Conclusions and Implications

The results of our study revealed a reality that is far more complex and nuanced than our initial hypotheses suggested. Analyzing data from 57 countries, we observed the expected trend that individuals in relationships report higher well-being than singles. However, contrary to our hypotheses, neither the country's classification as WEIRD or non-WEIRD nor the dominant cultural values significantly influenced the magnitude of this disparity in the expected way. Does this imply that cultural factors are irrelevant? Certainly not. Rather, our findings underscore the necessity of accounting for the complexity of the interactions between cultural and individual influences on well-being. Future research should undoubtedly control for individual factors when measuring cultural variables. These factors should encompass the voluntary choice of one's relationship status, the quality of relationships, but also the respondent's perception of their society's emphasis on romantic relationships, and their level of alignment with dominant cultural narratives surrounding romantic unions.

Our study advances prior research in two significant ways. First, unlike most studies supporting Diener's (1984) theory of subjective well-being—which have been predominantly conducted in WEIRD societies (Henrich et al., 2010)—it moves beyond the traditional conceptualization of well-being as a balance of positive and negative emotions. Second, by integrating Schwartz's values framework (Schwartz, 1992), it provides a nuanced perspective on how cultural orientations influence the association between relationship status and well-being. This approach deepens our understanding of the interplay between personal and cultural factors, offering valuable insights into how societal values shape individual experiences of well-being across diverse cultural contexts.

The intricate associations between personal and cultural factors present valuable opportunities for further exploration and the development of tailored interventions at both the public policy and mental health levels. For instance, in cultures that prioritize conformity, fostering a supportive community for single individuals could help mitigate the well-being gap. Conversely, in cultures

that emphasize self-direction, providing support for individual goals within relationships may enhance the well-being of those in partnerships. Ultimately, this study highlights the need for a deeper, more integrated understanding of the sociocultural factors that influence well-being.

CRediT authorship contribution statement

Biljana Gjoneska: Writing – review & editing, Investigation. Michael Harris Bond: Writing – review & editing, Investigation. Mohsen Joshanloo: Writing - review & editing, Investigation. M. Azhar Hussain: Writing - review & editing, Investigation. Eric Raymond Igou: Investigation. Alin Gavreliuc: Investigation. Agata Kocimska-Bortnowska: Investigation. Natalia Kascakova: Investigation. J. Hannah Lee: Investigation. Alicia Walczak: Writing – review & editing, Writing – original draft, Formal analysis, Conceptualization. Nicole Kronberger: Investigation. Magdalena Smieja: Writing – review & editing, Writing – original draft, Supervision, Conceptualization. Arina Malyonova: Investigation. Maciej R. Górski: Writing – review & editing, Project administration, Investigation, Data curation, Conceptualization. Alexander Malyonov: Investigation. Jakub Cacek: Writing - original draft, Formal analysis, Data curation. Magdalena Garvanova: Investigation. Vladimer Gamsakhurdia: Investigation. Olha Vlasenko: Investigation. gation. Nuha Iter: Investigation. Vivian Miu-Chi Lun: Investigation. Claudio Torres: Investigation. Martin Nader: Investigation. Ewa Szumowska: Writing - review & editing, Investigation. Chien-Ru Sun: Investigation, Katarzyna Myślińska-Szarek: Investigation. Vladimir Turjačanin: Investigation. Mateusz Olechowski: Investigation. Victoria Wai Lan Yeung: Writing - review & editing, Investigation. Kiều Thị Thanh Trà: Investigation. Ayu Okvitawanli: Investigation. Julien Teyssier: Writing - review & editing, Investigation. Zoran Pavlović: Investigation. Farida Guemaz: Investigation. Christin-Melanie Vauclair: Investigation. Ewa Palikot: Investigation. Brian W. Hass: Investigation. Wijnand van Tilburg: Investigation. Ángel Sánchez-Rodríguez: Investigation. Iva Poláčková Šolcová: Investigation. Mahmoud Boussena: Investigation. Heyla Selim: Investigation. Fatma Mokadem: Investigation. Adil Samekin: Investigation. Boris Sokolov: Investigation. Elke Murdock: Investigation. David Sirlopú: Investigation. Oriana Mosca: Investigation. Fumiko Kano Glückstad: Investigation. Natalia Soboleva: Investigation. Kuba Krys: Writing – review & editing, Supervision, Resources, Project administration, Investigation, Funding acquisition, Nur Amali Aminnuddin: Investigation. Liman Man Wai Li: Investigation. John Zelenski: Investigation. Laina Ngom-Dieng: Investigation. İdil Işık: Investigation. David Igbokwe: Investigation. Márta Fülöp: Investigation. Ragna Benedikta Garðarsdóttir: Investigation. Mladen Adamovic: Investigation. Arkadiusz Wasiel: Investigation. Belkacem Yakhlef: Investigation. Cai Xing: Investigation. June Chun Yeung: Investigation, Jae-Won Yang: Investigation, Alejandra Domínguez Espinosa: Investigation, Grace Akello: Investigation, Plamen Akaliyski: Investigation, Anna Almakaeva: Investigation, Marwan Al-Zoubi: Investigation, Lily Appoh: Investigation, Petra Anić: Investigation, Inv gation. Patrick Denoux: Investigation. Arno Baltin: Investigation. Joonha Park: Investigation.

Acknowledgements

The present research was supported by multiple funding sources. Financial support was provided by the National Science Center, Poland: grant no. 2020/38/E/HS6/00357 and 2019/34/H/HS6/00597 (GRIEG) awarded to Kuba Krys; grant no. 2020/37/B/HS6/01588 awarded to Ewa Szumowska; and grant no. 2023/49/B/HS6/04109 awarded to Magdalena Śmieja. Additional support was received from the Czech research projects Mediated Society (MEDIS:ON) (CZ.02.01.01/00/23_025/0008713) and Social-Cultural Determinants of Circulation of Representations (COREMind) (CZ.02.01.01/00/23_025/0008715), co-financed by the European Union, awarded to Iva Poláčková Šolcová. Funding was also provided by the National Research, Development and Innovation Office of Hungary (NKFIH-OTKA, grant no. 135963) to Marta Fülöp, and the Brazilian National Council for Scientific and Technological Development (CNPq, grant no. 301298/2018-1) to Claudio Torres. The work of the Russian team was conducted within the framework of the HSE University Basic Research Program.

Appendix

 Table 1

 Demographic information and descriptive statistics for the 57 countries.

Country	n	Coupled	Single	Female %	Age	Happiness	Harmony	Meaning	Self-direction	Achievement	Tradition	Conformi
Algeria	981	541	440	0.53	35.57 (12.61)	2.34 (0.78)	2.52 (0.75)	2.96 (0.74)	-1.64	0.49	1.45	1.71
Australia	545	341	204	0.51	52.76 (19.32)	1.94 (0.99)	2.33 (0.9)	2.26 (1.02)	0.83	-2.01	0.95	0.08
Austria	216	95	121	0.75	27.19 (8.79)	2.39 (0.80)	2.55 (0.70)	2.38 (0.98)	0.98	-0.87	-1.77	-0.43
Azerbaijan	112	39	73	0.19	24.76 (8.73)	1.81 (0.85)	2.28 (0.65)	2.82 (0.82)	-0.06	1.02	-0.42	-0.48
Bosnia and	292	160	132	0.79	29.94 (12.36)	2.33 (0.77)	2.62 (0.66)	2.74 (0.83)	-0.28	-0.14	-0.22	0.66
Herzegovina												
Brazil	67	35	32	0.56	29.82 (9.72)	2.04 (0.89)	2.14 (0.87)	2.42 (1.13)	-0.14	-0.27	-0.29	0.2
Bulgaria	204	120	84	0.51	33.34 (10.72)	2.24 (0.91)	2.59 (0.83)	2.98 (0.93)	-0.11	-0.72	1.35	0.43
Canada	224	70	154	0.81	21.64 (3.43)	2.01 (0.82)	2.15 (0.7)	2.15 (1.02)	0.37	0.92	-0.17	-0.83
Chile	120	78	42	0.74	29.05 (9.79)	2.26 (0.83)	2.5 (0.73)	2.63 (1.03)	-0.41	-1.11	0.47	0.16
China	213	118	95	0.49	26.02 (6.09)	2.28 (0.98)	2.87 (0.75)	2.82 (0.88)	-0.75	0.16	1.19	0.66
Colombia	227	119	108	0.52	29.15 (11.32)	2.76 (0.73)	2.90 (0.70)	2.88 (0.82)	-0.53	0.25	0.13	0.17
Croatia	190	124	66	0.88	35.82 (13.80)	2.36 (0.72)	2.44 (0.60)	2.61 (0.84)	0.36	0.37	-1.26	-0.63
Czechia	161	96	65	0.81	34.22 (13.40)	2.32 (0.77)	2.23 (0.83)	2.34 (0.93)	1.23	-1.36	-0.27	-0.62
Ecuador	168	92	76	0.48	28.67 (9.12)	2.10 (0.96)	2.61 (0.76)	2.69 (1.02)	-0.91	-0.44	0.8	0.43
Estonia	194	123	71	0.75	37.25 (13.68)	2.36 (0.71)	2.49 (0.67)	2.55 (0.86)	0.85	-0.49	-0.62	-0.49
France	155	100	55	0.87	36.22 (14.08)	2.22 (0.86)	2.42 (0.77)	2.33 (0.94)	2.45	-2.13	-1.07	-1.84
Georgia	147	58	89	0.79	34.04 (14.56)	1.63 (0.70)	2.16 (0.65)	2.45 (1.03)	0.53	-1.65	-0.46	-1.35
Germany	247	142	105	0.61	29.37 (10.63)	2.33 (0.78)	2.47 (0.77)	2.35 (1.03)	1.16	-0.75	-1.47	-0.35
Ghana	143	34	109	0.58	24.68 (3.66)	2.01 (0.80)	2.63 (0.77)	2.97 (0.84)	-1.49	1.3	0.53	0.9
Hungary	462	248	214	0.76	24.27 (6.54)	2.35 (0.79)	2.43 (0.80)	2.49 (0.99)	0.37	0.92	-0.44	-0.09
celand	239	114	125	0.7	29.43 (8.91)	2.23 (0.84)	2.40 (0.78)	2.25 (1.03)	0.94	0.89	-0.01	-1.06
ndonesia	196	39	157	0.81	20.59 (2.92)	2.1 (0.74)	2.44 (0.61)	2.27 (0.90)	-0.64	0.43	0.71	1.24
reland	225	91	134	0.62	25.48 (7.70)	2.11 (0.87)	2.14 (0.78)	2.23 (1.01)	0.68	0.96	-0.14	-1.29
taly	116	71	45	0.58	33.26 (12.82)	2.24 (0.80)	2.49 (0.74)	2.56 (0.80)	1.54	0.9	-0.55	-1.19
Jordan	210	99	111	0.66	33.33 (11.11)	2.16 (0.83)	2.35 (0.83)	2.71 (0.84)	-1.92	0.94	0.91	1.4
Kazakhstan	205	84	121	0.72	28.16 (11.64)	2.17 (0.82)	2.54 (0.84)	2.68 (1.04)	0.67	-0.5	-0.66	0
Kenya	131	71	60	0.4	28.79 (6.23)	1.82 (1.01)	2.47 (0.93)	2.88 (0.97)	-0.54	1.41	0.12	0.73
Korea South	200	43	157	0.6	22.45 (2.12)	2.23 (0.81)	2.52 (0.75)	2.57 (0.93)	0.08	0.9	-0.42	0.04
Luxembourg	122	72	50	0.75	38.80 (19.34)	2.46 (0.7)	2.54 (0.75)	2.67 (0.88)	1.41	-1.32	-1.43	-0.32
Madagascar	172	110	62	0.53	29.34 (8.00)	1.63 (0.85)	2.2 (0.79)	2.61 (0.90)	0.17	0.53	-0.04	0.96
Malaysia	1227	482	745	0.72	29.09 (6.59)	1.73 (0.86)	2.19 (0.81)	2.26 (1.01)	-0.6	-0.06	0.78	0.66
Mexico	110	53	57	0.76	34.02 (15.29)	2.54 (0.86)	2.59 (0.82)	2.72 (1.08)	0.37	-0.92	0.94	-0.97
Morocco	135	58	77	0.40	29.40 (7.88)	1.67 (0.94)	2.22 (0.88)	2.65 (0.93)	-2.14	0.21	1.29	1.61
Nigeria	183	54	129	0.68	24.18 (7.67)	1.96 (0.92)	2.3 (0.89)	2.57 (1.00)	-1.09	0.63	0.66	0.83
Palestine	182	77	105	0.61	40.83 (11.42)	2.38 (0.69)	2.41 (0.82)	2.71 (0.89)	-1.72	0.09	1.47	1.29
Peru	118	53	65	0.58	30.40 (13.44)	2.17 (0.86)	2.48 (0.82)	2.71 (0.92)	-0.65	-0.46	0.8	0.98
Philippines	187	74	113	0.65	26.48 (8.65)	1.76 (0.89)	2.08 (0.72)	2.30 (0.98)	0.77	0.07	-0.52	-0.84
Poland	208	121	87	0.51	28.69 (8.02)	1.73 (0.92)	2.19 (0.82)	2.19 (1.08)	1.28	0.58	-1.74	-1.15
Portugal	157	90	67	0.74	36.52 (16.21)	2.24 (0.84)	2.50 (0.75)	2.40 (0.85)	0.32	-1.74	-0.26	-1.11
Romania	217	120	97	0.63	26.19 (8.87)	2.24 (0.86)	2.45 (0.73)	2.55 (0.93)	0.46	0.83	-1.45	-1.33
Russia	370	198	172	0.62	23.02 (3.58)	2.04 (0.91)	2.43 (0.85)	2.51 (1.02)	0.07	0.16	-0.53	-0.27
Saudi Arabia	104	32	72	0.66	26.12 (9.97)	2.09 (0.85)	2.44 (0.79)	2.73 (0.97)	-1.92	0.6	1.17	1.52
Senegal	120	38	82	0.41	24.48 (4.40)	2.00 (0.80)	2.73 (0.65)	2.74 (0.88)	-0.76	-1.04	2.14	1.89
Serbia	184	83	101	0.70	24.11 (3.52)	2.40 (0.71)	2.48 (0.67)	2.46 (0.92)	1.59	1.8	-2.24	-2.35
Slovakia	241	176	65	0.86	39.62 (13.26)	2.34 (0.80)	2.37 (0.78)	2.76 (0.98)	1.57	-2.91	0.1	-0.06
South Africa	410	253	157	0.51	31.90 (11.16)	1.83 (0.99)	2.33 (0.88)	2.62 (0.98)	-0.1	0.4	0.48	0.33
Spain	229	107	122	0.68	25.93 (7.61)	2.36 (0.76)	2.47 (0.75)	2.34 (0.91)	0.71	0.51	-1.68	-0.96
ham	112	61	51	0.53	20.70 (7.01)	2.30 (0.70)	2.60 (0.75)	3.00 (0.85)	-1.29	0.51	-1.00	1.31

(continued on next page)

International Journal of Intercultural Relations 108 (2025) 102232

Table 1 (continued)

Country	n	Coupled	Single	Female %	Age	Happiness	Harmony	Meaning	Self-direction	Achievement	Tradition	Conformity
Taiwan	179	83	96	0.77	27.21 (6.03)	1.52 (0.86)	2.08 (0.88)	2.13 (1.01)	0.39	1.38	-0.73	-1.14
Trinidad and Tobago	100	55	45	0.73	28.21 (9.50)	2.07 (0.92)	2.44 (0.87)	2.68 (1.06)	-0.58	0.68	0.68	0.77
Turkey	1278	718	560	0.58	31.02 (11.85)	2.06 (0.82)	2.55 (0.73)	2.75 (0.83)	-0.52	1.39	-1.37	0.28
Uganda	90	58	32	0.55	28.47 (5.08)	2.51 (0.71)	2.52 (0.69)	2.69 (0.78)	-1.11	-0.19	0.98	0.8
Ukraine	123	65	58	0.72	31.04 (12.35)	1.75 (0.9)	2.40 (0.88)	2.55 (1.07)	0.22	0.17	0.22	-0.65
United Kingdom	153	78	75	0.77	29.07 (12.39)	1.87 (0.85)	2.02 (0.77)	2.06 (0.96)	0.58	0.71	-1.13	-1.44
United States of America	278	177	101	0.67	31.36 (12.00)	1.89 (1.00)	2.22 (0.94)	2.36 (1.08)	0.98	0.14	-0.24	-0.74
Venezuela	224	130	94	0.47	36.95 (12.36)	1.99 (0.95)	2.46 (0.77)	2.72 (0.98)	-0.44	-0.61	1.09	0.79
Vietnam	176	56	120	0.66	24.75 (6.49)	2.19 (0.86)	2.55 (0.72)	2.87 (0.85)	-0.98	0.12	1.17	1.17

Note. For Age, Happiness, Harmony, and Meaning, the values presented without brackets are means, while the values in brackets – standard deviations.

