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Resumo:

Esta tese tem como objectivo comparar alguns do mais populares modelos de
volatilidade, em termos da sua capacidade preditiva. Especificamente, iremos usar trés
modelos auto-regressivos de heterocedasticidade condicional, GARCH, EGARCH e
GJR. Para proceder a comparacao entre modelos, iremos servir-nos de alguns dos mais
recentes testes de capacidade preditiva: Diebold-Mariano (1995), Diebold-Mariano
modificado (1997), Morgan-Granger-Newbold modificado (1997), Harvey-Leybourne-
Newbold (1998), Harvey-Newbold (2000) e Hansen (2005).

A nossa andlise ird ser feita com base nos indices CAC40, FTSE100,
NIKKEI225 e S&P500, para o periodo de 1 de Janeiro de 1995 até 31 de Dezembro de
2009.

Os resultados obtidos, embora ndo sendo conclusivos, apontam para uma
superior capacidade preditiva dos modelos assimétricos (EGARCH e GJR), face ao
GARCH. O facto de ndo conseguirmos apontar claramente o melhor modelo, de entre
os modelos assimétricos, pode ser explicado pelos diversos episodios de volatilidade

elevada que tiveram lugar nas Gltimas duas décadas.

Palavras-chave: Previsdo de volatilidade, modelos ARCH, testes de capacidade

preditiva, comparacdo de modelos



Abstract:

The main objective of this thesis is to compare some of the most popular
volatility models, in terms of their predictive accuracy. Specifically, we will use three
autoregressive conditional heteroskedasticity (ARCH) models, GARCH, EGARCH and
GJR. In order to compare these models, we will use some of the most recent predictive
accuracy tests: Diebold-Mariano (1995), modified Diebold-Mariano (1997), modified
Morgan-Granger-Newbold (1997), Harvey-Leybourne-Newbold (1998), Harvey-
Newbold (2000) and Hansen (2005).

We will consider the CAC40, FTSE100, NIKKEI225 and S&p500 indexes in
our analysis, from January 1, 1995 through December 31, 2009.

The results obtained, although not being conclusive, point out to a superior
predictive accuracy of asymmetric models (EGARCH and GJR), in relation to GARCH.
The fact that we can’t clearly point out the best model, between the asymmetric ones,
may be explained by the several episodes of high volatility that toke place over the last

two decades.

Keywords: Forecasting volatility, ARCH models, predictive accuracy tests, model

comparison
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1. INTRODUCTION

Forecasting can be described as an attempt to foresee the future by examining
historical data. In simple terms, a forecast is an estimate for the future value of some
variable. Therefore, forecasts may not be confused with guesses or intuition.

In corporate world, managers often predict future events based upon past
experience and personal opinion. However, in these days of rapid change, where
uncertainty is a reality/constant, forecasting is gaining weight in companies’ decisions,
being a useful tool for managers. Forecasting is important not only for those who use it,
but also for those who create them, since their reputation is directly related.

Given that forecasts play an important role in modern organizations, forecasting
accuracy becomes extremely important. In spite the enormous amount of studies found
in the literature, forecasting accuracy comparison does not emerge as an easy task, due
to several limitations. When the first formal tests of forecasting accuracy came up, the
conditions imposed to the loss function and the forecast errors where too restrictive.
Specifically, and in accordance to Diebold (1995):

a) The loss function had to be quadratic

And the forecast errors needed to be:

b1) Zero mean
b2) Gaussian
b3) Serially uncorrelated

b4) Contemporaneously uncorrelated

Because some of these conditions are difficult to obtain, recent efforts have been
made to surpass them and new tests with the relaxation of some conditions were
proposed. Indeed, over the last few years, several papers emerged, suggesting different
statistical tests to deal with forecasting accuracy.
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Thus, and due to the importance of this subject for empirical finance, the main
purpose of this thesis is to make use of those tests to compare the forecasting capability
of some alternative conditional heteroskedasticity models.

This thesis is organized as follows. Section 2 will present the volatility models to
be used in our empirical application. Section 3 will review in a brief way the available
literature related with forecasting accuracy tests. Data’s statistical properties can be seen
in Section 4, while the econometric approach is given in Section 5. Estimation results
will be discussed in Section 6 and the conclusions will be made in Section 7. Finally,

Section 8 mentions some thesis limitations.

2. VOLATILITY MODELS

Due to the major importance played by risk in financial markets, and modeling
and forecasting volatility In fact, modeling and forecasting volatility has become a true
focus of attention over the last few years

As early noted by Mandelbrot (1963) and Fama (1965), financial time series
vary systemically with time and tend to display periods of unusual large volatility,
followed by periods of low volatility. With these findings, Mandelbrot and Fama
pointed out the importance of volatility in financial markets. Despite their early
findings, however, the efforts to model and forecast volatility only occurred over the

last two decades and centered their attention in some stylized facts of asset returns.

Bollerslev et al (1994) pointed out eight empirical regularities of asset returns:

1. Asset returns tend to be leptokurtic;

2. Returns are not i.i.d. (independent and identically distributed) through time. This
phenomenon is also known as volatility clustering;

3. Also known as Fisher-Black effect, the leverage effect states that volatility and
asset returns are negatively correlated. In other words, price’s changes of the
same magnitude but different signs will reflect differently in volatility.
Specifically, volatility will increase more after a negative change in the asset’s

price;
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4. Information that accumulates when financial markets are closed is reflected in
prices after the markets reopen;

5. Forecastable releases of important information are associated with high ex ante
volatility. For example, individual firms’ stock returns volatility is high around
earnings announcements;

6. Volatility and serial correlation are inversely correlated;

7. As observed by Black (1976), a 1% market volatility change typically implies a
1% volatility change for each stock;

8. Measures of macroeconomic uncertainty help to explain changes in stock market

volatility.

The first model that seemed to be able to capture some of these stylized facts
was proposed by Engle (1982), who launched the first ARCH (autoregressive
conditional heteroskedasticity) model. In ARCH (q), the conditional variance is a
function of the past g squared innovations. Later, Bollerslev (1986) proposed a
generalization of Engle’s model, known as GARCH (generalized autoregressive
conditional heteroskedasticity), a more parsimonious model than ARCH, as empirical
findings suggest. The GARCH (p,q) permits additional dependencies on p lags of the
past conditional variance. GARCH (1,1) is the most popular structure for many
financial time series.

Although ARCH and GARCH models proved to be able to capture the volatility
clusters stylized fact of returns and partially describe the fat tails exhibited by financial
data time series, two drawbacks can be pointed out. First, they discharge any influence
of the innovations’ sign in the conditional variance. Instead, they assume that only the
innovations’ magnitude is relevant, neglecting the leverage effect. The other ARCHER
limitation has to do with the parameters non-negativity restrictions, meaning that they
can assume any value, even a negative one.

These limitations led some authors to propose new models. Among them, the
EGARCH and the GJR models that will be used in this study.
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The EGARCH (Exponential GARCH) model (Nelson, 1991) was constructed in
a way that a negative shock leads to a higher conditional variance in the subsequent
period than a positive shock would. In other words, EGARCH was constructed to
account for the leverage effect. For that reason, the conditional variance is specified in
logarithmic form, so that the conditional variance depends on both the size and the sign
of lagged residuals. That way, there is no need to impose estimation constraint in order
to avoid negative variance.

The GJR model was proposed by Glosten et al. (1993) and is very similar to the
Threshold GARCH (TGARCH) model (Zakoian, 1994). “GJR allows a quadratic
response of volatility to news with different coefficient for good and bad news, but
maintains the assertion that the minimum volatility will result when there is no news
(Bolleslev et al, 1994: 2970).” In this model, the leverage effect is modeled with a
dummy variable that assumes the value 1 to represent a negative shock and 0 otherwise

In the following section, we will present the accuracy tests that will be used to
compare these models in our empirical study.

3. ABRIEF DESCRIPTION OF EXISTING TESTS

3.1 Diebold-Mariano (1995)

Consider two forecasts, {§;.}7_, and {y,-t}le, of the time series {y,}7_,. Let the

associated forecast errors be {e;}I_, and {ejt};{ejt};, respectively. We wish to
assess the expected loss associated with each of the forecasts. Thus, let us consider
g(e;r) and g(e;;) as the loss functions.

The null hypothesis of Diebold-Mariano test states that there is no difference
between two competing forecasts, in terms of their accuracy skill. Equivalently, the null
hypothesis states that the population mean of the differential loss is zero (E[d;] = 0,

where d, = [g(eir) — g(ej)] is the loss differential).
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In contrast with the previously developed tests, Diebold-Mariano (1995) test
allows the loss function to be non-quadratic and asymmetric. Besides, errors can be
non-Gaussion, non-zero mean, serially correlated and contemporaneously correlated.

Diebold-Mariano test statistic is the following:

a

) 1
fznf’;i(o) ( )
T

where £;(0) is a consistent estimate of f,;(0), the spectral density of the loss

Sl=

differential at frequency 0 and d is the sample mean loss differential which, in large

samples, is approximately normally distributed with mean p and variance 2mf;(0)/T.

Diebold and Mariano evaluated the finite-sample size of several test statistics,
under the null hypothesis. Besides Si, two finite-sample reference tests were included in
this study: the sign test (S,) and the Wilcoxon’s signed-rank test (S3). The studentized

versions of these two tests (S, and Ss,, respectively) were also studied.

S, = Nt=114 (dy), @
1 i
where I, (d;) = {o ol{hi;;ife

_ 505T 4
S2a = ey ~N(OD) K
S; = rtr=1 I, (dy)rank(|d.]) ®

S5 — T(T+1)
S3a = & a N(O'l) ©

T(T+1)(2T+1)
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Moreover, the F-test, as well as the MGN (Granger and Newbold, 1977) and MR

(Meese and Rogoff, 1988) tests were also included in this analysis.

o [-test

The F-test requires all previous referred assumptions to be valid. The null
hypothesis of equal forecast accuracy corresponds to equal forecast error variances (by
1 and 2a). By the remaining assumptions, the ratio of simple variances has the usual F
distribution under the null hypothesis. Distributed as F (T, T), the test statistic is:

!
€; €
!
]

F= (6)

e ej
This test statistics has little practical use due to the conditions imposed to the

forecast errors which, as referred before, are very difficult to obtain.

e Morgan-Granger-Newbold (1977)

In order to solve the contemporaneous correlation problem, Granger and
Newbold employed an orthogonalizing transformation due to Morgan (1939-1940),
enabling the relaxation of assumption b4. Thus, the Morgan-Granger-Newbold (MGN)
test allows forecast errors to be contemporaneously correlated and maintains all the
previously referred assumptions. Under this assumptions, the null hypothesis of equal

forecast accuracy is equivalent to zero correlation between x and z (p,, = 0), where

x; = (e +ej) and z; = (e — €j¢)

x=(e;+e)andz = (e; —e¢)

Distributed as Student’s t with T-1 degrees of freedom, MGN test statistic is the

following:
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MGN = 22 ™

e Meese-Rogoff (1988)

Like the MGN test, the Meese-Rogoff (MR) test allows forecast errors to be
contemporaneously correlated. In addition, forecast errors can also be serially
correlated. Under the remaining assumptions (a, b1 and b2), MR test is asymptotically

distributed as standard normal and the test statistic is the following:

MR = 2= (8)

b}

T

where ¥, = x’z/T and ¥ is a consistent estimator of Y.

It is interesting to note that MR can coincide asymptotically with MGN, when

the null hypothesis and assumptions a, b1, b2 and b3 are satisfied.

In these tests’ evaluation, Diebold and Mariano presented results for different
levels of contemporaneous correlation (p), serial correlation (0) and sample size (T).
Gaussian and non-Gaussian forecast errors are also distinguished. Results are shown in
the appendix (Tables 26-31).

Let us first discuss the case of Gaussian forecast errors. Here are summarized the

main conclusions:

e Fis correctly sized when there is no contemporaneous and serial correlation (i.e.
p =0 = 0) but is missized when any of them is present. Serial correlation pushes
empirical size above nominal size, while contemporaneous correlation pushes
empirical size severely below nominal size. Clearly, contemporaneous
correlation dominates serial correlation. Therefore, in presence of both, F is

undersized. This outcome is particularly apparent for large p and 6.
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As expected, the MGN test remains correctly sized as long as 6 = 0. As we
already mentioned, the MGN test allows forecast errors to be
contemporaneously correlated. Serial correlation, however, pushes empirical

size above nominal size.

The results obtained for the MR test offer no surprises. As already mentioned,
the MR test is robust to both serial and contemporaneous correlation. Indeed, for
large samples (T>64), that proved to be truth. Still, in small samples, the MR

test showed to be oversized in the presence of serial correlation.

In large samples, the S; test showed to be robust to both contemporaneous and
serial correlation. In small samples, however, S; is oversized, a behavior
particularly similar to the one showed by the MR test, except that the empirical
and nominal sizes of the S; test converge a bit more slowly, when compared to
the MR test.

Finally, both S, and S tests attested to perform well, with nominal and empirical
size in close agreement, independently of contemporaneous or serial correlation,
as well as sample size. Moreover, this conclusion can be extended to S,, and Sz,

tests.

In relation to non-Gaussion forecast errors, the most evident result is the drastic

missizing of the F, MGN and MR tests, evidence that is common to both small and

large samples. S1, S2a and S3a, on the other hand, maintain approximately correct size,

except for very small sample sizes (T<32). In those cases, S2 and S3 continue to

perform well.

To summarize, Figure 1 illustrates, in a really perceptible manner, the behavior

verified by the F, MGN, MR and S1 tests, for the non-Gaussion case with p =0 =10,5.
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Figure 1: Empirical size, Four Test Statistics; Fat-Tailed case; Theta = Rho = 0,5

Empirical Test Size

8 16 32 64 128 256 512
Sample Size

3.2 A modified Diebold-Mariano test

As showed before, the original DM test (S;) performs relatively well for large
samples (T>32) but, for small and moderate samples, the test can be quite seriously
oversized. Besides, this problem becomes progressively more severe as the forecast
horizon grows. So in 1997, Harvey, Leybourne and Newbold proposed some
modifications to the original DM test, with the purpose to improve the test’s
performance for smaller samples. The authors employed an approximately unbiased

estimator of the variance of d and proved that:

n+1-2h4+n"1h(h-1)

-n

E[P@] = | v, ©

where,

10
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Therefore, the modified DM test statistic becomes:

1

]E Sy, (10)

n+1-2h+n"1h(h-1)

n

si=|

where S; is the original statistic, n is the number of observations and h is the number of
steps-ahead forecasts.

Besides the test statistic, the modified DM test differs from the original one in
another way. While the latter uses the critical values of the standard normal distribution,
the former uses the critical values of the Student’s t distribution with (n-1) degrees of
freedom.

In order to conclude about the effects caused by these two modifications, the
authors confronted the original Diebold-Mariano test (DM) with the modified Diebold-
Mariano test (MDM). The results appear in Table 1. Expected squared errors were taken

as the criterion of forecast quality, so that d, = e?, — e2,.

11
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Table 1: Percentage of rejections of the true null hypothesis of equal mean squared

errors for the original and modified Diebold-Mariano test at nominal 10% level

h n=§ n=16 n=132 n = hd n= 128 n =25 n=511
| 16.7 13.5 114 10.9 10.3 0.6 0.8
1.0 10.8 0.3 104 10.0 .5 10,7
13.8 1.0 10,9 1.6 101 0.5 0.8
B4 9.6 9.7 1.1 9.9 1.4 0.6
& .0 203 15.1 12.4 115 09 1.5
3.9 17.8 139 120 1.2 0.8 10,5
1.1 16.4 13.2 11.7 11.1 0.6 0.4
164 14.2 12.2 11.2 10K 0.5 m.3
3 3.9 26,5 18.3 14.1 1.7 11.3 11.2
e 241 17.0 13.7 1.5 11.2 il.1
k] 20,4 15.1 1B 1.0 .o n.9
18.1 1B.5 14.3 12.2 107 108 ([ R]
4 432 g 2.3 159 13.0 1.6 11.2
T4 8.3 .0 154 12.7 11.5 1.1
0.9 1 17.2 139 1.8 11.1 1.0
16.3 1%.8 16.1 13.4 11.5 ([IR] 1.0
5 a9.4 M5 4.5 18.00 138 1.5 11.4
435 1.8 pa ] 17.4 13.5 1.7 11.3
6.6 2.1 18.9 15.4 12.4 11.2 11.1
129 9.9 17.8 14.9 122 11.1 11.0
& 584 n3 .7 19.6 14.8 12.2 118
2.3 MH .6 191 14.5 12.1 11.7
13.5 I8 19.6 16.4 132 1.5 1.3
10.6 198 188 16,0 1.9 11.4 11.2
7 714 W4 BME .8 15.7 12.7 120
[ M9 X1.5 .4 15.4 12.% 1w
125 4 s 17.3 138 1.6 11.5
a9 18.2 19.5 168 136 1.6 11.4
8 = 426 I0.E n9 163 131 120
- LR 9.7 224 160 12.9 11.%
- 19.2 0 1B.5 14.2 12.0 11.5
- 17.4 0.2 18,0 13.8 1.9 1.4
2 = 4353 ia 4.5 17.5 13.8 12.2
437 3.3 e 17.2 138 12.2
- 169 .2 19.5 150 12.5 116
- 151 20.2 19.0 14.7 12.4 116
10 = 9.0 34 5.3 17.% 14.2 12.4
- 6.4 323 49 17.6 14,1 12.3
= 155 21.1 19.6 154 12.7 1.8
14.0 2.2 19.1 15.1 11.6 11.4

Note: The first entry in cach cell s for the original test using N{, 1) critical values, the second for the original test using 1,

critical values, the third for the modified test using N{0, 1) eritical values, and the fourth for the modified test using 1, | critical

walues,

Source: (Harvey et al., 1997:285)

12
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As pointed out by Diebold and Mariano, their test has showed to be oversized
for the case h=2. As we can see in Table 1, this problem is extended to longer
horizons. Moreover, it becomes increasingly harsh as we move forward into the
forecast horizon. The performance achieved by the modified test proved to be
significantly better. Nevertheless, the high performance verified for the smallest
samples can be seen as casual since that, for longer forecast horizons, the size

appears to deteriorate with increasing n before improving again.

When compared to the original DM test, the empirical and nominal sizes of the
MDM test demonstrated to be closer to each other, especially for the smallest
samples. This phenomenon also verifies when the errors are autocorrelated and

there is contemporaneous correlation.

The results obtained when using contemporaneous correlation or serial
correlation coefficients of 0.5 and 0.9 were a lot similar to those presented in
Table 1. Furthermore, the authors discovered that the empirical and nominal

sizes tended to move closer with increasing 6.

The most important conclusion to take is that both improvements showed to
improve DM test’s performance, although the modification made to the test

statistic proved to be the more effective one.

3.3 A modified Morgan-Granger-Newbold test

As pointed out by Diebold and Mariano, in relation to the MGN test, for errors

from a Student’s t with 6 degrees of freedom (ts) generating process, the serial

correlation pushes the empirical size above the nominal size, meaning the test is over-

sized. Besides, this problem gets deeper as the sample size increases.

13
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Although Diebold and Mariano have identified this phenomenon, they weren’t
able to find any explanation. Later, in 1997, Harvey, Leybourne and Newbold
concluded that the size distortions verified for the MGN test had to do with the

inconsistent estimation of one parameter (D), caused by the non-verification of the

assumption E (¢?|x,) = a2, in which the usual regression test on /3 is based.

