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Resumo

Esta dissertação explora a aplicação de Redes Adversariais Generativas (GANs) para

gerar dados de séries temporais, com foco particular em sinais de eletrocardiograma (ECG)

usados para detecção de arritmias. A escassez de dados nas áreas médicas é agravada pelas

regulamentações de privacidade, pelas complexidades técnicas da recolha de dados e pela

raridade de certas patologias, que limitam o acesso a conjuntos de dados abrangentes.

Recorrendo à base de dados de arritmia do MIT-BIH, este estudo aproveita uma

arquitetura Wasserstein GAN com Gradient Penalty (WGAN-GP) e altera a estrutura

do modelo adicionando camadas Long Short-Term Memory (LSTM) bidirecionais para

gerar sinais de ECG sintéticos realistas. Esses sinais sintéticos visam equilibrar conjuntos

de dados para classificação de arritmia, melhorando o desempenho do classificador onde

os métodos tradicionais de aumento de dados são insuficientes devido a restrições de

privacidade, raridade e complexidade em dados médicos.

O processo de treino do modelo GAN foi avaliado usando uma combinação de métricas

quantitativas, como Euclidean Distance eDynamic Time Warping, juntamente com técnicas

visuais como PCA e t-SNE. Além disso, um modelo de classificação treinado com dados

de ECG aumentados demonstrou potencial na abordagem de desequiĺıbrios no conjunto

de dados e no aumento da precisão na deteção de eventos arŕıtmicos, demonstrando a

eficácia do GAN na melhoria do desempenho do modelo.

Este trabalho contribui para o campo da ciência de dados em saúde. Destaca o poten-

cial das GANs para superar desafios significativos, fornecendo conjuntos de dados diversos

que preservam a privacidade e melhoram a precisão do modelo de diagnóstico. Através

desta abordagem, os GANs oferecem uma ferramenta para a investigação médica, facil-

itando o desenvolvimento de modelos preditivos robustos, mantendo ao mesmo tempo,

a integridade e a confidencialidade dos dados. Os resultados realçam o potencial de im-

pacto dos GANs, onde a maior acessibilidade e diversidade dos dados podem melhorar

significativamente os resultados dos pacientes na deteção de arritmia e muito mais.

Palavras-Chave: Redes Adversariais Generativas, Electrocardiograma, Aumento de

Dados, Séries Temporais
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Abstract

This dissertation explores the application of Generative Adversarial Networks (GANs)

to generate time-series data, with a particular focus on Electrocardiogram (ECG) signals

used for arrhythmia detection. Data scarcity in medical fields is compounded by pri-

vacy regulations, the technical complexities of data collection, and the rarity of certain

pathologies, all of which limit access to comprehensive datasets.

With a foundation in the MIT-BIH Arrhythmia Database, this study leverages a

Wasserstein GAN with Gradient Penalty (WGAN-GP) architecture and changes the

model’s structure by adding bidirectional Long Short-Term Memory (LSTM) layers to

generate realistic synthetic ECG signals. These synthetic signals aim to balance datasets

for arrhythmia classification, improving classifier performance where traditional Data

Augmentation (DA) methods fall short due to privacy, rarity, and complexity constraints

in medical data.

The GAN model’s training was evaluated using a combination of quantitative met-

rics such as Euclidean Distance and Dynamic Time Warping (DTW), alongside visual

techniques like Principal Component Analysis (PCA) and t-distributed Stochastic Neigh-

bor Embedding (t-SNE). Additionally, a classification model trained on augmented ECG

data demonstrated potential in addressing dataset imbalances and enhancing accuracy in

detecting arrhythmic events, demonstrating the GAN’s effectiveness in enhancing model

performance.

This work contributes to the broader field of healthcare data science. It highlights

the potential of GANs to overcome significant challenges by providing privacy-preserving,

diverse datasets that improve diagnostic model accuracy. Through this approach, GANs

offer a tool for medical research, facilitating the development of robust predictive models

while maintaining data integrity and confidentiality. The results underscore the potential

for GANs to impact, where enhanced data accessibility and diversity can significantly

improve patient outcomes in arrhythmia detection and beyond.

Keywords: Generative Adversarial Networks, Electrocardiogram, Data Augmenta-

tion, Time-Series
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CHAPTER 1

Introduction

1.1. Background and Motivation

In the evolving landscape of Data Science, time-series data has emerged as a crucial

component of analysis across various domains. From finance and healthcare (Yoon et al.,

2019) to energy (Demir et al., 2021) and transportation (Huang et al., 2020), the analy-

sis of sequential data points collected over time has become instrumental in discovering

patterns, making predictions, and helping people in decision-making tasks, that would be

too complex to analyze. However, as the demand for time-series analysis grows, so does

the challenge of gathering sufficient and diverse datasets to support deep learning model

development, as these models require large amounts of data to achieve effective training

and performance.

Data scarcity and limited diversity has been a big challenge in many areas of Data Sci-

ence, especially in sensitive fields like healthcare. Acquiring healthcare data can present

significant challenges, primarily due to strict privacy regulations, technical complexities

of data collection, and the rarity of specific medical conditions. Privacy is important, as

patient data is highly sensitive, requiring protocols to protect confidentiality, which is key

for keeping the rights of the patients intact. Although this often limits the availability of

comprehensive datasets, especially in the cases where sharing data is legally restricted.

Additional, recording physiological data, such as ECG or Electroencephalogram (EEG)

signals, requires specialized equipment and controlled environments, making it a demand-

ing process logistically and financially. Furthermore, certain pathologies are rare, resulting

in limited case examples that cannot easily be expanded through conventional data col-

lection. All these factors contributes to obstacles for research and development such as

Machine Learning (ML).

These challenges have increased the demand for innovative DA techniques to over-

come such limitations. DA have long been employed to artificially enhance the size and

variability of datasets, since 1998 by LeCun et al. (1998), when a technique for enhancing

the dataset size and variability without gathering more real data was firstly introduced.

GANs, first introduced by Goodfellow et al. (2014), have revolutionized the field of

synthetic data generation. Initially gaining attention for their applications in image cre-

ation, GANs have since demonstrated their potential across various domains, potentially

transforming data-intensive fields by enhancing dataset diversity while preserving privacy.

The adversarial training process of GANs, where a generator network competes against

a discriminator network, allows for the creation of highly realistic synthetic data that

resembles the statistical properties and temporal dependencies of real-world samples.

1



However, the use of GANs is not without challenges, specially in sequential data.

GANs present challenges such as training instability and evaluation difficulties, necessi-

tating continued research to optimize their efficacy and reliability. Unlike image-based

GANs, where visual inspection can provide some insight into the quality of generated

samples, assessing the fidelity of synthetic time-series data is less straightforward. The

lack of standardized, reliable metrics makes it difficult to compare different models and

evaluate improvements accurately.

1.2. Objectives and Research Questions

This dissertation dives into the world of time-series DA, with a particular focus on

the application of GANs in healthcare DA. The primary objective of this research is to

address the persistent issues of data scarcity and limited diversity in datasets, especially

in sensitive domains where privacy concerns and data collection challenges are pushing

back in the ability of getting large amounts of quality data.

This research aims to provide a comprehensive exploration of the application of GANs

in time-series DA, with a specific focus on healthcare applications. The research begins

with a literature review, examining the evolution of DA techniques, the fundamentals

of GANs, and their adaptations for time-series. We then delve into the various GAN

architectures and models that have been proposed for time-series generation, analyzing

their strengths, limitations, and applicability to different types of data.

The application of GANs across various domains are also explored, including energy,

traffic data, finance, and audio processing, before focusing more deeply on healthcare

applications. This broad investigation provides insights into the versatility of GANs and

the unique challenges posed by different types of data.

Building on the insights gained from chapter 2, this dissertation presents a novel GAN-

based approach for time-series DA in healthcare. The objective is to design and imple-

ment a GAN model specifically adapted to generate synthetic ECG signals, contributing

to enhanced data availability for arrhythmia classification and analysis. A WGAN-GP ar-

chitecture is employed, optimized to capture the temporal characteristics of ECG signals

and produce samples that reflect the diversity and complexity of real data. Section 4.1

outlines the detailed architecture of the model, highlighting the use of a gradient penalty

to enhance training stability and issues such as mode collapse.

A critical aspect of this research is the evaluation of GAN performance in generating

time-series data. Through quantitative metrics such as Euclidean Distance and DTW,

Table 4.5, as well as visualizations like PCA and t-SNE, Figures 4.15 and 4.16, the quality

and realism of the synthetic signals are evaluated. Additionally, the study explores the

application of synthetic data in classification tasks, assessing its potential to address class

imbalance and improve model performance, a common challenge in healthcare datasets

where normal heartbeats significantly outnumber arrhythmic events.

To validate the effectiveness of the proposed approach, an experiment using a clas-

sification model is also produced. In section 4.4, the utility of synthetic ECG data for

2



enhancing model performance is investigated in classification tasks by training a sim-

ple classification model on an augmented dataset, containing both original and synthetic

data. This process assesses whether synthetic data can effectively mitigate class imbalance

issues inherent in the dataset.

Ultimately, this research addresses critical questions about the effectiveness of GAN-

based DA in healthcare and its ability to enhance model performance in classification

applications. By experimenting methods to generate realistic synthetic data, this con-

tributes to the broader field of healthcare data science, offering solutions to issues related

to data scarcity, privacy, and the ethical sharing of medical information. Through these

efforts, the potential for GANs to transform data availability in healthcare is underscored,

opening new avenues for innovation and improving patient outcomes through enhanced

predictive modeling and diagnostics.

1.3. Methodology and Organization of the Dissertation

This dissertation is organized to present a clear and concise overview of the develop-

ment and validation of a GAN-based model designed to generate synthetic ECG data,

addressing healthcare data scarcity and class imbalance in arrhythmia classification. Each

chapter builds on the previous one, creating a narrative from theoretical foundation to

practical implementation.

Chapter 2 delivers a comprehensive examination of DA techniques, focusing on GANs

and their adaptations for time-series data. Subsections explore the evolution of GAN

architectures, with attention to time-series applications in healthcare, finance, and other

fields. The chapter discusses the unique challenges GANs face, such as training instability

and mode collapse.

Chapter 3 describes the approach to developing a WGAN-GP architecture specifically

for generating ECG signals. Section 3.1 covers the MIT-BIH Arrhythmia Database as the

data source, detailing preprocessing steps like data normalization and segmentation.