Table 2
Difference in well-being between single and coupled individuals across 57 countries

Algeria $t(930) = -0.18, p = .86$ Australia $t(382) = -6.82, p < .00$ Azerbaijan $t(207) = -2.79, p = .00$ Azerbaijan $t(220) = -1.02, p = .311$ $d = -0.21$ Bosnia and Herzegovina $t(270) = -5.17, p < .00$ Brazil $t(63) = -3.40, p = .001$ $d = -0.83$ Bulgaria $t(173) = -1.57, p = .11$ Canada $t(139) = -1.82, p = .07$ Chile $t(81) = -3.70, p < .001$ $d = -0.72$ China $t(203) = -4.49, p < .00$ Colombia $t(223) = -1.84, p = .06$ Czechia $t(122) = -2.97, p = .00$ Czechia $t(123) = -3.77, p < .00$ Ecuador $t(156) = -0.84, p = .40$ Estonia $t(138) = -2.26, p = .02$ Germany $t(224) = -2.73, p = .00$ Germany $t(224) = -2.73, p = .00$ Germany $t(224) = -0.73, p = .00$ Hungary $t(449) = -3.42, p = .00$ $t(50) = -0.74, p = .462$ $t(49) = -0.42, p = .00$ $t(49) = -0.83, p = .40$ Italy $t(100) = -0.9, p = .369$ $t(194) = -0.83, p = .40$ Kazakhstan $t(198) = -3.43, p = .00$ Korea South $t(93) = 0.24, p = .00$ $t(93) = 0.24, p = .813, t = 0.03$ Luxembourg $t(90) = -1.67, p = .099$ $t(90) = -1.67, p = .099$ $t(108) = -0.63, p = .52$	$\begin{array}{llll} & 0.1, d = -0.62 & t.0. \\ & 0.6, d = -0.38 & t.0. \\ & 0.1, d = -0.61 & t.0. \\ & 0.1, d = -0.61 & t.0. \\ & 0.1, d = -0.22 & t.0. \\ & 0.1, d = -0.26 & t.0. \\ & 0.1, d = -0.25 & t.0. \\ & 0.1, d = -0.25 & t.0. \\ & 0.1, d = -0.47 & t.0. \\ & 0.1, d = -0.62 & t.0. \\ & 0.1, d = -0.62 & t.0. \\ & 0.1, d = -0.34 & t.0. \\ & 0.2, d = -0.34 & t.0. \\ & 0.2, d = -0.35 & t.0. \\ & 0.1, d = -0.35 & t.0. \\ & 0.1, d = -0.35 & t.0. \\ & 0.1, d = -0.32 & t.0. \\ & 0.1, d = -0.32 & t.0. \\ & 0.1, d = -0.32 & t.0. \\ & 0.2, d = -0.32 & t.0. \\ & 0.3, d = -0.11 & t.0. \\ & 0.3, d$	$\begin{array}{l} (946) = -1.35, p = .178, d = -0.0 \\ (9385) = -4.23, p < .001, d = -0.3 \\ (211) = -2.41, p = .017, d = -0.3 \\ (64) = 0.07, p = .941, d = -0.02 \\ (2247) = -3.36, p = .001, d = -0.91 \\ (258) = -3.66, p = .001, d = -0.91 \\ (258) = -3.66, p = .001, d = -0.91 \\ (258) = -1.98, p = .050, d = -0.2 \\ (251) = -1.41, p = .160, d = -0.1 \\ (261) = -1.79, p = .077, d = -0.35 \\ (223) = -0.37, p = .079, d = -0.0 \\ (223) = -0.37, p = .079, d = -0.0 \\ (231) = -2.24, p = .025, d = -0.3 \\ (2131) = -2.28, p = .025, d = -0.3 \\ (2131) = -1.59, p = .114, d = -0.1 \\ (2132) = -3.72, p < .001, d = -0.6 \\ (226) = -1.51, p = .133, d = -0.2 \\ (2132) = -3.72, p < .001, d = -0.6 \\ (226) = -2.96, p = .003, d = -0.3 \\ (271) = -0.65, p = .517, d = -0.11 \\ (2439) = -2.34, p = .020, d = -0.2 \\ (237) = -1.4, p = .164, d = -0.18 \\ (248) = -0.13, p = .896, d = -0.03 \\ (2201) = -1.17, p = .244, d = -0.1 \\ (289) = -2.01, p = .047, d = -0.39 \\ (201) = -1.17, p = .244, d = -0.39 \\ (201) = -1.17, p = .244, d = -0.39 \\ (201) = -1.17, p = .047, d = -0.39 \\ (201) = -0.01, p = .0047, $	t(358) = -5.23, p < .001, d = -0.49 $t(200) = -3.23, p = .001, d = -0.44$ $t(61) = 1.02, p = .312,$ $d = 0.22$ $t(267) = -4.13, p < .001, d = -0.48$ $t(63) = -1.94, p = .057, d = -0.48$ $t(71) = -1.68, p = .095, d = -0.24$ $t(710) = -3.01, p = .003, d = -0.39$ $t(74) = -3.83, p < .001, d = -0.61$ $t(120) = -0.75, p = .454, d = -0.10$ $t(122) = -4.13, p < .001, d = -0.62$ $t(122) = -4.13, p < .001, d = -0.62$ $t(115) = -3.10, p = .002, d = -0.52$ $t(162) = -1.77, p = .079, d = -0.27$ $t(162) = -1.77, p = .079, d = -0.27$ $t(162) = -1.77, p = .079, d = -0.27$ $t(163) = -1.88, p = .381, d = -0.15$ $t(133) = -2.82, p = .005, d = -0.48$ $t(210) = -2.84, p = .005, d = -0.48$ $t(35) = 1.34, p = .185,$ $d = 0.24$ $t(446) = -4.00, p < .001, d = -0.37$ $t(236) = -2.90, p = .004, d = -0.38$ $t(49) = -0.48, p = .635, d = -0.01$
Australia $t(382) = -6.82, p < .00$ Austria $t(207) = -2.79, p = .00$ Azerbaijan $t(22) = -1.02, p = .311$ $d = -0.21$ Bosnia and Herzegovina $t(382) = -6.82, p < .00$ $t(72) = -1.02, p = .311$ $d = -0.21$ Bosnia and Herzegovina $t(380) = -5.17, p < .00$ $t(380) = -5.17, p < .00$ $t(380) = -5.17, p < .00$ $t(380) = -5.17, p < .00$ $t(390) = -1.57, p = .11$ $t(139) = -1.82, p = .07$ $t(139) = -1.82, p = .07$ $t(203) = -4.49, p < .00$ $t(203) = -4.49, p < .00$ $t(203) = -4.49, p < .00$ $t(223) = -1.84, p = .06$ $t(123) = -3.77, p < .00$ $t(123) = -3.77, p < .00$ $t(138) = -2.26, p = .02$ $t(138) = -2.26, p = .02$ $t(156) = -0.84, p = .40$ $t(138) = -2.26, p = .02$ $t(156) = -0.84, p = .40$ $t(138) = -2.26, p = .02$ $t(156) = -0.74, p = .462$ $d = -0.15$ Hungary $t(224) = -2.73, p = .00$ $t(50) = -0.74, p = .462$ $d = -0.15$ Hungary $t(449) = -3.42, p = .00$ $d = -0.15$ Ireland $t(194) = -0.68, p = .498$ $d = -0.13$ Ireland $t(194) = -0.83, p = .40$ Italy $t(100) = -0.9, p = .369$ $d = -0.17$ Jordan $t(200) = -0.33, p = .74$ Kazakhstan $t(198) = -3.43, p = .00$ $t(212) = -1.98, p = .05$ $d = -0.35$ Korea South $t(93) = 0.24, p = .813, d = 0.03$ Luxembourg $t(90) = -1.67, p = .099$ $d = -0.32$ Madagascar $t(138) = -3.08, p = .00$ Malaysia $t(1018) = -6.24, p < .00$	$\begin{array}{llll} & 0.1, d = -0.62 & t.0. \\ & 0.6, d = -0.38 & t.0. \\ & 0.1, d = -0.61 & t.0. \\ & 0.1, d = -0.61 & t.0. \\ & 0.1, d = -0.22 & t.0. \\ & 0.1, d = -0.26 & t.0. \\ & 0.1, d = -0.25 & t.0. \\ & 0.1, d = -0.25 & t.0. \\ & 0.1, d = -0.47 & t.0. \\ & 0.1, d = -0.62 & t.0. \\ & 0.1, d = -0.62 & t.0. \\ & 0.1, d = -0.34 & t.0. \\ & 0.2, d = -0.34 & t.0. \\ & 0.2, d = -0.35 & t.0. \\ & 0.1, d = -0.35 & t.0. \\ & 0.1, d = -0.35 & t.0. \\ & 0.1, d = -0.32 & t.0. \\ & 0.1, d = -0.32 & t.0. \\ & 0.1, d = -0.32 & t.0. \\ & 0.2, d = -0.32 & t.0. \\ & 0.3, d = -0.11 & t.0. \\ & 0.3, d$	$\begin{array}{l} (385) = -4.23, p < .001, d = -0.3 \\ (211) = -2.41, p = .017, d = -0.3 \\ (64) = 0.07, p = .941, \\ d = 0.02 \\ (2247) = -3.36, p = .001, d = -0.4 \\ (58) = -3.66, p = .001, d = -0.91 \\ (158) = -1.98, p = .050, d = -0.2 \\ (151) = -1.41, p = .160, d = -0.1 \\ (81) = -1.79, p = .077, d = -0.35 \\ (223) = -0.37, p = .079, d = -0.35 \\ (223) = -0.37, p = .079, d = -0.0 \\ (233) = -2.41, p = .017, d = -0.3 \\ (2131) = -2.28, p = .025, d = -0.3 \\ (2131) = -2.28, p = .025, d = -0.3 \\ (2131) = -1.59, p = .114, d = -0.1 \\ (2132) = -1.51, p = .133, d = -0.2 \\ (2102) = -1.51, p = .133, d = -0.2 \\ (226) = -2.96, p = .003, d = -0.3 \\ (226) = -2.96, p = .003, d = -0.3 \\ (227) = -0.65, p = .517, d = -0.11 \\ (2439) = -2.34, p = .020, d = -0.2 \\ (237) = -1.4, p = .164, d = -0.18 \\ (248) = -0.13, p = .896, d = -0.03 \\ (2201) = -1.17, p = .244, d = -0.1 \end{array}$	t(358) = -5.23, p < .001, d = -0.49 $t(200) = -3.23, p = .001, d = -0.44$ $t(61) = 1.02, p = .312,$ $d = 0.22$ $t(267) = -4.13, p < .001, d = -0.48$ $t(63) = -1.94, p = .057, d = -0.48$ $t(71) = -1.68, p = .095, d = -0.24$ $t(710) = -3.01, p = .003, d = -0.39$ $t(74) = -3.83, p < .001, d = -0.61$ $t(120) = -0.75, p = .454, d = -0.10$ $t(122) = -4.13, p < .001, d = -0.62$ $t(122) = -4.13, p < .001, d = -0.62$ $t(115) = -3.10, p = .002, d = -0.52$ $t(162) = -1.77, p = .079, d = -0.27$ $t(162) = -1.77, p = .079, d = -0.27$ $t(162) = -1.77, p = .079, d = -0.27$ $t(163) = -1.88, p = .381, d = -0.15$ $t(133) = -2.82, p = .005, d = -0.48$ $t(210) = -2.84, p = .005, d = -0.48$ $t(35) = 1.34, p = .185,$ $d = 0.24$ $t(446) = -4.00, p < .001, d = -0.37$ $t(236) = -2.90, p = .004, d = -0.38$ $t(49) = -0.48, p = .635, d = -0.01$
Austria $t(207) = -2.79, p = .00$ $t(72) = -1.02, p = .311$ $d = -0.21$ $t(270) = -5.17, p < .00$ $d = -0.83$ Bulgaria $t(173) = -1.57, p = .11$ Canada $t(139) = -1.82, p = .07$ Chile $t(213) = -0.72$ China $t(223) = -1.84, p = .00$ Colombia $t(223) = -1.84, p = .00$ Cozechia $t(122) = -2.97, p = .00$ Czechia $t(123) = -3.77, p < .00$ Ezuador $t(156) = -0.84, p = .40$ Estonia $t(138) = -2.26, p = .02$ France $t(115) = -1.56, p = .12$ Georgia $t(125) = -3.46, p = .00$ Germany $t(224) = -2.73, p = .00$ Ghana $t(50) = -0.74, p = .462$ $d = -0.15$ Hungary $t(449) = -3.42, p = .00$ $d = -0.13$ Ireland $t(194) = -0.68, p = .498$ $d = -0.17$ Jordan $t(200) = -0.33, p = .40$ Kazakhstan $t(198) = -3.43, p = .00$ Kazakhstan $t(198) = -3.43, p = .00$ Luxembourg $t(90) = -1.67, p = .099$ $d = -0.35$ Korea South $t(93) = 0.24, p = .813, d = 0.03$ Luxembourg $t(1018) = -6.24, p < .00$ Madagascar $t(1018) = -6.24, p < .00$	$\begin{array}{llll} & & & & & & & & & & & & & & & & & $	$\begin{array}{l} (2(211) = -2.41, p = .017, d = -0.3) \\ (2(44) = 0.07, p = .941, d = 0.02) \\ (2(247) = -3.36, p = .001, d = -0.4) \\ (2(58) = -3.66, p = .001, d = -0.91) \\ (2(58) = -3.66, p = .001, d = -0.91) \\ (2(58) = -1.98, p = .050, d = -0.2) \\ (2(51) = -1.41, p = .160, d = -0.1) \\ (2(51) = -1.41, p = .160, d = -0.1) \\ (2(51) = -1.79, p = .077, d = -0.35) \\ (2(23) = -0.37, p = .709, d = -0.3) \\ (2(23) = -0.37, p = .709, d = -0.3) \\ (2(31) = -2.41, p = .017, d = -0.3) \\ (2(31) = -2.28, p = .025, d = -0.3) \\ (2(31) = -1.55, p = .214, d = -0.1) \\ (2(36) = -1.59, p = .114, d = -0.2) \\ (2(32) = -3.72, p < .001, d = -0.6) \\ (2(26) = -2.96, p = .003, d = -0.3) \\ (2(26) = -2.96, p = .517, d = -0.11) \\ (2(37) = -0.65, p = .517, d = -0.11) \\ (2(37) = -1.4, p = .164, d = -0.18) \\ (2(48) = -0.13, p = .896, d = -0.03) \\ (2(201) = -1.17, p = .244, d = -0.1) \end{array}$	t(200) = -3.23, p = .001, d = -0.44 $t(61) = 1.02, p = .312,$ $d = 0.22$ $t(267) = -4.13, p < .001, d = -0.49$ $t(63) = -1.94, p = .057, d = -0.48$ $t(171) = -1.68, p = .095, d = -0.24$ $t(170) = -3.01, p = .003, d = -0.39$ $t(74) = -3.83, p < .001, d = -0.61$ $t(120) = -0.75, p = .454, d = -0.16$ $t(122) = -4.13, p < .001, d = -0.63$ $t(115) = -3.10, p = .002, d = -0.52$ $t(162) = -1.77, p = .079, d = -0.27$ $t(167) = 1.19, p = .236, d = 0.17$ $t(104) = -0.88, p = .381, d = -0.16$ $t(133) = -2.82, p = .005, d = -0.46$ $t(210) = -2.84, p = .005, d = -0.46$ $t(210) = -2.84, p = .005, d = -0.46$ $t(31) = 1.34, p = .185, d = 0.24$ $t(446) = -4.00, p < .001, d = -0.37$ $t(236) = -2.90, p = .004, d = -0.38$ $t(49) = -0.48, p = .635, d = -0.01$
Azerbaijan $t(72) = -1.02, p = .311$ $d = -0.21$ Bosnia and Herzegovina $t(270) = -5.17, p < .00$ $d = -0.83$ Bulgaria $t(173) = -1.57, p = .11$ Canada $t(139) = -1.82, p = .07$ Chile $t(81) = -3.70, p < .001$ $d = -0.72$ China $t(203) = -4.49, p < .00$ Colombia $t(223) = -1.84, p = .00$ Czechia $t(122) = -2.97, p = .00$ Ezuador $t(156) = -0.84, p = .40$ Estonia $t(138) = -2.26, p = .02$ France $t(115) = -1.56, p = .12$ Georgia $t(125) = -3.46, p = .00$ Ghana $t(50) = -0.74, p = .462$ $d = -0.15$ Hungary $t(449) = -3.42, p = .00$ Ghana $t(54) = -0.68, p = .498$ $d = -0.13$ Ireland $t(194) = -0.83, p = .40$ Italy $t(100) = -0.9, p = .369$ $d = -0.17$ Jordan $t(200) = -0.33, p = .74$ Kazakhstan $t(198) = -3.43, p = .00$ Kenya $t(122) = -1.98, p = .05$ $d = -0.35$ Korea South $t(93) = 0.24, p = .813, d = 0.03$ Luxembourg $t(90) = -1.67, p = .099$ $d = -0.32$ Madagascar $t(1018) = -6.24, p < .00$	$\begin{array}{llll} & & & & & & & & & & & & \\ & & & & & & $	$\begin{array}{l} (64) = 0.07, p = .941, \\ d = 0.02 \\ (2247) = -3.36, p = .001, d = -0.4 \\ (58) = -3.66, p = .001, d = -0.91 \\ (158) = -1.98, p = .050, d = -0.2 \\ (151) = -1.41, p = .160, d = -0.1 \\ (281) = -1.79, p = .077, d = -0.35 \\ (2176) = -3.62, p < .001, d = -0.5 \\ (223) = -0.37, p = .709, d = -0.0 \\ (232) = -2.41, p = .017, d = -0.3 \\ (2131) = -2.28, p = .025, d = -0.3 \\ (2161) = -1.25, p = .214, d = -0.1 \\ (2162) = -1.51, p = .133, d = -0.2 \\ (2102) = -1.51, p = .133, d = -0.2 \\ (226) = -2.96, p = .003, d = -0.3 \\ (226) = -2.96, p = .517, d = -0.11 \\ (237) = -1.4, p = .164, d = -0.18 \\ (248) = -0.13, p = .896, d = -0.03 \\ (249) = -1.17, p = .244, d = -0.1 \\ (2401) = -1.1$	t(61) = 1.02, p = .312, $d = 0.22$ $t(267) = -4.13, p < .001, d = -0.49$ $t(63) = -1.94, p = .057, d = -0.48$ $t(171) = -1.68, p = .095, d = -0.24$ $t(170) = -3.01, p = .003, d = -0.39$ $t(74) = -3.83, p < .001, d = -0.61$ $t(120) = -0.75, p = .454, d = -0.10$ $t(122) = -4.13, p < .001, d = -0.63$ $t(115) = -3.10, p = .002, d = -0.52$ $t(162) = -1.77, p = .079, d = -0.27$ $t(167) = 1.19, p = .236, d = 0.17$ $t(104) = -0.88, p = .381, d = -0.15$ $t(210) = -2.84, p = .005, d = -0.45$ $t(210) = -2.84, p = .005, d = -0.45$ $t(210) = -2.84, p = .005, d = -0.37$ $t(33) = 1.34, p = .185, d = 0.24$ $t(446) = -4.00, p < .001, d = -0.37$ $t(236) = -2.90, p = .004, d = -0.38$ $t(49) = -0.48, p = .635, d = -0.01$
