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Resumo 

 

Esta tese apresenta uma abordagem de Deep Learning para a deteção e localização de stress 

hídrico em vinhas, através do desenvolvimento de duas redes neuronais convolucionais. Com 

base na arquitetura U-Net, um modelo inicial foi treinado para fazer segmentação de imagens 

da base de dados Agriculture-Vision, que contém várias imagens capturadas por drones de 

campos agrícolas. Através de técnicas de transferência de conhecimento, um segundo modelo 

foi treinado para detetar e localizar stress hídrico, usando apenas 40 imagens térmicas únicas 

capturadas por um drone numa vinha em Lisboa, Portugal. Esta decisão foi motivada pela falta 

de um modelo pré-treinado para desempenhar este tipo de tarefas e pela quantidade reduzida 

das imagens térmicas capturadas. O modelo foi avaliado através de várias métricas, incluindo 

Binary Cross Entropy loss, Precision, Recall, Intersection over Union e Accuracy, sendo este 

validado ao criar matrizes de confusão, que demonstram as capacidades dos modelos. Os 

conjuntos de treino e validação atingiram valores respetivos de 0,17 e 0,26 para a Binary Cross 

Entropy loss, 0,88 e 0,82 para a Intersection over Union, 0,91 e 0,89 para a Precision, 0,96 e 

0,91 para a Recall e 0,93 e 0,90 para a Accuracy. 

Além disso, foi desenvolvida uma plataforma para o modelo final, usando a Django 

framework, escrita em Python, para apoiar viticultores a gerir vários projetos durante as 

diferentes estações do ano. A arquitetura permite carregar, processar e visualizar informação de 

forma eficiente, assegurando a sua viabilidade e aplicabilidade no mundo real. Os resultados 

experimentais salientam o potencial dos modelos propostos, demonstrando a sua capacidade 

como ferramentas viáveis para avaliar e mitigar os efeitos de stress hídrico em vinhas. 

No futuro, será efetuada uma recolha de dados extensiva em diversas vinhas e ao longo do 

ano, em colaboração com viticultores para melhorar o algoritmo. 

 

Palavras-chave: Deep Learning, Viticultura de Precisão, Stress Hídrico, Redes Neuronais 

Convolucionais, Drone, Imagens Térmicas  
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Abstract 

 

This thesis presents a Deep Learning approach to water stress detection and localisation, in 

vineyards, through the development of two convolutional neural network models. Leveraging 

a U-Net based architecture, an initial model was trained to perform image segmentation on an 

Agriculture-Vision, a large-scale dataset containing UAV-captured images of farmland. Using 

transfer learning techniques, a second model was trained to detect and localise water stress on 

only 40 unique UAV-captured thermal images of a vineyard in Lisbon, Portugal. This approach 

was motivated by the lack of an existing pre-trained model to perform similar tasks and the 

reduced number of unique UAV-captured thermal images. The models’ performance was 

evaluated using several metrics, including Binary Cross Entropy loss, Precision, Recall, 

Intersection over Union and Accuracy, further validated by computing confusion matrices that 

demonstrated their predictive capabilities. The training and validation sets achieved respective 

values of 0.17 and 0.26 for Binary Cross Entropy loss, 0.88 and 0.82 for Intersection over 

Union, 0.91 and 0.89 for Precision, 0.96 and 0.91 for Recall, and 0.93 and 0.90 for Accuracy. 

In addition, a platform supporting the final model was built using the Python-based Django 

framework, structured to assist viticulturists in managing multiple projects across various 

seasons. The architecture enables efficient data upload, processing, and visualisation, ensuring 

practical usability in real-world applications. The experimental results highlight the potential 

of the proposed models, demonstrating their potential as a viable tool to assess and mitigate the 

effects of water stress in vineyards. 

As future work, extensive data collection will be performed in various vineyards and 

seasons, in collaboration with expert viticulturists to improve the models’ predictive 

capabilities. 

 

Keywords: Deep Learning, Precision Viticulture, Water Stress, Convolutional Neural 

Networks, UAV, Thermal Images  
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CHAPTER 1 

Introduction 

 

This chapter first provides an overview of key technologies and farming practises, such as 

Precision Viticulture (PV) and Precision Agriculture (PA), with an emphasis on the use of an 

Unmanned Aerial Vehicle (UAV) platform, equipped with a thermal camera for Water Stress 

(WS) detection in viticulture. These are further explained in Chapter 2 State of the Art. 

Secondly, it discusses a literature review, that served as a basis for the investigation regarding 

the assessment of WS in viticulture, via UAV-captured thermal images. 

  

1.1. Background and Motivation 

Technologies are more than ever readily available, cheaper and with a greater number of usages. 

As costs decrease, it becomes sensible to use certain technologies, as it can improve 

productivity, minimize operational costs and provide insights that would be otherwise 

impossible to gather. 

An UAV is a technology that can gather substantial amounts of aerial data, in a timely 

manner, with extreme versatility. It serves as a platform for several types of sensors, depending 

on the application, including, but not limited to, Red-Green-Blue (RGB), Multispectral, 

Hyperspectral, Light Detecting and Ranging (LiDAR) and Thermal. In addition, the UAV’s 

design can also vary, depending on its intended usage, it can either be a fixed-wing design or a 

rotor-based design. Fixed-wing designs are more power efficient and require a runway for take-

off and landing. In contrast, rotor-based designs are less efficient but can take-off and land 

vertically, which makes them highly versatile. These platforms and sensors have a wide range 

of applications, such as aerial photography, and agriculture, among others.  
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In agriculture, WS occurs when the available water resources either exceed or fail to meet 

a plant’s needs. Particularly, in viticulture, WS directly impacts grape quality and yield 

quantity. To avoid potential losses, it is essential to accurately and promptly detect WS and take 

appropriate action. For this, traditional methods are often time consuming, labour intensive and 

lack detail, as it is only possible to assess a small area. In addition, even if just part of the 

vineyard is experiencing WS, it will be treated as homogenously, which will ultimately result 

in wasted resources and sub-optimal yields. In contrast, a UAV equipped with suitable sensors 

and associated algorithms can provide fast and accurate results, over a large area, pinpointing 

areas experiencing WS so that only the affected areas could be treated, ensuring optimal yields 

and resulting in minimal losses. This makes UAVs a critical tool for WS detection in viticulture. 

 

1.2. Precision Viticulture 

PV is a vineyard-farming management practise, that using different technologies, such as 

varying sensors and platforms, ensures that the yield quality and quantity are maximised, while 

the resources spent are minimised. In Europe, grape production plays a crucial economic role, 

therefore, PV is necessary to ensure reliable and sustainable grape production. Despite 

significant advancements in the fields, PV still faces challenges regarding the understanding of 

the data collected by the sensors, where these need to be processed so that they could be used 

to support decision-making. Moreover, the high costs associated are not economically viable in 

small-scale applications. Lastly, there is a lack of trust in PV because the benefits and 

limitations are not well understood. To build confidence it requires demonstrable success, so 

that viticulturists can transition to PV. 

 

1.3. Main Contributions 

This thesis introduces a toolkit, supported by a UAV, equipped with thermal and RGB cameras, 

designed to provide additional information about a crop’s water status, enabling viticulturists 

to make more informed decisions, regarding site-specific irrigation practices. The toolkit is 

designed to be accessible via a dedicated online website and it uses the aerial thermal images 

to identify and localise areas of the vineyard experiencing water stress via Computer Vision 

(CV), powered by an Artificial Intelligence (AI) model, specifically trained for this purpose. 

By offering site-specific project management, it enables viticulturists to address WS effectively 

and promptly. Using this tool will save water resources, as they will only be used in necessary 
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locations, while also providing key insights on vineyard water status, thus ensuring optimal 

vine health and productivity. 

To achieve this, the process to train the model involved using different hyperparameters so 

that an optimal model was obtained, that is, the model which achieve the best overall 

performance. First, WeedUNet was trained on an existing aerial agricultural dataset to classify 

the pixel of each image as being background or a weed cluster. This model was then repurposed 

to classify the pixels of UAV captured thermal images of a vineyard, as grapevines experiencing 

WS or not. This second model, StressUNet is then used in an online platform so that 

viticulturists can upload the UAV captured thermal images and it will pinpoint areas 

experiencing WS, this way, it is possible to only treat the affected areas using targeted irrigation. 

 In addition, an article was accepted and published in the 2024 International Symposium on 

Sensing and Instrumentation in 5G and IoT Era (ISSI) (Figure7A.1. Article - Page 1). 

 

1.4. Literary Review 

Based on the objectives defined in the previous chapter, a set of research questions are devised 

to guide the initial research and development. These questions lay the foundation for conducting 

a Systematic Literature Review (SLR). This SLR adheres to the guidelines outlined in [1] and 

its purpose is to gather and evaluate existing literature that is relevant to the research objectives. 

This SLR was initiated on the 23rd of October 2023, and it was concluded on the 11th of January 

2024. 

 

1.4.1. Research Questions 

The validation of this contribution involves considering the defined objectives, leading to the 

following research questions: 

• How can a UAV equipped with a thermal camera be used for WS detection in PV? 

• What knowledge extraction and Machine Learning (ML) methods are used for thermal 

camera data in PA, and what strategies can optimise their performance metrics? 

• Are there aerial thermal images suitable for ML based WS detection, or is it necessary 

to collect additional data? If so, what are the best recommendations to do so? 
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1.4.2. Defining Keywords 

The research questions informed the extraction of keywords specific to each question, forming 

a comprehensive set of terms used to guide the search process. This keyword set includes terms 

such as: “thermal camera”, “precision agriculture”, “precision viticulture”, “unmanned aerial 

vehicles”, “UAV”, “data extraction”, “computer vision”, “knowledge extraction”, “machine 

learning”, “optimise performance metrics” and “metrics”.  

 

1.4.3. Defining Search String 

The search string was initially constructed using the defined keywords, separated by the 

operator "AND." To broaden the scope of the search, a Thesaurus was used to identify 

synonyms for the original keywords, which were separated by the "OR" operator. Based on the 

results, the search string was iteratively refined, resulting in the final search string: (“thermal” 

OR “thermal sensor” OR “thermal imagery” OR “thermal camera” OR “aerial thermal images”) 

AND (“precision agriculture” OR “precision farming” OR “precision viticulture” OR 

“precision crop management”) AND (“unmanned aerial vehicles” OR “UAV” OR “drone” OR 

“unmanned aircraft” OR “remote-controlled aircraft”) AND (“computer vision” OR “machine 

learning” OR “artificial intelligence” OR “AI” OR “neural networks” OR “deep learning” OR 

“metrics” OR “optimise performance metrics”). 

