
Jasay: Towards Voice Commands in Projectional Editors
André L. Santos

andre.santos@iscte-iul.pt
Instituto Universitário de Lisboa

(ISCTE-IUL), ISTAR-IUL
Lisboa, Portugal

Alexandre Cancelinha
alexctra@hotmail.com

Instituto Universitário de Lisboa
(ISCTE-IUL)

Lisboa, Portugal

Fernando Batista
fernando.batista@iscte-iul.pt

Instituto Universitário de Lisboa
(ISCTE-IUL), INESC-ID

Lisboa, Portugal

ABSTRACT
Permanent disabilities or temporary injuries (e.g., RSI) hinder the
activity of writing code. The interaction modality of voice is a viable
substitute or complement for typing on a keyboard. This paper de-
scribes the design of Jasay, a prototype tool that enables developers
to write Java code using voice commands. Our implementation re-
lies on a third-party speech-recognition system to convert the voice
into text. In turn, such a text is translated into commands that trans-
form the abstract syntax tree (AST) of the code being edited. Jasay
works as an extension to a projectional editor, taking advantage of
having the abstract syntax tree always available without parsing,
a permanent well-formed structure of the code, and unambiguous
editing locations (e.g., class member, statement, expression, etc). An
early experiment with Jasay involving 5 programmers has shown
encouraging results, as they were able to perform small program
modifications within reasonable time.

CCS CONCEPTS
•Human-centered computing→ Interactive systems and tools;
• Software and its engineering→ Development frameworks
and environments.

KEYWORDS
Programming, voice, projectional editors, Java
ACM Reference Format:
André L. Santos, Alexandre Cancelinha, and Fernando Batista. 2024. Jasay:
Towards Voice Commands in Projectional Editors. In 2024 First IDE Workshop
(IDE ’24), April 20, 2024, Lisbon, Portugal. ACM, New York, NY, USA, 5 pages.
https://doi.org/10.1145/3643796.3648449

1 INTRODUCTION
Using the computer for more than 5 hours a day is enough to accu-
mulate stress in certain parts of the body such as shoulders, elbows,
wrists, hands, and fingers due to the repetition of movements. These
diseases are known as repetitive strain injuries (RSI), and the recov-
ery time of this type of injury varies, with some taking from 3 to 6
months to recover fully [13]. Another study [1] showed that 41%
of workers in a telecommunications company, who were in front
of a computer for more than 5 hours a day, felt fatigue in the upper
back area around the neck and 38% in the shoulder area. Voice is an

IDE ’24, April 20, 2024, Lisbon, Portugal
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0580-9/24/04.
https://doi.org/10.1145/3643796.3648449

alternative modality to type code that may alleviate programmers
with RSI issues. Possibly not as a full replacement, but rather to
relieve users from some keyboard/mouse activity.

Coding using voice modality has been a subject of research (e.g.,
[5, 7, 9, 14, 19]). Previous works consist of extensions of traditional
IDEs, while most approaches translate voice commands into Ab-
stract Syntax Tree (AST) transformations. Naturally, this strategy is
easier when compared to lower-level text-edit transformations. To
our knowledge, there are no previous approaches that exploit the
integration of coding by voice in projectional editors. This work
aims at providing voice modality to input code, alleviating program-
mers of being fully dependent on their hands for typing code on
the keyboard.

This paper describes the design of Jasay, a prototype that achieves
this goal by extending Javardise [15]1 – a projectional prototype
editor for Java that uses JavaParser’s [18]2 ASTs as the model for
representing code. Jasay translates text given by a speech recog-
nition system into AST transformation commands, taking into ac-
count the context of the editing location. Furthermore, we consider
both string similarity and homophony when matching identifiers in
scope. For example, if a user dictates a command “hip not zero” (not
well pronounced), the command may take effect when the cursor is
at the guard of a control structure whose scope has a variable named
“heap”. Our design exploits the possibility of a projectional editor
obtaining a precise location of the cursor that “knows” what sort
of tokens to expect (e.g., class members, statements, expressions).