Bosnia and Herzegovina $d=-0.21$ $t(270)=-5.17, p<.00$ $t(30)=-5.17, p<$	$\begin{array}{c} d \\ d \\ d \\ d \\ d \\ d \\ d \\ d \\ d \\ d $	d = 0.02 $(2247) = -3.36, p = .001, d = -0.4$ $(588) = -3.66, p = .001, d = -0.91$ $(158) = -1.98, p = .050, d = -0.2$ $(151) = -1.41, p = .160, d = -0.1$ $(161) = -1.79, p = .077, d = -0.35$ $(176) = -3.62, p < .001, d = -0.5$ $(223) = -0.37, p = .709, d = -0.0$ $(132) = -2.41, p = .017, d = -0.3$ $(131) = -2.28, p = .025, d = -0.3$ $(136) = -1.59, p = .114, d = -0.1$ $(136) = -1.59, p = .114, d = -0.2$ $(102) = -1.51, p = .133, d = -0.2$ $(2026) = -2.96, p = .003, d = -0.3$ $(71) = -0.65, p = .517, d = -0.11$ $(239) = -2.34, p = .020, d = -0.2$ $(237) = -1.4, p = .164, d = -0.18$ $(488) = -0.13, p = .896, d = -0.03$ $(201) = -1.17, p = .244, d = -0.1$	d = 0.22 $t(267) = -4.13, p < .001, d = -0.49$ $t(63) = -1.94, p = .057, d = -0.48$ $t(171) = -1.68, p = .095, d = -0.24$ $t(170) = -3.01, p = .003, d = -0.39$ $t(74) = -3.83, p < .001, d = -0.61$ $t(120) = -0.75, p = .454, d = -0.10$ $t(122) = -4.13, p < .001, d = -0.65$ $t(115) = -3.10, p = .002, d = -0.52$ $t(162) = -1.77, p = .079, d = -0.27$ $t(164) = -0.88, p = .381, d = -0.17$ $t(104) = -0.88, p = .381, d = -0.15$ $t(133) = -2.82, p = .005, d = -0.46$ $t(210) = -2.84, p = .005, d = -0.37$ $t(63) = 1.34, p = .185, d = 0.24$ $t(446) = -4.00, p < .001, d = -0.38$ $t(236) = -2.90, p = .004, d = -0.38$ $t(49) = -0.48, p = .635, d = -0.01$
Bosnia and Herzegovina $t(270) = -5.17, p < .00$ Brazil $t(63) = -3.40, p = .001$ $d = -0.83$ Bulgaria $t(173) = -1.57, p = .11$ Canada $t(139) = -1.82, p = .07$ Chile $t(81) = -3.70, p < .001$ $d = -0.72$ China $t(203) = -4.49, p < .00$ Colombia $t(223) = -1.84, p = .06$ Croatia $t(122) = -2.97, p = .00$ Ecuador $t(138) = -2.26, p = .02$ France $t(115) = -1.56, p = .12$ Georgia $t(125) = -3.46, p = .00$ Germany $t(224) = -2.73, p = .00$ Ghana $t(50) = -0.74, p = .462$ $d = -0.15$ Hungary $t(449) = -3.42, p = .00$ $d = -0.23$ Indonesia $t(194) = -0.83, p = .40$ Italy $t(100) = -0.9, p = .369$ $d = -0.17$ Jordan $t(194) = -0.33, p = .74$ Kazakhstan $t(198) = -3.43, p = .00$ Kenya $t(122) = -1.98, p = .05$ $d = -0.35$ Korea South $t(93) = 0.24, p = .099$ $d = -0.32$ Madagascar $t(138) = -3.08, p = .00$ Malaysia $t(1018) = -6.24, p < .00$	$\begin{array}{lll} 01, d = -0.61 & t0.\\ 1, & t0.\\ 1, & t0.\\ 1, & t0.\\ 21, d = -0.22 & t0.\\ 27, d = -0.26 & t0.\\ 1, & t0.\\ 25, d = -0.25 & t0.\\ 25, d = -0.47 & t0.\\ 25, d = -0.13 & t0.\\ 25, d = -0.34 & t0.\\ 22, d = -0.26 & t0.\\ 21, d = -0.58 & t0.\\ 22, d = -0.35 & t0.\\ 23, d = -0.35 & t0.\\ 24, d = -0.35 & t0.\\ 25, d = -0.35 & t0.\\ 26, d = -0.35 & t0.\\ 27, d = -0.35 & t0.\\ 28, d = -0.32 & t0.\\ 29, d = -0.32 & t0.\\ 39, d = -0.31 & t0.\\ 39, d = -0.11 & t0.\\ 39, d = -0.11 & t0.\\ 40,	$\begin{array}{l} (247) = -3.36, \ p = .001, \ d = -0.4 \\ (258) = -3.66, \ p = .001, \ d = -0.91 \\ (2158) = -1.98, \ p = .050, \ d = -0.2 \\ (2151) = -1.41, \ p = .160, \ d = -0.1 \\ (2151) = -1.49, \ p = .077, \ d = -0.35 \\ (2161) = -1.79, \ p = .077, \ d = -0.35 \\ (2161) = -3.62, \ p < .001, \ d = -0.5 \\ (223) = -0.37, \ p = .709, \ d = -0.0 \\ (223) = -2.41, \ p = .017, \ d = -0.3 \\ (2131) = -2.28, \ p = .025, \ d = -0.3 \\ (2136) = -1.55, \ p = .214, \ d = -0.1 \\ (2136) = -1.59, \ p = .114, \ d = -0.2 \\ (2102) = -1.51, \ p = .133, \ d = -0.2 \\ (2132) = -3.72, \ p < .001, \ d = -0.6 \\ (226) = -2.96, \ p = .003, \ d = -0.3 \\ (211) = -0.65, \ p = .517, \ d = -0.11 \\ (2139) = -2.34, \ p = .020, \ d = -0.2 \\ (237) = -1.4, \ p = .164, \ d = -0.18 \\ (248) = -0.13, \ p = .896, \ d = -0.03 \\ (201) = -1.17, \ p = .244, \ d = -0.1 \end{array}$	t(267) = -4.13, p < .001, d = -0.49 $t(63) = -1.94, p = .057, d = -0.48$ $t(171) = -1.68, p = .095, d = -0.24$ $t(170) = -3.01, p = .003, d = -0.39$ $t(74) = -3.83, p < .001, d = -0.61$ $t(220) = -0.75, p = .454, d = -0.10$ $t(112) = -4.13, p < .001, d = -0.63$ $t(112) = -4.13, p < .001, d = -0.63$ $t(112) = -3.10, p = .002, d = -0.52$ $t(162) = -1.77, p = .079, d = -0.27$ $t(167) = 1.19, p = .236, d = 0.17$ $t(104) = -0.88, p = .381, d = -0.15$ $t(133) = -2.82, p = .005, d = -0.46$ $t(210) = -2.84, p = .005, d = -0.37$ $t(63) = 1.34, p = .185, d = 0.24$ $t(446) = -4.00, p < .001, d = -0.37$ $t(236) = -2.90, p = .004, d = -0.38$ $t(49) = -0.48, p = .635, d = -0.01$
Brazil $t(63) = -3.40, p = .001$ $d = -0.83$ Bulgaria $t(173) = -1.57, p = .11$ Canada $t(139) = -1.82, p = .07$ Chile $t(81) = -3.70, p < .001$ $d = -0.72$ China $t(203) = -4.49, p < .00$ Colombia $t(223) = -1.84, p = .06$ Czechia $t(122) = -2.97, p = .00$ Czechia $t(123) = -3.77, p < .00$ Ezuador $t(156) = -0.84, p = .40$ Estonia $t(138) = -2.26, p = .02$ France $t(115) = -1.56, p = .12$ Georgia $t(125) = -3.46, p = .00$ Germany $t(224) = -2.73, p = .00$ Ghana $t(50) = -0.74, p = .462$ $d = -0.15$ Hungary $t(449) = -3.42, p = .00$ $d = -0.13$ Ireland $t(234) = -1.76, p = .08$ $d = -0.13$ Ireland $t(194) = -0.83, p = .40$ Italy $t(100) = -0.9, p = .369$ $d = -0.17$ Jordan $t(200) = -0.33, p = .74$ Kazakhstan $t(198) = -3.43, p = .00$ Kazakhstan $t(198) = -3.43, p = .00$ Korea South $t(93) = 0.24, p = .813, d = 0.03$ Luxembourg $t(90) = -1.67, p = .099$ $d = -0.32$ Madagascar $t(138) = -3.08, p = .00$ Malaysia $t(1018) = -6.24, p < .00$	$\begin{array}{lll} d, & d(0), & d(0), & d(0), \\ d(0), & d(0), & $	$\begin{array}{l} (258) = -3.66, p = .001, d = -0.91 \\ (2158) = -1.98, p = .050, d = -0.2 \\ (2151) = -1.41, p = .160, d = -0.1 \\ (281) = -1.79, p = .077, d = -0.35 \\ (2176) = -3.62, p < .001, d = -0.5 \\ (223) = -0.37, p = .709, d = -0.0 \\ (2132) = -2.41, p = .017, d = -0.3 \\ (2131) = -2.28, p = .025, d = -0.3 \\ (2131) = -1.25, p = .214, d = -0.1 \\ (2136) = -1.59, p = .114, d = -0.2 \\ (2102) = -1.51, p = .133, d = -0.2 \\ (2102) = -0.51, p = .001, d = -0.6 \\ (226) = -2.96, p = .003, d = -0.3 \\ (271) = -0.65, p = .517, d = -0.11 \\ (2439) = -2.34, p = .020, d = -0.2 \\ (237) = -1.4, p = .164, d = -0.18 \\ (248) = -0.13, p = .896, d = -0.03 \\ (2401) = -1.17, p = .244, d = -0.1 \end{array}$	t(63) = -1.94, p = .057, d = -0.48 $t(171) = -1.68, p = .095, d = -0.24$ $t(170) = -3.01, p = .003, d = -0.39$ $t(74) = -3.83, p < .001, d = -0.61$ $t(220) = -0.75, p = .454, d = -0.16$ $t(122) = -4.13, p < .001, d = -0.62$ $t(115) = -3.10, p = .002, d = -0.52$ $t(162) = -1.77, p = .079, d = -0.27$ $t(167) = 1.19, p = .236, d = 0.17$ $t(104) = -0.88, p = .381, d = -0.15$ $t(133) = -2.82, p = .005, d = -0.37$ $t(63) = 1.34, p = .185, d = 0.24$ $t(246) = -4.00, p < .001, d = -0.37$ $t(236) = -2.90, p = .004, d = -0.38$ $t(49) = -0.48, p = .635, d = -0.01$
Bulgaria $t(173) = -1.87, p = .11$ Canada $t(139) = -1.82, p = .07$ Chile $t(81) = -3.70, p < .001$ $d = -0.72$ China $t(233) = -4.49, p < .00$ Colombia $t(223) = -1.84, p = .06$ Croatia $t(122) = -2.97, p = .00$ Czechia $t(123) = -3.77, p < .00$ Ezuador $t(156) = -0.84, p = .40$ Estonia $t(138) = -2.26, p = .02$ France $t(115) = -1.56, p = .12$ Georgia $t(125) = -3.46, p = .00$ Germany $t(224) = -2.73, p = .00$ Ghana $t(50) = -0.74, p = .462$ $d = -0.15$ Hungary $t(449) = -3.42, p = .00$ Indonesia $t(194) = -0.68, p = .498$ $d = -0.13$ Ireland $t(194) = -0.63, p = .40$ Italy $t(100) = -0.9, p = .369$ $d = -0.17$ Jordan $t(200) = -0.33, p = .74$ Kazakhstan $t(198) = -3.43, p = .00$ Kenya $t(122) = -1.98, p = .05$ $d = -0.35$ Korea South $t(93) = 0.24, p = .019$ $d = -0.32$ Madagascar $t(138) = -3.08, p = .00$ Malaysia $t(1018) = -6.24, p < .00$	19, $d = -0.22$	$\begin{array}{l} (158) = -1.98, p = .050, d = -0.2 \\ (151) = -1.41, p = .160, d = -0.1 \\ (281) = -1.79, p = .077, d = -0.35 \\ (216) = -3.62, p < .001, d = -0.5 \\ (223) = -0.37, p = .709, d = -0.0 \\ (223) = -0.37, p = .709, d = -0.0 \\ (2132) = -2.41, p = .017, d = -0.3 \\ (2131) = -2.28, p = .025, d = -0.3 \\ (2161) = -1.25, p = .214, d = -0.1 \\ (2162) = -1.59, p = .114, d = -0.2 \\ (2102) = -1.51, p = .133, d = -0.2 \\ (2132) = -3.72, p < .001, d = -0.6 \\ (226) = -2.96, p = .003, d = -0.3 \\ (271) = -0.65, p = .517, d = -0.11 \\ (237) = -1.4, p = .164, d = -0.18 \\ (248) = -0.13, p = .896, d = -0.03 \\ (201) = -1.17, p = .244, d = -0.1 \end{array}$	t(171) = -1.68, p = .095, d = -0.24 $t(170) = -3.01, p = .003, d = -0.35$ $t(74) = -3.83, p < .001, d = -0.61$ $t(173) = -4.33, p < .001, d = -0.61$ $t(220) = -0.75, p = .454, d = -0.10$ $t(122) = -4.13, p < .001, d = -0.65$ $t(115) = -3.10, p = .002, d = -0.52$ $t(162) = -1.77, p = .079, d = -0.27$ $t(162) = -1.77, p = .236, d = 0.17$ $t(104) = -0.88, p = .381, d = -0.15$ $t(133) = -2.82, p = .005, d = -0.45$ $t(210) = -2.84, p = .005, d = -0.45$ $t(230) = -2.84, p = .005, d = -0.37$ $t(63) = 1.34, p = .185, d = 0.24$ $t(446) = -4.00, p < .001, d = -0.37$ $t(236) = -2.90, p = .004, d = -0.38$ $t(49) = -0.48, p = .635, d = -0.01$ $t(199) = -1.41, p = .161, d = -0.15$