 

1.4.4. Defining Search Engines 

To ensure comprehensive coverage of relevant existing literature, several databases were used. 

The database b-on was chosen due to its capability of aggregating information from several 

databases, such as IEEE, Springer Link and Web of Science [2]. Furthermore, two other 

databases were also chosen, namely, ACM, which was selected for its focus on the field of 

computer science, while Scopus gathers information from numerous fields, not just in the field 

of computer science [3], [4]. This combination of databases ensures that a wide range of studies 

are selected and analysed. 

 

1.4.5. Defining Filters 

The search string was applied using several filters to include studies that contained all required 

conditions in the search string. To achieve this, the following filters were devised: 

• Apply search string to title, abstract and keywords; 
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• Only studies in Portuguese and in English are accepted, and they must be freely 

available; 

• Remove duplicates; 

• Analise the contents of the abstract; 

• Analise the full article or study. 

Applying these filters successively resulted in 22 studies which were fully reviewed and 

integrated into the initial research for this thesis. 
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CHAPTER 2 

State of the Art 

 

This chapter focuses on the different aspects related to the development of the toolkit, starting 

with the definition of Precision Agriculture (PA) and Precision Viticulture (PV). This is 

followed by an evaluation of Remote Sensing platforms, with a focus on UAV equipped with 

thermal cameras and how they can be used to evaluate WS in vineyards. Lastly, key aspects of 

Artificial Intelligence (AI) are outlined, which are necessary to understand how to develop an 

algorithm that can detect and localise WS in vineyards, based on UAV-captured thermal 

images. 

 

2.1. Precision Agriculture and Viticulture 

2.1.1. Definition and Importance 

The International Society of Precision Agriculture is a non-profit professional scientific 

organization that defines PA as “a management strategy that gathers, processes and analyses 

temporal, spatial and individual plant and animal data and combines it with other information 

to support management decisions according to estimated variability for improved resource use 

efficiency, productivity, quality, profitability and sustainability of agricultural production.” [5]. 

With regards to this statement, PA is a farming management technique that utilizes 

technologies, such as the Internet of Things (IoT), AI and UAVs, to optimize inputs and 

improve productivity. This technique applies farming inputs, in a time and location-sensitive 

manner, aiming to maximise yield quality, quantity and profitability [6], [7], [8]. In contrast to 

traditional farming practises, a field is divided into multiple sections, which can then have a 

specific approach and thus lead to goals stated previously [7]. 

Minimise 
input

Maximise 
output

FIGURE 2.1. PA Optimising Cycle 
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FIGURE 2.1 represents this site-specific strategy, and the relationship between minimising 

inputs and maximising outputs. Examples of inputs in PA include water, fertilizers, pesticides, 

and labour. By optimising these inputs through precise application and monitoring, it is possible 

to achieve outputs such as higher crop yields, improved crop quality, reduced environmental 

impact, and increased profitability. 

In the context of global risks, the World Economic Forum outlines, in the 2024 global risk 

report, climate-related threats as the dominant risk throughout the next decade. These pose a 

serious risk, in terms of food, water and health security. PA emerges as a possible solution to 

reduce the global water consumption [9]. 

PV suffered significant advancements in recent years, driven by the integration of advanced 

technologies. The use of sensors to capture data indirectly, remote platforms and ML algorithms 

allow for precise monitoring and management of vineyards. These technologies can provide 

real-time information on vine health and growth, pathogen identification and WS detection. 

Additionally, the development of decision support systems to process the sensor captured data, 

enable viticulturists to make data-driven decisions [10].  

In 2020, Europe produced 63% of the world’s total wine production, and in viticulture WS 

directly impacts grape yield and quality, thus, it is necessary to detect it accurately and reliably, 

to avoid potential losses [11]. Traditional methods of monitoring WS involve in situ 

measurements, which are time-consuming, labour intensive, costly and, often, destructive [7], 

[10]. 

 

2.1.2. Main challenges  

Despite the technological advancements, the practical implementation of PV still faces several 

challenges. One of the main challenges involves the interpretation and management of the 

significant amount of data captured by the various sensors and platforms. This data then needs 

to be processed and displayed in meaningful ways so that it can be interpreted and turned into 

actionable insights. Furthermore, the technologies used in PV require a considerable investment 

and, particularly in small-scale applications it’s still not economically viable [12].  

Another challenge that hinders the implementation of PV involves the scepticism and lack 

of trust by viticulturists, regarding these new technologies. It is paramount that the benefits and 

limitations of PV are understood, and that viticulturists are provided with adequate training and 

education to adopt these technologies effectively. To build confidence it is necessary to provide 

measurable success, reliable and easy to use systems to ensure viticulturists transition from 

traditional practises to PV [10], [12]. 



 

9 
 

 

2.1.3. Crop Water Stress 

A certain crop naturally transpires at a certain rate, influenced by weather conditions and 

available resources.  As water resources become insufficient to meet a plant’s water needs, 

stomatal closure gradually increases, which causes a reduction in evapotranspiration. The 

consequence of less evapotranspiration is the increase in temperature which causes WS. In 

addition, excess water resources also cause WS, leading to diseases that directly impact a plant’s 

health [13], [14]. 

Traditional methods to determine the WS use parameters, including stomatal conductance, 

(𝑔𝑠) and stem water potential (𝛹𝑠𝑡𝑒𝑚). Nevertheless, to obtain such parameters is time-

consuming, laborious and costly [15]. 

A plant's temperature thereby serves as an indicator of water availability and is obtained 

via thermography, as leaf temperatures increase as result of a decrease of 𝑔𝑠, due to insufficient 

water [14], [15]. Therefore, thermal data strongly correlates with crop water stress. 

To quantify plant level water status by means of thermography, the Crop Water Stress Index 

(CWSI) is the most widely used metric, as stated by Awais et al.[16]. Initially proposed by Idso 

et al. [17], obtained by equation (3.1): 

 
𝐶𝑊𝑆𝐼 =

𝑇𝑐 − 𝑇𝑤𝑒𝑡

𝑇𝑑𝑟𝑦 − 𝑇𝑤𝑒𝑡
 (3.1) 

In equation (3.1), 𝑇𝑐 is the canopy temperature (in ºC), 𝑇𝑤𝑒𝑡 corresponds to the temperature of 

a leaf transpiring at its maximum potential rate (in ºC), and 𝑇𝑑𝑟𝑦 is the temperature of a non-

transpiring leaf (in ºC) and it refers to the temperature of a non-transpiring leaf. 

The CWSI is a normalised value, where 0 indicates full transpiration, and values close to 1 

signify increasing water stress derived from reduced transpiration. In vineyards, CWSI values 

above 0.5 serve as a good indicator that the plants are under water stress [15]. 
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Sepúlveda-Reyes et al. [15], evaluates varying methods to estimate the variables necessary 

to calculate CWSI, namely, 𝑇𝑑𝑟𝑦 and 𝑇𝑤𝑒𝑡, which are measured across different canopy zones 

and irrigation conditions. These methods are compared based on their relationship to plant-

based variables, namely stomatal conductance, 𝑔𝑠 and stem water potential, 𝛹𝑠𝑡𝑒𝑚. The Field 

Reference Temperature Technique (FRTT), proposed by Jones et. al.[18] is a thresholding 

technique used to determine 𝑇𝑤𝑒𝑡 and 𝑇𝑑𝑟𝑦. This technique involves selecting two mature and 

intact leaves from different zones of the plant canopy (sunlit and shaded1), where one leaf is 

coated with a water-detergent solution, simulating maximum transpiration rate, producing the 

𝑇𝑤𝑒𝑡. The second leaf is covered in petroleum jelly to prevent transpiration, establishing the 

𝑇𝑑𝑟𝑦 value [15]. The researchers conclude that sunlit and shadowed canopy temperature 

measurements provide similar results and CWSI estimations via FRTT remains an adequate 

choice due to its simplicity, minimal external variables and practical application. 

Similarly, in a study by Awais et al. [16], researchers also use CWSI, where the temperature 

of five sunny and five shaded leaves are measured using a handheld thermometer. This 

methodology allows for the effective monitoring of water stress in crops, as it demonstrates a 

strong correlation between CWSI values and 𝑔𝑠, without the need of a non-water stress baseline, 

as well as strong correlation between UAV 𝑇𝑐 and ground truth  𝑇𝑐, particularly when 

measurements are taken around midday. In another study the researchers conclude the optimal 

parameters to capture aerial thermal images, which is further explained in a later section [8].  

 

2.1.4. Unmanned Aerial Vehicles 

Unmanned Aerial Systems (UAS), as defined by the European Union Aviation Safety Agency 

(EASA), consist of an unmanned aircraft and its associated remote control [19]. The terms 

‘UAV’ or ‘drone’ particularly refers to the unmanned aircraft component of a UAS. EASA 

categorises these UAVs into several distinct groups, each with unique characteristics, 

advantages and disadvantages. These categories can be grouped into two distinct groups, fixed 

wing and rotor-based designs, in which the primary distinction lies in their lift generation. 

 
 

1 Sepúlveda-Reyes et al. [15] note that while some researchers established high correlations 

between sunlit canopy temperature, 𝑔𝑠 and 𝛹𝑠𝑡𝑒𝑚, others have concluded that, owing to less 

temperature variations, shaded canopy temperatures show better correlations with 𝑔𝑠 and 

𝛹𝑠𝑡𝑒𝑚.  
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Fixed-wing designs use wings to produce lift, similar to an airplane, use stationary wings during 

flight and rely on a forward thrust to move air both under and over the wings, and control 

surfaces, to generate lift and manoeuvre. In contrast, rotor-based designs employ powered 

rotors. Rotor-based designs can be single rotor, multi-rotor and lift and cruise or vectored thrust. 

Firstly, single rotor designs are comparable to a helicopter, that features a single rotor, which 

provides both lift and propulsion and requires a tail rotor to maintain stability and control yaw 

movement. Secondly, multi-rotor designs have at least two rotors and by adjusting their speed, 

they can generate lift and manoeuvre the UAV (roll, pitch and yaw). Lastly, lift and cruise or 

vectored thrust designs combine rotors and have at least, a fixed wing, which retains the benefits 

of both designs, namely Vertical Take-Off and Landing (VTOL) capabilities and flight 

endurance. This is achieved by having a set of rotors, to provide vertical thrust (lift and cruise) 

or by having pivoting rotors (vectored thrust) [20], [21], [22]. Table 2.1 summarises the 

different UAV designs, along with their differences, benefits and drawbacks. 
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TABLE 2.1. UAV Designs, Characteristics, Advantages and Disadvantages 

 Fixed wing2 Rotary wing  

Single rotor3 Multi rotor4 Lift and cruise or vectored 

thrust5 

Characteristics • Stationary wings provide 

lift. 