Chapter 4 presents the outcomes of the GAN model’s training on ECG data, assessing

the quality of synthetic signals. Subsections analyze quantitative metrics (Euclidean Dis-

tance, DTW, PCC, and Kullback–Leibler divergence (KLD)) and visual methods (PCA,

t-SNE) for evaluating the similarity between real and synthetic data. This chapter also

examines the impact of synthetic data on classification performance, particularly in ad-

dressing dataset imbalances, providing a discussion of the results in relation to the research

questions.

3





CHAPTER 2

Literature Review

In recent years, Data Science has seen a significant surge in the use of time-series

data across various domains. However, a persistent challenge in this area is the scarcity

and limited diversity of data. This issue is particularly common in fields like healthcare,

where privacy concerns restrict access to sensitive information and collecting disease-

related data is even more challenging due to the rarity of these events when those diseases

are uncommon. GANs offer a promising solution to these challenges, especially through

DA.

DA is a methodology used to artificially enhance the size and variability of datasets.

For time-series, DA is not just a tool for enriching datasets but a crucial element in ensur-

ing the robustness and accuracy of classification or predictive models, particularly those

based on Neural Networks (NNs), as these require large amounts of data to learn effec-

tively. GANs, initially getting widespread attention for their groundbreaking applications

in image generation, have since also revolutionized the field of time-series. From their in-

troduction by Goodfellow et al. (2014), GANs have quickly demonstrated their potential

beyond image creation, becoming a powerful tool for DA across various domains.

This literature review aims to provide a comprehensive analysis of the application

of GANs in DA for time-series. We begin with a foundational understanding of DA,

exploring its purpose and importance in enhancing datasets. We then delve into GANs,

examining their various adaptations and models. Each of these architectures offer unique

features and benefits, tailored to specific types of data and application requirements.

The review extends its focus to investigate the application of GANs in several key

domains: energy, traffic data, finance, audio (music and speech), and healthcare. Health-

care data often involves complex time-series, such as physiological signals (ECG1, EEG2,

EMG3, respiratory rate, etc.), some of them being multidimensional, which require so-

phisticated methods to learn the distribution and generate realistic synthetic data. This

exploration is driven by the need to understand how GANs can effectively overcome the

limitations inherent in time-series data in these areas. The review examines various GAN

adaptations and models, including their features and benefits for specific types of data.

A deeper dive into healthcare developments in this context is conducted. After the

decision to focus on healthcare data, this more targeted review was necessary to further

understand the latest developments and challenges in this field of study. This deep dive

1Electrocardiogram
2Electroencephalogram
3Electromyography
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provides insights into how GANs are being applied to address the specific needs and

constraints of healthcare data.

2.1. Literature Review Methodology

This section outlines the systematic approach taken to review the literature on time-

series DA. It describes the process of search, selecting and analyzing relevant studies,

understanding the intricacies of GAN models and evaluation methods, and determining

their applicability in various domains, in order to identify the optimal area of application

for this dissertation.

2.1.1. Research Objectives

This literature review has two main goals. First, the motivation for this study comes

from the growing importance of time-series analysis in various fields and the ongoing

challenges of data scarcity and diversity in existing datasets of this nature. DA is crucial

in addressing these challenges by increasing both the amount and variety of data in time-

series datasets. Having large amounts of information is essential to effectively train NN

models. Using enhanced datasets, researchers can improve the learning ability of the

models, leading to better robustness and performance. Thus, this review will explore and

investigate DA techniques specifically applied to time-series, examining their effectiveness

and challenges in multiple domains.

Second, is to examine how effective the different architectures of GANs are in creating

artificial data, and finding the area of application where this technique is going to be

implemented and even improved. Other modern methods for generating data, like Vari-

ational Autoencoders (VAEs) (D. P. Kingma & Welling, 2013), will also be explored for

comparison purposes.

2.1.2. Search Strategy

To initiate the literature review, a comprehensive understanding of DA techniques

for time-series was necessary. This included exploring both modern and traditional ap-

proaches. The focus was on finding the most up-to-date articles, with a preference for any

papers that provided a comprehensive summary of this particular field. Such a summary

would serve as an ideal starting point for this review. A systematic review article by Igle-

sias et al. (2023) on the current state of DA techniques for time-series was recommended

by the dissertation advisor. This review covers a wide range of techniques used to date,

including traditional approaches and those based on VAEs and GANs.

Furthermore, this systematic review introduces evaluation metrics to compare and

measure the performance of classification, forecasting, generation and anomaly detection

models with DA in comparison to those without this technique. These metrics enable an

objective assessment of the advantage provided by DA and the comparison of different

approaches for certain application areas. This can also be valuable for comparing different

DA techniques within the same application.
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The review also mentions multiple application areas where the DA methods were

used. Being those, audio processing and generation (Donahue et al., 2018), anomaly

detection in ECG (G. Zhu et al., 2019), taxi traffic data (Huang et al., 2020), power

demand forecasting (Ramponi et al., 2018), augmenting healthcare data like ECG and

lung cancer events datasets for emotional classification (Chen et al., 2019) and event

prediction (Yoon et al., 2019) respectively.

Following a broad investigation into DA for time series, the study narrowed its focus to

articles that exclusively applied GAN models for time-series data generation. This focus

was chosen because, following the initial review conclusions, GANs demonstrated superior

results for this task compared to other architectures. While VAEs offer better control over

the variability of generated data and are commonly used for anomaly detection, GANs are

capable of much better generalization and can produce more diverse samples. However,

they are also the most complex and difficult to train.

First, the articles using GANs for DA in time series referenced in the systematic re-

view paper already mentioned were analyzed. Then, all relevant papers on GANs for DA

in time series were gathered by conducting searches in databases like Scopus4, Science

Direct5, Research Gate6, IEEE Xplore7, Springer 8, and Google Scholar 9. This approach

provides a comprehensive understanding of current developments in this specific field and

helps identify research gaps that could lead to future studies. The following combination

of words was applied in research:

(“Generative Adversarial Networks” OR “GANs”)

AND (“Time Series” OR “Temporal Data” OR “Sequence Data”)

AND (“Data Augmentation” OR “DA” OR “Generation” OR “Imputation”

OR “Synthetic”)

AND (“Review” OR “Systematic Review” OR “Survey”)

This search strategy was applied across all mentioned research databases, with a time

filter applied for the period from 2018 to 2024. The search yielded numerous papers,

with some databases returning more results than others due to differences in advanced

search capabilities. To manage the volume of results, in some cases, only the first 100

papers were screened. This approach was based on the assumption that the most relevant

papers, which best matched the search criteria, would appear first in the search results.

Beyond this point, the relevance of the papers to the research topic tended to decrease

significantly.

4https://www.scopus.com/
5https://www.sciencedirect.com/
6https://www.researchgate.net/
7https://ieeexplore.ieee.org/
8https://link.springer.com/
9https://scholar.google.com/
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Figure 2.1. PRISMA flow diagram — GANs in time-series DA

After the initial screening, 144 papers remained. These papers focused on GANs, time-

series, DA, or were systematic reviews related to Machine Learning. Further filtering was

necessary to identify the most relevant papers for the research at hand. After analysis,

three papers were selected as directly relevant to the search main focus. An additional five

papers were identified for future review, although they addressed specific topics, which

are not currently central to the study. The remaining papers were excluded for various

reasons. Figure 2.1 shows the PRISMA10 flow diagram for this search, created with the

help of the PRISMA diagram tool by Haddaway et al. (2022).

After analyzing the selected papers, a comprehensive understanding of the current

state of GANs applied to time-series data across various application areas and techniques

was gained. This analysis will be elaborated upon in 2.4.

The study then focused on a more detailed investigation on the GAN models them-

selves. Some GAN technology focused articles were already gathered from the previously

analyzed papers that mentioned multiple variations of GANs, especially applied to time-

series, with some providing a brief history of this ML model and the evolution of this

technology to address its initial challenges and limitations, others were sourced from re-

view articles on the history and variations of GANs, searched in the same databases

10https://www.prisma-statement.org/
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Figure 2.2. PRISMA flow diagram - GANs variations reviews

mentioned before. After an initial screening, only 6 out of 14 articles were selected for

deeper analysis. The remaining were excluded for either being outdated, lacking relevant

information, or focusing solely on specific GAN architectures applied to narrow topics.

Figure 2.2 shows the PRISMA flow diagram for this search.

Gonog and Zhou (2019) discusses the basic theory, structure, advantages, and disad-

vantages of GANs, highlighting their ability to generate high-quality samples and approx-

imate arbitrary probability distributions. Alqahtani et al. (2021) focuses on fundamental

concepts, various architectures, and provides some information on applications in time-

series areas like speech and music generation. Krichen (2023) covers architecture, loss

functions, training challenges, applications, evaluation metrics, and future directions, em-

phasizing GANs’ potential for generating high-quality synthetic data. Gui et al. (2023)

explores algorithms and applications across various domains, including image synthesis,

natural language processing, and sequential data tasks. Chakraborty et al. (2024) em-

phasises GANs’ rapid development, recent advancements in architectures and training

methods, and future research directions including privacy concerns and ethical consid-

erations. Finally, Sharma et al. (2024) provides a taxonomy of GAN variants, discusses

applications in fields like healthcare and computer vision, and explores potential solutions

to improve GAN performance and stability. All these papers mentioned address common
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challenges in GAN technology, such as training instability and mode collapse, that will

also be discussed in the section 2.3.

After gaining a solid understanding on the history and variations of these models,

research was focused on five specific application areas in time-series, that were mentioned

in the literature reviewed until this point: audio (music or speech generation), car traffic

(anomaly detection), healthcare (anomaly detection, denoising and DA), finance (cap-

turing long range dependencies) and energy (power demand DA) (Iglesias et al., 2023),

(Brophy et al., 2023), (D. Zhang et al., 2022). A summary of this applications areas can

be found in section 2.5.1.

The investigation then shifted its focus to healthcare data after making the decision

to develop the model for this dissertation on this field of study, due to its critical impact

on patient outcomes, and ability to address significant challenges in healthcare research

stemming from data scarcity and privacy concerns. Specifically, the search concentrated

on articles addressing health-related time series applications using GAN models. The

following combinations of keywords were used in the previously mentioned research paper

databases. Additionally, the PubMed 11 database was also included in this search, as it

focuses on life sciences, biomedical, and healthcare-related topics—a relevant addition

given the current focus drift.

(“generative adversarial networks” OR “GAN” OR “GANs”)

AND (“time series” OR “temporal data” OR “sequential data”)

AND (“healthcare” OR “medical” OR “clinical” OR “biomedical”)

The search was also limited to papers published from 2018 to 2024. This timeframe was

chosen to ensure that the most recent and relevant research in the field was captured.