Ve = Bxe + &, (11)
where
YVe=eqrtey  Xxp=egpr—ey ; t=12,..,n

Under the conditions of theorem 5.3 of White (1984, p.109), that can be applied

in this situation,

n1/2D73(f - ) —— N(0,1), (12)
where

D=M72Q ; Q=V(@'?Zxe) ; M=E@xd)

Since E(&f|x.) = o2, that implies Q = oM and, consequently, D = ¢%M.
Given that E(e?|x;) = o does not hold, parameter D is inconsistently estimated.
Therefore, in order to solve this problem, the authors employed a consistent estimator of
D and proposed a modified MGN test, with the following test statistic:

-1/2

o _ [ExEE 5
S2 = [(ng)Z] B (13)

14
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Although the null distributional result is no longer exact, the authors recommend
the comparison this test statistic with critical values from the Student’s t distribution
with (n-1) degrees of freedom. The comparison between the original and the modified
MGN tests is presented in Table 2.

Table 2: Percentage of rejections of the true null hypothesis of equal one-step
prediction mean squared errors for the original and modified Morgan-Granger-Newbold

tests at nominal 10% level

Normal n=%§ n=16 n=32 n =064 n=128 n =256 n=512
p=0 10.2 10.3 10.0 10.1 9.7 10.4 10.7
19.9 16.0 12.8 11.8 1.6 10.9 10.8
p=0.5 10.0 9.9 10.3 10.3 10.2 10.6 10.4
19.8 15.4 13.0 12.0 11.0 11.2 10.7
p=09 10.1 9.9 10.2 10.4 10.0 10.5 10.1
200.4 15.5 129 12.0 10.7 11.1 10.6
te n=38 n=16 n=32 n =64 n=128 n =250 n=512
p=0 17.9 205 22.6 4.8 26.0 26.1 26.8
26.3 21.2 18.0 15.7 12.9 12.0 0.7
p=05 16.2 18.5 19.8 22.1 22.4 2.6 237
254 208 17.5 149 12.5 11.4 10.6
p=09 11.8 12.8 12.6 13.7 13.6 13.7 13.6
22.0 18.5 15.1 13.3 12.0 [R5 10.3

Note: The first entry in each cell is for the original test, and the second for the modified test.

Source: (Harvey et al., 1997:288)

Let us consider the original test in first place. Up to sampling error, the empirical
size matches the nominal size. This result brings no surprises, since the null distribution
is known in the normal case. However, for the ts error-generating process, the test is
seriously over-sized. Moreover, this problem gets deeper as the sample size increases.
However, it seems that the excess size problem becomes less severe with increasing
contemporaneous correlation between the forecast errors.

Concerning to the modified test, the conclusions are quite contradictory. As
predicted by the theory, the modification created a test with the correct size for large
samples. Nonetheless, performance in small samples, where the modified test is over-
sized, is poor. In fact, in the smallest samples, the modified test is seriously over-sized
when the error distribution is normal, and even worse than the original test for the tg
error-generating process. For that reason, the authors recommend the use of the

modified MGN test only for moderately large samples.

15
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Indeed, for the smallest sample sizes, the original MGN test proved to be more
powerful than the modified one. Still, as the sample size increases, that advantage
vanishes quickly.

Since the test based on the modified statistic performed poorly in small samples,
the authors considered also the possibility of a non-parametric approach. Specifically,
the authors employed the Spearman’s rank correlation test because of their difficulty in
handling non-normality. In Table 3, we can see a comparison between the MDM test,
the rank correlation variant of the MGN test and the original version of the MGN test.

The tg generating process was considered for the former two tests.

Table 3: Percentage of rejections of the false null hypothesis of equal one-step
prediction mean squared errors for the MDM, the rank correlation variant of MGN and
the original MGN tests at 10% level

Normal n=§ n=16 n=32 n=064 n=128 n =25 n =512

R=3 R=2 R=15 R=1.375 R=125 R=1.1875 R=1.125
p=10 27.1 33.1 28.6 344 4.9 40.6 38.0

8.7 332 7.0 327 32.6 78 35.7

42.8 387 0.7 35.5 349 40.9 381
p=105 32.2 39.2 39 41.9 42.1 48.0 46.0

M3 39.2 2.6 39.3 40.3 45.4 43.2

50.9 46.4 358 43.2 42.7 48.5 46.1
p=049 59.9 80.1 T7.4 86.7 88.3 92.5 92.1

71.0 81.3 75.0 84.3 86.1 90.3 89.6

89.6 89.2 81.2 87.9 88.9 92.8 91.9
fy n=8§ n=16 n=32 n =64 n=128 n =156 n =512

R=3 R=2 R=15 R=1.375 R=125 R=1.1875 R=1.125
p=10 19.1 23.0 20.3 24.2 235 250 23.1

7.6 30.9 26.5 e 3.0 344 32.7
p=105 257 3t 7.0 4 20.7 23 30.5

36 7.9 24 79 37.2 41.5 40.5
p=04 53.3 77.0 77.2 86.8 86.9 90.9 89.4

71.6 83.5 T9.0 87.2 88.2 92.7 91.6

Note: The first entry in each cell is for the modified Diebold—Mariano test, the second is for the rank correlation variant of the
Morgan-Granger—Newbold test, and the third is for the original Morgan-Granger-Newbold test (normal errors only).

Source: (Harvey et al., 1997:290)
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Through the analysis of Table 3, Harvey, Leybourne and Newbold came up with

the following conclusions:

. For the smallest sample sizes, the MGN test showed to be more powerful
than the MDM test. Still, as the sample size increases, that advantage

disappears.

. For normal forecast errors, the performance verified by the rank correlation
variant of the MGN test is pretty much identical with the performance of the
MDM test, as well as the one demonstrated by the original MGN test for
large samples. In small samples, however, most of the advantage of the

MGN test is lost when ranks are employed.

. In the case of heavy-tailed error distributions, the rank correlation test

proved to be rather more powerful than the MDM test.

In conclusion, Harvey, Leybourne and Newbold recommend the use of the
modified DM test, in part because of the lack of robustness of the MGN test in the
presence of heavily-tailed distributions of the forecast errors. Besides, although the test
based on rank correlations performs reasonably well, particularly for heavily-tailed error
distributions, it is difficult to see how this test could be extended to deal with forecasts

beyond one-step ahead.

17



Predictive Accuracy of Alternative Autoregressive Conditional Heteroskedasticity Models

3.4 Harvey, Leybourne, Newbold (1998)

When evaluating a forecast, it is often the case that several competing predictors
are available. Harvey, Leybourne and Newbold investigated the issue of testing for
forecast encompassing when there are two forecasts of the same quantity. The question
to ask in these circumstances is whether any of the competing forecasts can add useful
information not present in the superior forecast. If an inferior forecast contains no useful
information, not present in the superior forecast, we say that the second forecast
encompasses the first. In other words, “if a composite predictor formed as a weighted
average of two individual forecasts is considered, then one forecast is said to encompass
(or be conditionally efficient with respect to) the other if the inferior forecast’s optimal

weight in the composite predictor is zero (Harvey and Newbold, 2000: 471)”.

Let (fis f2r) be two competing forecasts of the quantity y,. One-step-ahead
predictions were assumed (h=1). Let f,; be the combined forecast, formed as a weighted

average of the two individual forecasts,

fet = (1—/1)f1t+/1f2t, 0<1<1 (14)

Then, if e;; = (y: — fir), i = 1,2, denote the errors of the individual forecasts

and &; is the error of the combined forecast, we have:

e = Aleyr —ex) + & (15)

In order to evaluate whether f,, contains useful information not present in f;;,
Granger and Newbold (1973, 1986) proposed the estimation of regression (15) by
ordinary least squares. The null hypothesis is 4 = 0.

When using a record of past forecast errors (e, e,:),t = 1, ..., n, it is natural to
test for forecast encompassing trough a simple least squares regression, which might be
expected to perform well when forecast errors are generated by a bivariate normal
distribution. However, in accordance to Harvey et al (1998), it was reasonable to
suspect that forecast error distributions will often be heavily-tailed. In fact, they showed

that, when forecast errors are normally distributed, we can stumble on far too many
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rejections of a true null hypothesis of forecast encompassing. Consequently, they ran a
simulation to evaluate the behavior of the standard regression-based test for forecast
encompassing in finite samples. Results can be seen in Table 4.

Table 4: Empirical Sizes of Nominal 5%-level and 10%-level Regression-Based Tests
for Forecast Encompassing

5%-level 10%-level

n tg errors ts errors lg errors ls errors
8 7.5 8.9 13.1 15.0
16 85 10.0 14.0 16.1
32 a7 10.6 15.3 16.4
64 10.3 11.5 16.1 17.5
128 10.5 12.3 16.5 18.3
256 11.1 12.8 17.0 18.6

Source: (Harvey et al., 1998:256)

As can be noted, the oversizing problem becomes more severe as the number of
sample observations increases, with very slow convergence to the asymptotic results
found by the authors (0,122 and 0,171 for 5%-level; 0,182 and 0,230 for 10%-level).

Harvey et al. (1998) showed that the standard test for forecast encompassing can
be incorrectly sized when the forecast errors are a temporally independent sequence but
not normally distributed. “The non-normality problems associated with the standard
regression-based test for multiple forecast encompassing can be shown to result from
inconsistent estimation of the quantity Q, induced by conditional heteroskedasticity in
the regression errors” (Harvey and Newbold, 2000: 473). Then, the most obvious
modification in this situation is to employ the heteroskedasticity-robust estimator of
White (1980), a procedure that can be extended to dependent error sequences.

Given this problem of lack of robustness to non-normality in the standard test,

R =D"1Y2pl/2) (16)

the authors proposed the following test that proved to be robust under these

circumstances:
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Ry = n—1/201—1/2 Y(er —ex)? A = n1/201—1/2a (17)

where d is the sample mean of the sequence d, = (e;; — ey¢)eq;

Although @, is a consistent estimator for Q = var[n=Y2Y.(es; — ex0)e:],
convergence of the second term to zero is likely to be slow. This being the case, an
alternative option is to replace the estimator Q, by the estimator Q,. Consequently, the

authors proposed a new test statistic:

R, = n_l/zéz_l/z Y — ez)? A= n1/202—1/2& (18)

In both tests, the null hypothesis to be tested is of zero correlation between e;;

and (elt - BZt).

Harvey et al (1998) made a simulation experiment to evaluate finite sample sizes
of R; and R; tests, along with the original DM test and the modified one proposed by
Harvey et al (1997). For the standard DM test, normal critical values were used. For the
other three tests, however, the authors used t,; critical values, given the results of
Harvey et al (1997). Results appear in Table 5.
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Table 5: Empirical Sizes of Nominal 5%-level and 10%-level Modified Regression-

Based Tests and Diebold-Mariano-type Tests for Forecast Encompassing (h=1)

5%-lavel 10%-level
N g s N ts Is

n Test errors errors arrors errors errors arrors
a8 i 10.1 12.0 13.5 15.8 18.1 19.6
A= 1.6 1.1 1.1 85 7.1 7.6

DM 8.4 71 7.4 14.6 13.8 14.5

MDM 4.4 3.3 3.4 102 9.0 9.5

16 R 8.0 9.9 11.4 131 15.6 171
Rz 3.6 3.2 3.0 98 9.6 9.6

DM 6.5 6.2 6.1 12.4 12.3 12.5

MDM 4.9 4.3 4.3 10.5 10.2 10.4

a2 (=8 6.2 89 92 11.5 145 14.9
A 4.3 4.3 3.7 9.7 10.6 10.1

DM 5.4 5.7 5.3 10.8 11.9 11.5

MDM 4.8 4.8 4.3 9.9 10.9 104

B4 A B.0 7.5 7.7 113 13.0 13.3
A 4.9 45 4.2 10.5 10.4 10.2

DM 5.5 53 49 10.9 11.0 10.7

MDM 5.1 4.8 4.5 10.7 10.5 10.3

128 A 5.7 6.5 6.8 10.7 12.1 121
R 5.0 4.7 4.4 10.4 10.3 10.2

DM 54 5.0 4.9 10.6 10.6 10.5

MDM 5.2 4.8 4.6 10.4 10.4 10.3

256 A 5.5 59 6.1 10.6 11.3 11.3
R= 51 4.9 4.6 10.3 10.4 9.9

DM 53 51 4.7 10.4 10.6 10.0

MDM 5.2 5.0 4.6 10.4 10.4 9.9

Source: (Harvey et al., 1998:257)

As predicted by theory, all four tests have approximately correct sizes in large
samples. In small samples, however, the empirical and nominal sizes do not match, even
when the forecast-error distribution is bivariate normal. A missizing can be noticed in
R, and MDM tests, whereas R; and DM tests demonstrate to be oversized. In general,
the MDM seems to perform better than its competitors and represents a distinct
improvement on the standard regression-based test of the previous table when the

generating process is bivariate Student’s t.
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Given the general satisfactory size performance of the MDM test in the case
h=1, the authors decided to investigate the test’s behavior for higher values of h (the
steps-ahead forecast). The original DM test was also included in this simulation. Results

are shown in Table 6.

Table 6: Empirical Sizes of Nominal 5%-level Diebold-Mariano-type Tests for

Forecast Encompassing: Multistep-ahead Prediction (normal errors)

n Test h=2 h=4 h=6 h=28
8 DM 12.6 14.3 155 —
MDM 6.4 4.8 2.6 —

16 DM 10.0 119 12.5 12.7
MDM 6.9 7.0 58 4.8

32 DM 7.3 10.0 11.0 116
MDM 5.8 7.7 7.5 7.2

64 DM 6.5 8.2 9.7 105
MDM 5.7 6.9 7.8 8.0

128 DM 5.6 6.5 7.4 8.5
MDM 52 6.0 6.6 7.0

256 DM 5.4 59 6.2 6.5
MDM 5.2 5.4 5.8 6.1

Source: (Harvey et al., 1998:258)

As we can see in Table 6, the empirical sizes of the MDM test are really close to
the nominal sizes, except for long forecast horizons in small samples. Moreover, the
MDM test is generally clearly preferable to the DM test in terms of size properties,
suggesting that the Harvey et al (1997) modifications are well worth making.

The authors proceeded with further simulations, in order to verify if the power of
the previous conclusions remain valid under a more general context. Specifically, for
forecast horizons up to four, they also generated forecast errors from bivariate ts and ts
distributions. The results found were relatively close from those for the case of normal
errors. Therefore, we can confirm the robustness of the null distribution of the test

statistics under heavy-tailed error distributions.
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Finally, Harvey, Leybourne and Newbold made a power comparison of four
tests for forecast encompassing. Those tests are the standard regression-based test R, the
modified regression-based test R;, the MDM test and the Spearman’s rank correlation
test (rs). Independent sequences of forecast errors (elt,e2t) were generated from
bivariate normal and bivariate tg distributions and one-step—ahead forecasts were taken.

We can see the estimated size-adjusted powers for the four tests in Table 7

Table 7: Estimated Size-Adjusted Powers of 5%-level Tests for Forecast Encompassing
(h=1)

High power Moderate power
N ts N ts
n Test errors errors errors errors
8 R 74.8 67.0 34.2 30.0
ki = 1 R; 69.3 59.1 30.9 26.9
ko = 2 MDM 515 51.0 25.2 25.3
Is 62.1 54.4 29.3 24.2
16 R 78.3 66.1 354 27.9
ki =15 Ry 75.3 61.8 33.0 25.7
ko = MDM 68.2 59.8 29.6 26.6
rs 69.5 62.8 30.4 25.6
32 R 78.5 60.1 36.6 25.8
ki = 2.25 R 75.5 60.4 355 27.5
ko = 4.25 MDM 741 61.4 35.0 28.2
rs 71.6 66.3 33.2 30.0
64 R 76.7 59.8 34.7 25.4
ki = 3.25 R 76.3 59.2 349 26.0
ko = 6.25 MDM 76.0 61.5 34.2 26.8
rs 72.6 69.0 32.7 29.7
128 R 75.8 56.0 35.2 24.7
ki = 4.75 Ry 75.3 57.4 348 26.4
kz =9 MDM 75.2 59.2 34.7 26.7
Is 71.9 67.9 32.8 31.0
256 R 76.2 54.0 34.1 23.6
ki = 6.75 R4 76.2 56.2 345 25.2
k: = 12.75 MDM 76.2 57.6 345 258
Is 726 66.4 326 30.1

Source: (Harvey et al., 1998:258)
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As expected, the most considerable differences among the tests occur at the
smallest sample sizes, where R is clearly the most powerful of the four tests, for both
normal and ts errors. For samples inferior to 32, R; is somewhat less powerful than R
but more powerful than rs and manifestly more powerful than MDM. For sample sizes
larger than 32, however, there is relatively little to choose among R, R; and MDM. The
poor power performance of MDM test in small samples - particularly for normally
distributed errors - is quite regrettable, since its normal sizes are the more reliable ones.
To make it worse, the nominal significance levels of R; proved to be unreliable in these
sample sizes (see Table 5) and the nominal significance levels of R cannot be trusted for
any sample size (see Table 4). Therefore, the authors recommend the use of MDM over
R and R; tests. The same reason can be employed to choose MDM over R, despite the
identical size-adjusted power.

In relation to the correlation test, we can verify that it is slightly over performed
by the other three tests, when we have a normal error distribution. When the error
distribution is bivariate ts, however, the test performs relatively well, especially for
large samples, where it beats all the other three tests. Hence, in the case in which the
forecast errors are an independent sequence, the rank correlation test is certainly a

viable alternative to MDM.

3.5 Harvey and Newbold (2000)

In 2000, Harvey and Newbold generalized the forecast encompassing approach
to situations where there is more than one competing forecast to compare.

Let (fit -, fxe) be K competing forecasts, taken to be unbiased or bias-
corrected, of the actual quantity A;. Assume that the forecasts are made one-step-ahead,

with non-autocorrelated errors. f,; is the composite forecast.

foo = A=A = A — = Ag—) fie + Mfar + Aofze + o+ Ag_1 frr (19)
Equivalently,
err = Ay(eqr —ey) + (e —e3¢) + -+ Ag_1(eqr — exe) + &, (20)
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where 0 < 4; <1, ¢;; = Ay — fir and & is the error of the combined forecast. The null

hypothesis that f;; encompasses its competitors (f5, ..., fx) 1S

/11 ZAZ ="'=/1K_1=0 (21)

The regression-based test for multiple forecast encompassing is an F-test of the
joint significance of the parameters in equation (20).

It is convenient to note that regression (20) can be written as

ye = XiB + &, (21)

where

Ve = €1t
B =42 g4l

Xe = [(e1e — ezr) (e — e3¢) ... (e1r — exe)]’

As this is a generalization of the two-forecast regression-based test studied by
Harvey et al (1998), we expect to deal with the same problems, specifically, the lack of
robustness to non-normality in the standard test, caused by conditional
heteroskedasticity in the regression errors. Then, having this problem in mind, Harvey
and Newbold presented three modified tests that proved to be robust to conditional
heteroskedasticity in the regression errors. These tests also allow for forecast error

autocorrelation, permitting comparison of forecasts made at horizons greater than one.
e Modified regression-based tests
For the first two tests (F; and F,), the authors followed the approach of the two-
forecast case applied by Harvey et al (1998). Specifically, they employed the
heteroskedasticity-robust estimator of White (1980), as well as a robust estimator which

is consistent under the null, but not the alternative hypothesis.
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In addition, they followed the proposition of Diebold and Mariano (1995) and
Harvey et al (1998) that, for h-steps-ahead forecasts, a rectangular kernel with
bandwidth (h-1) should be adopted to account for forecast error autocorrelation. The

multivariate test statistics proposed by the authors is the following:

E,=(K—-1)""8'D;', a=12 (22)

—~

where D, = M~*Q M~ , M =n~'X'X and Q, have (i,j) elements

~ — 1
qa,ij =n [letx}tuat + Z Z xltx]t mUatUg,t-m + z z Xit— mxjtuatuat m‘

m=1t=m+1 m=1t=m+1

with u,, = &; and u,, = y,. Harvey and Newbold compare F, with the critical values

from Fy_1 —k+1 distribution.

e Modified Diebold-Mariano test

Proposed by Harvey et al (1997), this test can be seen as an extension of the
MDM test, being this the reason why it was named as the modified Diebold-Mariano-
type test (MS¥*).