• Control surfaces on the 

wings, horizontal and 

vertical stabilizers control 

the movement. 

• Single rotor used for 

lift and propulsion. 

• Tail rotor maintains 

stability and controls 

yaw movement. 

• Uses at least two rotors control 

lift, propulsion and movement 

(quadcopter, hexacopter, etc). 

• Combines stationary 

wings and rotors. 

 

Advantages • Longer flight times. 

• Heavier payload capacity. 

• Higher high-wind stability 

• Better power efficiency. 

• VTOL capabilities. 

• Longer flight times. 

• Heavier payload 

capacity 

• VTOL capabilities 

• High versatility and 

manoeuvrability. 

• Ease of use and automation. 

• VTOL capabilities 

• Longer flights. 

• Better power 

efficiency 

Disadvantages • Requires a runway to take-

off and land. 

• Limited to forward flight. 

• Less manoeuvrable. 

• Design associated risks 

(stalling, flat spin, etc.) 

• Inability to hover. 

• More dangerous. 

• Harder to fly, more 

training needed. 

• Lower flight time • High development 

cost. 

• Complex. 

• Expensive 

 

2.1.4.1. Regulations 

As the use of UAVs expands across numerous sectors, various organisations worldwide, 

including the Federal Aviation Administration [23] in the United States of America, EASA [19] 

in the European Union, and the Civil Aviation Safety Authority [24] in Australia, have 

established a set of requirements, restrictions and guidelines, to ensure, above all, safe and 

ethical UAV operations [25]. 

 
 

2 Compared to rotary wing UAV designs. 

3 Compared to multi rotor UAV designs 

4 Compared to other rotor-based designs 

5 Compared to other rotary wing UAV designs, when equipped with retractable rotors [22]. 
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To ensure the above mentioned, EASA divides drone operations into three categories: open, 

specific and certified. On the one hand, the differences between open and specific are when 

operations have a higher risk and the UAV fails to meet a criterion of open category, or when 

operating beyond visual line of sight. Furthermore, the open category defines the restrictions 

and requirements for leisure and low-risk commercial applications. This category is divided 

into sub-categories6, that specify the operational restrictions, such as maintaining a maximum 

take-off under 25 kg, ensuring visual line-of-sight, flying at altitudes below 120m, and keeping 

a safe distance from uninvolved people [19], [26].   

Figure 2.2 provides an overview of the operational restrictions for a UAV, operating within 

the open category, as defined by EASA. 

  

FIGURE 2.2. EASA UAV Open Category Operational Restrictions (Source: [26]) 

 

On the other hand, the differences between specific and certified category are that UAV 

operations involve greater risks that require certification, or that the UAV is larger than 3m and 

flies over people, transports people or carries dangerous goods [19]. 

 
 

6 The subcategories in the open category are A1 (UAV may fly over people but not 

assemblies), A2 (UAV may fly close to people, at least 5 meters) and A3 (UAV must fly, at 

least, 150 meters away from people) [26]. 
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Ultimately, these measures guarantee that a pilot operates UAVs within legal boundaries 

and prioritises safety, above all, taking into consideration constraints imposed by the UAV’s 

C-Class7, its weight and sub-category. 

 

2.1.4.2. Sensors and Usages 

In UAV RS applications for PA, five types of cameras and sensors are considered, including 

RGB, multispectral, hyperspectral, LiDAR and thermal. 

RGB cameras are low cost, easy to use, have limited spectral resolution and high spatial 

resolution. These have successfully been used for crop phenotyping (such as, canopy height 

and lodging), to calculate Vegetation Indexes (VIs), to extrapolate Digital Terrain Models 

(DTMs) and Digital Surface Models (DSMs). Owing to the limited spectral resolution, these 

cameras are inadequate for the analysis of crop phenotypic knowledge for physiological traits 

and crop disease diagnosis [6], [27]. 

Besides RGB cameras, a multispectral camera provides a broader range of spectral bands, 

from the invisible and visible light spectrum, as it is comprised of several sensors, capable of 

capturing specific spectral band. However, multispectral cameras have a higher associated cost, 

compared to RGB cameras. In terms of usability, these cameras are suited for a wide range of 

applications, such as drought stress detection, estimation of nutrients status, pathogen detection, 

determination of growth vigour and yield estimation [6], [27]. 

Additionally, hyperspectral cameras collect data that covers a substantial spectral region 

between 400 nm and 1000 nm, in the form of continuous narrow bands of less than 10 nm. The 

main drawback associated with this type of camera is the high acquisition cost. Nevertheless, 

these have been successfully used to estimate soil nutrient status, pathogen identification and 

weed detection [6], [27]. 

Moreover, LiDAR sensors work by emitting a pulsating laser, that travels at a constant 

speed (the speed of light) and as it hits an object’s surface, it bounces back to the sensor. This, 

in turn, permits LiDAR sensors to calculate accurate distances between two points, the point of 

collision and the emitting sensor. Similarly to hyperspectral cameras, LiDAR sensors also 

involve a significant acquisition cost and the need of specialised onboard equipment, such as 

 
 

7 For UAVs sold in the EU, the manufactures are required to label them with a C-Class 

identification. This ensures that the UAV complies with applicable regulatory requirements 

[19]. 
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Global Positioning System (GPS). Nevertheless, these sensors have been used to monitor crop 

height and health, and to estimate yields, soil properties and pesticides [28]. 

Lastly, thermal cameras can either be cooled or uncooled. On the one hand, cooled image 

detectors, while highly sensitive, are often large, expensive, and consume a lot of energy, 

making them unsuitable for UAVs. On the other hand, uncooled image detectors, such as 

microbolometers, are lighter, consume less energy and are less complex, as they do not require 

cooling. This makes uncooled thermal cameras ideal for UAV applications. Despite being less 

accurate, they are sensitive in the thermal infrared range of the electromagnetic spectrum, that 

is, the range between 3 μm to 100 μm, as shown in Figure 2.3. The lenses of these sensors are 

made from a material, that blocks visible light while letting infrared radiation pass through [29]. 

 

 

FIGURE 2.3. Infrared Region of the Electromagnetic Spectrum Highlighted (Source: [29]) 

 

These sensors have been used to assess water stress, extract canopy temperatures, detect 

pathogens and determine soil salinity. When using these sensors, the main drawbacks 

associated include errors in measurements, induced by atmospheric attenuation, sensor 

calibration and higher cost, compared to RGB cameras [6]. 

To mitigate these drawbacks associated with thermal cameras and reduce measurement 

errors, Awais et. al. [8] concludes that the optimal flying height of a UAV equipped with a 

thermal camera to extract canopy temperatures is at 60 meters, at 11 am. In addition, they also 

propose that before each flight the UAV should be allowed to warmup for at least 30 minutes 
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and that the flight mission should be conducted with a forward and side overlap varying from 

80 to 85 percent. 

 

2.1.5. Remote Sensing 

Remote Sensing (RS) involves the use of technologies to indirectly collect information that 

is both accurate and timely. In the context of PA, RS provides a way to collect data that would 

be impractical, costly or difficult to gather by other means [7], [30]. The collection methods 

associated with RS can either be aerial or ground based. With this, ground-based methods 

involve direct contact with the study subject and are time consuming, labour-intensive, costly 

and destructive [7]. In contrast, aerial-based RS platforms such as satellites, airplanes, and 

UAVs, have been used in PA, with varying applications, characteristics, advantages and 

disadvantages [6], [13], [30]. High altitude platforms such as satellites are characterised by 

having low spatial resolution, long revisit times, high associated costs and affected by weather 

phenomena, such as clouds [31]. Airplanes are a lower altitude alternative, which offer finer 

spatial resolution and greater control over temporal resolution [32]. Nevertheless, for small 

scale applications, these are not a viable option [13]. 

 

2.2. Artificial Intelligence 

Artificial Intelligence (AI) enables a machine the ability to simulate human intelligence, by 

learning without the need of being programmed for that specific task. Additionally, ML is a 

subset of AI that contains Deep Learning (DL). The main difference between ML and DL 

algorithms resides in the fact that ML algorithms learn computational behaviours from data, 

whereas DL algorithms attempt to extract features from data [33], [34]. Figure 2.4 explains the 

relationship between AI, ML and DL. 

 

 

 

 

AI

ML

DL

FIGURE 2.4. AI Venn Diagram 
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2.2.1. Machine Learning 

ML is a branch of AI that enables computers to learn new skills, through data, without directly 

programming the skills. With regards on how a machine leaning algorithm is trained, the 

learning process can be supervised, unsupervised or by reinforcement. 

Supervised ML involves training a model on a dataset that includes both input and expected 

output data. With the provided data, the model gains knowledge from the relationship between 

the input and output data, that is, it learns from examples with a known outcome, which enables 

it to classify and predict new inputs. 

Conversely, unsupervised ML algorithms train on data that has no expected output. Without 

the expected outcome, the model learns to establish connections between the provided data, 

based on their characteristics. Thus, these algorithms learn solely based on the characteristics 

of the provided data. 

Lastly, reinforcement learning is a process where the algorithm learns as it interacts with 

an environment, where based on its decisions it receives either an encouragement or penalty 

[33], [34], [35]. 

 

2.2.1.1. Transfer Learning 

Transfer learning is a ML learning technique that leverages the knowledge gained from a 

previously trained network to address similar tasks or problems. This approach improves the 

model’s generalisation capabilities by applying learned features from the initial task to a new, 

related task. 

Alternatively, traditional ML methods require building a new model for each task from 

scratch, considering that the data for training, validation and testing originates from the same 

feature space. In contrast, transfer learning avoids the need for extensive retraining by 

repurposing pre-trained models, thus reducing computational costs and the need for large-scale 

datasets [36], [37]. 

The steps to implement transfer learning involve:  

• Freezing the layers from the pre-trained model, to prevent overwriting the existing 

weights; 

• Add additional trainable layers that will use the pre-trained features to make predictions 

for the new task. 
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2.2.2. Deep Learning 

DL takes inspiration from nature, as it processes data analogously to a human brain. These 

networks learn to map the input and generate an output, in either regression, that is, to predict 

a continuous value, or in classification tasks, i.e., to produce class predictions. 

DL algorithms use a Deep Neural Network (DNN) which organise the base units called 

neurons, or perceptrons, across multiple layers, like traditional neural networks. Associated to 

each neuron, there are weights and bias. The weights determine the strength of the connection 

between neurons in adjacent layers. In addition to weights, the bias shifts the activation function 

by adding a constant, allowing neurons to activate when the input is zero.  

