

OSCAR: A Software-Based System to Support Information

Incident Response

Ana Rita Paulo Raposo

Master's degree in Telecommunications and Computer

Engineering,

Supervisor:
PhD Carlos José Corredoura Serrão, Associate Professor,
Iscte - Instituto Universitário de Lisboa

Co-Supervisor:
PhD João Pedro Oliveira da Silva, Assistant Professor,
Iscte - Instituto Universitário de Lisboa

October, 2024

ii

Department of Information Science and Technology

OSCAR: A Software-Based System to Support Information

Incident Response

Ana Rita Paulo Raposo

Master's degree in Telecommunications and Computer

Engineering

Supervisor:

PhD Carlos José Corredoura Serrão, Associate Professor,

Iscte - Instituto Universitário de Lisboa

Co-Supervisor:

PhD João Pedro Oliveira da Silva, Assistant Professor,

Iscte - Instituto Universitário de Lisboa

October, 2024

iv

Acknowledgements

I would like to express my heartfelt gratitude to my family for their unwavering support and

encouragement throughout my research journey.

I am deeply thankful to my supervisors for their guidance and mentorship, which have been

instrumental in shaping this dissertation.

I also extend my appreciation to FCCN for their collaboration and support, particularly to

Carlos Friaças, whose assistance has been pivotal to the success of this dissertation.

vi

vii

Resumo

A capacidade de detetar e realçar incongruências em valores de atributos equivalentes através

de fontes de dados heterogéneas é crucial para uma triagem de incidentes eficaz nos processos

de resposta a incidentes de informação. Nesta dissertação investigamos se é viável alcançar este

objetivo através do desenvolvimento de um sistema software criado para detetar de

discrepâncias entre atributos de dados equivalentes.

A pesquisa identifica e aborda requisitos necessários para uma implementação bem-

sucedida, incluindo a capacidade de extração de dados programada, deteção eficiente de

incongruências e uma interface de utilizador intuitiva que facilita a análise por parte do

utilizador. O sistema foi testado no contexto operacional real pelos utilizadores finais,

demonstrando a sua eficácia na identificação e realce de inconsistências entre valores de

atributos equivalentes em várias fontes de dados.

Os resultados indicam que o sistema cumpre as suas funções pretendidas ao auxiliar a

FCCN na identificação e correção de discrepâncias nos dados, melhorando a fiabilidade e a

integridade dos mesmos dados utilizados no processo de resposta a incidentes.

Palavras-chave: integração de dados, fontes de dados heterogêneas, inconsistência em dados,

resolução de conflitos, retificação de conflitos, reconciliação de conflitos

viii

ix

Abstract

The ability to detect and highlight incongruences in equivalent attribute values across

heterogeneous data sources is crucial for effective incident triage in information incident

response processes. In this dissertation, we investigate whether it is feasible to achieve this goal

through the development of a software-based system designed to detect discrepancies among

equivalent data attributes.

The research identifies and addresses requirements necessary for successful deployment,

including the capability for scheduled data extraction, efficient incongruence detection, and an

intuitive user interface that facilitates user analysis. The system has been tested in the real

operational environment by the end-users, demonstrating its effectiveness in identifying and

highlighting inconsistencies between equivalent attribute values across multiple data sources.

The outcomes indicate that the system meets its intended functions by aiding FCCN in

ensuring that discrepancies in data are identified and corrected, enhancing the reliability and

integrity of the same data used in the incident response process.

Keywords: data integration, heterogeneous data sources, data inconsistencies, conflict

resolution, conflict rectification, conflict reconciliation

x

xi

Contents

Chapter 1 – Introduction .. 1

1.1 Research problem and motivation .. 1

1.2 Research question ... 4

1.3 Research objectives .. 4

1.4 Research process .. 4

1.4.1 Problem identification and motivation ... 5

1.4.2 Objectives of the proposed solution ... 6

1.4.3 Design and development .. 6

1.4.4 Demonstration .. 7

1.4.5 Evaluation ... 7

1.4.6 Communication .. 7

1.5 Dissertation structure .. 8

Chapter 2 – State of the art .. 9

2.1 Systematic literature review ... 9

2.1.1 Outlining of the systematic literature review ... 9

2.1.2 Conducting the systematic literature review .. 10

2.2 Definitions .. 12

2.3 Data integration .. 12

2.3.1 Integration of the schema ... 13

2.3.1.1 Schema-level inconsistencies ... 13

2.3.1.2 Representation-level inconsistencies .. 14

2.3.1.3 Schema and representation-level inconsistencies resolution methods 14

2.3.2 Integration of the data .. 14

2.3.2.1 Data-level inconsistencies .. 15

2.3.2.2 Data-level inconsistencies resolution methods .. 15

2.4 Conclusion .. 16

xii

Chapter 3 – Proposed solution design, development and demonstration 17

3.1 Requirements .. 17

3.1.1 Functional requirements ... 17

3.1.2 Non-functional requirements .. 18

3.2 Application architecture design .. 18

3.2.1 Application back-end ... 18

3.2.1.1 Django .. 19

3.2.1.2 Gunicorn ... 19

3.2.1.3 Scheduler .. 20

3.2.1.4 Nginx .. 20

3.2.1.5 Systemd .. 21

3.2.2 Application data layer .. 21

3.2.2.1 MongoDB ... 22

3.2.2.2 SQLite3 DB .. 22

3.2.3 Application front-end ... 22

3.2.3.1 Django template ... 23

3.2.3.2 JavaScript ... 23

3.2.3.3 CSS ... 24

3.3 Information flow .. 24

3.4 Application functionalities ... 27

3.4.1 Login page .. 27

3.4.2 Incongruent information detection functionality .. 28

3.4.3 Search functionality .. 29

3.4.4 Light and dark mode .. 30

Chapter 4 – Testing and validation .. 33

4.1 Functional requirements test cases ... 33

4.1.1 User authentication test case outcome ... 33

xiii

4.1.2 Scheduled data extraction and storage test case outcome 34

4.1.3 Incongruent information detection functionality test case outcome 36

4.1.4 Search functionality test case outcome .. 36

4.2 Non-functional tests ... 37

4.2.1 Usability test case outcome .. 38

4.2.2 Availability test case outcome .. 38

4.2.3 Performance test case outcome .. 39

4.2.4 Security test case outcome ... 40

4.2.5 Cross-browser compatibility test case outcome ... 41

4.2.6 Technology stack test case outcome ... 42

Chapter 5 – Conclusion ... 44

5.1 Conclusions .. 44

5.2 Future work .. 45

References.. 47

Appendix A: Django template tags .. 51

Appendix B: Highlighting logic for the organisation’s attributes 55

xiv

xv

List of Figures

Figure 1.1 - Incident handling workflow ... 2

Figure 1.2 - Part of detailed Incident handling workflow – descriptive workflow 2

Figure 1.3 - Incongruences in values of the same organisation attributes stored in different data

sources used by FCCN ... 3

Figure 1.4 - Design science research process (DSRP) model .. 5

Figure 2.1 - PRISMA 2020 flow diagram for the systematic review process 10

Figure 3.1 - Flowchart of the information’s flow through the web application architecture ... 25

Figure 3.2 - Web application login page .. 28

Figure 3.3 - Web application findings section .. 29

Figure 3.4 - Web application search functionality results outcome ... 30

Figure 3.5 - Web application search functionality no results outcome 30

Figure 3.6 - Web application dark theme (default theme) .. 31

Figure 3.7 - Web application light theme ... 31

Figure 4.1 - Confirmation of user authentication using the session cookie sessionid 34

Figure 4.2 - Left side: error message after attempting to log in with an invalid username, right

side: error message after attempting to log in with an invalid password 34

Figure 4.3 - Scheduled data extraction tasks in “scheduler.py” with specified intervals for each

source ... 35

Figure 4.4 - MongoDB Compass showing insert and delete operations in the collections after

data extraction .. 35

Figure 4.5 - Web interface displaying the organisation’s information and highlighting the

inconsistencies in the attributes from different data sources .. 36

Figure 4.6 - Test database displaying 100 documents (organisations) across each data source

 .. 37

Figure 4.7 - Total time taken by the search functionality to render organisation number 95,

including a breakdown of the time spent on each step of the process 37

Figure 4.8 - HTTP requests, status codes, and response times when searching for an organisation

 .. 39

Figure 4.9 - Incongruent information detection functionality metrics results 40

Figure 4.10 - Search functionality metrics results .. 40

Figure 4.11 - OWASP ZAP alerts section .. 41

xvi

Figure 4.12 - Incongruent information detection is displayed across different browsers (top left:

Firefox, top right: Chrome, bottom left: Safari, bottom right: Opera) 42

Figure A.1 - Template inheritance and block definition tags ... 51

Figure A.2 - Iteration, conditional and dynamic content rendering tags 52

Figure A.3 - Context variables and loading static files tags ... 53

Figure B.1 - normaliseText() function in JavaScript .. 55

Figure B.2 - compareCidrBlocks() function in JavaScript ... 56

Figure B.3 - compareNames() function in JavaScript .. 57

List of Tables

Table 2.1 - Search terms used, and count of results returned per database 10

Table 2.2 - Documents included in the review process .. 11

Table 4.1 - Functional requirements, test cases and expected outcomes 33

Table 4.2 - Non-functional requirements, test cases and expected outcomes 38

Table 4.3 - Technologies used in the development and testing of the web application, their

availability as free and open-source software along with their respective licenses 42

xvii

Glossary of Abbreviations

API Application Programming Interface

CERT Computer Emergency Response Team

CLS Cumulative Layout Shift

CSIRT Computer Security Incident Response Team

CSRF Cross Site Request Forgeries

CSS Cascading Style Sheets

DNS Domain Name System

DSRP Design Science Research Process

DTL Django Template Language

FCCN Fundação para a Computação Cientifica Nacional

FCT Fundação para a Ciência e a Tecnologia

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

INP Interaction to Next Paint

IP Internet Protocol

JSON JavaScript Object Notation

LCP Largest Contentful Paint

NFD Normalisation Form Decomposition

ORM Object-Relational Mapper

PRISMA Preferred Reporting Items for Systematic Reviews and Meta-Analyses

RCTS Rede Ciência, Tecnologia e Sociedade

RLI Representation Level Inconsistency

SLR Systematic Literature Review

SQL Structured Query Language

SSL Secure Sockets Layer

TLS Transport Layer Security

UI User Interface

URL Uniform Resource Locator

XSS Cross-Site Scripting

WSGI Web Server Gateway Interface

xviii

1

Chapter 1 – Introduction

In the first chapter of this dissertation, the motivation and relevance of the topic are elucidated

to facilitate an understanding of the key concepts that permeate the dissertation. Subsequently,

the research question is defined, and the objectives are outlined, all of which we intend to

achieve

through this research. The methodological approaches applied throughout this research are also

detailed, as well as the proposed framing and structure of this dissertation, to serve as a roadmap

for this research.

1.1 Research problem and motivation

The “Fundação para a Computação Científica Nacional” (FCCN), the Scientific Computing

Unit of the “Fundação para a Ciência e a Tecnologia” (FCT), is a public institute under the

responsibility of the Ministry of Science, Technology, and Higher Education, that serves the

Portuguese academic and scientific community by providing technology for knowledge.

FCCN’s division, the Rede Ciência, Tecnologia e Sociedade (RCTS) Computer Emergency

Response Team (CERT), specifically offers incident response and cybersecurity services to

their constituencies—the research and education community. They ensure timely and effective

handling of security incidents by providing necessary technology and support for the incident

handling process.

Incident handling involves several high-level phases such as detection, triage, analysis, and

response (Good Practice Guide for Incident Management, 2010, p. 34).

2

Figure 1.1 - Incident handling workflow1

Although incident handling workflows and their specific phases may have different

definitions, most workflows include similar activities, such as receiving incident reports,

registering reports, triage, and further processes (Good Practice Guide for Incident

Management, 2010, p. 39).

Figure 1.2 - Part of detailed Incident handling workflow – descriptive workflow2

1 Good Practice Guide for Incident Management. (2010, December 20, p. 34). ENISA.

https://www.enisa.europa.eu/publications/good-practice-guide-for-incident-management
2 Good Practice Guide for Incident Management. (2010, December 20, p. 39). ENISA.

https://www.enisa.europa.eu/publications/good-practice-guide-for-incident-management

3

An incident, defined here as "an event with a real adverse effect on the security of networks

and information systems" (freely translated by the authors) (Decreto Lei no 46/2018, 13 de

Agosto, 2018, article 3rd), undergoes several phases of scrutiny before reaching the triage

phase, which consists of three sub-phases: verification, initial classification, and assignment

(Good Practice Guide for Incident Management, 2010, pp. 45-46).

Incident triage, where Computer Security Incident Response Teams (CSIRTs) swiftly assess

and prioritise incidents based on their criticality and potential impact, holds immense

significance in cybersecurity. It serves as the initial filter in the incident handling process and

influences the efficiency of subsequent incident response activities. Ensuring the prompt

association of vital information, consistently across the various FCCN’s proprietary resources

and platforms (which we will refer to as data sources, from this point onwards) is crucial for an

effective incident triage.

For RCTS CERT, information regarding constituents' attributes (e.g., Organisation name,

IP addresses, etc.), used in the incident response process, exists across various data sources.

Due to the disparity of these data sources and their different ownership, an organisation’s

attribute information is represented and stored differently. The workflow and data processing

referred to above sets the problem identified for this dissertation, to which this research intends

to deliver a tool to be made available as part of the procedures for the incident handlers on the

operational first line (triage) of RCTS CERT, to cope with the potential inconsistency or

inaccurate triage process.

Figure 1.3 - Incongruences between values of the same organisation attributes stored in

different data sources used by FCCN

The figure above illustrates the mismatches, discussed prior, of organisations values

between data sources, which has the potential to cause a negative impact along the subsequent

4

incident handling processes, due to the lack of semantic interoperability among these data

sources, which leads to difficulties in finding and matching this crucial information necessary

for effective incident triage.

1.2 Research question

This dissertation aims to answer the following research question:

“Is it possible to detect and highlight incongruences in equivalent attribute values stored across

several heterogeneous data sources, for effective incident triage in the information incident

response process?”

1.3 Research objectives

This dissertation sets forth the following objectives:

• Research the best practices and prevalent methods for data integration of heterogeneous

data sources and data-level incongruence detection.

• Design and develop a web application capable of extracting, storing, and displaying data

from various heterogeneous sources. In addition, scrutinise the data for data-level

incongruences between the organisation's equivalent attributes, and highlight them.

• Implement and test the web application by employing its features to fulfil its intended

purpose and requirements.

• Assess the efficiency of the web application by validating the execution of the

requirements described in Chapter 3. This evaluation will provide insights into the web

application’s effectiveness and areas for potential improvement, outlined in Chapter 5.

1.4 Research process

In this dissertation, a comprehensive research approach is adopted. It combines the use of a

Design Science Research Process (DSRP) with a Systematic Literature Review (SLR),

following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses

(PRISMA) methodology. This approach allows us to delve deep into the subject matter and

formulate a solution based on the insights gathered.

Our research process begins with the DSRP, whose iterative nature allows for the

continuous improvement and refinement of the proposed solution through repeated cycles to

produce effective, applicable, and practical information technology artefacts to solve real-world

problems (Peffers et al., 2020).

5

Throughout the DSRP, a Systematic Literature Review, following the PRISMA

methodology, is conducted and presented in Chapter 2. The SLR is a rigorous method that

involves a detailed analysis of existing scientific literature on a specific subject. It identifies

relevant studies from a wide range of sources, providing a comprehensive overview of the

subject (Kitchenham et al., 2009). The PRISMA methodology is designed to help systematic

reviewers transparently report why and how the review was done, what the authors did, and

what they found (Page et al., 2021).

By combining these methodologies, we intend to solidify a thorough understanding of the

research problem. This understanding will form the backbone of this dissertation and guide the

exploration and resolution of the problem at hand.

The DSRP entails the execution of six activities, as depicted in Figure 1.4, each of which

is further discussed below.

Figure 1.4 - Design science research process (DSRP) model3

1.4.1 Problem identification and motivation

In the first activity of this process, we define the research problem and justify the value of the

solution. We also break down the problem into smaller components, allowing us to better

address the various complexities of the problem (Peffers et al., 2020).

3 Peffers, K., Tuunanen, T., Gengler, C. E., Rossi, M., Hui, W., Virtanen, V., & Bragge, J. (2020, June 4, p. 11).

Design Science Research Process: A Model for Producing and Presenting Information Systems Research.

http://arxiv.org/abs/2006.02763

6

In cybersecurity, teams such as FCCN’s RCTS CERT, handle incidents for their respective

constituencies. This process encompasses a triage phase which requires swift assessment and

prioritization of incidents based on their criticality and potential impact. This is crucial for an

efficient incident response. However, for FCCN, the accuracy of this assessment is often

hindered by the use of several heterogeneous data sources during this phase.

In this crucial process of cross-referencing key data, such as IP addresses and DNS domains

between various data sources, the lack of semantic interoperability among them also causes a

lack of precision in the association process, thereby impeding efficient incident response.

In this dissertation, we propose a solution that produces a web application that stores and

standardises the data from various sources and detects disparate values. This approach ensures

the accurate association of vital data across heterogeneous data sources. The value of this

solution lies in its potential to enhance the efficiency of incident response, mainly in its triage

phase, enabling prompt and accurate identification of the impacted constituents. Consequently,

this research holds significant implications for improving incident response capabilities within

the academic and scientific community served by FCCN.

1.4.2 Objectives of the proposed solution

In the second activity, we define the objective of the proposed solution, drawing support from

the problem definition and context (Peffers et al., 2020).

The primary objective of this dissertation is to implement a web application capable of

detecting discrepancies in corresponding data values across heterogeneous data sources. Thus,

aiming to improve the success rate of the correct association of crucial information during

incident triages or when needed after due correction of the discrepancies.

1.4.3 Design and development

The third activity relates to the artefact’s creation and development, determining its desired

functionality and architecture (Peffers et al., 2020).

To achieve the objectives, defined previously, set for the web application it should be

capable of the following:

• Within a configurable period (pre-defined schedule), periodically trigger the

extraction of data from heterogeneous data sources into a database. Standardise the

data types and presentation of the data from all sources when storing the database.

• Display the values and run a comparison of the values, from the different sources it

exists in, for the same type of information, and if found, highlight the discrepancies.

7

• Additionally, a search feature is necessary to speed up the search for a specific

organisation.

We delve deeper into the technology stack used in the design and development of this tool

in Chapter 3.

1.4.4 Demonstration

In the fourth activity, we demonstrate how the artefact can be used to solve instances of the

research problem (Peffers et al., 2020).