2 PROJECTIONAL EDITING
In contrast to traditional text-based editors, which directly manipu-
late characters in a text file, a projectional editor [17] works with an
underlying model, such as an abstract syntax tree (AST) or another
representation. The model is projected in views, as in the princi-
ples of a model-view-controller architecture. The user interaction
with the views originates commands that modify the model, whose
changes are in turn reflected in the views. What the user sees does
not necessarily resemble the storage representation. For instance,
when using Jetbrains MPS3 to write Java [10], the user sees actual
Java on the screen, but the storage is in the tool-specific format
for model serialization. On the other hand, in an editor such as
Javardise [15] the storage format consists of regular Java code.

Although projectional editors have never reached the main-
stream, their architecture has a major advantage. The code being
written is never in an unparseable or partially parseable state, be-
cause there are no parsing processes while the code is being written.
The model is at all times a well-structured representation of the

1github.com/andre-santos-pt/javardise
2javaparser.org
3www.jetbrains.com/mps

This work licensed under Creative Commons Attribution International 4.0 License.

30

2024 First IDE Workshop (IDE)

https://orcid.org/0000-0002-8247-7413
https://orcid.org/0009-0009-6194-7760
https://orcid.org/0000-0002-1075-0177
https://doi.org/10.1145/3643796.3648449
https://doi.org/10.1145/3643796.3648449
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3643796.3648449&domain=pdf&date_stamp=2024-08-07

IDE ’24, April 20, 2024, Lisbon, Portugal André L. Santos, Alexandre Cancelinha, and Fernando Batista

Speech
Recognizer

Command
Interpreter Projectional Editor

Text
phrase

Voice
sound

Transformation
Command

AST
CursorGrammar View

Figure 1: Architecture overview of Jasay. Arrows represent data flow.

class Foo {
 int a;
 int b;

 void bar(int n) {

 int ____;

 a = ____;
 }

 int other(____ x) {

 ____;
 }

}

:Type
id=“Foo”

:Field
id=“a”

:Field
id=“b”

:Method
id=“bar”

:Assign :Parameter
id=“n”

:Method
id=“other”

:Parameter
id=“x”

:Empty
Statement

“a”,”b”,”n”,”other”, integer literals

“Foo”, “int”, …, available types
“return”, “if”,”while”, …, “newline”
“a”, “b”, “x”, “bar”, “other”, …, available types

:Type
id=“int”

1

2

3

4

“private”, “public”, “final”, “static”,…, “add parameter”

arbitrary identifier

:Declaration

3

41 2

A

B

“public”, “final”, …, “add field”, “add constructor”, “add method”
“edit bar”, “edit other”,”up”, “down”, …

Figure 2: Editing contexts for voice commands in Jasay. In-situ: identifier (1), expression (2), type (3), statement (4); Ex-situ:
class (A), method (B).

code. Although models might be in a semantically invalid state,
they are always consistent with the views and can be fully analyzed
at every moment. Every change to the model can be represented
with a well-defined command, whose execution will never com-
promise the structure of the model. This facilitates programmatic
manipulation of the code through commands that transform its
model (e.g., AST).

When compared to text-insert commands, commands over an
AST are at a higher abstraction level. For example, in text-based
modifications, adding a parameter to an existing function f, could be
expressed with <offset, string to insert> (e.g., <412, “, int param”>.
On the other hand, the equivalent AST command could be expressed
with the <method, type, identifier>, where the first is a reference to
the actual model element of the function, the second is a reference
to an actual type, and the third is the identifier in isolation (as
opposed to the text-based command).

In a projectional editor, the editing location (cursor) consists
of a UI control that knows with precision what to expect in that
location, for example, an arbitrary identifier (e.g., function name),
an expression (e.g., control structure guard), or a statement (e.g., an
empty line inside a block). This is an advantage we exploit in our
approach because the editing context information can be used to
constrain the set of valid commands to alter the code, leading to a
reduced recognition space, which varies according to the editing
location.

3 APPROACH
Figure 1 presents an overview of the main components of our
approach. The core component developed in this work is the Com-
mand Interpreter, which stands in between a third-party Speech
Recognizer that outputs text phrases from voice, and a Projectional
Editor that exposes the ASTs of the files being edited. Furthermore,
such an editor provides the location of the cursor as an AST node
and allows for the execution of AST transformations.

