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Abstract
We use theR-linearity of Iλ−T to define σ(T ), the right spectrum of a rightH-linear
operator T in a right quaternionic Banach space. We show that σ(T ) coincides with
the S-spectrum σS(T ).
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1 Introduction

In a complex Banach space XC the spectrum of a bounded operator T ∈ B(XC) is the
well-known set

σC(T ) = {
λ ∈ C : Iλ − T is non invertible in B(XC)

}
.

When X is a (right) quaternionic Banach space, the spectrum is more elusive, due
to the non commutativity of scalar multiplication. Nevertheless, quaternionic Banach
spaces have been usedwith the notion of point spectrum, i.e eigenvalues. It is, however,
clear that this notion is not sound when X is infinite dimensional and therefore, some
careful adaptations need to be done.

It is well-known that if the complex Banach space XC is finite dimensional then the
notion of spectrum is the set of eigenvalues. But when XC is infinite dimensional, the
spectrum of an operator T is more than just the eigenvalues. More precisely, according
to the nature of the failure of the invertibility of Tλ := Iλ−T ∈ B(XC), the spectrum
is the union of three disjoint sets: the point spectrum σC,p(T ), the set of complex
numbers λ where the operator Tλ is not injective; the residual spectrum σC,r (T ), the
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set of λ ∈ C \ σC,p(T ) where the range of Tλ is not dense in XC, Ran(Tλ) �= X ; and
the continuous spectrum σC,c(T ), the set of λ ∈ C \ (σC,p(T ) ∪ σC,r (T )) where Tλ is
not bounded below.

To define the spectrum of a quaternionic right linear operator T ∈ B(X) we cannot
simply emulate what happens in the complex case. In fact, the operator of right mul-
tiplication by a quaternion, Iλ : X → X defined by Iλ(x):=xλ, is not rightH-linear.
Thus, Tλ is also not right H-linear, i.e. Tλ is not in B(X), but on the contrary, right
multiplication by a quaternion is clearly R-linear and so is Tλ. Therefore, it is natural
to define a notion of spectrum based on the invertibility of the R-linear operator Tλ.
In other words, we consider the larger space of bounded R-linear operators on X ,
denoted by BR(X). Accordingly, we define a modified right spectrum to be the subset
of H

σ(T ) = {
λ ∈ H : Iλ − T is non invertible in BR(X)

}
, (1)

which resembles the usual notion of spectrum in the complex setting. The spectrum
defined this way can be decomposed in the usual family of disjoint sets,

σ(T ) = σp(T ) ∪ σr (T ) ∪ σc(T ),

where σp(T ), σr (T ) and σc(T ) are respectively the point, residual and continuous
spectra, defined by

σp(T ) = {λ ∈ H : Tλ(x) = 0, for some x ∈ X \ {0}},
σr (T ) = {λ ∈ H \ σp(T ) : Ran(Tλ) �= X},
σc(T ) = {λ ∈ H \ (

σc(T ) ∪ σp(T )
) : Tλ is not bounded below}.

On the other hand, the quaternionic functional calculus has seen a recent major
breakthrough and the fundamental stepping-stone of that leap is the introduction of
the operator �λ(T ) = T 2 − 2Re(λ)T + |λ|2 I in B(X), for any λ ∈ H. The non-
invertibility of �λ(T ), for a given T ∈ B(X), defines a new notion of spectrum, the
S-spectrum,

σS(T ) = {
λ ∈ H : �λ(T ) is non invertible in B(X)

}
.

Again, the S-spectrum can be split into three disjoint sets: the point S-spectrum
σS,p(T ), the residual S-spectrum σS,r (T ), and the continuous S-spectrum σS,c(T )

(see [5] and references therein).
This similarity raises the question whether these sets are equal to the ones defined

for the right spectrum (1). The purpose of this paper is to answer affirmatively to
this question. We prove that the notions of right spectrum and S-spectrum coincide.
Actually, we show that each component in the partition of the spectrum coincides with
the corresponding component in the partition of the S-spectrum, that is

