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ABSTRACT

Given the increasing need for accurate weather forecasts, the use of neural networks,
especially transformer and recurrent neural networks (RNNs), has been highlighted
for their ability to capture complex patterns in time series. This study examined 14
neural network models applied to forecast weather variables, evaluated using metrics
such as median absolute error (MedianAbsE), mean absolute error (MeanAbsE),
maximum absolute error (MaxAbsE), root mean squared percent error (RMSPE),
and root mean square error (RMSE). Transformer-based models such as Informer,
iTransformer, Former, and patch time series transformer (PatchTST) stood out for
their accuracy in capturing long-term patterns, with Informer showing the best
performance. In contrast, RNN models such as auto-temporal convolutional
networks (TCN) and bidirectional TCN (BiTCN) were better suited to short-term
forecasting, despite being more prone to significant errors. Using iTransformer it was
possible to achieve a MedianAbsE of 1.21, MeanAbsE of 1.24, MaxAbsE of 2.86,
RMSPE de 0.66, and RMSE de 1.43. This study demonstrates the potential of neural
networks, especially transformers, to improve accuracy, providing a practical and
theoretical basis for selecting the most suitable models for predictive applications.

Subjects Algorithms and Analysis of Algorithms, Artificial Intelligence, Data Mining and Machine
Learning, Scientific Computing and Simulation, Programming Languages

Keywords Deep learning, Neural networks, Recurrent neural networks (RNNs), Transformer
models, Predictive applications, Accuracy in forecasting

INTRODUCTION

As weather forecasting advances, it has been marked by the adoption of artificial
intelligence (AI) models capable of capturing complex patterns in weather data, resulting
in increasingly accurate forecasts (Hyndman, 2018). On the other hand, models such as
GraphCast and Pangu-Weather exemplify this evolution, employing deep neural networks
and sophisticated machine-learning techniques to predict weather conditions with high
accuracy and speed. These Al-based innovations outperform traditional methods in terms
of efficiency, offering forecasts of up to 10 days in just seconds (Lam et al., 2022; Bi et al.,
2022). Consequently, neural network models have been widely used to increase the
accuracy of weather time series forecasts. Architectures such as long short-term memory
(LSTM) and transformers demonstrate a greater ability to detect seasonal patterns and
extreme events more efficiently than traditional methods (Hittawe et al., 2024).

How to cite this article Santos RPd, Matos-Carvalho JP, Leithardt VRQ. 2025. Deep learning in time series forecasting with transformer
models and RNNs. Peer] Comput. Sci. 11:¢3001 DOI 10.7717/peerj-cs.3001


http://dx.doi.org/10.7717/peerj-cs.3001
mailto:rogerio.�dosantos@�ifpr.�edu.�br
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.3001
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/

PeerJ Computer Science

Accurate weather forecasting is vital across sectors such as agriculture (Ukhurebor et al.,
2022), disaster preparedness (Rakhonde et al., 2024), and energy management (Meenal
et al., 2022). In recent years, Al-driven methods, particularly deep learning approaches,
have gained prominence for their ability to model complex, non-linear patterns in
meteorological time series data. Foundational studies have explored the capabilities of
recurrent neural networks (RNNs) like LSTM (Guillén-Navarro et al., 2019) and gated
recurrent units (GRUs) (Jin et al., 2020) for sequential prediction tasks, while more recent
work has demonstrated the superior long-range modeling power of transformer-based
architectures.

Despite these advancements, a key limitation in the existing body of research is the lack
of direct, head-to-head comparisons between different neural network architectures using
real-world (Prendin et al., 2021), single-station weather data. Most studies either evaluate
models in isolation, use synthetic or aggregated datasets, or vary the evaluation criteria,
making it difficult to draw practical conclusions about model suitability in real-world
forecasting applications.

This study addresses that gap by conducting a systematic comparison of 14 state-of-the-
art neural network models, including both RNN and transformer variants, within a
standardized framework using real weather data from a single station. By applying
consistent evaluation metrics across models and focusing on both short- and long-term
forecasting horizons, this work aims to provide actionable insights into model selection for
operational forecasting tasks.

Chen et al. (2021) and Zhao, Xiong ¢ Zhu (2024), show that these neural networks
achieve significant results in climate forecasting, offering a predictive model that evolves
with the inclusion of real-time data. These advances improve the quality of weather
forecasts and contribute to a greater understanding and mitigation of the impacts of
climate change (dos Santos et al., 2023). Thus, neural networks, including transformer
models and RNNs, have emerged as effective technologies to address these challenges
(Sherstinsky, 20205 Devlin, 2018; Liu, Bai & Wang, 2024).

Choosing the right approach can be a difficult task since in some cases filter applications
can be interesting considering the high non-linearity of the signals (Moreno et al., 2024). In
this context, many hybrid methods have been proposed to reduce noise in the signal, thus
improving the predictive capacity of the models (Larcher et al., 2024). In addition,
multi-criteria optimization techniques are applied to hypertuning the model to make the
best possible use of the structure.

The transformer, introduced by Vaswani (2017), proposed an architecture based
exclusively on attention mechanisms, eliminating the need for recurrent and convolutional
layers. This enabled a significant increase in parallelization and reduced training time in
language translation tasks while maintaining or even surpassing the accuracy of previous
models (da Silva, Finardi ¢ Stefenon, 2024). In this sense, unlike RNNs, which process
inputs sequentially, the transformer uses global attention mechanisms to model
dependencies at any position in the sequence. This feature makes the transformer more
efficient in terms of computational complexity and especially suitable for long-range tasks
such as machine translation and language modeling (Mandal, 2024; Tucudean et al., 2024).
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In short, models such as RNNs and transformers have been adopted to capture these
dynamics, allowing for more robust and adaptive predictions. Recent research shows that
these architectures not only capture seasonal patterns but also detect long-term trends that
contribute to more accurate climate modeling (Lim ¢ Zohren, 2021).