As showed before, in 1997, Harvey, Leybourne and Newbold proposed some
modifications to the Diebold-Mariano test (1995), modifications that proved to be worth
making. Later, in 1998, these authors found that the MDM test could be used to test for
forecast encompassing, for the two competing forecasts case. Then, Harvey and
Newbold (2000) generalized the test for multiple forecast encompassing. The new test

statistic takes the form of Hotelling’s (1931) generalized T°-statistic.
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MS*=(K-1D"*(n—-1D)"*(n—K+1d'V1d (23)

and V is the sample covariance matrix. Although the finite sample result is not exact,
Harvey and Newbold maintained the use of Fy_;,_x41 Critical values.

Harvey and Newbold ran a simulation study to evaluate the finite sample
behavior of the multiple forecast encompassing tests. Their results are displayed in
Table 8. Forecast errors were generated from the multivariate normal distribution and
the multivariate Student’s t-distribution with five and six degrees of freedom. Empirical
sizes were calculated for nominal 5%-level and 10%-level tests. K=3 was used,

meaning that they were testing whether one forecast encompasses two rival predictors.

Table 8: Empirical Sizes of Nominal 5%-level and 10%-level tests for K=3, h=1

5%-level 10%-level
n Test M errors i errors ts errors N errors i, errors i errors
8 F 4.7 9.2 10-8 9.6 168 182
Fy 221 300 36 31-8 39-8 410
F 0-0 00 00 0-0 0-0 04
MS* 2.2 1.7 1-5 63 540 46
16 F 4-8 11-6 14-1 9.4 19-4 220
Fy 14-5 216 235 221 30-1 324
ks 0-4 02 03 33 27 26
MS* 30 24 2.3 7-8 6-9 65
32 F 49 147 18-0 98 22.5 26:3
Fy 10-0 158 179 16-3 239 253
k5 2:5 1-6 1-4 7-0 60 56
MS* 4.2 31 2.8 91 81 749
64 F 52 16-6 20:0 10-1 24-3 289
Fy 7-8 119 12:7 133 18-7 200
F 40 26 2.4 59 7-5 73
MS* 5.0 3.5 33 9.7 8.5 83
128 F 50 18:2 226 10-1 26-5 314
Fy 62 940 9-6 11-8 15-5 164
ks 4.2 35 32 9.3 88 81
MS* 46 44 35 9.9 9.3 8.5
256 F 4-8 187 24:2 10-1 26:9 333
Fy 5-5 76 &1 11-1 131 14-4
F 4.5 44 38 9.9 91 86
MS* 4.7 4.2 40 10-1 9.4 58
512 F 53 202 26-2 100 291 352
F 5-5 64 68 10-4 121 123
F 5.0 4.5 349 9.9 9.5 849
MS* 51 46 40 10-0 9.7 90
10,000 F 4.9 225 320 9.8 31-8 41-7
Fy 50 52 49 9.9 10-3 99
Fy 4.9 51 46 9.9 10-0 9.3
MS5* 540 51 4-6 99 10-0 9:3

Source: (Harvey and Newbold, 2000:476)
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As expected in theoretical grounds, for non-normal forecast errors, the F-test is
incorrectly sized. Although it is common to both small and large samples, this over-
sizing problem is more severe in the largest samples.

Relating to the other three tests, we can see that they have approximately correct
size for the largest samples. For small and moderate samples however, we observe a
drastic size distortion of the two modified regression-based tests. Specifically, the F;
test is over-sized and the F; test is under-sized. In its turn, the MS* test has shown to be
robust, although some under-sizing can be noticed in the smallest samples. These
evidences are valid to both normal and non-normal errors.

Given the general satisfactory performance of the MS* test for one-step-ahead
prediction, the authors investigated the test’s size properties when using forecasts made
at horizons greater than one. For h=2, forecast errors e;; were generated from MA(1)
processes e; = &; + O¢; .1, While for larger h these errors were generated as white
noise. As we can see in Table 9, the results are not as reliable as for one step-ahead
prediction. Specifically, we can note some over-sizing for small samples and larger

horizons.

Table 9: Empirical sizes of nominal 5%-level and 10%-level MS* tests for K=3

(normal errors)

5%-level 10%-level
n h=2, =0 h=2, I=0-5 h=2, 1=0-9 h=2, 1=0 h=2, I=0-5 h=2, i(I=0-9
8 9.6 1040 10-2 142 153 157
16 12-4 10-6 9.6 182 170 15-8
a2 39 75 6-9 152 131 129
fid 6-8 57 5-5 12:3 11-2 11-2
128 57 56 5-6 112 10-8 10-8
256 31 52 5-1 10-2 10-4 10-2
512 51 4.9 4-7 10-3 10-2 10-0)

S%-level 10%-level
7 h=4 h=n h=8 h=4 h=6 h=8
8 4.9 1-8 - 72 2.5 -
16 11-6 T4 5.2 153 10-1 69
a2 15-1 127 10-5 2140 16-8 14-2
4 12-8 14-1 13.7 18-5 19-4 15-5
128 8.2 10-2 11-8 13.5 157 175
256 65 75 87 11-5 131 14-4
512 59 -5 70 1140 11-6 123

Notes In the upper panel of the table, autocorelated forecast errors were generated with MA(1) structure and moving
average parameter . In the lower panel of the table, white noise forecast errors were generated.

Source: (Harvey and Newbold, 2000:477)
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Now, we will see the estimated size-adjusted powers of each one of the tests for
K=3, which are displayed in Table 10. The authors considered one-step-ahead forecasts
with errors drawn from the multivariate normal and Student’s tg-distributions. Since
MS* is a monotonic function of F2, these two tests have identical size-adjusted powers
(see Harvey and Newbold, 2000).

Table 10: Estimated Size-adjusted Powers of 5%-level tests for K=3, h=1

n Population R? Test N errors i errors
8 (-66 F 711 599
F| 549 40-5
Fy, M5* 234 217
16 0-40 F 716 552
F| 61-8 45-4
F,, MS* 44-6 373
iz 0-22 F 711 49.5
F| -4 471
Fy, MS* 386 46-0
e 0-12 F 7149 49:1
F| 676 49-1
Fy, MS* 654 522
128 0-06 F 71-8 440
F| 707 484
Fy, M5 69-9 5049
256 (-031 F 717 44.5
F| 70-6 49.2
Fy, MS* 70-5 517
512 0-016 F 723 434
F| 72:5 487
Fy, MS* 723 5140

Source: (Harvey and Newbold, 2000:479)

Through the analysis of Table 10 we can observe that, for large samples, the
size-adjusted powers of the four tests are pretty much identical. For small and moderate
samples however, the F-test displays the greater size-adjusted power. Given its superior
power properties, the authors feel disappointed with the fact that the F-test is not robust
to non-normality. Right after the F-test, we have the F;-test, followed by the MS* test
and the F,-test. As we can see, the differences between the tests get smaller as the
sample size increase. Also, they are more evident for normal errors than tg errors.
Finally, with no surprises, the tests exhibit higher power for normal errors.

After analyzing all the results, the authors recommended the use of the MS* test
for moderately large samples, due to its good size and reasonable power properties.
Still, they warn about this test limitations, when dealing with small samples: under-
sizing for one-step-ahead forecasts, over-sizing for multi-step-ahead evaluation and low

power.
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3.6 Peter Hansen (2005)

In 2005, Hansen proposed a test for Superior Predictive Ability (SPA). When
testing for SPA, the question of interest is whether any alternative forecast is better than
the benchmark forecast. Testing for SPA is useful for a forecaster who wants to explore
whether a better forecasting model is available, compared to the model currently being
used to make predictions.

In contrast with the Equal Predictive Ability (EPA) tests, SPA tests were
developed to compare more than two competing forecasts. “The distinction is important
because the former leads to a simple null hypothesis, whereas the latter leads to a
composite hypothesis (Hansen, 2005: 366).”

One of the main complications in composite hypotheses testing is that
(asymptotic) distributions typically depend on nuisance parameters. The usual way to
handle this problem is to use the least favorable configuration (LFC), which is
sometimes referred to as “the point least favorable to the alternative”. However, Hansen
(2003) proposed a different approach that leads to more powerful tests of composite
hypothesis.

Before Hansen, White (2000) proposed a test for Superior Predictive Ability,
known as the Reality Check (RC) for data snooping. Also known as data mining, data
snooping “occurs when a given set of data is used more than once for purposes of
inference or model selection. When such data reuse occurs, there is always the
possibility that any satisfactory results obtained may simply be due to chance rather
than to any merit inherent in the method yielding the results (White, 2000: 1115)” This
is an almost inevitable difficulty when analyzing time-series data, since that there is
only one record of information about a given variable of interest.

The test introduced by White provides simple and straightforward procedures for
testing the null hypothesis: the best model encountered in a specification search has no
predictive superiority over a given benchmark model.

When compared to the RC test, the Hansen test proved to be more powerful and
less sensitive to the inclusion of poor and irrelevant alternatives. Hansen test differs

from the RC test in two ways. First, a studentized test statistic is employed:
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TP (24)

nl/Zak
= max [man=1,...,m_’ ]

where @2 is some consistent estimator of w? = var(n'/2d)) and d;, = n"1 Y d. ;.
dy . denotes the performance of model k relative to benchmark at time t.

Second, a null distribution based on N,,(fi¢,Q) is invoked, where i is a
carefully chosen estimator for y that conforms with the null hypothesis. Specifically,

Hansen suggested the estimator:

AC __ 3 _
S dkl{nl/zak/a)ks_\/m}’ k= 1, e, m, (25)
where l(,)denotes the indicator function.

Consider the vector of relative performances, d, = (dy¢, ..., dm¢). Assuming
that u = E(d;), the null hypothesis that the benchmark is not inferior to any of the

alternatives is:

HO: u<0

The advantages of the studentized test statistic and the sample dependent null
distribution is that they don’t rely on stationarity, and are therefore expected to be useful
in a more general context. Now, let us discuss each one of these modifications
individually.

As shown by Hansen, studentizing the individual statistics will allow a
comparison between objects measured in the same “units of standard deviation”. Not
doing so, will result in a pointless comparison between objects measured in different
units. There is one exception where the studentization may reduce the power that occurs
when the best performing model has the largest variance. Since poor performing models
also tend to have the most erratic performances, the author considered this case to be of

little empirical relevance.
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The second modification made by Hansen had to do with the possible erosion of
RC’ power when poor alternatives are included in the analysis. In other words, the p-
value associated to the RC test can be increased in an artificial way by adding poor
forecasts to the set of alternative forecasts. Naturally, we want to avoid that. Given that
the poor alternatives are irrelevant for the asymptotic distribution, a proper test should
reduce the influence of these models, while preserving the influence of the models with
Ur = 0. Having this problem in mind, Hansen constructed his test in a way that
incorporates all models, while it reduces the influence of alternatives that the data
suggest are poor.

Since the test statistics have asymptotic distributions that depend on p and Q,
these are nuisance parameters. The traditional way to proceed in this case is to replace a
consistent estimator for QQ and employ LFC over the values of p that satisfy the null
hypothesis. However, Peter Hansen showed that this approach leads to some rather
unfortunate properties when testing for SPA. Therefore, he proposed an alternative way
to handle the nuisance dependence of U, where a data dependent choice for  is used,
rather than pu=0 as dictated by the LFC.

The estimator chosen by Hansen (4¢) was motivated by the law of the iterated

logarithm. According to this law:

/2 —
P (lim,Hoo inf%’;“k) = —,/2loglog n) =1, (26)

and

/2, —
P (limn_,oo Sup%’;“k) =+,/2 loglogn) =1, (27)

This way, ¢ meet the necessary asymptotic requirements defined by Hansen.
Estimator ¢ proved to account for the fact that poor alternatives should be discarded

asymptotically but not in finite samples.
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While ¢ separates correctly the good alternatives from the poor ones, there are
other threshold rates that also produce valid tests. Because different threshold rates will
lead to different p-values in finite samples, it is convenient to determine an upper and

lower bound (4% and f, respectively).

A =0 (28)

fit. = min (d, 0) (29)

where k=1,....m.

In order to obtain the p-values of the three tests for SPA, Hansen followed a
bootstrap implementation based on the stationary bootstrap of Politis and Romano
(1994). Consequently, we will have six different tests to be estimated, a result of two
test statistics (RC and SPA) and three null distributions (one for each estimator, a¢, A%
and f%). Hansen studied the size and power properties of these six tests. The rejection
frequencies of these tests at levels 5% and 10% can be seen in Tables 11, 12 and 13.
Numbers in italic are used when the null hypothesis is true (A; = 0). Numbers in

standard font represent powers for the various local alternatives (A1 < 0).
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Table 11: Rejection Frequencies under the Null and Alternative (m=100 and n=200)

Level: & = 0.03 Level: o = 0.10

A1 RC; RC: RCy SPA; SPA- SPA,  RC RC: RCy SPA; SPA. SPA,
Panel A- Ag =0

0 0055 0.053 0.053 0.062 0.060 0.060 0108 0.10] 0.101 0.116 0.110 0.109

-1 0.057 0.054 0.054 0077 0.074 0.074 0.112 0.105 0.105 0.136 0.129 0.129

22 0121 0.111 0.111 0310 0280 0.280 0219 0.197 0.197 0.436 0.389 0.388

3 0.550 0.471 0470 0.848 0.764 0.761 0.727 0.620 0.618 0.921 0.845 0.841

-4 0958 0.888 0.882 0997 0979 0976 0993 0947 0941 1.000 0990 0987
-5 1.000 0995 0992 1.000 1.000 1.000  1.000 0999 0998 1.000 1.000 1.000

Panel B: Ap =1
0 0017 0010 0010 0.026 0.022 0.022 0035 0.025 0025 0.055 0.044 0.044
-1 0013 0.010 0010 0.047 0041 0040 0036 0027 0.027 0.087 0.072 0071
-2 0036 0.028 0028 0312 0232 0250 0084 0060 0060 0436 0345 0342
-3 0301 0201 0197 0862 0744 0733 0516 0334 0327 0928 0829 0814

-4 089 0.677 0.658 0998 0977 0971 0971 0816 0.793 1.000 0980 0924
-5 1.000 0968 0952 1.000 1.000 0999  1.000 0991 0920 1.000 1.000 1.000

Panel C: Ap =12
0 0004 0002 0002 0018 0012 0012 0012 0.007 0006 0.039 0.026 0.026
-1 0004 0.002 0002 0.044 0032 0032 0014 0007 0.006 0.080 0.058 0056
-2 0013 0.007 0006 0336 0244 0238 0041 0020 0019 04564 0336 0324
-3 0195 0077 0073 0881 0.745 0721 0401 0.167 0152 0941 0.827 0.799

-4 0842 0460 0.414 0009 0978 0968 0957 0.659 0508 1.000 0.9890 0.9382
-5 0999 0911 0855 1.000 1.000 0999  1.000 0971 0934 1.000 1.000 1.000

Panel D Ag =35
0 0002 0.000 0000 0.014 0.007 0.005 0008 G001 0000 0.032 0013 0011
-1 0002 0.000 0000 0056 0031 0025 0009 0001 0000 0.101 0.054 0.044
-2 0012 0.001 0001 0433 0273 0227 0047 0005 0003 0.573 0370 0306
-3 0262 0.032 0017 0929 0.787 0710 0.533 0.088 0.045 0.968 0.860 0.784
-4 0913 0336 0167 1.000 0986 0966 0983 0581 0312 1.000 0995 0979
-5 1.000 0.894 0620 1.000 1.000 0990 1000 0974 0785 1.000 1.000 1.000

Panel E: Ag =10
0 00093 0.000 0000 0.016 0.007 0002 0011 0001 0.000 0.036 0.015 0.006
-1 0.004 0.000 0000 0080 0043 0022 0014 0001 QOO0 0.149 0073 0.039
-2 0037 0.002 0000 0532 0340 0221 0128 0011 Q001 0.675 0455 0298
-3 0487 0.064 0006 0953 0843 0703  0.768 0.181 0021 0980 0907 0.779
-4 0973 0526 0091 1.000 0992 0964 0997 0772 (195 1.000 0998 0979
-5 1000 0963 0462 1.000 1.000 0999 1000 0993 0Q.662 1.000 1.000 1.000

Estimated rejection frequencies for the six tests for SPA under the mull hypothesis (A = 0) and
lecal alternatives (A; <= 0). Thus the rejection frequencies in italic font correspond to Type T
errors and those in normal font are correspond to local powers. The reality check of White (2000
is denoted by F.Cy and the test advocated by this paper is denoted by SPA..

Source: (Hansen, 2005)



Predictive Accuracy of Alternative Autoregressive Conditional Heteroskedasticity Models

Table 12: Rejection Frequencies under the Null and Alternative (m=100 and n=1000)

Level: @ = 0.03 Level: ¢ = 0.10

A1 RG RC. ERCy SPA; SPA:. SPA, RC; RC: RCy SPA; SPA: SPAy
Panel A- Ag =10

0 0031 0.045 0.0458 0.051 0043 0.048 0104 0.098 0.095 0107 0100 0.100

-1 0054 0,031 0051 0068 0.064 0064 0110 0103 Q103 0.131 0122 0122

-2 0125 0116 0116 0309 0282 02582 0223 0202 0.202 0.435 0391 0390

-3 0556 0430 0479 0.843 0762 0760 0.729 0624 0.622 0918 0.842 0.840

-4 0970 0.880 0.886 0098 0920 00977 0995 0945 0.041 1.000 0992 0.900
-5 1.000 0996 0994 1.000 1.000 1000 1.000 0999 0007 1.000 1.000 1.000

Panel B: Ap =1
0 0011 0009 0009 0.020 0017 G.0I7 0031 0024 0023 0.050 0.040 0.039
-1 0011 0.009 0009 0043 0036 0035 0033 0025 0,025 0.086 0.069 0.069
-2 0034 0026 0026 0312 0252 0250 0084 00359 0.059 0436 0346 0342
-3 0316 0205 0203 0859 0.740 0732 0520 0338 0331 0927 0822 0814

-4 0900 0682 0.666 0999 0978 0972 0973 0516 0.797 1.000 0990 0985
-5 1.000 0968 0955 1.000 1.000 0999 1000 0991 0932 1.000 1.000 1.000

Panel C: Ap =12
0 0007 0001 0001 0.014 0009 0000 0012 0004 0004 0.034 0022 0021
-1 0003 0.002 0002 0042 0020 0028 0013 0004 0.004 0.079 0.055 0.034
-2 0014 0.006 0006 0338 0242 0236 0042 0018 0017 0465 0330 0322
-3 0202 0.082 0077 0881 0737 0720 0411 0169 0.159 0941 0820 0.798
-4 0844 0461 0428 0999 0979 0960 0950 0652 0.602 1.000 0991 0923
-5 1.000 0906 0861 1.000 1.000 0999 1000 0969 0936 1.000 1.000 1.000

Panel D Ap =35
0 0002 0000 G000 0.012 0.005 0004 0006 0000 0.000 0.029 0.011 0.008
-1 0.002 0000 0.000 0057 0028 0024  0.007 0.001 0.000 0.103 0.051 0.042
-2 0.014 0001 0.000 0435 0267 0225 0047 0004 0.002 0572 0364 0306
-3 0270 0029 0.017 0930 0777 0708 0540 0.084 0.044 0958 0.851 0.784
-4 0917 0328 0175 0999 0987 0966 0987 0554 0320 1.000 0995 0981
-5 1.000 0877 0.632 1.000 1.000 099%  1.000 09656 (.791 1.000 1.000 1.000

Panel E: Ay = 10

0 0003 0.000 0.000 0.012 0.005 0.003 0010 0.001 0.000 0.033 0.012 0.005
-1 0.003 0,000 0000 0083 0.042 0022 0013 0001 0000 0.145 0.070 0.039
-2 0.039 0,002 0000 0534 0333 0220 0128 0010 Q000 0.672 0444 0200
-3 0.498 0060 0006 0954 0833 0703  0.762 0165 0.020 0.980 0900 0.778
-4 0974 0496 0095 0999 0904 00965 0997 0.737 0203 1.000 0998 0920
-5 1.000 0933 0480 1.000 1.000 0999  1.000 0993 0.669 1.000 1.000 1.000

Estimated rejection frequencies for the six tests for SPA under the mill hypothesis (A; = () and
local alternatives (A) < 0). Thus the rejection frequencies in italic font correspond to Type 1
errors and those in normal font are correspond to local powers. The reality check of White (2000)
15 denoted by R.Cy and the test advocated by this paper is denoted by SPA..