From the research datasets results, 33 papers were considered. After screening, 26 papers

were selected for further analysis, comprising 4 reviews and 22 novel implementations.

An additional 8 articles referenced in previously reviewed literature were also included,

resulting in a total of 41 analyzed papers. Figure 2.3 shows the PRISMA diagram for this

search.

Building on this focus, the investigation delved into the critical issue of privacy in

time-series data generation, particularly in the medical field. Some datasets can be highly

confidential, with access strictly controlled due to privacy issues or legal regulations. Syn-

thetic data generated can help address these concerns by providing a means to share and

publish data without compromising privacy, since the generated data is artificial. How-

ever, this synthetic data must also be protected against “membership inference attacks”

(Monachino et al., 2023), where an attacker attempts to determine if an individual’s data

was used in the training set that led to the generated data. Differential privacy (Xie

11https://pubmed.ncbi.nlm.nih.gov/
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Figure 2.3. PRISMA flow diagram - GANs for time-series healthcare data

et al., 2018) and other privacy-preserving techniques can help mitigate this risk. Figure

2.4 provides a visual representation of this literature search progression.

2.2. Data Augmentation

Data Augmentation was originally used in image classification by LeCun et al. (1998),

increasing image data with some techniques such as rotating, translating, scaling, adding

noise, etc. Since then, DA is used to artificially enhance the size and variability of datasets

in many applications. It is particularly useful in fields where data privacy and data scarcity

is a significant challenge, such as healthcare (Hyland et al., 2017), (Y. Zhang et al., 2023)

and time-series analysis. By enhancing datasets used to train predictive, classification or

other types of models, DA improves both the robustness and accuracy of these models.

Addressing challenges related to limited data availability, for multiple reasons like privacy

or difficulty in gathering certain information.

Over the years, new DA approaches have emerged to enhance the quality of generated

data and create entirely new information, rather than merely modifying existing data

points. This evolution has led to innovative concepts in model engineering, enabling the

generation of synthetic data. These advanced techniques are used to expand datasets,

which in turn are utilized to training NN models. By providing more training data with
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Figure 2.4. Flowchart of Search Strategy for Literature Review

greater variety, these models achieve improved performance and become more prepared

to classify new data or completing any other task in a broader range of scenarios.

2.2.1. Modern Data Augmentation techniques in time-series

DA techniques for time-series have evolved significantly, utilizing advanced ML models

to generate synthetic data that closely resemble real-world patterns. These techniques go

beyond simple transformations, offering more sophisticated ways to enhance and expand

datasets. Two prominent approaches in this category are VAEs and GANs, both of

which have shown remarkable potential in creating high-quality synthetic time-series data

(Brophy et al., 2023).

VAEs, introduced by D. P. Kingma and Welling (2013), are generative models that

learn to encode data into a latent space and then decode it back, effectively learning the

underlying distribution of the data. They consist of two main components, an encoder

and a decoder (Iglesias et al., 2023):

• The encoder reduces the input data’s dimensionality to a latent space represen-

tation.

• The decoder reconstructs the original data from this latent representation.

They have been successfully applied to time-series DA, as shown by Nazi et al. (2019)

where a VAE is used to generate data for anomaly detection problems with LSTMs, and

by Alawneh et al. (2021), in which they use a dataset augmented with VAE to improve

the recognition of human activity also with LSTMs.
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GANs, on the other hand, have gained significant attention due to their ability to

generate highly realistic synthetic data. Originally proposed by Goodfellow et al. (2014)

for image generation, GANs have since been adapted for time-series data with impres-

sive results. Their adversarial training process allows them to capture complex temporal

dependencies and produce diverse, high-quality synthetic time series. Continuous recur-

rent GAN (C-RNN-GAN) (Mogren, 2016) is one of the first GAN architectures proposed

specifically for time-series, in particular to learn and synthesize classical music tracks.

Based on the review by Iglesias et al. (2023), there is no single most effective model

for DA in time-series that applies universally. The effectiveness of a model depends on

the specific application and characteristics of the data. Both GANs and Variational VAEs

have shown promise in this field, each with their own strengths and challenges.

GANs are described as one of the main algorithms for DA, capable of producing more

diverse samples compared to previous approaches. They are noted for their ability to learn

the distribution of the data by extracting main features, without directly copying the

distribution. This makes GANs particularly effective in generating high-quality, diverse

synthetic data that closely resembles the original dataset distribution. However, they

are also described as the most complex models available, with significant challenges in

training and optimization.

VAEs, on the other hand, excel in their ability to learn a compact latent representation

of the data, which can be useful for dimensionality reduction and feature extraction. They

are often more stable during training compared to GANs and can provide a probabilistic

interpretation of the latent space. This makes VAEs particularly useful in scenarios where

interpretability of the generated data is crucial, or when the goal is to learn a meaningful

representation of the data for downstream tasks. Although it may produce less sharp or

detailed outputs compared to GANs.

The choice between these two approaches often depends on the specific requirements

of the task at hand, the nature of the data, and the trade-offs between generation quality,

training stability, and interpretability. Given the potential of GANs in generating diverse

and high-quality synthetic time-series data, despite their complexity.

2.3. Generative Adversarial Networks

GANs have emerged as a powerful and versatile architecture of ML models, capable of

generating high-quality synthetic data across various domains. This section provides an

overview of GANs, exploring their history, structure, and the main challenges associated

with their implementation and training.

2.3.1. History of GANs

The evolution of GANs began with the foundational Standard GAN (Goodfellow et

al., 2014), the model that introduced the concept and laid the foundation for subsequent

variants and was focused on computer vision tasks, like generating synthetic images.

However, early GANs suffered from instability during training. The development of Deep
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Convolutional GAN (DCGAN) (Radford et al., 2016) addressed this challenge by

integrating convolutional layers to the NNs, improving the generation of realistic images.

Conditional GAN (cGAN) (Mirza & Osindero, 2014), then brought in conditional

control, allowing GANs to generate data based on specific labels, giving the user more

control on the outputs.

In 2017, Wasserstein GAN (WGAN) (Arjovsky et al., 2017) revolutionized GAN

training, by redefining the loss function with the Wasserstein distance, reducing training

instability and resolving issues with vanishing gradients — a major disadvantage of GANs

until this point. Building on this, WGAN with Gradient Penalty (WGAN-GP)

(Gulrajani et al., 2017), further enhanced training stability with gradient regularization.

Until this point, GAN variants focused on improving the core architecture and training

stability. Subsequent developments don’t just improve the training performance but also

explore novel applications and functionalities. CycleGAN (J. Y. Zhu et al., 2017) en-

abled image-to-image translation tasks even without the need for paired datasets. Paired

datasets would normally contain matching images from two different domains, such as a

photo of a landscape during day and its corresponding night version, or a horse image

paired with a zebra image in the same posse. Transforming day images to night or horses

to zebras with this model doesn’t require this dataset structure, making it more practical

to produce these outcomes. ProGAN (Karras et al., 2017) improves GAN generated im-

age quality by progressively growing the layers in high-resolution outputs, a method later

essential for achieving high realism synthetic images. StyleGAN (Karras et al., 2019)

then introduced a new approach to generating highly detailed images by separating style

and content, allowing the users precise control over features like hair and face shape for

human synthetic portrait images for example, which was specially impactful in creative

industries.

It’s important to note that these models represent only a selection of the main GAN

variants developed over time. Numerous other architectures and implementations ex-

ist and continue to be created, each with unique features and applications. Figure 2.5

represents the timeline of the main GANs variations and evolution.

2.3.2. GAN Architecture

The concept of a GAN is relatively straightforward but powerful. It consists of two

key components, the generator and the discriminator, which are implemented as NNs.

• Generator (G): The generator’s role is to produce synthetic data samples. It

takes a random noise vector z as input and generates synthetic data samples G(z)

that resembles the real data distribution. The generator continuously improves

its ability to create data as it learns through the adversarial process.

• Discriminator (D): The discriminator acts as a critic or judge. It receives either

real data samples x from the training dataset or synthetic samples G(z) from the

generator. Its task is to distinguish between the two, identifying whether a given

sample is real or fake.
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Figure 2.5. Timeline of GANs evolution

The training of a standard GAN is a dynamic process that involves both the generator

and discriminator improving their performances simultaneously through a min-max game,

described in equation (2.1), representing the value function:

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))] (2.1)

where G stands for the generator network and D for the discriminator network. V (D,G)

is the value function to be minimized by G and maximized by D. x represents the real

data samples and pdata(x) the real data distribution, while z is the random noise input

to the generator, being pz(z) the input noise distribution. D(x) is the discriminator’s

output, representing the probability that x is real and G(z) is the generator’s output

representing the synthetic data.

The generator aims to produce data so realistic that the discriminator cannot dis-

tinguish it from actual data. Conversely, the discriminator strives to become better at

identifying the synthetic data. The discriminator provides feedback to the generator about

how distinguishable its output is from real data. This feedback is used by the generator to

improve its data generation. Both networks are updated through backpropagation given

the loss functions outputs, in order to improve their respective performances. This process

continues iteratively. Ideally, this competition results in a generator that produces data

virtually indistinguishable from real data (Chakraborty et al., 2024).

2.3.3. Main Challenges of GANs

Although GANs are innovative models and have gained considerable attention from

the scientific community, they also present challenges. These can significantly impact the
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performance and reliability of GANs in various applications. Some of the main issues

include:

• Training Instability: GANs can be difficult to train, often causing the gener-

ator and discriminator losses to go up and down or move away from the desired

result.

– Krichen (2023) analyses different approaches to address this issue includ-

ing adjusting learning rates, using different optimization algorithms, adding

noise to the training process, and implementing more advanced architectures

like Wasserstein GANs.

• Mode Collapse: Occurs when the generator produces only a limited set of out-

puts, therefore lacking diversity on the generated data. Mode collapse can happen

when the discriminator becomes too good at spotting fake data. This causes the

generator to make very similar samples that can trick the discriminator, resulting

in those samples being either identical or showing minimal variation.

– Krichen (2023) also explores some solutions include adding regularization

terms to the loss function, modifying network architectures, and using ad-

vanced optimization methods.

• Vanishing Gradients: This problem occurs when the discriminator becomes

too successful, preventing the generator from learning (Brophy et al., 2023).

– Solutions include modifying the architecture or the loss function, these are

reviewed in more detail by Wang et al. (2021).

The lack of consensus in evaluation metrics is also one of the main challenges of GANs.