While RNNs process input sequentially, each hidden state /; depends on the previous
state h;_; and the current token, which allows the model to capture contextual information
throughout the sequence. In contrast, the transformer uses an attention-based structure
that eliminates recursion by treating all the tokens in the input simultaneously (Graves ¢
Graves, 2012). Thus, transformer and RNNs adopt different strategies to capture
dependencies in sequences: while the transformer exploits parallelization and distributed
attention to process all input positions simultaneously, RNNs advance position by
position, following a linear sequence. Each approach has particular benefits that may be
better suited to specific contexts and types of sequential modeling tasks (Vaswani, 2017).

The NeuralForecast library is a platform available for Python (Olivares et al., 2022),
which makes it possible to implement a wide range of temporal forecasting models based
on neural networks, from traditional approaches, such as RNNs and multi-layer
perceptron (MLP), to advanced architectures, such as transformers, neural basis expansion
analysis for time series forecasting (NBEATS) (Oreshkin et al., 2021), neural hierarchical
interpolation for time series forecasting (NHITS) (Challu et al., 2023), and temporal fusion
transformer (TFT) (Nazir et al., 2023).

These models are widely applicable and can even be used for comparative analyses.
With a unified interface, NeuralForecast makes it easy to integrate these models into
forecasting workflows, meeting the needs of researchers and professionals who handle time
series analysis with a high degree of adaptability. In addition, the library offers support for
exogenous variables, allowing the inclusion of external factors that impact the time series,
and has automatic hyperparameter adjustment features, optimizing the efficiency and
accuracy of model configuration (Olivares et al., 2022).

Recent advances in deep learning have substantially improved time series forecasting by
capturing complex spatiotemporal dependencies in diverse fields (Qi, Xu ¢» Wang, 2025),
with the TFT achieving state-of-the-art results in a range of domains (Sakib et al., 2024).
For instance, Lam et al. (2023) developed GraphCast, an innovative machine learning
framework that directly learns from decades of reanalysis data to produce skillful
medium-range global weather forecasts at high resolution in less than a minute,
demonstrating the promise of data-driven approaches in modeling highly non-linear
dynamical systems.

In a related vein, Bi et al. (2022) introduced Pangu-Weather, a three-dimensional
high-resolution model that integrates novel architectural strategies such as hierarchical
temporal aggregation to achieve fast and accurate global weather forecasts while
maintaining physical consistency across many weather variables.

Complementing these weather-focused studies, Wu (2023) compared the performance
of several transformer-derived architectures, namely Transformer, Informer, Autoformer,
and Non-Stationary Transformer, in forecasting financial market time series, thereby
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highlighting both the potential and limitations of modern neural network structures in
domains characterized by non-stationarity and complex temporal patterns.

Despite the TFT demonstrated capabilities, there is a lack of research focused on
leveraging a rigorously hypertuned TFT architecture for flow forecasting. This study
addresses that gap by evaluating the performance of a finely optimized TFT model in the
context of flow prediction. The model’s effectiveness is systematically compared against
established deep learning baselines, specifically LSTM networks (Jiang et al., 2025), and
TCN (Dudukcu et al., 2023). The evaluation includes a thorough hyperparameter
optimization process, and the final results are benchmarked against a state-of-the-art
forecasting framework (Kang et al., 2025).

While current models have shown encouraging performance in addressing the
forecasting challenges, significant opportunities remain to enhance time series modeling
architectures, particularly in effectively capturing nonlinear dynamics and long-range
temporal dependencies. Lim et al. (2021) proposed the TFT, a transformer-based
architecture, as a robust framework for time series forecasting. In a comparative study,
Srivastava ¢ Cano (2022) evaluated various deep learning architectures, including LSTM,
gated recurrent units, RNN, and TFT, for the prediction levels. Their results demonstrated
the superior performance of the TFT model, which consistently outperformed the other
architectures, indicating its efficacy in time series forecasting.

Whereas transformers excel in handling long-range dependencies and parallelizing
computations, features that are particularly beneficial when training on large datasets with
complex patterns, RNNs possess inherent advantages in different scenarios. Due to their
sequential nature and simpler structure, RNNs can be more effective when working with
smaller datasets or tasks that rely on short-range dependencies, offering faster convergence
and reduced computational overhead. A direct comparison highlighting these strengths
and limitations would not only underscore the versatility of transformers but also clarify in
which contexts RNNs might still be the preferred choice (Karita et al., 2019).

Besides the state-of-the-art techniques employed for time series forecasting, the use of
hybrid models and noise attenuation techniques can be a solution to improve the
forecasting of the signals evaluated in this work. Many advances have been proposed in the
field of machine learning considering practical implementations based on data considering
hybrid models (Shah et al., 2024).

Given the increasing need for accurate weather forecasts, the use of neural networks,
especially transformers and RNNs, has been highlighted for their ability to capture
complex patterns in time series. While many existing studies evaluate these models in
isolation, few directly compare a broad set of neural network architectures on the same
local weather station dataset. This study addresses that gap by examining 14 neural
network models applied to forecast weather variables, all evaluated using consistent
metrics such as median absolute error (MedianAbsE), mean absolute error (MeanAbsE),
maximum absolute error (MaxAbsE), root mean squared percent error (RMSPE), and root
mean square error (RMSE).

Accurate weather forecasting remains a critical challenge, especially at the local level
where small-scale variations can significantly impact predictions. While neural networks
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have shown promise in capturing complex temporal dynamics, most existing studies
evaluate these models in isolation or across varying datasets and conditions. Few studies
conduct direct, head-to-head comparisons of multiple architectures using real-world,
single-station weather data within a unified evaluation framework. This study addresses
that gap by systematically comparing 14 neural network models for weather forecasting,
and applying consistent evaluation metrics to ensure fair comparison.