Source: (Hansen, 2005)



Predictive Accuracy of Alternative Autoregressive Conditional Heteroskedasticity Models

Table 11 contains the result for the case where m=100 and n=200. In the
situation where all 100 inequalities are binding (Ag = A1 = 0), we see that the rejection
probabilities are close to the nominal levels for all the tests. Trough the analysis of
Table 11, it is possible to note that the SPA-test has an over-rejection by 1%. However,
this doesn’t seem to be problematic, since this over-rejection disappears when the
sample size is increased to n=1000, as we can see Table 12. It is interesting to see that
the liberal null distribution does not lead to a large over-rejection, which might be
explained by a positive correlation across alternatives and a consequent positive
correlation between the test statistic and ‘. That way, the critical value will tend to be
excessively small when the test statistic is small. Then, this correlation will reduce the
over-rejection of the '-based tests, suggesting that Hansen test can be improved. For
that, it would be necessary to find a way to incorporate information about the off-
diagonal elements of Q.

Panel A corresponds to the case where u=0, and is therefore the best possible
situation for LFC-based tests. So this is the only situation where the LFC-based tests
apply the correct asymptotic distribution. For that reason, it was expectable that the tests
that are based on g% =0 do well, which indeed happened. Fortunately, SPA.; also
performs well in this case. Turning to the configurations where Ag > 0, it is possible to
notice the advantages of using the sample dependent null distribution. For example, in
Panel E of Table 11, when (Ao,A1) = (10,-3), while the RC almost never rejects the null
hypothesis, SPA¢-test has a power of approximately 84%.

Concerning to Table 13, we only notice a slight over-rejection when all
inequalities are binding, (Ao = A1 = 0). The power properties are quite good, despite the

fact that 1000 alternative are being compared to the benchmark.
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Table 13: Rejection Frequencies under the Null and Alternative (m=1000 and n=200)

Level: @ = 0.03 Level: a = 0.10

A1 RCG RC. RCy SPA; SPA- SPAy RO, RC. RCy SPA; SPA. SPA,
Panel A: Ag =0

0 0.049 0.047 0.047 0.064 0.062 0.062 0.106 0.100 0.100 0.125 0.119 0.119

-1 0.049 0.047 0.047 0.066 0.064 0.064 0.106 0.101 0.100 0.128 0.122 0.122

22 0.061 0.058 0.058 0.173 0.164 0.164 0.128 0.121 0.121 0.269 0.252 0.252

3 0.288 0.262 0262 0.658 0.598 0.596 0.434 0388 0.388 0.770 0.699 0.697

-4 0815 0.720 0.719 0980 0937 0933 0917 0528 0.824 0994 0967 0.963
-5 0998 0971 0967 1.000 0999 0998 1.000 0991 0955 1.000 1.000 1.000

Panel B: Ap =1
0 0009 0007 0.007 0.025 0022 0.022 0022 0017 0.0I7 0.054 0.045 0.045
-1 0.009 0007 0007 0.029 0.025 0025 0022 0017 0017 0.059 0.050 0.050
-2 0.010 0008 0008 0150 0.127 0127 0.026 0020 0.020 0229 0.192 0.191
-3 0.066 0.049 0049 0652 0535 0548 0150 0103 0102 0.759 0.652 0.643

-4 0502 0345 0339 0930 0924 0916 0701 0500 0488 0993 0956 0.947
-5 0965 0813 0.794 1.000 0998 0997 0994 0907 0.886 1.000 1.000 0999

Panel C: Ap =12
0 0001 0000 0000 0015 0011 0011 0005 0.002 0.002 0033 0.026 0025
-1 0.001 0.000 0000 0.020 0.015 0015 0005 0.002 0002 0.043 0.032 0.032
-2 0.002 0.000 0000 0155 0.115 0113 0.006 0.003 0003 0233 0.172 0.167
-3 0.016 0007 0007 0669 0544 0525 0054 0022 0022 0.779 0.636 0.616

-4 0291 0.125 0117 0985 0923 0908 0516 0243 0224 0994 0054 0.940
-5 0901 0576 0529 1.000 0999 099 0920 0.744 0.683 1.000 1.000 0993

Panel D Ay =35
0 0000 0000 0000 0.011 0.005 0004 Q002 0000 O.000 0.029 0.012 0.009
-1 0.000 0000 0.000 0019 0010 0008 0002 0.000 0.000 0.044 0.020 0016
-2 0.000 0000 0000 0199 0122 0101 0.002 0.000 0.000 0201 0180 0.148
-3 0.011 0000 0.000 0748 0570 0505  0.045 0.004 0.002 0.843 0664 0589
-4 0303 0036 0017 0993 0930 0897 0575 0098 0.050 09902 09567 0930
-5 0936 0387 0207 1.000 0999 099 0992 0605 0356 1.000 1.000 0998

Panel E: Ay =10
O 0000 0000 0000 0.012 0.004 0003 0002 0000 0.000 0.029 0.011 0004
-1 0.001 0000 0000 0025 0012 0007 0002 0.000 0.000 0.054 0.024 0011
-2 0.001 0000 0000 0259 0156 0.097 0004 0.000 0.000 0366 0226 0.141
-3 0.031 0001 0000 0815 0633 0495 0109 0.006 0.000 0891 0.726 0.579
-4 0508 0064 0005 0996 0958 0892 0765 0175 0.018 0990 09381 0926
-5 0983 0531 0099 1000 1.000 0995 0998 0.753 0210 1.000 1.000 0998

Estimated rejection frequencies for the six tests for SPA under the mull hypothesis (A = 0) and
local altematives (A < 0). Thus the rejection frequencies in italic font correspond to Tipe I
errors and those in normal font are correspond to local powers. The reality check of White (2000)
iz denoted by B.Cy and the test advocated by this paper iz denoted by SPA-.

Source: (Hansen, 2005)
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The power curves for the tests that employ ¢ and g% are shown in Figure 2, for
the case where m=100, n=200 and A,=20. The power curves are based on tests that aim
at a 5% significance level, and their rejection frequencies are plotted against a range of
local alternatives. For the power curves in Figure 2, we conclude that the RC test is
dominated by the three other tests. There is a significant increase in power when using
the consistent distribution. Moreover, a quite similar improvement is achieved when we
use the standardized test statistic, T,5F4. In fact, according to Hansen’s calculations, to
regain the power that is lost by using LFC instead of the sample dependent null
distribution, it would be necessary a sample size 1.49 times larger, meaning that we are
tossing 33% of the data when using the LFC. Besides, when we drop the studentization,
a 65% of the data is being discarded. Dropping both modifications is equivalent to

tossing away 84% of the data.

Figure 2: Local power curves of the four tests, SPA;, SPA,, RC. and RC,, for the
simulation experiment where m=100, A,=20 and u,/v/n (= —A,) ranges from 0 to 8
(the x-axis). The power curves quantify the power improvements from the two

modifications of the Reality Check.
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Source: (Hansen, 2005)
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4. STATISTICAL PROPERTIES OF RETURNS

Our data base is formed by the daily closing prices of the CAC40, FTSE100,
NIKKEI 225 and S&P500 indexes from January 1, 1995 through December 31, 2009.*
In order to obtain the daily stock returns (r;), we followed the conventional

procedure:

. = 100 X log( i ), (29)

Pr—q

where Py is the daily closing price of period t and Py.; is the daily closing price of period

t-1. Figures 3, 4, 5 and 6 show us the behavior of our four indexes over time.

Figure 3: CAC40 returns

T T T
1996 1988 2000 2002 2004 2006 2008

— RETURN

! All data series were drawn from the following website: http://finance.yahoo.com/
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Figure 4: FTSE100 returns
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Figure 5: NIKKEI225 returns

15

10 -

1996 1998 2000 2002 2004 2006 2008

— RETURN

40



Predictive Accuracy of Alternative Autoregressive Conditional Heteroskedasticity Models

Figure 6: S&P500 returns
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It is evident that the ending of 2008 represent the most volatile period over the

last 15 years, which is as a result of the sub-prime crisis that affected the whole world.

Although it started in the USA, this crisis quickly spread all around the globe, as it can

be confirmed by our four geographically scattered indexes (two from Europe, one from

Asia and another one from Northern America). We can also identify another high

volatility periods as for example: the October 1997 Asia mini-crash, the 1998 Russian
financial crisis, the March 2000 dot-com bubble crash or the post-9/11 incident in 2001.

Table 14 provides a general overview of the data used.

Table 14: Statistical properties of returns

CAC40 FTSE100 NIKKEI225 S&P500
Observations 3803 3788 3686 3777
Mean 0,0193 0,015 -0,0169 0,0235
Median 0,0466 0,0504 0,0018 0,0683
Maximum 10,5946 9,3842 13,2346 10,9572
Minimum -9,4715 -9,2646 -12,111 -9,4695
Standard Deviation 1,483 1,2313 1,5822 1,2823
Skewness -0,0278 -0,1359 -0,1912 -0,2001
Kurtosis 7,6934 9,175 8,3519 11,1562

Jarque-Bera

3491,055 [0,0000]

6029,919 [0,0000]

4421,575 [0,0000]

10494,45 [0,0000]
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As we can see, excepting NIKKEI225, the mean returns all are positive.
NIKKEI225 also seems to be the most volatile index, since it has the lower and the high
value, as well as the higher standard deviation. Without surprises, the Jarque-Bera test
(Jarque and Bera, 1987) rejects the normality assumption for each of the series.

The Ljung-Box statistics on the returns, computed at a tenth-order lag, are

shown in Figures 7, 8, 9 and 10.

Figure 7: Ljung-Box test for the CAC40 returns

Date: 05/01/10 Time: 19:32
Sample: 1/03/1995 12/31/2009
Included observations: 3803

Autocorrelation Partial Correlation AC PAC Q-Stat Prob

I l 1-0.026 -0.026 2.5825 0.108
I l 2 -0.030 -0.031 6.0377 0.049
l l 3 -0.070 -0.071 24.453 0.000
! l 4 0.047 0.042 32.779 0.000
l l 5 -0.059 -0.061 45.830 0.000
l l 6 -0.020 -0.026 47.427 0.000
I [l 7 -0.007 -0.006 47.639 0.000
1 l 8 0.043 0.031 54.561 0.000
l l 9 -0.027 -0.024 57.330 0.000
[l [l 10 -0.001 -0.002 57.334 0.000

Figure 8: Ljung-Box test for the FTSE100 returns

Date: 05/01/10 Time: 19:38
Sample: 1/03/1995 12/31/2009
Included observations: 3788

Autocorrelation Partial Correlation AC PAC Q-Stat Prob

l l 1-0.035 -0.035 46695 0.031
l l 2 -0.048 -0.050 13.525 0.001
l l 3 -0.092 -0.096 45527 0.000
! ! 4 0.076 0.068 67.680 0.000
l I 5 -0.056 -0.061 79.431 0.000
l I 6 -0.046 -0.052 87.404 0.000
! ! 7 0.009 0.014 87.733 0.000
! I 8 0.062 0.043 102.33 0.000
i l 9 0.001 0.004 102.33 0.000
l l 10 -0.013 -0.002 103.01 0.000
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Figure 9: Ljung-Box test for the NIKKEI225 returns

Date: 05/01/10 Time: 19:39
Sample: 1/04/1995 12/30/2009
Included observations: 3686

Autocorrelation Partial Correlation AC PAC Q-Stat Prob

l l 1-0.042 -0.042 6.4260 0.011
l l 2 -0.035 -0.037 10.890 0.004
I I 3 -0.002 -0.005 10.905 0.012
l l 4 -0.017 -0.018 11.933 0.018
l l 5-0.017 -0.019 12.977 0.024
l l 6 -0.013 -0.016 13.594 0.035
l ! 7 0.011 0.009 14.078 0.050
I I 8 0.002 0.002 14.100 0.079
l l 9 -0.026 -0.026 16.541 0.056
! l 10 0.039 0.036 22.024 0.015

Figure 10: Ljung-Box test for the S&P500 returns

Date: 05/01/10 Time: 19:40
Sample: 1/03/1995 12/31/2009
Included observations: 3777

Autocorrelation Partial Correlation AC PAC Q-Stat Prob

l l 1-0.068 -0.068 17.401 0.000
l l 2 -0.065 -0.070 33.313 0.000
l l 3 0.027 0.018 36.139 0.000
l | 4 -0.012 -0.013 36.690 0.000
' l 5-0.035 -0.034 41.369 0.000
I I 6 0.007 0.000 41.581 0.000
' l 7 -0.040 -0.044 47.757 0.000
! ! 8 0.023 0.019 49.766 0.000
I n 9 -0.001 -0.005 49.768 0.000
l l 10 0.029 0.033 53.028 0.000

For the CAC40 index, the Ljung-Box test tells us that period t and period t-1 are
not correlated, since we do not reject the null hypothesis at a 5% significance level.
Still, we reject all the other null hypothesis, meaning that all the other autocorrelation

coefficients are statistically significant at a 5% significance level.
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Concerning the FTSE100 and the S&P500 indexes, it is possible to conclude that
the returns are temporally correlated, since we reject (at a 5% level) the null hypothesis
that the autocorrelation coefficients are equal to zero. Then, we can say that these series
were not generated through a white noise process.

In its turn, for the NIKKEI225 index we can say that period t is correlated with
period t-7, t-8 and t-9, if we assume a 10% significance level. For the remaining
periods, we reject the null at a 5% level. Therefore, we conclude that every
autocorrelation coefficient is statistically significant. That way, The NIKKEI225 returns
were not generated through a white noise process.

Since we identified relevant autocorrelation in every index, we will consider an

order five autoregressive model to remove the linear dependency in the series.

5. ECONOMETRIC APPROACH

The empirical distribution of a financial asset can be described as the sum of a

predictable part with an unpredictable part:

1 = E(re|®e—1) +ue (30)

where ¢,_, is the relevant information set until, and including, t-1.

Based on our previous findings, we computed the conditional mean equation,
E(ri|¢.—1), as a fifth-order autoregressive process, AR(5), in order to remove the

observed linear dependency in the returns:

Te =M+ Q111 + Patin + P33 + Gali_s + PsTis + U, (31)

where u; = z,0; and the standardized innovations (z;) are assumed to be i.i.d. with
Student’s t distribution.

Figures 11, 12, 13 and 14 show us the Ljung-Box test applied to the residuals
after fitting the AR(5) to the series.
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Figure 11: Ljung-Box test for the CACA4O0 residuals

Sample: 1/03/1995 12/31/2009
Included observations: 3798

Autocorrelation Partial Correlation AC PAC Q-Stat Prob

1-0.002 -0.002 0.0099 0.921
2 0.001 0.001 0.0117 0.994
3 0.000 0.000 0.0120 1.000
4 -0.004 -0.004 0.0776 0.999
5 0.002 0.002 0.0960 1.000
6 -0.026 -0.026 2.7566 0.839
7 -0.006 -0.006 2.8915 0.895
8 0.031 0.031 6.5641 0.584
9 -0.022 -0.022 8.3941 0495
10 -0.003 -0.003 8.4273 0.587

Figure 12: Ljung-Box test for the FTSE100 residuals

Sample: 1/03/1995 12/31/2009
Included observations: 3783

Autocorrelation Partial Correlation AC PAC Q-Stat Prob

1-0.003 -0.003 0.0376 0.346
2 0.004 0.004 0.1125 0.945
3 -0.003 -0.003 0.1546 0.985
4 -0.004 -0.004 02117 0.995
5 0.003 0.003 0.2397 0.999
6 -0.049 -0.049 9.2889 0.158
7 0.017 0.017 10442 0.165
8 0.044 0.045 17.752 0.023
9 0.004 0.004 17.818 0.037
10 -0.007 -0.008 18.001 0.055
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Figure 13: Ljung-Box test for the NIKKEI225 residuals

Sample: 1/04/1995 12/30/2009
Included observations: 3681

Autocorrelation Partial Correlation AC PAC Q-Stat Prob

1-0.000 -0.000 0.0003 0.987
2 0.000 0.000 0.0003 1.000
3 -0.000 -0.000 0.0004 1.000
4 -0.001 -0.001 0.0041 1.000
5 -0.000 -0.000 0.0042 1.000
6 -0.014 -0.014 0.7611 0.993
7 0.010 0.010 1.1141 0.993
8 0.003 0.003 1.1393 0.997
9 -0.024 -0.024 3.2718 0.953
10 0.039 0.039 8.8091 0.550

Figure 14: Ljung-Box test for the S&P500 residuals

Sample: 1/03/1995 12/31/2009
Included observations: 3772

Autocorrelation Partial Correlation AC PAC Q-Stat Prob

0.000 0.000 3.E-07 1.000
-0.002 -0.002 0.0090 0.996
0.000 0.000 0.0090 1.000
0.001 0.001 0.0125 1.000
-0.002 -0.002 0.0313 1.000
-0.002 -0.002 0.0475 1.000
-0.042 -0.042 6.8485 0.445
8 0.026 0.026 9.4426 0.306
9 -0.004 -0.005 9.5181 0.391
10 0.030 0.030 12.842 0.233

1
2
3
4
5
6
7

As we can see, the AR(5) successfully removed the linear dependency in
CAC40, NIKKEI225 and S&P500 series up to the tenth-lag. For the FTSE100,
however, the linear dependency was removed to the seventh-lag only, indicating that we
could have used an autoregressive process of superior order than five. Still, the results
obtained with the AR(5) are quite satisfactory and allow us to consider that the resides

are now white noise.
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For the conditional variance of u,: E(u?|®,_,) = a?, we have considered our
three conditional heteroskedasticity models, GARCH, EGARCH and GJR.

As stated by Bollerslev et al. (1992) as well as Hansen and Lunde (2005), when
modeling financial assets returns volatility, the (1,1) specification in ARCH (p,q)

models is rather satisfactory. For that reason, we will use p=1 and g=1.

GARCH: o0f = w+ a;u}_; + B104 (32)

EGARCH: Inof=w+a, |Zt‘ll + v Zt'l + fiIno? 4 (33)
t—1 -1
GJR: of = o+ ayui; +yilqui 4 + Biof, (34)

where w, a4,y4, f, are unknown parameters, I,_; =1 if u;_; <0 and I;_; =0 if
u;_1 = 0. All models were estimated through maximum likelihood (MLE).

Since volatility itself is not directly observable, establishing the effectiveness of
the volatility forecast involves the use of a “volatility proxy” that may constitute an
imperfect estimate of the true volatility, as mentioned by Andersen and Bollerslev
(1998), for example. Following the conventional approach, squared returns are used as a
proxy for the latent volatility process. According to Patton (2006) the squared return on
an asset over the period t (assuming a zero mean return) is a conditionally unbiased
estimator of the true unobserved conditional variance of the asset over the period t.