Chapter 3 also presents a demonstration of this web application showcasing its application

in a model scenario of the real operational environment. We illustrate how the tool detects and

highlights discrepancies in information across data sources. This demonstration highlights the

tool’s effectiveness in improving successful information association during incident triages or

when needed.

1.4.5 Evaluation

In the fifth activity, we evaluate the solution comparing the goals with the actual results obtained

using the artefact (Peffers et al., 2020).

The effectiveness of the web application will be evaluated based on the completion of the

goals defined in Chapter 2, and implementation of the design requirements, previously

discussed and further developed in Chapter 3. This evaluation will validate that the tool fulfils

its objectives and is effective in enhancing incident response capabilities.

1.4.6 Communication

The sixth activity comprises communicating the problem, the artefact, the novelty, the

usefulness, and the effectiveness to audiences (Peffers et al., 2020).

In this dissertation, we communicate our findings and the value of our solution to both

academic and professional audiences. We detail the problem of inconsistent data values across

heterogeneous data sources in cybersecurity incident handling, describe our tool and its

features, and discuss its benefits in improving incident response.

We also share the insights gained from demonstrating and evaluating the tool, thereby

contributing to the broader discourse on enhancing cybersecurity measures within organisations

like FCCN. This communication is encapsulated in the dissertation and will be further

disseminated through presentations and publications.

8

1.5 Dissertation structure

This dissertation is organised into five comprehensive chapters, each serving a distinct purpose

in the progression of this research. Thus, it creates an extensive and cohesive exploration of the

research scope and ensures a logical flow of information.

Chapter 1 sets the stage for the research, providing an overview of the research topic

context, identifying the problem, and outlining the motivation behind this research. It also

presents the research question, objectives, and methodologies adopted, along with a brief

overview of the structure of this dissertation.

Chapter 2 delves into the theoretical framework of the study, presenting an SLR and

discussing the challenges that need the implementation of the solution proposed in this research.

It analyses various existing relevant solutions and discusses how these are used in detecting

data value conflicts across heterogeneous data sources.

Chapter 3 is dedicated to the design, development and demonstration of the proposed

solution. This chapter details the architecture of the solution, including the necessary

components required to meet the objectives of this research. It also presents the demonstration

of our tool’s functionalities in a model scenario of the real operational environment.

Chapter 4 focuses on validating the effectiveness of the developed solution. It presents test

cases for each of the tool’s requirements and the outcomes of the validation.

Finally, Chapter 5 concludes the dissertation by summarising the findings of this research,

providing recommendations based on these results, and suggesting potential avenues for future

work in this field.

9

Chapter 2 – State of the art

This chapter introduces the existing knowledge in data integration, outlining the research field

and setting the context for our research question. We begin by detailing the methodology

employed for our SLR, ensuring transparency and replicability in our approach.

Subsequently, we establish a foundational understanding of crucial concepts surrounding

data integration and inconsistencies before delving deeper into existing publications and related

work, providing a comprehensive understanding of the state of the art in data integration. These

subsequent sections explore topics such as models used for data integration, the tools employed

for conflict identification and resolution, and the prevalent methods for data harmonisation.

Through this combined approach, we aim to assess how our research aligns with the scope

of our investigation, draw informed conclusions about current practices, and identify potential

areas for further development.

2.1 Systematic literature review

To gain a deeper understanding of the subject, we conducted a SLR, following the PRISMA

methodology. This approach facilitated a systematic step-by-step exploration of the topic.

2.1.1 Outlining of the systematic literature review

We selected three online repositories Scopus, IEEE Xplore, and Web of Science, four our

review. We chose them because of to their relevance to the information technology domain and

the peer-reviewed content they offer.

Since each of these online repositories uses different search options, we adapted them for

each repository, with the overall intent of searching for results by a term corresponding to the

abstract, index term, and bibliographic citation data (such as document title, publication title,

etc.). After conducting this initial search, in January 2024, we then filtered the results according

to the following criteria:

• Language: English

• Publication type: Journal or Conference proceeding

• Publication year range: 2010-2024

Table 2.1 presents the number of results returned from each repository, for each search term

used.

10

Table 2.1 - Search terms used, and count of results returned per database

Repository Search term Count

IEEE Xplore

("All Metadata":data integration AND heterogeneous AND

(inconsistenc* OR conflict*) AND (resolution OR rectif* OR

reconcili*))

25

Web of Science

TS=((data AND integration AND heterogeneous AND

(inconsistenc* OR conflict*) AND (resolution OR rectif* OR

reconcili*)))

29

Scopus

TITLE-ABS-KEY (data AND integration AND heterogeneous

AND (inconsistenc* OR conflict*) AND (resolution OR

rectif* OR reconcili*))

32

2.1.2 Conducting the systematic literature review

Figure 2.1 provides a detailed schematic representation of the review process, specifically

illustrating the steps undertaken after concluding the search in the repositories, up to the final

decision on which results to include in the review.

Figure 2.1 - PRISMA 2020 flow diagram for the systematic review process

Our search across all repositories initially yielded a total of 86 records. After removing

duplicates, we were left with 53 unique records. Out of these, 52 reports were accessible for

free. We then screened these reports for context relevance based on their titles, which resulted

in 31 potentially relevant reports. Further scrutiny of the abstracts of these 31 reports led us to

a shortlist of 16 reports. After a thorough reading and analysis of these 16 reports, we found 2

11

to be insightful but not directly relevant to our research problem. Consequently, we excluded

these reports, leaving us with 14 to include in our review. These are discriminated in Table 2.2.

Table 2.2 - Documents included in the review process

Author(s) Title Year

Qutaany, A. Z. el, Bastawissy,

A. H. el, & Hegazy, O.

A technique for mutual inconsistencies detection

and resolution in virtual data integration

environment

2010

Nachouki, G., & Quafafou, M.
MashUp web data sources and services based on

semantic queries
2011

El-Demerdash, K. K., & Amer,

F.

Data integration framework with an application

for Ministry of Interior
2012

Boufares, F., & Salem, A. ben.
Heterogeneous data-integration and data quality:

Overview of conflicts
2012

Dumitrescu, S.-R., Branescu-

Raspop, I., & Popescu, D.

Format mediation for matching patient records in

a three-layer information architecture
2013

Wei, D., & Xianxia, Z.
The Method to Resolve Schema Discrepancy of a

Heterogeneous Database System
2013

Mirza, G. A.
Value name conflict while integrating data

indatabase integration
2014

Saranya, K., Hema, M. S., &

Chandramathi, S.
Data fusion in ontology based data integration 2014

Ghorbel, L., Zayani, C. A., &

Amous, I.

A novel architecture for learner’s profiles

interoperability
2015

Mirza, G. A.
Null Value Conflict: Formal Definition and

Resolution
2016

Sonsilphong, S., Arch-int, N.,

Arch-int, S., & Pattarapongsin,

C.

A semantic interoperability approach to health-

care data: Resolving data-level conflicts
2016

Mirza, G. A., & Siddiqi, I.
Data level conflicts resolution for multi-sources

heterogeneous databases
2017

Sharef, N. M., Shafazand, Y.

M., Nazri, M. Z. A., & Husin,

N. A.

Self-adaptive Based Model for Ambiguity

Resolution of The Linked Data Query for Big

Data Analytics

2018

Al-Baltah, I. A., Abd Ghani, A.

A., Al-Gomaei, G. M.,

Abdulrazzak, F. H., & al

Kharusi, A. A.

A scalable semantic data fusion framework for

heterogeneous sensors data
2020

12

2.2 Definitions

Data source: An entity or system that observes an object or phenomenon and provides

information about it, in other words, collects and transmits data (e.g., websites, sensors,

databases, or even human observers).

Ontology: Refers to the measure of reliability associated with the data information provided

by a specific data source. It encompasses concepts related to the trustworthiness, accuracy, and

consistency of the data. Similar to the weight of evidence, ontology helps assess the credibility

of data from various sources.

Object: Represents an attribute or characteristic of an entity (e.g., the name of an

organisation).

Data value: Pertains to the actual information associated with an object and includes

specific measurements, descriptions, or characteristics (e.g., the organisation name “FCCN” is

a data value). It is also known as “claim” in many articles, that is, the claim of an object given

by a data source.

Data source schema: This defines the structure and properties of a data source, outlining

how data within the source is organised and what attributes it possesses. However, it does not

contain actual data.

2.3 Data integration

Data Integration is a critical process in the field of data management and analytics that involves

the combination of data residing at homogeneous, autonomous, and heterogeneous sources into

a unified global schema (Qutaany et al., 2010, p. 1), providing users with the ability to perceive

the entire collection as a single source, query it transparently and receive a single and

unambiguous answer (El-Demerdash et al., 2012, p. 1). The process can be broken down into

two phases consisting of the integration of schema, and subsequently the integration of data, or

data fusion. However, integrating different data sources into a single data analysis or integration

operation can lead to problems when analysing a set of different data sources together, even if

each source individually has no quality problems (Boufares et al., 2012).

A few studies have reported the use of a software system called DHResol to identify and

resolve conflicts that arise during data integration (Mirza, G. A., 2014; Mirza et al., 2017), while

others use a multi-layer architecture framework based on the principle that data access should

be separated into multiple levels. An example of this framework is a three-layer architecture

that isolates user applications from direct access to the database and consolidates data and

13

corresponding rules in a single controlled place. This architecture is comprised of (Dumitrescu

et al., 2013, p. 2):

• A User Interface Level, with the main function of translating tasks and results to

something the user can understand. In this layer, the query language SPARQL is

commonly used since it allows the users to write queries and extract information from

non-uniform data, stored in various formats and sources.

