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 Resumo: 

 

 Esta tese tem como objectivo comparar alguns do mais populares modelos de 

volatilidade, em termos da sua capacidade preditiva. Especificamente, iremos usar três 

modelos auto-regressivos de heterocedasticidade condicional, GARCH, EGARCH e 

GJR. Para proceder à comparação entre modelos, iremos servir-nos de alguns dos mais 

recentes testes de capacidade preditiva: Diebold-Mariano (1995), Diebold-Mariano 

modificado (1997), Morgan-Granger-Newbold modificado (1997), Harvey-Leybourne-

Newbold (1998), Harvey-Newbold (2000) e Hansen (2005). 

 A nossa análise irá ser feita com base nos índices CAC40, FTSE100, 

NIKKEI225 e S&P500, para o período de 1 de Janeiro de 1995 até 31 de Dezembro de 

2009. 

 Os resultados obtidos, embora não sendo conclusivos, apontam para uma 

superior capacidade preditiva dos modelos assimétricos (EGARCH e GJR), face ao 

GARCH. O facto de não conseguirmos apontar claramente o melhor modelo, de entre 

os modelos assimétricos, pode ser explicado pelos diversos episódios de volatilidade 

elevada que tiveram lugar nas últimas duas décadas. 

 

 

Palavras-chave: Previsão de volatilidade, modelos ARCH, testes de capacidade 

preditiva, comparação de modelos 

 

 

 

 

 

 

 

 

 

 

 

 

 



 Abstract: 

 

 The main objective of this thesis is to compare some of the most popular 

volatility models, in terms of their predictive accuracy. Specifically, we will use three 

autoregressive conditional heteroskedasticity (ARCH) models, GARCH, EGARCH and 

GJR. In order to compare these models, we will use some of the most recent predictive 

accuracy tests: Diebold-Mariano (1995), modified Diebold-Mariano (1997), modified 

Morgan-Granger-Newbold (1997), Harvey-Leybourne-Newbold (1998), Harvey-

Newbold (2000) and Hansen (2005). 

 We will consider the CAC40, FTSE100, NIKKEI225 and S&p500 indexes in 

our analysis, from January 1, 1995 through December 31, 2009. 

 The results obtained, although not being conclusive, point out to a superior 

predictive accuracy of asymmetric models (EGARCH and GJR), in relation to GARCH. 

The fact that we can’t clearly point out the best model, between the asymmetric ones, 

may be explained by the several episodes of high volatility that toke place over the last 

two decades.  

 

Keywords: Forecasting volatility, ARCH models, predictive accuracy tests, model 

comparison 
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1. INTRODUCTION 

 

 Forecasting can be described as an attempt to foresee the future by examining 

historical data. In simple terms, a forecast is an estimate for the future value of some 

variable. Therefore, forecasts may not be confused with guesses or intuition.  

 In corporate world, managers often predict future events based upon past 

experience and personal opinion. However, in these days of rapid change, where 

uncertainty is a reality/constant, forecasting is gaining weight in companies’ decisions, 

being a useful tool for managers. Forecasting is important not only for those who use it, 

but also for those who create them, since their reputation is directly related.  

 Given that forecasts play an important role in modern organizations, forecasting 

accuracy becomes extremely important. In spite the enormous amount of studies found 

in the literature, forecasting accuracy comparison does not emerge as an easy task, due 

to several limitations. When the first formal tests of forecasting accuracy came up, the 

conditions imposed to the loss function and the forecast errors where too restrictive. 

Specifically, and in accordance to Diebold (1995):  

 

  

a) The loss function had to be quadratic  

 

And the forecast errors needed to be: 

 

b1) Zero mean 

b2) Gaussian 

b3) Serially uncorrelated 

b4) Contemporaneously uncorrelated 

  

 

 Because some of these conditions are difficult to obtain, recent efforts have been 

made to surpass them and new tests with the relaxation of some conditions were 

proposed. Indeed, over the last few years, several papers emerged, suggesting different 

statistical tests to deal with forecasting accuracy.  
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Thus, and due to the importance of this subject for empirical finance, the main 

purpose of this thesis is to make use of those tests to compare the forecasting capability 

of some alternative conditional heteroskedasticity models.  

 This thesis is organized as follows. Section 2 will present the volatility models to 

be used in our empirical application. Section 3 will review in a brief way the available 

literature related with forecasting accuracy tests. Data’s statistical properties can be seen 

in Section 4, while the econometric approach is given in Section 5. Estimation results 

will be discussed in Section 6 and the conclusions will be made in Section 7. Finally, 

Section 8 mentions some thesis limitations. 

  

 

2. VOLATILITY MODELS 

 

 Due to the major importance played by risk in financial markets, and modeling 

and forecasting volatility In fact, modeling and forecasting volatility has become a true 

focus of attention over the last few years 

 As early noted by Mandelbrot (1963) and Fama (1965), financial time series 

vary systemically with time and tend to display periods of unusual large volatility, 

followed by periods of low volatility. With these findings, Mandelbrot and Fama 

pointed out the importance of volatility in financial markets. Despite their early 

findings, however, the efforts to model and forecast volatility only occurred over the 

last two decades and centered their attention in some stylized facts of asset returns. 

 

 Bollerslev et al (1994) pointed out eight empirical regularities of asset returns: 

 

1. Asset returns tend to be leptokurtic;  

2. Returns are not i.i.d. (independent and identically distributed) through time. This 

phenomenon is also known as volatility clustering;  

3. Also known as Fisher-Black effect, the leverage effect states that volatility and 

asset returns are negatively correlated. In other words, price’s changes of the 

same magnitude but different signs will reflect differently in volatility. 

Specifically, volatility will increase more after a negative change in the asset’s 

price; 
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4. Information that accumulates when financial markets are closed is reflected in 

prices after the markets reopen; 

5. Forecastable releases of important information are associated with high ex ante 

volatility. For example, individual firms’ stock returns volatility is high around 

earnings announcements; 

6. Volatility and serial correlation are inversely correlated;  

7. As observed by Black (1976), a 1% market volatility change typically implies a 

1% volatility change for each stock; 

8. Measures of macroeconomic uncertainty help to explain changes in stock market 

volatility. 

 

 

 The first model that seemed to be able to capture some of these stylized facts 

was proposed by Engle (1982), who launched the first ARCH (autoregressive 

conditional heteroskedasticity) model. In ARCH (q), the conditional variance is a 

function of the past q squared innovations. Later, Bollerslev (1986) proposed a 

generalization of Engle’s model, known as GARCH (generalized autoregressive 

conditional heteroskedasticity), a more parsimonious model than ARCH, as empirical 

findings suggest. The GARCH (p,q) permits additional dependencies on p lags of the 

past conditional variance. GARCH (1,1) is the most popular structure for many 

financial time series.  

 Although ARCH and GARCH models proved to be able to capture the volatility 

clusters stylized fact of returns and partially describe the fat tails exhibited by financial 

data time series, two drawbacks can be pointed out. First, they discharge any influence 

of the innovations’ sign in the conditional variance. Instead, they assume that only the 

innovations’ magnitude is relevant, neglecting the leverage effect. The other ARCHER 

limitation has to do with the parameters non-negativity restrictions, meaning that they 

can assume any value, even a negative one.  

 These limitations led some authors to propose new models. Among them, the 

EGARCH and the GJR models that will be used in this study.  
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 The EGARCH (Exponential GARCH) model (Nelson, 1991) was constructed in 

a way that a negative shock leads to a higher conditional variance in the subsequent 

period than a positive shock would. In other words, EGARCH was constructed to 

account for the leverage effect. For that reason, the conditional variance is specified in 

logarithmic form, so that the conditional variance depends on both the size and the sign 

of lagged residuals. That way, there is no need to impose estimation constraint in order 

to avoid negative variance.  

 The GJR model was proposed by Glosten et al. (1993) and is very similar to the 

Threshold GARCH (TGARCH) model (Zakoian, 1994). “GJR allows a quadratic 

response of volatility to news with different coefficient for good and bad news, but 

maintains the assertion that the minimum volatility will result when there is no news 

(Bolleslev et al, 1994: 2970).” In this model, the leverage effect is modeled with a 

dummy variable that assumes the value 1 to represent a negative shock and 0 otherwise 

 In the following section, we will present the accuracy tests that will be used to 

compare these models in our empirical study.  

 

 

 

3. A BRIEF DESCRIPTION OF EXISTING TESTS 

 
  

3.1 Diebold-Mariano (1995) 

 

 Consider two forecasts,  and  , of the time series  . Let the 

associated forecast errors be  and , respectively. We wish to 

assess the expected loss associated with each of the forecasts. Thus, let us consider 

 and  as the loss functions. 

 The null hypothesis of Diebold-Mariano test states that there is no difference 

between two competing forecasts, in terms of their accuracy skill. Equivalently, the null 

hypothesis states that the population mean of the differential loss is zero ( , 

where  is the loss differential). 
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 In contrast with the previously developed tests, Diebold-Mariano (1995) test 

allows the loss function to be non-quadratic and asymmetric. Besides, errors can be 

non-Gaussion, non-zero mean, serially correlated and contemporaneously correlated. 

 Diebold-Mariano test statistic is the following:  

 

 ,                                                        (1)           

 

where  is a consistent estimate of , the spectral density of the loss 

differential at frequency 0 and  is the sample mean loss differential which, in large 

samples, is approximately normally distributed with mean µ and variance .  

  

 Diebold and Mariano evaluated the finite-sample size of several test statistics, 

under the null hypothesis. Besides S1, two finite-sample reference tests were included in 

this study: the sign test (S2) and the Wilcoxon’s signed-rank test (S3). The studentized 

versions of these two tests (S2a and S3a, respectively) were also studied.  

 

,                                                 (2) 

 

where   

  

 

                                        (3) 

                             

 

  

                                        (4) 

 

  

                               (5) 
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 Moreover, the F-test, as well as the MGN (Granger and Newbold, 1977) and MR 

(Meese and Rogoff, 1988) tests were also included in this analysis.  

 

 F-test 

 

 The F-test requires all previous referred assumptions to be valid. The null 

hypothesis of equal forecast accuracy corresponds to equal forecast error variances (by 

1 and 2a). By the remaining assumptions, the ratio of simple variances has the usual F 

distribution under the null hypothesis. Distributed as , the test statistic is: 

 

                                                 (6) 

 

 This test statistics has little practical use due to the conditions imposed to the 

forecast errors which, as referred before, are very difficult to obtain.     

 

 Morgan-Granger-Newbold (1977)  

 

 In order to solve the contemporaneous correlation problem, Granger and 

Newbold employed an orthogonalizing transformation due to Morgan (1939-1940), 

enabling the relaxation of assumption b4. Thus, the Morgan-Granger-Newbold (MGN) 

test allows forecast errors to be contemporaneously correlated and maintains all the 

previously referred assumptions. Under this assumptions, the null hypothesis of equal 

forecast accuracy is equivalent to zero correlation between x and z ( ), where  

 

 and   

 

 and  

 

 

 Distributed as Student’s t with T-1 degrees of freedom, MGN test statistic is the 

following: 
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                                                (7) 

 Meese-Rogoff (1988) 

 

 Like the MGN test, the Meese-Rogoff (MR) test allows forecast errors to be 

contemporaneously correlated. In addition, forecast errors can also be serially 

correlated. Under the remaining assumptions (a, b1 and b2), MR test is asymptotically 

distributed as standard normal and the test statistic is the following: 

 

                                              (8) 

  

where  and  is a consistent estimator of ∑.  

 It is interesting to note that MR can coincide asymptotically with MGN, when 

the null hypothesis and assumptions a, b1, b2 and b3 are satisfied. 

  In these tests’ evaluation, Diebold and Mariano presented results for different 

levels of contemporaneous correlation (ρ), serial correlation (θ) and sample size (T). 

Gaussian and non-Gaussian forecast errors are also distinguished. Results are shown in 

the appendix (Tables 26-31).   

Let us first discuss the case of Gaussian forecast errors. Here are summarized the 

main conclusions:  

 

 

 F is correctly sized when there is no contemporaneous and serial correlation (i.e. 

ρ = θ = 0) but is missized when any of them is present. Serial correlation pushes 

empirical size above nominal size, while contemporaneous correlation pushes 

empirical size severely below nominal size. Clearly, contemporaneous 

correlation dominates serial correlation. Therefore, in presence of both, F is 

undersized. This outcome is particularly apparent for large ρ and θ. 
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 As expected, the MGN test remains correctly sized as long as θ = 0. As we 

already mentioned, the MGN test allows forecast errors to be 

contemporaneously correlated. Serial correlation, however, pushes empirical 

size above nominal size. 

 

 

 The results obtained for the MR test offer no surprises. As already mentioned, 

the MR test is robust to both serial and contemporaneous correlation. Indeed, for 

large samples (T>64), that proved to be truth. Still, in small samples, the MR 

test showed to be oversized in the presence of serial correlation. 

 

 

 In large samples, the S1 test showed to be robust to both contemporaneous and 

serial correlation. In small samples, however, S1 is oversized, a behavior 

particularly similar to the one showed by the MR test, except that the empirical 

and nominal sizes of the S1 test converge a bit more slowly, when compared to 

the MR test.   

 

 

 Finally, both S2 and S3 tests attested to perform well, with nominal and empirical 

size in close agreement, independently of contemporaneous or serial correlation, 

as well as sample size. Moreover, this conclusion can be extended to S2a and S3a 

tests.  