There is no widely accepted metric to evaluate the performance of these models, partic-

ularly for time series data. This makes it difficult to compare different implementations

objectively. As this is a model more often applied in the imaging area, where initially,

most of the tests to evaluate the models’ performance were carried out by the human eye.

Sharma et al. (2024) describes some essential performance measures for GANs, along with

their mathematical basis.

Despite these challenges, the growing relevance of GANs in various areas and their

rapid performance improvement motivate continued research into their specific application

in DA for time-series. The main reason in studying GANs for time-series data is to develop

a model that generates synthetic data that not only preserves the complex temporal

dynamics of the original dataset but also outperforms or provides advantages over existing

implementations.

2.4. Generative Adversarial Networks in Time-Series

Despite being originally designed for image generation, GANs have also been adapted

to capture the complex temporal dynamics of time-series. To adapt the GAN architecture,

some modifications are typically made. The use of Recurrent Neural Networks (RNNs)
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both in the generator and discriminator, particularly LSTMs allows the model to capture

temporal dependencies in the data (Iglesias et al., 2023).

LSTMs have a unique structure that includes a memory cell, input gate, output gate,

and forget gate. This architecture allows the model to selectively remember or forget

information over long sequences, making it particularly well-suited for time-series. The

memory cell can maintain information over long periods, while the gates control the flow of

information into and out of the cell. This combination results in GANs that can generate

more realistic and temporally consistent time-series data.

Models like TS-GAN (Yang et al., 2023) also incorporate attention mechanisms to

better capture the relationship between dimensions at each time step, in order to un-

derstand how different features or measurements are related to each other at any given

moment in time.

Some approaches, like TimeGAN (Yoon et al., 2019), incorporate Autoencoders

(AEs) to enhance the model’s capabilities. AEs help in two key ways:

• Dimensionality Reduction: They compress the input data into a lower-dimensional

latent space, making it easier for the model to learn and process complex time-

series data.

• Feature Extraction: By learning to reconstruct the original data from this

compressed representation, AEs help capture the underlying structure and im-

portant features of the time-series.

This combination allows more accurate and realistic synthetic time-series generation

(Gatta et al., 2022).

2.4.1. History of GANs in Time-Series

The evolution of this architecture for sequential data has been marked by some mile-

stones that address the unique challenges of temporal information. This is only a brief

historic overview of the use of GANs in time-series. Only a few examples are mentioned

here, representing the main developments through the years, but many more exist.

SeqGAN (Yu et al., 2017) was among the first to extend GANs to sequence data by

using policy gradients and Monte Carlo Search to handle discrete sequential outputs. The

generator uses RNNs with LSTM cells, and the discriminator employs a Convolutional

Neural Network (CNN). This model is applied to text generation, achieving realistic and

diverse output by maximizing a reinforcement learning goal. However, SeqGAN faced

difficulties in capturing long-term dependencies and suffered from issues like mode col-

lapse. To overcome these limitations, RGAN (Recurrent GAN) (Hyland et al., 2017)

integrated RNNs into both the generator and discriminator and focused on continuous

outputs, since it is possible to effectively model time-dependent data without resorting

to reinforcement learning. This made the training process more straightforward and im-

proved the ability to capture long-term dependencies. WaveGAN (Donahue et al., 2018)

made advancements in the field by generating raw audio waveforms, showing versatility in
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Figure 2.6. Timeline of Time-Series GANs evolution

various applications, notably in creating short sound effects and also developing a proce-

dural drum machine for electronic musicians. Despite these improvements, earlier models

still struggled with preserving the temporal dependencies in certain types of time-series

data. TimeGAN (Yoon et al., 2019) addressed this challenge by combining supervised

and unsupervised learning within the GAN framework, to effectively generate time-series

data with preserved temporal dynamics. The authors of ClinicalGAN (Chandra et al.,

2024) mention TimeGAN as a state-of-the-art approach for multi-variate time-series gen-

eration and uses it as the foundation for their model. Finally, TADGAN (Geiger et al.,

2020) focused on anomaly detection within time-series, using GANs to model normal

behavior and identify deviations, thus solving practical challenges that previous models

couldn’t specifically target. It was tested on 11 datasets from various sources including

NASA, Yahoo, Numenta, Amazon and Twitter, outperforming baseline methods in 6 of

those datasets, while also achieving the highest averaged F1 score across all datasets.

Figure 2.6 shows the timeline evolution with the mentioned time-series GANs.

2.5. Results and Discussion

In this section, the outcomes of the comprehensive literature review and analysis are

expressed, with a particular lens on healthcare. Here, the insights gathered from various

studies are summarized, comparing the effectiveness, challenges, and potential of GANs
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across different applications. The transformative impact of GAN models in healthcare is

evaluated, discussing the significant improvements in data quality and model performance

they offer in this domain, compared to the other explored areas.

2.5.1. Application Areas

The use of DA in time series, using GANs, has proven to be a very useful tool in many

areas of study. This technique has been explored in diverse contexts, such as energy data,

car traffic, finance, audio, and healthcare.

In each of these areas, a variety of studies have already adopted this approach, using

different variations of GANs to increase the size of the datasets. Each of these domains

presents unique challenges in development. Two studies will be presented for each cate-

gory. These will show the specific methods used, the problems faced, and the important

discoveries made in each area.

By the end of this section, a comparison of the different areas of application will be

conducted, and the most suitable area for further research will be determined.

2.5.1.1. Energy Data: C. Zhang et al. (2018) introduces an innovative method for gen-

erating synthetic data for smart grids using GANs. This research tackles the challenge

of limited availability and access to detailed data in smart grids, especially at the dis-

tribution system level. These restrictions are usually due to issues with gathering data,

ensuring security, and protecting privacy. The main goal of the study is to generate ar-

tificial datasets that closely resemble real smart grid time-series data. The team utilizes

the Pecan Street Dataset for their experiments, which comprises energy consumption and

solar generation data from 25 users with photovoltaic panels, gathered from 2013 to 2016.

The results reveal that the artificial datasets produced by their GAN model are statis-

tically indistinguishable from the real datasets in various ML tasks and statistical tests.

This shows that synthetic data generated by GANs can help solve data availability prob-

lems in smart grid research. It enables the creation of new models based on data while

keeping the actual datasets confidential by not using them for training.

In Demir et al. (2021), they focus on improving the accuracy of forecasting electricity

market prices by employing advanced DA techniques. This research shows that the size of

a training dataset affects how well a model can predict new data, especially when dealing

with multiple variables over time. Traditional DA methods become too complex to employ

in such cases and don’t provide good results. A key challenge identified is the constraints

imposed by limited sample sizes, which can potentially lead to overfitting in regression

models. The researchers propose using AEs, VAEs, and WGAN-GPs (Gulrajani et al.,

2017) to generate new data. The study looks at predicting prices for the next day in

the electricity markets of Belgium and the Netherlands. It uses data from January 1,

2016, to December 31, 2018. The findings suggest that the application of AEs, VAEs, and

WGAN-GPs significantly enhances regression accuracies, with these methods decreasing

the mean absolute errors of benchmark models by 2.23%, 2.73%, and 2.97%, respectively.

Notably, the GAN approach exhibited the most substantial improvement in the study.
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2.5.1.2. Car Traffic Data: TSDIGAN (Traffic Sensor Data Imputation GAN)

(Huang et al., 2020) focuses on developing a DCGAN framework to address missing data

in traffic sensor systems. Traffic data is critical for intelligent transportation applications

such as congestion prediction and traffic flow analysis, most recently used in apps like Uber

to predict the duration of a trip, but sensor malfunctions and communication issues often

lead to incomplete datasets. The proposed framework uses GANs to generate realistic

synthetic traffic data to fill in these missing gaps, employing a novel technique called the

Gramian Angular Summation Field (GASF) to convert traffic data into image-like struc-

tures, so, in this approach, the GAN architecture doesn’t require significant changes, such

as incorporating LSTMs to handle raw time-series data, since the GAN effectively trains

on image-like representations. The model is then tested on the Caltrans Performance

Management System (PeMS) dataset, showing that it performs well even with high rates

of missing data, demonstrating robustness and efficiency in traffic data reconstruction.

G. Zhu et al. (2019) presents an LSTM-GAN algorithm for anomaly detection in

time-series, focusing on handling non-stationary datasets that exhibit significant temporal

fluctuations. The approach is applied to two primary datasets: traffic data from the

New York City (NYC) taxi dataset, representing passenger flow anomalies during events

like holidays and snowstorms, and ECG data for detecting heartbeat anomalies. During

training, only normal (non-anomalous) data is used. This approach allows the generator to

learn the characteristics of normal data. In the testing phase, both normal and anomalous

data are passed through the model. If the generator fails to accurately reconstruct the

input, it means the data point is likely an anomaly. The results demonstrate superior

performance compared to traditional algorithms like isolation forest and one-class support

vector machines, detecting traffic anomalies with greater accuracy. The framework is also

promising for applications in system health monitoring, an area of application that will

also be explored in this section.

2.5.1.3. Financial Data: Liao et al. (2020) introduces an innovative conditional Sig-

WGAN framework. This framework effectively integrates WGANs (Arjovsky et al., 2017)

with a sophisticated and efficient path feature extraction method known as the “signature

of a path”. A significant advancement is the conditional Sig-W1 metric, created to capture

the conditional joint law of time-series models, which acts as a powerful discriminator.

This method makes it easier to represent the suggested discriminators, which greatly

reduces the requirement for expensive training procedures. To test this method, there

were used various datasets, including the SPX and DJI index datasets, along with the

Bitcoin-USD dataset. The results were impressive, demonstrating that the conditional

Sig-WGAN framework consistently performs better than current benchmarks in terms of

similarity and predictive accuracy.

The study by Yoon et al. (2019), known as TimeGAN, presents a novel framework

for generating realistic time-series data. Its importance lies in its capability to preserve

the complex temporal patterns found in time-series, a task that was quite challenging.
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TimeGAN uniquely combines the unsupervised nature of the GAN framework with the

precision of supervised training, resulting in a versatile and effective model. A critical

aspect of TimeGAN’s evaluation is its performance on a variety of real and

synthetic datasets, particularly in the financial domain. The model was evaluated us-

ing daily historical Google stock data from 2004 to 2019, which included different aspects

like volume, high and low prices, opening and closing prices, and adjusted closing prices.

TimeGAN’s proficiency in generating sequences that accurately reflect the complex, aperi-

odic, and correlated nature of financial data underscores its value. It shows an impressive

ability to generate sequences that maintain the original relationships between variables

over time, making it a powerful tool for financial analysis and modelling.