Bulgaria $t(173) = -1.57, p = .11$ Canada $t(139) = -1.82, p = .07$ Chile $t(81) = -3.70, p < .001$ $d = -0.72$ China $t(203) = -4.49, p < .00$ Colombia $t(223) = -1.84, p = .06$ Croatia $t(122) = -2.97, p = .00$ Czechia $t(123) = -3.77, p < .00$ Ecuador $t(156) = -0.84, p = .40$ Estonia $t(138) = -2.26, p = .02$ France $t(115) = -1.56, p = .12$ Georgia $t(125) = -3.46, p = .00$ Germany $t(224) = -2.73, p = .00$ Ghana $t(50) = -0.74, p = .462$ $d = -0.15$ Hungary $t(449) = -3.42, p = .00$ Iceland $t(234) = -1.76, p = .08$ $d = -0.23$ Indonesia $t(54) = -0.68, p = .498$ $d = -0.13$ Ireland $t(194) = -0.83, p = .40$ Italy $t(100) = -0.9, p = .369$ $d = -0.17$ Jordan $t(200) = -0.33, p = .74$ Kazakhstan $t(198) = -3.43, p = .00$ Kenya $t(122) = -1.98, p = .05$ $d = -0.35$ Korea South $t(93) = 0.24, p = .813, d = 0.03$ Luxembourg $t(90) = -1.67, p = .099$ $d = -0.32$ Madagascar $t(138) = -3.08, p = .00$ Malaysia $t(1018) = -6.24, p < .00$	71, d = -0.26 $11, d = -0.62$ $12, d = -0.62$ $13, d = -0.62$ $14, d = -0.47$ $15, d = -0.47$ $15, d = -0.13$ $15, d = -0.34$ $15, d = -0.34$ $15, d = -0.35$ $15, d = -0.35$ $15, d = -0.35$ $15, d = -0.32$ $15, d = -0.32$ $15, d = -0.32$ $15, d = -0.32$ $15, d = -0.31$ $15, d = -0.32$ $15, d = -0.31$	$\begin{array}{l} (151) = -1.41, p = .160, d = -0.1 \\ (281) = -1.79, p = .077, d = -0.35 \\ (2176) = -3.62, p < .001, d = -0.5 \\ (223) = -0.37, p = .709, d = -0.0 \\ (132) = -2.41, p = .017, d = -0.3 \\ (131) = -2.28, p = .025, d = -0.3 \\ (161) = -1.25, p = .214, d = -0.1 \\ (136) = -1.59, p = .114, d = -0.2 \\ (102) = -1.51, p = .133, d = -0.2 \\ (2026) = -2.96, p = .003, d = -0.3 \\ (226) = -2.96, p = .517, d = -0.11 \\ (237) = -1.4, p = .164, d = -0.18 \\ (248) = -0.13, p = .896, d = -0.03 \\ (248) = -0.13, p = .896, d = -0.03 \\ (201) = -1.17, p = .244, d = -0.1 \end{array}$	t(170) = -3.01, p = .003, d = -0.39 $t(74) = -3.83, p < .001, d = -0.61$ $t(173) = -4.33, p < .001, d = -0.61$ $t(220) = -0.75, p = .454, d = -0.16$ $t(122) = -4.13, p < .001, d = -0.63$ $t(115) = -3.10, p = .002, d = -0.52$ $t(162) = -1.77, p = .079, d = -0.27$ $t(167) = 1.19, p = .236, d = 0.17$ $t(104) = -0.88, p = .381, d = -0.15$ $t(210) = -2.84, p = .005, d = -0.46$ $t(210) = -2.84, p = .005, d = -0.46$ $t(33) = 1.34, p = .185, d = 0.24$ $t(446) = -4.00, p < .001, d = -0.37$ $t(236) = -2.90, p = .004, d = -0.38$ $t(49) = -0.48, p = .635, d = -0.01$
Canada $t(139) = -1.82, p = .07$ Chile $t(81) = -3.70, p < .001$ $d = -0.72$ China $t(203) = -4.49, p < .00$ Colombia $t(223) = -1.84, p = .06$ Croatia $t(122) = -2.97, p < .00$ Ecuador $t(156) = -0.84, p = .40$ Estonia $t(138) = -2.26, p = .02$ France $t(115) = -1.56, p = .12$ Georgia $t(125) = -3.46, p = .00$ Ghana $t(50) = -0.74, p = .462$ $d = -0.15$ Hungary $t(449) = -3.42, p = .00$ Iceland $t(34) = -0.76, p = .08$ $d = -0.13$ Ireland $t(194) = -0.83, p = .40$ Italy $t(100) = -0.9, p = .369$ $d = -0.17$ Jordan $t(200) = -0.33, p = .74$ Kazakhstan $t(198) = -3.43, p = .00$ Kenya $t(122) = -1.98, p = .05$ $d = -0.35$ Korea South $t(93) = 0.24, p = .099$ $d = -0.32$ Madagascar $t(138) = -3.08, p = .00$ Malaysia $t(1018) = -6.24, p < .00$	71, d = -0.26 $11, d = -0.62$ $12, d = -0.62$ $13, d = -0.62$ $14, d = -0.47$ $15, d = -0.47$ $15, d = -0.13$ $15, d = -0.34$ $15, d = -0.34$ $15, d = -0.35$ $15, d = -0.35$ $15, d = -0.35$ $15, d = -0.32$ $15, d = -0.32$ $15, d = -0.32$ $15, d = -0.32$ $15, d = -0.31$ $15, d = -0.32$ $15, d = -0.31$	$\begin{array}{l} (151) = -1.41, p = .160, d = -0.1 \\ (281) = -1.79, p = .077, d = -0.35 \\ (2176) = -3.62, p < .001, d = -0.5 \\ (223) = -0.37, p = .709, d = -0.0 \\ (132) = -2.41, p = .017, d = -0.3 \\ (131) = -2.28, p = .025, d = -0.3 \\ (161) = -1.25, p = .214, d = -0.1 \\ (136) = -1.59, p = .114, d = -0.2 \\ (102) = -1.51, p = .133, d = -0.2 \\ (2026) = -2.96, p = .003, d = -0.3 \\ (226) = -2.96, p = .517, d = -0.11 \\ (237) = -1.4, p = .164, d = -0.18 \\ (248) = -0.13, p = .896, d = -0.03 \\ (248) = -0.13, p = .896, d = -0.03 \\ (201) = -1.17, p = .244, d = -0.1 \end{array}$	t(170) = -3.01, p = .003, d = -0.39 $t(74) = -3.83, p < .001, d = -0.61$ $t(173) = -4.33, p < .001, d = -0.61$ $t(220) = -0.75, p = .454, d = -0.16$ $t(122) = -4.13, p < .001, d = -0.63$ $t(115) = -3.10, p = .002, d = -0.52$ $t(162) = -1.77, p = .079, d = -0.27$ $t(167) = 1.19, p = .236, d = 0.17$ $t(104) = -0.88, p = .381, d = -0.15$ $t(210) = -2.84, p = .005, d = -0.46$ $t(210) = -2.84, p = .005, d = -0.46$ $t(33) = 1.34, p = .185, d = 0.24$ $t(446) = -4.00, p < .001, d = -0.37$ $t(236) = -2.90, p = .004, d = -0.38$ $t(49) = -0.48, p = .635, d = -0.01$
Chile $t(81) = -3.70, p < .001$ $d = -0.72$ China $t(203) = -4.49, p < .00$ Colombia $t(223) = -1.84, p = .06$ Croatia $t(122) = -2.97, p = .00$ Ezcudor $t(156) = -0.84, p = .40$ Estonia $t(138) = -2.26, p = .02$ France $t(115) = -1.56, p = .12$ Georgia $t(224) = -2.73, p = .00$ Ghana $t(50) = -0.74, p = .462$ $d = -0.15$ Hungary $t(449) = -3.42, p = .00$ $d = -0.23$ Indonesia $t(54) = -0.68, p = .498$ $d = -0.13$ Ireland $t(194) = -0.83, p = .40$ Italy $t(100) = -0.9, p = .369$ $d = -0.17$ Jordan $t(200) = -0.33, p = .74$ Kazakhstan $t(198) = -3.43, p = .00$ $d = -0.35$ Korea South $t(93) = 0.24, p = .813, d = 0.03$ Luxembourg $t(90) = -1.67, p = .099$ $d = -0.32$ Madagascar $t(138) = -3.08, p = .00$ Malaysia $t(1018) = -6.24, p < .00$	$\begin{array}{llll} & & & & & & & & & & & & \\ 1, & d = -0.62 & & & & & \\ 57, & d = -0.25 & & & & & \\ 104, & d = -0.47 & & & & \\ 101, & d = -0.62 & & & & \\ 100, & d = -0.13 & & & \\ 125, & d = -0.34 & & & \\ 122, & d = -0.26 & & & \\ 11, & d = -0.58 & & & \\ 107, & d = -0.35 & & & \\ 109, & & & & & \\ 101, & d = -0.32 & & & \\ 101, & d = -0.32 & & & \\ 102, & & & & & \\ 103, & & & & & \\ 104, & & & & & \\ 105, & & & & & \\ 106, & & & & & \\ 107, & d = -0.11 & & & \\ 108, & & & & & \\ 109, & & & & \\ 109, & & & & & \\ 109, & & & & & \\ 109, & & & & & \\ 109, & & & & & \\ 109, & & & & & \\ 109, & & & & & \\ 109, & & & & & \\ 109, & & & & & \\ 109, & & & & & \\ 109, & & & & \\ 109, & & & & \\ 109, & & & & \\ 109, & & & & \\ 109, & & & & \\ 109, & & & & \\$	$\begin{array}{l} (2(81) = -1.79, p = .077, d = -0.35 \\ (2(176) = -3.62, p < .001, d = -0.5 \\ (2(223) = -0.37, p = .709, d = -0.0 \\ (2(23) = -2.41, p = .017, d = -0.3 \\ (2(131) = -2.28, p = .025, d = -0.3 \\ (2(161) = -1.25, p = .214, d = -0.1 \\ (2(161) = -1.59, p = .114, d = -0.2 \\ (2(102) = -1.51, p = .133, d = -0.2 \\ (2(102) = -1.51, p = .133, d = -0.2 \\ (2(26) = -2.96, p = .003, d = -0.3 \\ (2(26) = -2.96, p = .517, d = -0.11 \\ (2(37) = -1.4, p = .164, d = -0.18 \\ (2(48) = -0.13, p = .896, d = -0.03 \\ (2(201) = -1.17, p = .244, d = -0.1 \end{array}$	t(74) = -3.83, p < .001, d = -0.77 $t(173) = -4.33, p < .001, d = -0.61$ $t(220) = -0.75, p = .454, d = -0.10$ $t(122) = -4.13, p < .001, d = -0.65$ $t(115) = -3.10, p = .002, d = -0.52$ $t(162) = -1.77, p = .079, d = -0.27$ $t(167) = 1.19, p = .236, d = 0.17$ $t(104) = -0.88, p = .381, d = -0.15$ $t(210) = -2.84, p = .005, d = -0.46$ $t(210) = -2.84, p = .005, d = -0.37$ $t(63) = 1.34, p = .185, d = 0.24$ $t(446) = -4.00, p < .001, d = -0.37$ $t(236) = -2.90, p = .004, d = -0.38$ $t(49) = -0.48, p = .635, d = -0.01$ $t(199) = -1.41, p = .161, d = -0.19$
China $d = -0.72$ $(203) = -4.49, p < .00$ $(203) = -4.49, p < .00$ $(203) = -1.84, p = .06$ $(223) = -1.84, p = .06$ $(224) = -2.97, p = .00$ $(226) \text{tia}$ $(1122) = -2.97, p = .00$ $(1156) = -0.84, p = .40$ $(138) = -2.26, p = .02$ $(1156) = -0.84, p = .40$ $(138) = -2.26, p = .02$ $(115) = -1.56, p = .12$ $(224) = -2.73, p = .00$ $(324) = -0.74, p = .462$ $(344) = -0.15$ $(344) = -0.15$ $(344) = -0.15$ $(344) = -0.68, p = .498$ $(34 = -0.13)$ $(34) = -0.13$ $(34) = -0.13$ $(34) = -0.13$ $(34) = -0.13$ $(34) = -0.13$ $(34) = -0.13$ $(34) = -0.13$ $(34) = -0.13$ $(34) = -0.13$ $(34) = -0.13$ $(34) = -0.13$ $(34) = -0.13$ $(34) = -0.13$ $(34) = -0.13$ $(34) = -0.13$ $(34) = -0.13$ $(34) = -0.13$ $(34) = -0.13$ $(35) = -0.33, p = .00$ $(36) = -0.35$ $(36) = -0.35$ $(36) = -0.35$ $(36) = -0.35$ $(36) = -0.35$ $(36) = -0.35$ $(36) = -0.35$ $(36) = -0.35$ $(36) = -0.35$ $(36) = -0.35$ $(37) = -0.35$ $(38) = -0.24, p = .813, d = 0.03$ $(39) = 0.24, p = .813, d = 0.03$ $(49) = -1.67, p = .099$ $(49) = -1.67, p = .099$ $(49) = -0.30, p = .00$ $(40) = -0.32$ $(40) = -0.32$ $(40) = -0.32$ $(40) = -0.32$ $(40) = -0.35$ $($	$\begin{array}{lll} 01, d = -0.62 & t(0) \\ 67, d = -0.25 & t(0) \\ 64, d = -0.47 & t(0) \\ 101, d = -0.62 & t(0) \\ 102, d = -0.13 & t(0) \\ 103, d = -0.13 & t(0) \\ 104, d = -0.13 & t(0) \\ 105, d = -0.34 & t(0) \\ 107, d = -0.35 & t(0) \\ 107, d = -0.35 & t(0) \\ 107, d = -0.32 & t(0) \\ 107, d = -0.32 & t(0) \\ 108, d = -0.32 & t(0) \\ 109, d = -0.11 & t(0) \\ $	$\begin{array}{l} (2176) = -3.62, p < .001, d = -0.5 \\ (223) = -0.37, p = .709, d = -0.0 \\ (223) = -2.41, p = .017, d = -0.3 \\ (2131) = -2.28, p = .025, d = -0.3 \\ (2131) = -2.28, p = .025, d = -0.3 \\ (2131) = -1.25, p = .214, d = -0.1 \\ (2136) = -1.59, p = .114, d = -0.2 \\ (2102) = -1.51, p = .133, d = -0.2 \\ (2102) = -3.72, p < .001, d = -0.6 \\ (226) = -2.96, p = .003, d = -0.3 \\ (271) = -0.65, p = .517, d = -0.11 \\ (2439) = -2.34, p = .020, d = -0.2 \\ (237) = -1.4, p = .164, d = -0.18 \\ (248) = -0.13, p = .896, d = -0.03 \\ (201) = -1.17, p = .244, d = -0.1 \end{array}$	t(173) = -4.33, p < .001, d = -0.61 $t(220) = -0.75, p = .454, d = -0.16$ $t(122) = -4.13, p < .001, d = -0.62$ $t(115) = -3.10, p = .002, d = -0.52$ $t(162) = -1.77, p = .079, d = -0.27$ $t(167) = 1.19, p = .236, d = 0.17$ $t(104) = -0.88, p = .381, d = -0.15$ $t(133) = -2.82, p = .005, d = -0.46$ $t(210) = -2.84, p = .005, d = -0.37$ $t(63) = 1.34, p = .185, d = 0.24$ $t(246) = -4.00, p < .001, d = -0.37$ $t(236) = -2.90, p = .004, d = -0.38$ $t(49) = -0.48, p = .635, d = -0.01$ $t(199) = -1.41, p = .161, d = -0.19$
China $t(203) = -4.49, p < .00$ Colombia $t(223) = -1.84, p = .06$ Croatia $t(122) = -2.97, p = .00$ Czechia $t(123) = -3.77, p < .00$ Ecuador $t(156) = -0.84, p = .40$ Estonia $t(138) = -2.26, p = .02$ France $t(115) = -1.56, p = .12$ Georgia $t(125) = -3.46, p = .00$ Germany $t(224) = -2.73, p = .00$ Ghana $t(50) = -0.74, p = .462$ $d = -0.15$ Hungary $t(449) = -3.42, p = .00$ Iceland $t(234) = -1.76, p = .08$ $d = -0.23$ Indonesia $t(54) = -0.68, p = .498$ $d = -0.13$ Ireland $t(194) = -0.83, p = .40$ Italy $t(100) = -0.9, p = .369$ $d = -0.17$ Jordan $t(200) = -0.33, p = .74$ Kazakhstan $t(198) = -3.43, p = .00$ Kazakhstan $t(198) = -3.43, p = .00$ Korea South $t(93) = 0.24, p = .813, d = 0.03$ Luxembourg $t(90) = -1.67, p = .099$ $d = -0.32$ Madagascar $t(138) = -3.08, p = .00$ Malaysia $t(1018) = -6.24, p < .00$	$\begin{array}{llll} 67, d = -0.25 & t0.\\ 40, d = -0.47 & t0.\\ 10, d = -0.62 & t0.\\ 25, d = -0.34 & t0.\\ 22, d = -0.26 & t0.\\ 21, d = -0.26 & t0.\\ 22, d = -0.26 & t0.\\ 23, d = -0.35 & t0.\\ 24, d = -0.35 & t0.\\ 25, d = -0.35 & t0.\\ 26, d = -0.32 & t0.\\ 27, d = -0.32 & t0.\\ 280, d = -0.32 & t0.\\ 280, d = -0.31 & t0.\\ 280, d = -0.11 & t0.\\ 28$	$\begin{array}{l} (223) = -0.37, p = .709, d = -0.0 \\ (132) = -2.41, p = .017, d = -0.3 \\ (131) = -2.28, p = .025, d = -0.3 \\ (131) = -1.25, p = .214, d = -0.1 \\ (136) = -1.59, p = .114, d = -0.2 \\ (136) = -1.59, p = .113, d = -0.2 \\ (132) = -1.51, p = .133, d = -0.2 \\ (132) = -3.72, p < .001, d = -0.6 \\ (226) = -2.96, p = .003, d = -0.3 \\ (71) = -0.65, p = .517, d = -0.11 \\ (237) = -1.4, p = .020, d = -0.2 \\ (237) = -1.4, p = .164, d = -0.18 \\ (48) = -0.13, p = .896, d = -0.03 \\ (201) = -1.17, p = .244, d = -0.1 \end{array}$	t(220) = -0.75, p = .454, d = -0.10 $t(122) = -4.13, p < .001, d = -0.65$ $t(115) = -3.10, p = .002, d = -0.52$ $t(162) = -1.77, p = .079, d = -0.27$ $t(162) = 1.19, p = .236, d = 0.17$ $t(104) = -0.88, p = .381, d = -0.15$ $t(133) = -2.82, p = .005, d = -0.45$ $t(210) = -2.84, p = .005, d = -0.37$ $t(63) = 1.34, p = .185, d = 0.24$ $t(446) = -4.00, p < .001, d = -0.37$ $t(236) = -2.90, p = .004, d = -0.38$ $t(49) = -0.48, p = .635, d = -0.01$