 

 

In relation to non-Gaussion forecast errors, the most evident result is the drastic 

missizing of the F, MGN and MR tests, evidence that is common to both small and 

large samples. S1, S2a and S3a, on the other hand, maintain approximately correct size, 

except for very small sample sizes (T<32). In those cases, S2 and S3 continue to 

perform well.  

 To summarize, Figure 1 illustrates, in a really perceptible manner, the behavior 

verified by the F, MGN, MR and S1 tests, for the non-Gaussion case with ρ = θ = 0,5. 
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Figure 1: Empirical size, Four Test Statistics; Fat-Tailed case; Theta = Rho = 0,5 

 

 

 

 

 

3.2 A modified Diebold-Mariano test  

 

 

 As showed before, the original DM test (S1) performs relatively well for large 

samples (T>32) but, for small and moderate samples, the test can be quite seriously 

oversized. Besides, this problem becomes progressively more severe as the forecast 

horizon grows. So in 1997, Harvey, Leybourne and Newbold proposed some 

modifications to the original DM test, with the purpose to improve the test’s 

performance for smaller samples. The authors employed an approximately unbiased 

estimator of the variance of  and proved that: 

 

 

,                        (9) 

 

where, 
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 Therefore, the modified DM test statistic becomes: 

 

 

                             (10) 

 

where S1 is the original statistic, n is the number of observations and h is the number of 

steps-ahead forecasts.  

 Besides the test statistic, the modified DM test differs from the original one in 

another way. While the latter uses the critical values of the standard normal distribution, 

the former uses the critical values of the Student’s t distribution with (n-1) degrees of 

freedom.  

 In order to conclude about the effects caused by these two modifications, the 

authors confronted the original Diebold-Mariano test (DM) with the modified Diebold-

Mariano test (MDM). The results appear in Table 1. Expected squared errors were taken 

as the criterion of forecast quality, so that . 
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Table 1: Percentage of rejections of the true null hypothesis of equal mean squared 

errors for the original and modified Diebold-Mariano test at nominal 10% level 

 

 

 

Source: (Harvey et al., 1997:285) 
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 As pointed out by Diebold and Mariano, their test has showed to be oversized 

for the case h=2. As we can see in Table 1, this problem is extended to longer 

horizons. Moreover, it becomes increasingly harsh as we move forward into the 

forecast horizon. The performance achieved by the modified test proved to be 

significantly better. Nevertheless, the high performance verified for the smallest 

samples can be seen as casual since that, for longer forecast horizons, the size 

appears to deteriorate with increasing n before improving again.   

 

 

 When compared to the original DM test, the empirical and nominal sizes of the 

MDM test demonstrated to be closer to each other, especially for the smallest 

samples. This phenomenon also verifies when the errors are autocorrelated and 

there is contemporaneous correlation. 

 

 

 The results obtained when using contemporaneous correlation or serial 

correlation coefficients of 0.5 and 0.9 were a lot similar to those presented in 

Table 1. Furthermore, the authors discovered that the empirical and nominal 

sizes tended to move closer with increasing θ.  

 

 

 The most important conclusion to take is that both improvements showed to 

improve DM test’s performance, although the modification made to the test 

statistic proved to be the more effective one.  

 

 

 

3.3 A modified Morgan-Granger-Newbold test 

  

As pointed out by Diebold and Mariano, in relation to the MGN test, for errors 

from a Student’s t with 6 degrees of freedom (t6) generating process, the serial 

correlation pushes the empirical size above the nominal size, meaning the test is over-

sized. Besides, this problem gets deeper as the sample size increases.  
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 Although Diebold and Mariano have identified this phenomenon, they weren’t 

able to find any explanation. Later, in 1997, Harvey, Leybourne and Newbold 

concluded that the size distortions verified for the MGN test had to do with the 

inconsistent estimation of one parameter (D), caused by the non-verification of the 

assumption , in which the usual regression test on  is based.  

 

 

 ,                                                     (11) 

 

where  

 

     ;          ;       

 

 

Under the conditions of theorem 5.3 of White (1984, p.109), that can be applied 

in this situation,  

 

,                                      (12) 

 

where 

 

     ;           ;       

 

 

 Since , that implies  and, consequently, . 

Given that  does not hold, parameter D is inconsistently estimated. 

Therefore, in order to solve this problem, the authors employed a consistent estimator of 

D and proposed a modified MGN test, with the following test statistic: 

 

                                 (13) 
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 Although the null distributional result is no longer exact, the authors recommend 

the comparison this test statistic with critical values from the Student’s t distribution 

with (n-1) degrees of freedom. The comparison between the original and the modified 

MGN tests is presented in Table 2.  

 

Table 2: Percentage of rejections of the true null hypothesis of equal one-step 

prediction mean squared errors for the original and modified Morgan-Granger-Newbold 

tests at nominal 10% level 

 

 

Source: (Harvey et al., 1997:288) 

 

 Let us consider the original test in first place. Up to sampling error, the empirical 

size matches the nominal size. This result brings no surprises, since the null distribution 

is known in the normal case. However, for the t6 error-generating process, the test is 

seriously over-sized. Moreover, this problem gets deeper as the sample size increases. 

However, it seems that the excess size problem becomes less severe with increasing 

contemporaneous correlation between the forecast errors.  

 Concerning to the modified test, the conclusions are quite contradictory. As 

predicted by the theory, the modification created a test with the correct size for large 

samples. Nonetheless, performance in small samples, where the modified test is over-

sized, is poor. In fact, in the smallest samples, the modified test is seriously over-sized 

when the error distribution is normal, and even worse than the original test for the t6 

error-generating process. For that reason, the authors recommend the use of the 

modified MGN test only for moderately large samples.  
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 Indeed, for the smallest sample sizes, the original MGN test proved to be more 

powerful than the modified one. Still, as the sample size increases, that advantage 

vanishes quickly. 

Since the test based on the modified statistic performed poorly in small samples, 

the authors considered also the possibility of a non-parametric approach. Specifically, 

the authors employed the Spearman’s rank correlation test because of their difficulty in 

handling non-normality. In Table 3, we can see a comparison between the MDM test, 

the rank correlation variant of the MGN test and the original version of the MGN test. 

The t6 generating process was considered for the former two tests.  

 

 

Table 3: Percentage of rejections of the false null hypothesis of equal one-step 

prediction mean squared errors for the MDM, the rank correlation variant of MGN and 

the original MGN tests at 10% level 

  

 

Source: (Harvey et al., 1997:290) 
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Through the analysis of Table 3, Harvey, Leybourne and Newbold came up with 

the following conclusions: 

 

 For the smallest sample sizes, the MGN test showed to be more powerful 

than the MDM test. Still, as the sample size increases, that advantage 

disappears. 

 

 For normal forecast errors, the performance verified by the rank correlation 

variant of the MGN test is pretty much identical with the performance of the 

MDM test, as well as the one demonstrated by the original MGN test for 

large samples. In small samples, however, most of the advantage of the 

MGN test is lost when ranks are employed.  

 

 In the case of heavy-tailed error distributions, the rank correlation test 

proved to be rather more powerful than the MDM test. 

 

 

In conclusion, Harvey, Leybourne and Newbold recommend the use of the 

modified DM test, in part because of the lack of robustness of the MGN test in the 

presence of heavily-tailed distributions of the forecast errors. Besides, although the test 

based on rank correlations performs reasonably well, particularly for heavily-tailed error 

distributions, it is difficult to see how this test could be extended to deal with forecasts 

beyond one-step ahead.  
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3.4 Harvey, Leybourne, Newbold (1998) 

 

 When evaluating a forecast, it is often the case that several competing predictors 

are available. Harvey, Leybourne and Newbold investigated the issue of testing for 

forecast encompassing when there are two forecasts of the same quantity. The question 

to ask in these circumstances is whether any of the competing forecasts can add useful 

information not present in the superior forecast. If an inferior forecast contains no useful 

information, not present in the superior forecast, we say that the second forecast 

encompasses the first. In other words, “if a composite predictor formed as a weighted 

average of two individual forecasts is considered, then one forecast is said to encompass 

(or be conditionally efficient with respect to) the other if the inferior forecast’s optimal 

weight in the composite predictor is zero (Harvey and Newbold, 2000: 471)”.  

 

 Let  be two competing forecasts of the quantity . One-step-ahead 

predictions were assumed (h=1). Let  be the combined forecast, formed as a weighted 

average of the two individual forecasts,  

  

 ,                                      (14) 

 

 Then, if  denote the errors of the individual forecasts 

and  is the error of the combined forecast, we have: 

 

                                              (15) 

 

  

 In order to evaluate whether  contains useful information not present in , 

Granger and Newbold (1973, 1986) proposed the estimation of regression (15) by 

ordinary least squares. The null hypothesis is . 

 When using a record of past forecast errors  it is natural to 

test for forecast encompassing trough a simple least squares regression, which might be 

expected to perform well when forecast errors are generated by a bivariate normal 

distribution. However, in accordance to Harvey et al (1998), it was reasonable to 

suspect that forecast error distributions will often be heavily-tailed. In fact, they showed 

that, when forecast errors are normally distributed, we can stumble on far too many 
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rejections of a true null hypothesis of forecast encompassing. Consequently, they ran a 

simulation to evaluate the behavior of the standard regression-based test for forecast 

encompassing in finite samples. Results can be seen in Table 4. 

 

  

Table 4: Empirical Sizes of Nominal 5%-level and 10%-level Regression-Based Tests 

for Forecast Encompassing 

 

Source: (Harvey et al., 1998:256) 

 

 As can be noted, the oversizing problem becomes more severe as the number of 

sample observations increases, with very slow convergence to the asymptotic results 

found by the authors (0,122 and 0,171 for 5%-level; 0,182 and 0,230 for 10%-level).   

 Harvey et al. (1998) showed that the standard test for forecast encompassing can 

be incorrectly sized when the forecast errors are a temporally independent sequence but 

not normally distributed. “The non-normality problems associated with the standard 

regression-based test for multiple forecast encompassing can be shown to result from 

inconsistent estimation of the quantity Q, induced by conditional heteroskedasticity in 

the regression errors” (Harvey and Newbold, 2000: 473). Then, the most obvious 

modification in this situation is to employ the heteroskedasticity-robust estimator of 

White (1980), a procedure that can be extended to dependent error sequences. 

  Given this problem of lack of robustness to non-normality in the standard test, 

 

 ,                                       (16) 

 

the authors proposed the following test that proved to be robust under these 

circumstances:  
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                (17) 

 

 

where  is the sample mean of the sequence  

 

 

Although  is a consistent estimator for , 

convergence of the second term to zero is likely to be slow. This being the case, an 

alternative option is to replace the estimator  by the estimator . Consequently, the 

authors proposed a new test statistic: 

 

 

                  (18) 

  

   

 In both tests, the null hypothesis to be tested is of zero correlation between  

and .  

 

Harvey et al (1998) made a simulation experiment to evaluate finite sample sizes 

of R1 and R2 tests, along with the original DM test and the modified one proposed by 

Harvey et al (1997). For the standard DM test, normal critical values were used. For the 

other three tests, however, the authors used tn-1 critical values, given the results of 

Harvey et al (1997). Results appear in Table 5. 
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Table 5: Empirical Sizes of Nominal 5%-level and 10%-level Modified Regression-

Based Tests and Diebold-Mariano-type Tests for Forecast Encompassing (h=1) 

 

 

Source: (Harvey et al., 1998:257) 

 

 As predicted by theory, all four tests have approximately correct sizes in large 

samples. In small samples, however, the empirical and nominal sizes do not match, even 

when the forecast-error distribution is bivariate normal. A missizing can be noticed in 

R2 and MDM tests, whereas R1 and DM tests demonstrate to be oversized. In general, 

the MDM seems to perform better than its competitors and represents a distinct 

improvement on the standard regression-based test of the previous table when the 

generating process is bivariate Student’s t.   
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Given the general satisfactory size performance of the MDM test in the case 

h=1, the authors decided to investigate the test’s behavior for higher values of h (the 

steps-ahead forecast). The original DM test was also included in this simulation. Results 

are shown in Table 6. 

  

 

Table 6: Empirical Sizes of Nominal 5%-level Diebold-Mariano-type Tests for 

Forecast Encompassing: Multistep-ahead Prediction (normal errors) 

 

 

Source: (Harvey et al., 1998:258) 

 

As we can see in Table 6, the empirical sizes of the MDM test are really close to 

the nominal sizes, except for long forecast horizons in small samples. Moreover, the 

MDM test is generally clearly preferable to the DM test in terms of size properties, 

suggesting that the Harvey et al (1997) modifications are well worth making. 

The authors proceeded with further simulations, in order to verify if the power of 

the previous conclusions remain valid under a more general context. Specifically, for 

forecast horizons up to four, they also generated forecast errors from bivariate t5 and t6 

distributions. The results found were relatively close from those for the case of normal 

errors. Therefore, we can confirm the robustness of the null distribution of the test 

statistics under heavy-tailed error distributions.       
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Finally, Harvey, Leybourne and Newbold made a power comparison of four 

tests for forecast encompassing. Those tests are the standard regression-based test R, the 

modified regression-based test R1, the MDM test and the Spearman’s rank correlation 

test (rs). Independent sequences of forecast errors (e1t,e2t) were generated from 

bivariate normal and bivariate t6 distributions and one-step–ahead forecasts were taken. 

We can see the estimated size-adjusted powers for the four tests in Table 7 

.  