In this context, the choice of the NeuralForecast library is based on its ability to integrate
data in a simplified way, as well as offering advanced modeling options such as MLP,
NBEATS, NHITS, and TFT (Olivares et al., 2022). This library facilitates the automatic
adjustment of hyperparameters and the use of exogenous variables, contributing to the
creation of models that more accurately reflect the variability of meteorological data. As a
result, 14 models based on transformer architectures and RNNs were evaluated for
predicting weather patterns, using the NeuralForecast library.

The experimental structure enabled a precise analysis of each model’s ability to identify
seasonal patterns, variations, and long-term trends, which are essential aspects of climate
data. In addition, by measuring the performance of these models, we sought a detailed
assessment of their accuracy and efficiency, exploring the advantages offered by different
architectures in climate modeling. The code for the 14 models developed for the analysis is
available in a GitHub repository (dos Santos, 2025).

Following, we detail the methodology employed in this study, which includes a
systematic review of the literature to identify the most effective methods in transformer
models and RNNs applied to weather data forecasting. We present our approach to data
collection and analysis, using the NeuralForecast library, which allows us to integrate
real-time information to optimize our predictive models. We discuss the results obtained,
comparing the effectiveness of different models in predicting extreme weather conditions.
Finally, we explore the implications of these results for future research and practical
applications in meteorology, to contribute to the advancement of climate forecasting
technologies and improve the accuracy of weather forecasts.

METHODS

In this section, we present the methodological stages of this research, which focus on the
identification and analysis of models based on transformers and RNNs applied to time
series forecasting. The methodology was structured in four phases: systematic review,
including the construction of the search string and the screening of relevant studies;
collection and pre-processing of meteorological data from a local station; configuration,
training, and cross-validation; and comparative evaluation of the predictive performance
of the models based on metrics such as RMSE, RMSPE, MaxAbsE, MeanAbsE, and
MedianAbsE (Stefenon et al., 2025).

Search string construction and databases

To conduct the review on the application of transformer models and RNNs in weather data
forecasting, with a focus on performance metrics, we used the following search string in the
Google Scholar database (dos Santos et al., 2023) Google Scholar is a free-access platform
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that brings together various formats of academic publications and is currently one of the
most comprehensive databases of scientific articles (Martin-Martin et al., 2021).

Selection process

The inclusion and exclusion criteria were articles that explored the use of transformers and
RNNs exclusively focused on weather forecasting and included specific evaluation metrics.
We excluded studies without a focus on weather forecasting or without the use of neural
networks.

The screening of articles was carried out in three stages: In the first stage, we reviewed
the titles to identify studies that explicitly mentioned neural networks, transformer or
recurrent, applied to automatic weather station data. In the second stage, we analyzed the
abstracts of the articles to assess their methodological relevance, verifying the description
of performance metrics such as RMSE, RMSPE, MaxAbsE, MeanAbsE, and MedianAbsE.
Finally, we read the selected articles in full to confirm their practical application in the
context of weather forecasting.

Local weather station data

The meteorological data used in this work was developed and collected in Brazil, in
partnership with the Federal Institute of Parana, located in Capanema, Parana, Brazil. This
collection covered real-time measurements over the period from January 1 to December
31,2023, resulting in a total of 8,761 hourly records stored in CSV format (dos Santos, Beko
¢ Leithardt, 2023). The partnership with the Federal Institute of Parand lends greater
credibility to the study, reinforcing the link with teaching and research institutions of
excellence in Brazil. In addition, there is the prospect of expanding the scope of this work
to include data analysis at an international level, increasing its relevance and global
applicability.

Table 1 shows the meteorological variables collected by station WS-2080, organized into
three columns: variable name, the unit of measurement, and data type. This table
documents the main variables collected, serving as a basis for identifying patterns and
exploring relationships between meteorological data and the environmental phenomena of
interest, aligning directly with the objectives of the study.

For further analysis, the dataset used in this article is available at dos Santos (2025). To
prepare the data used, a pre-processing stage was handled to structure the time series in a
way that was compatible with the requirements of the learning algorithms. The process
began by reading the meteorological data file, stored in CSV format.

The date (Date) and time (Time) columns were combined and converted to datetime
format, giving rise to the ds column, which represents the timestamp of each observation.
Records that could not be correctly converted to datetime format were removed to ensure
the temporal consistency of the series. The variable of interest selected for forecasting was
the air temperature measured by the dry bulb (°C), extracted from the corresponding
column and renamed y, according to the standard nomenclature used in time series
libraries such as NeuralForecast and Prophet. To enable the set to be used in contexts with
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Table 1 Layout of the variables of the local weather station analyzed.

Variable Un. Measure Type
Date - Date
Time - Time
Total precipitation mm Float
Atmospheric pressure mB Float
Max atmospheric pressure mB Float
Atmospheric pressure min mB Float
Global radiation Kj/m? Float
Air temperature (dry bulb) °C Float
Breakfast temp °C Float
Temp max °C Float
Min temp °C Float
Oven temp max °C Float
Water temp min °C Float
Rel. humidity max % Int

Humidity rel. min % Int

Relative air humidity % Int

Wind direction Degrees Int

Windbreak m/s Float
Wind speed m/s Float

multiple series, a unique—id column was added with a fixed value serie—1, allowing the
series to be uniquely identified within multivariate or multi-ID structures.

Finally, records with missing values in the y variable were eliminated, and the set was
sorted in ascending order based on the time column (ds), with the index restarted. This
procedure guarantees the integrity and chronological ordering required for proper
modeling of the time series. The records of the database considered represent a time series
that is analyzed in this article, these signals present non-linearities due to intrinsic
characteristics of the measurement recorded on site. These characteristics make prediction
a challenge, and sophisticated measurements are required to achieve acceptable
performance. The signal considered has all the samples recorded, with no missing data,
sparse data, or considerable outliers.