2.5.1.4. Audio Data: Mogren (2016) presents an innovative generative adversarial

model designed for continuous sequential data, which represents a significant departure

from conventional approaches in sequence modeling. Prior models, particularly RNNs,

were predominantly focused on predicting the next token in a sequence, such as in lan-

guage processing. However, Mogren’s model represents a breakthrough by being capable

of processing fully continuous sequence data. This includes elements of music such as

tone lengths, frequencies, intensities, and timing. The model’s ability to handle these

continuous data elements allows for a more sophisticated and accurate representation of

music sequences, surpassing previous models that depended on symbolic representations.

The model was trained and evaluated on a dataset consisting of 3,697 MIDI files from 160

different composers, encompassing a wide range of classical music pieces. Each tone in the

dataset was represented by its corresponding sound frequency, and the data was normal-

ized to a tick resolution of 384 per quarter note. The study concluded that the model’s

capability to generate music improved progressively with further training, showcasing its

potential in music synthesis.

Donahue et al. (2018) presented WaveGAN, a significant innovation in audio gen-

eration technology. This model tackles the difficult task of creating audio signals, which

requires capturing detailed structures over different time periods. WaveGAN has been

shown to effectively synthesize one-second slices of audio waveforms, making it suitable

for sound effect generation in diverse applications. WaveGAN takes a different approach

by flattening the DCGAN architecture to work in a single dimension, thereby preserving

the same scale of parameters and operations as its two-dimensional counterpart. The

versatility of WaveGAN is evident in its wide range of potential applications, notably in

creating short sound effects for the music and film industries. The researchers also trained

WaveGAN on drum sounds, leading to the development of a procedural drum machine

intended to aid electronic musicians. Furthermore, the model was also tested through a

speech benchmark, allowing for straightforward assessment by human annotators.

2.5.1.5. Medical Data: Y. Zhang et al. (2023) introduces an innovative approach with

the WGAN-GP algorithm, specifically designed for generating radiomics data, a one-

dimensional dataset extracted from radiotherapy (RT) and computed tomography (CT)
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images, crucial in modern medical analysis. Zhang’s work stands out for its ability to

create synthetic medical data samples that replicate the distribution of real data. This

is particularly vital in addressing the challenges associated with collecting annotated

medical data, where privacy, ethical considerations, and the rarity of certain medical

conditions pose significant hurdles. The study employed two key datasets for validation:

the widely-used public Heart Disease Cleveland dataset, known for its role in heart disease

prediction, and a private dataset focusing on Radiation Pneumonitis. The former contains

76 attributes, with 14 being primarily used in the experiments to assess heart disease

risk in patients. The latter includes data from 300 patients, with radiomics features

from CT images and radiotherapy planning dose files. The research demonstrated that

the WGAN-GP model improves classification performance, specifically in terms of Area

Under the ROC Curve (AUC) and Sensitivity (SEN), outperforming traditional methods

like Synthetic Minority Oversampling Technique (SMOTE) and common GANs, especially

in scenarios with limited samples.

Hyland et al. (2017) study proposes two models: RGAN and RCGAN. These models

implement RNNs in both the generator and discriminator components. The RCGAN,

in particular, conditions these RNNs on auxiliary information, enhancing the specificity

and context of the generated data. This approach proved effective in creating realistic

data suitable for supervised training, with minimal loss in performance compared to real

test data. The medical dataset had data from the Philips eICU database, including

about 200,000 patients from 208 care units across the United States, holding over 224

million entries across 33 tables. The potential of these models in the Intensive Care Unit

(ICU) context is significant, where they could assist doctors in making rapid and critical

decisions, a common challenge in such high-pressure environments.

2.5.2. Overview

Each domain benefits uniquely from this technology, but when evaluating the impor-

tance and urgency of these applications, with the objective of finding the area to study in

the dissertation, medical data stands out as the most critical area, and the most interest-

ing one to delve into. As seen in studies by Y. Zhang et al. (2023) and Hyland et al. (2017),

GANs can generate medical datasets that maintain the complexity and variability of real

patient data. This is vital in a field where data scarcity and/or privacy concerns pose

significant obstacles to research and training. The ability to generate realistic, diverse

medical data can revolutionize areas like disease diagnosis, treatment planning, and med-

ical training. In scenarios where rapid and accurate decision-making can be life-saving,

such as in ICUs, this technology can have real practical impact. It directly contributes

to improving patient outcomes and probably saving lives, addressing some of the most

pressing challenges in healthcare today.

In conclusion, while GANs’ DA is transformative across various sectors, its application

in medical data is arguably the most consequential. The ability to generate accurate,

diverse, and specially privacy-compliant medical data addresses a fundamental challenge
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in healthcare, offering the potential to improve patient care and outcomes, making it

arguably the most critical and impactful application of this technology. Consequently, the

focus now turns to a more in-depth investigation of how GANs can be applied specifically

in medical time-series data, and what different approaches already exist in this field of

study. Tables 2.1 and 2.2 present the summary of the analyzed papers for the areas of

application comparison.

Study/Author Focus GAN Variant Type of Data
(C. Zhang et al.,
2018)

Smart Grids Standard GAN Energy consumption
data

(Demir et al., 2021) Electricity Market
Forecasting

AEs, VAEs, WGAN-
GPs

Energy prices data

(Huang et al., 2020) Traffic Data Imputa-
tion

DCGAN (TSDI-
GAN)

Traffic sensor data

(G. Zhu et al., 2019) Anomaly Detection in
Time Series

LSTM-GAN Traffic, ECG data

(Liao et al., 2020) Time Series Data Sig-WGAN Financial indices,
Bitcoin

(Yoon et al., 2019) Time-Series Data TimeGAN Financial stocks data
(Mogren, 2016) Audio Data Continuous GAN Music (MIDI)
(Donahue et al.,
2018)

Audio Synthesis WaveGAN, Spec-
GAN

Audio waveforms

(Y. Zhang et al.,
2023)

Medical Data WGAN-GP Radiomics data

(Hyland et al., 2017) Medical Time-Series
Data

RGAN, RC-GAN ICU patient data

Table 2.1. Comparative Analysis of GAN Variants in Different Applica-
tion Areas (Part 1)

2.6. Literature Review Conclusions

This literature review underscores the significant potential and challenges of apply-

ing GANs to increase datasets volume and variability. Starting from understanding the

fundamentals of DA, from the traditional algorithms to modern ML techniques, such as

VAEs and GANs. The review then delved into the foundational aspects of GANs to the

more refined variations like DCGAN, cGAN, WGAN, and WGAN-GP, and also the vari-

ations created specifically to handle time-series data like SeqGAN, RGAN, WaveGAN,

TimeGAN and TADGAN. It is evident that GANs offer a versatile and powerful tool for

enhancing dataset quality and diversity, essential for effective model training and analysis.

Furthermore, the comparative analysis of GAN variants across different application

areas reveals the versatility of these models. From energy and traffic data to financial and

audio applications, GANs have proven their adaptability. However, their application in

healthcare stands out due to its potential to directly impact patient outcomes and address

critical data scarcity issues in medical research.

In healthcare, models like RGAN, RCGAN for example, have shown promising results

in generating realistic ICU patient data. Their ability to generate realistic, synthetic data
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Study/Author Key Applications Notable Findings
(C. Zhang et al., 2018) Synthetic data generation for

smart grids
Synthetic datasets indistin-
guishable from real datasets

(Demir et al., 2021) Forecasting electricity market
prices

Enhanced regression accura-
cies

(Huang et al., 2020) Traffic data imputation Robust traffic data recon-
struction even with high miss-
ing data rates

(G. Zhu et al., 2019) Anomaly detection in traffic
and ECG data

Detected anomalies with su-
perior accuracy compared to
traditional methods

(Liao et al., 2020) Financial data analysis Outperformed benchmarks in
similarity and predictability

(Yoon et al., 2019) Financial market analysis Realistic sequences respecting
temporal dynamics

(Mogren, 2016) Music generation Improved music generation
with training

(Donahue et al., 2018) Sound effect generation, elec-
tronic music

Coherent audio waveform
synthesis

(Y. Zhang et al., 2023) Medical DA, disease classifi-
cation

Improved classification per-
formance

(Hyland et al., 2017) Early warning systems in
ICUs, medical training

Effective in generating realis-
tic time-series data

Table 2.2. Comparative Analysis of GAN Variants in Different Applica-
tion Areas (Part 2)

could revolutionize aspects of patient care, from diagnosis to treatment planning or even

medical training. However, the journey towards fully realizing this potential is not without

obstacles. Issues such as mode collapse, training instability, vanishing gradients, and the

development of robust evaluation metrics remain significant challenges. Additionally,

ethical considerations, especially around the generation and use of synthetic healthcare

data, demand careful attention to ensure privacy, and trustworthiness.

Looking forward, the field of GAN-based DA in healthcare presents opportunities for

further research. Areas of focus might include improving the interpretability of generated

data, developing more robust evaluation metrics specific to medical applications, and

exploring ways to integrate domain expertise more easily into the model development.
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CHAPTER 3

Methodology

3.1. Database and Exploratory Data Analysis

The MIT-BIH Arrhythmia Database (Goldberger et al., 2000) is the database used

in this study for the creation of synthetic heartbeats using a GAN. It was created to

evaluate arrhythmia detection algorithms. It contains 48 half-hour, two-channel ECG

recordings from 47 subjects, captured between 1975-1979. It includes both common and

rare arrhythmias, with 25 recordings including less common but clinically significant ar-

rhythmias that would not be well-represented in a small random sample, while the other

23 primarily consists of more typical heart rhythms. The records are digitized at 360

samples per second (360 Hz) over a 10 mV range. Cardiologists have annotated each

recording, enhancing its value for building a classification model capable of detecting

heartbeat types.

An ECG is used to record the electrical activity of the heart from different angles.

ECGs are recorded by placing electrodes on a patient. An ECG lead is a graphical

representation of the heart’s electrical activity, generated from several electrodes. This

study will use the MLII (Modified Limb II) lead from the ECG signals.1

The normal ECG heartbeat signal has distinct characteristics identifiable in a graph

visualization. Figure 3.7 displays a segment of a normal heartbeat from the database,

exemplifying the main components present in a typical ECG heartbeat representation.

Arrhythmia is defined as an abnormal rhythm of the heart, where the heart may

beat too fast (tachycardia), too slow (bradycardia), or irregularly, disrupting the heart’s

ability to pump blood efficiently. (J. Kingma et al., 2023)

Figure 3.8 represents a segment of the first 10 seconds of an ECG signal from the

database. The amplitude in the signals is not always the same, varying from record to

record and even from within the same record.