A DNN consists of several different layers, namely, an input layer, several hidden layers 

and an output layer. This contrasts traditional artificial neural networks, which have a single 

hidden layer, instead of several hidden layers, as shown in Figure 2.5. Having more than one 

hidden layer enables DL algorithms to solve more convoluted and abstract problems [34]. 

 

 

FIGURE 2.5. Representation of an Artificial Neural Network and a DNN (Source: [34]) 

 

The input layer receives data and feeds it to the next layers. This also occurs in subsequent 

layers, where the next layer’s input is the output of the previous layer. Hidden layers consist of 

several neurons that perform hierarchical representations of that data, gradually extracting 

higher level features8, i.e., each hidden layer performs feature selection as it transforms the data 

in a more abstract representation [34], [35]. 

 
 

8  For example, a colour is a low-level feature while a facial structure is a high-level feature. 
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During training, there are two distinct phases, the forward propagation and the 

backpropagation. The process of data moving through the network, from the input layer to the 

output layer, is called the forward propagation phase. Once forward propagation is completed, 

the model evaluates its performance by calculating the errors in its predictions. These errors 

are, then, used in backward propagation, where the model adjusts the weights and biases by 

moving backward through the layers. This cycle is repeated during training until the model 

converges [38], [39], [40]. 

 

2.2.2.1. Convolutional Neural Network 

A Convolutional Neural Network (CNN) is a supervised learning, feed-forward, neural network 

that learns to map the input to the expected output. A CNN consists of convolutional layers, 

pooling layers and fully connected layers, where in each layer the neurons are arranged in three 

dimensions9. The convolutional layers use filters or kernels with coefficients10 that have been 

obtained during the training phase, to extract features from the data. Each filter convolutes over 

the input, to create a feature map. The feature map contains the highest activation values, 

obtained via the filter’s convolutions. The pooling layers reduce the dimension of feature maps 

and contribute to a reduction in computation requirements. These layers form the basis to 

extract features from the data. In these networks, the fully connected layers integrate localized 

attributes to combine overarching characteristics [35], [36]. 

 

2.2.2.2. Computer Vision 

CV enables computers to interpret and derive meaningful information found in digital images. 

It encompasses several tasks such as image recognition11, object detection12 and image 

segmentation [41], [42]. 

 
 

9 The neurons’ dimensions are the width, height and depth. The depth refers to the third 

dimension of an activation volume. For example, in the case of an RGB image, the depth would 

be the numbers of channels in that image, i.e., 3. 

10  The filter’s coefficients are the weights of the neuron connections. 

11  Involves the identification of objects or features, found within an image [42]. 

12  Localizes and classifies multiple objects within an image [42]. 
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Image segmentation specifically involves the process of labelling each pixel in an image 

with its corresponding class, which requires recognising objects and accurately delineating their 

boundaries. Modern approaches to image segmentation utilise advanced neural network 

architectures, such as fully convolutional networks and feature pyramid networks, to enhance 

accuracy and resolution [42]. 

 

2.2.2.3. Image Segmentation Architectures 

Firstly, YOLO11 is the latest model in the YOLO series from Ultralytics, it introduces higher 

accuracy, speed and efficiency, compared to previous architectures. Improvements to the 

architecture and training pipelines have resulted in better feature extraction and faster training 

speeds, while reducing the number of parameters. Depending on the model, YOLO11 can 

perform several CV tasks, including object detection and image segmentation. The largest 

model for image segmentation contains 62.1 million parameters and it was trained on the COCO 

dataset. However, by using YOLO11, the software developed is required to be open source, 

unless a paid license is acquired [43]. 

Secondly, VGG19 is a CNN comprised of 16 convolutional layers and 3 fully connected 

layers, totalling 19 layers. The model was designed to perform classification and localisation 

tasks on the 2012 ImageNet dataset. Despite the robust performance, the elevated number of 

convolutional layers results in the network having 144 million parameters, which required 1.3 

million training images which results in high computational demands, long training times and 

training [44]. 

Thirdly, MobileNet is designed for mobile applications, where computational resources are 

limited. It focuses on reducing the architecture size and latency, and uses depthwise separable 

convolutions, which applies a single filter to each input channel, followed by pointwise 

convolution, that is, a 1x1 convolution, resulting in 28 layers. The MobileNet contains 4.2 

million parameters, minimising computational cost while maintaining high accuracy and a 

reduced model size [45]. 

Lastly, he U-Net architecture (Figure 2.6), proposed by Ronneberger et al. [46] is a CNN 

designed for biomedical image segmentation, where the output is designed to include the class 

label assigned to each pixel. This network combines a contracting path for context capture and 

an expanding path for precise localisation, which results in an effective model for image 

segmentation tasks having won the Electron Microscopy (EM) segmentation challenge at 

International Symposium on Biomedical Imaging (ISBI) 2012, with only 30 training images. 



 

21 
 

 

FIGURE 2.6. U-Net Architecture (Source: [46]) 

 

The use of skip connections between the contracting and expanding paths allow high-

resolution features from the contracting path to directly transfer to the corresponding layers in 

the expanding path. This approach preserves information that would otherwise be lost during 

down-sampling, ensuring that the network retains fine details and context. Additionally, U-

Net’s architecture is absent of fully connected layers, which enables it to process images of 

varying sizes without needing to adjust the network's structure. Instead, the network relies on 

unpadded convolutions, resulting in a segmented output that is smaller than the input but 

achieves pixel-level accuracy by minimising border-related inaccuracies through mirroring 

[46]. 

The contracting path uses repeated 3x3 convolutions with ReLU activation, followed by 

2x2 max-pooling operations, which down-sample the feature maps and increase the number of 

filters at each stage. This path captures increasingly complex features at progressively lower 

resolutions. In the expanding path, up-convolutions (2x2 transposed convolutions) are used to 

up-sample the feature maps, followed by 3x3 convolutions. Each up-sampling step halves the 

number of feature channels, whilst skip connections, with the corresponding contracting path 

layers, enhance spatial precision by combining contextual and fine-grained details [46]. 

Moreover, U-Net employs extensive data augmentation techniques, due to the limited 

number of available images. The resulting network’s architecture and training strategy enable 

it to generalise effectively from few samples, making U-Net a robust solution for high-precision 

segmentation tasks with limited data availability [46]. 
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2.2.2.3.1. Image Processing Techniques 

In the context of ML, image processing includes the usage of techniques or algorithms to 

modify existing data samples, to produce new data samples. Techniques such as resizing, and 

data augmentation, and algorithms such as Otsu binarisation and Gaussian blur are applied with 

the goal of improving the generalisation capabilities of the model.  

Thereby, the Otsu binarisation is a technique that separates foreground from background 

objects, by applying a threshold to minimise intra-class variance. This algorithm analyses the 

histogram of an image, segmenting it into background and foreground, iteratively searching for 

the grey level that maximises class separation [47], [48]. Gaussian blur is another filtering 

technique that reduces image noise and detail, smoothing variations by averaging pixel values 

based on a Gaussian function. This operation is useful for preprocessing tasks, such as edge 

detection and feature extraction [7], [49]. When used in conjunction, Otsu binarisation and 

Gaussian blur enhance segmentation results by reducing noise, resulting in better object 

separation. 

Using techniques including Otsu binarisation and Gaussian blur, Han et. al [7] developed 

an aerial thermal image calibration and processing method to extract the canopy temperature 

for analysing WS in fruit trees, under different irrigation conditions. With these techniques, 

canopy temperatures from aerial thermal images were effectively isolated from background 

data, such as soil. 

 

2.2.2.4. Network Configuration Hyperparameters 

2.2.2.4.1. Loss Function 

A loss function is responsible for evaluating the model’s performance, so that it can be used, 

during training, to adjust the model’s weights. This function applies a penalty to the model, 

when the output predictions deviate from the expected output, that is, the ground truths. 

Ultimately, the goal is to minimise this function, so that the model can generate better, and more 

accurate predictions [50].  
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There are several loss functions, and their application depends on the type of data being 

used, which can be either continuous13 or discrete14. When the output predicts a continuous, 

real number, this is a regression problem. In contrast, when the target output is a discrete value, 

the task is a classification problem [50], [51].  

In a binary classification problem, Binary Cross Entropy (BCE), also known as Logarithmic 

Loss (LL), adjusts the models’ weights by penalising the model when it makes incorrect class 

predictions to improve the models’ predictive capabilities [50], [51]. 

 

𝐵𝐶𝐸 =  −
1

𝑁
∑ 𝑦𝑖 ∙ 𝑙𝑜𝑔(𝑝(𝑦𝑖)) + (1 − 𝑦𝑖) ∙ 𝑙𝑜𝑔 (1 − 𝑝(𝑦𝑖))

𝑁

𝑖=1

 (3.2) 

Equation (3.2) represents the equation to obtain the BCE, where 𝑁 is the number of samples 

considered. Each sample has a true class label, denoted as 𝑦𝑖, where 𝑦𝑖 = 1 for positive class 

and 𝑦𝑖 = 0 for the negative class. The function 𝑝(𝑦𝑖) is the predicted probability that the model 

assigns to the positive class (𝑦𝑖 = 1). 

The equation is divided into two distinct terms: 

• 𝑦𝑖 ∙ 𝑙𝑜𝑔(𝑝(𝑦𝑖)) applies when 𝑦𝑖 = 1, focusing on the log of the predicted 

probability for the positive class; 

• (1 − 𝑦𝑖) ∙ 𝑙𝑜𝑔 (1 − 𝑝(𝑦𝑖)) applies when 𝑦𝑖 = 0, measuring the error for the 

negative class based on 1 − 𝑝(𝑦𝑖), which represents the probability that the sample 

belongs to the negative class. 

The negative sign that precedes the formula ensures that larger errors produce higher 

positive values, hence, it penalises the model for making incorrect predictions. The summation 

and multiplication of the inverse of 𝑁 averages the loss across all samples, providing a single 

value that reflects the overall model performance. This loss guides the model's weight 

adjustments during training, optimising its accuracy by reducing prediction errors [50], [51]. 

 

2.2.2.4.2. Dataset Split – Training and Validation 

Despite the importance of the loss function penalising incorrect predictions during training, it 

is fundamental that the model produces accurate predictions on both the training set, and, more 

importantly, on the new data, unseen during training. Generalisation refers to the model’s ability 

 
 

13 A continuous variable can only take a single value from an uncountable set of values. 

14 A discrete variable can only take a single value from a limited number of possible values. 
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to perform well on data used during training and new data. To assess the model’s ability to 

generalise, it is necessary to evaluate its performance on unseen data [50], [51]. To achieve this, 

ML techniques such as holdout validation and k-fold cross-validation are used during training 

to split the original dataset [52], [53], [54].  