In this comparative study of machine learning model architectures (RNNs and
transformers) applied to weather forecasting, we chose to use air temperature (dry bulb) as
the only target variable. This methodological decision was motivated by the need to
prioritize the effectiveness of the analysis, to the detriment of including other strongly
correlated variables. The univariate approach significantly simplified the comparison
between the different models, allowing for a more direct and objective interpretation of the
results. The inclusion of additional variables would increase the complexity of the analysis,
making it difficult to accurately identify the strengths and weaknesses of each architecture,
as some architectures do not support co-variables.
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Furthermore, the choice also took into account practical limitations related to available
computing resources and processing time. Multivariate models require significantly more
computing power, as well as longer training times. The limited data available, from a single
local weather station, influenced this decision. For more complex multivariate models,
more robust data sets are essential to guarantee the quality of the training and avoid the
problem of overfitting. Thus, the use of a single target variable helped mitigate this risk,
ensuring more complete and generalizable results under the conditions proposed in this
study.

Data pre-processing

The data from the weather station went through a preparation and pre-processing process.
The steps included formatting the temporal information, defining the target variable, and
dealing with missing or inconsistent data. Once the target variable had been defined, it was
prepared for use in the models, following methodologies such as those described by Bilgin
et al. (2021), which emphasize the importance of pre-processing in time series forecasts to
ensure accuracy and consistency in the results.

To deal with missing values in the data, we used linear interpolation for temporal
variables, such as “Air Temperature”, and imputation by the mean for variables such as
“Relative Humidity”. For cases with high inconsistency, the lines were removed after
analyzing the impact on the time series. Timestamp Formatting results from the date and
time columns being combined into a single ds column, ensuring an uninterrupted time
sequence. The y column, representing air temperature (dry bulb), was selected as the target
variable for the forecasts.

Target variable

The choice of air temperature (dry bulb) as the target variable is based on its relevance as a
central indicator of meteorological conditions, directly impacting processes essential to the
study, such as evapotranspiration and soil moisture dynamics, both important for
understanding and predicting climatic variations. In addition, its stability over time and
the wide availability of historical data reinforce its suitability for predictive analysis in time
series, allowing for greater precision and representativeness of environmental conditions
in models developed in this work (Fister et al., 2022).

Variation of the target variable over time

The graph presented in Fig. 1 was designed to show the variation in air temperature (dry
bulb) over time, from January 2023 to April 2024. Temperatures were recorded
approximately between 10 °C and 35 °C, revealing significant fluctuations, with the highest
temperatures during September to December and the lowest during the periods of June
and July. This analysis of temperature variations allows for a detailed assessment of climate
trends and can be correlated with other meteorological data sets.

Correlations
The plot shown in Fig. 2 illustrates the correlations between the target variable, dry bulb air
temperature (°C), and the other meteorological variables, showing how these variables are
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linearly related. It can be seen that the variables temp min (°C) and temp max (°C) stand
out as the most positively correlated, indicating that they both behave similarly to the
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target variable. This relationship shows that these variables are directly linked to the
thermal patterns recorded and could be considered key predictors in future analyses.

On the other hand, variables such as relative humidity (%) and atmospheric pressure
show moderate negative correlations, suggesting that these quantities are inversely
associated with dry bulb temperature. This reflects important climatic interactions,
indicating that as humidity or atmospheric pressure increases, temperature tends to
decrease. Variables such as global radiation (Kj/m?) show a moderate positive correlation,
pointing to a relevant but not predominant influence of solar radiation on temperature
variation.

Some variables, such as wind speed (m/s), show a correlation close to zero, which
implies little or no linear relationship with dry bulb temperature, showing that these
variables may be less relevant for predictive modeling. This analysis makes it possible to
understand the interactions between the meteorological variables and the target variable,
guiding the selection of more significant variables and reinforcing the understanding of the
underlying climatic processes. In this way, the graph establishes a clear overview of the
relationships and is essential for guiding subsequent modeling and analysis steps.

Model configuration

The transformer and RNNs models were configured to evaluate their performance in
forecasting meteorological time series, with a focus on automatically selecting the best
hyperparameters and adapting them to the validation set. Studies such as Nguyen et al.
(2023) highlight the effectiveness of these architectures when tackling complex temporal
forecasting problems, demonstrating performance improvements when integrating
exogenous variables, and configuring the models for univariate or multivariate forecasts.
Table 2 presents a summary of the characteristics of each model used, including
architecture, univariate or multivariate configuration, type of forecast, and support for
exogenous variables (Olivares et al., 2022).

Structural parameters

When configuring machine learning models for weather time series forecasting, it was
essential to adjust parameters such as the number of layers, batch size, learning rate, and
number of neurons in each layer to maximize predictive accuracy as illustrated in Table 3.
These adjustments are essential to capture the complexities of meteorological data and
improve the model’s performance (Gomes ¢ Ludermir, 2021).

Training and cross-validation
The process of training (Santos, Beko ¢ Leithardt, 2023) and cross-validating the models
was carried out considering the model initialization, training, and cross-validation, and
saving the results. Each model was configured with the forecast variables (ds, y, and
unique_id) to ensure the integrity of the input data. During training, cross-validation was
used on k-folds, dividing the input data into k subsets of equivalent size.

In each iteration, one subset was reserved for validation, while the others were used for
training. The early stopping technique was applied in each iteration to avoid excessive
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Table 2 Summary of characteristics of the transformer-based and RNN-based models used in

forecasting.
Model Architecture Univariate/Multivariate Forecast type Exogenous
TFT Transformer Univariate Direct F/H/S
VanillaTransformer Transformer Univariate Direct F
Informer Transformer Multivariate Direct F
Former Transformer Univariate Direct F
FEDformer Transformer Univariate Direct F
PatchTST Transformer Univariate Direct -
iTransformer Transformer Multivariate Direct -
RNN RNN Univariate Recursive F/H/S
LSTM RNN Univariate Recursive F/H/S
GRU RNN Univariate Recursive F/H/S
TCN RNN Univariate Recursive F/H/S
DeepAR RNN Univariate Recursive F/S
DilatedRNN RNN Univariate Recursive F/H/S
BiTCN RNN Univariate Direct F/H/S

training and speed up the process. After the end of each iteration, the trained models were
saved in specific directories (checkpoints), and the validation results were stored for
comparative analysis.