Our speech interpretation only deals with ASTs, and when these
are modified, the changes are reflected in the editor view due to the
model-view-controller architecture of the projectional editor. Every
command takes into account the editing context, which is provided
as an AST node where the editing cursor is located. There are two
categories of voice commands: in-situ or ex-situ. Figure 2 illustrates
the different types of editing contexts using a code snippet and the
respective AST. Blank spaces correspond to editing placeholders of
the Projectional Editor, and the annotations in gray enumerate the
tokens that could be inserted at the different locations. The numbers
indicate contexts for in-situ commands, whereas the letters refer to
the scopes for ex-situ commands.

In-situ commands consider cursor location in detail and their
transformations actuate at the cursor location. They resemble what
would be otherwise typed on the keyboard, despite omitting syn-
tactic elements such as brackets and semi-colons. These commands
are constrained by the cursor location in a fine-grained manner.
For instance, inserting an integer is only possible if the cursor is

31

Jasay: Towards Voice Commands in Projectional Editors IDE ’24, April 20, 2024, Lisbon, Portugal

at an expression location, or inserting a return instruction is only
possible if the cursor is inside a statement block.

Ex-situ commands may not correspond to what the user would
be typing on the keyboard, and their transformations might not take
place at the cursor location. The editing context of these commands
is fairly broad, in the sense that the cursor location is not considered
with as much detail as in in-situ commands. For instance, an “add
field” command is available if the cursor is within a class body, or
an “add parameter” command is available if the cursor is within a
method. Both these cases span large sections of the code; hence,
they are enabled almost at all times.

The Command Interpreter holds a grammar for recognizing valid
commands, including those for navigating in the code, that do not
alter the AST but instruct the editor to move the cursor. Despite hav-
ing similarities with a traditional programming language grammar,
its rules reflect code dictation in spoken language, as in previous
approaches (e.g., [3, 5, 7, 19]). This implies that some syntactical
elements, such as control structure brackets and semi-colons, are
not part of the grammar rules. For example, a phrase like “if i equals
0” would match a valid if-statement [if(i == 0)]. Another impor-
tant difference relates to how identifiers are handled, given that in
programs they often consist of a concatenation of words that are
spelled in isolation. For example, the phrase “set visible true” may
translate to a method call [setVisible(true)].

Each grammar rule has an associated predicate to determine
if it is applicable in the current editing context, provided by the
cursor location. The grammar recognizes commands regardless of
the latter having broken references due to misspelled or misrec-
ognized identifiers. The command is analyzed to check for broken
references, and we attempt to fix those a posteriori, by searching
for approximate matches in the set of possible identifiers given the
command context. We use two methods in combination to achieve
this, string distance (Levenshtein) and phonetic similarity. When
facing an unresolved identifier, we check for possible identifiers
that slightly differ textually, and if there is none, we further convert
the possible identifiers to graphemes and attempt to match them
phonetically.

4 IMPLEMENTATION
We developed the Jasay prototype as a proof of concept of our
approach. We extended Javardise [15] — a projectional editor sup-
porting a subset of Java targeting educational purposes. Javardise
runs on the JVM and it is implemented in Kotlin. Jasay was also
implemented in Kotlin and is loosely coupled with Javardise, given
that the former only gains access to the ASTs of the files being
edited and to the cursor position. Due to the model-view-controller
architecture of Javardise, any modifications to the ASTs are re-
flected in the views without requiring further procedures. The AST
transformations are represented as commands [6].

The model representation in Javardise is based on the ASTs
provided by the JavaParser [18], an open-source library written in
Java that offers APIs for analyzing, manipulating, and generating
Java source code. One of its main use cases is code analysis, where
JavaParser analyzes source code and builds an AST that can be
traversed to resolve reference types and collect information such

IfStatement: ‘if’ Expression?
Expression: Variable|Call|Integer|BiExpression|...
Variable: WORD+
Call: WORD+ Expression*
BiExpression: Expression? BIOPERATOR Expression?
Integer: ‘zero’|‘one’|‘two’|...
WORD: [a-z]+
BIOPERATOR: ‘plus’ | ‘minus’ | ‘equals’ | ...
...
Add: ‘add’ (‘field’|‘method’|‘parameter’|'setter'| ...)
Modifier: ‘public’|‘private’|‘static’|...