• The Middleware Layer, where the mediation takes place, processes the data and creates

a link between different data sources. In this layer, the mediator offers solid data access

routines specific to each database incorporated, and an Ontology block is recommended

for instances of complex processing (e.g. queries on different databases).

• A Database Level, where the data is stored and retrieved from a database or file system.

The information is then passed back to the logic tier for processing and then eventually

back to the user.

2.3.1 Integration of the schema

Schema integration, or schema merging, is the first step in a database integration system (Mirza

et al., 2017, p. 1). This process involves schema matching and merging processes, which

establish semantic mappings between participating data sources, to resolve heterogeneity at the

schema level (El-Demerdash et al., 2012, p. 2).

This process is challenging due to differences in the structure and organisation of elements

in data sources (Nachouki et al., 2011, p. 8), variations in query terms, and granularity conflicts

(Sharef et al., 2018, p. 1).

2.3.1.1 Schema-level inconsistencies

Schema-level inconsistencies, one of the three levels of inconsistencies in data integration, refer

to differences in the used data models and the schemas within the same data model (Qutaany et

al., 2010, p. 2), and pose a significant challenge in schema merging.

Mutual inconsistency is a problem in the schema merging process. Although the

participating data sources are clean and consistent individually, inconsistencies arise when

integrating them into one global access point (Qutaany et al., 2010).

Syntax inconsistency, a type of schema-level inconsistency, refers to different

representation syntaxes among attributes with the same type (Boufares et al., 2012, p. 3), and

is particularly prevalent when integrating different schemas from heterogeneous data sources

(Mirza, G. A., 2014, p. 1).

14

Semantic heterogeneity, where two semantically different objects are referred to in the same

way (El-Demerdash et al., 2012), and structural heterogeneity, referring to differences in the

structure or format of schemas, are other forms of schema-level inconsistencies (Saranya et al.,

2014).

2.3.1.2 Representation-level inconsistencies

Representation-level inconsistencies (RLIs) are also one of three levels of inconsistencies in

data integration (Qutaany et al., 2010, p. 2), and pose a significant concern. They occur when

data is represented or encoded in different databases (Dumitrescu et al., 2013, p. 3).

They can appear as syntax inconsistencies, where different representation syntaxes exist

among attributes with the same type in different data sources (Boufares et al., 2012, p. 3), and

as data representational conflicts, such as having different lengths of attribute values (Mirza, G.

A., 2016, p. 3).

Some techniques assume that RLIs have been well detected and resolved before handling

mutual inconsistencies (Qutaany et al., 2010, pp. 6-7), an assumption that underscores the

importance of addressing RLIs in the early stages of data integration and highlights the

importance of considering the representation of the exchanged data as a dimension in data

integration (Ghorbel et al., 2015, p. 2).

2.3.1.3 Schema and representation-level inconsistencies resolution methods

The detection and resolution of schema and representation level inconsistencies is a prerequisite

before addressing data level inconsistencies. The resolution of these inconsistencies often

requires ontologies, to provide richer semantics and help overcome schematic and semantic

conflicts (Saranya et al., 2014), used in different approaches: single ontology, multiple

ontologies, and hybrid ontologies. In the single ontology approach, all data sources are related

to one global ontology, while in the multiple ontology approach, each data source has

its own ontology, and mapping between ontologies is necessary for integration (Nachouki et

al., 2011). The use of an H-TMATCH algorithm also helps to identify corresponding concepts

between two schemas (Nachouki et al., 2011, p. 8).

2.3.2 Integration of the data

The integration of the data phase involves addressing data level inconsistencies and merging

data (Dumitrescu et al., 2013, p. 2), also called, data object fusion, which is performed in

conjunction with semantically equivalent data objects coming from different sources.

15

2.3.2.1 Data-level inconsistencies

One of the major challenges in data integration is the identification and resolution of data-level

conflicts (Mirza, G. A., 2014) since not all data-level conflicts are resolved during the

integration of the schema process. These refer to factual discrepancies among sources that

describe the same data objects, and can be sorted into four types of conflicts (Sonsilphong et

al., 2016, p. 5):

• Data type conflict: when the data values of the semantically equivalent data type

properties are defined with different schema data types.

• Data format conflict: when the data values of the semantically equivalent data type

properties are represented with different formats (or patterns).

• Data value conflict: when the data values of the semantically equivalent data type

properties are synonymous or have different values but the same meaning.

• Data scaling conflict: when the data values of semantically equivalent data type

properties have different scaling or units of measurement.

2.3.2.2 Data-level inconsistencies resolution methods

Data conflict resolution is an important aspect of data integration and has received increasing

attention in the field (Saranya et al., 2014). To handle these inconsistencies, techniques have

been proposed that aim to handle mutual inconsistencies in the virtual data integration

environment, assuming that schema-level inconsistencies and representation-level

inconsistencies are well detected and resolved (Qutaany et al., 2010).

Z-Notation, the formal specification language, is often referenced for providing the power

to formally define and represent the resolution for these conflicts (Mirza, G. A., 2014, p. 4). Z

language functions make it possible to express the database schema as well as the scenarios

where these conflicts arise.

Another popular approach was using mapping rules and heuristics to remove data conflicts

and determine consistent representations (Saranya et al., 2014, p. 2), and using a Markov logic

network to improve data quality by handling data conflicts in ontology-based data integration

(Saranya et al., 2014, p. 6).

The “Cry with the wolves” method was also used to resolve conflicts by deciding which

constraints to consider and which to ignore (Boufares et al., 2012, p. 6).

16

2.4 Conclusion

The provided research review paints a comprehensive picture of the state of the art in data

integration, highlighting the advancements and challenges associated with data integration from

diverse data sources. This complex process, which involves several steps and techniques to

ensure a unified and meaningful view of information from multiple sources (Mirza et al., 2017,

p. 1), almost always requires the use of semantic techniques, ontologies, specific architectures,

and methods to address the challenges and conflicts that arise during the process.

Addressing schema and representation-level inconsistencies is also a crucial step in the data

integration process. Resolving them is a prerequisite for correctly detecting and resolving

various data-level inconsistencies. However, the literature often lacks variety in specific

methods or procedures for handling these inconsistencies, indicating a need for further research

in this area.

Future directions in this field include implementing conflict-avoidance methods and

proactive measures, such as data schema alignment and quality improvement, to minimise

conflicts during the integration process.

In conclusion, data integration remains an active research area with constant advancements.

Addressing the identified challenges will facilitate seamless and efficient data integration,

unlocking value within diverse data sources.

17

Chapter 3 – Proposed solution design, development and demonstration

In this chapter, we present the design and development of the proposed solution—a web

application called OSCAR (Organisation Sanitiser Correctional And Rectifier) designed to

detect and highlight conflicts in data values across heterogeneous data sources. We cover the

solution’s architecture, core features, and the technologies involved in its development.

Additionally, we explain how information flows through the application’s components, and

demonstrate the web application functionalities.

To preserve privacy, the names of FCCN’s platforms and data sources/repositories used to

develop the web application were replaced by generic ones.

3.1 Requirements

To achieve the objectives set in this dissertation, the requirements for the web application were

identified through frequent meetings with the application’s end-user in FCCN, over a period of

one year, which allowed for continuous refinement and adaptation to ensure the solution would

meet the business needs. Throughout these meetings FCCN provided us resources for the

solution's implementation and provided us feedback on the tool’s design and development. The

outcome was both the functional and non-functional requirements that should be fulfilled for

the application to operate effectively.

3.1.1 Functional requirements

The functional requirements defined were the core features that the web application must

provide to meet the end user's needs and align with this dissertation's objectives:

• User authentication: The application must require users to authenticate before accessing

the data, ensuring security and control over sensitive information.

• Scheduled data extraction and storage: The application must automatically extract data

from sources, standardise it, and store it in a database at configurable intervals, ensuring

the use of the most up-to-date information.

• Incongruent information detection functionality: The application must include

functionality which compares data from different sources and highlights any

inconsistencies in equivalent attributes for further analysis.

• Search functionality: The application must include a search feature that enables users to

quickly locate a specific organisation.

18

3.1.2 Non-functional requirements

The non-functional requirements defined address the quality attributes and performance

characteristics that the application must include:

• Usability: The application should be user-friendly, with an intuitive interface that

simplifies searching for and identifying data discrepancies.

• Availability: The application must always be available, ensuring that users can access it

and use its features at any time.

• Performance: The application must process datasets efficiently and quickly return

search results and discrepancies.

• Security: Strong security measures must be in place to protect data integrity and ensure

secure data storage, including securing data in transit and at rest.

• Cross-browser compatibility: The application should have the same performance across

multiple browsers.

• Technology stack: All application development and validation technologies must be free

and open source.

3.2 Application architecture design

The application’s architecture is built on top of Django, a full-stack web framework that handles

both back-end logic and front-end rendering. The application uses MongoDB as the database

to manage the heterogeneous data sources and their varied schemas. For efficient traffic

management, Nginx serves as a reverse proxy, handling tasks such as security, load balancing,

and content delivery. Gunicorn is used as the WSGI (Web Server Gateway Interface) HTTP

(Hypertext Transfer Protocol) server, enabling Django to communicate with Nginx and manage

multiple requests concurrently. This architecture ensures a scalable, flexible solution that

handles complex data and traffic scenarios. A detailed diagram of this architecture, illustrating

how data flows through each component, is provided in 3.1.