Colombia $t(223) = -1.84, p = .06$ Croatia $t(122) = -2.97, p = .00$ Czechia $t(123) = -3.77, p < .00$ Ecuador $t(156) = -0.84, p = .40$ Estonia $t(138) = -2.26, p = .02$ France $t(115) = -1.56, p = .12$ Georgia $t(125) = -3.46, p = .00$ Germany $t(224) = -2.73, p = .00$ Ghana $t(50) = -0.74, p = .462$ $d = -0.15$ Hungary $t(449) = -3.42, p = .00$ Iceland $t(234) = -1.76, p = .08$ $d = -0.23$ Indonesia $t(54) = -0.68, p = .498$ $d = -0.13$ Ireland $t(194) = -0.83, p = .40$ Italy $t(100) = -0.9, p = .369$ $d = -0.17$ Jordan $t(200) = -0.33, p = .74$ Kazakhstan $t(198) = -3.43, p = .00$ Kazakhstan $t(198) = -3.43, p = .00$ Korea South $t(93) = 0.24, p = .813, d = 0.03$ Luxembourg $t(90) = -1.67, p = .099$ $d = -0.32$ Madagascar $t(138) = -3.08, p = .00$ Malaysia $t(1018) = -6.24, p < .00$	$\begin{array}{llll} 67, d = -0.25 & t0.\\ 40, d = -0.47 & t0.\\ 10, d = -0.62 & t0.\\ 25, d = -0.34 & t0.\\ 22, d = -0.26 & t0.\\ 21, d = -0.26 & t0.\\ 22, d = -0.26 & t0.\\ 23, d = -0.35 & t0.\\ 24, d = -0.35 & t0.\\ 25, d = -0.35 & t0.\\ 26, d = -0.32 & t0.\\ 27, d = -0.32 & t0.\\ 280, d = -0.32 & t0.\\ 280, d = -0.31 & t0.\\ 280, d = -0.11 & t0.\\ 28$	$\begin{array}{l} (223) = -0.37, p = .709, d = -0.0 \\ (132) = -2.41, p = .017, d = -0.3 \\ (131) = -2.28, p = .025, d = -0.3 \\ (131) = -1.25, p = .214, d = -0.1 \\ (136) = -1.59, p = .114, d = -0.2 \\ (136) = -1.59, p = .113, d = -0.2 \\ (132) = -1.51, p = .133, d = -0.2 \\ (132) = -3.72, p < .001, d = -0.6 \\ (226) = -2.96, p = .003, d = -0.3 \\ (71) = -0.65, p = .517, d = -0.11 \\ (237) = -1.4, p = .020, d = -0.2 \\ (237) = -1.4, p = .164, d = -0.18 \\ (48) = -0.13, p = .896, d = -0.03 \\ (201) = -1.17, p = .244, d = -0.1 \end{array}$	t(220) = -0.75, p = .454, d = -0.10 $t(122) = -4.13, p < .001, d = -0.65$ $t(115) = -3.10, p = .002, d = -0.52$ $t(162) = -1.77, p = .079, d = -0.27$ $t(162) = 1.19, p = .236, d = 0.17$ $t(104) = -0.88, p = .381, d = -0.15$ $t(133) = -2.82, p = .005, d = -0.45$ $t(210) = -2.84, p = .005, d = -0.37$ $t(63) = 1.34, p = .185, d = 0.24$ $t(446) = -4.00, p < .001, d = -0.37$ $t(236) = -2.90, p = .004, d = -0.38$ $t(49) = -0.48, p = .635, d = -0.01$
Croatia $t(122) = -2.97, p = .00$ Czechia $t(123) = -3.77, p < .00$ Ecuador $t(156) = -0.84, p = .40$ Estonia $t(138) = -2.26, p = .02$ France $t(115) = -1.56, p = .12$ Georgia $t(125) = -3.46, p = .00$ Germany $t(224) = -2.73, p = .00$ Ghana $t(50) = -0.74, p = .462$ $d = -0.15$ $t(449) = -3.42, p = .00$ Iceland $t(234) = -1.76, p = .08$ $d = -0.23$ Indonesia Indonesia $t(194) = -0.83, p = .40$ Italy $t(100) = -0.9, p = .369$ $d = -0.17$ Jordan Italy $t(190) = -0.33, p = .74$ Kenya $t(122) = -1.98, p = .05$ $d = -0.35$ $t(93) = 0.24, p = .813, d = .00$ Luxembourg $t(93) = 0.24, p = .813, d = .00$ Madagascar $t(138) = -3.08, p = .00$ Malaysia $t(1018) = -6.24, p < .00$	$\begin{array}{llll} 04, d = -0.47 & t(\\ 01, d = -0.62 & t(\\ 10, d = -0.13 & t(\\ 25, d = -0.34 & t(\\ 22, d = -0.26 & t(\\ 11, d = -0.58 & t(\\ 12, d = -0.35 & t(\\ 13, d = -0.35 & t(\\ 14, d = -0.35 & t(\\ 15, d = -0.32 & t(\\ 15, d = -0.32 & t(\\ 15, d = -0.32 & t(\\ 15, d = -0.11 & $	$\begin{array}{l} (2132) = -2.41, p = .017, d = -0.3 \\ (2131) = -2.28, p = .025, d = -0.3 \\ (2161) = -1.25, p = .214, d = -0.1 \\ (2136) = -1.59, p = .114, d = -0.2 \\ (2102) = -1.51, p = .133, d = -0.2 \\ (2132) = -3.72, p < .001, d = -0.6 \\ (226) = -2.96, p = .003, d = -0.3 \\ (271) = -0.65, p = .517, d = -0.11 \\ (237) = -1.4, p = .164, d = -0.18 \\ (248) = -0.13, p = .896, d = -0.03 \\ (201) = -1.17, p = .244, d = -0.1 \end{array}$	t(122) = -4.13, p < .001, d = -0.65 $t(115) = -3.10, p = .002, d = -0.52$ $t(162) = -1.77, p = .079, d = -0.27$ $t(162) = -1.8, p = .236, d = 0.17$ $t(104) = -0.88, p = .381, d = -0.15$ $t(133) = -2.82, p = .005, d = -0.46$ $t(210) = -2.84, p = .005, d = -0.37$ $t(63) = 1.34, p = .185, d = 0.24$ $t(446) = -4.00, p < .001, d = -0.37$ $t(236) = -2.90, p = .004, d = -0.38$ $t(49) = -0.48, p = .635, d = -0.01$
Czechia $t(123) = -3.77, p < .00$ Ecuador $t(156) = -0.84, p = .40$ Estonia $t(138) = -2.26, p = .02$ France $t(115) = -1.56, p = .12$ Georgia $t(125) = -3.46, p = .00$ Germany $t(224) = -2.73, p = .00$ Ghana $t(50) = -0.74, p = .462$ $d = -0.15$ $t(449) = -3.42, p = .00$ Iceland $t(234) = -1.76, p = .08$ $d = -0.13$ $t(54) = -0.68, p = .498$ $d = -0.13$ $t(194) = -0.83, p = .40$ Italy $t(100) = -0.9, p = .369$ $d = -0.17$ $t(200) = -0.33, p = .74$ Kazakhstan $t(198) = -3.43, p = .00$ Kenya $t(122) = -1.98, p = .05$ $d = -0.35$ $t(93) = 0.24, p = .813, d = 0.03$ Luxembourg $t(90) = -1.67, p = .099$ $d = -0.32$ $t(138) = -3.08, p = .00$ Madagascar $t(1018) = -6.24, p < .00$	$\begin{array}{lll} 01, d = -0.62 & t(\\ 00, d = -0.13 & t(\\ 15, d = -0.34 & t(\\ 122, d = -0.26 & t(\\ 101, d = -0.58 & t(\\ 107, d = -0.35 & t(\\ 109,	$\begin{array}{l} (2(131) = -2.28, p = .025, d = -0.3) \\ (2(161) = -1.25, p = .214, d = -0.1) \\ (2(136) = -1.59, p = .114, d = -0.2) \\ (2(102) = -1.51, p = .133, d = -0.2) \\ (2(102) = -3.72, p < .001, d = -0.6) \\ (2(26) = -2.96, p = .003, d = -0.3) \\ (2(71) = -0.65, p = .517, d = -0.11) \\ (2(37) = -1.4, p = .164, d = -0.18) \\ (2(48) = -0.13, p = .896, d = -0.03) \\ (2(201) = -1.17, p = .244, d = -0.1) \end{array}$	t(115) = -3.10, p = .002, d = -0.52 $t(162) = -1.77, p = .079, d = -0.27$ $t(167) = 1.19, p = .236, d = 0.17$ $t(104) = -0.88, p = .381, d = -0.15$ $t(133) = -2.82, p = .005, d = -0.46$ $t(210) = -2.84, p = .005, d = -0.37$ $t(63) = 1.34, p = .185, d = 0.24$ $t(446) = -4.00, p < .001, d = -0.37$ $t(236) = -2.90, p = .004, d = -0.38$ $t(49) = -0.48, p = .635, d = -0.01$ $t(199) = -1.41, p = .161, d = -0.19$
Ecuador $t(156) = -0.84, p = .40$ Estonia $t(138) = -2.26, p = .02$ France $t(115) = -1.56, p = .12$ Georgia $t(125) = -3.46, p = .00$ Germany $t(224) = -2.73, p = .00$ Ghana $t(50) = -0.74, p = .462$ $d = -0.15$ Hungary $t(449) = -3.42, p = .00$ Iceland $t(234) = -1.76, p = .08$ $d = -0.23$ Indonesia $t(54) = -0.68, p = .498$ $d = -0.13$ Ireland $t(194) = -0.83, p = .40$ Italy $t(100) = -0.9, p = .369$ $d = -0.17$ Jordan $t(200) = -0.33, p = .74$ Kazakhstan $t(198) = -3.43, p = .00$ Kenya $t(122) = -1.98, p = .05$ $d = -0.35$ Korea South $t(93) = 0.24, p = .813, d = 0.03$ Luxembourg $t(90) = -1.67, p = .099$ $d = -0.32$ Madagascar $t(138) = -3.08, p = .00$ Malaysia $t(1018) = -6.24, p < .00$	$\begin{array}{llll} 00, d = -0.13 & t(\\ 25, d = -0.34 & t(\\ 22, d = -0.26 & t(\\ 11, d = -0.58 & t(\\ 17, d = -0.35 & t(\\ 2, & t(\\ 30, & t$	$\begin{array}{l} (2(161) = -1.25, p = .214, d = -0.1 \\ (2(136) = -1.59, p = .114, d = -0.2 \\ (2(102) = -1.51, p = .133, d = -0.2 \\ (2(102) = -3.72, p < .001, d = -0.6 \\ (226) = -2.96, p = .003, d = -0.3 \\ (71) = -0.65, p = .517, d = -0.11 \\ (2439) = -2.34, p = .020, d = -0.2 \\ (237) = -1.4, p = .164, d = -0.18 \\ (248) = -0.13, p = .896, d = -0.03 \\ (2201) = -1.17, p = .244, d = -0.1 \end{array}$	t(162) = -1.77, p = .079, d = -0.27 $t(167) = 1.19, p = .236, d = 0.17$ $t(104) = -0.88, p = .381, d = -0.15$ $t(133) = -2.82, p = .005, d = -0.46$ $t(210) = -2.84, p = .005, d = -0.37$ $t(63) = 1.34, p = .185, d = 0.24$ $t(446) = -4.00, p < .001, d = -0.37$ $t(236) = -2.90, p = .004, d = -0.38$ $t(49) = -0.48, p = .635, d = -0.01$ $t(199) = -1.41, p = .161, d = -0.19$
Estonia $t(138) = -2.26, p = .02$ France $t(115) = -1.56, p = .12$ Georgia $t(125) = -3.46, p = .00$ Germany $t(224) = -2.73, p = .00$ Ghana $t(50) = -0.74, p = .462$ $d = -0.15$ Hungary $t(449) = -3.42, p = .00$ Iceland $t(234) = -1.76, p = .08$ $d = -0.23$ Indonesia $t(54) = -0.68, p = .498$ $d = -0.13$ Ireland $t(194) = -0.83, p = .40$ Italy $t(100) = -0.9, p = .369$ $d = -0.17$ Jordan $t(200) = -0.33, p = .74$ Kazakhstan $t(198) = -3.43, p = .00$ Kazakhstan $t(198) = -3.43, p = .00$ Korea South $t(93) = 0.24, p = .813, d = 0.03$ Luxembourg $t(90) = -1.67, p = .099$ $d = -0.32$ Madagascar $t(138) = -3.08, p = .00$ Malaysia $t(1018) = -6.24, p < .00$	$\begin{array}{llll} 25, d = -0.34 & t(\\ 22, d = -0.26 & t(\\ 11, d = -0.58 & t(\\ 12, d = -0.35 & t(\\ 13, d = -0.35 & t(\\ 14, d = -0.35 & t(\\ 15, d = -0.32 & t(\\ 15, d = -0.32 & t(\\ 15, d = -0.11 & $	$\begin{array}{l} \text{(136)} = -1.59, p = .114, d = -0.2 \\ \text{(102)} = -1.51, p = .133, d = -0.2 \\ \text{(132)} = -3.72, p < .001, d = -0.6 \\ \text{(226)} = -2.96, p = .003, d = -0.3 \\ \text{(71)} = -0.65, p = .517, d = -0.11 \\ \text{(243)} = -2.34, p = .020, d = -0.2 \\ \text{(237)} = -1.4, p = .164, d = -0.18 \\ \text{(248)} = -0.13, p = .896, d = -0.03 \\ \text{(201)} = -1.17, p = .244, d = -0.1 \end{array}$	t(167) = 1.19, p = .236, d = 0.17 $t(104) = -0.88, p = .381, d = -0.15$ $t(133) = -2.82, p = .005, d = -0.46$ $t(210) = -2.84, p = .005, d = -0.37$ $t(63) = 1.34, p = .185, d = 0.24$ $t(246) = -4.00, p < .001, d = -0.37$ $t(236) = -2.90, p = .004, d = -0.38$ $t(49) = -0.48, p = .635, d = -0.01$ $t(199) = -1.41, p = .161, d = -0.19$
France $t(115) = -1.56, p = .12$ Georgia $t(125) = -3.46, p = .00$ Germany $t(224) = -2.73, p = .00$ Ghana $t(50) = -0.74, p = .462$ $d = -0.15$ Hungary $t(449) = -3.42, p = .00$ Iceland $t(234) = -1.76, p = .08$ $d = -0.23$ Indonesia $t(54) = -0.68, p = .498$ $d = -0.13$ Ireland $t(194) = -0.83, p = .40$ Italy $t(100) = -0.9, p = .369$ $d = -0.17$ Jordan $t(200) = -0.33, p = .74$ Kazakhstan $t(198) = -3.43, p = .00$ Kazakhstan $t(198) = -3.43, p = .00$ Korea South $t(93) = 0.24, p = .813, d = 0.03$ Luxembourg $t(90) = -1.67, p = .099$ $d = -0.32$ Madagascar $t(138) = -3.08, p = .00$ Malaysia $t(1018) = -6.24, p < .00$	22, d = -0.26	$\begin{array}{l} (102) = -1.51, p = .133, d = -0.2 \\ (132) = -3.72, p < .001, d = -0.6 \\ (226) = -2.96, p = .003, d = -0.3 \\ (71) = -0.65, p = .517, d = -0.11 \\ (439) = -2.34, p = .020, d = -0.2 \\ (237) = -1.4, p = .164, d = -0.18 \\ (48) = -0.13, p = .896, d = -0.03 \\ (201) = -1.17, p = .244, d = -0.1 \end{array}$	t(104) = -0.88, p = .381, d = -0.15 $t(133) = -2.82, p = .005, d = -0.46$ $t(210) = -2.84, p = .005, d = -0.37$ $t(63) = 1.34, p = .185, d = 0.24$ $t(246) = -4.00, p < .001, d = -0.37$ $t(236) = -2.90, p = .004, d = -0.38$ $t(49) = -0.48, p = .635, d = -0.01$ $t(199) = -1.41, p = .161, d = -0.15$
Georgia $t(125) = -3.46, p = .00$ Germany $t(224) = -2.73, p = .00$ Ghana $t(50) = -0.74, p = .462$ $d = -0.15$ Hungary $t(449) = -3.42, p = .00$ Iceland $t(234) = -1.76, p = .08$ $d = -0.23$ Indonesia $t(54) = -0.68, p = .498$ $d = -0.13$ Ireland $t(194) = -0.83, p = .40$ Italy $t(100) = -0.9, p = .369$ $d = -0.17$ Jordan $t(200) = -0.33, p = .74$ Kazakhstan $t(198) = -3.43, p = .00$ Kenya $t(122) = -1.98, p = .05$ $d = -0.35$ Korea South $t(93) = 0.24, p = .813, d = 0.03$ Luxembourg $t(90) = -1.67, p = .099$ $d = -0.32$ Madagascar $t(138) = -3.08, p = .00$ Malaysia $t(1018) = -6.24, p < .00$	$\begin{array}{lll} 01, d = -0.58 & t(\\ 17, d = -0.35 & t(\\ 2, & t(\\ 01, d = -0.32 & t(\\ 30, & t(\\ 05, d = -0.11 & t(\\ 0, & t(\\ 05, d = -0.11 & t(\\ 05, d = -$	$\begin{array}{l} (2132) = -3.72, p < .001, d = -0.6 \\ (2226) = -2.96, p = .003, d = -0.3 \\ (271) = -0.65, p = .517, d = -0.11 \\ (2439) = -2.34, p = .020, d = -0.2 \\ (2237) = -1.4, p = .164, d = -0.18 \\ (248) = -0.13, p = .896, d = -0.03 \\ (201) = -1.17, p = .244, d = -0.1 \end{array}$	t(133) = -2.82, p = .005, d = -0.46 $t(210) = -2.84, p = .005, d = -0.37$ $t(63) = 1.34, p = .185, d = 0.24$ $t(446) = -4.00, p < .001, d = -0.37$ $t(236) = -2.90, p = .004, d = -0.38$ $t(49) = -0.48, p = .635, d = -0.01$ $t(199) = -1.41, p = .161, d = -0.19$