Figure 3: Excerpt of grammar rules for handling in-situ and
ex-situ voice commands.

as identifiers in scope. Javardise provides the cursor location as a
JavaParser’s AST node.

Our Command Interpreter uses a context-free grammar built
with ANTLR [8]4 for treating the text phrases. The grammar is
not intended to be used to process a whole document, but instead,
to attempt to match isolated sentences by matching one or more
of its rules. The ANTLR nodes that result from rule matches are
translated into conmmands that transform JavaParser’s ASTs.

Figure 3 presents an excerpt of our rules for both in-situ and
ex-situ commands. The grammar rules are naturally related to those
of the programming language syntax. A study on how software
developers verbalize code [3] (leading to the definition of Spoken
Java) elicited a number of characteristics of spoken programs, to
which our grammar adheres, namely:

• numbers and operators are in written form, to match the
words of the text phrases;

• some syntactical elements (such as brackets and semicolons)
are absent because we do not spell them when reading code;

• identifiers of variables or methods are formed by a sequence
of one or more words ignoring capitalization, which will be
concatenated to form CamelCase identifiers;

• some rules may allow missing terms (such as expressions),
to support both atomic commands (e.g., “if”) and compound
ones (e.g., “if x equals 0”).

Although capturing natural speech may be appealing from a user’s
standpoint, it implies difficulties regarding the ambiguity of rule
matching, once more than one rule is matched. For example, “if isSe-
lected”matches both rules IfStatement (Variable) [if(isSelected)]
and IfStatement (Call) [if(isSelected())]. In these cases, we at-
tempt to select among the alternatives by resolving name references
to check which instruction would likely be the desired one. For
example, if it exists a method isSelected, the second option would
prevail over the first one.

Another issue relates to the multiple matches involving ex-situ
commands because they may overlap in-situ ones. For example,
“add parameter” matches both the ex-situ rule Add and the in-situ
rule Call. In these situations, the in-situ command is attempted
first, and if it results in broken references (i.e., there is no method
called “addParameter”), the ex-situ command is executed instead.

When editing expressions, if the AST node of the cursor location
is not empty, it is used to fill in terms of the grammar rules. For
4antlr.org

32

IDE ’24, April 20, 2024, Lisbon, Portugal André L. Santos, Alexandre Cancelinha, and Fernando Batista

example, when spelling a voice command “plus one” on i = x, the
x expression (cursor location) is used as the left expression of the
BiExpression rule.

We have experimented Whisper [12] as the Speech Recognizer.
This model is implemented as an encoder-decoder transformer, and
was trained with 680,000 hours of data in several languages from
supervised data that was collected from the web. This large amount
of data increases the robustness of the system in terms of accent,
background noise, and technical language, allowing also to perform
transcripts in several languages. The Speech Recognizer works in a
separate process running in Python, given the convenience of the
available API to date. Since the Command Interpreter only relies on
raw text phrases, the backing speech recognition technology could
be easily exchanged. Phonetic similarity is checked using grapheme-
to-phoneme transformations provided by the Gi2Pi Python library
[11] (running in a separate process as well).

5 EARLY USABILITY EXPERIMENT
We carried out an early user experiment to assess if the approach is
feasible and to collect usability issues. We recruited 5 programmers
from our personal contacts, aged between 23 and 35, all of which
with experience with Java. Participants were given 8 tasks that
consisted of performing small increments to an existing Java file.
Participants did not have any tool training session before the tasks.

Table 1 presents the experiment tasks and the average completion
times in minutes. All tasks were successfully completed by every
participant. However, the obtained times were clearly slower than if
using a keyboard. We observed that a great part of the task time was
spent on guessing commands, including those for navigation. We
believe that after a brief training period, participants could become
significantly faster in accomplishing this sort of tasks.