Our original sample was divided in two parts: the in-sample (January 3, 1995 to
December 31, 2004) and the out-of-sample (January 3, 2005 to December 31, 2009).
That way, the parameters for the conditional variance equation are estimated for the first
ten years. The remaining five years were considered as the forecast period.

In the following section, we will present and discuss both in-sample and out-of-

sample results.
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6. ESTIMATION RESULTS?

In-sample results

Figures 15 to 26 report the in-sample results for CAC40, FTSE100, NIKKEI225
and S&P500. In order to compare these results, we will make use of three likelihood
based goodness-of-fit criteria. Those criteria are the maximum log-likelihood, the
Akaike Information Criteria (Akaike, 1978) and the Schwarz Bayesian Criteria
(Scharwz, 1978). The first one is obtained from the maximum likelihood estimation and
the bigger it is, the better it is. On the contrary, we want Akaike Information Criteria

(AIC) and Schwarz Bayesian Criteria (SBC) to be as lower as possible.

Figure 15: Log-likelihood for GARCH (CAC40)

LogL: LL1

Method: Maximum Likelihood (BHHH)
Date: 04/25/10 Time: 17:02

Sample: 1/13/1995 12/31/2004

Included observations: 2518

Evaluation order: By observation
Convergence achieved after 12 iterations

Coefficient  Std. Error  z-Statistic Prob.

M(1) 0.070245 0.023399 3.002116  0.0027

ARE(1) -0.001729  0.021416 -0.080737  0.9357
ARE(2) -0.009103  0.020529 -0.443443 06574
ARE(3) -0.059459  0.019898 -2.988234 0.0028
ARE(4) -0.000668  0.020728 -0.032242  0.9743
ARE(5) -0.042420  0.020351 -2.084470  0.0371
OMEGA(1) 0.015571 0.006225 2501569 0.0124
ALPHA(1) 0.064730 0.009062 7.143035 0.0000
BETA(1) 0.928201 0.009841 9432250  0.0000
TDF(1) 1576205  3.947159  3.993264  0.0001

Log likelihood -4210.339  Akaike info criterion 3.352136
Avg. log likelihood -1.672096  Schwarz criterion 3.375294
Number of Coefs. 10  Hannan-Quinn criter. 3.360540

% All calculations were programmed in Eviews 5.0. The program work files are displayed in the Appendix.

48



Predictive Accuracy of Alternative Autoregressive Conditional Heteroskedasticity Models

Figure 16: Log-likelihood for GJR (CAC40)

LogL: LL2

Method: Maximum Likelihood (BHHH)
Date: 05/02/10 Time: 00:57

Sample: 1/13/1995 12/31/2004

Included observations: 2518

Evaluation order: By observation
Convergence achieved after 10 iterations

Coefficient  Std. Error  z-Statistic Prob.

M(1) 0.043813  0.023642 1.853169  0.0639

ARE(1) 0.002556  0.021455  0.119157  0.9052
ARE(2) -0.004572  0.020441 -0.223664  0.8230
ARE(3) -0.057036  0.020132 -2.833066  0.0046
ARE(4) 0.004313  0.020646  0.208884  0.8345
ARE(5) -0.038750  0.020223 -1.916138  0.0553
OMEGA(1) 0.021377  0.006084 3513727  0.0004
ALPHA(1) 0.017966  0.009169  1.959452  0.0501
BETA(1) 0.930785  0.009415  98.86679  0.0000
GAMMA(1) 0.077534  0.013277 5839522  0.0000
TDF(1) 18.00287 5200847  3.461527  0.0005

Log likelihood -4193.716  Akaike info criterion 3.339727
Avg. log likelihood -1.665495  Schwarz criterion 3.365201
Number of Coefs. 11 Hannan-Quinn criter. 3.348972

Figure 17: Log-likelihood for EGARCH (CAC40)

LogL: LL3

Method: Maximum Likelihood (BHHH)

Date: 04/25/10 Time: 17:03

Sample: 1/13/1995 12/31/2004

Included observations: 2518

Evaluation order: By observation

Failure to improve Likelihood after 34 iterations

Coefficient  Std. Error  z-Statistic Prob.

M(1) -0.095101  0.215474 -0.441360  0.6590

ARE(1) -0.103082  0.160317 -0.642988  0.5202
ARE(2) -0.413312 0144787 -2.854622  0.0043
ARE(3) -0.408168 0177242 -2.302889  0.0213
ARE(4) -0.723035  0.206900 -3.494613  0.0005
ARE(5) -0.390459 0161822 -2.412892  0.0158
OMEGA(1) -0.078033  0.014516 -5.375658  0.0000
BETA(1) 0.986868  0.003698  266.8873  0.0000
ALPHA(1) 0.081243  0.014183  5.728031  0.0000
GAMMA(1) -0.034232  0.009778 -3.500919  0.0005
TDF(1) 18.81993  6.356323  2.960821  0.0031

Log likelihood -4183.592  Akaike info criterion 3.331685
Avg. log likelihood -1.661474  Schwarz criterion 3.357159

Number of Coefs. 11 Hannan-Quinn criter. 3.340930
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Figure 18: Log-likelihood for GARCH (FTSE100)

LogL: LL1

Method: Maximum Likelihood (BHHH)
Date: 04/25/10 Time: 16:33
Sample: 1/13/1995 12/31/2004
Included observations: 2518
Evaluation order: By observation
Convergence achieved after 12 iterations

Coefficient ~ Std. Error  z-Statistic ~ Prob.
M(1) 0.055388  0.017084  3.242153  0.0012
ARE(1) 0.003415  0.021369  0.159829  0.8730
ARE(2) -0.028088  0.020268 -1.385826  0.1658
ARE(3) -0.058029  0.020574 -2.820427  0.0048
ARE(4) -0.006758  0.020651 -0.327223  0.7435
ARE(5) -0.038531 0.020170 -1.910340  0.0561
OMEGA(1) 0.008267  0.003087 2678247  0.0074
ALPHA(1) 0.073359  0.010438  7.028017  0.0000
BETA(1) 0.920583 0.010808 85.17889  0.0000
TDF(1) 17.41807  5.055271 3.445527  0.0006
Log likelihood -3480.699  Akaike info criterion 2772596
Avg. log likelihood -1.382327 Schwarz criterion 2.795754
Number of Coefs. 10 Hannan-Quinn criter. 2.781001
Figure 19: Log-likelihood for GJR (FTSE100)
LogL: LL2
Method: Maximum Likelihood (BHHH)
Date: 04/25/10 Time: 16:33
Sample: 1/13/1995 12/31/2004
Included observations: 2518
Evaluation order: By observation
Failure to improve Likelihood after 3 iterations
Coefficient ~ Std. Error  z-Statistic  Prob.
M(1) 0.045215  0.017033  2.654608  0.0079
ARE(1) 0.004872 0020922 0232849 0.8159
ARE(2) -0.028147  0.019768 -1.423828  0.1545
ARE(3) -0.059451  0.020071 -2.962025  0.0031
ARE(4) -0.006434  0.020491 -0.313975  0.7535
ARE(5) -0.041238  0.019784 -2.084458  0.0371
OMEGA(1) 0.007096  0.002600 2.728939  0.0064
ALPHA(1) 0.015134  0.006171 2452379  0.0142
BETA(1) 0.942399  0.009284 1015112  0.0000
GAMMA(1) 0.066336  0.012061 5500145  0.0000
TDF(1) 1537516 3.762267  4.086676  0.0000
Log likelihood -3460.483  Akaike info criterion 2757334
Avg. log likelihood -1.374298 Schwarz criterion 2782808
Number of Coefs. 11 Hannan-Quinn criter. 2766579
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Figure 20: Log-likelihood for EGARCH (FTSE100)

LogL: LL3

Method: Maximum Likelihood (BHHH)

Date: 04/25/10 Time: 16:33

Sample: 1/13/1995 12/31/2004

Included observations: 2518

Evaluation order: By observation

Failure to improve Likelihood after 29 iterations

Coefficient  Std. Error  z-Statistic Prob.

M(1) 0.336443 0140418  2.396013  0.0166

ARE(1) -0.504176 0193697 -2.602917  0.0092
ARE(2) -0.146429 0187363 -0.781526 04345
ARE(3) 0.269354  0.150483  1.789926  0.0735
ARE(4) 0.209251  0.155966  1.341649  0.1797
ARE(5) -0.004411 0127696 -0.034544  0.9724
OMEGA(1) -0.089659  0.015842 -5.659653  0.0000
BETA(1) 1.002548  0.005649  177.4645  0.0000
ALPHA(1) 0.065492  0.015489  4.228417  0.0000
GAMMA(1) -0.067345 0018462 -3.647864  0.0003
TDF(1) 18.69202  4.890611  3.822022  0.0001

Log likelihood -3440.617  Akaike info criterion 2.741555
Avg. log likelihood -1.366409  Schwarz criterion 2.767029
Number of Coefs. 11 Hannan-Quinn criter. 2.750800

Figure 21: Log-likelihood for GARCH (NIKKEI225)

LogL: LL1

Method: Maximum Likelihood (BHHH)
Date: 04/25/10 Time: 16:33

Sample: 1/17/1995 12/30/2004

Included observations: 2454

Evaluation order: By observation
Convergence achieved after 13 iterations

Coefficient  Std. Error  z-Statistic Prob.

M(1) -0.001661  0.026887 -0.061765  0.9508

ARE(1) -0.025907  0.021736 -1.191891  0.2333
ARE(2) -0.026320  0.020644 -1.274937  0.2023
ARE(3) 0.001858  0.020224  0.091849  0.9268
ARE(4) -0.016204  0.020673 -0.783840  0.4331
ARE(5) -0.008437  0.020194 -0.417792  0.6761
OMEGA(1) 0.066470  0.018577  3.578043  0.0003
ALPHA(1) 0.064747  0.011681 5543070  0.0000
BETA(1) 0.906313  0.016774  54.03203  0.0000
TDF(1) 8.518345  1.180024  7.218791  0.0000

Log likelihood 4335214  Akaike info criterion 3.541332
Avg. log likelihood -1.766591  Schwarz criterion 3.564989

Number of Coefs. 10 Hannan-Quinn criter. 3.549929
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Figure 22: Log-likelihood for GJR (NIKKEI225)

LogL: LL2

Method: Maximum Likelihood (BHHH)
Date: 04/25/10 Time: 16:33

Sample: 1/17/1995 12/30/2004
Included observations: 2454

Evaluation order: By observation
Convergence achieved after 9 iterations

Coefficient  Std. Error  z-Statistic Prob.

M(1) -0.024091  0.026425 -0.911651  0.3620

ARE(1) -0.023770  0.021544 -1.103361  0.2699
ARE(2) -0.022978  0.020634 -1.113610  0.2654
ARE(3) 0.003800  0.019942  0.190557  0.8489
ARE(4) -0.010671  0.020403 -0.523017  0.6010
ARE(5) -0.004068 0020146 -0.201913  0.8400
OMEGA(1) 0.058471  0.015264  3.830769  0.0001
ALPHA(1) 0.014666  0.009476 1547805  0.1217
BETA(1) 0914799 0014809 61.77524  0.0000
GAMMA(1) 0.091298 0017289 5280694  0.0000
TDF(1) 8849325  1.225894  7.218672  0.0000

Log likelihood 4318.824  Akaike info criterion 3.528789
Avg. log likelihood -1.759912  Schwarz criterion 3.554811
Number of Coefs. 11 Hannan-Quinn criter. 3.538245

Figure 23: Log-likelihood for EGARCH (NIKKEI225)

LogL: LL3

Method: Maximum Likelihood (BHHH)

Date: 04/25/10 Time: 16:34

Sample: 1/17/1995 12/30/2004

Included observations: 2454

Evaluation order: By observation

Failure to improve Likelihood after 28 iterations

Coefficient  Std. Error  z-Statistic Prob.

M(1) 1630947  0.301084 5416913  0.0000

ARE(1) -0.348918 0120325 -2.899809  0.0037
ARE(2) -0.756098  0.202649 -3.731079  0.0002
ARE(3) 0.322908 0.135553  2.382152  0.0172
ARE(4) 0.069349  0.145969 0475091  0.6347
ARE(5) -0.453273 0129613 -3.497121  0.0005
OMEGA(1) -0.167452  0.025060 -6.682038  0.0000
BETA(1) 0.994430 0009560  104.0152  0.0000
ALPHA(1) 0.142442 0027577 5.165269  0.0000
GAMMA(1) 0.035189 0022525 1562266  0.1182
TDF(1) 9.314539  1.346267  6.918790  0.0000

Log likelihood -4306.680 Akaike info criterion 3.518892
Avg. log likelihood -1.7564963  Schwarz criterion 3.544914

Number of Coefs. 11 Hannan-Quinn criter. 3.528348
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According to Tables 15-23, EGARCH is the best model to sculpt the conditional
variance of CAC40, FTSE100 and NIKKEI225 returns. GJR comes in second place,
leaving GARCH as the worst model. As expected, both asymmetric models (EGARCH
and GJR) beat GARCH in terms of goodness-of-fit measures, proving that they
successfully capture the leverage effect.

For the S&P500, however, the results are quite surprisingly, given that
EGARCH is beaten by GARCH. Besides, GJR appears to be the most accurate predictor
of S&P500 return’s volatility.

Figure 24: Log-likelihood for GARCH (S&P500)

LogL: LL1

Method: Maximum Likelihood (BHHH)
Date: 04/25/10 Time: 16:33

Sample: 1/13/1995 12/31/2004

Included observations: 2511

Evaluation order: By observation
Convergence achieved after 12 iterations

Coefficient  Std. Error  z-Statistic Prob.

M(1) 0.095789  0.017118  5.595619  0.0000

ARE(1) -0.005668  0.021150 -0.268006  0.7887
ARE(2) -0.043434  0.019971 -2.174794  0.0296
ARE(3) -0.040139  0.020357 -1.971747  0.0486
ARE(4) -0.005623  0.019917 -0.282317  0.7777
ARE(5) -0.047659  0.019890 -2.396167  0.0166
OMEGA(1) 0.005425  0.002203 2462696 0.0138
ALPHA(1) 0.058842  0.008711  6.754815  0.0000
BETA(1) 0.938982 0008484  110.6733  0.0000
TDF(1) 8.338986  1.152180  7.237570  0.0000

Log likelihood -3570.416  Akaike info criterion 2.851785
Avg. log likelihood -1.421910  Schwarz criterion 2.874996
Number of Coefs. 10  Hannan-Quinn criter. 2.860210
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Figure 25: Log-likelihood for GJR (NIKKEI225)

LogL: LL2

Method: Maximum Likelihood (BHHH)

Date: 04/25/10 Time: 16:33

Sample: 1/13/1995 12/31/2004

Included observations: 2511

Evaluation order: By observation

Failure to improve Likelihood after 3 iterations

Coefficient  Std. Error  z-Statistic  Prob.

M{1) 0.085359  0.016961 5032668  0.0000

ARE(1) -0.004505  0.020729 -0.217327  0.8280
ARE(2) -0.043413  0.019462 -2.230658  0.0257
ARE(3) -0.036655  0.019689 -1.861688  0.0626
ARE(4) -0.007334  0.019329 -0.379407 0.7044
ARE(5) -0.047255  0.019166 -2.465610  0.0137
OMEGA(1) 0.006445 0001734  3.716666  0.0002
ALPHA(1) 0.002853  0.004367 0653246  0.5136
BETA(1) 0.953653  0.006880  138.6054  0.0000
GAMMA(1) 0.067760  0.010090 6.715294  0.0000
TDF(1) 9.307245  1.321933  7.040632  0.0000

Log likelihood -3543.240  Akaike info criterion 2.830936
Avg. log likelihood -1.411087  Schwarz criterion 2.856469
Number of Coefs. 11 Hannan-Quinn criter. 2.840204

Figure 26: Log-likelihood for EGARCH (NIKKEI225)

LogL: LL3

Method: Maximum Likelihood (BHHH)

Date: 04/25/10 Time: 16:35

Sample: 1/13/1995 12/31/2004

Included observations: 2511

Evaluation order: By observation

Failure to improve Likelihood after 127 iterations

Coefficient  Std. Error  z-Statistic Prob.

M(1) 4717346 693.2812  0.068044  0.9458

ARE(1) 9243422 1355957  0.068169  0.9457
ARE(2) -32.95817 4935092 -0.066783  0.9468
ARE(3) -8.482755 1222264 -0.069402  0.9447
ARE(4) 1.5619235 22.72387 0.066856  0.9467
ARE(5) 3417582 5147944  0.066387  0.9471
OMEGA(1) -0.012623  0.014512 -0.869800  0.3844
BETA(1) 0.973283  0.009012  107.9998  0.0000
ALPHA(1) 0.000530  0.007792  0.068055  0.9457
GAMMA(1) 0.000732  0.010816  0.067721  0.9460
TDF(1) 11.44423  1.782029  6.422023  0.0000

Log likelihood -3573.197  Akaike info criterion 2.854797
Avg. log likelihood -1.423018  Schwarz criterion 2.880330

Number of Coefs. 11 Hannan-Quinn criter. 2.864064
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Out-of sample results

In the out-of-sample analysis, we will use the tests presented in Section Il to
identify the best conditional heteroskedasticity model (GARCH, GJR or EGARCH).
Specifically, we will use the Diebold-Mariano (1995), the modified Diebold-Mariano
(1997), the modified Morgan-Granger-Newbold (1997), the Harvey-Leybourne-
Newbold (1998), the Harvey-Newbold (2000) and the Hansen (2005) tests.

It is important to note that these tests are measured in terms of their forecasting
errors. Therefore, in order to choose the best model, we will choose the lowest test
value, as we want to minimize forecasting errors.

According to the original Diebold-Mariano test (Tables 15 and 16), the

conclusions are rather mixed.

Table 15: Diebold-Mariano test (MSE loss functions)

MSE
GJR-EGARCH GJR-GARCH EGARCH-GARCH
CAC40 -0,6331 [0,5266] | -2,2020 [0,0267] | -1,5028 [0,1329]
FTSE100 |-0,6058 [0,5447] |-2,2895 [0,0221] | -0,4768 [0,6335]
NIKKEI225 | -0,8069 [0,4197] | -1,5563 [0,1196] | -1,5865 [0,1126]
SP500 -2,0376 [0,0416] | -1,7054 [0,0881] | 1,6137 [0,1066]

Table 16: Diebold-Mariano test (MAE loss functions)

MAE
GJR-EGARCH GJR-GARCH EGARCH-GARCH
CAC40 2,2929[0,0219] | -3,0082 [0,0026] | -3,7035 [0,0002]
FTSE100 3,3451 [0,0008] | -4,9535 [0,0000] | -4,7296 [0,0000]
NIKKEI225| 2,5920 [0,0095] | -0,3429 [0,7317] | -3,9617 [0,0001]
SP500 2,8888 [0,0039] | -4,0828 [0,0000] | -3,6106 [0,0003]
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In terms of Mean Squared Errors (MSE) loss function, we point out two notes.
First, GJR appears to beat GARCH, as we reject the null hypothesis that there is no
difference in the accuracy of two competing forecasts and the test value is negative.
Still, this is only true for CAC40 and FTSE100 (at 5% significance level) and SP500 (at
10% significance level). For NIKKEI225 the difference in the predictive accuracy is not
statistically significant.

Second, GJR only beats EGARCH for the SP500 stock index. Thus, GJR seems
to be the most appropriate volatility forecasting model, although this conclusion cannot
be generalized to all the stock indexes under analysis. Also important is the fact that, in
spite of the loss function being always lower for EGARCH (when compared to the
symmetric GARCH), the differences are not statistically significant.

In terms of Absolute Squared Errors (MAE) loss function, the conclusions are
somewhat clearer. As we can see in Table 16, with one exception, the null is always
rejected, indicating accuracy differences among the competing models. The results point
out to EGARCH as the best model to predict volatility, followed by GJR and lately,
GARCH.