Germany $t(224) = -2.73, p = .00$ Ghana $t(50) = -0.74, p = .462$ $d = -0.15$ Hungary $t(449) = -3.42, p = .00$ Iceland $t(234) = -1.76, p = .08$ $d = -0.23$ Indonesia $t(54) = -0.68, p = .498$ $d = -0.13$ Ireland $t(194) = -0.83, p = .40$ Italy $t(100) = -0.9, p = .369$ $d = -0.17$ Jordan $t(200) = -0.33, p = .74$ Kazakhstan $t(198) = -3.43, p = .00$ Kenya $t(122) = -1.98, p = .05$ $d = -0.35$ Korea South $t(93) = 0.24, p = .813, d = 0.03$ Luxembourg $t(90) = -1.67, p = .099$ $d = -0.32$ Madagascar $t(138) = -3.08, p = .00$ Malaysia $t(1018) = -6.24, p < .00$	$\begin{array}{lll} & & & & & & & & & & & & & & & & & &$	$\begin{array}{l} (2226) = -2.96, p = .003, d = -0.3 \\ (271) = -0.65, p = .517, d = -0.11 \\ (2439) = -2.34, p = .020, d = -0.2 \\ (2237) = -1.4, p = .164, d = -0.18 \\ (248) = -0.13, p = .896, d = -0.03 \\ (201) = -1.17, p = .244, d = -0.1 \end{array}$	t(210) = -2.84, p = .005, d = -0.37 $t(63) = 1.34, p = .185,$ $d = 0.24$ $t(446) = -4.00, p < .001, d = -0.37$ $t(236) = -2.90, p = .004, d = -0.38$ $t(49) = -0.48, p = .635, d = -0.01$ $t(199) = -1.41, p = .161, d = -0.19$
$\begin{array}{lll} \text{Ghana} & t(50) = -0.74, p = .462 \\ d = -0.15 \\ t(449) = -3.42, p = .00 \\ t(234) = -1.76, p = .08 \\ d = -0.23 \\ \text{Indonesia} & t(54) = -0.68, p = .498 \\ d = -0.13 \\ \text{Ireland} & t(194) = -0.83, p = .40 \\ t(100) = -0.9, p = .369 \\ d = -0.17 \\ \text{Jordan} & t(200) = -0.33, p = .74 \\ \text{Kazakhstan} & t(198) = -3.43, p = .00 \\ \text{Kenya} & t(122) = -1.98, p = .05 \\ d = -0.35 \\ \text{Korea South} & t(93) = 0.24, p = .813, \\ d = 0.03 \\ \text{Luxembourg} & t(90) = -1.67, p = .099 \\ d = -0.32 \\ \text{Madagascar} & t(138) = -3.08, p = .00 \\ \text{Malaysia} & t(1018) = -6.24, p < .00 \\ \end{array}$	$\begin{array}{lll} & & & & & & & & & & & & & & & & & &$	$\begin{array}{l} (2(71) = -0.65, p = .517, d = -0.11 \\ (2(39) = -2.34, p = .020, d = -0.2 \\ (2(237) = -1.4, p = .164, d = -0.18 \\ (2(48) = -0.13, p = .896, d = -0.03 \\ (2(201) = -1.17, p = .244, d = -0.1 \end{array}$	t(63) = 1.34, p = .185, $d = 0.24$ $t(446) = -4.00, p < .001, d = -0.37$ $t(236) = -2.90, p = .004, d = -0.38$ $t(49) = -0.48, p = .635, d = -0.01$ $t(199) = -1.41, p = .161, d = -0.19$
Hungary $d=-0.15$ $t(449)=-3.42, p=.00$ $t(234)=-1.76, p=.08$ $d=-0.23$ Indonesia $t(54)=-0.68, p=.498$ $d=-0.13$ Ireland $t(194)=-0.83, p=.40$ Italy $t(100)=-0.9, p=.369$ $d=-0.17$ $t(200)=-0.33, p=.74$ $t(200)=-0.33, p=.74$ $t(200)=-0.34, p=.05$ $t(22)=-1.98, p=.05$ $t(22)=-1.98, p=.05$ $t(22)=-1.98, p=.05$ $t(23)=0.24, p=.813, t(23)=0.24$ $t(23)=0.24, $t($	t(0), $d = -0.32$ $t(0)$ $t(0)$ $t(0)$ $t(0)$ $t(0)$ $t(0)$ $t(0)$ $t(0)$	$\begin{array}{l} (439) = -2.34, p = .020, d = -0.2 \\ (237) = -1.4, p = .164, d = -0.18 \\ (248) = -0.13, p = .896, d = -0.03 \\ (201) = -1.17, p = .244, d = -0.1 \end{array}$	d = 0.24 $t(446) = -4.00, p < .001, d = -0.37$ $t(236) = -2.90, p = .004, d = -0.38$ $t(49) = -0.48, p = .635, d = -0.01$ $t(199) = -1.41, p = .161, d = -0.19$
Hungary $t(449) = -3.42, p = .00$ $t(234) = -1.76, p = .08$ $d = -0.23$ $t(54) = -0.68, p = .498$ $d = -0.13$ Ireland $t(194) = -0.83, p = .40$ Italy $t(100) = -0.9, p = .369$ $d = -0.17$ Jordan $t(200) = -0.33, p = .74$ Kazakhstan $t(198) = -3.43, p = .00$ Kenya $t(122) = -1.98, p = .05$ $d = -0.35$ Korea South $t(93) = 0.24, p = .813, d = 0.03$ Luxembourg $t(90) = -1.67, p = .099$ $d = -0.32$ Madagascar $t(138) = -3.08, p = .00$ Malaysia $t(1018) = -6.24, p < .00$	t(30), $t(30)$, $t(40)$, t	p(237) = -1.4, p = .164, d = -0.18 p(48) = -0.13, p = .896, d = -0.03 p(201) = -1.17, p = .244, d = -0.13	t(446) = -4.00, p < .001, d = -0.37 $t(236) = -2.90, p = .004, d = -0.38$ $t(49) = -0.48, p = .635, d = -0.01$ $t(199) = -1.41, p = .161, d = -0.19$
Iceland $t(234) = -1.76, p = .08$ $d = -0.23$ Indonesia $t(54) = -0.68, p = .498$ $d = -0.13$ Ireland $t(194) = -0.83, p = .40$ Italy $t(100) = -0.9, p = .369$ $d = -0.17$ Jordan $t(200) = -0.33, p = .74$ Kazakhstan $t(198) = -3.43, p = .00$ Kenya $t(122) = -1.98, p = .05$ $d = -0.35$ Korea South $t(93) = 0.24, p = .813, d = 0.03$ Luxembourg $t(90) = -1.67, p = .099$ $d = -0.32$ Madagascar $t(138) = -3.08, p = .00$ Malaysia $t(1018) = -6.24, p < .00$	t(30), $t(30)$, $t(40)$, t	p(237) = -1.4, p = .164, d = -0.18 p(48) = -0.13, p = .896, d = -0.03 p(201) = -1.17, p = .244, d = -0.13	t(236) = -2.90, p = .004, d = -0.38 $t(49) = -0.48, p = .635, d = -0.01$ $t(199) = -1.41, p = .161, d = -0.19$
d = -0.23 Indonesia $t(54) = -0.68, p = .498$ $d = -0.13$ Ireland $t(194) = -0.83, p = .40$ Italy $t(100) = -0.9, p = .369$ $d = -0.17$ Jordan $t(200) = -0.33, p = .74$ Kazakhstan $t(198) = -3.43, p = .00$ Kenya $t(122) = -1.98, p = .05$ $d = -0.35$ Korea South $t(93) = 0.24, p = .813, d = 0.03$ Luxembourg $t(90) = -1.67, p = .099$ $d = -0.32$ Madagascar $t(138) = -3.08, p = .00$ Malaysia $t(1018) = -6.24, p < .00$	t(0.05, d = -0.11) $t(0.05, d = -0.11)$ $t(0.05, d = -0.11)$	p(48) = -0.13, p = .896, d = -0.03 p(201) = -1.17, p = .244, d = -0.1	t(49) = -0.48, p = .635, d = -0.01 $t(199) = -1.41, p = .161, d = -0.19$
$\begin{array}{lll} \text{Indonesia} & & t(54) = -0.68, p = .498 \\ & d = -0.13 \\ \text{Italy} & & t(194) = -0.83, p = .40 \\ & t(100) = -0.9, p = .369 \\ & d = -0.17 \\ \text{Jordan} & & t(200) = -0.33, p = .74 \\ \text{Kazakhstan} & & t(198) = -3.43, p = .00 \\ & d = -0.35 \\ \text{Korea South} & & t(93) = 0.24, p = .813, \\ & d = 0.03 \\ \text{Luxembourg} & & t(90) = -1.67, p = .099 \\ & d = -0.32 \\ \text{Madagascar} & & t(138) = -3.08, p = .00 \\ & & t(1018) = -6.24, p < .00 \\ \end{array}$	05, d = -0.11 $t(3)$	t(201) = -1.17, p = .244, d = -0.1	t(199) = -1.41, p = .161, d = -0.19
$\begin{array}{c} d=-0.13\\ \text{Ireland} & t(194)=-0.83,p=.40\\ \text{Italy} & t(100)=-0.9,p=.369\\ d=-0.17\\ \text{Jordan} & t(200)=-0.33,p=.74\\ \text{Kazakhstan} & t(198)=-3.43,p=.00\\ \text{Kenya} & t(122)=-1.98,p=.05\\ d=-0.35\\ \text{Korea South} & t(93)=0.24,p=.813,\\ d=0.03\\ \text{Luxembourg} & t(90)=-1.67,p=.099\\ d=-0.32\\ \text{Madagascar} & t(138)=-3.08,p=.00\\ \text{Malaysia} & t(1018)=-6.24,p<.0\\ \end{array}$	05, d = -0.11 $t(3)$	t(201) = -1.17, p = .244, d = -0.1	t(199) = -1.41, p = .161, d = -0.19
$ \begin{array}{llllllllllllllllllllllllllllllllllll$), t(i	=	
Italy $t(100) = -0.9, p = .369$ $d = -0.17$ Jordan $t(200) = -0.33, p = .74$ Kazakhstan $t(198) = -3.43, p = .00$ Kenya $t(122) = -1.98, p = .05$ $d = -0.35$ Korea South $t(93) = 0.24, p = .813, d = 0.03$ Luxembourg $t(90) = -1.67, p = .099$ $d = -0.32$ Madagascar $t(138) = -3.08, p = .00$ Malaysia $t(1018) = -6.24, p < .00$), t(i	=	
$\begin{array}{c} d=-0.17 \\ d=-0.17 \\ \\ \text{Kazakhstan} \\ \text{Kenya} \\ \text{Korea South} \\ \text{Luxembourg} \\ \text{Madagascar} \\ \text{Malaysia} \\ \end{array} \begin{array}{c} d=-0.37 \\ t(200)=-0.33, \ p=.74 \\ t(198)=-3.43, \ p=.00 \\ d=-0.35 \\ t(93)=0.24, \ p=.813, \\ d=0.03 \\ t(90)=-1.67, \ p=.099 \\ d=-0.32 \\ t(138)=-3.08, \ p=.00 \\ \text{Malaysia} \\ \end{array}$	•	t(89) = -2.01, p = .047, d = -0.39	t(80) = -0.96, p = .338, d = -0.19
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	E 4 - 0.05 ''		
Kazakhstan $t(198) = -3.43, p = .00$ Kenya $t(122) = -1.98, p = .05$ $d = -0.35$ Korea South $t(93) = 0.24, p = .813,$ $d = 0.03$ Luxembourg $t(90) = -1.67, p = .099$ $d = -0.32$ Madagascar $t(138) = -3.08, p = .00$ Malaysia $t(1018) = -6.24, p < .00$	E 4 - 0.0F		
Kenya $t(122) = -1.98, p = .05$ $d = -0.35$ Korea South $t(93) = 0.24, p = .813,$ $d = 0.03$ Luxembourg $t(90) = -1.67, p = .099$ $d = -0.32$ Madagascar $t(138) = -3.08, p = .00$ Malaysia $t(1018) = -6.24, p < .00$	to, u = -0.05 t(t(196) = -1.22, p = .225, d = -0.1	t(192) = -0.78, p = .435, d = -0.11
$d = -0.35$ Korea South $t(93) = 0.24, p = .813, \\ d = 0.03$ Luxembourg $t(90) = -1.67, p = .099, \\ d = -0.32$ Madagascar $t(138) = -3.08, p = .00$ Malaysia $t(1018) = -6.24, p < .00$	01, d = -0.47 $t($	t(180) = -1.59, p = .113, d = -0.2	23 $t(193) = -2.90, p = .004, d = -0.40$
Korea South $t(93) = 0.24, p = .813, \\ d = 0.03$ Luxembourg $t(90) = -1.67, p = .099, \\ d = -0.32$ Madagascar $t(138) = -3.08, p = .00$ Malaysia $t(1018) = -6.24, p < .00$	i, t(t(111) = -1.72, p = .088, d = -0.3	t(123) = -0.36, p = .718, d = -0.06
Luxembourg $d=0.03$ $t(90)=-1.67, p=.099$ $d=-0.32$ Madagascar $t(138)=-3.08, p=.00$ Malaysia $t(1018)=-6.24, p<.00$			
Luxembourg $t(90) = -1.67, p = .099$ $d = -0.32$ Madagascar $t(138) = -3.08, p = .00$ Malaysia $t(1018) = -6.24, p < .00$	t(t(87) = 0.44, p = .662,	t(73) = -0.60, p = .551, d = -0.10
d = -0.32 Madagascar $t(138) = -3.08, p = .00$ Malaysia $t(1018) = -6.24, p < .0$	d	d = 0.06	
Madagascar $t(138) = -3.08, p = .00$ Malaysia $t(1018) = -6.24, p < .0$), t(t(89) = -1.78, p = .078, d = -0.34	t(96) = -1.17, p = .243, d = -0.22
Malaysia $t(1018) = -6.24, p < .0$			
	d = -0.48	t(126) = -2.28, p = .024, d = -0.3	36 $t(106) = -0.89, p = .377, d = -0.15$
		t(1069) = -4.19,	t(1079) = -4.45,
Mexico $t(108) = -0.63, p = .52$		0 < .001, d = -0.24	p < .001, d = -0.26
, , , , , , , , , , , , , , , , , , , ,	_	t(107) = -0.26, p = .795, d = -0.0	*
Morocco $t(133) = -1.15, p = .25$		t(133) = -1.86, p = .066, d = -0.3	
Nigeria $t(116) = -3.66, p < .00$		t(128) = -3.96, p < .001, d = -0.5	
Palestine $t(166) = -1.46, p = .14$		t(180) = -4.35, p < .001, d = -0.6	
Peru $t(111) = -3.11, p = .00$		t(116) = -2.65, p = .009, d = -0.4	
d = -0.58	2,	L(110) = 2.00, p = .000, u = 0.1	$10^{-1}(111) = 1.07, p < .001, u = 0.76$
Philippines $t(143) = -3.80, p < .00$)1 #(t(145) = -4.86, p < .001, d = -0.7	t(159) = -4.66, p < .001, d = -0.69
d = -0.58	π,	(143) = -4.80, p < .001, u = -0.7	t(133) = -4.00, p < .001, u = -0.03
	11 d = 0.77 #C	t(190) = -3.28, p = .001, d = -0.4	t(176) = -3.6, p < .001, d = -0.51
the state of the s		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
Portugal $t(130) = -1.45, p = .14$	•	f(135) = -1.2, p = .234, d = -0.20	
Romania $t(194) = -5.77, p < .00$		t(199) = -4.06, p < .001, d = -0.5	
Russia $t(366) = -2.34, p = .02$.0, t(.	t(361) = -1.01, p = .312, d = -0.1	t(357) = -2.35, p = .019, d = -0.25
d = -0.24			(01) 046 645 1 000
Saudi Arabia $t(67) = -0.46, p = .644$	i, t(t(63) = -0.28, p = .782, d = -0.06	t(81) = -0.46, p = .645, d = -0.09
d = -0.09		(a) 1 == 1 a a	
Senegal $t(80) = -1.60, p = .113$	i, t(i	t(82) = -1.57, p = .121, d = -0.29	t(72) = 0.60, p = .551, d = 0.12
d = -0.30			
Serbia $t(177) = -0.88, p = .38$	i0, t(t(165) = -0.96, p = .336, d = -0.1	t(176) = 0.10, p = .918, d = 0.02
d = -0.13			
Slovakia $t(90) = -2.95, p = .004$		t(98) = -3.43, p = .001, d = -0.54	t(100) = -2.62, p = .01, d = -0.41
d = -0.49), t(
South Africa $t(341) = -3.88, p < .00$	t('	t(315) = -3.13, p = .002, d = -0.3	32 $t(327) = -3.47, p = .001, d = -0.35$
Spain $t(223) = -3.57, p < .00$			t(227) = -3.86, p < .001, d = -0.51
Suriname $t(107) = -1.01, p = .31$	01, d = -0.39 $t(3)$	t(226) = -1.42, p = .156, d = -0.1	
_	01, d = -0.39 $t(3)$ $01, d = -0.47$ $t(3)$	t(226) = -1.42, p = .156, d = -0.1 t(96) = -0.56, p = .579, d = -0.11	t(108) = -1.32, p = .189, d = -0.25