3.2.1 Application back-end

The back end of the application is primarily powered by Django and Nginx, with Gunicorn

facilitating the communication between them. Django handles the application’s core logic and

routing requests, while Nginx acts as a reverse proxy server, optimizing web traffic and ensuring

secure content delivery. Additionally, Systemd is employed for process management, ensuring

that the application services start automatically and remain operational.

19

3.2.1.1 Django

Django (the version used was 4.2.7) was chosen for this application due to its comprehensive

documentation, built-in security features, and strong community support. Its ORM (Object-

Relational Mapper) helps prevent SQL (Structured Query Language) injection attacks by using

prepared statements to sanitize user input (Aborujilah et al.). Additionally, Django's template

language automatically escapes potentially harmful characters, effectively protecting against

XSS (Cross-Site Scripting) attacks (Aborujilah et al.). The framework also offers default CSRF

(Cross-Site Request Forgery) protection by requiring a secret token for form submissions,

ensuring that requests are valid (Aborujilah et al.). These built-in security mechanisms make

Django an ideal choice to develop a secure application.

In Django, views handle HTTP requests and return HTTP responses. These views process

the data from MongoDB and use the templates to render the final HTML (Hypertext Markup

Language) sent to the user’s browser. The views in this project handle tasks such as user

authentication, logout, fetching data from MongoDB, and rendering the appropriate templates

based on the requested URL (Uniform Resource Locator). Django’s URL patterns define how

the URLs are mapped, routing incoming requests to the appropriate view function.

This technology helps to fulfil the following requirements:

• User authentication (functional): Django’s built-in authentication system handles

secure user access to the application.

• Scheduled data extraction and storage (functional): Django handles data retrieval

from MongoDB, preparing it for display.

• Search functionality (functional): Django handles search queries, processing user

inputs and rendering the relevant results.

• Performance (non-functional): Django processes the datasets retrieved, ensuring

their quick delivery to the user.

3.2.1.2 Gunicorn

Gunicorn is a Python WSGI HTTP server that acts as a bridge between Nginx and Django,

facilitating the seamless passage of HTTP requests between the two components. In this

application, the WSGI configuration is managed in the “wsgi.py” file, which serves as the entry

point for the Django application during deployment. Gunicorn is configured to use this WSGI

file, allowing it to interface with the Django application. The configuration typically includes

20

settings for the number of worker processes, binding addresses, and any necessary environment

variables, ensuring optimal performance and resource management during runtime.

This technology helps to fulfil the following requirements:

• Performance (non-functional): Gunicorn ensures seamless communication between

Nginx and Django, contributing to fast content delivery and response times.

• Availability (non-functional): By managing multiple worker processes, Gunicorn

enhances the application's availability, allowing it to handle more simultaneous

requests and maintain responsiveness during peak usage.

3.2.1.3 Scheduler

The application employs a scheduler (using “django-apscheduler”) that automatically triggers

the data retrieval and processing tasks at predefined intervals to extract and integrate the data

from multiple sources. Each data source, whether it’s a daily updated file or an internal/external

repository, is processed through these scheduled tasks and is responsible for extracting,

cleaning, transforming, and inserting the most up-to-date information into MongoDB

collections.

Even though MongoDB is schema-less, each function uses a fixed document structure to

retrieve values from the data sources. This standardisation facilitates the further highlighting of

any missing or inconsistent data.

This technology helps to fulfil the following requirements:

• Scheduled data extraction and storage (functional): The scheduler automates the

data extraction and storage process, ensuring the most up-to-date information is

used.

3.2.1.4 Nginx

Nginx (the version used was 1.26) serves as a reverse proxy server in this application’s

architecture. We chose Nginx due to its superior performance in handling concurrent

connections and its efficient resource management as a reverse proxy. According to Kithulwatta

et al. (2023), Nginx outperforms Apache in various scenarios, particularly in high-traffic

environments, making it ideal for performance optimising. Additionally, Nginx provides robust

security features, such as request filtering and SSL (Secure Sockets Layer) and TLS (Transport

Layer Security) termination. This helps protect backend servers from direct exposure to the

internet (Kithulwatta et al., 2023).

21

In this application’s architecture, Nginx is responsible for handling incoming HTTP

requests on port 443 and forwarding them to Gunicorn, which then communicates with Django

via WSGI. Additionally, it manages the delivery of static files, allowing the application to

process dynamic content more efficiently. By offloading static file handling to Nginx, the

application’s overall performance is enhanced.

This technology helps to fulfil the following requirements:

• Performance (non-functional): By managing static file delivery and optimizing

request routing, Nginx contributes to fast content delivery and response times.

• Security (non-functional): The SSL/TLS secure protocol, managed by Nginx,

ensures secure data transfer between the client and server, safeguarding data in

transit.

• Availability (non-functional): Nginx ensures the application remains accessible by

efficiently routing web traffic and preventing bottlenecks.

3.2.1.5 Systemd

Systemd is a Linux service manager responsible for starting and managing system services. In

this architecture, Systemd is configured to automatically run Gunicorn as a service, ensuring

that the application starts on boot and remains running continuously. If the Gunicorn process

crashes or stops, Systemd ensures that it is restarted automatically, thereby maintaining the web

applications’ uptime and reliability.

This technology helps to fulfil the following requirements:

• Availability (non-functional): By automatically restarting Gunicorn in the event of

a failure, Systemd enhances the application's availability, ensuring that users can

access it at any time.

• Performance (non-functional): With Systemd managing Gunicorn, the application

benefits from optimized resource management and quicker response times.

Services can be started in parallel during boot, reducing downtime.

3.2.2 Application data layer

Each data source in the system has a unique structure and set of fields, often differing in format

and naming conventions. The goal of the data layer is to standardise them into a unified

structure, so that they can be effectively compared and discrepancies can be detected. To

achieve this, the application data layer leverages MongoDB's document-oriented database,

22

which provides the necessary flexibility to handle diverse data formats and structures

efficiently.

3.2.2.1 MongoDB

MongoDB is a database for storing and managing data extracted from heterogeneous sources.

Although Django offers a powerful built-in solution for handling relational databases through

its ORM system, MongoDB was chosen for this application because of its superior handling of

unstructured and semi-structured data, and its ability to scale horizontally as new data sources

are introduced.

In this project, each MongoDB collection represents a distinct data source, and each

document within a collection corresponds to an organisation.

This technology helps to fulfil the following requirements:

• Scheduled data extraction and storage (functional): MongoDB stores the data from

heterogeneous sources, allowing it to be retrieved and processed.

3.2.2.2 SQLite3 DB

SQLite3 manages the application’s internal data and Django-related data used in

the authentication process, such as user credentials and session information. This ensures that

only authenticated users can access sensitive data and functionalities within the application.

This technology helps to fulfil the following requirements:

• User authentication (functional): By securely storing user credentials and session

data, SQLite3 ensures that the application requires users to authenticate before

accessing sensitive information, thus maintaining security and control over the data.

3.2.3 Application front-end

The application’s front end is built using Django's templating engine, which is tightly integrated

with the back end to render dynamic content directly from the server. Instead of relying on a

separate JavaScript framework, Django’s full-stack nature handles both presentation and logic.

JavaScript is used selectively for more complex interactions and Cascading Style Sheets (CSS)

are used to style the application, for consistency across the interface.

23

3.2.3.1 Django template

A Django template is a text file that defines the structure or layout of an HTML page, with

placeholders for dynamic content. This allows for seamless back-end data integration into front-

end presentation by rendering HTML with data passed from Django views.

Django templates use a combination of HTML and DTL (Django Template Language) to

dynamically render content, for example, to iterate through a list of organisations, tags like {%

for org_id in org_list %} and {% for d in data_source_1_data %} is used. Conditional logic,

such as {% if d.org_id == org_id %}, ensures that all organisations exist in each collection

before their data is rendered.

Django’s templating system supports the modular design, which allows common elements

(e.g., headers, footers, navigation bars) to be reused across multiple pages, by using the {%

extends 'example.html' %} tag, which enables child templates to inherit attributes from a parent

template. For example, in this application base.html defines the global structure of the website,

and specific sections like tables with organisational information can be customised using {%

block results %} and {% endblock %} in child templates. These examples are illustrated in

Appendix A.

This technology helps to fulfil the following requirements:

• Usability (non-functional): Django templates provide a user-friendly and intuitive

interface for users to interact with the application.

• Search functionality (functional): Templates render the search results dynamically

and present them to users.

• Incongruent information detection functionality (functional): Templates present

highlighted inconsistencies detected between data sources, making discrepancies

easily identifiable.

3.2.3.2 JavaScript

JavaScript is integrated into Django templates to handle tasks that require dynamic updates

without reloading the entire page. While Django renders the initial HTML, JavaScript handles

interactions, such as comparing values and highlighting incongruences, toggling dark/light

mode, and passing variables from the back end to the client side.

Django allows passing back-end context variables directly into JavaScript. For example, in

this application, the org_list variable is passed as safe JSON (JavaScript Object Notation) from

a Django template to JavaScript using template tags like {{ org_list|safe }}.

24

JavaScript handles tasks such as comparing data from multiple sources or toggling

dark/light mode are loaded using Django’s {% load static %} template tag. This is showcased

in Appendix A.

This technology helps to fulfil the following requirements:

• Usability (non-functional): JavaScript improves user experience by allowing for

interactivity, such as toggling dark/light mode.