σp(T ) = σS,p(T ), σc(T ) = σS,c(T ), σr (T ) = σS,r (T ).
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Before delving into the gory details, two comments are worth making. First, our
result provides a handy way to calculate the spectrum but the introduction of the
operator �λ was crucial for further developing quaternionic operator theory. In fact,
many achievements were unthinkable without the discovery of the S-spectrum. To
name a few, a generalization of the Riesz-Dunford functional calculus for holomorphic
functions to quaternionic linear operators [3], the continuous functional calculus for
normal operators on a quaternionic Hilbert space [6] and spectral theorems for unitary
[2] and for unbounded normal quaternionic linear operators [1], among others. The
second observation is that the equality of the two spectra notions in this paper is
natural and in a sense easy, but to the best of our knowledge, has passed unnoticed in
the literature, except the equality of the right and S-spectrum in the finite dimensional
case. There is also one article that mentions the equality of the right spectrum and the
S-spectrum in infinite dimension, but only proves the equality for the eigenvalues, that
is, it only establishes the equality of the right point spectrum and the point S-spectrum
(see [4, Theorem 2.5]).

For convenience of the reader, we recall some basic definitions and results. The
division ring of real quaternions H is an algebra over R with basis {1, i, j, k} and
product given by i2 = j2 = k2 = i jk = −1. The pure quaternions are denoted by
P = spanR {i, j, k}. The real and imaginary parts of a quaternion q = a0 + a1i +
a2 j + a3k ∈ H are denoted by Re(q) = a0 and Im(q) = a1i + a2 j + a3k ∈ P,
respectively. The conjugate of q is given by q∗ = Re(q) − Im(q) and its norm is
|q| = √

qq∗. Two quaternions q1, q2 ∈ H are called similar, and we write q1 ∼ q2,
if there exists s ∈ H with |s| = 1 such that s∗q2s = q1. Similarity is an equivalence
relation and the class of q is denoted by [q]. A necessary and sufficient condition for
the similarity of q1 and q2 is that Re(q1) = Re(q2) and |Im(q1)| = |Im(q2)|. A set
A ⊂ H is axially symmetric if λ ∈ A, then [λ] ⊂ A.

As usual a rightH-module X equipped with a norm ‖x‖, for every x ∈ X , is called
a right quaternionic Banach space if it is complete with respect to this norm.

We can look at X as a vector space over H or R. This allows us to introduce two
notions of linear operators over the two fields. A right H-linear operator is a map
T : X → X such that

T (uα + vβ) = T (u)α + T (v)β, for any u, v ∈ X and α, β ∈ H.

Analogously, if the above equality holds for any α, β ∈ R, we say that T is an R-
linear operator. Furthermore, recall that an operator T : X → X is bounded if there
exists K ≥ 0 such that ‖T x‖ ≤ K‖x‖, x ∈ X , and that the norm of T is defined by
‖T ‖ = sup {‖T x‖ : ‖x‖ = 1}.

We denote by B(X) the set of all bounded right H-linear operators on X and by
BR(X) the set of all bounded R-linear operators on X . Since a H-linear map is an
R-linear map, we have B(X) ⊆ BR(X).

Consider the operator Tλ:=Iλ− T : X → X , defined before as Tλ(x) = xλ− T x .
Although Tλ is not right H-linear, it is R-linear operator. Therefore, it makes sense to
talk about invertibility of Tλ in BR(X) and we define the spectrum of T ∈ B(X) as
follows.
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Definition 1 Let T ∈ B(X). Then the right spectrum of T is the set

σ(T ) = {
λ ∈ H : Tλ is not invertible in BR(X)

}
.

As proved in the next proposition σ(T ) splits into a disjoint union of three parts

σ(T ) = σp(T ) ∪ σc(T ) ∪ σr (T ),

where the point spectrum, the continuous spectrum and residual spectrum of T are,
respectively,

σp(T ) = {λ ∈ H : Tλ(x) = 0, for some x ∈ X \ {0}},
σr (T ) = {λ ∈ H \ σp(T ) : Ran(Tλ) �= X},
σc(T ) = {λ ∈ H \ (

σr (T ) ∪ σp(T )
) : Tλ is not bounded below}.