Table 2 (continued)

Country	Happiness	Harmony	Meaning
Taiwan	t(164) = -2.67, p = .008, d = -0.4	t(162) = -1.29, p = .200, d = -0.2	t(174) = -1.85, p = .066, d = -0.28
Trinidad and Tobago	t(95) = -2.06, p = .042, d = -0.41	t(98) = -1.07, p = .285, d = -0.21	t(92) = -1.38, p = .169, d = -0.28
Turkey	t(1150) = -5.32, p < .001, d = -0.3	t(1131) = -5.57, p < .001, d = -0.32	t(1091) = -4.55, p < .001, d = -0.26
Uganda	t(67) = -2.09, p = .040, d = -0.45	t(71) = -1.23, p = .224, d = -0.26	t(73) = -0.57, p = .571, d = -0.12
Ukraine	t(105) = -2.14, p = .035, d = -0.39	t(118) = -2.71, p = .008, d = -0.49	t(109) = -3.2, p = .002, d = -0.59
United Kingdom	t(151) = -2.59, p = .010, d = -0.42	t(151) = -1.81, p = .072, d = -0.29	t(149) = -2.56, p = .012, d = -0.41
United States of America Venezuela Vietnam	t(191) = -2.82, p = .005, d = -0.36 t(192) = -4.41, p < .001, d = -0.60 t(104) = -0.55, p = .586, d = -0.09	t(185) = -1.59, p = .115, d = -0.21 t(177) = -3.93, p < .001, d = -0.55 t(101) = 0.12, p = .907, d = 0.02	t(198) = -1.52, p = .129, d = -0.19 t(155) = -4.44, p < .001, d = -0.64 t(117) = -1.31, p = .193, d = -0.20