• Incongruent information detection functionality (functional): JavaScript performs

the logic to compare data from multiple sources and highlight discrepancies.

3.2.3.3 CSS

In the application CSS is used to style the front end of the application, to define a visually

consistent and responsive design across all pages. It defines common styles such as fonts,

colours, appearance of data displays, and other UI (User Interface) elements, to ensure a clear

and user-friendly interface. CSS files are managed as static assets and are loaded onto every

page using the {% load static %} tag in the HTML <head> section.

This technology helps to fulfil the following requirements:

• Cross-browser compatibility (non-functional): CSS ensures that the application

works seamlessly across multiple browsers, providing consistent styling and layout.

• Usability (non-functional): CSS improves the overall user interface, ensuring that

the application is visually clear, responsive, and easy to navigate.

3.3 Information flow

In this section, we detail the flow of information through the web application architecture, from

data retrieval to its display in the user’s browser. The following steps explain how data is

extracted, processed, and served, and accompanying 3.1 illustrates the process.

25

Figure 3.1 - Flowchart of the information’s flow through the web application architecture

1 - Data retrieval and storage via scheduler:

The scheduler is configured with several functions, each dedicated to retrieving data

from specific data sources daily and storing it in MongoDB on a Virtual Machine

(VM).

a. Each function in the scheduler is triggered sequentially. The functions retrieve

data from the following types of sources.

i. A file updated daily by FCCN via a Jenkins job, containing data from the data

source platform.

ii. Direct retrieval from a repository or platform, either located within the FCCN

network or hosted externally on the Internet.

b. Each data source has its own dedicated MongoDB collection named after it. Data

from each source is stored by overwriting the old data to ensure the most recent

version is always displayed to the end user.

26

2 - User request initiation:

When a user opens the web application in a browser, an HTTP request is made to the

web server Nginx through port 443, which receives the request and initiates the

Request Phase.

3 - Nginx forwards request to Gunicorn:

After the request is received and passes through the predefined rules for security and

routing in Nginx, it’s forwarded via port 8000 to Gunicorn, the WSGI server that

listens for incoming requests from Nginx.

4 - Systemd manages Gunicorn service:

Systemd is configured to automatically run Gunicorn as a service, ensuring that the

application starts on boot and remains running.

5 - Routing via Gunicorn:

Gunicorn translates the incoming HTTP request into a Python object and passes it to

the Django application, initiating the Process Request Phase within Django.

6 - URL mapping and middleware processing:

When an HTTP request is received, the Uniform Resource Locator (URL) is mapped

to a specific Django View function based on the URL configuration in the urls.py file.

The request is routed to the appropriate view, which contains the logic to handle the

specific request.

7 - Interaction with MongoDB:

The Django View processes the retrieved data, applying any necessary logic,

transformations, or data modelling as defined in the function. Once the data is

processed, the view compiles the HTTP response by passing it to a Django Template

for rendering.

8 - Data processing and response preparation:

The Django View then processes the data by conducting the remainder of the logic

defined in the function, transforming and modelling the data for the HTTP response,

and compiling the HTTP response created, back to the Django Template.

9 - HTTP response preparation by Gunicorn:

The completed HTTP response, which includes the rendered template and any linked

static files (CSS, JavaScript), is then returned from Django to Gunicorn.

10 - Gunicorn sends response back to Nginx:

Gunicorn packages the response and passes the completed HTTP response back to

Nginx via port 8000.

27

11 - Final response delivery to user:

Finally, Nginx securely sends the HTTP response, through port 443 back to the user’s

browser where the requested data is presented in the user interface. Nginx also takes

care of serving the static files, which were pre-collected from Django's static folder

and stored in the directory called staticfiles, that Nginx is configured to serve from.

3.4 Application functionalities

The following sections provide a technical insight into the application’s functionalities and

implementation.

3.4.1 Login page

The login page is the entry point for users, requiring authentication before accessing the

application functionalities. This feature leverages Django’s built-in authentication system to

ensure that only authorised users can access the sensitive data. Form validation includes checks

for username and password, error handling for incorrect logins, and redirects to the main

interface upon successful authentication. Django’s @login_required decorator is applied to all

views to assure access to authenticated users only.

Additionally, password validation is enforced using a custom validator defined in the

validator.py file to enhance security, adding an extra layer of protection to the authentication

process. Users must comply with the password policy to create or change their passwords. The

password requirements are the following:

• At least one uppercase letter

• At least one lowercase letter

• At least one digit

• At least one special character

A logout button is also provided in the main page, which redirects users back to the login

page upon logging out.

28

Figure 3.2 - Web application login page

3.4.2 Incongruent information detection functionality

In the findings section, which serves as the default main page, each organisation’s data is

displayed in tables, with any inconsistencies in attributes (incongruences or missing values)

highlighted across the data source rows. This layout allows users to visually assess where data

may be incomplete or conflicting between sources. The JavaScript code is responsible for

comparing and highlighting these discrepancies, while Django templates handle the dynamic

rendering of data for each organisation.

The application employs specific logic to highlight discrepancies in key attributes such as

names, IP addresses, descriptions, and others. A single dash (“-”) indicates that an attribute does

not exist in a particular source, while three red dashes (“---”) signify that the attribute should

exist but lacks a value in that source. For all attributes except IP addresses, the highlighting

logic is the same, as shown in Appendix B. For example, if the name attribute is missing in a

source where it should exist, and all other sources have the same name value for the

organisation, the name fields are still highlighted to indicate inconsistency.

To ensure consistency in comparison, all name values are standardised through the

normaliseText() function, also shown in Appendix B. This function removes diacritical marks

and special characters from text, ensuring that minor formatting differences don’t prevent a

positive match between names such as “Organização” and “Organizacao”.

For IP addresses, the system identifies addresses that are not universally present across all

sources. Any blocks missing from a particular source are highlighted, giving a clear visual cue

29

for missing or partially present IP ranges. The highlighting logic for IP addresses is also

described in Appendix B.

Using standardised text comparison and a specific highlighting logic for each attribute

ensures that users can easily interpret and assess data inconsistencies across different sources.

Figure 3.3 - Web application findings section

3.4.3 Search functionality

The search functionality allows users to quickly locate information about specific organisations

by typing organisation IDs, partially or completely. The search input triggers a query across all

the data stored in MongoDB, retrieving matching records. This feature is implemented using

Django views to handle the back-end logic and render search results dynamically on the front

end. In the end, the data comparison via JavaScript is triggered.

30

Figure 3.4 - Web application search functionality results outcome

Figure 3.5 - Web application search functionality no results outcome

3.4.4 Light and dark mode

The light and dark mode feature enhances the user experience by allowing users to toggle

between light and dark themes and is implemented using JavaScript and CSS. JavaScript

handles the mode switch and stores the user's preference in the browser's local storage, while

CSS dynamically adjusts the theme.

31

Figure 3.6 - Web application dark theme (default theme)

Figure 3.7 - Web application light theme

32

33

Chapter 4 – Testing and validation

This chapter provides an overview of the testing and validation processes to ensure that the

application meets its functional and non-functional requirements. We developed test cases to

assess the requirements established in Chapter 3, including expected outcomes that demonstrate

the application’s compliance with its specifications. Ultimately, FCCN validated the expected

outcomes by confirming that the application functioned as intended.

4.1 Functional requirements test cases

This section outlines the test cases developed in collaboration with FCCN to validate the

application’s functional requirements.

Table 4.1 - Functional requirements, test cases and expected outcomes

Requirement Test Case Expected Outcome

User authentication
Verify the functionality of

the authentication system

Valid users should log in

successfully, while invalid

credentials should be rejected with

clear error messages

Scheduled data extraction

and storage

Validate the automaticity of

data extraction and storage

The application should

automatically extract and store

data at configurable intervals

Incongruent information

detection functionality

Validate the detection of

discrepancies between

equivalent attributes

The system should accurately

detect and highlight

inconsistencies across the sources

Search functionality
Test search accuracy and

response time.

The search results should be

accurate and displayed in under 5

seconds

4.1.1 User authentication test case outcome

To validate the user authentication test case, we conducted login attempts using both valid and

invalid credentials. We observed the application’s responses, specifically checking for

appropriate error messages in cases of invalid credentials. Additionally, we utilized the

developer console to verify session cookies or tokens that indicate a successful login.

34

Figure 4.1 - Confirmation of user authentication using the session cookie sessionid

Figure 4.2 - Left side: error message after attempting to log in with an invalid username, right

side: error message after attempting to log in with an invalid password

We then concluded that the requirement was fulfilled, as the test results aligned with the

expected outcome. Figure 4.1 confirmed successful user authentication, while the Figure 4.2

demonstrated that users with invalid credentials received appropriate error messages,

effectively denying them access.

4.1.2 Scheduled data extraction and storage test case outcome

To validate the scheduled data extraction test case, we scheduled tasks for data extraction from

each source and verified that the system automatically retrieved and updated the data at the

specified intervals.

35

Figure 4.3 - Scheduled data extraction tasks in “scheduler.py” with specified intervals for

each source

Figure 4.4 - MongoDB Compass showing insert and delete operations in the collections after

data extraction

We concluded that the requirement was met, as the test outcomes corresponded with the

expected results. The application demonstrated its ability to automatically synchronize data

between the original data sources and the MongoDB database, effectively extracting and storing

data at the configured intervals.