Thereby, holdout validation involves dividing the dataset into two distinct sets, a training 

set and a validation set. The training set is used to train the model, while the remaining data is 

reserved for validating the model’s performance on unseen data. In addition, this method, 

compared to others, is easy to implement and computationally inexpensive. However, a major 

drawback is the potential for bias, in case the validation set contains patterns not captured in 

the training set [52]. 

In contrast, k-fold cross-validation addresses some limitations of the previous method, by 

dividing the dataset into 𝑘 subsets or folds. The model trains 𝑘 − 1 times, while one-fold is 

reserved for validating, in a process that repeats until each fold has served as a validation set 

once. This method helps reduce overfitting while providing a more accurate model 

performance. It is, however, computationally expensive and time-consuming, compared to the 

holdout validation [53].  

 

2.2.2.4.3. Evaluating Loss Function on Unseen Data 

Analysing the loss function during training on unseen data ensures that the model generalises 

beyond the training data. By examining the model’s performance on separate data sets, it is 

possible to observe how the model adapts to new data points. This confirms whether the model 

is learning meaningful patterns, rather than memorising the training data [55]. 

Overfitting happens when a model becomes too complex, fitting the training data very 

closely but failing to generalise well on new, unseen data. During training, this phenomenon 

becomes apparent as the training loss value reduces, while the value of the validation loss starts 

to increase. To avoid this undesirable behaviour, training is interrupted when the validation loss 

starts to increase, thus, preventing the model from fitting the training data perfectly [54], [55]. 

 

2.2.2.4.4. Additional Performance Metrics 

Depending on the type of ML problem, either a regression problem or a classification problem, 

there are numerous available metrics to evaluate the model’s performance. 
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In a binary classification problem, the metrics that are presented in this section are 

calculated using a single threshold, which can be tuned to achieve a desired model performance. 

The threshold determines the classification of an output, that is, if the prediction exceeds this 

output, it indicates that the class belongs to the positive or target class. Conversely, if the 

prediction falls below the threshold, it signifies that the class belongs to the negative class [56]. 

In the context of a binary classifier, each predicted output results in one of four possible 

outcomes. The classifier either correctly identifies the positive class, known as a True Positive 

(𝑇𝑃), or it correctly identifies the negative class, known as a True Negative (𝑇𝑁). Alternatively, 

when the classifier incorrectly identifies the positive class, this is a False Negative (𝐹𝑁), or 

when it incorrectly identifies a negative class, is called a False Positive (𝐹𝑃) [56], [57], [58]. 

After these values are calculated, they can be organised to form a confusion matrix. This matrix 

maps the model’s predictions against the actual classes, providing a visual representation of the 

classifier’s performance [59]. 

 

Accuracy 

The Accuracy metric measures the portion of all classifications that are correctly made and 

is defined by the equation (3.3): 

 
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (3.3) 

In a well-balanced dataset, accuracy can measure the performance of the model. However, 

when there is a reduced number of target samples, meaning that the dataset is imbalanced, it 

results in a high accuracy, or, if it generates incorrect predictions, namely 𝐹𝑃 and 𝐹𝑁, these 

will be indistinguishable, creating a need to use other metrics [56], [57]. 

 

Recall 

The recall or true positive rate measures the proportion of actual positive cases that are 

properly predicted by a model. Recall is defined by the equation (3.4): 

 
𝑅𝑒𝑐𝑎𝑙𝑙 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (3.4) 

A high recall ensures that a model detects most of the actual positive cases, that is, the 𝑇𝑃, 

as there will be a reduced number of 𝐹𝑁. Conversely, if there is a reduced number of 𝑇𝑃, caused 

by an unbalanced dataset, the recall will be low. Recall is helpful when minimising 𝐹𝑁 is more 

critical than reducing 𝐹𝑃 [56], [57]. 
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Precision 

 Precision refers to the fraction of the model’s positive predictions that are truly positive. It 

is mathematically expressed by the equation (3.5): 

 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (3.5) 

When a model displays a high Precision, it confirms that the model finds the actual positive 

cases, 𝑇𝑃 out of all the positive predictions, as it implies that there is a reduced number of 

incorrect positive predictions, 𝐹𝑃. In an unbalanced dataset that contains few 𝑇𝑃 cases, 

Precision performs poorly, similarly to Recall. Nevertheless, Precision is useful when reducing 

𝐹𝑃 cases have a higher priority over 𝐹𝑁 cases [56], [57]. 

Changing the classification threshold reveals that Precision and Recall have an inverse 

relationship. This behaviour is caused as higher threshold values increase the amount of 𝐹𝑁s 

and decrease the occurrences of 𝐹𝑃s. The opposite happens with lower threshold values [56]. 

 

Intersection over Union 

Intersection over Union (IoU), also known as Jaccard index, is a metric used in 

classification tasks, including object detection and image segmentation, that evaluates the 

resemblance between two shapes. It calculates a normalised value, based on the dimensions and 

positions of the shapes, with values closer to 1 indicating a higher degree of overlapping [58], 

[60]. IoU is defined by the equation (3.6): 

 
𝐼𝑜𝑈 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃
 (3.6) 

 

2.2.2.4.5. Optimisers 

The choice of optimiser directly impacts the convergence speed and the predictive performance 

of a fully trained algorithm. An optimiser defines an update rule that directs how the model 

parameters are adjusted based on the loss function and gradient information. The behaviour of 

the optimiser is influenced by a set of hyperparameters, such as the learning rate. Selecting an 

optimal optimiser involves conducting both empirical studies and benchmarking. The latter 

involves fine-tuning the learning rate, a hyperparameter on a validation dataset, to maximise 

validation dataset performance [61]. 
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The Stochastic Gradient Descent (SGD), initially proposed by Robbins et al. [62], updates 

the model parameters by moving them in the opposite direction of the gradient of the loss 

function with respect to the parameters. The step size of this movement is controlled by a 

learning rate. 

Gradient descent with momentum is built upon SGD and it is designed to accelerate 

convergence. It incorporates part of the previous parameter update into the current update, 

smoothing out the optimisation trajectory by taking larger steps. The momentum coefficient 

determines how much of the previous update to carry over. Using momentum leads to faster 

convergence and avoids local minimum, where the gradient value is 0. However, despite 

oscillating around the global minimum until reaching it, it is still faster to conventional gradient 

descent [63], [64], [65]. 

Nesterov Accelerated Gradient (NAG) improves on momentum as the update happens in 

two steps. Initially, the gradient at the look-ahead point is calculated and it is then used to 

calculate the final update. If the gradient at the look-ahead point is positive, the NGA works 

similarly to a momentum-based optimiser, however, if it is negative, the final update will be 

smaller. This additional measure results in NGA converging faster than momentum, as the 

chances of overshooting the global minimum are reduced, and it allows greater values of its 

momentum [61], [66], [67]. 

The Adaptive Moment Estimation (ADAM) optimiser, proposed by Kingma et al. [68], 

adjusts the learning rate for each parameter based on estimates of the first and second moments 

of the gradients. ADAM combines the advantages of Adaptive Gradient Algorithm and Root 

Mean Square Propagation. Both methods adapt learning rates for each parameter individually, 

but the second further incorporates a running average of squared gradients, which helps smooth 

updates. However, in ADAM, updates are estimated using a running average of the first and 

second moment of the gradient. In addition, a bias-correction term is introduced to avoid large 

step sizes and divergence, in the presence of sparce gradients. These combinations and 

modifications make ADAM particularly effective for tasks involving sparse gradients, when 

only a few features appear frequently in a dataset, as well as for on-line learning or when dealing 

with non-stationary data, such as noisy environments. Moreover, ADAM requires fewer 

computational resources while providing stable convergence compared to other methods [61], 

[68]. 
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Choi et al. [61] compares several optimisers, using a set of hyperparameters and 

demonstrates that more general optimisers, such as ADAM, generally perform adequately 

compared to SGD, Nesterov or Momentum. Moreover, the researchers outline that, if possible, 

all hyperparameters should be tuned of the adaptive gradient methods, as they were unable to 

approximate the compared optimisers. 

 

2.2.2.4.6. Batch Size  

Batch size is a hyperparameter that characterises the number of samples used in one forward 

and backward pass through a CNN. It directly impacts model performance, and the 

computational resources required for training [69].  

Radiuk et. al. [53] uses two datasets, Mixed National Institute of Standards and Technology 

(MNIST) and the CIFAR-10, along with two custom CNNs with batch sizes ranging from 16 

to 1024 to evaluate the impact of using different batch sizes during training. They prove that 

smaller batch sizes can accelerate training but lead to lower accuracy and increased sensitivity 

to data fluctuations. Conversely, larger batch sizes improve accuracy and stability, offering 

greater resistance to data variation, to the detriment of longer training times, higher 

computational resources and slower convergence speed [69]. Therefore, depending on the 

computational resources, a higher batch size will result in a more accurate model. 

 

2.2.2.4.7. Number of Epochs 

In ML, an epoch refers to one complete pass through the entire training dataset by the learning 

algorithm. The number of epochs determines how many times the model will process all the 

samples in the dataset during training. A low number of epochs may cause the training to stop 

prematurely, resulting in underfitting due to insufficient knowledge about the data. However, 

too many epochs can lead to overfitting, where the model is unable to generalise new and 

unseen data [70]. 

 

2.2.2.4.8. Learning Rate 

The learning rate is a hyperparameter in ML that, during the model training, determines the 

magnitude of the step size used to update the weight and bias of each layer to minimise the loss 

function. The learning rate ranges from 0.0 to 1.0, where a high learning rate can cause the 

model to overshoot the global minimum and fail to converge. In contrast, a low learning rate 

increases the number of epochs necessary to train the model and it could cause the model to 

reach a local minimum [38], [71]. 
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2.2.2.4.9. Activation Functions 

An activation function introduces the non-linearity that enables a neural network to model 

complex data. Otherwise, without activation functions, these networks would function as linear 

models, unable to learn from non-linear data [72]. 

During backpropagation, a gradient descent algorithm is responsible for updating the 

weights of each layer, with the goal of minimising the loss function, thus, finding the optimal 

weights. The equation (3.7) updates the weights using gradient descent until convergence, 

where 𝑊𝑜𝑙𝑑 is the old weight, 𝑊𝑛𝑒𝑤 is the new weight, 𝜂 is the learning rate and 
𝜕𝐿

𝜕𝑊𝑜𝑙𝑑
 is the 

gradient of the loss function 𝐿 with respect to the old weight [73]. 