 

Table 7: Estimated Size-Adjusted Powers of 5%-level Tests for Forecast Encompassing 

(h=1) 

 

 

Source: (Harvey et al., 1998:258) 
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As expected, the most considerable differences among the tests occur at the 

smallest sample sizes, where R is clearly the most powerful of the four tests, for both 

normal and t6 errors. For samples inferior to 32, R1 is somewhat less powerful than R 

but more powerful than rs and manifestly more powerful than MDM. For sample sizes 

larger than 32, however, there is relatively little to choose among R, R1 and MDM. The 

poor power performance of MDM test in small samples - particularly for normally 

distributed errors - is quite regrettable, since its normal sizes are the more reliable ones. 

To make it worse, the nominal significance levels of R1 proved to be unreliable in these 

sample sizes (see Table 5) and the nominal significance levels of R cannot be trusted for 

any sample size (see Table 4). Therefore, the authors recommend the use of MDM over 

R and R1 tests. The same reason can be employed to choose MDM over R2, despite the 

identical size-adjusted power. 

In relation to the correlation test, we can verify that it is slightly over performed 

by the other three tests, when we have a normal error distribution. When the error 

distribution is bivariate t6, however, the test performs relatively well, especially for 

large samples, where it beats all the other three tests. Hence, in the case in which the 

forecast errors are an independent sequence, the rank correlation test is certainly a 

viable alternative to MDM. 

 

 

3.5 Harvey and Newbold (2000) 

 

In 2000, Harvey and Newbold generalized the forecast encompassing approach 

to situations where there is more than one competing forecast to compare. 

Let  be K competing forecasts, taken to be unbiased or bias-

corrected, of the actual quantity . Assume that the forecasts are made one-step-ahead, 

with non-autocorrelated errors.  is the composite forecast. 

 

 ,           (19)   

 

Equivalently, 

 

 ,            (20) 
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where  ,  and  is the error of the combined forecast. The null 

hypothesis that  encompasses its competitors  is  

 

                                          (21) 

 

The regression-based test for multiple forecast encompassing is an F-test of the 

joint significance of the parameters in equation (20). 

It is convenient to note that regression (20) can be written as 

 

 ,                                                   (21) 

 

where  

 

 , 

 , 

 

 

 

As this is a generalization of the two-forecast regression-based test studied by 

Harvey et al (1998), we expect to deal with the same problems, specifically, the lack of 

robustness to non-normality in the standard test, caused by conditional 

heteroskedasticity in the regression errors. Then, having this problem in mind, Harvey 

and Newbold presented three modified tests that proved to be robust to conditional 

heteroskedasticity in the regression errors. These tests also allow for forecast error 

autocorrelation, permitting comparison of forecasts made at horizons greater than one. 

 

 

 Modified regression-based tests 

 

For the first two tests (F1 and F2), the authors followed the approach of the two-

forecast case applied by Harvey et al (1998). Specifically, they employed the 

heteroskedasticity-robust estimator of White (1980), as well as a robust estimator which 

is consistent under the null, but not the alternative hypothesis.  
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In addition, they followed the proposition of Diebold and Mariano (1995) and 

Harvey et al (1998) that, for h-steps-ahead forecasts, a rectangular kernel with 

bandwidth (h-1) should be adopted to account for forecast error autocorrelation. The 

multivariate test statistics proposed by the authors is the following: 

 

 

                                (22) 

 

 

where   ,    and  have (i,j) elements 

 

 

 

 

 

with  and . Harvey and Newbold compare  with the critical values 

from  distribution. 

 

 

 Modified Diebold-Mariano test 

 

 Proposed by Harvey et al (1997), this test can be seen as an extension of the 

MDM test, being this the reason why it was named as the modified Diebold-Mariano-

type test (MS*).  

 As showed before, in 1997, Harvey, Leybourne and Newbold proposed some 

modifications to the Diebold-Mariano test (1995), modifications that proved to be worth 

making. Later, in 1998, these authors found that the MDM test could be used to test for 

forecast encompassing, for the two competing forecasts case. Then, Harvey and 

Newbold (2000) generalized the test for multiple forecast encompassing. The new test 

statistic takes the form of Hotelling’s (1931) generalized T
2
-statistic. 
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                    (23) 

 

where  

 

 ,  

 

 

and  is the sample covariance matrix. Although the finite sample result is not exact, 

Harvey and Newbold maintained the use of   critical values. 

 Harvey and Newbold ran a simulation study to evaluate the finite sample 

behavior of the multiple forecast encompassing tests. Their results are displayed in 

Table 8. Forecast errors were generated from the multivariate normal distribution and 

the multivariate Student’s t-distribution with five and six degrees of freedom. Empirical 

sizes were calculated for nominal 5%-level and 10%-level tests. K=3 was used, 

meaning that they were testing whether one forecast encompasses two rival predictors. 

 

Table 8: Empirical Sizes of Nominal 5%-level and 10%-level tests for K=3, h=1 

 

 

Source: (Harvey and Newbold, 2000:476) 
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 As expected in theoretical grounds, for non-normal forecast errors, the F-test is 

incorrectly sized. Although it is common to both small and large samples, this over-

sizing problem is more severe in the largest samples.  

 Relating to the other three tests, we can see that they have approximately correct 

size for the largest samples. For small and moderate samples however, we observe a 

drastic size distortion of the two modified regression-based tests. Specifically, the F1 

test is over-sized and the F2 test is under-sized. In its turn, the MS* test has shown to be 

robust, although some under-sizing can be noticed in the smallest samples. These 

evidences are valid to both normal and non-normal errors.  

 Given the general satisfactory performance of the MS* test for one-step-ahead 

prediction, the authors investigated the test’s size properties when using forecasts made 

at horizons greater than one. For h=2, forecast errors  were generated from MA(1) 

processes , while for larger h these errors were generated as white 

noise. As we can see in Table 9, the results are not as reliable as for one step-ahead 

prediction. Specifically, we can note some over-sizing for small samples and larger 

horizons.  

  

Table 9: Empirical sizes of nominal 5%-level and 10%-level MS* tests for K=3 

(normal errors)  

 

 

  Source: (Harvey and Newbold, 2000:477) 
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 Now, we will see the estimated size-adjusted powers of each one of the tests for 

K=3, which are displayed in Table 10. The authors considered one-step-ahead forecasts 

with errors drawn from the multivariate normal and Student’s t6-distributions. Since 

MS* is a monotonic function of F2, these two tests have identical size-adjusted powers 

(see Harvey and Newbold, 2000). 

 

Table 10: Estimated Size-adjusted Powers of 5%-level tests for K=3, h=1 

 

 

Source: (Harvey and Newbold, 2000:479) 

  

 Through the analysis of Table 10 we can observe that, for large samples, the 

size-adjusted powers of the four tests are pretty much identical. For small and moderate 

samples however, the F-test displays the greater size-adjusted power. Given its superior 

power properties, the authors feel disappointed with the fact that the F-test is not robust 

to non-normality. Right after the F-test, we have the F1-test, followed by the MS* test 

and the F2-test. As we can see, the differences between the tests get smaller as the 

sample size increase. Also, they are more evident for normal errors than t6 errors. 

Finally, with no surprises, the tests exhibit higher power for normal errors.   

 After analyzing all the results, the authors recommended the use of the MS* test 

for moderately large samples, due to its good size and reasonable power properties. 

Still, they warn about this test limitations, when dealing with small samples: under-

sizing for one-step-ahead forecasts, over-sizing for multi-step-ahead evaluation and low 

power. 
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3.6 Peter Hansen (2005) 

 

 

In 2005, Hansen proposed a test for Superior Predictive Ability (SPA). When 

testing for SPA, the question of interest is whether any alternative forecast is better than 

the benchmark forecast. Testing for SPA is useful for a forecaster who wants to explore 

whether a better forecasting model is available, compared to the model currently being 

used to make predictions. 

In contrast with the Equal Predictive Ability (EPA) tests, SPA tests were 

developed to compare more than two competing forecasts. “The distinction is important 

because the former leads to a simple null hypothesis, whereas the latter leads to a 

composite hypothesis (Hansen, 2005: 366).” 

One of the main complications in composite hypotheses testing is that 

(asymptotic) distributions typically depend on nuisance parameters. The usual way to 

handle this problem is to use the least favorable configuration (LFC), which is 

sometimes referred to as “the point least favorable to the alternative”. However, Hansen 

(2003) proposed a different approach that leads to more powerful tests of composite 

hypothesis. 

Before Hansen, White (2000) proposed a test for Superior Predictive Ability, 

known as the Reality Check (RC) for data snooping. Also known as data mining, data 

snooping “occurs when a given set of data is used more than once for purposes of 

inference or model selection. When such data reuse occurs, there is always the 

possibility that any satisfactory results obtained may simply be due to chance rather 

than to any merit inherent in the method yielding the results (White, 2000: 1115)” This 

is an almost inevitable difficulty when analyzing time-series data, since that there is 

only one record of information about a given variable of interest. 

The test introduced by White provides simple and straightforward procedures for 

testing the null hypothesis: the best model encountered in a specification search has no 

predictive superiority over a given benchmark model.  

When compared to the RC test, the Hansen test proved to be more powerful and 

less sensitive to the inclusion of poor and irrelevant alternatives. Hansen test differs 

from the RC test in two ways. First, a studentized test statistic is employed: 
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                                   (24) 

 

where  is some consistent estimator of  and . 

 denotes the performance of model k relative to benchmark at time t. 

Second, a null distribution based on  is invoked, where  is a 

carefully chosen estimator for µ that conforms with the null hypothesis. Specifically, 

Hansen suggested the estimator: 

 

 

                 (25) 

         

where denotes the indicator function. 

 

Consider the vector of relative performances, . Assuming 

that , the null hypothesis that the benchmark is not inferior to any of the 

alternatives is: 

 

 

 

 

The advantages of the studentized test statistic and the sample dependent null 

distribution is that they don’t rely on stationarity, and are therefore expected to be useful 

in a more general context. Now, let us discuss each one of these modifications 

individually.   

As shown by Hansen, studentizing the individual statistics will allow a 

comparison between objects measured in the same “units of standard deviation”. Not 

doing so, will result in a pointless comparison between objects measured in different 

units. There is one exception where the studentization may reduce the power that occurs 

when the best performing model has the largest variance. Since poor performing models 

also tend to have the most erratic performances, the author considered this case to be of 

little empirical relevance.    
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The second modification made by Hansen had to do with the possible erosion of 

RC’ power when poor alternatives are included in the analysis. In other words, the p-

value associated to the RC test can be increased in an artificial way by adding poor 

forecasts to the set of alternative forecasts. Naturally, we want to avoid that. Given that 

the poor alternatives are irrelevant for the asymptotic distribution, a proper test should 

reduce the influence of these models, while preserving the influence of the models with 

. Having this problem in mind, Hansen constructed his test in a way that 

incorporates all models, while it reduces the influence of alternatives that the data 

suggest are poor.  

Since the test statistics have asymptotic distributions that depend on µ and Ω, 

these are nuisance parameters. The traditional way to proceed in this case is to replace a 

consistent estimator for Ω and employ LFC over the values of µ that satisfy the null 

hypothesis. However, Peter Hansen showed that this approach leads to some rather 

unfortunate properties when testing for SPA. Therefore, he proposed an alternative way 

to handle the nuisance dependence of µ, where a data dependent choice for µ is used, 

rather than µ=0 as dictated by the LFC. 

The estimator chosen by Hansen ( ) was motivated by the law of the iterated 

logarithm. According to this law:  

 

 ,                       (26) 

 

and 

 

 ,                      (27) 

 

 

This way,  meet the necessary asymptotic requirements defined by Hansen. 

Estimator  proved to account for the fact that poor alternatives should be discarded 

asymptotically but not in finite samples.  
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While  separates correctly the good alternatives from the poor ones, there are 

other threshold rates that also produce valid tests. Because different threshold rates will 

lead to different p-values in finite samples, it is convenient to determine an upper and 

lower bound (  and , respectively). 

 

 

                                                            (28) 

 

                                                   (29) 

 

where k=1,…,m.  

 

 In order to obtain the p-values of the three tests for SPA, Hansen followed a 

bootstrap implementation based on the stationary bootstrap of Politis and Romano 

(1994). Consequently, we will have six different tests to be estimated, a result of two 

test statistics (RC and SPA) and three null distributions (one for each estimator,  

and ). Hansen studied the size and power properties of these six tests. The rejection 

frequencies of these tests at levels 5% and 10% can be seen in Tables 11, 12 and 13. 

Numbers in italic are used when the null hypothesis is true (Λ1 = 0). Numbers in 

standard font represent powers for the various local alternatives (Λ1 < 0).  
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Table 11: Rejection Frequencies under the Null and Alternative (m=100 and n=200) 

 

 

 

 

Source: (Hansen, 2005) 
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Table 12: Rejection Frequencies under the Null and Alternative (m=100 and n=1000) 

 

 

 

 

Source: (Hansen, 2005) 
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 Table 11 contains the result for the case where m=100 and n=200. In the 

situation where all 100 inequalities are binding (Λ0 = Λ1 = 0), we see that the rejection 

probabilities are close to the nominal levels for all the tests. Trough the analysis of 

Table 11, it is possible to note that the SPAc-test has an over-rejection by 1%. However, 

this doesn’t seem to be problematic, since this over-rejection disappears when the 

sample size is increased to n=1000, as we can see Table 12. It is interesting to see that 

the liberal null distribution does not lead to a large over-rejection, which might be 

explained by a positive correlation across alternatives and a consequent positive 

correlation between the test statistic and . That way, the critical value will tend to be 

excessively small when the test statistic is small. Then, this correlation will reduce the 

over-rejection of the -based tests, suggesting that Hansen test can be improved. For 

that, it would be necessary to find a way to incorporate information about the off-

diagonal elements of Ω. 