36

4.1.3 Incongruent information detection functionality test case outcome

We manually introduced discrepancies into equivalent organisational attributes across various

test data sources to conduct the incongruent information detection functionality test case. We

then ran the system to compare and identify these inconsistencies.

Figure 4.5 - Web interface displaying the organisation’s information and highlighting the

inconsistencies in the attributes from different data sources

We successfully achieved the expected outcome, as the system effectively detected and

highlighted the inconsistencies between the attributes from the different data sources.

4.1.4 Search functionality test case outcome

To conduct the search functionality test case, we populated MongoDB with a dataset of 100

organisations and utilized the search bar in the web interface to locate a specific organisation.

We also employed the browser's developer console (F12) to measure the time taken to return

the search results.

37

Figure 4.6 - Test database displaying 100 documents (organisations) across each data source

Figure 4.7 - Total time taken by the search functionality to render organisation number 95,

including a breakdown of the time spent on each step of the process

We successfully achieved the expected outcome, as the search returned the correct result in

just 1.62 seconds, meeting the requirement of being under 5 seconds, as shown in Figure 4.8.

4.2 Non-functional tests

This section outlines the test cases developed in collaboration with FCCN to validate the non-

functional requirements of the application.

38

Table 4.2 - Non-functional requirements, test cases and expected outcomes

Requirement Test Case Expected Outcome

Usability
Verify the usability of the

interface

Users should be able to navigate

the application with ease, with

minimal errors or confusion, and

report that the interface is intuitive

and user-friendly

Availability
Test the application's

availability

The application should be always

available to use and responsive

throughout regular operations,

without noticeable downtime

Performance

Measure the performance

of the response times of the

application

The application should efficiently

process the data and return results

within a reasonable time

Security

Verify data integrity and

secure data storage (in

transit and at rest)

The system should block

unauthorized access attempts and

secure data from common security

threats, ensuring data integrity in

transit and at rest

Cross-browser

compatibility

Test the application on

multiple browsers for

compatibility

The application should work

correctly and look the same across

different browsers

Technology stack

Verify that the technology

stack consists of free and

open-source technologies

All components of the technology

stack, including any third-party

libraries or dependencies, should

be licensed under free and open-

source licenses

4.2.1 Usability test case outcome

We conducted the usability test case by asking the end-users to perform tasks such as logging

in, searching for organisations, and viewing discrepancies. Afterwards, we collected their

feedback on the ease of use, interface clarity, and any challenges encountered.

The feedback confirmed that the interface is intuitive and easy to use, meeting the usability

requirements. Therefore, we concluded that the expected outcome was achieved, given that the

positive response confirms the application's design effectiveness and user satisfaction.

4.2.2 Availability test case outcome

To perform the availability test case, we conducted typical user operations such as searching

for organisation data and viewing discrepancies. We monitored HTTP status codes and network

39

requests in real-time using the F12 Developer Tools Network tab, checking for any failed

requests (e.g., 500 Internal Server Error, 404 Not Found) that could indicate availability issues.

Figure 4.8 - HTTP requests, status codes, and response times when searching for an

organisation

We successfully achieved the expected outcome, as the application remained fully available

during both the search and discrepancy viewing actions, consistently returning 200 OK and 304

Found status codes.

4.2.3 Performance test case outcome

To perform the performance test case, we evaluated the time required for the system to detect

discrepancies and return search results. We measured key performance metrics, including

Largest Contentful Paint (LCP), Cumulative Layout Shift (CLS), and Interaction to Next Paint

(INP), to assess the application's efficiency.

40

Figure 4.9 - Incongruent information detection functionality metrics results

Figure 4.10 - Search functionality metrics results

We successfully achieved the expected outcome, as the application efficiently processed

the data and returned results within a reasonable time, as confirmed by the Developer Tools in

Figures 4.10 and 4.11.

4.2.4 Security test case outcome

We performed the security test case to evaluate the system’s ability to secure data in transit and

at rest and detect vulnerabilities. Using OWASP ZAP, we conducted penetration tests targeting

common vulnerabilities such as SQL injection and XSS attacks.

41

Figure 4.11 - OWASP ZAP alerts section

As shown in Figure 4.12, the alerts section revealed only informational alerts, which are

not critical vulnerabilities but offer suggestions to enhance the application’s security posture of

the application. The use of HTTPS (Hypertext Transfer Protocol Secure) ensures that data in

transit is secure, protecting it from interception during transmission.

Additionally, passwords are stored in the SQLite3 database using a hashing algorithm like

PBKDF2, ensuring that sensitive information remains secure at rest. Both the organisational

data stored in the MongoDB database, and the data in the SQLite3 database, are stored within

FCCN’s virtual machine. This is only accessible through a VPN, adding a layer of security for

sensitive data at rest.

We reached the expected outcome, confirming that the application effectively secures data

from common security threats, ensuring data integrity in transit and at rest.

4.2.5 Cross-browser compatibility test case outcome

We tested the application on popular browsers, including Chrome, Firefox, Opera and Safari to

ensure consistent functionality and appearance.

42

Figure 4.12 - Incongruent information detection is displayed across different browsers (top

left: Firefox, top right: Chrome, bottom left: Safari, bottom right: Opera)

 The expected outcome was reached, as the application functions consistently and renders

correctly the same content across the different browsers.

4.2.6 Technology stack test case outcome

We conducted the technology stack test case by collecting the names of all technologies used

in the application and verifying their licensing information to ensure they are free and open-

source. The verification process involved checking each technology’s official websites and

repositories to confirm their compliance with open-source requirements.

Table 4.3 - Technologies used in the development and testing of the web application, their

availability as free and open-source software along with their respective licenses

Technology Free Open Source License

Python Yes Yes
Python Software

Foundation

Django Yes Yes BSD

Nginx Yes Yes BSD

MongoDB Yes Yes
Server-Side Public

License - SSPL

SQLite3 Yes Yes Public Domain

OWASP ZAP Yes Yes Apache License 2.0

43

We successfully achieved the expected outcome as all technologies used in the application

were confirmed to be free and open-source, meeting the requirement of using a fully open-

source technology stack.

44

Chapter 5 – Conclusion

In this chapter, we summarise the key findings of our research and potential areas for

improvement and enhancement discovered during the application’s development and testing.

5.1 Conclusions

This dissertation focused on implementing a software-based system designed to address the

research question: “Is it possible to detect and highlight incongruences in equivalent attribute

values stored across several heterogeneous data sources, for effective incident triage in the

information incident response process?”

The ability to identify discrepancies among equivalent data attributes is crucial in

enhancing the accuracy and reliability of data used in incident response processes. By

employing a system that identifies these discrepancies, we can facilitate timely and effective

incident triage. While the literature explored provided insights into existing methodologies,

particularly in how to correct discrepancies, it did not offer a comprehensive, ready-to-use

solution tailored for detecting incongruences. The application developed in this dissertation

focuses on detecting discrepancies, rather than correcting them, as we were able to develop the

detection functionality, while the correction of these discrepancies remains a possible area for

future improvement.

Throughout the research, several key requirements were established (Chapter 3, Section

3.2) that guided the application’s development. These included the capability for scheduled data

extraction, the efficient detection of incongruences, and an intuitive user interface to facilitate

ease of use. The successful implementation of these features ensures that the system not only

performs its intended functions but does so in a manner that is accessible and efficient for users.

The system has been tested in real operational settings by end users, which confirmed the

outcomes of the analysis in the preceding chapter. The feedback received confirmed that the

system successfully identifies and highlights incongruences between equivalent attribute values

across various data sources, and fulfils the other established requirements, thus addressing the

research question.

In summary, we conclude that the developed application has the potential to enhance the

quality of the data used in RCTS CERT’s incident response, by extracting data from

heterogeneous sources and detecting incongruences. It also allows users to analyse the data

directly through the interface.

45

5.2 Future work

Several promising avenues for future work could be explored to enhance the application such

as leveraging machine learning techniques to suggest which data sources are most likely to

contain correct values based on previous corrections. By storing historical correction data, the

system could learn patterns and make informed predictions about the accuracy of incoming

data.

Another potential improvement is implementing a functionality that enables users or the

system to identify the correct values among all data sources and push corrections for identified

discrepancies back to the originating sources via their respective APIs (Application

Programming Interface), if they exist.

46

47

References

A. Aborujilah, J. Adamu, S. M. Shariff and Z. Awang Long (2022). Descriptive Analysis of

Built-in Security Features in Web Development Frameworks. 16th International

Conference on Ubiquitous Information Management and Communication (IMCOM), 1-8.

https://doi.org/10.1109/IMCOM53663.2022.9721750

Al-Baltah, I. A., Abd Ghani, A. A., Al-Gomaei, G. M., Abdulrazzak, F. H., & al Kharusi, A. A.

(2020). A scalable semantic data fusion framework for heterogeneous sensor data.

JOURNAL OF AMBIENT INTELLIGENCE AND HUMANIZED COMPUTING.

https://doi.org/10.1007/s12652-020-02527-5

Boufares, F., & Salem, A. ben. (2012). Heterogeneous data integration and data quality:

Overview of conflicts. 2012 6th International Conference on Sciences of Electronics,

Technologies of Information and Telecommunications (SETIT), 867–874.

https://doi.org/10.1109/SETIT.2012.6482029

Decreto Lei no 46/2018, de 13 de Agosto. Diário da República: I série, No 155 (2018).