Each record in the database has detailed annotations. These annotations provide

users with deeper insights into signal behavior and various heartbeat types. Figure 3.9

demonstrates annotations for a 10-second ECG segment. Each annotation in the image

represents a segment with normal beats (N), premature ventricular contractions (V) and

rhythm variations (+), though various other annotations exist for different heartbeat types

and rhythm variations (possible Arrhythmias). The figure also illustrates the signal’s

amplitude variation, with some instances showing lower or higher amplitudes.

1https://geekymedics.com/understanding-an-ecg/
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Figure 3.7. Representation of the different parts of a normal heartbeat
represented through an ECG

Figure 3.8. 10-second segment of MLII ECG signal

Each 30-minute record allows for the calculation of instantaneous heart rate from the

signal and the calculation of average heart rate for any record length. This is achieved

by measuring the time intervals between consecutive heartbeats (RR Intervals). The

instantaneous heart rate is calculated as the reciprocal of RR intervals multiplied by 60

to convert to Beats per minute (bpm). Figure 3.10 shows the instantaneous heart rate

over a full 30-minute record. The mean heart rate in this record is approximately 75

bpm, occasionally dipping below 60 bpm and rising above 100 bpm—the range typically

considered healthy for adults (Mason et al., 2007).

Like mentioned before, the MIT-BIH Arrhythmia database is composed of two main

groups, 23 recordings with normal rhythms and 25 with more uncommon rhythms and

heartbeats. By analyzing the heart rate distributions across records from both groups, we

can discern key differences between these two sets of recordings. Figure A.21 available in

the appendix illustrates the heart rate distribution of the records from common signals,
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Figure 3.9. 10-second segment of MLII ECG Signal with annotations

Figure 3.10. Instantaneous Heart Rate of a 30-minute ECG with mean
and standard deviation calculations

while Figure A.22 also available in the appendix depicts the distribution for uncommon

signals. The common group predominantly exhibits heart rates within the healthy range

of 60–100 bpm, with some instances dipping to around 40 bpm and others reaching ap-

proximately 140 bpm. In contrast, the uncommon group displays notably higher heart

rates in most records, with some exceeding 150 bpm. Figures A.23 and A.24 present in

the appendix, show some distributions of heart beats in some records.

3.2. Data Preprocessing

Four records in the database were generated from pacemakers: numbers 102, 104,

107, and 217. In these records, the normal beats are actually considered paced beats,

with the corresponding annotation symbol “/“. Golany et al. (2020) removed the paced

beats from their dataset, citing this as a recommended practice by the Association for

the Advancement of Medical Instrumentation (AAMI). A pacemaker is a small, battery-

powered device that prevents the heart from beating too slowly. These recordings are
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Figure 3.11. Overall Distribution of Heartbeat Types Across all Records

removed from further examination because they are inconsistent with the rest of the

database. Including them could introduce uncertainty to the model when training on

signals from these records alongside the rest of the database. Therefore, these recordings

were also removed from this study.

To select heartbeat types for GAN training with the objective of augmentation, un-

derstanding the frequency of each type in the database was needed. A visualization was

created to display the quantities in descending order, excluding type N (the most com-

mon) due to its overwhelming prevalence with 75052 occurrences. Figure 3.11 presents a

bar graph showing the number of samples for each symbol across all recordings.

Looking at the graph, besides N, there are 3 main annotations present in the database,

L (8075), R(7259) and V(6903). Beyond these top three annotations, the frequency drops

significantly for all other types. In (Yang et al., 2021), besides these main 4 heartbeats,

the authors also include type A (2546) segments in training. As the GAN model’s purpose

is to augment data, it should be effective even with limited input data, producing high-

quality synthetic heartbeats for future use. Therefore, this less frequent heartbeat type is

also included in the study. Here is a description of each of the mention heartbeat types 2:

• Type N (Normal Beat): Signal segment representing a normal heartbeat.

• Type L (Left bundle branch block beat): Occurs when something blocks

or disrupts the electrical impulse that causes the heart to beat.

• Type R (Right bundle branch block beat): An obstacle in the right bundle

branch that makes the heartbeat signal late and out of sync with the left bundle

branch.

• Type V (Premature ventricular contraction): Extra heartbeats that begin

in one of the heart’s two lower pumping chambers (ventricles)

2https://archive.physionet.org/physiobank/annotations.shtml
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Figure 3.12. Heartbeat segment with 256 data points (R Peak around 88 points)

• Type A (Atrial premature beat): An extra beat caused by electrical activa-

tion of the atria (upper chambers of the heart) from an abnormal site before a

normal heartbeat would occur.

To prepare data for training the GAN model, we needed to segment the records into

heartbeat intervals of each type. First, we looped through all records, identifying every

sample annotated with one of the five heartbeat types mentioned above. Then, following

Yang et al. (2021), we created segments consisting of 88 points before the beat and 168

points after it (256 points total), as a heartbeat typically lasts 0.6–0.8 seconds (216–288

points). Figure 3.12 shows an example of a normal (N) heartbeat segment extracted using

this method.

Studies by Wulan et al. (2020), Xia et al. (2023), and Shaker et al. (2020) elimi-

nate some noise from the signals before training to improve model accuracy and achieve

smoother training. However, in this case, it was chosen not to perform any signal filter-

ing. Instead, the model trains on raw original data, making it more robust for generating

synthetic data that resembles real data with natural noise.

For heartbeat types N, L, R, and V, 5000 samples of each were used in training the

GAN models. Type A was trained using all, 2546 available segments. As a dedicated

model was trained for each heartbeat type, there were no issues with data imbalance.

Finally, the data is normalized to the range [−1, 1] to match the “tanh” activation

used in the Generator and reshaped to (num samples, 256, 1) suitable for the Conv1D

layers in the discriminator.
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CHAPTER 4

Results and Discussion

In this chapter, the outcomes of training a GAN to produce synthetic ECG heartbeat

signals of five types: Normal (N), Left Bundle Branch Block (L), Right Bundle Branch

Block (R), Premature ventricular contraction (V), and Atrial premature contraction (A).

The objective was to generate high-quality synthetic heartbeat signals using a limited

amount of training data, addressing data scarcity issues in medical datasets. Additionally,

the quality of the generated data was evaluated using a very simple classification model.

4.1. GAN Model Implementation

As mentioned in section 2.3.1 in Literature Review, Gulrajani et al. (2017) tackled

challenges in training Wasserstein GANs. They proposed an enhanced approach using

gradient penalty, which led to more stable training and improved performance. By pe-

nalizing the gradient norm to be close to 1, this method better enforces the Lipschitz

constraint without weight clipping, like it was done formerly, resulting in a more stable

training process. With the gradient penalty, the model achieves better stability in training

and avoids the main issues of vanishing and exploding gradients.

Considering this, the plan is to implement this training method in our GAN model,

with necessary adaptations to handle sequential data like ECG signals. All the code

regarding the development of the GAN model and testing is available in GitHub Reposi-

tory URL provided in the footnote1. The GAN consists of two primary components: the

Generator and the Discriminator.

4.1.1. Generator

The generator aims to produce synthetic ECG heartbeat signals that resemble the real

data.

It takes a latent vector z sampled from a standard normal distribution, z ∼ N(0, I)

where I is the identity matrix. The output of the first dense layer is reshaped into a 2D

tensor suitable for sequence modeling. The model then implements a bidirectional LSTM

that captures temporal dependencies in both directions. This bidirectional approach is

crucial, as a heartbeat’s characteristics depend on both past and future signal intervals.

Table 4.3 illustrates the full architecture of the Generator.

4.1.2. Discriminator

The discriminator’s role is to distinguish between real ECG signals and those generated

by the generator. It takes an ECG heartbeat segment as input and outputs a single

1https://github.com/CarlosISCTE/Masters Code GAN
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Layer (type) Output Shape Param #
dense 1 (Dense) (None, 8192) 827,392
reshape (Reshape) (None, 64, 128) 0
bidirectional (Bidirectional) (None, 64, 128) 98,816
conv1d 4 (Conv1D) (None, 64, 128) 82,048
leaky re lu 4 (LeakyReLU) (None, 64, 128) 0
conv1d 5 (Conv1D) (None, 64, 64) 41,024
leaky re lu 5 (LeakyReLU) (None, 64, 64) 0
up sampling1d (UpSampling1D) (None, 128, 64) 0
conv1d 6 (Conv1D) (None, 128, 32) 10,272
leaky re lu 6 (LeakyReLU) (None, 128, 32) 0
conv1d 7 (Conv1D) (None, 128, 16) 2,576
leaky re lu 7 (LeakyReLU) (None, 128, 16) 0
up sampling1d 1 (UpSampling1D) (None, 256, 16) 0
conv1d 8 (Conv1D) (None, 256, 1) 81

Table 4.3. Generator Model Architecture

scalar value representing the critic score—an assessment of whether the segment is real

or generated. Table 4.4 illustrates the full architecture of the Discriminator.

Layer (type) Output Shape Param #
conv1d (Conv1D) (None, 256, 32) 544
leaky re lu (LeakyReLU) (None, 256, 32) 0
conv1d 1 (Conv1D) (None, 256, 64) 32,832
leaky re lu 1 (LeakyReLU) (None, 256, 64) 0
max pooling1d (MaxPooling1D) (None, 128, 64) 0
conv1d 2 (Conv1D) (None, 128, 128) 131,200
leaky re lu 2 (LeakyReLU) (None, 128, 128) 0
conv1d 3 (Conv1D) (None, 128, 256) 524,544
leaky re lu 3 (LeakyReLU) (None, 128, 256) 0
max pooling1d 1 (MaxPooling1D) (None, 64, 256) 0
flatten (Flatten) (None, 16384) 0
dense (Dense) (None, 1) 16,385

Table 4.4. Discriminator Model Architecture

4.1.3. Framework

This architecture implements the WGAN-GP framework by modifying the loss func-

tion and enforcing a Lipschitz constraint on the discriminator via a gradient penalty.

Unlike traditional GANs that use the Jensen-Shannon divergence, WGAN uses the

Earth-Mover (Wasserstein-1) distance, which provides smoother gradients and better

training dynamics. The discriminator aims to maximize the difference between its outputs

on real and fake data while adhering to the Lipschitz constraint. The discriminator’s loss

function is defined as:

LD = Exfake∼Pg [D(xfake)]− Exreal∼Pr [D(xreal)] + λ ·GP

λ is the gradient penalty weight, which is set to 10 in this implementation. GP is the

gradient penalty term that ensures the discriminator satisfies the Lipschitz constraint by

32



Figure 4.13. Samples for Normal Heartbeat generated at epoch 10

penalizing deviations from a gradient norm of 1. The Gradient penalty term is defined

as:

GP = Ex̂∼Px̂

[
(∥∇x̂D(x̂)∥2 − 1)2

]
• x̂ are samples interpolated between real and fake data.