 Panel A corresponds to the case where µ=0, and is therefore the best possible 

situation for LFC-based tests. So this is the only situation where the LFC-based tests 

apply the correct asymptotic distribution. For that reason, it was expectable that the tests 

that are based on  do well, which indeed happened. Fortunately, SPAc also 

performs well in this case. Turning to the configurations where Λ0 > 0, it is possible to 

notice the advantages of using the sample dependent null distribution. For example, in 

Panel E of Table 11, when (Λ0,Λ1) = (10,-3), while the RC almost never rejects the null 

hypothesis, SPAc-test has a power of approximately 84%. 

 Concerning to Table 13, we only notice a slight over-rejection when all 

inequalities are binding, (Λ0 = Λ1 = 0). The power properties are quite good, despite the 

fact that 1000 alternative are being compared to the benchmark. 
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Table 13: Rejection Frequencies under the Null and Alternative (m=1000 and n=200) 

 

 

 

 

 

Source: (Hansen, 2005) 
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 The power curves for the tests that employ  and  are shown in Figure 2, for 

the case where m=100, n=200 and Λ0=20. The power curves are based on tests that aim 

at a 5% significance level, and their rejection frequencies are plotted against a range of 

local alternatives. For the power curves in Figure 2, we conclude that the RC test is 

dominated by the three other tests. There is a significant increase in power when using 

the consistent distribution. Moreover, a quite similar improvement is achieved when we 

use the standardized test statistic, . In fact, according to Hansen’s calculations, to 

regain the power that is lost by using LFC instead of the sample dependent null 

distribution, it would be necessary a sample size 1.49 times larger, meaning that we are 

tossing 33% of the data when using the LFC. Besides, when we drop the studentization, 

a 65% of the data is being discarded. Dropping both modifications is equivalent to 

tossing away 84% of the data.  

 

Figure 2: Local power curves of the four tests, SPAc, SPAu, RCc and RCu, for the 

simulation experiment where m=100, Λ0=20 and  ranges from 0 to 8 

(the x-axis). The power curves quantify the power improvements from the two 

modifications of the Reality Check. 

 

 

Source: (Hansen, 2005) 
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4. STATISTICAL PROPERTIES OF RETURNS 

 

 Our data base is formed by the daily closing prices of the CAC40, FTSE100, 

NIKKEI 225 and S&P500 indexes from January 1, 1995 through December 31, 2009.
1
  

 In order to obtain the daily stock returns (rt), we followed the conventional 

procedure: 

 

,                                                (29) 

 

where Pt is the daily closing price of period t and Pt-1 is the daily closing price of period 

t-1. Figures 3, 4, 5 and 6 show us the behavior of our four indexes over time. 

 

 

Figure 3: CAC40 returns 

 

 

 

 

 

 

 

 

 

                                                           
1
 All data series were drawn from the following website: http://finance.yahoo.com/ 
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Figure 4: FTSE100 returns 

 

 

   

 

 

Figure 5: NIKKEI225 returns 
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Figure 6: S&P500 returns   

 

 

    

 

 It is evident that the ending of 2008 represent the most volatile period over the 

last 15 years, which is as a result of the sub-prime crisis that affected the whole world. 

Although it started in the USA, this crisis quickly spread all around the globe, as it can 

be confirmed by our four geographically scattered indexes (two from Europe, one from 

Asia and another one from Northern America). We can also identify another high 

volatility periods as for example: the October 1997 Asia mini-crash, the 1998 Russian 

financial crisis, the March 2000 dot-com bubble crash or the post-9/11 incident in 2001. 

 Table 14 provides a general overview of the data used. 

 

Table 14: Statistical properties of returns 

  

 
CAC40 FTSE100 NIKKEI225 S&P500 

Observations 3803 3788 3686 3777 

Mean 0,0193 0,015 -0,0169 0,0235 

Median 0,0466 0,0504 0,0018 0,0683 

Maximum 10,5946 9,3842 13,2346 10,9572 

Minimum -9,4715 -9,2646 -12,111 -9,4695 

Standard Deviation 1,483 1,2313 1,5822 1,2823 

Skewness -0,0278 -0,1359 -0,1912 -0,2001 

Kurtosis 7,6934 9,175 8,3519 11,1562 

Jarque-Bera 3491,055 [0,0000] 6029,919 [0,0000] 4421,575 [0,0000] 10494,45 [0,0000] 
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 As we can see, excepting NIKKEI225, the mean returns all are positive. 

NIKKEI225 also seems to be the most volatile index, since it has the lower and the high 

value, as well as the higher standard deviation. Without surprises, the Jarque-Bera test 

(Jarque and Bera, 1987) rejects the normality assumption for each of the series. 

 The Ljung-Box statistics on the returns, computed at a tenth-order lag, are 

shown in Figures 7, 8, 9 and 10. 

 

 

Figure 7: Ljung-Box test for the CAC40 returns 

 

 

 

Figure 8: Ljung-Box test for the FTSE100 returns 
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Figure 9: Ljung-Box test for the NIKKEI225 returns 

 

 

 

 

Figure 10: Ljung-Box test for the S&P500 returns 

 

 

 

 For the CAC40 index, the Ljung-Box test tells us that period t and period t-1 are 

not correlated, since we do not reject the null hypothesis at a 5% significance level. 

Still, we reject all the other null hypothesis, meaning that all the other autocorrelation 

coefficients are statistically significant at a 5% significance level. 
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 Concerning the FTSE100 and the S&P500 indexes, it is possible to conclude that 

the returns are temporally correlated, since we reject (at a 5% level) the null hypothesis 

that the autocorrelation coefficients are equal to zero. Then, we can say that these series 

were not generated through a white noise process. 

 In its turn, for the NIKKEI225 index we can say that period t is correlated with 

period t-7, t-8 and t-9, if we assume a 10% significance level. For the remaining 

periods, we reject the null at a 5% level. Therefore, we conclude that every 

autocorrelation coefficient is statistically significant. That way, The NIKKEI225 returns 

were not generated through a white noise process.  

 Since we identified relevant autocorrelation in every index, we will consider an 

order five autoregressive model to remove the linear dependency in the series.  

  

 

 

5. ECONOMETRIC APPROACH 

 

 The empirical distribution of a financial asset can be described as the sum of a 

predictable part with an unpredictable part: 

 

 ,                                           (30) 

 

where  is the relevant information set until, and including, t-1. 

 

 Based on our previous findings, we computed the conditional mean equation, 

, as a fifth-order autoregressive process, AR(5), in order to remove the 

observed linear dependency in the returns: 

 

 ,            (31) 

 

where  and the standardized innovations (  are assumed to be i.i.d. with 

Student’s t distribution.  

 Figures 11, 12, 13 and 14 show us the Ljung-Box test applied to the residuals 

after fitting the AR(5) to the series.  
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Figure 11: Ljung-Box test for the CAC40 residuals 

 

 

 

 

 

Figure 12: Ljung-Box test for the FTSE100 residuals 
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Figure 13: Ljung-Box test for the NIKKEI225 residuals 

 

 

 

 

Figure 14: Ljung-Box test for the S&P500 residuals 

 

 

 

 

 As we can see, the AR(5) successfully removed the linear dependency in 

CAC40, NIKKEI225 and S&P500 series up to the tenth-lag. For the FTSE100, 

however, the linear dependency was removed to the seventh-lag only, indicating that we 

could have used an autoregressive process of superior order than five. Still, the results 

obtained with the AR(5) are quite satisfactory and allow us to consider that the resides 

are now white noise.  
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 For the conditional variance of , we have considered our 

three conditional heteroskedasticity models, GARCH, EGARCH and GJR. 

 As stated by Bollerslev et al. (1992) as well as Hansen and Lunde (2005), when 

modeling financial assets returns volatility, the (1,1) specification in ARCH (p,q) 

models is rather satisfactory. For that reason, we will use p=1 and q=1.  

 

 

                                    (32) 

 

                      (33) 

 

                          (34) 

 

where  are unknown parameters,   if   and   if  

. All models were estimated through maximum likelihood (MLE). 

 Since volatility itself is not directly observable, establishing the effectiveness of 

the volatility forecast involves the use of a “volatility proxy” that may constitute an 

imperfect estimate of the true volatility, as mentioned by Andersen and Bollerslev 

(1998), for example. Following the conventional approach, squared returns are used as a 

proxy for the latent volatility process. According to Patton (2006) the squared return on 

an asset over the period t (assuming a zero mean return) is a conditionally unbiased 

estimator of the true unobserved conditional variance of the asset over the period t. 

 Our original sample was divided in two parts: the in-sample (January 3, 1995 to 

December 31, 2004) and the out-of-sample (January 3, 2005 to December 31, 2009). 

That way, the parameters for the conditional variance equation are estimated for the first 

ten years. The remaining five years were considered as the forecast period.    

 In the following section, we will present and discuss both in-sample and out-of-

sample results.  
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6. ESTIMATION RESULTS
2
 

 

 In-sample results 

 

 Figures 15 to 26 report the in-sample results for CAC40, FTSE100, NIKKEI225 

and S&P500. In order to compare these results, we will make use of three likelihood 

based goodness-of-fit criteria. Those criteria are the maximum log-likelihood, the 

Akaike Information Criteria (Akaike, 1978) and the Schwarz Bayesian Criteria 

(Scharwz, 1978). The first one is obtained from the maximum likelihood estimation and 

the bigger it is, the better it is. On the contrary, we want Akaike Information Criteria 

(AIC) and Schwarz Bayesian Criteria (SBC) to be as lower as possible. 

 

 

Figure 15: Log-likelihood for GARCH (CAC40) 

 

 

 

 

 

 

 

                                                           
2
 All calculations were programmed in Eviews 5.0. The program work files are displayed in the Appendix.  
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Figure 16: Log-likelihood for GJR (CAC40) 

 

 

 

 

Figure 17: Log-likelihood for EGARCH (CAC40) 
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Figure 18: Log-likelihood for GARCH (FTSE100) 

 

 

 

 

Figure 19: Log-likelihood for GJR (FTSE100) 
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Figure 20: Log-likelihood for EGARCH (FTSE100) 

 

 

 

 

Figure 21: Log-likelihood for GARCH (NIKKEI225) 
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Figure 22: Log-likelihood for GJR (NIKKEI225) 

 

 

 

 

Figure 23: Log-likelihood for EGARCH (NIKKEI225) 
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 According to Tables 15-23, EGARCH is the best model to sculpt the conditional 

variance of CAC40, FTSE100 and NIKKEI225 returns. GJR comes in second place, 

leaving GARCH as the worst model. As expected, both asymmetric models (EGARCH 

and GJR) beat GARCH in terms of goodness-of-fit measures, proving that they 

successfully capture the leverage effect. 

 For the S&P500, however, the results are quite surprisingly, given that 

EGARCH is beaten by GARCH. Besides, GJR appears to be the most accurate predictor 

of S&P500 return’s volatility. 

 

 

Figure 24: Log-likelihood for GARCH (S&P500) 
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Figure 25: Log-likelihood for GJR (NIKKEI225) 

 

 

 

 

 

 

Figure 26: Log-likelihood for EGARCH (NIKKEI225) 
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 Out-of sample results 

 

 In the out-of-sample analysis, we will use the tests presented in Section II to 

identify the best conditional heteroskedasticity model (GARCH, GJR or EGARCH). 

Specifically, we will use the Diebold-Mariano (1995), the modified Diebold-Mariano 

(1997), the modified Morgan-Granger-Newbold (1997), the Harvey-Leybourne-

Newbold (1998), the Harvey-Newbold (2000) and the Hansen (2005) tests. 

 It is important to note that these tests are measured in terms of their forecasting 

errors. Therefore, in order to choose the best model, we will choose the lowest test 

value, as we want to minimize forecasting errors. 

 According to the original Diebold-Mariano test (Tables 15 and 16), the 

conclusions are rather mixed.  

 

 

Table 15: Diebold-Mariano test (MSE loss functions) 

 

 
MSE 

  GJR-EGARCH GJR-GARCH EGARCH-GARCH 

CAC40 -0,6331 [0,5266] -2,2020 [0,0267] -1,5028 [0,1329] 

FTSE100 -0,6058 [0,5447] -2,2895 [0,0221] -0,4768 [0,6335] 

NIKKEI225 -0,8069 [0,4197] -1,5563 [0,1196] -1,5865 [0,1126] 

SP500 -2,0376 [0,0416] -1,7054 [0,0881] 1,6137 [0,1066] 

 

Table 16: Diebold-Mariano test (MAE loss functions) 

 

 
MAE 

 
GJR-EGARCH GJR-GARCH EGARCH-GARCH 

CAC40 2,2929 [0,0219] -3,0082 [0,0026] -3,7035 [0,0002] 

FTSE100 3,3451 [0,0008] -4,9535 [0,0000] -4,7296 [0,0000] 

NIKKEI225 2,5920 [0,0095] -0,3429 [0,7317] -3,9617 [0,0001] 

SP500 2,8888 [0,0039] -4,0828 [0,0000] -3,6106 [0,0003] 
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 In terms of Mean Squared Errors (MSE) loss function, we point out two notes. 

First, GJR appears to beat GARCH, as we reject the null hypothesis that there is no 

difference in the accuracy of two competing forecasts and the test value is negative. 