To respect the time domain, cross-validation was handled using a sliding window, in
which future predictions take into account past observations, thus ensuring the correct
application of the prediction. To avoid overfitting the model, the early stop criterion takes
into account a comparison between the loss function of training and validation, when the
model starts overfitting, where there is no further improvement in validation, the early
stop is used.

Multi-step forecasting

After training, the models performed multi-step forecasts to assess their long-range
capacity (Moreno et al., 2024). To ensure accurate forecasts over a long horizon, it was
divided into blocks (batches), allowing successive forecasts to be made from previous
forecasts, as highlighted by Manawadu et al. (2022). Two forecasting methods were used,
recursive forecasting and direct forecasting. In recursive forecasting, each forecast was
performed one step at a time, with the previous forecast used as input for the next step.
This approach has been widely used in time series tasks and allows flexibility in extending
the forecast horizon.

Models that support direct forecasting generated all horizon steps at once, reducing the
effect of error accumulation. This technique was especially effective in models such as
transformers, due to its ability to model long-term dependencies (Nguyen et al., 2023). The
forecasts generated were concatenated with the training data to simulate a scenario of
sequential and continuous forecasts, to replicate a practical application situation.
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Table 3 Table of hyperparameters values used in each model.

Model Parameters

RNN h, input_size, inference_input_size, loss=MQLoss, scaler_type, encoder_n_layers, encoder_hidden_size, context_size,
decoder_hidden_size, decoder_layers, max_steps, full_horizon, model_name

LSTM h, input_size, loss=DistributionLoss, scaler_type, encoder_n_layers, encoder_hidden_size, context_size, decoder_hidden_size,
decoder_layers, max_steps, full_horizon, model_name

GRU h, input_size, loss=DistributionLoss, scaler_type, encoder_n_layers, encoder_hidden_size, context_size, decoder_hidden_size,
decoder_layers, max_steps, full_horizon, model_name

TCN h, input_size, loss=GMM, learning rate=5e—4, kernel_size=2, dilations=[1, 2, 4, 8, 16], encoder_hidden_size, context_size,
decoder_hidden_size, decoder_layers, scaler_type, max_steps, full_horizon, model_name

DeepAR h, input_size, Istm_n_layers=3, trajectory_samples=100, loss=DistributionLoss, learning rate=0.005, max_steps,
val_check_steps, early_stop_patience_steps, scaler_type=standard, full_horizon, model_name

DilatedRNN h, input_size, loss=DistributionLoss, scaler_type=robust, encoder_hidden_size, max_steps, full_horizon, model_name

BiTCN h, input_size=24, loss=GMM, max_steps=100, scaler_type=standard, full_horizon, model_name

TFT h, input_size=tune.choice([horizon]), hidden_size=tune.choice([8, 32]), n_head=tune.choice([2, 8]), learning_rate=tune.
loguniform(1le—4, le-1), scaler_type=tune.choice([robust, standard]), max_steps=tune.choice([500, 1,000]),
windows_batch_size=tune.choice([8, 32]), check_val_every_n_epoch=tune.choice([100]), random_seed=tune.randint(1, 20),
num_samples=10, freq="H’, save_dataset=True, overwrite=True, full_horizon, model_name

VanillaTransformer h, input_size=horizon, hidden_size=16, conv_hidden_size=32, n_head=2, loss=MAE, scaler_type=robust, learning_rate=1e-3,
max_steps=500, full_horizon, model_name

Informer h, input_size=horizon, hidden_size=16, conv_hidden_size=32, n_head=2, learning_rate=1e-3, scaler_type=robust,
max_steps=500, full_horizon, model_name

Former h, input_size=horizon, hidden_size=16, conv_hidden_size=32, n_head=2, learning_rate=1e-3, scaler_type=robust,
max_steps=500, full_horizon, model_name

FEDformer h, input_size=24, modes=64, hidden_size=64, conv_hidden_size=128, n_head=8, learning_rate=1e-3, scaler_type=robust,
max_steps=500, batch_size=2, windows_batch_size=32, val_check_steps=50, early_stop_patience_steps=2, full_horizon,
model_name

PatchTST h, input_size=104, patch_len=24, stride=24, revin=False, hidden_size=16, n_heads=4, scaler_type=robust, learning rate=1e-3,
max_steps=500, val_check_steps=50, early_stop_patience_steps=2, full_horizon, model_name

iTransformer h, input_size=24, n_series=2, hidden_size=128, n_heads=2, e_layers=2, d_layers=1, d_ff=4, factor=1, dropout=0.1,

use_norm=True, loss=MSE, valid_loss=MAE, early_stop_patience_steps=3, batch_size=32, full_horizon, model_name

Performance evaluation
The performance of the models was evaluated using RMSE, RMSPE, MaxAbsE,
MeanAbsE, and MedianAbsE. The RMSE is used to measure the magnitude of squared
errors, suitable for capturing significant errors. This metric is widely used in time series
forecasting (Ribeiro et al., 2024; Yamasaki et al., 2024). RMSPE assesses the relative
accuracy of the models over the time series. MaxAbsE records the maximum absolute error
in each forecast, useful for identifying atypical errors. MeanAbsE represents the mean
absolute error, providing an overview of the model’s performance over the series.
MedianAbsE measures the median absolute error, a robust metric against outliers.

The equation to calculate these measures are given by:

(1)
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where y; is the actual (true or observed) value for the i" data point, i is the predicted (or
estimated) value for the i data point, and # is the total number of data points (Klaar et al.,
2023).