Without surprises, the values obtained for the modified Diebold-Mariano test
(Tables 17 and 18) are practically the same of those we’ve found for the original test.

Thus, the conclusions are exactly the same.

Table 17: Modified Diebold-Mariano test (MSE loss functions)

MSE

GJR-EGARCH GJR-GARCH | EGARCH-GARCH

CAC40 -0,6329 [0,5268] | -2,2011 [0,0277] | -1,5022 [0,1330]
FTSE100 | -0,6055 [0,5448] | -2,2886 [0,0221] | -0,4766 [0,6336]
NIKKEI225 | -0,8066 [0,4199] | -1,5556 [0,1198] | -1,5859 [0,1128]
SP500 -2,0368 [0,0417] | -1,7047 [0,0883] | 1,6130 [0,1067]
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Table 18: Modified Diebold-Mariano test (MAE loss functions)

MAE

GJR-EGARCH

GJR-GARCH

EGARCH-GARCH

CAC40
FTSE100
NIKKEI225
SP500

2,2929 [0,0219]
3,3451 [0,0008]
2,5920 [0,0095]
2,8888 [0,0039]

-3,0082 [0,0026]
-4,9535 [0,0000]
-0,3429 [0,7317]
-4,0828 [0,0000]

-3,7035 [0,0002]
-4,7296 [0,0000]
-3,9617 [0,0001]
-3,6106 [0,0003]

The values’ resemblance can be easily understood. Looking at equation (10) we

conclude that the difference between these two tests depends on the number of h-step-

ahead forecasts assumed. Since we use h=1, we can rewrite equation (10):

_n1/2
Given that, lim,,_,., (nTl)

1
n-—1

51 = T]E S1s

= 1 then, lim,_,, S1

251-

(35)

As in the original and modified Diebold-Mariano tests, the null hypothesis of the

modified MGN test also states that there is no difference in the accuracy of two

competing forecasts.

Table 19: Modified MGN test

GARCH-EGARCH

GARCH-GJR

EGARCH-GJR

CAC40
FTSE100
NIKKEI225
SP500

0,0117 [0,9906]
0,0018 [0,9986]
0,0061 [0,9951]
-0,0008 [0,9993]

0,0006 [0,9995]
0,0000 [1,0000]
0,1072 [0,9146]
0,0000 [1,0000]

0,0022 [0,9982]
0,0030 [0,9976]
0,0033 [0,9974]
0,0002 [0,9999]
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Table 19 allow us to observe that, regardless the index, the null is never rejected.

Then, we can conclude that GJR, GARCH and EGARCH are equally accurate, in terms

of volatility prediction.

Harvey et al. (1998) proposed two tests to compare predictive ability of

competing models. Let us discuss the results of those two tests (R1 and Ry) individually.

Table 20: R; test

R1

GARCH-EGARCH

GARCH-GJR

EGARCH-GJR

EGARCH-GARCH

GJR-GARCH

GJR-EGARCH

CAC40
FTSE100
NIKKEI225
SP500

0,2689 [0,7880]
0,1611 [0,8720]
17,8633 [0,0000]
0,0509 [0,9594]

0,3234 [0,7464]
0,0313 [0,9750]
4,4203 [0,0000]
0,7682 [0,4424]

0,1201 [0,9044]
0,1626 [0,8708]
0,3680 [0,7129]
0,4368 [0,6622]

-0,0401 [0,9680]
0,0615 [0,9510]
-5,6295 [0,0000]
0,5020 [0,6157]

-0,2493 [0,8031]
-0,0228 [0,9818]
-2,8792 [0,0040]
-0,4170 [0,6767]

-0,0133 [0,9894]
0,0275 [0,9781]
-0,0120 [0,9904]
-0,0476 [0,9620]

Table 21: R, test

R2

GARCH-EGARCH

GARCH-GJR

EGARCH-GJR

EGARCH-GARCH

GJR-GARCH

GJR-EGARCH

CAC40
FTSE100
NIKKEI225
SP500

0,2119 [0,8322]
0,1387 [0,8897]
0,9470 [0,3436]
0,0484 [0,9614]

0,2444 [0,8069]
0,0304 [0,9758]
1,2924 [0,1962]
0,4345 [0,6640]

0,1365 [0,8914]
0,1941 [0,8461]
0,5823 [0,5604]
0,7757 [0,4379]

-0,0386 [0,9692]
0,0655 [0,9477]
-0,8492 [0,3958]
1,0080 [0,3135]

-0,1996 [0,8418]
-0,0223 [0,9822]
-1,5321[0,1255]
-0,2943 [0,7685]

0,0132 [0,9895]
0,0267 [0,9787]
-0,0121 [0,9903]
-0,0500 [0,9601]

A quick view over Tables 20 and 21 show a quite few contradictory results. Let
us use the comparison of GARCH and EGARCH to illustrate that. Concerning to F; test
for the FTSE100 index, the value of the first row tell us that EGARCH encompasses
GARCH, due to the positive and statistically significant test value. Logically, if
EGARCH encompasses GARCH, then GARCH cannot encompass EGARCH.
However, that’s the exact conclusion to be taken of the fourth row, where we have a
positive and statistically significant value. Instead, we should have a negative value.

Having this in mind, let us proceed to a more detailed analysis of the results.
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Regarding Ry, the conclusions are quite contradictory. For the CAC40 index, the
positive and statistically significant values obtained in the three first rows indicate GJR
as the best model, since it encompasses both GARCH and EGARCH. Also, EGARCH
encompasses GARCH. The negative and statistically significant values obtained in the
last three rows confirm this idea. For the other three indexes, the conclusions are not
that clear. Specifically, for the FTSE100 index, we can only conclude that GJR
encompasses GARCH, while for the S&P500 index, GJR seems to beat both GARCH
and EGARCH. For the NIKKEI225 index, the most apparent result is GJR
encompassing EGARCH.

Regarding R; test, the most obvious outcome is the statistically significance of
every single test value, indicating noteworthy differences among our three models. For
the CAC40 index, the only conclusion to take is the fact that GARCH is the weakest
model, since it is encompassed by the other two. For the FTSE100 and S&P500
indexes, the conclusions made for the R; test can be applied for the R, test. Specifically,
for the FTSE100 index, we conclude that GJR encompasses GARCH, while for the
S&P500 index, GJR beats both GARCH and EGARCH. Lastly, the results obtained for
the NIKKEI225 lead us to conclude that GJR is the best model, since it encompasses
both GARCH and EGARCH.

In relation to the Harvey-Newbold tests, Tables 22-24 show us that all three tests

perform quite similarly.

Table 22: F; test

F1
GARCH EGARCH GJR
CAC40 12,8675 [0,0003] 5,7174[0,0169] | 8,2504 [0,0041]

FTSE100 7,7096 [0,0056] 5,5814[0,0183] | 4,0676 [0,0439]
NIKKEI225| 8,9479 [0,0028] 5,0701 [0,0245] | 7,2534[0,0072]
SP500 5,5736 [0,0184] 1,4778 [0,0001] | 1,9524[0,1626]
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Table 23: F, test

F2
GARCH EGARCH GJR
CAC40 9,5509 [0,0020] 4,1623 [0,0415] 6,6718 [0,0099]
FTSE100 6,8349 [0,0090] 4,5132 [0,0338] 3,8269 [0,0507]
NIKKEI225| 7,0985 [0,0078] 3,7428 [0,0533] 6,2320 [0,0127]
SP500 4,8139 [0,0284] 1,1965 [0,0006] 1,7975 [0,1803]

Table 24: MS* test

MS*
GARCH EGARCH GJR
CAC40 9,6153 [0,0020] 4,1726 [0,0413] | 6,7015 [0,0097]
FTSE100 6,8666 [0,0089] 4,5258 [0,0336] | 3,8355 [0,0504]
NIKKEI225| 7,1340 [0,0077] 3,7512 [0,0530] | 6,2588[0,0125]
SP500 4,8285 [0,0282] 1,2070 [0,0005] 1,7986 [0,1801]

Concerning F; test, we reject the null hypothesis for the three models (at a 5%
significance level), meaning that neither of them encompasses another. Consequently,
any of them can be improved when combined with the two other models. This is true for
CAC40, FTSE100 and NIKKEI225. For S&P500, however, we fail to reject the null
hypothesis for GJR, meaning that this model encompasses the other two. Then, GARCH
and EGARCH contain no useful information not present in GJR.

For F, and MS* tests, the conclusions are exactly the same. Concerning CAC40
and FTSE100 indexes, we always reject the null hypothesis that one model
encompasses another (at a 5% significance level). Therefore, as we already seen for F;
test, GARCH, EGARCH and GJR models can be improved when combined among
themselves. In relation to NIKKEI225, it is possible to see that both F, and MS* tests
exhibit a p-value slightly superior to the considered 5% significance level. Then, failing
to reject the null hypothesis, we conclude that EGARCH encompasses GARCH and

GJR. However, a more flexible approach can lead us to another conclusion.
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In fact, it is important to see that we could easily reject the null hypothesis, if
using a slightly superior significance level (6% for example). Therefore, although we
can say that EGARCH encompasses the other two models, we don’t expect those
differences to be that substantial. Finally, like it happened for Fy, so too F, and MS* fail
to reject the null hypothesis for GJR when using S&P500. As a result, we can say that
all three Harvey-Newbold tests point out the GJR as the best model to predict S&P500
volatility.

At last, we have Hansen (2005) test, which results are shown in Table 25.

Table 25: Hansen test

GARCH-EGARCH GARCH-GJR EGARCH-GJR
CAC40 0,0000 [0,9072] | 0,9895 [0,0446] | 5,03639 [0,0000]
FTSE100 | 0,0000 [0,7391] | 0,0000 [0,9222] | 1,2577 [0,0000]
NIKKEI225 | 0,0000 [0,9141] | 6,5472[0,0000] | 7,0252 [0,0000]
SP500 0,0000 [0,7352] | 0,0000 [0,9001] | 1,2291 [0,0000]

As we fail to reject the null hypothesis that the benchmark (GARCH) is not
inferior to EGARCH, we conclude that these two models are equally able to predict
CAC40, FTSE100, NIKKEI225 and S&P500 volatility. When the comparison involves
EGARCH (benchmark) and GJR, we conclude that the latter outperforms the first, since
we reject the null hypothesis and we have a positive value for the test statistic. This
conclusion is valid for all four indexes. Lastly, we stumble on two opposite remarks,
when comparing GARCH and GJR models. In one hand, the results achieved for
CAC40 and NIKKEI225 lead us to conclude that GJR beats GARCH (benchmark), as
we reject the null hypothesis and the test value is positive. On the other hand, as we
don’t reject the null hypothesis, we can say that GJR and GARCH are equally
competent to predict FTSE100 and S&P500 volatility.
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7. CONCLUSION

The main purpose of this thesis is to compare the forecasting capability of some
alternative conditional heteroskedasticity models (GARCH, EGARCH and GJR). Our
data base is formed by the daily closing prices of the CAC40, FTSE100, NIKKEI 225
and S&P500 indexes from January 1, 1995 through December 31, 2009. This sample
was then divided in two: the in-sample (January 3, 1995 to December 31, 2004) and the
out-of-sample (January 3, 2005 to December 31, 2009). Next, we will present the main
conclusions for both in-sample and out-of-sample analyses.

In relation to the in-sample analyses, we used three likelihood based goodness-
of-fit criteria to compare our models. Those criteria are the maximum log-likelihood,
the AIC and the SBC. As expected, due to the leverage effect, all these criteria pointed
out the asymmetric models (EGARCH and GJR) as the best predictors of volatility.
Besides, EGARCH seems to be the most accurate volatility predictor, as it beats GJR in
every index, excepting S&P500.

In the out-of-sample analysis, the results are not that clear, since we reach
different results for different indexes and different tests. Still, there are some general
conclusions that can be made. First, with exception of the modified Diebold-Mariano
(1997) test and the F; test proposed by Harvey and Newbold (2000), all these tests point
out the existence of accuracy differences among models, indicating that there are some
better than others. Then, as already seen in the in-sample analyses, the asymmetric
models seem to outperform GARCH. The major problem is then to choose between
GJR and EGARCH.

Regarding the Diebold-Mariano (1995) and the modified Diebold-Mariano
(1997) tests, EGARCH beats GJR, who beats GARCH, in terms of MAE loss function.
In terms of MSE loss function, however, this fact does not apply. Moreover, it does not
apply to the NIKKEI225 index too. The Harvey and Newbold (2000) F2 and MS* tests,
also seem to favor EGARCH, although the accuracy differences are not categorical. On
the other hand, both Harvey-Leybourne-Newbold (1998) appear to choose GJR as the
best model.

Unfortunately then, we were not able to point out any model as the absolute best
accurate predictor of volatility. Still, it is fair to say that the dataset analyzed contains

several episodes of regional and global “market stress”, who provoked high volatilities.
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Although we want a volatility model to be able to forecast volatility in these
extreme situations, we are aware of the difficulties. Still, nowadays’ models already
incorporate a lack of several stylized facts, being useful tools, although not perfect, to

predict volatility.

8. THESIS LIMITATIONS AND FUTURE RESEARCH

In our empirical application, we used the daily squared returns as a proxy of
daily volatility. However, as found by Andersen and Bollerslev (1998) squared returns
are a noisy estimator. Thus, in the future we will have to consider an alternative
estimator such as the realized variance based on intraday volatility.

Another point for future research is to analyze which test is statistically more
appropriate for a particular models comparison. For example, in accordance to Hansen
and Lunde (2005), when the comparison involves nested models it is more appropriate
to apply a test for equal predictive accuracy (EPA), such as that of Harvey and
Newbold (2000) when compared to the SPA, for example. Thus, future research should
involve the characteristics of the models in order to select the most appropriate test to

compare the models forecasting accuracy.
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Appendix:

Table 26: Empirical size under quadratic loss, Test Statistic F

Gaussian Fat-tailad

T 2 &=.0 =.5 f=9 d=.0 g=_5 8=.9
8 .0 9.85 12.14 14.10 14.28 15.76 17.21

8 B 7.02 9.49 11.42 9.61 11.64 13.02

8 8 a8 1.26 1.86 57 113 1.79
16 .0 8.83 12.87 14.85 16.47 18.59 19.78
16 .5 7.30 10.11 11.89 11.14 13.55 14.94
16 9 A7 99 1.55 A g0 1.13
az 0 9.88 12.68 14.34 18.06 19.55 20.35
az2 5 £.98 8.50 11.22 21,30 21.00 21.37
az 9 23 55 1.00 01 07 23
64 .0 9.71 13.05 14,62 29.84 29.72 20.98
64 B 6.48 9.25 10.62 23.48 23.83 24.15
64 ) A6 AT 78 02 12 .28
128 0 10.30 13.41 1499 30.34 3095 31.26
128 5 70 10.13 11.64 24.89 25.01 25.16
128 ] 6 a0 - 1 A4 A3
256 0 10.01 13.05 14.65 .07 a2 31.24
256 5 7.a7 10.31 11.78 25.48 25.45 25.70
256 9 19 51 B0 a1 1.13 1.44
512 0 10.22 13.51 15.25 31.45 32.38 32.60
512 5 7.53 10.16 11.49 26.35 26.92 16.95
512 g .18 50 .85 a1 1.58 2.06

MOTE: T is sample size, o is the comemporaneous comalation batwean tha innovations undarying the forecast arors, and @ is the
coafficient of tha MA{1) forecast arror, All tasts are af the 10% kevel. 10,000 Monte Carlo replications are performed.

Source: (Diebold-Mariano, 1995:258)
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Table 27: Empirical size under quadratic loss, Test Statistic MGN

Gaussian Fat-taifed

T p 8=.0 §=.5 6=.9 f=.0 f=.5 §=.9
8 K1) 10.18 14.14 17.94 18.10 21.89 25.65

B 5 9.96 14.66 18.61 16.00 20.51 24.19

8 :] 9.75 14,53 18.67 11.76 16.31 20.00
18 0 10.07 1434 17.54 20.33 2454 27.08
16 5 9.56 14,37 17.85 3715 36.18 25.66
16 9 10.02 14.70 18,20 12.01 16.76 19.81
3z .0 9.89 15.04 18.00 2294 26.32 28.72
32 5B 10.08 15.11 17.495 20,23 23.76 26.20
32 ! 9.59 15.32 18.25 12.75 17.78 20.54
64 .0 10.09 1537 17.99 24.56 28.15 30.00
64 5 9.95 15.18 18.15 21.10 25.18 2728
64 9 10.26 15.67 18.49 12.98 18.09 2053
128 .0 9.96 15.09 17.59 26.47 29.50 30.94
128 5 10.23 15.07 17.48 2362 26.82 28.51
128 ) 10.11 15.05 18.05 14.34 18.89 21.56
256 .0 10.28 15.62 18.37 27.39 30.74 32.46
256 5 10.60 16.02 18.44 238 28.38 30.31
256 ] 10.11 15.48 17.91 14.15 19.43 22.03
512 .0 1012 15.34 17.68 27.64 30.55 32.14
512 5 10.05 14.96 17.66 24.10 2740 29.28
512 8 9.90 15.09 17.53 14.78 19.16 21.49

NOTE: T Is sample size, p is the contemporaneous comelation batween the innovations undarlying the forecass errors, and @ is the
coafficiant of the MA(1) lorecast armos. All tests ane at the 10% level. 10,000 Monte Carlo replcations are pardormed.

Source: (Diebold-Mariano, 1995:258)
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Table 28: Empirical size under quadratic loss, Test Statistic MR

Gaussian Fai-tailed

T g f=.0 =5 f#=.9 0=.0 #=.5 f=.9
-] 0 8.67 1833 22.45 16.16 25.26 27.62

8 B 9.50 19.00 22.07 14.81 24.50 26.99

B 8 8.66 18.51 22.85 11.23 21.28 24.14
16 0 .62 13.82 14.72 15.94 2256 23.06
16 5 10.02 13.88 14.96 17.70 21.04 21.26
16 8 10.04 13.82 14.94 11.76 15.68 16.70
32 0 9.96 10.98 11.12 22.78 22.86 21.72
a2 5 9.68 11.46 11.66 19.78 20,32 20.14
32 R:] .86 11.62 11.96 12.42 13.54 13.46
64 0 10.32 11.02 11.04 24.50 22.60 21.58
64 5 9.84 10.56 10.64 21.44 19.48 18.84
64 g 9.58 10.58 10.34 13.38 13.38 13.20
128 0 9.78 10.54 10.44 25.86 22.90 21.54
128 5 10.02 11.04 11.18 22.76 20.26 18.44
128 g 10.76 11.28 11.38 13.44 13.52 12.92
256 0 10.04 8.80 9.58 27.16 23.74 22.70
256 5 10.32 9,92 9.82 24.00 20.50 18.18
256 8 9.92 10.16 10.34 13.38 12.70 12.24
512 0 9.94 10.48 10.56 26.92 23.40 21.78
512 5 9,52 10.56 10.48 23.56 20.52 19.36
512 g 8.80 9.82 9.88 13.96 12.98 12.74

MOTE: T is sample size, p Is the contemporanscus comelation batween the innovations underlying the forecasi emors, and @ is the

coafficient of the MA[1) forecast arror. All tasts are at the 10% level. At laast 5,000 Monte Carlo replications are padormed.