Still, this is only true for CAC40 and FTSE100 (at 5% significance level) and SP500 (at 

10% significance level). For NIKKEI225 the difference in the predictive accuracy is not 

statistically significant. 

Second, GJR only beats EGARCH for the SP500 stock index. Thus, GJR seems 

to be the most appropriate volatility forecasting model, although this conclusion cannot 

be generalized to all the stock indexes under analysis. Also important is the fact that, in 

spite of the loss function being always lower for EGARCH (when compared to the 

symmetric GARCH), the differences are not statistically significant. 

 In terms of Absolute Squared Errors (MAE) loss function, the conclusions are 

somewhat clearer. As we can see in Table 16, with one exception, the null is always 

rejected, indicating accuracy differences among the competing models. The results point 

out to EGARCH as the best model to predict volatility, followed by GJR and lately, 

GARCH.      

  Without surprises, the values obtained for the modified Diebold-Mariano test 

(Tables 17 and 18) are practically the same of those we’ve found for the original test. 

Thus, the conclusions are exactly the same.  

 

 

Table 17: Modified Diebold-Mariano test (MSE loss functions) 

 

 

 
MSE 

  GJR-EGARCH GJR-GARCH EGARCH-GARCH 

CAC40 -0,6329 [0,5268] -2,2011 [0,0277] -1,5022 [0,1330] 

FTSE100 -0,6055 [0,5448] -2,2886 [0,0221] -0,4766 [0,6336] 

NIKKEI225 -0,8066 [0,4199] -1,5556 [0,1198] -1,5859 [0,1128] 

SP500 -2,0368 [0,0417] -1,7047 [0,0883] 1,6130 [0,1067] 
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Table 18: Modified Diebold-Mariano test (MAE loss functions) 

 

 

 
MAE 

  GJR-EGARCH GJR-GARCH EGARCH-GARCH 

CAC40 2,2929 [0,0219] -3,0082 [0,0026] -3,7035 [0,0002] 

FTSE100 3,3451 [0,0008] -4,9535 [0,0000] -4,7296 [0,0000] 

NIKKEI225 2,5920 [0,0095] -0,3429 [0,7317] -3,9617 [0,0001] 

SP500 2,8888 [0,0039] -4,0828 [0,0000] -3,6106 [0,0003] 

 

 

 The values’ resemblance can be easily understood. Looking at equation (10) we 

conclude that the difference between these two tests depends on the number of h-step-

ahead forecasts assumed. Since we use h=1, we can rewrite equation (10):  

 

                                           (35) 

  

  

 Given that,  then,  

 

 As in the original and modified Diebold-Mariano tests, the null hypothesis of the 

modified MGN test also states that there is no difference in the accuracy of two 

competing forecasts.  

 

 

Table 19: Modified MGN test 

 

  GARCH-EGARCH GARCH-GJR EGARCH-GJR 

CAC40 0,0117 [0,9906] 0,0006 [0,9995] 0,0022 [0,9982] 

FTSE100 0,0018 [0,9986] 0,0000 [1,0000] 0,0030 [0,9976] 

NIKKEI225 0,0061 [0,9951] 0,1072 [0,9146] 0,0033 [0,9974] 

SP500 -0,0008 [0,9993] 0,0000 [1,0000] 0,0002 [0,9999] 
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 Table 19 allow us to observe that, regardless the index, the null is never rejected. 

Then, we can conclude that GJR, GARCH and EGARCH are equally accurate, in terms 

of volatility prediction. 

 Harvey et al. (1998) proposed two tests to compare predictive ability of 

competing models. Let us discuss the results of those two tests (R1 and R2) individually.  

 

Table 20: R1 test 

 

 
R1 

  GARCH-EGARCH GARCH-GJR EGARCH-GJR EGARCH-GARCH GJR-GARCH GJR-EGARCH 

CAC40 0,2689 [0,7880] 0,3234 [0,7464] 0,1201 [0,9044] -0,0401 [0,9680] -0,2493 [0,8031] -0,0133 [0,9894] 

FTSE100 0,1611 [0,8720] 0,0313 [0,9750] 0,1626 [0,8708] 0,0615 [0,9510] -0,0228 [0,9818] 0,0275 [0,9781] 

NIKKEI225 17,8633 [0,0000] 4,4203 [0,0000] 0,3680 [0,7129] -5,6295 [0,0000] -2,8792 [0,0040] -0,0120 [0,9904] 

SP500 0,0509 [0,9594] 0,7682 [0,4424] 0,4368 [0,6622] 0,5020 [0,6157] -0,4170 [0,6767] -0,0476 [0,9620] 

 

Table 21: R2 test 

 

 
R2 

  GARCH-EGARCH GARCH-GJR EGARCH-GJR EGARCH-GARCH GJR-GARCH GJR-EGARCH 

CAC40 0,2119 [0,8322] 0,2444 [0,8069] 0,1365 [0,8914] -0,0386 [0,9692] -0,1996 [0,8418] 0,0132 [0,9895] 

FTSE100 0,1387 [0,8897] 0,0304 [0,9758] 0,1941 [0,8461] 0,0655 [0,9477] -0,0223 [0,9822] 0,0267 [0,9787] 

NIKKEI225 0,9470 [0,3436] 1,2924 [0,1962] 0,5823 [0,5604] -0,8492 [0,3958] -1,5321 [0,1255] -0,0121 [0,9903] 

SP500 0,0484 [0,9614] 0,4345 [0,6640] 0,7757 [0,4379] 1,0080 [0,3135] -0,2943 [0,7685] -0,0500 [0,9601] 

 

 

 A quick view over Tables 20 and 21 show a quite few contradictory results. Let 

us use the comparison of GARCH and EGARCH to illustrate that. Concerning to F1 test 

for the FTSE100 index, the value of the first row tell us that EGARCH encompasses 

GARCH, due to the positive and statistically significant test value. Logically, if 

EGARCH encompasses GARCH, then GARCH cannot encompass EGARCH. 

However, that’s the exact conclusion to be taken of the fourth row, where we have a 

positive and statistically significant value. Instead, we should have a negative value. 

Having this in mind, let us proceed to a more detailed analysis of the results. 
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 Regarding R1, the conclusions are quite contradictory. For the CAC40 index, the 

positive and statistically significant values obtained in the three first rows indicate GJR 

as the best model, since it encompasses both GARCH and EGARCH. Also, EGARCH 

encompasses GARCH. The negative and statistically significant values obtained in the 

last three rows confirm this idea. For the other three indexes, the conclusions are not 

that clear. Specifically, for the FTSE100 index, we can only conclude that GJR 

encompasses GARCH, while for the S&P500 index, GJR seems to beat both GARCH 

and EGARCH. For the NIKKEI225 index, the most apparent result is GJR 

encompassing EGARCH.   

 Regarding R2 test, the most obvious outcome is the statistically significance of 

every single test value, indicating noteworthy differences among our three models. For 

the CAC40 index, the only conclusion to take is the fact that GARCH is the weakest 

model, since it is encompassed by the other two. For the FTSE100 and S&P500 

indexes, the conclusions made for the R1 test can be applied for the R2 test. Specifically, 

for the FTSE100 index, we conclude that GJR encompasses GARCH, while for the 

S&P500 index, GJR beats both GARCH and EGARCH. Lastly, the results obtained for 

the NIKKEI225 lead us to conclude that GJR is the best model, since it encompasses 

both GARCH and EGARCH. 

 In relation to the Harvey-Newbold tests, Tables 22-24 show us that all three tests 

perform quite similarly.  

 

 

Table 22: F1 test 

 

 
F1 

  GARCH EGARCH GJR 

CAC40 12,8675 [0,0003] 5,7174 [0,0169] 8,2504 [0,0041] 

FTSE100 7,7096 [0,0056] 5,5814 [0,0183] 4,0676 [0,0439] 

NIKKEI225 8,9479 [0,0028] 5,0701 [0,0245] 7,2534 [0,0072] 

SP500 5,5736 [0,0184] 1,4778 [0,0001] 1,9524 [0,1626] 
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Table 23: F2 test 

 

 
F2 

  GARCH EGARCH GJR 

CAC40 9,5509 [0,0020] 4,1623 [0,0415] 6,6718 [0,0099] 

FTSE100 6,8349 [0,0090] 4,5132 [0,0338] 3,8269 [0,0507] 

NIKKEI225 7,0985 [0,0078] 3,7428 [0,0533] 6,2320 [0,0127] 

SP500 4,8139 [0,0284] 1,1965 [0,0006] 1,7975 [0,1803] 

 

 

 

Table 24: MS* test 

 

 
MS* 

  GARCH EGARCH GJR 

CAC40 9,6153 [0,0020] 4,1726 [0,0413] 6,7015 [0,0097] 

FTSE100 6,8666 [0,0089] 4,5258 [0,0336] 3,8355 [0,0504] 

NIKKEI225 7,1340 [0,0077] 3,7512 [0,0530] 6,2588 [0,0125] 

SP500 4,8285 [0,0282] 1,2070 [0,0005] 1,7986 [0,1801] 

 

 

 Concerning F1 test, we reject the null hypothesis for the three models (at a 5% 

significance level), meaning that neither of them encompasses another. Consequently, 

any of them can be improved when combined with the two other models. This is true for 

CAC40, FTSE100 and NIKKEI225. For S&P500, however, we fail to reject the null 

hypothesis for GJR, meaning that this model encompasses the other two. Then, GARCH 

and EGARCH contain no useful information not present in GJR. 

 For F2 and MS* tests, the conclusions are exactly the same. Concerning CAC40 

and FTSE100 indexes, we always reject the null hypothesis that one model 

encompasses another (at a 5% significance level). Therefore, as we already seen for F1 

test, GARCH, EGARCH and GJR models can be improved when combined among 

themselves. In relation to NIKKEI225, it is possible to see that both F2 and MS* tests 

exhibit a p-value slightly superior to the considered 5% significance level. Then, failing 

to reject the null hypothesis, we conclude that EGARCH encompasses GARCH and 

GJR. However, a more flexible approach can lead us to another conclusion.  
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 In fact, it is important to see that we could easily reject the null hypothesis, if 

using a slightly superior significance level (6% for example). Therefore, although we 

can say that EGARCH encompasses the other two models, we don’t expect those 

differences to be that substantial. Finally, like it happened for F1, so too F2 and MS* fail 

to reject the null hypothesis for GJR when using S&P500. As a result, we can say that 

all three Harvey-Newbold tests point out the GJR as the best model to predict S&P500 

volatility.  

 At last, we have Hansen (2005) test, which results are shown in Table 25. 

 

Table 25: Hansen test 

 

  GARCH-EGARCH GARCH-GJR EGARCH-GJR 

CAC40 0,0000 [0,9072] 0,9895 [0,0446] 5,03639 [0,0000] 

FTSE100 0,0000 [0,7391] 0,0000 [0,9222] 1,2577 [0,0000] 

NIKKEI225 0,0000 [0,9141] 6,5472 [0,0000] 7,0252 [0,0000] 

SP500 0,0000 [0,7352] 0,0000 [0,9001] 1,2291 [0,0000] 

 

 

 As we fail to reject the null hypothesis that the benchmark (GARCH) is not 

inferior to EGARCH, we conclude that these two models are equally able to predict 

CAC40, FTSE100, NIKKEI225 and S&P500 volatility. When the comparison involves 

EGARCH (benchmark) and GJR, we conclude that the latter outperforms the first, since 

we reject the null hypothesis and we have a positive value for the test statistic. This 

conclusion is valid for all four indexes. Lastly, we stumble on two opposite remarks, 

when comparing GARCH and GJR models. In one hand, the results achieved for 

CAC40 and NIKKEI225 lead us to conclude that GJR beats GARCH (benchmark), as 

we reject the null hypothesis and the test value is positive. On the other hand, as we 

don’t reject the null hypothesis, we can say that GJR and GARCH are equally 

competent to predict FTSE100 and S&P500 volatility.   
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7.  CONCLUSION 

 

The main purpose of this thesis is to compare the forecasting capability of some 

alternative conditional heteroskedasticity models (GARCH, EGARCH and GJR). Our 

data base is formed by the daily closing prices of the CAC40, FTSE100, NIKKEI 225 

and S&P500 indexes from January 1, 1995 through December 31, 2009. This sample 

was then divided in two: the in-sample (January 3, 1995 to December 31, 2004) and the 

out-of-sample (January 3, 2005 to December 31, 2009). Next, we will present the main 

conclusions for both in-sample and out-of-sample analyses.  

 In relation to the in-sample analyses, we used three likelihood based goodness-

of-fit criteria to compare our models. Those criteria are the maximum log-likelihood, 

the AIC and the SBC. As expected, due to the leverage effect, all these criteria pointed 

out the asymmetric models (EGARCH and GJR) as the best predictors of volatility. 

Besides, EGARCH seems to be the most accurate volatility predictor, as it beats GJR in 

every index, excepting S&P500.   

 In the out-of-sample analysis, the results are not that clear, since we reach 

different results for different indexes and different tests. Still, there are some general 

conclusions that can be made. First, with exception of the modified Diebold-Mariano 

(1997) test and the F1 test proposed by Harvey and Newbold (2000), all these tests point 

out the existence of accuracy differences among models, indicating that there are some 

better than others. Then, as already seen in the in-sample analyses, the asymmetric 

models seem to outperform GARCH. The major problem is then to choose between 

GJR and EGARCH.  

 Regarding the Diebold-Mariano (1995) and the modified Diebold-Mariano 

(1997) tests, EGARCH beats GJR, who beats GARCH, in terms of MAE loss function. 