These metrics were used based on the 1ightning_logs directory and are available in
the repository of dos Santos (2025), enabling a detailed and transparent comparative
analysis between the models. The application of these robust evaluation metrics ensured a
comprehensive understanding of the predictive performance of each model, helping to
identify the most suitable and accurate approaches for forecasting weather time series.

Hardware

The processing times reported in this study were measured on a specific hardware
configuration, which includes 8.00 GB of RAM and an Intel Core i5-10210U processor
with a base frequency of 1.60 GHz and the ability to accelerate to 2.11 GHz under high load
conditions.

Comparison of processing times and normalization methods

The processing times and normalization methods evaluated in this study were
fundamental to the comparative analysis between the 14 forecasting models, as shown in
Table 4. The methodological approach adopted was based on the standardized execution of
each model in a controlled hardware environment. Processing times were measured to
identify the computational efficiency of each model, while the normalization methods
applied, such as robust and standard, made it possible to assess the adaptability of the
models to different data distributions and scales.

The results showed that models such as BITCN and iTransformer, with processing
times of less than a minute, are highly efficient for scenarios that require speed. On the
other hand, more robust models, such as LSTM and GRU, showed higher times, suggesting
greater computational complexity, but potentially offering advantages in terms of accuracy
under specific conditions. Finally, this analysis shows that a model’s choice should be
based not only on processing time but also on the suitability of the normalization method
and the model’s ability to meet the requirements of the problem in question.

The limitation of using predefined models is that tuning is required for the specific
application, and predefined models for general applications may not be the best alternative
when the task has other characteristics, such as time series signals with greater noise
intensity. This makes it necessary to fine-tune the model to meet the necessary
characteristics considering the signal being evaluated.

Santos et al. (2025), Peerd Comput. Sci., DOI 10.7717/peerj-cs.3001 13/30


http://dx.doi.org/10.7717/peerj-cs.3001
https://peerj.com/computer-science/

PeerJ Computer Science

Table 4 Comparison of models with processing times and normalization applied.

Models Time (min) Normalization “scaler_type”:
TFT 18.49 robust, standard
RNN 17.08 robust

LSTM 42.49 robust

GRU 59.15 robust

TCN 2.34 robust

DeepAR 6.90 standard
DilatedRNN 3.40 robust

BiTCN 0.83 standard
VanillaTransformer 5.89 robust

Informer 6.26 robust

Former 8.98 robust

FEDformer 2.87 robust

PatchTST 2.03 robust
iTransformer 0.29 robust

The analysis developed in this study was handled specifically with the data considered in
this project, however, the models show promise for handling any chaotic time series.
Future work can be carried out aiming to compare the methods evaluated in this study in
different scenarios. In the next section, the results and comparison between the models
evaluated are presented, highlighting those with the best performance and pointing out the
most promising architectures for temporal forecasting applications of climate data to a
local automatic weather station.

The results found in this study show that the models used meet prediction expectations
satisfactorily. Considering the non-linearities of the signals analyzed, the same models can
be applied to other data sets, as they are generalizable models. To enable future analyses
and applications of the models used in this work in other fields, the data set and algorithms
used are available at dos Santos (2025).

RESULTS

The focus of the analysis of the results is on the comparative evaluation of the performance
of different models such as transformers and RNNs applied to forecasting meteorological
data. Using five error metrics. These metrics made it possible to identify the most efficient
model architectures in terms of error minimization and predictive stability, providing a
basis for understanding the suitability of each model to the challenges of forecasting
applied to weather station data.

Figure 3 shows a heat map detailing the results obtained when evaluating the
performance of the 14 models based on the error metrics: RMSE, RMSPE, MaxAbsE,
MeanAbsE, and MedianAbsE. This heat map uses a gradient of colors from green to
purple, indicating a performance range of low (green) and high (purple) for each metric.
The intensity of the color in each cell highlights the magnitude of the error, providing
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Figure 3 Heat map showing the performance of 14 models on five applied metrics.
Full-size K&l DOT: 10.7717/peerj-cs.3001/fig-3

a quick visualization of which models perform better or worse than the different
models tested.

The PatchTST model stands out for its low values in several metrics, such as RMSE
(1.46) and MedianAbsE (1.00), which are represented by darker-colored cells, indicating
superior performance. Similarly, the former model also performs with an RMSE of 1.93
and an RMSPE of 0.84, evidenced by dark shades that underline its high accuracy. In
contrast, the BITCN and TCN models show lighter colors to indicate the highest RMSE
values, 19.63 and 24.05, respectively, suggesting significant limitations in their ability to
predict complex temporal patterns compared to other models.

The TFT and Informer models, with RMSE of 5.20 and 3.19, respectively, are
represented by moderate shades of color, positioning them as balanced alternatives that
offer a compromise between accuracy and computational complexity. Finally, the
VanillaTransformer and FEDformer models, with RMSEs of 2.57 and 2.81, appear in
intermediate colors on the map, highlighting their effectiveness as good options due to the
balance between accuracy and overall performance. Although all models based on
transformer and RNN demonstrate predictive capacity, transformers such as PatchTST
and Former stand out significantly. The superior accuracy of these models is evidenced by
the darker colors, which indicate lower errors in the evaluation metrics.
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Evaluation of model metrics

In this analysis, we will present the individual results of the 14 models evaluated under the
five metrics. Each metric provides a unique perspective on the effectiveness of each model
in capturing and predicting complexities in weather time series. Each subsection details the
models’ performance on a specific metric, starting with RMSE. The embedded Figs. 4, 5, 6,
7, and 8 provide a clear visual representation of these comparisons, highlighting both the
models and the performance of those with their limitations.

Root mean squared error

Figure 4 shows a comparison of the models evaluated based on the RMSE, sorted in
ascending order. It can be seen that the iTransformer model obtained the lowest RMSE
value, showing high accuracy and forecasting capacity in time series. The PatchTST and
Former models also performed well. On the other hand, the TCN and BiTCN models had
the highest RMSE values, suggesting limitations in capturing complex patterns.
Intermediate models, such as VanillaTransformer and TFT, showed reasonable results,
falling between the extremes.