Source: (Diebold-Mariano, 1995:259)
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Table 29: Empirical size under quadratic loss, Test Statistic S;

Gaussian Fat-tailed

T P i=.0 f=.5 8=.9 é=.0 #=.5 #=.9
] .0 31.39 31.10 31.03 31.62 28.51 29.07

] 5 N.a7 30.39 20,93 a31.21 20.71 29.36

a8 g 31.08 30.19 30.18 31.18 3012 29.75
16 0 20.39 19.11 18.94 19.26 18.50 18.32
16 5 20.43 19.52 18.86 19.57 17.67 17.63
16 g 20.90 19.55 19.59 20.15 18.38 18.16
a2 .0 12.42 12.28 12.18 11.30 11.64 11.56
32 5 13.32 13.22 12.94 11.54 10.66 10.84
32 g 12.60 13.38 13.22 11.16 11.22 11.50
64 .0 12.47 1211 11.94 12.44 11.62 11.36
64 5 12.76 12.49 12.35 12.10 12.26 12.10
64 g 12.21 12.23 12.03 13.00 12.36 12.16
128 0 11.72 11.94 12.04 11.48 10.72 10.28
128 5 11.44 11.72 11.60 10.84 10.96 10.96
128 B 11.76 11.28 11.34 11.50 10.66 10.86
256 .0 11.11 10.65 10.66 12.06 11.67 11.79
256 5 10.90 10.39 10.48 12.16 11.486 11.60
256 9 10.69 10.79 10.75 11.51 11.59 11.16
512 .0 11.15 10.67 10.63 10.06 9.46 9.62
512 5 10.90 10.39 10.49 9.94 9.66 9.76
512 9 10.31 10.09 10.05 10.12 1012 10.06

MOTE: T is sampls size, p is the conlemporanaous conrelation between the innovations underlying the forecast emors, and @ is the

ooatficiant of the MA[1) forecast arror, All tests are at the 10% leval. Al least 5,000 Monte Carlo replications are parformed.

Source: (Diebold-Mariano, 1995:259)
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Table 30: Empirical size under quadratic loss, Test Statistics S, and Sa,

Gaussian Fat-tailed
T P g=.0 f=.5 8=.8 &=.0 #=.5 8=.9
8., nominal size = 25%
B 0 2024 22.48 2238 23.94 23.46 23.34
8 5 22.14 23.46 22.16 23.08 24.80 23.06
8 ) 22.24 23.02 22.66 22.92 23.26 22.86
S,, nominal size = 14.08%
16 .0 13.46 13.26 13.14 13.62 13.06 13.76
16 5 14.22 13.46 12,92 13.70 13.24 13.62
16 9 13.08 13.84 13.28 12.86 13.06 13.20
S, nominal size = 15.36%
3z .0 14.36 14.62 14.28 14.54 14.32 14.30
32 5 14.36 14.06 13.94 15.08 14.36 15.02
az2 ) 14.68 14.62 13.46 14.94 14.76 14.52
S,,, nominal size = 10%
64 .0 8.72 8.92 8.42 9.68 10.36 10.44
64 5 8.66 10,34 9.68 9.52 10.06 10.00
64 8 10.84 9.46 10.34 9.40 8.898 10.02
5.,, nominal size = 10%
128 0 11.62 11.62 11.84 12.22 12.20 11.42
128 5 11.66 11.62 11.80 12.06 11.84 11.44
128 9 11.22 11.72 11.28 12.06 10.76 11.40

NOTE: T is sample size, p is the contamporanecus comalation bebwaen the innovations underlying the forecast ermors, and @ Is the
coafficient of the MAL1) forecast orror. At least 5,000 Monte Carlo replications an parformed.

Source: (Diebold-Mariano, 1995:260)
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Table 31: Empirical size under quadratic loss, Test Statistics Szand Sz,

Gaussian Fat-tailed
T P 8=.0 8=.5 f8=.9 g=.0 i=.5 f=.9
53, nominal size = 25%
8 0 22.50 22.92 22.90 23.26 23.34 21.96
8 5 22.98 22.26 23.06 23.42 23.86 22,88
8 a 23.16 22.36 24.24 24.26 23.32 23.34
S, nominal size = 10.92%
16 .0 10.62 10.06 10.40 10.16 10.42 9.84
16 5 10.38 10,82 10.32 10.54 10.94 10.34
16 9 10.64 10.18 962 10.58 10.96 10.64
5,3, nominal size = 10.12%
a2 .0 10.72 10.28 9.30 9.90 10.00 9.98
az 5 10.56 10.00 10.02 10.40 10.64 10.30
a2 R 10,92 10.44 10.30 10.46 8.96 10.70
844, Nnominal size = 10%
64 .0 9.38 9.54 9.16 9.64 9.24 8.84
64 5 9.80 10.02 9.66 0,58 8.82 8.78
64 9 9.90 9.24 9.68 9.92 8.78 10.00
S35, nominal size = 10%
128 0 9.94 9.70 812 8.82 8.04 8.48
128 5 952 10.00 9.32 10.08 9.24 820
128 R:] 0.46 9.64 942 9.28 922 9.26

NOTE: T is sample size, o is the conbem)

poranaous corralation between the innovations underlying the forecast ermors, and @ is tha
coafficient of the MAI1) forecast emor. At least 5,000 Monte Carlo replications ame parormed,

Source: (Diebold-Mariano, 1995:260)

72



Predictive Accuracy of Alternative Autoregressive Conditional Heteroskedasticity Models

Program workfile:

For the CAC40 index:

(the exact same calculations were made to the other three indexes)

load "cac40"

series rt=return

series rt2=rt"2

sample s0 1995/01/03 1995/01/16
sample s1 1995/01/13 2004/12/31
sample s2 2005/01/03 2009/12/31

smpl s1
'GARCH GARCH GARCH

equation eql
eql.archrtc

'show eql.output
'declare coef vectors to use in the likelihood

coef(1) m =eql.c(l)
coef(1) omega = eql.c(2)
coef(1) alpha = eql.c(3)
coef(1) beta = eql.c(4)
coef(4) gamma =0
coef(3) delta=0

coef(1) tdf =3

coef(5) are =0

smpl sO

series res = rt-m(1)

series siggarch = @var(rt)
Ipi = @acos(-1)

'set up the likelihood GARCH
logl ll1
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111.append @logl logl
I11.append res = rt-m(1)-are(1)*rt(-1)-are(2)*rt(-2)-are(3)*rt(-3)-are(4)*rt(-4)-are(5)*rt(-5)

'set up the likelihood GARCH
I11.append siggarch = omega(1)+alpha(l)*res(-1)*2+beta(1)*siggarch(-1)

'likelihood equation

I11.append z =res"2/siggarch/(tdf(1)-2)+1

l11.append logl = @gammalog((tdf(1)+1)/2) - @gammalog(tdf(1)/2) - @log(!pi)/2 - @log(tdf(1)-2)/2 -
@log(siggarch)/2-(tdf(1)+1)*@log(z)/2

‘estimate and display results
smpl s1
111.mi(b)

'show I11.output

‘conditional variance out-of-sample GARCH

smpl s2
res=rt-m(1)-are(1)*rt(-1)-are(2)*rt(-2)-are(3)*rt(-3)-are(4)*rt(-4)-are(5)*rt(-5)
siggarch=omega(1)+alpha(1)*res(-1)"2+beta(1)*siggarch(-1)

'MSE GJR

series dgarchl

dgarchl=(siggarch-rt2)"2

'MAE GJR

series dgarch2

dgarch2=@abs(siggarch-rt2)

'‘GIR GJR GIRGJR

equation eql
eql.archrtc

'show eql.output

‘declare coef vectors to use in the likelihood

‘coef(1) m=0.1
‘coef(1) omega=0.1
‘coef(1) alpha=0.1
‘coef(1) beta=0.1

‘coef(1) gamma=0.1
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‘coef(1) tdf=3
‘coef(5) are=0.1

smpl sO

series res=rt-m(1)
series siggjr=@var(rt)
Ipi=@acos(-1)

'set up the likelihood GJR

logl 112

112.append @logl logl

112.append res=rt-m(1)-are(1)*rt(-1)-are(2)*rt(-2)-are(3)*rt(-3)-are(4)*rt(-4)-are(5)*rt(-5)

'set up the likelihood GJR
112.append nl=res(-1)<0
112.append siggjr=omega(1)+alpha(1)*res(-1)*2+beta(1)*siggjr(-1)+gamma(l)*res(-1)*2*nl

'likelihood equation

112.append z=res"2/siggjr/(tdf(1)-2)+1

112.append logl=@gammalog((tdf(1)+1)/2)-@gammalog(tdf(1)/2)-@log(!pi)/2-@log(tdf(1)-2)/2-
@log(siggjr)/2-(tdf(1)+1)*@log(z)/2

‘estimate and display results
smpl s1
112.mi(b)

'show I12.output

‘conditional variance out-of-sample GJR

smpl s2
res=rt-m(1)-are(1)*rt(-1)-are(2)*rt(-2)-are(3)*rt(-3)-are(4)*rt(-4)-are(5)*rt(-5)
nl=res(-1)<0
siggjr=omega(1)+alpha(1)*res(-1)"2+beta(1)*siggjr(-1)+gamma(l)*nl*res(-1)"2
'MSE GJR

series dgjrl

dgjri=(siggjr-rt2)"2

'MAE GJR

series dgjr2

dgjr2=@abs(siggjr-rt2)
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'EGARCH EGARCH EGARCH

equation eql
eql.archrtc

'show eql.output

'declare coef vectors to use in the likelihood

‘coef(1) m=eql.c(1)
'coef(1) omega=eql.c(2)
'coef(1) alpha=eql.c(3)
‘coef(1) beta=eql.c(4)
‘coef(4) gamma=0
‘coef(3) delta=0

‘coef(1) tdf=3

‘coef(5) are=0

smpl sO

series sigegarch=@var(rt)
series reseg=rt-m(1)
Ipi=@acos(-1)

'set up the likelihood EGARCH

logl 113

113.append @logl logl

113.append reseg=rt-m(1)-are(1)*rt(-1)-are(2)*rt(-2)-are(3)*rt(-3)-are(4)*rt(-4)-are(5)*rt(-5)

'set up the likelihood EGARCH
113.append log(sigegarch)=omega(1)+beta(1)*@Ilog(sigegarch(-1))+alpha(1)*@abs(reseg(-
1))/ @sqrt(sigegarch(-1))+gamma(1)*(reseg(-1)/@sqrt(sigegarch(-1)))

'likelihood equation

113.append z=res"2/sigegarch/(tdf(1)-2)+1

113.append logl=@gammalog((tdf(1)+1)/2)-@gammalog(tdf(1)/2)-log(pi)/2-log(tdf(1)-2)/2-
log(sigegarch)/2-(tdf(1)+1)*log(z)/2

‘estimate and display results
smpl s1
113.mi(b)

'show 113.output

76



Predictive Accuracy of Alternative Autoregressive Conditional Heteroskedasticity Models

‘conditional variance out-of.sample EGARCH

smpl s2

reseg=rt-m(1)-are(1)*rt(-1)-are(2)*rt(-2)-are(3)*rt(-3)-are(4)*rt(-4)-are(5)*rt(-5)
sigegarch=@exp(omega(1)+beta(1)*log(sigegarch(-1))+alpha(1)*@abs(reseg(-1))/@sqrt(sigegarch(-
1))+gamma(1)*(reseg(-1)/@sqrt(sigegarch(-1))))

series degarchl

degarchl=(sigegarch-rt2)"2

'MAE EGARCH

series degarch2

degarch2=@abs(sigegarch-rt2)

'COMPUTING THE HARVEY-NEWBOLD (2000) TEST

series elt=rt2-siggarch
vector(1000) yt
stomna(elt,yt)

series e2t=rt2-sigegarch
series e3t=rt2-siggjr
series del2t=elt-e2t
series del3t=elt-e3t

equation eq3

eq3.Is elt del2t del3t
'show eq3.output
lobs=@obssmpl
1s2=@se"2
IK=@ncoef
eqg3.makeresids resl
vector(1000) resfl
stomna(resl,resfl)
vector(!K) LAMB
for li=1to 'K
LAMB(li)=@coefs(!i)

next

matrix(1000,2) X
group HNg1 del12t de13t
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stomna(HNg1,X)

matrix(1000,2) HatM

matrix(1000,2) HatQ

matrix(1000,2) HatD
HatM=('obs"(-1))*@transpose(X)*X
HatQ=Is2*HatM
HatD=@inverse(HatM)*HatQ*@inverse(HatM)

'F STANDARD TEST

matrix(1,1) F11
Fl1=@transpose(lamb)*@inverse(HatD)*lamb
scalar F=lobs*(!K-1)"(-1)*@trace(F11)

if F>0 then !ProbF=1-@cfdist(F,!'K-1,'obs-1K+1)
else

IProbF=@cfdist(F,!K-1,!obs-1K+1)

endif

'COMPUTING F1

1g=0
Icm=@columns(HatM)
Irm=@rows(HatM)
matrix('cm, Irm) HatQ1
for li=1to lcm

for lj=1to I'rm

for 11=1 to !obs

Ig=tg+X (1, 1)*X (M, j) *resf1()"2
next
HatQ1(!i,'j)=!g*lobs™(-1)
1g=0

next

next

matrix(!rm, 'cm) HatD1
HatD1=@inverse(HatM)*HatQ1*@inverse(HatM)

matrix(1,1) F12
F12=@transpose(lamb)*@inverse(HatD1)*lamb
scalar F1=!lobs*(!K-1)*(-1)*@trace(F12)
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if F1>0 then 'ProbF1=1-@cfdist(F1,'K-1,!0bs-IK+1)
else

IProbF1=@cfdist(F1,'K-1,'obs-!K+1)

endif

'COMPUTING F2

1g=0
Icm=@columns(HatM)
Irm=@rows(HatM)
matrix(!cm, 'rm) HatQ2
for li=1to !cm

for lj=1to 'rm

for 11=1 to !obs
Ig=!g+X (1) *X (1) *yt(th"2
next
HatQ2(!i,!j)=!g*lobs™(-1)
1g=0

next

next

matrix(!rm, 'cm) HatD2
HatD2=@inverse(HatM)*HatQ2*@inverse(HatM)

matrix(1,1) F13
F13=@transpose(lamb)*@inverse(HatD2)*lamb
scalar F2=!obs*(!K-1)*(-1)*@trace(F13)

if F2>0 then 'ProbF2=1-@cfdist(F2,'K-1,!0bs-1K+1)
else

IProbF2=@cfdist(F2,'K-1,'obs-!K+1)

endif

'‘COMPUTING MS*

scalar MS=(lobs-(IK-1)*F2)"(-1)*('obs-!K+1)*F2

if MS>0 then 'ProbMS=1-@cfdist(MS,!K-1,!obs-1K+1)
else

IProbMS=@cfdist(MS,!K-1,10bs-1K+1)

endif
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table(7,2) resulta
setcolwidth(resulta,1,30)
resulta(1,1)="Statistics of the test"
resulta(1,2)="Test value"
resulta(1,3)="P-value"
resulta(2,1)="F-standard"
resulta(3,1)="F1"
resulta(4,1)="F2"
resulta(5,1)="MS*"
resulta(2,2)=F
resulta(2,3)=!ProbF
resulta(3,2)=F1
resulta(3,3)=!ProbF1
resulta(4,2)=F2
resulta(4,3)=!ProbF2
resulta(5,2)=MS
resulta(5,3)='ProbMS

show resulta

'COMPUTING THE DIEBOLD-MARIANO TEST

series dmsv1=(siggarch-rt2)"2
'MAE MSV-EGARCH
series dmsv2

dmsv2=@abs(siggarch-rt2)

'MSE

series d11=dgjrl-degarchl
series d12=dgjri-dmsvl
series d13=degarch1-dmsv1l

equation eql1
eqll.dsdllc
scalar DM11=@tstats(1)
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if DM11<0 then !ProbDM11=2*@cnorm(DM11)
else

IProbDM11=2*(1-@cnorm(DM11))

endif

equation eq12

eql2.lsdl2c

scalar DM12=@tstats(1)

if DM12<0 then !ProbDM12=2*@cnorm(DM12)
else

IProbDM12=2*(1-@cnorm(DM12))

endif

equation eq13

eql3.lsd13c

scalar DM13=@tstats(1)

if DM13<0 then !ProbDM13=2*@cnorm(DM13)
else

IProbDM13=2*(1-@cnorm(DM13))

endif

'MAE

series d21=dgjr2-degarch2
series d22=dgjr2-dmsv2
series d23=degarch2-dmsv2

equation eq21

eq2l.lsd2lc

scalar DM21=@tstats(1)

if DM21<0 then ProbDM21=2*@cnorm(DM21)
else

IProbDM21=2*(1-@cnorm(DM21))

endif

equation eq22

eq22.1sd22 c

scalar DM22=@tstats(1)

if DM22<0 then !ProbDM22=2*@cnorm(DM22)
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else
IProbDM22=2*(1-@cnorm(DM22))
endif

equation eq23

eq23.1sd23 ¢

scalar DM23=@tstats(1)

if DM23<0 then !ProbDM23=2*@cnorm(DM23)
else

IProbDM23=2*(1-@cnorm(DM23))

endif

table(7,3) DM
setcolwidth(DM,1,30)

DM(1,1)="Test Statistics"
DM(2,1)="DM11"
DM(3,1)="DM12"
DM(4,1)="DM13"
DM(5,1)="DM21"
DM(6,1)="DM22"
DM(7,1)="DM23"
DM(1,2)="Test Value"
DM(2,2)=DM11
DM(3,2)=DM12
DM(4,2)=DM13
DM(5,2)=DM21
DM(6,2)=DM22
DM(7,2)=DM23
DM(1,3)="P-value"
DM(2,3)=!ProbDM11
DM(3,3)=!ProbDM12
DM(4,3)=!ProbDM13
DM(5,3)=!ProbDM21
DM(6,3)=!ProbDM22
DM(7,3)=!ProbDM23

show DM
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'‘COMPUTING THE MODIFIED DM (1997)

scalar mDM11=(('obs+1-2*1+lobs"(-1)*1*(1-1))/('obs))*(1/2)*DM11
if MDM11<0 then 'Prob_mDM11=2*@cnorm(mDM11)

else

IProb_mDM11=2*(1-@cnorm(mDM11))

endif

scalar mDM12=((lobs+1-2*1+!obs"(-1)*2*(1-1))/(!obs))*(1/2)*DM12
if MDM12<0 then 'Prob_mDM12=2*@cnorm(mDM12)

else

IProb_mDM12=2*(1-@cnorm(mDM12))

endif

scalar mDM13=((lobs+1-2*1+!obs"(-1)*2*(1-1))/(!obs))*(1/2)*DM13
if MDM13<0 then 'Prob_mDM13=2*@cnhorm(mDM13)

else

IProb_mDM13=2*(1-@cnorm(mDM13))

endif

scalar mDM21=((lobs+1-2*1+!obs"(-1)*2*(1-1))/(lobs))*(1/2)*DM21
if MDM21<0 then 'Prob_mDM21=2*(1-@cnorm(mDM21))

else

IProb_mDM21=2*(1-@cnorm(mDM21))

endif

scalar mDM22=((obs+1-2*1+lobs"(-1)*2*(1-1))/('obs))(1/2)*DM22
if mDM22<0 then 'Prob_mDM22=2*@cnorm(mDM22)

else

IProb_mDM22=2*(1-@cnorm(mDM22))

endif

scalar mDM23=(('obs+1-2*1+!obs"(-1)*2*(1-1))/('obs))*(1/2)*DM23
if MDM23<0 then 'Prob_mDM23=2*@cnhorm(mDM23)

else

IProb_mDM23=2*(1-@cnorm(mDM23))

endif
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table(7,3) mDM
setcolwidth(mDM,1,30)

mDM(1,1)="Test Statistics"
mDM(2,1)="mDM11"
mDM(3,1)="mDM12"
mDM(4,1)="mDM13"
mDM(5,1)="mDM21"
mDM(6,1)="mDM22"
mDM(7,1)="mDM23"
mDM(1,2)="Test Value"
mDM(2,2)=mDM11
mDM(3,2)=mDM12
mDM(4,2)=mDM13
mDM(5,2)=mDM21
mDM(6,2)=mDM22
mDM(7,2)=mDM23
mDM(1,3)="P-value"
mDM(2,3)=!Prob_mDM11
mDM(3,3)=!Prob_mDM12
mDM(4,3)=!Prob_mDM13
mDM(5,3)=!Prob_mDM21
mDM(6,3)=!Prob_mDM22
mDM(7,3)=!Prob_mDM23

show mDM

'COMPUTING THE MODIFIED MGN (1997)

series y12=elt+e2t
series y13=elt+e3t
series y23=e2t+e3t
series x12=elt-e2t
series x13=e1t-e3t

series x23=e2t-e3t
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vector(2000) x_12
stomna(x12, x_12)
vector(2000) x_13
stomna(x13, x_13)
vector(2000) x_23
stomna(x23, x_23)

equation mMMGN12
mMGN12.Is y12 x12
matrix(1,1) beta. mMMGN12
beta MMGN12=@coefs

equation mMGN13
mMGN13.1s y13 x13
matrix(1,1) beta_ mMMGN13
beta_mMMGN13=@coefs

equation mMGN23
mMGN23.1Is y23 x23
matrix(1,1) beta_mMGN23
beta_mMMGN23=@coefs

mMGN12.makeresids residmMGN12
mMGN13.makeresids residmMGN13
mMGN23.makeresids residmMGN23

vector(2000) resid_mMMGN12
vector(2000) residmMMGN13
vector(2000) resid mMGN23
stomna(residmMGN12, resid_mMGN12)
stomna(residmMGN13, resid_mMGN13)
stomna(residmMGN23, resid_mMGN23)

for !t=1 to lobs

matrix(1,1) S2_mMGN12
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S2_mMGN12=(x_12('t)*2*resid_mMGN12('t)"2)/((x_12('t)*2)"2)"(-1/2)*beta_mMGN12
scalar S2_mMMGN12_testvalue=S2_mMGN12(1,1)

if S2. MMGN12_testvalue<0 then 'Prob_mMGN12=2*@ctdist(S2_mMGN12_testvalue,!obs-1)
else