 
𝑊𝑛𝑒𝑤 = 𝑊𝑜𝑙𝑑 − 𝜂

𝜕𝐿

𝜕𝑊𝑜𝑙𝑑
 (3.7)  

The Sigmoid activation function is a non-linear function that maps input values, ranging 

from (−∞;  ∞) to output values between 0 and 1 [72]. The Sigmoid function, also known as 

Logistic Activation Function, is defined by the equation (3.8): 

 
𝜎(𝑥) =

1

1 + 𝑒−𝑥
  (3.8) 

Since the Sigmoid function outputs a value between 0 and 1, and its derivative is 

comprehended between 0 and 0.25, in a deep network during backpropagation, the reduced 

derivative range can lead to small gradients, causing the vanishing gradient problem [72].  

The Tanh function is similar to the Sigmoid activation function, however, it outputs a zero-

centred value, ranging from -1 to 1 and its derivate ranges from 0 to 1. Despite having a steeper 

gradient, it still affected by the vanishing gradient [72]. This function is given by the equation 

(3.9): 

 
𝑡𝑎𝑛ℎ(𝑥) =

2

1 + 𝑒−2𝑥
− 1  (3.9) 

Lastly, the Rectified Linear Unit (ReLU) activation function overcomes the drawbacks 

associated with the previous functions, that is, the vanishing gradient problem, and it also results 

in superior training performance. This function returns the input directly if positive and zero 

otherwise [72]. The ReLU function is provided by the equation (3.10):  

 𝑅𝑒𝐿𝑈(𝑥) = 𝑚𝑎𝑥 (0, 𝑥)  (3.10) 

Despite its advantages, ReLU is prone to the “dying ReLU” problem, where neurons stop 

learning entirely if their output consistently falls below zero [72]. 

In the context of binary classification problems, when using an activation function for the 

output layer, it is conventional to use a Sigmoid activation function, as labels are either 0 or 1. 
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2.2.2.5. Data Augmentation 

Data augmentation is a technique that increases the number of existing data samples present in 

a dataset, by copying and modifying existing data samples, using image processing techniques. 

These modifications include colour-space and geometric changes, such as, applying horizontal 

or vertical flip to the samples. This step improves the model’s ability to better generalise by 

exposing it to a broader range of in-image variations [74]. 
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CHAPTER 3 

Trained Models 

This chapter outlines the methodologies and tools used in developing and fine-tunning the U-

Net-based models to, in a first phase, perform image segmentation on an existing UAV-

captured agricultural dataset, and in a second phase, to use transfer learning to retrain part of 

the previous model to detect and localise WS in a vineyard, using UAV-captured thermal 

images.  

It begins with a methodology overview that summarises the approach taken to develop the 

platform for WS detection and localisation. This is followed by a description of the software 

and the libraries used, including Python, Tensorflow, Keras, Django, Thermal Parser, among 

others. Next, the architecture and its implementation are described, discussing the reasons 

behind some of the made decisions. It also covers the hyperparameters and metrics used during 

fine-tuning. The dataset split into training and validation sets is described, with an emphasis on 

the choice behind holdout validation. Furthermore, the chapter details each specific model, 

namely WeedUNet and StressUNet, along with their dataset creation process. Finally, the 

developed platform is described, highlighting its architecture and key functionalities. 

 

3.1. Methodology Overview 

To develop the toolkit to visually pinpoint areas experiencing water stress in vineyards, that 

could be scaled to a production-ready system, a U-Net based architecture was chosen. This 

decision was motivated by the lack of a freely available pre-trained network for a similar PA 

application, which also eliminates the need for any licensing requirements and restrictions. In 

addition, this gives a greater flexibility by allowing the network to receive an input image with 

additional channels. Combined with the availability of the Agriculture-Vision large scale 

dataset of UAV-captured agricultural images (further defined in later sections), this resulted 

into two distinct models being created, WeedUNet and StressUNet. As both models perform 

binary segmentation, the models share the same architecture. 

 

3.1.1. Software Used 

The software developed for implementing and training these models relies on a combination of 

several different libraries and frameworks, however, only key libraries are outlined.  The 

programming language is Python as it provides the necessary support for ML applications. 
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These frameworks include TensorFlow and Keras, which provide the necessary aspects to build 

and deploy ML models. Tensorflow provides a comprehensive platform to create end-to-end 

ML models by using Keras, allowing an easier model prototyping and experimentation [75], 

[76]. 

To optimise computations, CUDA and cuDNN libraries where used, and are both 

developed by NVIDIA. With this, CUDA allows for parallel processing on the GPU hardware, 

thus, speeding up training times, while cuDNN is a GPU-accelerated library of primitives for 

DNNs, providing tuned implementations of standard routines, like convolution and pooling 

[77]. These tools were crucial for developing both WeedUNet and StressUNet models, enabling 

efficient training and fine-tuning of the network architectures. 

Herewith, the platform where the StressUNet model makes predictions is developed using 

the Django web framework, as it uses Python, and it already contains the necessary components 

to create a marketable solution [78], while the Thermal Parser Python library extracts the 

temperature value of the UAV captured thermal images, which enables the creation of the 

CWSI-based ground truth masks [79]. This library was used as the UAV manufacturer does not 

provide a solution with these functionalities and ease of use. 

 

3.2. U-Net model  

3.2.1. Architecture 

The U-Net model architecture follows the specifications outlined by Ronneberger et al. [46] 

and it was based on an existing U-Net Python implementation [80]. The architecture consists 

of a contracting path and an expansive path. The contracting path consists of using multiple 

downsampling blocks that double the number of feature channels. One downsampling block 

consists of two 3x3 convolutions, each with a ReLU activation function followed by a 2x2 max 

pooling operation and a 0.3 dropout layer. Similarly, the expansive path consists of several 

upsampling blocks, where the feature map is upsampled, and a 2x2 convolution reduces the 

number of feature channels to half. This is followed by a concatenation with the corresponding 

cropped feature map from the contracting path and two 3x3 convolutions, each with a ReLU 

activation function. 

The implementation utilises the Keras functional Application Programming Interface 

(API), as it allows the creation of models with non-linear topology and shared layers, which 

offers greater flexibility compared with Keras sequential API [81]. 
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The architecture processes input images with the shape of 128x128x3 (height, width and 

depth, respectively). This was motivated by available images from the Agriculture-Vision 

dataset dimensions being 512x512x3, which, during training, caused out-of-memory exceptions 

to occur. In addition, given the limited number of original thermal images with the dimensions 

of 640x512, data augmentation posed serious challenges. Resizing the images could result in 

information loss, while transformations involving colour or shape are unrealistic in a vineyard 

context. Therefore, using images with the shape of 128x128x3 allows the architecture to work 

with the images from both datasets, without compromising the information contained within 

each image. 

The architecture outputs a single channel image with a height and width of 128 pixels. Each 

pixel contains a value in the range of 0 to 1, as result of the sigmoid activation function. In 

doing this, values closer to 1 indicate that the model predicts that pixel as a foreground object 

(positive class), whereas values closer to 0 indicate a background object (negative class). 

 

3.2.2. Network Hyperparameters Fine-tunning 

To optimise performance of each model, several models were trained using different sets of 

hyperparameters, including batch sizes, optimisers and learning rates across 500 epochs. Table 

3.1 summarises the hyperparameters and the possible values tested during the model 

optimisation. These hyperparameters were based on the hyperparameters found in the literature 

[61], [68], [69], [71]. 

TABLE 3.1. Hyperparameter Configurations 

Hyperparameters Values 

Optimiser ADAM, SGD, SGD with momentum of 0.9 and Nesterov acceleration 

enabled 

Batch size 8, 16 

Learning rate 0.01, 0.001, 0.0001 

Epochs 500 

 

Different optimisers were explored to find the most effective method to minimise the loss 

function. The optimisers tested included ADAM, SGD and SGD with a momentum of 0.9 and 

Nesterov acceleration enabled. Similarly, to find the optimal batch size, models were trained 

with batches of 8 and 16 samples, to verify if a higher batch size would improve accuracy and 
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stability. Models were also trained with learning rates of 0.01, 0.001 and 0.0001, where lower 

values could result in a more precise conversion at the cost of training times. 

In binary image segmentation tasks, the BCE loss function penalises incorrect class 

predictions, ensuring accurate pixel-level labelling, as either foreground (positive class) or 

background (negative class). Furthermore, training incorporates metrics like Precision, Recall, 

IoU, and Accuracy. Each provides unique insights into different performance aspects of the 

model: 

• Accuracy: Measures the portion of all correct classifications; 

• Recall: Measures the portion of actual positive cases correctly predicted; 

• Precision: Measures the amount of actual positive predictions out of all positive     

                              predictions; 

• IoU: Evaluates the overlap between the predicted masks and the ground-truth  

   Masks. 

 

3.3. Dataset Training - Validation Split 

In this study, given the balance between efficiency and model accuracy, holdout validation 

using a 50/50 split is used for every trained model [80]. This choice ensures that each model 

generalises well without the computational overhead associated with multiple training iterations 

in k-fold cross-validation. Although holdout validation may lead to less precise estimates, it 

proves advantageous when time and resources are constrained, enabling additional models and 

different hyperparameters to be tested and validated. In addition, using validation data during 

training allows the model to evaluate itself at the end of each epoch. Monitoring validation 

metrics during training ensures that the model generalises with unseen data. Specifically, by 

monitoring validation loss, it is possible to verify when overfitting occurs, as validation loss 

start to increase. Ultimately, this monitoring helps to mitigate overfitting. 

 

3.4. WeedUNet Model 

The initial model, named WeedUNet, was trained from scratch to detect weed clusters in 

RGB aerial images of agricultural farmland. These images were sourced from the Agriculture-

Vision dataset [82]. This model was trained and optimised to accurately distinguish weed 

clusters from non-weed areas, based on pixel-wise classification. This pattern was chosen after 

determining that it was the most abundant on the dataset. However, due to missing near 

infrared-RGB image pairs, only RGB images were considered. 



 

35 
 

3.4.1. Dataset Creation 

The Agriculture-Vision dataset contains over twenty thousand UAV-captured RGB and near 

infrared farmland images. These images were captured throughout 2019, from varying farmland 

regions, each with a width and height of 512 pixels, an annotation label mask, a corresponding 

boundary mask and boundary map. The annotation label mask indicates the pixels of the image 

where a particular agricultural pattern is present. The boundary mask highlights the valid pixels 

in the image while the boundary map shows the valid farmland region [82]. 

Therefore, constructing the dataset to train WeedUNet involves obtaining a valid mask that 

indicates the presence of the selected agricultural pattern within the boundary mask and map. 