Root mean squared percentage error

Figure 5 shows a comparison of the models evaluated based on the RMSPE metric, also
sorted in ascending order. The iTransformer model showed the lowest RMSPE value,
standing out for its high percentage accuracy. The PatchTST and former models also stand
out, reinforcing the effectiveness of these transformer-based architectures. However, the
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TCN and BiTCN models had the highest RMSPE values, indicating greater difficulty in
dealing with percentage variations in the data. Other models, such as TFT and Informer,
among others, offered intermediate performance.

Maximum absolute error

Figure 6 shows the comparison of the models based on the MaxAbsE. The iTransformer
model obtained the lowest value, demonstrating superior control over extreme errors. The
PatchTST and Former models also performed well in this respect. The highest absolute
maximum error values were recorded for the TCN and BiTCN models, indicating greater
sensitivity to spikes in the data. Models such as LSTM and TFT, among others, showed
intermediate results.

Mean absolute error

Figure 7 shows the results concerning MeanAbsE. In this case, PatchTST stood out as
the most accurate model, with the lowest mean absolute error. The iTransformer and
Former models also performed well, with close values. On the other hand, the TCN and
BiTCN models recorded the highest values, suggesting less stability in the forecasts.
Intermediate models such as VanillaTransformer and Informer, among others, showed
reasonable accuracy.

Median absolute error

Figure 8 illustrates the results for the MedianAbsE. The lowest value was obtained by the
PatchTST model, followed by the iTransformer and Former models, showing consistency
in their predictions. On the other hand, the TCN and BiTCN models had the highest
values, indicating greater variability in their median results. Intermediate models include
TFT and Informer, among others which show more balanced performance.

Based on the results presented, it was possible to identify that the 14 models evaluated
exhibit varied performance when dealing with meteorological time series, with a consistent
emphasis on transformer-based architectures, such as iTransformer, PatchTST, and
Former. Despite this, it is important to emphasize that the performance of these models is
intrinsically linked to the specific parameters and conditions used. Changes, such as
adjustments to hyperparameters, variable selection, or data pre-processing, can have a
significant impact on the results observed.

Although the TCN and BiTCN models showed greater limitations in the metrics
evaluated, these observations do not rule out the possibility that improvements in their
parameterizations could alter their predictive capabilities. Similarly, intermediate
performance models such as TFT and Informer offer opportunities for further
optimization, depending on the application context and specific objectives.

It is therefore concluded that the selection of a model for practical application should
take into account not only the results obtained in this analysis but also the flexibility to
explore and adjust configurations that meet the needs of the problem in question. This
iterative approach was essential to ensure initial understanding while maintaining a
balance between accuracy and computational performance.
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Figure 9 Performance comparison between different neural network models applied to forecasting
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DISCUSSION

The weather time series forecasting models presented in this analysis vary in terms of
architecture, computational complexity, and suitability for different forecast horizons and
frequencies. Each model offers specific benefits that can be taken advantage of depending
on the application context, such as short, medium, or long-term forecasts, and the
availability of historical and future data.

The results presented in Fig. 9 provide a detailed analysis of the relative performance of
the different models analyzed, by metrics and considered from a global point of view.
These metrics were key to understanding different aspects of the models’ performance,
such as overall accuracy, control of error peaks, and forecast stability. The diversity in the
results highlights the importance of evaluating the models from multiple perspectives to
select the most appropriate approach to the specific task.

Among the models evaluated, transformer-based architectures such as Former,
PatchTST, and iTransformer showed the best performance. These models showed low
variability in metrics such as RMSE and RMSPE, reflecting their high capacity to capture
complex patterns in time series. In addition, the lower MaxAbsE values show these models’
superior control over extreme errors, an important aspect in applications that require high
forecast accuracy and reliability.

On the other hand, models based on temporal convolutions, such as TCN and BiTCN,
faced greater difficulties in practically all the metrics evaluated. Although efficient at
capturing local patterns, these architectures showed limitations in dealing with more
dynamic time series and long-term dependencies, resulting in higher absolute and
percentage errors. This reinforces the importance of considering the characteristics of the
data when selecting a model, especially in scenarios with high temporal complexity.

The intermediate performance models, such as TFT, VanillaTransformer, and
Informer, showed moderate results, placing them between the extremes. These models
showed balance in the metrics evaluated, making them suitable for applications where
multiple factors influence the results. This makes them a viable option for less critical
scenarios, where there is flexibility to explore parameters and adjust them according to the
needs of the problem.

The analysis shows that architectural choices directly impact model performance,
especially concerning metrics that assess accuracy and stability. Model selection must
consider both the application’s objectives and the metrics that most closely match the
demands of the usage scenario. In addition, the possibility of adjusting parameters and
exploring different configurations was necessary to ensure that the chosen model could
meet the expectations and specific characteristics of the data analyzed.

The plot shown in Fig. 10 allows for a detailed analysis of the behavior of predictive
models in relation to the ground truth over the time series. Models such as iTransformer
and PatchTST are observed to exhibit greater stability, with smooth trajectories that follow
the general trends of the data. This stability is essential in scenarios where precision and
consistency are crucial for strategic decision-making. These models, based on transformer
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Figure 10 Comparison of the trends of predictive models against the ground truth. Full-size K&] DOT: 10.7717/peerj-cs.3001/fig-10

architectures, demonstrate a superior ability to capture long-term patterns, a highly
relevant aspect in meteorological forecasts.

However, models such as BITCN and TCN show greater sensitivity to rapid variations,
resulting in more pronounced oscillations. This behavior can be a disadvantage in
scenarios that require more stable forecasts, but it can also be advantageous in applications
that require quick responses to abrupt changes, such as warning systems or anomaly
detection. This reflects the intrinsic limitations of architectures based on temporal
convolutions, which, although effective for local patterns, face challenges in capturing
global trends.