IProb_mMGN12=2*(1-@ctdist(S2_mMGN12_testvalue,!obs-1))

endif

matrix(1,1) S2_mMGN13
S2_mMGN13=(x_13('t)"2*resid_mMGN213(1t)"2)/((x_13('t)"2)"2)"(-1/2)*beta_mMGN13
scalar S2_mMGN13_testvalue=S2_mMGN13(1,1)

if S2._ MMGN13_testvalue<0 then 'Prob_mMGN13=2*@ctdist(S2_mMGN13_testvalue,!obs-1)
else

IProb_mMGN13=2*(1-@ctdist(S2_mMGN13_testvalue,!obs-1))

endif

matrix (1,1) S2_mMMGN23
S2_mMGN23=(x_23('t)"2*resid_mMGN23('t)"2)/((x_23('t)*2)"2)"(-1/2)*beta_mMGN23
scalar S2_mMGN23_testvalue=S2_mMGN23(1,1)

if S2_mMMGN23_testvalue<0 then 'Prob_mMGN23=2*@ctdist(S2_mMGN23_testvalue,!obs-1)
else

IProb_mMGN23=2*(1-@ctdist(S2_mMGN23_testvalue,!obs-1))

endif

next

table (4,3) MMGN
setcolwidth(mMGN,1,30)

MMGN(1,1)="Test Statistics"
MMGN(1,2)="Test Value"
mMMGN(1,3)="P-value"
mMMGN(2,1)="mMGN12"
mMMGN(3,1)="mMGN13"
MMGN(4,1)="mMGN23"
MMGN(2,2)=S2_mMGN12_testvalue
MMGN(3,2)=S2_mMGN13_testvalue
MMGN(4,2)=S2_mMGN23_testvalue
mMMGN(2,3)=!Prob_mMGN12
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mMGN(3,3)=!Prob_mMGN13
mMMGN(4,3)=!Prob_mMGN23

show mMGN

'‘COMPUTING THE HARVEY-LEYBOURNE-NEWBOLD (1998)

series x21=e2t-elt
series x31=e3t-elt

series x32=e3t-e2t

vector(2000) x_21
stomna(x21, x_21)
vector(2000) x_31
stomna(x31, x_31)
vector(2000) x_32

stomna(x32, x_32)

equation HLN12

HLN12.Is elt x12
matrix(1,1) lambda_HLN12
lambda_HLN12=@coefs

equation HLN13

HLN13.ls elt x13
matrix(1,1) lambda_HLN13
lambda_HLN13=@coefs

equation HLN23

HLN23.Is e2t x23
matrix(1,1) lambda_HLN23
lambda_HLN23=@coefs

equation HLN21

HLN21.Is e2t x21
matrix(1,1) lambda_HLN21
lambda_HLN21=@coefs
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equation HLN31

HLN31.Is e3t x31
matrix(1,1) lambda_HLN31
lambda_HLN31=@coefs

equation HLN32

HLN32.Is e3t x32
matrix(1,1) lambda_ HLN32
lambda_HLN32=@coefs

HLN12.makeresids residHLN12
HLN13.makeresids residHLN13
HLN23.makeresids residHLN23

vector(2000) resid HLN12
vector(2000) resid_ HLN13
vector(2000) resid HLN23

stomna(residHLN12, resid_HLN12)
stomna(residHLN13, resid_ HLN13)
stomna(residHLN23, resid_HLN23)

HLN21.makeresids residHLN21
HLN31.makeresids residHLN31
HLN32.makeresids residHLN32

vector(2000) resid_HLN21
vector(2000) resid_HLN31
vector(2000) resid HLN32

stomna(residHLN21, resid_HLN21)
stomna(residHLN31, resid_HLN31)

stomna(residHLN32, resid_HLN32)

'ASSUMING H=1
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for 1t=1 to 'obs

matrix(2000,2000) HatQ1_HLN12
HatQ1_HLN12=('obs™(-1))*(x_12('t)*2)*(resid_HLN12('t)*2)

Matrix(2000,2000) HatQ1_HLN13
HatQ1_HLN13=(lobs”(-1))*(x_13(1)*2)*(resid_HLN13(')*2)

matrix(2000,2000) HatQ1_HLN23
HatQ1_HLN23=(lobs”(-1))*(x_23(1t)*2)*(resid_HLN23('t)*2)

matrix(1,1) R1_HLN12
R1_HLN12=(lobs)*(-1/2)*HatQ1_HLN12(1t)*(-1/2)*x_12('t)*2*lambda_HLN12
scalar R1_HLN12_testvalue= R1_HLN12(1,1)

if RL_HLN12_testvalue<0 then 'Prob_R1 HLN12=2*@cnorm(R1_HLN12_testvalue)
else

IProb_R1_HLN12=2*(1-@cnorm(R1_HLN12_testvalue))

endif

matrix(1,1) R1_HLN13
R1_HLN13=(lobs)*(-1/2)*HatQ1_HLN13(1t)*(-1/2)*x_13('t)*2*lambda_HLN13
scalar R1_HLN13_testvalue= R1_HLN13(1,1)

if R1L_HLN13 testvalue<0 then 'Prob_R1 HLN13=2*@cnorm(R1_HLN13_ testvalue)
else

IProb_R1_HLN13=2*(1-@cnorm(R1_HLN13_testvalue))

endif

matrix(1,1) R1_HLN23
R1_HLN23=(lobs)*(-1/2)*HatQ1_HLN23(1t)*(-1/2)*x_23('t)*2*lambda_HLN23
scalar R1_HLN23_testvalue= R1_HLN23(1,1)

if R1L_HLN23 testvalue<0 then 'Prob_R1 HLN23=2*@cnorm(R1_HLN23 testvalue)
else

IProb_R1_HLN23=2*(1-@cnorm(R1_HLNZ23 testvalue))

endif

matrix(2000,2000) HatQ1_HLN21
HatQ1l HLN21=('obs"(-1))*(x_21('t)*2)*(resid_HLN21(!t)"2)
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matrix(2000,2000) HatQ1 HLN31
HatQ1_HLN31=(lobs"(-1))*(x_31('t)"2)*(resid_HLN31(1t)"2)

matrix(2000,2000) HatQ1_HLN32
HatQ1_HLN32=(lobs™(-1))*(x_32('t)*2)*(resid_HLN32('t)*2)

matrix(1,1) R1_HLN21
R1_HLN21=('obs)*(-1/2)*HatQ1_HLN21(1t)*(-1/2)*x_21('t)*(2)*lambda_HLN21
scalar R1_HLN21 testvalue= R1_HLN21(1,1)

if R1_HLN21 testvalue<0 then 'Prob_R1 HLN21=2*@cnorm(R1_HLN21 testvalue)
else

IProb_R1_HLN21=2*(1-@cnorm(R1_HLN21_testvalue))

endif

matrix(1,1) R1_HLN31
R1_HLN31=('obs)*(-1/2)*HatQ1_HLN31('t)*(-1/2)*x_31('t)"(2)*lambda_HLN31
scalar R1_HLN31 testvalue= R1_HLN31(1,1)

if RL_HLN31 testvalue<0 then 'Prob_R1 HLN31=2*@cnorm(R1_HLN31 testvalue)
else

IProb_R1_HLN31=2*(1-@cnorm(R1_HLN31 testvalue))

endif

matrix(1,1) R1_HLN32
R1_HLN32=('obs)*(-1/2)*HatQ1_HLN32('t)*(-1/2)*x_32('t)"(2)*lambda_HLN32
scalar R1_HLN32_testvalue= R1_HLN32(1,1)

if R1L_HLN32_testvalue<0 then 'Prob_R1 HLN32=2*@cnorm(R1_HLN32_testvalue)
else

IProb_R1_HLN32=2*(1-@cnorm(R1_HLN32_testvalue))

endif

series dtHLN12=x12*elt
series dtHLN13=x13*elt
series dtHLN23=x23*e2t
series dtHLN21=x21*e2t
series dtHLN31=x31*e3t
series dtHLN32=x32*e3t
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vector(2000) dt. HLN12
stomna(dtHLN12, dt HLN12)

vector(2000) dt HLN13
stomna(dtHLN13, dt_HLN13)

vector(2000) dt_ HLN23

stomna(dtHLN23, dt_HLN23)

matrix(2000,2000) HatQ2_HLN12

HatQ2_HLN12=('obs)(-1)*dt_HLN12(1)"2

matrix(2000,2000) HatQ2_HLN13
HatQ2_HLN13=(lobs)*(-1)*dt_HLN13(1t)"2

matrix(2000,2000) HatQ2_HLN23

HatQ2_HLN23=('obs)(-1)*dt_HLN23(1)"2

vector(2000) dt. HLN21

stomna(dtHLN21, dt_HLN21)

vector(2000) dt_ HLN31
stomna(dtHLN31, dt_HLN31)

vector(2000) dt HLN32

stomna(dtHLN32, dt_HLN32)

matrix(2000,2000) HatQ2_HLN21

HatQ2_HLN21=('obs)*(-1)*dt_HLN21(1t)"2

matrix(2000,2000) HatQ2_HLN31
HatQ2_HLN31=('obs)*(-1)*dt_HLN31(1)"2

matrix(2000,2000) HatQ2_HLN32
HatQ2_HLN32=(lobs)(-1)*dt_HLN32(!t)*2
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matrix(1,1) R2_HLN12
R2_HLN12=('obs)*(-1/2)*HatQ2_HLN212(1t)*(-1/2)*x_12('t)*(2)*lambda_HLN12
scalar R2_ HLN12_testvalue= R2_HLN12(1,1)

if R2_ HLN12_testvalue<0 then 'Prob_R2 HLN12=2*@cnorm(R2_HLN12_testvalue)
else

IProb_R2_HLN12=2*(1-@cnorm(R2_HLN12_testvalue))

endif

matrix(1,1) R2_HLN13
R2_HLN13=('obs)*(-1/2)*HatQ2_HLN13('t)*(-1/2)*x_13('t)(2)*lambda_HLN13
scalar R2_ HLN13_testvalue= R2_HLN13(1,1)

if R2_HLN13 testvalue<0 then 'Prob_R2_ HLN13=2*@cnorm(R2_HLN13_testvalue)
else

IProb_R2_HLN13=2*(1-@cnorm(R2_HLN13 testvalue))

endif

matrix(1,1) R2_HLN23
R2_HLN23=('obs)(-1/2)*HatQ2_HLN23('t)*(-1/2)*x_23(1t)(2)*lambda_HLN23
scalar R2_HLN23_testvalue= R2_HLN23(1,1)

if R2_HLN23_testvalue<0 then 'Prob_R2_HLN23=2*@cnorm(R2_HLN23_testvalue)
else

IProb_R2_HLN23=2*(1-@cnorm(R2_HLN23 testvalue))

endif

matrix(1,1) R2_HLN21
R2_HLN21=('obs)*(-1/2)*HatQ2_HLN21('t)*(-1/2)*x_21('t)(2)*lambda_HLN21
scalar R2_HLN21 testvalue= R2_HLN21(1,1)

if R2_HLN21_testvalue<0 then 'Prob_R2_HLN21=2*@cnorm(R2_HLN21_testvalue)
else

IProb_R2_HLN21=2*(1-@cnorm(R2_HLN21_testvalue))

endif

matrix(1,1) R2_HLN31
R2_HLN31=('obs)"(-1/2)*HatQ2_HLN31(!t)*(-1/2)*x_31('t)"(2)*lambda_HLN31
scalar R2_HLN31_testvalue= R2_HLN31(1,1)

if R2_HLN31_testvalue<0 then 'Prob_R2_HLN31=2*@cnorm(R2_HLN31_testvalue)
else

IProb_R2_HLN31=2*(1-@cnorm(R2_HLN31_testvalue))

endif
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matrix(1,1) R2_ HLN32
R2_HLN32=('obs)*(-1/2)*HatQ2_HLN32(1t)*(-1/2)*x_32('t)*(2)*lambda_HLN32
scalar R2_HLN32_testvalue= R2_HLN32(1,1)

if R2_ HLN32_testvalue<0 then 'Prob_R2_HLN32=2*@cnorm(R2_HLN32_testvalue)
else

IProb_R2_HLN32=2*(1-@cnorm(R2_HLN32_testvalue))

endif

next

table(10,3) HLN
setcolwidth(HLN,1,30)

HLN(1,1)="Test Statistics"
HLN(2,1)="R1_HLN12"
HLN(3,1)="R1_HLN13"
HLN(4,1)="R1_HLN23"
HLN(5,1)="R2_HLN12"
HLN(6,1)="R2_HLN13"
HLN(7,1)="R2_HLN23"
HLN(8,1)="R1_HLN21"
HLN(9,1)="R1_HLN31"
HLN(10,1)="R1_HLN32"
HLN(11,1)="R2_HLN21"
HLN(12,1)="R2_HLN31"
HLN(13,1)="R2_HLN32"
HLN(1,2)="Test Value"
HLN(2,2)=R1_HLN12_testvalue
HLN(3,2)=R1_HLN13_testvalue
HLN(4,2)=R1_HLN23_testvalue
HLN(5,2)=R2_HLN12_testvalue
HLN(6,2)=R2_HLN13_testvalue
HLN(7,2)=R2_HLN23_testvalue
HLN(8,2)=R1_HLN21_testvalue
HLN(9,2)=R1_HLN31_testvalue
HLN(10,2)=R1_HLN32_testvalue
HLN(11,2)=R2_HLN21_testvalue
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HLN(12,2)=R2_HLN31_testvalue
HLN(13,2)=R2_HLN32_testvalue
HLN(L,3)="P-value"
HLN(2,3)=!Prob_R1_HLN12
HLN(3,3)=!Prob_R1_HLN13
HLN(4,3)=!Prob_R1_HLN23
HLN(5,3)=!Prob_R2_HLN12
HLN(6,3)=!Prob_R2_HLN13
HLN(7,3)=!Prob_R2_HLN23
HLN(8,3)=!Prob_R1_HLN21
HLN(9,3)=!Prob_R1_HLN31
HLN(10,3)=!Prob_R1_HLN32
HLN(11,3)=!Prob_R2_HLN21
HLN(12,3)=!Prob_R2_HLN31
HLN(13,3)=!Prob_R2_HLN32

show HLN

'COMPUTING THE PETER HANSEN TEST (2005)

scalar d_bar12_hansen
d_bar12_hansen=!obs"(-1)*@sum(x_12)

scalar var_x12=@var(x_12)

scalar Hat_omegal2_hansen

Hat_omegal2_hansen=@sqrt(var_x12)

scalar spa_hansen12

spa_hansen12=(lobs"(1/2)*d_bar12_hansen)/Hat_omegal2_hansen

scalar spa_hansen12_testvalue

if spa_hansen12>0 then spa_hansen12_testvalue=spa_hansen12
else spa_hansen12_testvalue=0

endif

scalar sqrt_hansen=-@sqrt(@log(@log('obs)))
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scalar Hat_miul2_hansen

if spa_hansenl12<sqrt_hansen then Hat_miul2_hansen=d_barl2_ hansen
else

Hat_miul2_hansen=0

endif

IProb_spa_hansen12=2*(1-@cnorm((spa_hansen12_testvalue-

Hat_miul2_hansen)/Hat_omegal2_hansen))

scalar d_bar13_hansen
d_bar13_hansen=lobs"(-1)*@sum(x_13)

scalar var_x13=@var(x_13)

scalar Hat_omegal3 hansen

Hat_omegal3_hansen=@sqrt(var_x13)

scalar spa_hansen13

spa_hansen13=(lobs"(1/2)*d_bar13_hansen)/Hat_omegal3_ hansen

scalar spa_hansenl13_testvalue

if spa_hansen13>0 then spa_hansen13_testvalue=spa_hansen13
else spa_hansenl3_testvalue=0

endif

scalar sqrt_hansen=-@sqrt(@log(@log('obs)))

scalar Hat_miul3_hansen

if spa_hansen13<sqrt_hansen then Hat_miul3_hansen=d_bar13_hansen
else

Hat_miul3_hansen=0

endif

IProb_spa_hansen13=2*(1-@cnorm((spa_hansen13_testvalue-

Hat_miul3_hansen)/Hat_omegal3_hansen))
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scalar d_bar23_hansen
d_bar23_hansen=!obs"(-1)*@sum(x_23)

scalar var_x23=@var(x_23)

scalar Hat_omega23_hansen

Hat_omega23_hansen=@sqrt(var_x23)

scalar spa_hansen23
spa_hansen23=(1obs"(1/2)*d_bar23_hansen)/Hat_omega23_hansen

scalar spa_hansen23_testvalue

if spa_hansen23>0 then spa_hansen23_testvalue=spa_hansen23
else spa_hansen23_testvalue=0

endif

scalar sgrt_hansen=-@sqrt(@log(@log('obs)))

scalar Hat_miu23_hansen

if spa_hansen23<sqgrt_hansen then Hat_miu23_hansen=d_bar23_hansen
else

Hat_miu23_hansen=0

endif

IProb_spa_hansen23=2*(1-@cnorm((spa_hansen23_testvalue-

Hat_miu23_hansen)/Hat_omega23_hansen))

table (4,3) Hansen
setcolwidth(Hansen,1,30)

Hansen(1,1)="Test Statistics"
Hansen(1,2)="Test Value"
Hansen(1,3)="P-value"
Hansen(2,1)="Hansen12"
Hansen(3,1)="Hansen13"
Hansen(4,1)="Hansen23"
Hansen(2,2)=spa_hansen12_testvalue
Hansen(3,2)=spa_hansen13_testvalue
Hansen(4,2)=spa_hansen23_testvalue

Hansen(2,3)=!Prob_spa_hansen12
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Hansen(3,3)=!Prob_spa_hansen13
Hansen(4,3)=!Prob_spa_hansen23

show Hansen
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