• ∇x̂D(x̂) is the gradient of the discriminator output with respect to x̂.

The generator aims to produce data that the discriminator rates highly, effectively

minimizing the discriminator’s output on fake data. The Generator’s loss is defined as:

LG = −Exfake∼Pg [D(xfake)]

4.2. Training Procedure

For each training step, a batch of real ECG segments {xreal} is sampled from the

dataset. Then, random latent vectors {z} are sampled, and the generator produces fake

ECG signals {xfake = G(z)}.
The discriminator then computes its outputs on real and on fake data. The gradient

penalty is calculated, and the discriminator loss is returned, updating the weights on the

discriminator in order to minimize this loss function. The discriminator is updated 5

times before updating the generator to ensure the critic remains optimal during training.

Based on the results from the discriminator, the generator loss is then calculated,

updating the generator weights in order to minimize its loss function.

Both the generator and discriminator use the Adam optimizer with a learning rate

of 1 × 10−4 and β1 = 0.5. β1 controls the exponential decay rate for the first moment

estimates of the gradients, managing the momentum aspect of the optimizer.

Every 10 epochs, a custom callback generates and plots three synthetic ECG samples,

offering a snapshot of the generator’s performance during training. Figure 4.13 illustrates

an example of generated signals for normal heartbeats produced at epoch 10.

When the training is over, the generator model is saved, and 2000 samples of artificial

heartbeat segments are generated and saved for each heartbeat type.
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Figure 4.14. Generated Heartbeat from generator. Normal Beats.

4.3. GAN Training Results

For training the GAN, a subset of heartbeat segments was selected from the original

data to demonstrate the model’s ability to generate quality synthetic data that resembles

real samples even with limited input. Specifically, 5,000 segments were used for each

heartbeat type N, L, R, and V, while only 2240 segments were used for type A, given

that this was the total of heartbeats of this types present in the dataset. Figures from

appendix B show some examples of heartbeat segments of every type.

4.3.1. Training Process and Signal Generation

The GAN was trained separately on each heartbeat type. Before training, we normal-

ized the data to a range of -1 to 1, enhancing the GAN’s performance by standardizing

the signal amplitudes. This normalization step is crucial as it ensures that all input fea-

tures are on a similar scale, which can help the model converge faster and perform more

effectively. It also aligns well with the tanh activation function used in the generator,

which outputs values in the range of -1 to 1, like mentioned in section 3.2.

The training process involved 40 epochs for each type, with the generator and dis-

criminator alternating updates in the min-max game. During training, the loss functions

were monitored of both networks to ensure stable convergence and to observe if either

model was learning much faster than the other. Significant learning disparities could

lead to problems such as mode collapse or vanishing gradients. Every 10 epochs, sam-

ple synthetic ECG signals were generated to visually assess the quality of the generated

data. This allowed to track the model’s progress in capturing the characteristics of each

heartbeat type and understand whether the generator was learning the distribution or

not.

At the end of the 40 epochs, five heartbeat signals were generated and plotted for each

type, to visually assess the consistency and quality of the GAN outputs after training.

Figure 4.14 shows 5 generated heartbeats for the heartbeat type N. The characteristics of

the signals vary significantly, even within the distribution of one type of heartbeat. This

variability is desirable, as it mirrors the original dataset. Heartbeats of each type don’t

always look similar and can have different characteristics depending on the patient and

the recording device.
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4.3.2. GAN Model Evaluation

To evaluate the similarity between the real and synthetic data distributions, PCA and

t-SNE were visualized.

These visual evaluation techniques were applied to both real and synthetic datasets

for each heartbeat type, allowing for a visual comparison of their distributions in lower-

dimensional spaces. PCA was used to reduce the dimensionality of the data to two

principal components, providing insights into the overall structure and variability of the

datasets. t-SNE, on the other hand, was employed to capture local structures and reveal

potential clusters or patterns within the data. By analyzing both these methods, it

is possible to understand if the distribution of the synthetic data correctly follows the

original data. However, if the distributions match too closely, it may indicate overfitting

by the model. Figures 4.15 and 4.16 shows the PCA and t-SNE methods respectively

employed to the generated and original segment for the heartbeat type R, more examples

can be found in the appendix.

The PCA plot from figure 4.15 shows the original data (orange) and the generated

data (blue) plotted along the first two principal components. This reduction in dimen-

sionality highlights the primary sources of variance within the dataset, comparing the

global structure between original and synthetic heartbeats. The overlap between the orig-

inal and generated data indicates that the generative model has successfully learned and

replicated the overall variability and structure present in the original dataset. The pres-

ence of different clusters in the plot suggests that the model has captured key patterns or

groupings within the heartbeat segments, which likely correspond to specific physiological

characteristics or variations in the data. However, a closer inspection reveals some areas

where the synthetic data distribution diverges from the original, representing potential

opportunities to refine the model for even better accuracy. The use of PCA is especially

valuable in generative model evaluation because it provides a high-level summary of the

data’s variability and structure, making it easier to identify similarities or discrepancies

between the original and synthetic datasets. By capturing global trends, PCA helps as-

sess whether the synthetic data maintains the large-scale relationships between features,

which is important for tasks requiring realistic data distributions.

The t-SNE plot presented in Figure 4.16 focuses on preserving the local similarities and

relationships within the data, adding to the perspective shown in the PCA plot. Unlike

PCA, which highlights global variance and large-scale structure, t-SNE is particularly

valuable for capturing fine-grained, nonlinear patterns in the data. In this plot, there

is significant overlap between the original data (orange) and the generated data (blue),

suggesting that the generative model has successfully learned many of the features of the

original dataset. However, deviations exist, particularly in the larger clusters, where the

alignment of generated and original data points is not perfect. This discrepancy highlights

areas where the model could be improved to better replicate subtle details within the data.

The importance of the t-SNE plot lies in its ability to reveal local structures that might
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be obscured in other dimensionality reduction techniques like PCA. For example, the

clustering observed in the t-SNE visualization may represent different physiological or

morphological characteristics of specific heartbeat patterns. By comparing the overlap

and distribution of these clusters between the original and synthetic datasets, we can

assess how well the generative model captures the underlying relationships and variability

within the data.

Figure 4.15. PCA test of
generated heartbeat type R
segments

Figure 4.16. t-SNE test of
generated heartbeat type R
segments

Quantitative metrics were also calculated to evaluate the quality of the synthetic sig-

nals. Values for Euclidean Distance, DTW, PCC, and KLD were calculated between the

original and generated values for every heartbeat type. These metrics provide a compre-

hensive assessment of the similarity between the original and synthetic data distributions.

The Euclidean Distance measures the overall similarity in shape between the signals, while

DTW accounts for temporal variations. The PCC evaluates the linear relationship be-

tween the datasets, and KLD quantifies the difference between probability distributions.

Together, these metrics offer a multi-faceted evaluation of the GAN’s performance in

generating realistic ECG signals for each heartbeat type, with lower Euclidean Distance

and DTW values, higher PCC, and lower KLD values suggesting better quality of the

generated data. Table 4.5 shows all the values for these metrics for every heartbeat type.

Heartbeat Type Euclidean Distance DTW PCC KLD
N 3.018 2.009 0.976 0.027
L 3.554 2.533 0.967 0.018
R 4.772 3.299 0.971 0.032
V 7.820 4.699 0.941 0.009
A 6.129 4.210 0.898 0.031

Table 4.5. Calculated values for Euclidean Distance, DTW, PCC, and
KLD for each heartbeat type

The relatively low Euclidean Distance values across heartbeat types indicate that the

GAN effectively generated signals with similar overall shapes to the original data. DTW
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values, while slightly higher for more complex arrhythmias like V and A, suggest that

the synthetic data preserved temporal dependencies, an essential feature for ECG signal

realism. Higher PCC values reflect a strong linear relationship between the synthetic

and real data, especially for the more frequently occurring heartbeat types (N and R),

indicating that the model captures essential features of these patterns.

The KLD metric further supports the GAN model’s ability to capture the probability

distribution of the real data, with lower KLD values showing closer alignment in data

distribution. The slightly higher KLD for the rarer arrhythmia types (R and A) indicates

that the GAN might require more specific tuning for generating these classes accurately.

Overall, these metrics collectively affirm that the WGAN-GP architecture is effective

in generating realistic synthetic ECG data, with the potential for further refinement in

classes with greater structural variability.

4.4. Classification Model Testing

A simple classification model was developed to classify ECG heartbeat signals into

their respective types. The dataset was divided into 80% training, 10% validation, and

10% test sets. The training data was used to fit the model, the validation set to monitor for

overfitting and checking the model performance during training, and the test set provided

the evaluation target for the model’s performance.

The model was first trained and tested on original data to establish a baseline per-

formance. It was designed to be as simple as possible, making it easier to understand

the impacts that the augmented data might have on the model. If the model were too

powerful, these impacts would be less noticeable.

The dataset is highly imbalanced, with significantly more heartbeats of type N than

the others and a low number of type A heartbeats. This imbalance makes it an ideal

scenario for testing DA.

The model itself is a simple NN with an input layer that get a flattened 256-sample

heartbeat segment and an output layer with five neurons corresponding to the five classes,

using the softmax activation function to classify the data. The model is compiled with

the Adam optimizer and categorical cross-entropy is used as loss function, suitable for

multiclass classification with one-hot encoded labels. Accuracy is tracked to monitor

the model’s performance. It uses the early stopping callback function to monitor the

validation loss and stop training immediately when the model stops improving, preventing

overfitting. The model is trained for a maximum of 10 epochs. Table 4.6 shows the

architecture of the model.

Layer (type) Output Shape Param #
flatten 4 (Flatten) (None, 256) 0
dense 4 (Dense) (None, 5) 1,285

Table 4.6. Model Architecture for Classification Model
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4.4.1. Training and Testing on Original Data

Using the original dataset only, the model achieves an overall accuracy of 89%. The

confusion matrix in Figure 4.17 illustrates the classification performance across different

heartbeat types. Table 4.7 presents the precision, recall, and F1-score values for this

classification test.