In terms of MSE loss function, however, this fact does not apply. Moreover, it does not 

apply to the NIKKEI225 index too. The Harvey and Newbold (2000) F2 and MS* tests, 

also seem to favor EGARCH, although the accuracy differences are not categorical. On 

the other hand, both Harvey-Leybourne-Newbold (1998) appear to choose GJR as the 

best model.  

 Unfortunately then, we were not able to point out any model as the absolute best 

accurate predictor of volatility. Still, it is fair to say that the dataset analyzed contains 

several episodes of regional and global “market stress”, who provoked high volatilities. 
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 Although we want a volatility model to be able to forecast volatility in these 

extreme situations, we are aware of the difficulties. Still, nowadays’ models already 

incorporate a lack of several stylized facts, being useful tools, although not perfect, to 

predict volatility.       

 

 

 

8. THESIS LIMITATIONS AND FUTURE RESEARCH 

 

 In our empirical application, we used the daily squared returns as a proxy of 

daily volatility. However, as found by Andersen and Bollerslev (1998) squared returns 

are a noisy estimator. Thus, in the future we will have to consider an alternative 

estimator such as the realized variance based on intraday volatility. 

 Another point for future research is to analyze which test is statistically more 

appropriate for a particular models comparison. For example, in accordance to Hansen 

and Lunde (2005), when the comparison involves nested models it is more appropriate 

to apply a test for equal predictive accuracy (EPA), such as that of  Harvey and 

Newbold (2000) when compared to the SPA, for example. Thus, future research should 

involve the characteristics of the models in order to select the most appropriate test to 

compare the models forecasting accuracy. 
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Appendix: 

 

 

Table 26: Empirical size under quadratic loss, Test Statistic F 

 

 

 

Source: (Diebold-Mariano, 1995:258)  
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Table 27: Empirical size under quadratic loss, Test Statistic MGN 

 

 

 

Source: (Diebold-Mariano, 1995:258) 
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Table 28: Empirical size under quadratic loss, Test Statistic MR 

 

 

 

Source: (Diebold-Mariano, 1995:259) 
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Table 29: Empirical size under quadratic loss, Test Statistic S1 

 

 

 

Source: (Diebold-Mariano, 1995:259) 
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Table 30: Empirical size under quadratic loss, Test Statistics S2 and S2a 

 

 

 

Source: (Diebold-Mariano, 1995:260) 
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Table 31: Empirical size under quadratic loss, Test Statistics S3 and S3a 

 

 

 

Source: (Diebold-Mariano, 1995:260) 
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Program workfile:  

 

For the CAC40 index:  

(the exact same calculations were made to the other three indexes) 

 

load "cac40" 

 

series rt=return 

series rt2=rt^2 

 

sample s0 1995/01/03 1995/01/16 

sample s1 1995/01/13 2004/12/31 

sample s2 2005/01/03 2009/12/31 

smpl s1 

 

'GARCH GARCH GARCH 

 

equation eq1 

eq1.arch rt c 

'show eq1.output 

 

'declare coef vectors to use in the likelihood 

 

coef(1) m  = eq1.c(1) 

coef(1) omega = eq1.c(2) 

coef(1) alpha = eq1.c(3) 

coef(1) beta = eq1.c(4) 

coef(4) gamma = 0 

coef(3) delta = 0 

coef(1) tdf = 3 

coef(5) are = 0 

 

smpl s0 

series res = rt-m(1) 

series siggarch = @var(rt) 

!pi = @acos(-1) 

 

'set up the likelihood GARCH 

logl ll1 
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ll1.append @logl logl 

ll1.append res = rt-m(1)-are(1)*rt(-1)-are(2)*rt(-2)-are(3)*rt(-3)-are(4)*rt(-4)-are(5)*rt(-5) 

 

'set up the likelihood GARCH 

ll1.append siggarch = omega(1)+alpha(1)*res(-1)^2+beta(1)*siggarch(-1) 

 

'likelihood equation 

ll1.append z =res^2/siggarch/(tdf(1)-2)+1 

ll1.append logl = @gammalog((tdf(1)+1)/2) - @gammalog(tdf(1)/2) - @log(!pi)/2 - @log(tdf(1)-2)/2 - 

@log(siggarch)/2-(tdf(1)+1)*@log(z)/2 

 

'estimate and display results 

smpl s1 

ll1.ml(b) 

'show ll1.output 

 

'conditional variance out-of-sample GARCH 

smpl s2 

res=rt-m(1)-are(1)*rt(-1)-are(2)*rt(-2)-are(3)*rt(-3)-are(4)*rt(-4)-are(5)*rt(-5) 

siggarch=omega(1)+alpha(1)*res(-1)^2+beta(1)*siggarch(-1) 

'MSE GJR 

series dgarch1 

dgarch1=(siggarch-rt2)^2 

'MAE GJR 

series dgarch2 

dgarch2=@abs(siggarch-rt2) 

 

'GJR GJR GJR GJR 

 

equation eq1 

eq1.arch rt c 

'show eq1.output 

 

'declare coef vectors to use in the likelihood 

 

'coef(1) m=0.1 

'coef(1) omega=0.1 

'coef(1) alpha=0.1 

'coef(1) beta=0.1 

'coef(1) gamma=0.1 
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'coef(1) tdf=3 

'coef(5) are=0.1 

 

smpl s0 

series res=rt-m(1) 

series  siggjr=@var(rt) 

!pi=@acos(-1) 

 

'set up the likelihood GJR 

logl ll2 

ll2.append @logl logl 

ll2.append res=rt-m(1)-are(1)*rt(-1)-are(2)*rt(-2)-are(3)*rt(-3)-are(4)*rt(-4)-are(5)*rt(-5) 

 

'set up the likelihood GJR 

ll2.append n1=res(-1)<0 

ll2.append siggjr=omega(1)+alpha(1)*res(-1)^2+beta(1)*siggjr(-1)+gamma(1)*res(-1)^2*n1 

 

'likelihood equation 

ll2.append z=res^2/siggjr/(tdf(1)-2)+1 

ll2.append logl=@gammalog((tdf(1)+1)/2)-@gammalog(tdf(1)/2)-@log(!pi)/2-@log(tdf(1)-2)/2-

@log(siggjr)/2-(tdf(1)+1)*@log(z)/2 

 

'estimate and display results 

smpl s1 

ll2.ml(b) 

'show ll2.output 

 

'conditional variance out-of-sample GJR 

smpl s2 

res=rt-m(1)-are(1)*rt(-1)-are(2)*rt(-2)-are(3)*rt(-3)-are(4)*rt(-4)-are(5)*rt(-5) 

n1=res(-1)<0 

siggjr=omega(1)+alpha(1)*res(-1)^2+beta(1)*siggjr(-1)+gamma(1)*n1*res(-1)^2 

'MSE GJR 

series dgjr1 

dgjr1=(siggjr-rt2)^2 

'MAE GJR 

series dgjr2 

dgjr2=@abs(siggjr-rt2) 

 

 



Predictive Accuracy of Alternative Autoregressive Conditional Heteroskedasticity Models 

76 
 

'EGARCH EGARCH EGARCH 

 

equation eq1 

eq1.arch rt c 

'show eq1.output 

 

'declare coef vectors to use in the likelihood 

 

'coef(1) m=eq1.c(1) 

'coef(1) omega=eq1.c(2) 

'coef(1) alpha=eq1.c(3) 

'coef(1) beta=eq1.c(4) 

'coef(4) gamma=0 

'coef(3) delta=0 

'coef(1) tdf=3 

'coef(5) are=0 

 

smpl s0 

series sigegarch=@var(rt) 

series reseg=rt-m(1) 

!pi=@acos(-1) 

 

'set up the likelihood EGARCH 

logl ll3 

ll3.append @logl logl 

ll3.append reseg=rt-m(1)-are(1)*rt(-1)-are(2)*rt(-2)-are(3)*rt(-3)-are(4)*rt(-4)-are(5)*rt(-5) 

 

'set up the likelihood EGARCH 

ll3.append log(sigegarch)=omega(1)+beta(1)*@log(sigegarch(-1))+alpha(1)*@abs(reseg(-

1))/@sqrt(sigegarch(-1))+gamma(1)*(reseg(-1)/@sqrt(sigegarch(-1))) 

 

'likelihood equation 

ll3.append z=res^2/sigegarch/(tdf(1)-2)+1 

ll3.append logl=@gammalog((tdf(1)+1)/2)-@gammalog(tdf(1)/2)-log(!pi)/2-log(tdf(1)-2)/2-

log(sigegarch)/2-(tdf(1)+1)*log(z)/2 

 

'estimate and display results 

smpl s1 

ll3.ml(b) 

'show ll3.output 
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'conditional variance out-of.sample EGARCH 

smpl s2 

reseg=rt-m(1)-are(1)*rt(-1)-are(2)*rt(-2)-are(3)*rt(-3)-are(4)*rt(-4)-are(5)*rt(-5) 

sigegarch=@exp(omega(1)+beta(1)*log(sigegarch(-1))+alpha(1)*@abs(reseg(-1))/@sqrt(sigegarch(-

1))+gamma(1)*(reseg(-1)/@sqrt(sigegarch(-1)))) 

series degarch1 

degarch1=(sigegarch-rt2)^2 

'MAE EGARCH 

series degarch2 

degarch2=@abs(sigegarch-rt2) 

 

 

'COMPUTING THE HARVEY-NEWBOLD (2000) TEST 

 

 

series e1t=rt2-siggarch 

vector(1000) yt 

stomna(e1t,yt) 

series e2t=rt2-sigegarch 

series e3t=rt2-siggjr 

series de12t=e1t-e2t 

series de13t=e1t-e3t 

 

equation eq3 

eq3.ls e1t de12t de13t 

'show eq3.output 

!obs=@obssmpl 

!s2=@se^2 

!K=@ncoef 

eq3.makeresids res1 

vector(1000) resf1 

stomna(res1,resf1) 

vector(!K) LAMB 

for !i=1 to !K 

LAMB(!i)=@coefs(!i) 

next 

 

matrix(1000,2) X 

group HNg1 de12t de13t 
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stomna(HNg1,X) 

matrix(1000,2) HatM 

matrix(1000,2) HatQ 

matrix(1000,2) HatD 

HatM=(!obs^(-1))*@transpose(X)*X 

HatQ=!s2*HatM 

HatD=@inverse(HatM)*HatQ*@inverse(HatM) 

 

 

'F STANDARD TEST 

matrix(1,1) F11 

F11=@transpose(lamb)*@inverse(HatD)*lamb 

scalar F=!obs*(!K-1)^(-1)*@trace(F11) 

if F>0 then !ProbF=1-@cfdist(F,!K-1,!obs-!K+1) 

else 

!ProbF=@cfdist(F,!K-1,!obs-!K+1) 

endif 

 

 

'COMPUTING F1 

!q=0 

!cm=@columns(HatM) 

!rm=@rows(HatM) 

matrix(!cm, !rm) HatQ1 

for !i=1 to !cm 

for !j=1 to !rm 

for !l=1 to !obs 

!q=!q+X(!l,!i)*X(!l,!j)*resf1(!l)^2 

next 

HatQ1(!i,!j)=!q*!obs^(-1) 

!q=0 

next 

next 

 

matrix(!rm, !cm) HatD1 

HatD1=@inverse(HatM)*HatQ1*@inverse(HatM) 

 

matrix(1,1) F12 

F12=@transpose(lamb)*@inverse(HatD1)*lamb 

scalar F1=!obs*(!K-1)^(-1)*@trace(F12) 
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if F1>0 then !ProbF1=1-@cfdist(F1,!K-1,!obs-!K+1) 

else 

!ProbF1=@cfdist(F1,!K-1,!obs-!K+1) 

endif 

 

'COMPUTING F2 

 

!q=0 

!cm=@columns(HatM) 

!rm=@rows(HatM) 

matrix(!cm, !rm) HatQ2 

for !i=1 to !cm 

for !j=1 to !rm 

for !l=1 to !obs 

!q=!q+X(!l,!i)*X(!l,!j)*yt(!l)^2 

next 

HatQ2(!i,!j)=!q*!obs^(-1) 

!q=0 

next 

next 

 

matrix(!rm, !cm) HatD2 

HatD2=@inverse(HatM)*HatQ2*@inverse(HatM) 

 

matrix(1,1) F13 

F13=@transpose(lamb)*@inverse(HatD2)*lamb 

scalar F2=!obs*(!K-1)^(-1)*@trace(F13) 

if F2>0 then !ProbF2=1-@cfdist(F2,!K-1,!obs-!K+1) 

else 

!ProbF2=@cfdist(F2,!K-1,!obs-!K+1) 

endif 

 

 

'COMPUTING MS* 

 

scalar MS=(!obs-(!K-1)*F2)^(-1)*(!obs-!K+1)*F2 

if MS>0 then !ProbMS=1-@cfdist(MS,!K-1,!obs-!K+1) 

else 

!ProbMS=@cfdist(MS,!K-1,!obs-!K+1) 

endif 
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table(7,2) resulta 

setcolwidth(resulta,1,30) 

resulta(1,1)="Statistics of the test" 

resulta(1,2)="Test value" 

resulta(1,3)="P-value" 

resulta(2,1)="F-standard" 

resulta(3,1)="F1" 

resulta(4,1)="F2" 

resulta(5,1)="MS*" 

resulta(2,2)=F 

resulta(2,3)=!ProbF 

resulta(3,2)=F1 

resulta(3,3)=!ProbF1 

resulta(4,2)=F2 

resulta(4,3)=!ProbF2 

resulta(5,2)=MS 

resulta(5,3)=!ProbMS 

 

show resulta 

 