To minimise class-wise bias15, only images containing between 30% and 70% of pixels 

labelled as “weed cluster” are selected. This repeats until the threshold of 6000 images is 

reached. If the available images prove insufficient, the previously added images are duplicated 

and undergo a data augmentation step that applies a random rotation. 

 

3.5. StressUNet Model 

Building on the knowledge contained within WeedUNet, a second model, StressUNet, was 

developed using transfer learning to detect WS in vineyards. In this approach, StressUNet was 

initialised with the weights from the weed detection model but adapted to perform binary image 

segmentation on aerial thermal images, identifying areas in a vineyard experiencing WS. Using 

transfer learning, the best performing WeedUNet and unfreezing the last 5 layers enabled the 

StressUNet to achieve accurate results, with only 40 original images. 

 

3.5.1. Dataset Creation 

The thermal dataset acquisition involved using a thermally equipped UAV, flying at a height 

of 60 meters at around 11 am [8]. This methodology and the equipment are further described in 

chapter 4.  

 The captured thermal images are first processed using the Thermal Parser library, to extract 

the temperature within each pixel [79]. To create the ground truth masks, image processing 

 
 

15 In a binary classification problem, this class wise bias arises when the number of samples of 

one class are much greater than the other (for example, 90% of the pixels being labelled as 

background and 10% foreground). 
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involving Otsu binarisation and Gaussian blur were used to separate the vines from the 

background [7]. In addition, valid vineyard regions were manually labelled using Label Studio 

software [83], creating masks that indicated the areas of interest, ensuring that background and 

noise in the data were discarded. A sliding window approach was employed to augment the 

dataset. The images were split into smaller segments of 128x128 pixels with a 32-pixel stride, 

ensuring overlap and thorough coverage of the thermal data. This method enables the creation 

of several unique images from a single image, while retaining the details in the original image, 

as resizing operations are avoided. The resulting images are further filtered by only selecting 

the ones containing between 20% and 80% of foreground objects. This threshold helps balance 

the dataset by excluding images with excessive or minimal foreground coverage. 

To further address class-wise bias, sample weights were calculated using the Scikit-learn 

library [84]. This approach ensures that the model receives the necessary weights to use during 

training, so that it pays additional attention to the underrepresented class. This helps to mitigate 

the impact of the greater number of background pixels, compared to the number of foreground 

pixels. Ultimately, this process resulted in a dataset comprising 1500 unique images, which 

were used to train the StressUNet model. 

 

3.6. Water Stress Monitoring Platform 

3.6.1. Django Overview 

Django is A Python web development framework that includes all the necessary libraries, 

functionalities and logic to develop and deploy modular scalable applications [78]. 

 

3.6.2. Model - View - Template Architecture 

Django follows a 3 layers architecture, the Model-View-Template, where each part serves a 

distinct role. The model serves as the data access layer that handles the database. It defines the 

data structure and provides methods to interact with it. The view processes user requests and 

returns responses. This is done by interacting with the model to retrieve data and rendering 

templates. Finally, the template is the presentation layer that handles the user interface, defining 

how data is displayed to the user [85]. 

 

3.6.3. Platform Architecture and Key Functionalities 

The platform is designed to support viticulturists manage one or more vineyards, across various 

seasons. To achieve, the platform is organised into a modular structure using Django 
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applications. Each application encapsulates specific functionalities, facilitating easy 

maintenance and scalability. The core hierarchy is defined as follows: 

 

• Project: Represents the management entity, that is, a vineyard over an indefinite period; 

• Campaign: A Campaign manages specific periods or objectives, such as the monitoring  

o        of a particular growth cycle. A Project may contain several Campaigns; 

• Mission: These correspond to individual data collection efforts, involving UAV flights.  

o    These can happen several times during the growing season of a vineyard,     

o    encapsulating information of key growth stages; 

• Picture: The UAV-captured thermal images from each mission are uploaded to the  

o    platform. Each image is then transformed into a Picture, which displays both     

o    the original thermal image and its corresponding prediction side by side,  

o    allowing users to visually assess and compare the data. 

• User: Represents a user of the platform and encapsulates user related tasks, such as  

                      authentication.  

Figure 3.1 illustrates the workflow of the platform, detailing its internal workings. This involves 

the creation and access of the above defined Django applications, and the interactions between 

the platform, the predictive model (WeedUNet) and the UAV captured thermal images. 

 



38 
 

 

FIGURE 3.1. Toolkit Fluxogram 
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CHAPTER 4 

Experimental Validation and Discussion 

 

This chapter starts with a detailed description of the materials and study methods involved in 

the creation of StressUNet. Afterwards, the performance of WeedUNet and StressUNet is 

discussed. 

 

4.1. Materials and Study Methods 

4.1.1. UAV and Onboard Sensors 

The UAV chosen for this study is a DJI Mavic 3 thermal (Figure 4.1), from Da-Jiang 

Innovations. This UAV is a multi-rotor design, specifically a quadcopter, having VTOL 

capabilities and precise manoeuvrability, which is necessary for accurate data collection. 

Moreover, the UAV can be easily transported as it features foldable rotors and can fly for up to 

45 minutes, having the ability to swap batteries and resume the last data collection point [86]. 

 

FIGURE 4.1. DJI Mavic 3T Mid-flight 

 

This specific UAV has a maximum take-off weight of 1050 grams, and it features two sensors, 

a 48 Megapixels RGB wide main camera and an uncooled thermal camera, sensitive to the 

infrared wavelength range of 8 μm to 14 μm, with a temperature measurement accuracy of ±2° 

C or ±2% (using the greater value), in the range of -20ºC to 150ºC. The sensors are attached to 

a 3-axis (roll, tilt and pan) gimbal, which greatly reduces any distortions that may occur. Table 

4.1 and Table 4.2 fully summarise the information related to each main sensor equipped on the 

UAV [86]. 
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TABLE 4.1. DJI Mavic 3T RGB Camera Specifications (Source:[86]) 

Sensor RGB 

Sensor type 1/2-inch CMOS 

Effective pixels 48MP 

Field of view 84º 

Format equivalent 24mm 

Aperture f/2.8 

ISO Range 100-25600 

Shutter type and speed Electronic Shutter: 8-1/8000 s 

Max Image Size 8000×6000 

 

TABLE 4.2. DJI Mavic 3T Thermal Camera Specifications (Source: [86]) 

Sensor Thermal 

Thermal Imager Uncooled VOx Microbolometer 

Pixel Pitch 12 μm 

Frame Rate 30 Hz 

Lens Display Field of View: 61° 

Format Equivalent: 40 mm 

Aperture: f/1.0 

Focus: 5 m to ∞ 

Noise Equivalent Temperature Difference 

(NETD) 

≤50 mK@F1.0 

Temperature Measurement Method -20° to 150° C (-4° to 302° F, High Gain 

Mode) 

Photo Format JPEG (8-bit) 

R-JPEG (16-bit) 

Max Image Size 640×512 

Infrared Wavelength 8-14 μm 

Infrared Temperature Measurement 

Accuracy 

±2° C or ±2% (using the larger value) 
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Additionally, the DJI Mavic 3 thermal is labelled as C-2 class label by EASA, which 

permits the UAV to be operated near involved and uninvolved personal. Acquiring a license to 

operate a UAV subcategory A2 ensures that operations follow the law, and the requirements 

attributed to the UAV’s open category. This license can be obtained through online courses, 

such as EUROCONTROL Learning Zone, which provides all the necessary information to 

conduct safe and lawful UAV operations [87]. 

 

4.1.2. Network Training Equipment 

The network training process utilises an Asus TUF A15 FA507NU, which features an AMD 

Ryzen 7 7735HS CPU, an NVIDIA GeForce RTX 4050 GPU and 32 GB of RAM. 

 

4.2. Study Site 

The study site is a vineyard located in Cabanas de Torres, Alenquer, Lisbon, Portugal, at 

coordinates 39°08'34.5”N 9°04'11.1”W (Figure 4.2). This vineyard lacks artificial irrigation 

and covers an area of approximately 3600 square meters, offering a representative landscape 

for viticultural research. The region's climate, typical of the Lisbon district, is influenced by 

both Atlantic and Mediterranean conditions. 

 

FIGURE 4.2. Aerial Picture of the Vineyard 
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Data collection was performed at 11 am on the 15th of September 2024, under clear skies. 

The UAV thermal data collection process follows the methodologies outlined by Awais et al. 

[8]. The UAV acclimated in the shade, 30 minutes before take-off. During this period, mission 

planning was created using the UAV’s integrated mission planning software. The forward and 

side overlap were set to 80%, the height of 60 meters and the speed to 1m/s. This resulted in a 

ground sampling distance of 7cm2/pixel. 

 Just before take-off, the CWSI parameters, specifically 𝑇𝑤𝑒𝑡 and 𝑇𝑑𝑟𝑦, were determined by 

taking temperature measurements of intact leaves at ten different locations, five shaded and five 

sunlit, using a handheld infrared thermometer (Uni-T UT300A+). After the flight was 

concluded, these measurements were repeated. Every measurement related to the CWSI 

parameters followed the same process, as outlined by Sepúlveda-Reyes et al. [15]: 

• 𝑇𝑤𝑒𝑡 was measured by applying a water-soap solution to both sides of the leaf, 

waiting a few minutes, and then recording the temperature; 

• 𝑇𝑑𝑟𝑦 was measured by covering both sides of the leaf with petroleum jelly, and then 

taking the temperature measurement after a few minutes.  

Figure 4.3 shows one of the UAV-captured thermal images and Annex B contains additional 

images captured in the study site. 

 

FIGURE 4.3. UAV Captured Thermal Image of the Vineyard 

 

4.3. Best Performing Models 

This section outlines the results and parameters of the best performing WeedUNet and Stress

UNet models, which underwent an optimisation process, involving training several models with 

different sets of parameters. These parameters include the optimiser, learning rate, batch size, 

evaluation metrics and relevant functions that resulted in an optimised model. In addition, the 

evolution of training and validation metrics, as well as confusion matrices results are displayed 

and analysed.  
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To visually validate the performance of each model, the metrics used during training are 

plotted and saved to a file, along with a confusion matrix. For each metric, the values calculated 

for both training and validation data are plotted over the epochs, with blue representing the 

training values, and orange representing the validation values. Additionally, a legend outlines 

the lowest and highest values achieved for both training and validation data, along with the 

metric’s values on each dataset when the model was restored. 