Task description Avg. time
1 Create a field named age of type int. 1:02
2 Create a private field named id of type int. 0:23
3 Create a public method named factorial that

returns an integer.
0:33

4 In the test method, add an integer parameter
named number.

0:34

5 In the testmethod, add an if statement to check
if number is greater than 18.

0:32

6 Create a setter and getter for the field age. 0:55
7 Create a function named sum that receives

two integer parameters and returns their sum.
1:32

8 Complete the factorial function. 2:08
Table 1: Experiment tasks and average completion times.

6 RELATEDWORK
VoiceGrip [4] pioneered the development of an open-source system
for voice programming, where users employ natural language with
a specific syntax that is easy to grasp. This work as evolved to
VoiceCode [5], which addressed various shortcomings of VoiceGrip,
namely the need for dictating punctuation, navigation commands,
and error correction. Notably, the system intelligently interprets

abbreviations such as "current record number" as "currRecNum"
and includes error correction mechanisms for instances where the
system does not correctly recognise the spoken words.

SPEED [3] is an Eclipse plugin to support Spoken Java as a way to
insert code into the editor. A user study with programmers [2] con-
cluded that they were slower when compared to keyboard, results
to which our experiment results are aligned. However, as speech
recognition systems improve, we might achieve more effective so-
lutions for programming by voice.

VocalIDE [14] is a specialized IDE focusing on voice commands.
The development stemmed from a study gathering voice-based cor-
rections for code snippets. VocalIDE facilitates the dictation of code
word by word or letter by letter, and features context color editing,
which allows users to select elements of the code by mentioning
the color in which they are highlighted — these are automatically
colored by the environment as the cursor moves.

VCL (Voice Command Language) [7] is a voice-to-code system
where the same set of voice commands may generate Java, C, and
Python. The study emphasizes the efficiency of combined voice and
traditional input methods. However, specifics about code navigation
remain unaddressed, a critical aspect in a system aiming to replace
mouse and keyboard navigation.

VoiceJava [19] is a programming environment for Java designed
to support voice commands. As with Jasay, VoiceJava performs
transformations on JavaParser’s ASTs, preserving code structure.

Voiceye [9] is a system that integrates voice, gaze, and mechani-
cal switches for HTML and CSS coding. The study highlights the
efficiency of voice commands over gaze-based inputs. Notably, the
authors conclude that the inclusion of voice as a navigation tool is
a valuable aspect, enhancing the overall usability of the editor.

7 DISCUSSION
Despite the encouraging early experiment results, we conclude
that Jasay needs improvement regarding navigation commands
and smarter context inference. We believe that our approach could
be complemented with eye-gaze techniques (e.g., [16]) to provide
efficient navigation. As another limitation, we only addressed the
elementary constructs of Java, without providing support for con-
structs such as casts, annotations, and fine-grained editing of ex-
pressions.

AI code assistants recently became mainstream (e.g., GitHub
Copilot5), while there are already numerous plugins for integration
with popular IDEs (e.g., JetBrains IntelliJ, VS Code). Interaction with
these systems is performed using textual descriptions of goals (e.g.,
what a function should return). With the advent of robust speech
recognizers, such as Whisper, the voice modality for interacting
with AI code assistants may become available soon. That will likely
provide programmers with what our approach offers to a great
extent, as well as many other capabilities of AI code assistants,
despite not being based on projectional editing.

Despite that we targeted projectional editing, the core charac-
teristics of our approach are not specific to it. The text phrases are
translated to AST transformations, and the AST might be avail-
able regardless of using a projectional editor. For instance, IDE

5github.com/features/copilot

33

Jasay: Towards Voice Commands in Projectional Editors IDE ’24, April 20, 2024, Lisbon, Portugal

features for performing refactorings rely mostly in AST transfor-
mations. AST transformations are fragile when the code is not in a
parseable state, while applying them in these cases may result in
structurally unsafe modifications. Regarding the cursor location,
determining its AST node every time it moves, requires intensive
AST (re-)construction, which may not be at all times complete in
the presence of syntax errors.

The main advantage of using a projectional editor is that the
AST is always available without any parsing, while there are no
syntax errors (malformed code). The AST evolves along with the
editing process, while the cursor is always available as an AST
node without further analysis. Our work explores this characteristic
towards forming AST transformations from voice commands that
preserve well-formed code.

ACKNOWLEDGMENTS
We thank the anonymous study participants. This work was par-
tially supported by Fundação para a Ciência e a Tecnologia, I.P.
(FCT), under projects UIDB/04466/2020, UIDP/04466/2020,
and UIDB/50021/2020.