 

'COMPUTING THE DIEBOLD-MARIANO TEST 

 

series dmsv1=(siggarch-rt2)^2 

'MAE MSV-EGARCH 

series dmsv2 

dmsv2=@abs(siggarch-rt2) 

 

 

'MSE 

 

series d11=dgjr1-degarch1 

series d12=dgjr1-dmsv1 

series d13=degarch1-dmsv1 

 

equation eq11 

eq11.ls d11 c 

scalar DM11=@tstats(1) 
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if DM11<0 then !ProbDM11=2*@cnorm(DM11) 

else 

!ProbDM11=2*(1-@cnorm(DM11)) 

endif 

 

equation eq12 

eq12.ls d12 c 

scalar DM12=@tstats(1) 

if DM12<0 then !ProbDM12=2*@cnorm(DM12) 

else 

!ProbDM12=2*(1-@cnorm(DM12)) 

endif 

 

equation eq13 

eq13.ls d13 c 

scalar DM13=@tstats(1) 

if DM13<0 then !ProbDM13=2*@cnorm(DM13) 

else 

!ProbDM13=2*(1-@cnorm(DM13)) 

endif 

 

 

'MAE 

 

series d21=dgjr2-degarch2 

series d22=dgjr2-dmsv2 

series d23=degarch2-dmsv2 

 

equation eq21 

eq21.ls d21 c 

scalar DM21=@tstats(1) 

if DM21<0 then !ProbDM21=2*@cnorm(DM21) 

else 

!ProbDM21=2*(1-@cnorm(DM21)) 

endif 

 

equation eq22 

eq22.ls d22 c 

scalar DM22=@tstats(1) 

if DM22<0 then !ProbDM22=2*@cnorm(DM22) 
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else 

!ProbDM22=2*(1-@cnorm(DM22)) 

endif 

 

equation eq23 

eq23.ls d23 c 

scalar DM23=@tstats(1) 

if DM23<0 then !ProbDM23=2*@cnorm(DM23) 

else 

!ProbDM23=2*(1-@cnorm(DM23)) 

endif 

 

 

table(7,3) DM 

setcolwidth(DM,1,30) 

 

DM(1,1)="Test Statistics" 

DM(2,1)="DM11" 

DM(3,1)="DM12" 

DM(4,1)="DM13" 

DM(5,1)="DM21" 

DM(6,1)="DM22" 

DM(7,1)="DM23" 

DM(1,2)="Test Value" 

DM(2,2)=DM11 

DM(3,2)=DM12 

DM(4,2)=DM13 

DM(5,2)=DM21 

DM(6,2)=DM22 

DM(7,2)=DM23 

DM(1,3)="P-value" 

DM(2,3)=!ProbDM11 

DM(3,3)=!ProbDM12 

DM(4,3)=!ProbDM13 

DM(5,3)=!ProbDM21 

DM(6,3)=!ProbDM22 

DM(7,3)=!ProbDM23 

 

show DM 
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'COMPUTING THE MODIFIED DM (1997) 

 

 

scalar mDM11=((!obs+1-2*1+!obs^(-1)*1*(1-1))/(!obs))^(1/2)*DM11 

if mDM11<0 then !Prob_mDM11=2*@cnorm(mDM11) 

else 

!Prob_mDM11=2*(1-@cnorm(mDM11))  

endif 

 

scalar mDM12=((!obs+1-2*1+!obs^(-1)*2*(1-1))/(!obs))^(1/2)*DM12 

if mDM12<0 then !Prob_mDM12=2*@cnorm(mDM12) 

else 

!Prob_mDM12=2*(1-@cnorm(mDM12)) 

endif 

 

scalar mDM13=((!obs+1-2*1+!obs^(-1)*2*(1-1))/(!obs))^(1/2)*DM13 

if mDM13<0 then !Prob_mDM13=2*@cnorm(mDM13) 

else 

!Prob_mDM13=2*(1-@cnorm(mDM13)) 

endif 

 

scalar mDM21=((!obs+1-2*1+!obs^(-1)*2*(1-1))/(!obs))^(1/2)*DM21 

if mDM21<0 then !Prob_mDM21=2*(1-@cnorm(mDM21)) 

else 

!Prob_mDM21=2*(1-@cnorm(mDM21)) 

endif 

 

scalar mDM22=((!obs+1-2*1+!obs^(-1)*2*(1-1))/(!obs))^(1/2)*DM22 

if mDM22<0 then !Prob_mDM22=2*@cnorm(mDM22) 

else 

!Prob_mDM22=2*(1-@cnorm(mDM22)) 

endif 

 

scalar mDM23=((!obs+1-2*1+!obs^(-1)*2*(1-1))/(!obs))^(1/2)*DM23 

if mDM23<0 then !Prob_mDM23=2*@cnorm(mDM23) 

else 

!Prob_mDM23=2*(1-@cnorm(mDM23)) 

endif 
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table(7,3) mDM 

setcolwidth(mDM,1,30) 

 

mDM(1,1)="Test Statistics" 

mDM(2,1)="mDM11" 

mDM(3,1)="mDM12" 

mDM(4,1)="mDM13" 

mDM(5,1)="mDM21" 

mDM(6,1)="mDM22" 

mDM(7,1)="mDM23" 

mDM(1,2)="Test Value" 

mDM(2,2)=mDM11 

mDM(3,2)=mDM12 

mDM(4,2)=mDM13 

mDM(5,2)=mDM21 

mDM(6,2)=mDM22 

mDM(7,2)=mDM23 

mDM(1,3)="P-value" 

mDM(2,3)=!Prob_mDM11 

mDM(3,3)=!Prob_mDM12 

mDM(4,3)=!Prob_mDM13 

mDM(5,3)=!Prob_mDM21 

mDM(6,3)=!Prob_mDM22 

mDM(7,3)=!Prob_mDM23 

 

show mDM 

 

 

 

'COMPUTING THE MODIFIED MGN (1997) 

 

 

series y12=e1t+e2t 

series y13=e1t+e3t 

series y23=e2t+e3t 

series x12=e1t-e2t 

series x13=e1t-e3t 

series x23=e2t-e3t 
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vector(2000) x_12 

stomna(x12, x_12) 

vector(2000) x_13 

stomna(x13, x_13) 

vector(2000) x_23 

stomna(x23, x_23) 

 

 

equation mMGN12 

mMGN12.ls y12 x12 

matrix(1,1) beta_mMGN12 

beta_mMGN12=@coefs 

  

equation mMGN13 

mMGN13.ls y13 x13 

matrix(1,1) beta_mMGN13 

beta_mMGN13=@coefs 

 

equation mMGN23 

mMGN23.ls y23 x23 

matrix(1,1) beta_mMGN23 

beta_mMGN23=@coefs 

 

mMGN12.makeresids residmMGN12 

mMGN13.makeresids residmMGN13 

mMGN23.makeresids residmMGN23 

 

vector(2000) resid_mMGN12  

vector(2000) resid_mMGN13 

vector(2000) resid_mMGN23 

stomna(residmMGN12, resid_mMGN12) 

stomna(residmMGN13, resid_mMGN13) 

stomna(residmMGN23, resid_mMGN23) 

 

 

for !t=1 to !obs 

 

matrix(1,1) S2_mMGN12 
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S2_mMGN12=(x_12(!t)^2*resid_mMGN12(!t)^2)/((x_12(!t)^2)^2)^(-1/2)*beta_mMGN12 

scalar S2_mMGN12_testvalue=S2_mMGN12(1,1)  

if S2_mMGN12_testvalue<0 then !Prob_mMGN12=2*@ctdist(S2_mMGN12_testvalue,!obs-1) 

else 

!Prob_mMGN12=2*(1-@ctdist(S2_mMGN12_testvalue,!obs-1)) 

endif 

 

matrix(1,1) S2_mMGN13 

S2_mMGN13=(x_13(!t)^2*resid_mMGN13(!t)^2)/((x_13(!t)^2)^2)^(-1/2)*beta_mMGN13 

scalar S2_mMGN13_testvalue=S2_mMGN13(1,1) 

if S2_mMGN13_testvalue<0 then !Prob_mMGN13=2*@ctdist(S2_mMGN13_testvalue,!obs-1) 

else 

!Prob_mMGN13=2*(1-@ctdist(S2_mMGN13_testvalue,!obs-1)) 

endif 

 

matrix (1,1) S2_mMGN23 

S2_mMGN23=(x_23(!t)^2*resid_mMGN23(!t)^2)/((x_23(!t)^2)^2)^(-1/2)*beta_mMGN23 

scalar S2_mMGN23_testvalue=S2_mMGN23(1,1) 

if S2_mMGN23_testvalue<0 then !Prob_mMGN23=2*@ctdist(S2_mMGN23_testvalue,!obs-1) 

else 

!Prob_mMGN23=2*(1-@ctdist(S2_mMGN23_testvalue,!obs-1)) 

endif 

 

 

next 

 

 

table (4,3) mMGN 

setcolwidth(mMGN,1,30) 

 

mMGN(1,1)="Test Statistics" 

mMGN(1,2)="Test Value" 

mMGN(1,3)="P-value" 

mMGN(2,1)="mMGN12" 

mMGN(3,1)="mMGN13" 

mMGN(4,1)="mMGN23" 

mMGN(2,2)=S2_mMGN12_testvalue 

mMGN(3,2)=S2_mMGN13_testvalue 

mMGN(4,2)=S2_mMGN23_testvalue 

mMGN(2,3)=!Prob_mMGN12 
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mMGN(3,3)=!Prob_mMGN13 

mMGN(4,3)=!Prob_mMGN23 

 

show mMGN 

 

 

 

'COMPUTING THE HARVEY-LEYBOURNE-NEWBOLD (1998) 

 

series x21=e2t-e1t 

series x31=e3t-e1t 

series x32=e3t-e2t 

 

vector(2000) x_21 

stomna(x21, x_21) 

vector(2000) x_31 

stomna(x31, x_31) 

vector(2000) x_32 

stomna(x32, x_32) 

 

 

equation HLN12 

HLN12.ls e1t x12 

matrix(1,1) lambda_HLN12 

lambda_HLN12=@coefs 

 

equation HLN13 

HLN13.ls e1t x13 

matrix(1,1) lambda_HLN13 

lambda_HLN13=@coefs 

 

equation HLN23 

HLN23.ls e2t x23 

matrix(1,1) lambda_HLN23 

lambda_HLN23=@coefs 

 

equation HLN21 

HLN21.ls e2t x21 

matrix(1,1) lambda_HLN21 

lambda_HLN21=@coefs 
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equation HLN31 

HLN31.ls e3t x31 

matrix(1,1) lambda_HLN31 

lambda_HLN31=@coefs 

 

equation HLN32 

HLN32.ls e3t x32 

matrix(1,1) lambda_HLN32 

lambda_HLN32=@coefs 

 

 

HLN12.makeresids residHLN12 

HLN13.makeresids residHLN13 

HLN23.makeresids residHLN23 

 

vector(2000) resid_HLN12 

vector(2000) resid_HLN13 

vector(2000) resid_HLN23 

 

stomna(residHLN12, resid_HLN12) 

stomna(residHLN13, resid_HLN13) 

stomna(residHLN23, resid_HLN23) 

 

 

HLN21.makeresids residHLN21 

HLN31.makeresids residHLN31 

HLN32.makeresids residHLN32 

 

vector(2000) resid_HLN21 

vector(2000) resid_HLN31 

vector(2000) resid_HLN32 

 

stomna(residHLN21, resid_HLN21) 

stomna(residHLN31, resid_HLN31) 

stomna(residHLN32, resid_HLN32) 

 

'ASSUMING H=1 
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for !t=1 to !obs 

 

matrix(2000,2000) HatQ1_HLN12 

HatQ1_HLN12=(!obs^(-1))*(x_12(!t)^2)*(resid_HLN12(!t)^2) 

 

matrix(2000,2000) HatQ1_HLN13 

HatQ1_HLN13=(!obs^(-1))*(x_13(!t)^2)*(resid_HLN13(!t)^2) 

 

matrix(2000,2000) HatQ1_HLN23 

HatQ1_HLN23=(!obs^(-1))*(x_23(!t)^2)*(resid_HLN23(!t)^2) 

 

 

matrix(1,1) R1_HLN12 

R1_HLN12=(!obs)^(-1/2)*HatQ1_HLN12(!t)^(-1/2)*x_12(!t)^2*lambda_HLN12 

scalar R1_HLN12_testvalue= R1_HLN12(1,1) 

if R1_HLN12_testvalue<0 then !Prob_R1_HLN12=2*@cnorm(R1_HLN12_testvalue) 

else 

!Prob_R1_HLN12=2*(1-@cnorm(R1_HLN12_testvalue)) 

endif 

 

matrix(1,1) R1_HLN13 

R1_HLN13=(!obs)^(-1/2)*HatQ1_HLN13(!t)^(-1/2)*x_13(!t)^2*lambda_HLN13 

scalar R1_HLN13_testvalue= R1_HLN13(1,1) 

if R1_HLN13_testvalue<0 then !Prob_R1_HLN13=2*@cnorm(R1_HLN13_testvalue) 

else 

!Prob_R1_HLN13=2*(1-@cnorm(R1_HLN13_testvalue)) 

endif 

 

matrix(1,1) R1_HLN23 

R1_HLN23=(!obs)^(-1/2)*HatQ1_HLN23(!t)^(-1/2)*x_23(!t)^2*lambda_HLN23 

scalar R1_HLN23_testvalue= R1_HLN23(1,1) 

if R1_HLN23_testvalue<0 then !Prob_R1_HLN23=2*@cnorm(R1_HLN23_testvalue) 

else 

!Prob_R1_HLN23=2*(1-@cnorm(R1_HLN23_testvalue)) 

endif 

 