Table 3Results of interaction effects between relationship status and Schwartz values for well-being

Schwartz value	Happiness		Harmony		Meaning		
	Est	95 % CI	Est	95 % CI	Est	95 % CI	
Universalism	0.05	-0.01, 0.10	0.04	-0.01, 0.08	0.05	-0.01, 0.10	
Benevolence	0.03	-0.02, 0.09	0.02	-0.03, 0.06	0.06	0.003, 0.12	
Power	-0.03	-0.08,0.02	-0.02	-0.06, 0.03	-0.06	-0.11, -0.004	
Hedonism	0.04	-0.01, 0.09	0.02	-0.02, 0.06	0.05	0.001, 0.11	
Security	0.04	-0.01, 0.10	0.02	-0.03, 0.07	0.03	-0.03, 0.09	
Stimulation	-0.02	-0.08, 0.03	-0.02	-0.06, 0.03	0.02	-0.04, 0.07	

Note. Credible estimations are in bold.

Difference in meaning between single and coupled individuals were moderated by three values (Table 3, moderations with effects outside of 0 are presented in Fig. 1). Benevolence was negatively associated with meaning, but this relationship was stronger for single (B=-0.19, 95% CI [-0.26, -0.12]) than for coupled individuals (B=-0.14, 95% CI [-0.19, -0.08]). Hedonism was negatively associated with meaning for single (B=-0.11, 95% CI [-0.18, -0.03]), but not coupled individuals (B=-0.05, 95% CI [-0.12, 0.004]). Power was positively associated with meaning, but it was stronger for single (B=0.13, 95% CI [0.06, 0.21]) than coupled individuals (B=0.08, 95% CI [0.02, 0.14]).

Fig. 3. Benevolence, hedonism and power as moderators of the association between relationship status and meaning

References

Adamczyk, D., Nezlek, J. B., & Maison, D. (2024). Dating a vegetarian? Perception of masculinity, attractiveness, and the willingness to date vegetarians. Social Psychological Bulletin, 19, 1–25.

Adamczyk, K., & Segrin, C. (2015). Direct and indirect effects of young adults' relationship status on life satisfaction through loneliness and perceived social support. Psychologica Belgica, 55(4), 196–211. https://doi.org/10.5334/pb.bn

Amato, P. R. (2014). Marriage, cohabitation and mental health. Family Matters, 96, 5-13.

Apostolou, M., Matogian, I., Koskeridou, G., Shialos, M., & Georgiadou, P. (2019). The price of singlehood: Assessing the impact of involuntary singlehood on emotions and life satisfaction. *Evolutionary Psychological Science*, 5, 416–425. https://doi.org/10.1007/s40806-019-00199-9

Apostolou, M., Sullman, M., Blachnio, A., Burýšek, O., Bushina, E., Calvo, F., & Font-Mayolas, Š. (2024). Emotional well-being and life satisfaction of singles and mated people across 12 nations. Evolutionary Psychological Science, 10(4), 352–369.

Baumeister, R. F., & Leary, M. R. (2017). The need to belong: Desire for interpersonal attachments as a fundamental human motivation. *Interpersonal Development*, 57–89.

Bürkner, P. C. (2017). brms: An R package for Bayesian multilevel models using Stan. Journal of Statistical Software, 80, 1-28.

Byrne, A., & Carr, D. (2005). Caught in the cultural lag: The stigma of singlehood. *Psychological Inquiry*, 16(2–3), 84–91. https://doi.org/10.1207/s15327965pli162&3 02

Coyne, J. C., & DeLongis, A. (1986). Going beyond social support: The role of social relationships in adaptation. *Journal of Consulting and Clinical Psychology*, 54(4), 454.

- Deci, E. L., & Ryan, R. M. (2000). The what and why of goal pursuits: Human needs and the self-determination of behavior. *Psychological Inquiry*, 11, 227–268. https://doi.org/10.1207/S15327965PLI1104_01
- DePaulo, B. M. (2007). Singled out: How singles are stereotyped, stigmatized, and ignored, and still live happily ever after. Macmillan.
- DePaulo, B. M., & Morris, W. L. (2005). Singles in society and in science. Psychological Inquiry, 16, 57–83. https://doi.org/10.1207/s15327965pli162&3_01 Diener, E. (1984). Subjective well-being. Psychological Bulletin, 95(3), 542–575.
- Diener, E., Emmons, R. A., Larsen, R. J., & Griffin, S. (1985). The satisfaction with life scale. *Journal of Personality Assessment, 49*(1), 7175. https://doi.org/10.1207/s15327752jpa4901 13
- Diener, E., Gohm, C. L., Suh, E., & Oishi, S. (2000). Similarity of the relations between marital status and subjective well-being across cultures. *Journal of Cross-cultural Psychology*, 31(4), 419–436.
- Diener, E., Gohm, C. L., Suh, E., & Oishi, S. (2015). Similarity of relations between marital status and subjective well-being across cultures. *Social Indicators Research*, 123(3), 421–442. https://doi.org/10.1007/s11205-015-0930-9
- Diener, E., Suh, E. M., Lucas, R. E., & Smith, H. L. (1999). Subjective well-being: Three decades of progress. *Psychological Bulletin*, 125, 276–302. https://doi.org/10.1037/0033-2909.125.2.276
- Etz, A., & Vandekerckhove, J. (2018). Introduction to Bayesian inference for psychology. Psychonomic Bulletin Review, 25(1), 5–34. https://doi.org/10.3758/s13423-017-1262-3
- Finkel, E. J., Hui, C. M., Carswell, K. L., & Larson, G. M. (2014). The suffocation of marriage: Climbing Mount Maslow without enough oxygen. *Psychological Inquiry*, 25(1), 1–41. https://doi.org/10.1080/1047840X.2014.863723
- Girme, Y. U., Overall, N. C., Faingataa, S., & Sibley, C. G. (2016). Happily single: The link between relationship status and well-being depends on avoidance and approach social goals. Social Psychological and Personality Science, 7(2), 122–130. https://doi.org/10.1177/1948550615599828
- Girme, Y. U., Park, Y., & MacDonald, G. (2022a). Coping or thriving? Reviewing intrapersonal, interpersonal, and societal factors associated with well-being in singlehood from a within-group perspective. *Perspectives on Psychological Science*, 1–24. https://doi.org/10.1177/17456916221136119
- Girme, Y. U., Sibley, C. G., Hadden, B. W., Schmitt, M. T., & Hunger, J. M. (2022b). Unsupported and stigmatized? The association between relationship status and well-being is mediated by social support and social discrimination. Social Psychological and Personality Science, 13(2), 425–435.
- Górski, M., Krys, K., & Park, J. (2024). First happiness, then meaning: A cross-cultural investigation into well-being dilemmas. *The Journal of Positive Psychology, 1*(1), 1–11. https://doi.org/10.1080/17439760.2024.2417108
- Gove, W. R., Hughes, M., & Style, C. B. (1983). Does marriage have positive effects on the psychological well-being of the individual? *Journal of Health and Social Behavior*, 24, 122–131.
- Greitemeyer, T. (2009). Stereotypes of singles: Are singles what we think? European Journal of Social Psychology, 39, 368–383. https://doi.org/10.1002/ejsp.542 Henrich, J., Heine, S. J., & Norenzayan, A. (2010). Most people are not WEIRD. Nature, 466(7302), 29. https://doi.org/10.1038/466029a
- Holt-Lunstad, J., Birmingham, W., & Jones, B. Q. (2008). Is there something unique about marriage? The relative impact of marital status, relationship quality, and network social support on ambulatory blood pressure and mental health. *Annals of Behavioral Medicine*, 35(2), 239–244. https://doi.org/10.1007/s12160-008-9018-y
- Holt-Lunstad, J., Smith, T. B., Baker, M., Harris, T., & Stephenson, D. (2015). Loneliness and social isola- tion as risk factors for mortality: A meta-analytic review. Perspectives on Psychological Science, 10, 227–237. https://doi.org/10.1177/1745691614568352
- Hsu, T.-L., & Barrett, A. E. (2020). The association between marital status and psychological well-being: Variation across negative and positive dimensions. *Journal of Family Issues*, 41, 2179–2202. https://doi.org/10.1177/0192513X20910184
- Jeste, D. V., Lee, E. E., & Cacioppo, S. (2020). Battling the modern behavioral epidemic of loneliness: Suggestions for research and interventions. *JAMA Psychiatry*, 77 (6), 553–554.
- Kaiser, C. R., & Kashy, D. A. (2005). The contextual nature and function of singlism. *Psychological Inquiry*, 16(2–3), 122–126. https://doi.org/10.2307/20447273 Karandashev, V. (2015). A cultural perspective on romantic love. *Online Readings in Psychology and Culture*, 5(4), 2.
- Kiecolt-Glaser, J. K., & Newton, T. L. (2001). Marriage and health: His and hers. *Psychological Bulletin*, 127(4), 472. https://doi.org/10.1037/0033-2909.127.4.472 Kislev, E. (2018). Happiness, post-materialist values, and the unmarried. *Journal of Happiness Studies*, 19(8), 2243–2265. https://doi.org/10.1007/s10902-017-9921-7 Kislev, E. (2019). *Happy singlehood: The rising acceptance and celebration of solo living*. University of California Press.
- Kjell, O., Daukantaitė, D., Hefferon, K., & Sikström, S. (2015). The harmony in life scale complements the satisfaction with life scale: Expanding the conceptualization of the cognitive component of subjective well-being. Social Indicators Research, 126, 1–23. https://doi.org/10.1007/s11205-015-0903-z
- Kowal, M., Bode, A., Koszałkowska, K., Roberts, S. C., Gjoneska, B., Frederick, D., Studzinska, A., Dubrov, D., Grigoryev, D., Aavik, T., Prokop, P., Grano, C., Çetinkaya, H., Duyar, D. A., Baiocco, R., Batres, C., Belkacem, Y., Boğa, M., Burduli, N., & Sorokowski, P. (2024). Love as a Commitment Device: Evidence from a Cross-Cultural Study across 90 Countries. *Human Nature*. https://doi.org/10.1007/s12110-024-09482-6
- Kruschke, J. K., & Liddell, T. M. (2018). The Bayesian new statistics: Hypothesis testing, estimation, meta-analysis, and power analysis from a Bayesian perspective. Psychonomic Bulletin Review, 25(1), 178–206. https://doi.org/10.3758/s13423-016-1221-4
- Krys, K., de Almeida, I., Wasiel, A., & Vignoles, V. L. (2024a). WEIRD–Confucian comparisons: Ongoing cultural biases in psychology's evidence base and some recommendations for improving global representation. *American Psychologist Advance Online Publication*. https://doi.org/10.1037/amp0001298
- Krys, K., Kostoula, O., van Tilburg, W. A., Mosca, O., Lee, J. H., Maricchiolo, F., & Uchida, Y. (2024b). Happiness maximization is a WEIRD way of living. Perspectives on Psychological Science, 1, 17456916231208367.
- Krys, K., Park, J., Kocimska-Zych, A., et al. (2021). Personal life satisfaction as a measure of societal happiness is an individualistic presumption: Evidence from fifty countries. *Journal of Happiness Studies*, 22, 2197–2214. https://doi.org/10.1007/s10902-020-00311-y
- Krys, K., Zelenski, J. M., Capaldi, C. A., Park, J., van Tilburg, W., van Osch, Y., et al. (2019). Putting the "we" in well-being: Using a collectivism-themed measure of well-being attenuates well-being's association with individualism. *Asian Journal of Social Psychology, 22*, 256–267. https://doi.org/10.1111/ajsp.12364
- Lemay, E. P., Jr., Overall, N. C., & Clark, M. S. (2012). Experiences and interpersonal consequences of hurt feelings and anger. *Journal of Personality and Social Psychology*, 103(6), 982–1006. https://doi.org/10.1037/a0030064
- Lindeman, M., & Verkasalo, M. (2005). Measuring values with the short Schwartz's value survey. *Journal of Personality Assessment, 85*(2), 170–178. https://doi.org/10.1207/s15327752jpa8502_09
- Lucas, R. E. (2008). Personality and subjective well-being. In M. Eid, & R. J. Larsen (Eds.), The Science of Subjective Well-Being (pp. 171–194). New York: The Guilford Press.
- Markey, C. N., Markey, P. M., & Gray, H. F. (2007). Romantic relationships and health: An examination of individuals' perceptions of their romantic partners' influences on their health. Sex Roles, 57, 435–445.
- McElreath, R. (2015). Statistical rethinking: A Bayesian course with examples in R. Chapman and Hall/CRC.
- Morris, W. L., DePaulo, B. M., Hertel, J., & Taylor, L. C. (2008). Singlism: Another problem that has no name: Prejudice, stereotypes, and discrimination against singles. In T. G. Morrison, & M. A. Morrison (Eds.), *The psychology of modern prejudice* (pp. 165–194). Nova Science.
- Pieh, C., O'Rourke, T., Budimir, S., & Probst, T. (2020). Relationship quality and mental health during COVID-19 lockdown. PloS One, 15(9), Article e0238906.
- Schwartz, S. H. (1992). Universals in the content and structure of values: Theory and empirical tests in 20 countries. In M. Zanna (Ed.), Advances in experimental social psychology, 25 pp. 1–65). New York: Academic Press. https://doi.org/10.1016/S0065-2601(08)60281-6.

Shovestul, B., Han, J., Germine, L., & Dodell-Feder, D. (2020). Risk factors for loneliness: The high relative importance of age versus other factors. *Plos One*, 15(2), Article e0229087. https://doi.org/10.1371/journal.pone.0229087

Steger, M. F., Frazier, P., Oishi, S., & Kaler, M. (2006). The meaning in life questionnaire: Assessing the presence of and search for meaning in life. *Journal of Counseling Psychology*, 53(1), 80–93. https://doi.org/10.1037/0022-0167.53.1.80

Valori, I., McKenna-Plumley, P. E., Bayramova, R., Zandonella, Callegher, C., Altoè, G., & Farroni, T. (2020). Proprioceptive accuracy in immersive virtual reality: A developmental perspective. PLoS One, 15(1), Article e0222253. https://doi.org/10.1371/journal.pone.0222253

Waite, L. J. (2000). The family as a social organization: Key ideas for the twenty-first century. Contemporary Sociology, 29(3), 463-469.

Waite, L., & Gallagher, M. (2001). The case for marriage: Why married people are happier, healthier and better off financially. Crown.

Whitton, S. W., Weitbrecht, E. M., Kuryluk, A. D., & Bruner, M. R. (2013). Committed dating relationships and mental health among college students. *Journal of American College Health*, 61(3), 176–183. https://doi.org/10.1080/07448481.2013.773903