REFERENCES
[1] Nurul Huda Baba andDianDarina IndahDaruis. 2016. Repetitive strain injury (rsi)

among computer users: a case study In telecommunication company. Malaysian
Journal of Public Health Medicine 16 (2016). https://api.semanticscholar.org/
CorpusID:207924911

[2] A. Begel and S.L. Graham. 2006. An Assessment of a Speech-Based Programming
Environment. In Visual Languages and Human-Centric Computing (VL/HCC’06).
116–120. https://doi.org/10.1109/VLHCC.2006.9

[3] Andrew Begel and Susan L. Graham. 2005. Spoken Programs. In Proceedings of
the 2005 IEEE Symposium on Visual Languages and Human-Centric Computing
(VLHCC ’05). IEEE Computer Society, USA, 99–106. https://doi.org/10.1109/
VLHCC.2005.58

[4] A. Desilets. 2001. VoiceGrip: A Tool for Programming-by-Voice. International
Journal of Speech Technology 4, 2 (2001), 103–116. https://doi.org/10.1023/A:
1011323308477

[5] Alain Désilets, David C. Fox, and Stuart Norton. 2006. VoiceCode: An Innovative
Speech Interface for Programming-by-Voice. In CHI ’06 Extended Abstracts on
Human Factors in Computing Systems (CHI EA ’06). Association for ComputingMa-
chinery, New York, NY, USA, 239–242. https://doi.org/10.1145/1125451.1125502

[6] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. 1995. Design
patterns: elements of reusable object-oriented software. Addison-Wesley Longman
Publishing Co., Inc.

[7] Sakib Hossain, Mabia Akter Emi, Mohsina Hossain Mishu, Raihana Zannat, and
Ohidujjaman. 2021. Code Generator based on Voice Command for Multiple
Programming Language. In 2021 12th International Conference on Computing
Communication and Networking Technologies (ICCCNT). 01–05. https://doi.org/
10.1109/ICCCNT51525.2021.9579880

[8] Terence Parr and Kathleen Fisher. 2011. LL(*): The Foundation of the ANTLR
Parser Generator. In Proceedings of the 32nd ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation (PLDI ’11). Association for Com-
putingMachinery, New York, NY, USA, 425–436. https://doi.org/10.1145/1993498.
1993548

[9] Bharat Paudyal, Chris Creed, Maite Frutos-Pascual, and Ian Williams. 2020.
Voiceye: A Multimodal Inclusive Development Environment. In Proceedings
of the 2020 ACM Designing Interactive Systems Conference (DIS ’20). ACM.
https://doi.org/10.1145/3357236.3395553

[10] Vaclav Pech, Alex Shatalin, and Markus Voelter. 2013. JetBrains MPS as a Tool for
Extending Java. In Proceedings of the 2013 International Conference on Principles
and Practices of Programming on the Java Platform: Virtual Machines, Languages,
and Tools (PPPJ ’13). Association for Computing Machinery, New York, NY, USA,
165–168. https://doi.org/10.1145/2500828.2500846

[11] Aidan Pine, Patrick Littell, Eric Joanis, David Huggins-Daines, Christopher Cox,
Fineen Davis, Eddie Antonio Santos, Shankhalika Srikanth, Delasie Torkornoo,
and Sabrina Yu. 2022. Gi 2Pi Rule-based, index-preserving grapheme-to-phoneme
transformations. In Proceedings of the Fifth Workshop on the Use of Computational
Methods in the Study of Endangered Languages. Association for Computational
Linguistics, Dublin, Ireland, 52–60. https://aclanthology.org/2022.computel-1.7

[12] Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine Mcleavey, and
Ilya Sutskever. 2023. Robust Speech Recognition via Large-Scale Weak Super-
vision. In Proceedings of the 40th International Conference on Machine Learning
(Proceedings of Machine Learning Research), Andreas Krause, Emma Brunskill,
Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (Eds.),
Vol. 202. PMLR, 28492–28518. https://proceedings.mlr.press/v202/radford23a.
html