Accessed: Nov. 18, 2023. [Online]. Available:

https://files.diariodarepublica.pt/1s/2018/08/15500/0403104037.pdf

Dumitrescu, S.-R., Branescu-Raspop, I., & Popescu, D. (2013). Format mediation for matching

patient records in a three-layer information architecture. 2013 4th International Symposium

on Electrical and Electronics Engineering (ISEEE), 1–5.

https://doi.org/10.1109/ISEEE.2013.6674369

El-Demerdash, K. K., & Amer, F. (2012). Data integration framework with an application for

Ministry of Interior. 2012 8th International Conference on Informatics and Systems

(INFOS), DE-18-DE-28.

From Good Practice Guide for Incident Management. (2010, December 20). ENISA.

https://www.enisa.europa.eu/publications/good-practice-guide-for-incident-management

Ghorbel, L., Zayani, C. A., & Amous, I. (2015). A novel architecture for learner’s profiles

interoperability. 2015 IEEE/ACIS 14th International Conference on Computer and

Information Science (ICIS), 405–410. https://doi.org/10.1109/ICIS.2015.7166628

Kitchenham, B., Pearl Brereton, O., Budgen, D., Turner, M., Bailey, J., & Linkman, S. (2009).

Systematic literature reviews in software engineering – A systematic literature review.

Information and Software Technology, 51(1), 7–15.

https://doi.org/10.1016/j.infsof.2008.09.009

https://doi.org/10.1109/IMCOM53663.2022.9721750
https://doi.org/10.1007/s12652-020-02527-5
https://doi.org/10.1109/SETIT.2012.6482029
https://files.diariodarepublica.pt/1s/2018/08/15500/0403104037.pdf
https://doi.org/10.1109/ISEEE.2013.6674369
https://www.enisa.europa.eu/publications/good-practice-guide-for-incident-management
https://doi.org/10.1109/ICIS.2015.7166628
https://doi.org/10.1016/j.infsof.2008.09.009

48

Mirza, A., & Siddiqi, I. (2017). Data level conflicts resolution for multi-sources heterogeneous

databases. 2016 6th International Conference on Innovative Computing Technology,

INTECH 2016, 36–40. https://doi.org/10.1109/INTECH.2016.7845088

Mirza, G. A. (2014). Value name conflict while integrating data indatabase integration. In S. X.

Yang, J. P. Li, I. Bloshanskii, & I. Ahmad (Eds.), 2014 11th International Computer

Conference on Wavelet Active Media Technology and Information Processing,

ICCWAMTIP 2014 (pp. 316–320). Institute of Electrical and Electronics Engineers Inc.

https://doi.org/10.1109/ICCWAMTIP.2014.7073417

Mirza, G. A. (2016). Null Value Conflict: Formal Definition and Resolution. Proceedings - 2015

13th International Conference on Frontiers of Information Technology, FIT 2015, 132–137.

https://doi.org/10.1109/FIT.2015.32

Nachouki, G., & Quafafou, M. (2011). MashUp web data sources and services based on

semantic queries. INFORMATION SYSTEMS, 36(2), 151–173.

https://doi.org/10.1016/j.is.2010.08.001

Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T., Mulrow, C. D.,

Shamseer, L., Tetzlaff, J., Akl, E. A., Brennan, S., Chou, R., Glanville, J., Grimshaw, J.,

Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E., Mayo‐Wilson, E., McDonald, S., . . .

Moher, D. (2021). The PRISMA 2020 statement: an updated guideline for reporting

systematic reviews. The BMJ, n71. https://doi.org/10.1136/bmj.n71

Peffers, K., Tuunanen, T., Gengler, C. E., Rossi, M., Hui, W., Virtanen, V., & Bragge, J. (2020,

June 4). Design Science Research Process: A Model for Producing and Presenting

Information Systems Research. http://arxiv.org/abs/2006.02763

Qutaany, A. Z. el, Bastawissy, A. H. el, & Hegazy, O. (2010). A technique for mutual

inconsistencies detection and resolution in virtual data integration environment. 2010 The

7th International Conference on Informatics and Systems (INFOS), 1–8.

Saranya, K., Hema, M. S., & Chandramathi, S. (2014). Data fusion in ontology based data

integration. International Conference on Information Communication and Embedded

Systems (ICICES2014), 1–6. https://doi.org/10.1109/ICICES.2014.7033792

Sharef, N. M., Shafazand, Y. M., Nazri, M. Z. A., & Husin, N. A. (2018). Self-adaptive Based

Model for Ambiguity Resolution of The Linked Data Query for Big Data Analytics.

INTERNATIONAL JOURNAL OF INTEGRATED ENGINEERING, 10(6), 176–182.

https://doi.org/10.30880/ijie.2018.10.06.025

https://doi.org/10.1109/INTECH.2016.7845088
https://doi.org/10.1109/ICCWAMTIP.2014.7073417
https://doi.org/10.1109/FIT.2015.32
https://doi.org/10.1016/j.is.2010.08.001
https://doi.org/10.1136/bmj.n71
http://arxiv.org/abs/2006.02763
https://doi.org/10.1109/ICICES.2014.7033792
https://doi.org/10.30880/ijie.2018.10.06.025

49

Sonsilphong, S., Arch-int, N., Arch-int, S., & Pattarapongsin, C. (2016). A semantic

interoperability approach to health-care data: Resolving data-level conflicts. EXPERT

SYSTEMS, 33(6), 531–547. https://doi.org/10.1111/exsy.12167

Wei, D., & Xianxia, Z. (2013). The Method to Resolve Schema Discrepancy of a Heterogeneous

Database System. 2013 IEEE 10th International Conference on High Performance

Computing and Communications & 2013 IEEE International Conference on Embedded and

Ubiquitous Computing, 2342–2346. https://doi.org/10.1109/HPCC.and.EUC.2013.337

W. M. C. J. T. Kithulwatta, K. P. N. Jayasena, B. T. G. S. Kumara and R. M. K. T. Rathnayaka,

(2022). Performance Evaluation of Docker-based Apache and Nginx Web Server. 3rd

International Conference for Emerging Technology (INCET), 1-6.

https://doi.org/10.1109/INCET54531.2022.9824303

https://doi.org/10.1111/exsy.12167
https://doi.org/10.1109/HPCC.and.EUC.2013.337
https://doi.org/10.1109/INCET54531.2022.9824303

50

51

Appendix A: Django template tags

The tag {% extends 'base.html' %} indicates that the current template will inherit from

base.html. By using this inheritance each specific template can provide its unique content

without rewriting the entire HTML structure. The tag {% block results %} defines a block

named results, where we insert content specific to the current template. In this case the content

within this block will be dynamically generated based on the data provided to the template.

Figure A.1 - Template inheritance and block definition tags

The {% for org_id in org_list %} loop iterates through a list called org_list, which is passed

to the template from a Django view. For each org_id, the inner loops then check against

source1_data and source2_data to find and display relevant information. The {% if n.org_id

== org_id %} and {% if rw.org_id == org_id %} statements serve to filter and display only the

data relevant to the current organisation ID being processed, linking source1_data and

source2_data to their respective organisations. Each organisation data entry is rendered using

placeholders such as {{n.name}} and {{rw.name}}, which access attributes of the objects in data

lists source1_data and source2_data.

52

Figure A.2 - Iteration, conditional and dynamic content rendering tags

By using {{ org_list|safe }}, we instruct Django to insert the value of org_list directly into

the JavaScript code without escaping it. The |safe filter tells Django that the content is safe for

rendering as-is, allowing for proper JavaScript syntax (such as arrays or objects) without

escaping quotes or special characters. This is essential for making server-side data available to

client-side scripts, enabling dynamic functionality based on the contents of the org_list.

The {% load static %} allows us to access static files, such as CSS, JavaScript, and images

that are not generated dynamically. Using this tag ensures that our static files are served

correctly regardless of the deployment environment, by abstracting away the URL structure.

This allows for easier maintenance and updates to the static assets.

53

Figure A.3 - Context variables and loading static files tags

54

55

Appendix B: Highlighting logic for the organisation’s attributes

The function normaliseText() standardises text by removing diacritical marks (accents) and

specific special characters to ensure consistent comparisons across sources. Using unicode

normalisation NFD (Normalisation Form Decomposition), it decomposes characters with

diacritical marks into base characters and removes accents using a regex expression. Additional

characters like ^, ~, ´, `, and ç are also removed to prevent mismatches due to minor variations

in text formatting. This is particularly useful for ensuring accurate comparisons of names and

other non-technical text fields.

Figure B.1 - normaliseText() function in JavaScript

This function compares IP addresses across multiple data sources for a given organisation,

specified by an organisation ID. It retrieves IP address values from each data source, splitting

them into individual IP addresses. By counting occurrences of each address, the function

identifies the ones that are not universally present across all sources. If an IP address is found

in some sources but not others, it is flagged as inconsistent, and the function highlights these

discrepancies directly in the HTML elements associated with each data source for the

organisation.

56

Figure B.2 - compareCidrBlocks() function in JavaScript

The function compareNames() compares the name attribute of an organisation across data

sources by retrieving each name value based on an organisation ID. The same logic used in this

function is applied to the other functions that compare other attributes. Using the

normaliseText() function, it standardises each name value to avoid mismatches caused by

formatting differences. If there is any variation in the names across sources, it applies a highlight

to each name field for that organisation, signalling inconsistency. Additionally, it handles cases

where a name field is marked as missing (---), centring the text and ensuring a consistent visual

representation for absent values.

57

Figure B.3 - compareNames() function in JavaScript