Heartbeat Type Precision Recall F1-Score
A 0.52 0.21 0.30
L 0.84 0.54 0.66
N 0.90 0.98 0.94
R 0.94 0.93 0.93
V 0.79 0.63 0.70

Table 4.7. Classification Model: Trained on Original - Tested on Original

The confusion matrix provides insights into the model’s performance for each heartbeat

type, highlighting areas where the classifier excels and where it struggles. Notably, the

model shows strong performance in identifying normal (N) heartbeats, but faces challenges

with less common types like atrial premature beats (A). This baseline performance sets

a benchmark for comparison when evaluating the impact of DA using synthetic ECG

signals.

Figure 4.17. Confusion
matrix for the classification
model, trained and tested
with original data

Figure 4.18. Confusion
matrix for the classification
model, trained with both
original and synthetic data
and tested with original data

4.4.2. Data Augmentation with Synthetic Data

To address the class imbalance in the dataset, synthetic data generated by the GAN

was used to augment the underrepresented classes (A, V, L and R). Considering the

differences in quantity among the various heartbeat types in the database, the number of

synthetic segments added for each class accounts for this discrepancy. More segments are
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added to classes with fewer values and fewer to those with more values. The number of

synthetic samples added for each class is as follows:

• Class N: 0 synthetic samples needed

• Class A: 1,999 synthetic samples added

• Class V: 1,878 synthetic samples added

• Class L: 1,846 synthetic samples added

• Class R: 1,869 synthetic samples added

After augmentation, the classification model was retrained. The augmented dataset

led to a small improvement in the model’s performance, particularly for classes that were

unrepresented, increasing the overall accuracy by 1% to 90%. Notably, the precision for

heartbeat type A improved from 52% to 69%, as shown in Table 4.8. The confusion

matrix for this model is shown in Figure 4.18.

Heartbeat Type Precision Recall F1-Score
A 0.69 0.47 0.53
L 0.82 0.55 0.66
N 0.91 0.97 0.94
R 0.95 0.93 0.94
V 0.75 0.60 0.67

Table 4.8. Classification model: Trained on Original + Synthetic —
Tested on Original

The addition of GAN-generated synthetic samples mainly improved the classification

model’s performance on underrepresented heartbeat types. The precision and recall met-

rics for rarer classes, such as A, L and R, showed a slight improvement, highlighting

that the synthetic data helped alleviate the class imbalance issue, though it has not been

completely resolved. As shown in Table 4.8, adding synthetic data improved the model’s

sensitivity to less common arrhythmias, enhancing recall for the A and L heartbeat types

without reducing the performance on more common classes like N.

Comparing F1-scores before and after DA reveals that the augmented dataset helped

the classifier achieve a more balanced performance across classes, reducing bias toward

the majority class. This result underscores the practical utility of synthetic data in en-

hancing model robustness and accuracy, particularly in healthcare applications where

underrepresented classes can have critical diagnostic implications.

The addition of the synthetic data helped in balancing the dataset, which in turn

improved the model’s ability to correctly classify previously underrepresented heartbeat

types. This demonstrates the practical utility of the GAN-generated data in enhancing

classification tasks like this one.

4.4.3. Train on Synthetic, Test on Real & Train on Real, Test on Synthetic

Hyland et al. (2017) proposed two evaluation methods to assess the quality and diver-

sity of generated data. The purpose of Train on Synthetic, Test on Real (TSTR)

approach is to analyze how well the synthetic data captures the characteristics of real
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data. The classification model is trained using synthetic data generated by the GAN, and

it is then tested on a separate set of real data. If the model performs well in this method,

it suggests that the synthetic data effectively captures important features and patterns

of the original data. Conversely, the purpose of Train on Real, Test on Synthetic

(TRTS) is to evaluate how diverse the generated data is. In this method, the model is

trained on real data and tested on synthetic data, assessing how well the synthetic data

spans the original data’s feature space.

These two methods were applied to the classification model, achieving an accuracy

of 60% in TSTR and an accuracy of 76% in TRTS. This indicates that while the

synthetic data captures some characteristics of the real data, there are discrepancies that

affect classification performance. However, the synthetic data also contains variations

that are recognized by the model trained on real data but includes novel patterns not

fully represented in the original data.

Figure 4.19 presents the confusion matrix for the TRTS scenario. The high diagonal

values, especially for categories such as ”N” and ”R”, indicate that the synthetic data

captures major patterns and clusters of the original data. However, the misclassifications

in classes like ”A”, ”V” and ”L” suggest that the generative model still struggles to

replicate some minority classes accurately. This limitation represents the imbalanced

distribution of these classes in the training data.

Figure 4.20 illustrates the confusion matrix for the TSTR scenario. The prediction of

correct diagonal values looks rather similar to the earlier scenario, while also showing a

better performance in classifying the heartbeat of class ”A”, even though it still struggles

to effectively predict it, mistaking several cases with the heartbeat type ”N”, which can

also represent a big similarity between these two classes, giving the classification model a

hard time.

The combined insights from these testing scenarios reinforce the importance of these

evaluation methods. The higher accuracy in the TRTS scenario suggests that the synthetic

data introduces diversity, potentially adding new patterns that complement the original

data. However, the lower accuracy in the TSTR scenario points to limitations in the

generative model’s ability to replicate subtle and complex structures inherent to the real

data.

4.5. Discussion

The results indicate that the GAN successfully generated synthetic ECG heartbeat

signals that are similar to real signals, as evidenced by the visualizations and quantitative

metrics. The use of synthetic data for DA proved beneficial, particularly for underrepre-

sented classes, improving both the overall accuracy and the precision for heartbeat type

A (the less represented type).

The additional testing methods revealed that while the synthetic data is of reasonable

quality, there is room for improvement in fully capturing the complexity of real ECG
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Figure 4.19. TRTS Con-
fusion Matrix

Figure 4.20. TSTR Con-
fusion Matrix

signals. The lower accuracy in the TSTR scenario underscores the limitations in how well

the synthetic data represents real ECG signals.

These finding demonstrate the potential of GANs in medical signal processing, par-

ticularly in generating synthetic data to augment limited datasets.This can enhance the

performance of classification models, leading to better diagnostic tools.
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CHAPTER 5

Conclusions

This dissertation has explored the potential of GANs to generate synthetic ECG sig-

nals, specifically addressing the challenges of data scarcity, privacy constraints, and class

imbalance in the classification of arrhythmias. A WGAN-GP model was developed and

implemented, tailored to generate realistic synthetic ECG data, thereby augmenting ex-

isting datasets and supporting deep learning models in healthcare.

The main findings of this study underscore the effectiveness of GAN-generated data

in healthcare. The generated synthetic ECG signals maintained essential characteristics

and variability of real signals, as demonstrated through quantitative metrics (Euclidean

Distance, DTW, PCC, and KLD) and visual analysis methods (PCA and t-SNE). These

evaluations revealed that the GAN model successfully captured the underlying distribu-

tion of the ECG data, producing high-quality synthetic signals that mirrored real patient

data.

The application of TSTR and TRTS methodologies provided valuable insights into the

quality and diversity of the generated data. While the results indicated room for improve-

ment, especially in the quality area, they also highlighted the GAN’s ability to capture

important characteristics of real ECG signals and generate diverse synthetic samples.

Another key outcome is the positive impact of synthetic data on classification per-

formance. By augmenting the training dataset with GAN-generated samples, the model

effectively addressed class imbalance by improving performance on the classification of

less present classes. This was most notable for the least represented class (type A), where

precision increased from 52% to 69%. This improvement underscores the potential of syn-

thetic data in addressing class imbalance issues, a common challenge in medical datasets.

The synthetic data also slightly improved the model’s classification accuracy, indicating

that GANs can play a significant role in enhancing dataset diversity.

These findings have significant implications for medical research and clinical practice.

The ability to generate high-quality synthetic ECG data can potentially accelerate cardi-

ology research, allowing the development of more robust diagnostic tools and ML models.

By demonstrating the generation of realistic synthetic data , GANs offer a solution to some

challenges in healthcare data science, paving the way for improved diagnostic models and

more personalized patient treatment options.

However, limitations were also revealed, pointing to areas for future research. The

focus on generating individual heartbeat segments, while successful, leaves room for ex-

ploring the generation of longer ECG sequences with multiple heartbeat types and signal

variations. Future work could involve training the GAN to generate ECG signal intervals
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with greater complexity and variability. Experimenting with different GAN architectures

and applying advanced evaluation metrics could further validate the quality of the syn-

thetic data. Investigating the potential of transfer learning techniques could enhance the

GAN’s ability to generate more diverse and accurate ECG signals. Additionally, the per-

formance differences observed in TSTR and TRTS scenarios suggest that there is potential

for further refinement of the GAN architecture to fully capture the complexities of real

ECG signals.

Future research could also explore the application of this methodology to other types

of medical signals, such as EEG or Electromyography (EMG), to expand the utility of

DA in various medical fields. By extending this work to other domains, the methodology

demonstrated here could have a broader impact on medical research and practice.

In conclusion, this study demonstrates that GANs are a promising tool for addressing

data scarcity and enhancing classification accuracy in healthcare, with significant impli-

cations for patient care and clinical research. By demonstrating the generation of realistic

synthetic data, GANs offer a solution to some challenges in healthcare data science, paving

the way for improved diagnostic models and more personalized patient treatment options.
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APPENDIX A

Distribution of Heart Beats Images

Figure A.21. Distribution of Heart Beats across common Records

Figure A.22. Distribution of Heart Beats across uncommon Records
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Figure A.23. Distribution of Heart Beats in some common records ECGs

Figure A.24. Distribution of Heart Beats in some uncommon records ECGs
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APPENDIX B

ECG Intervals Segmented from Original Data

Figure
B.25.
Heartbeat
signals of type
N taken from
the Database

Figure
B.26.
Heartbeat
signals of type
N taken from
the Database

Figure
B.27.
Heartbeat
signals of type
N taken from
the Database
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Figure
B.28.
Heartbeat
signals of type
V taken from
the Database

Figure
B.29.
Heartbeat
signals of type
A taken from
the Database
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APPENDIX C

PCA and t-SNE tests across records

Figure C.30. PCA test of
generated heartbeat type N
segments

Figure C.31. t-SNE test
of generated heartbeat type N
segments

Figure C.32. PCA test of
generated heartbeat type L
segments

Figure C.33. t-SNE test
of generated heartbeat type L
segments

55



Figure C.34. PCA test of
generated heartbeat type V
segments

Figure C.35. t-SNE test
of generated heartbeat type V
segments

Figure C.36. PCA test of
generated heartbeat type A
segments

Figure C.37. t-SNE test
of generated heartbeat type A
segments
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