[13] Rianto, Arief Hermawan, and P. Insap Santosa. 2018. Knowledge and Prevention
of Repetitive Strain Injury Among Computer Users. In 2018 International Con-
ference on Orange Technologies (ICOT). 1–4. https://doi.org/10.1109/ICOT.2018.
8705901

[14] Lucas Rosenblatt. 2017. VocalIDE: An IDE for Programming via Speech Recog-
nition. In Proceedings of the 19th International ACM SIGACCESS Conference on
Computers and Accessibility (ASSETS ’17). Association for Computing Machinery,
New York, NY, USA, 417–418. https://doi.org/10.1145/3132525.3134824

[15] André L. Santos. 2020. Javardise: A Structured Code Editor for Programming
Pedagogy in Java. In Companion Proceedings of the 4th International Conference
on Art, Science, and Engineering of Programming (Programming ’20). Association
for Computing Machinery, New York, NY, USA, 120–125. https://doi.org/10.
1145/3397537.3397561

[16] André L. Santos. 2021. Javardeye: Gaze Input for Cursor Control in a Structured
Editor. In Companion Proceedings of the 5th International Conference on the Art,
Science, and Engineering of Programming (Programming ’21). Association for
Computing Machinery, New York, NY, USA, 31–35. https://doi.org/10.1145/
3464432.3464435

[17] Charles Simonyi, Magnus Christerson, and Shane Clifford. 2006. Intentional
Software. SIGPLAN Not. 41, 10 (oct 2006), 451–464. https://doi.org/10.1145/
1167515.1167511

[18] Danny van Bruggen, Federico Tomassetti, Roger Howell, Malte Langkabel,
Nicholas Smith, Artur Bosch, Malte Skoruppa, Cruz Maximilien, ThLeu, Panayi-
otis, Sebastian Kirsch (@skirsch79), Simon, Johann Beleites, Wim Tibackx,
jean pierre L, André Rouél, edefazio, Daan Schipper, Mathiponds, Why you
want to know, Ryan Beckett, ptitjes, kotari4u, Marvin Wyrich, Ricardo Morais,
Maarten Coene, bresai, Implex1v, and Bernhard Haumacher. 2020. java-
parser/javaparser: Release javaparser- parent-3.16.1. https://doi.org/10.5281/
zenodo.3842713

[19] Tao Zan and Zhenjiang Hu. 2023. VoiceJava: A Syntax-Directed Voice Pro-
gramming Language for Java. Electronics 12, 1 (2023). https://doi.org/10.3390/
electronics12010250

34

http://doi.org/10.54499/UIDB/50021/2020
https://api.semanticscholar.org/CorpusID:207924911
https://api.semanticscholar.org/CorpusID:207924911
https://doi.org/10.1109/VLHCC.2006.9
https://doi.org/10.1109/VLHCC.2005.58
https://doi.org/10.1109/VLHCC.2005.58
https://doi.org/10.1023/A:1011323308477
https://doi.org/10.1023/A:1011323308477
https://doi.org/10.1145/1125451.1125502
https://doi.org/10.1109/ICCCNT51525.2021.9579880
https://doi.org/10.1109/ICCCNT51525.2021.9579880
https://doi.org/10.1145/1993498.1993548
https://doi.org/10.1145/1993498.1993548
https://doi.org/10.1145/3357236.3395553
https://doi.org/10.1145/2500828.2500846
https://aclanthology.org/2022.computel-1.7
https://proceedings.mlr.press/v202/radford23a.html
https://proceedings.mlr.press/v202/radford23a.html
https://doi.org/10.1109/ICOT.2018.8705901
https://doi.org/10.1109/ICOT.2018.8705901
https://doi.org/10.1145/3132525.3134824
https://doi.org/10.1145/3397537.3397561
https://doi.org/10.1145/3397537.3397561
https://doi.org/10.1145/3464432.3464435
https://doi.org/10.1145/3464432.3464435
https://doi.org/10.1145/1167515.1167511
https://doi.org/10.1145/1167515.1167511
https://doi.org/10.5281/zenodo.3842713
https://doi.org/10.5281/zenodo.3842713
https://doi.org/10.3390/electronics12010250
https://doi.org/10.3390/electronics12010250