 

matrix(2000,2000) HatQ1_HLN21 

HatQ1_HLN21=(!obs^(-1))*(x_21(!t)^2)*(resid_HLN21(!t)^2) 
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matrix(2000,2000) HatQ1_HLN31 

HatQ1_HLN31=(!obs^(-1))*(x_31(!t)^2)*(resid_HLN31(!t)^2) 

 

matrix(2000,2000) HatQ1_HLN32 

HatQ1_HLN32=(!obs^(-1))*(x_32(!t)^2)*(resid_HLN32(!t)^2) 

 

 

matrix(1,1) R1_HLN21 

R1_HLN21=(!obs)^(-1/2)*HatQ1_HLN21(!t)^(-1/2)*x_21(!t)^(2)*lambda_HLN21 

scalar R1_HLN21_testvalue= R1_HLN21(1,1) 

if R1_HLN21_testvalue<0 then !Prob_R1_HLN21=2*@cnorm(R1_HLN21_testvalue) 

else 

!Prob_R1_HLN21=2*(1-@cnorm(R1_HLN21_testvalue)) 

endif 

 

matrix(1,1) R1_HLN31 

R1_HLN31=(!obs)^(-1/2)*HatQ1_HLN31(!t)^(-1/2)*x_31(!t)^(2)*lambda_HLN31 

scalar R1_HLN31_testvalue= R1_HLN31(1,1) 

if R1_HLN31_testvalue<0 then !Prob_R1_HLN31=2*@cnorm(R1_HLN31_testvalue) 

else 

!Prob_R1_HLN31=2*(1-@cnorm(R1_HLN31_testvalue)) 

endif 

 

matrix(1,1) R1_HLN32 

R1_HLN32=(!obs)^(-1/2)*HatQ1_HLN32(!t)^(-1/2)*x_32(!t)^(2)*lambda_HLN32 

scalar R1_HLN32_testvalue= R1_HLN32(1,1) 

if R1_HLN32_testvalue<0 then !Prob_R1_HLN32=2*@cnorm(R1_HLN32_testvalue) 

else 

!Prob_R1_HLN32=2*(1-@cnorm(R1_HLN32_testvalue)) 

endif 

 

 

series dtHLN12=x12*e1t 

series dtHLN13=x13*e1t 

series dtHLN23=x23*e2t 

series dtHLN21=x21*e2t 

series dtHLN31=x31*e3t 

series dtHLN32=x32*e3t 
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vector(2000) dt_HLN12 

stomna(dtHLN12, dt_HLN12) 

 

vector(2000) dt_HLN13 

stomna(dtHLN13, dt_HLN13) 

 

vector(2000) dt_HLN23 

stomna(dtHLN23, dt_HLN23) 

 

 

matrix(2000,2000) HatQ2_HLN12 

HatQ2_HLN12=(!obs)^(-1)*dt_HLN12(!t)^2 

 

matrix(2000,2000) HatQ2_HLN13 

HatQ2_HLN13=(!obs)^(-1)*dt_HLN13(!t)^2 

 

matrix(2000,2000) HatQ2_HLN23 

HatQ2_HLN23=(!obs)^(-1)*dt_HLN23(!t)^2 

 

 

vector(2000) dt_HLN21 

stomna(dtHLN21, dt_HLN21) 

 

vector(2000) dt_HLN31 

stomna(dtHLN31, dt_HLN31) 

 

vector(2000) dt_HLN32 

stomna(dtHLN32, dt_HLN32) 

 

 

matrix(2000,2000) HatQ2_HLN21 

HatQ2_HLN21=(!obs)^(-1)*dt_HLN21(!t)^2 

 

matrix(2000,2000) HatQ2_HLN31 

HatQ2_HLN31=(!obs)^(-1)*dt_HLN31(!t)^2 

 

matrix(2000,2000) HatQ2_HLN32 

HatQ2_HLN32=(!obs)^(-1)*dt_HLN32(!t)^2 
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matrix(1,1) R2_HLN12 

R2_HLN12=(!obs)^(-1/2)*HatQ2_HLN12(!t)^(-1/2)*x_12(!t)^(2)*lambda_HLN12 

scalar R2_HLN12_testvalue= R2_HLN12(1,1) 

if R2_HLN12_testvalue<0 then !Prob_R2_HLN12=2*@cnorm(R2_HLN12_testvalue) 

else 

!Prob_R2_HLN12=2*(1-@cnorm(R2_HLN12_testvalue)) 

endif 

 

matrix(1,1) R2_HLN13 

R2_HLN13=(!obs)^(-1/2)*HatQ2_HLN13(!t)^(-1/2)*x_13(!t)^(2)*lambda_HLN13 

scalar R2_HLN13_testvalue= R2_HLN13(1,1) 

if R2_HLN13_testvalue<0 then !Prob_R2_HLN13=2*@cnorm(R2_HLN13_testvalue) 

else 

!Prob_R2_HLN13=2*(1-@cnorm(R2_HLN13_testvalue)) 

endif 

 

matrix(1,1) R2_HLN23 

R2_HLN23=(!obs)^(-1/2)*HatQ2_HLN23(!t)^(-1/2)*x_23(!t)^(2)*lambda_HLN23 

scalar R2_HLN23_testvalue= R2_HLN23(1,1) 

if R2_HLN23_testvalue<0 then !Prob_R2_HLN23=2*@cnorm(R2_HLN23_testvalue) 

else 

!Prob_R2_HLN23=2*(1-@cnorm(R2_HLN23_testvalue)) 

endif 

 

matrix(1,1) R2_HLN21 

R2_HLN21=(!obs)^(-1/2)*HatQ2_HLN21(!t)^(-1/2)*x_21(!t)^(2)*lambda_HLN21 

scalar R2_HLN21_testvalue= R2_HLN21(1,1) 

if R2_HLN21_testvalue<0 then !Prob_R2_HLN21=2*@cnorm(R2_HLN21_testvalue) 

else 

!Prob_R2_HLN21=2*(1-@cnorm(R2_HLN21_testvalue)) 

endif 

 

matrix(1,1) R2_HLN31 

R2_HLN31=(!obs)^(-1/2)*HatQ2_HLN31(!t)^(-1/2)*x_31(!t)^(2)*lambda_HLN31 

scalar R2_HLN31_testvalue= R2_HLN31(1,1) 

if R2_HLN31_testvalue<0 then !Prob_R2_HLN31=2*@cnorm(R2_HLN31_testvalue) 

else 

!Prob_R2_HLN31=2*(1-@cnorm(R2_HLN31_testvalue)) 

endif 
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matrix(1,1) R2_HLN32 

R2_HLN32=(!obs)^(-1/2)*HatQ2_HLN32(!t)^(-1/2)*x_32(!t)^(2)*lambda_HLN32 

scalar R2_HLN32_testvalue= R2_HLN32(1,1) 

if R2_HLN32_testvalue<0 then !Prob_R2_HLN32=2*@cnorm(R2_HLN32_testvalue) 

else 

!Prob_R2_HLN32=2*(1-@cnorm(R2_HLN32_testvalue)) 

endif 

 

 

next 

 

 

 

table(10,3) HLN 

setcolwidth(HLN,1,30) 

 

HLN(1,1)="Test Statistics" 

HLN(2,1)="R1_HLN12" 

HLN(3,1)="R1_HLN13" 

HLN(4,1)="R1_HLN23" 

HLN(5,1)="R2_HLN12" 

HLN(6,1)="R2_HLN13" 

HLN(7,1)="R2_HLN23" 

HLN(8,1)="R1_HLN21" 

HLN(9,1)="R1_HLN31" 

HLN(10,1)="R1_HLN32" 

HLN(11,1)="R2_HLN21" 

HLN(12,1)="R2_HLN31" 

HLN(13,1)="R2_HLN32" 

HLN(1,2)="Test Value" 

HLN(2,2)=R1_HLN12_testvalue 

HLN(3,2)=R1_HLN13_testvalue 

HLN(4,2)=R1_HLN23_testvalue 

HLN(5,2)=R2_HLN12_testvalue 

HLN(6,2)=R2_HLN13_testvalue 

HLN(7,2)=R2_HLN23_testvalue 

HLN(8,2)=R1_HLN21_testvalue 

HLN(9,2)=R1_HLN31_testvalue 

HLN(10,2)=R1_HLN32_testvalue 

HLN(11,2)=R2_HLN21_testvalue 
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HLN(12,2)=R2_HLN31_testvalue 

HLN(13,2)=R2_HLN32_testvalue 

HLN(1,3)="P-value" 

HLN(2,3)=!Prob_R1_HLN12 

HLN(3,3)=!Prob_R1_HLN13 

HLN(4,3)=!Prob_R1_HLN23 

HLN(5,3)=!Prob_R2_HLN12 

HLN(6,3)=!Prob_R2_HLN13 

HLN(7,3)=!Prob_R2_HLN23 

HLN(8,3)=!Prob_R1_HLN21 

HLN(9,3)=!Prob_R1_HLN31 

HLN(10,3)=!Prob_R1_HLN32 

HLN(11,3)=!Prob_R2_HLN21 

HLN(12,3)=!Prob_R2_HLN31 

HLN(13,3)=!Prob_R2_HLN32 

 

 

show HLN 

 

 

 

'COMPUTING THE PETER HANSEN TEST (2005) 

 

 

scalar d_bar12_hansen 

d_bar12_hansen=!obs^(-1)*@sum(x_12) 

scalar var_x12=@var(x_12) 

 

scalar Hat_omega12_hansen 

Hat_omega12_hansen=@sqrt(var_x12) 

 

scalar spa_hansen12 

spa_hansen12=(!obs^(1/2)*d_bar12_hansen)/Hat_omega12_hansen 

 

scalar spa_hansen12_testvalue 

if spa_hansen12>0 then spa_hansen12_testvalue=spa_hansen12 

else spa_hansen12_testvalue=0 

endif 

 

scalar sqrt_hansen=-@sqrt(@log(@log(!obs))) 
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scalar Hat_miu12_hansen 

if spa_hansen12<sqrt_hansen then Hat_miu12_hansen=d_bar12_hansen 

else 

Hat_miu12_hansen=0 

endif 

 

!Prob_spa_hansen12=2*(1-@cnorm((spa_hansen12_testvalue-

Hat_miu12_hansen)/Hat_omega12_hansen)) 

 

 

 

scalar d_bar13_hansen 

d_bar13_hansen=!obs^(-1)*@sum(x_13) 

scalar var_x13=@var(x_13) 

 

scalar Hat_omega13_hansen 

Hat_omega13_hansen=@sqrt(var_x13) 

 

scalar spa_hansen13 

spa_hansen13=(!obs^(1/2)*d_bar13_hansen)/Hat_omega13_hansen 

 

scalar spa_hansen13_testvalue 

if spa_hansen13>0 then spa_hansen13_testvalue=spa_hansen13 

else spa_hansen13_testvalue=0 

endif 

 

scalar sqrt_hansen=-@sqrt(@log(@log(!obs))) 

 

scalar Hat_miu13_hansen 

if spa_hansen13<sqrt_hansen then Hat_miu13_hansen=d_bar13_hansen 

else 

Hat_miu13_hansen=0 

endif 

 

!Prob_spa_hansen13=2*(1-@cnorm((spa_hansen13_testvalue-

Hat_miu13_hansen)/Hat_omega13_hansen)) 
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scalar d_bar23_hansen 

d_bar23_hansen=!obs^(-1)*@sum(x_23) 

scalar var_x23=@var(x_23) 

 

scalar Hat_omega23_hansen 

Hat_omega23_hansen=@sqrt(var_x23) 

 

scalar spa_hansen23 

spa_hansen23=(!obs^(1/2)*d_bar23_hansen)/Hat_omega23_hansen 

 

scalar spa_hansen23_testvalue 

if spa_hansen23>0 then spa_hansen23_testvalue=spa_hansen23 

else spa_hansen23_testvalue=0 

endif 

 

scalar sqrt_hansen=-@sqrt(@log(@log(!obs))) 

 

scalar Hat_miu23_hansen 

if spa_hansen23<sqrt_hansen then Hat_miu23_hansen=d_bar23_hansen 

else 

Hat_miu23_hansen=0 

endif 

 

!Prob_spa_hansen23=2*(1-@cnorm((spa_hansen23_testvalue-

Hat_miu23_hansen)/Hat_omega23_hansen)) 

 

 

table (4,3) Hansen 

setcolwidth(Hansen,1,30) 

 

Hansen(1,1)="Test Statistics" 

Hansen(1,2)="Test Value" 

Hansen(1,3)="P-value" 

Hansen(2,1)="Hansen12" 

Hansen(3,1)="Hansen13" 

Hansen(4,1)="Hansen23" 

Hansen(2,2)=spa_hansen12_testvalue 

Hansen(3,2)=spa_hansen13_testvalue 

Hansen(4,2)=spa_hansen23_testvalue 

Hansen(2,3)=!Prob_spa_hansen12 
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Hansen(3,3)=!Prob_spa_hansen13 

Hansen(4,3)=!Prob_spa_hansen23 

 

show Hansen 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