To visually validate the performance of each model, the metrics used during its training are 

output to a file, along with an aggregate confusion matrix. For each metric, the training and 

validation values are plotted for each epoch, where blue represents the training values and 

orange the validation values. In addition, a legend outlines the lowest and highest achieved 

values for both training and validation data, as well as an indication of the metric’s values on 

each data set, when the model was restored. On the one hand, the restored model is related with 

a mechanism from TensorFlow to prevent overfitting and reduce training times by prematurely 

stopping the model training. This occurs if the validation loss does not reduce for 10% of the 

total number of epochs. If this mechanism is engaged, the model restores itself to the epoch that 

had the lowest validation loss, before saving it to a file. On the other hand, the aggregate 

confusion matrix involves a batch-wise confusion matrix calculation, where predictions and 

true labels are organised into batches. For each batch, a confusion matrix is computed, capturing 

the counts of 𝑇𝑃, 𝑇𝑁, 𝐹𝑃 and 𝐹𝑁. These individual matrices are summed to create an aggregate 

confusion matrix that represents a normalised view of model's performance over all the 

validation batches.  

 

4.3.1. WeedUNet 

4.3.1.1. Hyperparameters 

The best performing WeedUNet model was trained using the outlined in Table 4.3. 

TABLE 4.3. Optimal WeedUNet Hyperparameters 

Hyperparameters Values 

Optimiser ADAM 

Batch size 8 

Learning rate 0.0001 

Epochs 500 
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4.3.1.2. Training and Validation Metrics 

Figure 4.4 shows consistent improvement in all metrics over the epochs. The training and 

validation metrics are closely aligned, indicating good generalisations. Additionally, it is 

possible to see that the model achieved the lowest validation loss of 0.14 at epoch 174 before 

stagnating and starting to overfit, which made the model training to be stopped early and 

restored to that epoch.  

 

 

FIGURE 4.4. Plot of the Performance Metrics of the Best WeedUNet Model 

 

In addition to these plots, Figure 4.5 represents the average confusion matrix computed on 

the validation dataset after the model is trained, as described previously, which helps to validate 

the predictive capabilities of the model. The number of samples, n, is calculated by multiplying 

the number of complete batches available in the validation dataset, 375, by the width, 128, and 

height, 128, dimensions of each image. Each quadrant contains a normalised value based on the 

relationship between the value of each pixel from every image in the validation dataset and the 

corresponding pixel value of the ground truth mask.  
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FIGURE 4.5. Average Confusion Matrix for the Best WeedUNet Model 

The first and fourth quadrants represent the percentage of pixels that were correctly labelled 

as background and foreground, respectively. This amounts to 95% of the total number of 

samples. In contrast, the remaining 5% belong to the second and third quadrant, which denote 

the proportion of pixels that were incorrectly labelled as foreground and background, 

respectively. These values highlight the predictive capabilities of this model as 95% of the 

predicted pixels are correctly made. 

 

4.3.2. StressUNet 

4.3.2.1. Hyperparameters 

The best performing StressUNet model was trained using the outlined in Table 4.4. 

TABLE 4.4. Optimal StressUNet Hyperparameters 

Hyperparameters Values 

Optimiser ADAM 

Batch size 8 

Learning rate 0.01 

Epochs 500 

 

4.3.2.2. Training and Validation Metrics 

Figure 4.6 plots the performance metrics of the best performing StressUNet model, which 

shows consistent improvement in all metrics over the epochs, until the model prematurely 

stopped training at epoch 105, to avoid overfitting. The training took exactly 996.16 seconds, 

which corresponds to just over 15 minutes. 
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FIGURE 4.6. Plot of the Performance Metrics of the Best StressUNet Model 

 

The restored model from epoch 55 achieved the lowest validation loss of 0.26 and a training 

loss of 0.17. The analysis of each plotted metric reveals that:  

• Loss: The training loss shows an exponential decay, decreasing rapidly in the initial  

          epochs before starting to plateau, indicating a quick convergence; 

• IoU: The binary IoU values improved consistently, with the training IoU stabilising  

         around 0.88 and the validation IoU achieving a high of 0.82; 

• Precision: The precision values remained stable throughout, with the training precision  

o       reaching a high of 0.91 and the validation Precision achieving a high of      

o       0.89. This validates that out of all WS predictions most contain WS; 

• Recall: The recall values demonstrated consistent improvement, with the training recall  

o  stabilizing around 0.96 and the validation recall reaching a high of 0.91. This  

o  ensures that most pixels labelled as containing WS are correctly  

o  predicted as WS; 

• Accuracy: The binary accuracy values showed consistent improvement, with the  

o        training accuracy stabilizing around 0.93 and the validation accuracy  

o        achieving a high of 0.90. This metric ensures that the model correctly  

o        predicts most pixels. 
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As described previously, Figure 4.7 displays the average confusion matrix for the best 

performing StressUNet model. Like the previous model, the number of samples, n, is calculated 

by multiplying the number of batched samples available in the validation dataset, 93.75, by the 

width, 128, and height, 128, dimensions of each image. However, by design, the incomplete 

batches are removed, hence only 93 validation batches were considered. Each quadrant contains 

a normalised value based on the relationship between the value of each pixel of every image in 

the validation dataset and the corresponding ground truth value of the segmentation mask.  

 

FIGURE 4.7. Average Confusion Matrix for the Best StressUNet Model 

 

 An analysis of the matrix reveals that 90% of pixels are correctly predicted, where the first 

quadrant reveals that 44% of the pixels are correctly predicted as not containing WS, while 46% 

are correctly predicted as WS, as indicated by the fourth quadrant. However, the second 

quadrant reveals that around 6% of the pixels were incorrectly predicted as containing WS, 

while the third quadrant shows that around 4.4% of the pixels were incorrectly labelled absent 

of WS.  

To further improve the results, it is necessary to acquire additional images, in different 

vineyards during the growth cycle, as it would improve the model generalisation capabilities, 

since it would be exposed to a greater amount of information with different characteristics. 

Moreover, training different models by gradually unfreezing more layers from the WeedUNet 

model would result in a model that would balance the information retained from the previous 

model and the information necessary to the task of WS detection and localisation.  
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CHAPTER 5 

Conclusions and Future Work 

5.1. Conclusions   

In this thesis it was possible to create a toolkit that can accurately identify vineyard areas 

experiencing WS. With these areas identified, it is possible to exclusively irrigate them, saving 

water resources and reducing potential yield losses. In addition, this PV WS toolkit relies on 

the usage of an DJI Mavic 3T, an UAV equipped with a thermal camera. By analysing the 

thermal images, it is possible to calculate the CWSI which serves as an indicator of early WS 

in vineyards. 

To achieve this, two models were trained with the metrics BCE, IoU, Precision, Recall and 

Accuracy, to provide a complete representation of the predictive capabilities of the models. In 

addition, the training of the models involved holdout validation, where 50% of the samples 

were allocated for training and the remaining were used for validating the model during 

training. That way, by evaluating the validation loss metric, it is possible to prevent the model 

from overfitting.  

The initial model was trained on Agriculture-Vision, a dataset containing aerial agricultural 

images, as existing pre-trained models are trained on datasets without aerial agricultural images 

and restrict the input dimensions. This model achieved a training loss of 0.07 and a validation 

loss of 0.14, where the other metrics used, namely IoU, Precision, Recall and Accuracy, for 

both training and validation sets, achieved over 90%. Afterwards, using transfer learning, the 

model was retrained using UAV captured thermal images to perform WS detection and 

localisation in vineyards. The UAV thermal image collection was conducted optimally in 

accordance with the literature, at 11 am, at a height of 60 meters, with 80% forward and side 

overlap, after letting the UAV warmup for 30 minutes. During flight, the parameters necessary 

to calculate the CWSI were established using a handheld thermometer. It is to note that the 

training process of each model undertook an optimisation process, using different 

hyperparameters, as well as relevant performance metrics to validate the obtained results. 
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The final model creates accurate WS predictions, by analysing aerial thermal images 

captured by a DJI Mavic 3T, as it achieves a training loss of 0.17 and a validation loss of 0.26.  

It also demonstrates strong performance across multiple metrics. Firstly, a training IoU of 0.88 

and a validation IoU of 0.82, indicate that the models’ predictions closely match the ground 

truths. Secondly, the training precision of 0.91 and a validation precision of 0.89 indicate that 

the model correctly identifies the actual positive prediction, out of all positive predictions. 

Thirdly, a training recall of 0.96 and a validation recall of 0.91 convey that out of all actual 

positive cases, most are correctly predicted as positive, Finally, a training accuracy of 0.93 and 

a validation accuracy of 0.9 confirm that most predictions are correctly made. 

 Despite the obtained results, data collection was only performed once during a single 

vineyard’s growth cycle. This potentially limits the ability of the model to generalise, as 

different vineyards and growth cycles could have specific unseen details during training. 

 

5.2. Future Work 

In the future, additional data collection during the entire growth cycle of different vineyards 

will be conducted. This helps to ensure that the model accurately detects and localises WS. 

Moreover, to further validate the results, WS assessments should be conducted in vineyards 

with drip irrigation, so that WS predictions may be compared to in situ water conditions. In 

addition, the process to create ground-truth masks highlighting WS, should be supervised by an 

agronomist or viticulturist to ensure that the created masks convey accurate site conditions. 

With additional images, labelled under the supervision of an agronomist or viticulturist, the 

model would be further trained so that it can perform accurate predictions, regardless of the 

specific characteristics of the vineyard and growth cycle. 

Furthermore, it would be interesting to use a combination of additional hyperparameters 

and models, to validate whether the existing hyperparameters are optimal and to compare the 

purpose-built model for WS detection compared to other pre-trained models.  

Finally, the application will be further developed to include other functionalities, such as 

the ability to reconstruct the images into a single georeferenced image. This opens the 

possibility to integrate the platform with other systems, such as agricultural UAVs, to create a 

pipeline from WS detection to automatic dispatch of agricultural UAVs to irrigate designated 

areas. 
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Dissertation Article 

 

This dissertation article was accepted and published in the 2024 International Symposium on 

Sensing and Instrumentation in 5G and IoT Era (ISSI), available at IEEE Xplore 

10.1109/ISSI63632.2024.10720501. 
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FIGURE8A.2. Article - Page 2 
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FIGURE9A.3. Article - Page 3 
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FIGURE10A.4. Article - Page 4 



 

61 
 

 

FIGURE11A.5. Article - Page 5 
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APPENDIX B  

Images of the data collection 

 

These images were taken in the study site during UAV data collection. 

 

 

FIGURE12B.1. Vineyard Photo 

 

 

FIGURE13B.2. UAV Landing and Take-off 

Area 

 

 

FIGURE14B.3. UAV Shortly After Take-off 

 

 

FIGURE15B.4. UAV Mid-flight 
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FIGURE16B.5. Measurements of Leaf Temperature to Establish CWSI Parameters 

 

 

FIGURE17B.6. UAV Captured Thermal Image 