The variation among models highlights the influence of architectures and
parameterizations on predictive performance. Models such as LSTM and
VanillaTransformer exhibit distinct patterns compared to more advanced approaches,
indicating that the complexity of the architecture directly impacts its generalization and
accuracy capabilities. This diversity underscores the importance of a careful analysis of the
specific needs of each problem before selecting a model, considering the characteristics of
the data and the prediction objectives.

Figure 10 also reinforces the need to evaluate models based on multiple criteria and
contexts, as different applications may prioritize attributes such as stability, reactivity, or
long-term accuracy. This analysis enables the identification of both the limitations and the
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Figure 11 Performance of forecasting models. Full-size K&] DOT: 10.7717/peerj-cs.3001/fig-11

potential applications of each model, promoting a more strategic use of time-series
forecasting tools.

The choice of the ideal model should consider a combination of factors, including data
characteristics, model architecture, and the specific demands of the application context
(dos Santos, 2025).
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Figure 11 illustrates the temporal performance of the models applied to the data. Each
subgraph shows the demonstrated error behavior of each model, with the blue line
representing performance, while the red and green dotted lines indicate the end of the
training and validation period. This structure allows for a precise comparative analysis
between the models.

The training period focuses on calibrating the models to identify patterns in historical
data, while the validation period assesses their ability to generalize. In this context, models
such as PatchTST and Informer stand out for their stability and consistency throughout
the transition, showing greater accuracy in their predictions. Models based on transformer
architectures, such as Former, FEDformer, and VanillaTransformer, show superior
performance, with low errors and greater consistency throughout the year. This reflects
their effectiveness in capturing long-term patterns and dependencies, making them ideal
for applications that require reliable forecasts over longer time horizons.

On the other hand, models such as BITCN and TCN show greater error variability,
especially during the validation period. This instability indicates difficulties in dealing with
complex weather patterns, limiting their applicability in scenarios that require greater
precision and stability. On the other hand, models based on RNNs, such as LSTM and
DilatedRNN, exhibit intermediate performance. Although they capture temporal
dependencies, their greater variability in errors, when compared to transformers, points to
challenges in maintaining accuracy over longer time horizons. Finally, the analysis
presented in Fig. 11 confirms the advantage of transformer-based models in terms of
accuracy and predictive stability. These results provide a basis for selecting models best
suited to the demands of weather forecasting, considering the complexity of the data and
the resources available.

CONCLUSIONS

The models analyzed were applied to a data set from a local weather station, made up of
hourly measurements over a year. These architectures, which include RNNs and
transformers, demonstrated different capacities for capturing complex patterns, seasonal
variability, and forecast horizons. The analysis revealed that each model has specific
advantages and limitations, depending on the metric considered and the intrinsic
characteristics of the data, highlighting the importance of aligning the choice of model with
the objectives and needs of the application.

Transformer-based models such as Informer, iTransformer, Former, and PatchTST
demonstrated superior accuracy in capturing long-term dependencies within weather data,
particularly on multi-day forecasts. iTransformer, for instance, achieved the best overall
performance, with a MedianAbsE of 1.21, MeanAbsE of 1.24, MaxAbsE of 2.86, RMSPE of
0.66, and RMSE of 1.43. In contrast, RNN-based architectures like TCN and BiTCN
showed stronger performance on short-term forecasts but were more prone to higher
variance and outlier errors, often reflected in elevated MaxAbsE values. These results align
with prior findings that RNNs struggle with long-range dependencies due to vanishing
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gradients, while transformers maintain context over extended sequences, reinforcing their
suitability for long-term weather prediction.

While transformer-based models such as Former, PatchTST, and iTransformer showed
greater stability, especially in metrics related to overall accuracy and control of extreme
deviations, recurrence-based approaches such as TCN and RNN showed greater sensitivity
to rapid oscillations in the data. Although comparisons between models are common, it is
rare to find implementations that treat such different architectures uniformly, integrating
customized configurations and providing detailed results based on metrics such as RMSE,
RMSPE, MaxAbsE, MeanAbsE, and MedianAbsE. This effort at standardization and
practical comparison adds significant value, especially in a dynamic field such as weather
time series forecasting.

The inclusion of models such as PatchTST, FEDformer, and Informer, which are still
emerging, highlights the innovation of their approach. These models, often analyzed in
isolation in theoretical studies, have been integrated here in a practical and comparative
environment, highlighting their applicability in real scenarios and promoting a
comprehensive analysis of their performance. Finally, the approach implemented
demonstrates an understanding of the challenges specific to analyzing meteorological time
series from a single scenario. This process, adapted in a personalized way for each model,
takes advantage of their respective strengths, consolidating an applied technical
methodology. Turning this approach into a reproducible practice represents a significant
technical differentiator, especially for applications focused on similar meteorological
scenarios.

The methodological standardization and detailed evaluation of the metrics establish a
relevant starting point for future research. This approach can be expanded to include
additional variables, explore different meteorological scenarios, or integrate new emerging
models. In addition, the replicability and transparency promoted in this study open up
avenues for practical application in other areas that require accurate time series forecasts,
such as renewable energy, precision agriculture, and environmental monitoring. To this
end, the codes developed are available in the public repository (dos Santos, 2025), ensuring
transparency and accessibility for replication and expansion of the work. In this sense, the
repository serves not only as a record of the technical effort handled but also as a basis for
developing new solutions.

Researchers and professionals can use this modular structure to explore different
scenarios, test new models, or integrate additional variables, broadening applications in the
field of time series forecasting. In this work, the default hyperparameters of the models
considered were considered. Future work can be handled with a focus on hypertuning,
using methods such as grid search, Bayesian optimization, and tree-structured Parzen
estimator. In future work, statistical tests can be computed to validate the differences
between the models, such as significance tests, and to prove the robustness using the
Wilcoxon signed-rank test.
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