Proposition 2 Let T ∈ B(X), then

σ(T ) = σp(T ) ∪ σc(T ) ∪ σr (T ).

Proof Clearly σp(T )∪σc(T )∪σr (T ) ⊆ σ(T ), since if λ belongs to σp(T )∪σc(T )∪
σr (T ) then Tλ is not invertible in BR(X), thus λ ∈ σ(T ).

The reverse inclusion is straightforward and we will demonstrate it by proving that
if λ ∈ σ(T ) \ (σr (T ) ∪ σp(T )), then λ ∈ σc(T ). In other words, we will show that
there exists a sequence {xn}n∈N of unit vectors xn ∈ X such that Tλ(xn) → 0.

Since T is bounded we have Tλ ∈ BR(X), for any λ ∈ H. Furthermore, if λ ∈
σ(T ) \ (σr (T )∪σp(T )), meaning Tλ is bijective and thus invertible. But its inverse is
not in BR(X), then, being an R-linear operator, it must be unbounded. That is, there
exists an unbounded R-linear operator Q such that QTλ(x) = TλQ(x) = x for any
x ∈ X .

If Q is unbounded, we can select a sequence of unit vectors xn ∈ X such that
‖Qxn‖ → +∞. Then we have

Tλ

(
Q(xn)

‖Qxn‖
)

= xn
‖Qxn‖ → 0.

In conclusion, if λ ∈ σ(T ) but not in σr (T ) ∪ σp(T ), then Tλ is not bounded below,
thus λ ∈ σc(T ). Therefore, the partition is valid for the right spectrum definition
introduced. ��

Given T ∈ B(X) and λ ∈ H, we define the operator �λ(T ) : X −→ X by

�λ(T ) = T 2 − 2Re(λ)T + |λ|2 I .

Clearly,�λ(T ) is a bounded rightH-linear operator andwe can introduce the definition
of the S-spectrum of T .
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Definition 3 Let T ∈ B(X). Then the S-spectrum of T is the set

σS(T ) = {
λ ∈ H : �λ(T ) is not invertible in B(X)

}
.

TheS-spectrumσS(T ) is a compact nonempty subset ofH and it is always contained
in the closed ball of radius ‖T ‖ around origin B(0, ‖T ‖). One can show thatλ ∈ σS(T )

is equivalent to [λ] ⊆ σS(T ) ([5, Theorem 3.1.8, Theorem 3.1.13]).
Again a classical partition of the spectrum into three disjoint parts, according to the

nature of the failure of �λ(T ) to be invertible is the following:

σS(T ) = σS,p(T ) ∪ σS,c(T ) ∪ σS,r (T ),

where

σS,p(T ) = {λ ∈ H : �λ(T )(x) = 0, for some x ∈ X \ {0}},
σS,r (T ) = {λ ∈ H \ σS,p(T ) : Ran(�λ(T ) �= X},
σS,c(T ) = {λ ∈ H \ (

σS,p(T ) ∪ σS,r (T )
) : �λ(T ) is not bounded below}.

The proof that this partition of σS(T ) holds is exactly like the proof of the homolo-
gous partition of σ(T ). If λ is in the spectrum, but not in the point spectrum nor in the
residual spectrum, then �λ is bijective, which means that �λ is invertible. However,
since �−1

λ is not in B(X), �−1
λ must be unbounded. This implies that �λ cannot be

bounded below, because if it were, its inverse would be bounded.
Furthermore, notice that if we have λ1 ∼ λ2 then

�λ1 = �λ2 ,

thereforeσS and the subsets of its partition,σS,p(T ),σS,r (T ) andσS,c(T ) are obviously
axially symmetric. That is if λ belongs to one of these sets, then all the equivalence
class [λ] is also in that same set.

Proposition 4 Let T ∈ B(X), then

σS(T ) = σS,p(T ) ∪ σS,c(T ) ∪ σS,r (T ).

The sets σS(T ), σS,p(T ), σS,c(T ) and σS,r (T ) are axially symmetric.

We have seen σS(T ) is axially symmetric as well as σS,p, σS,r and σS,c, the same
is true for σ(T ), σp(T ), σr (T ) and σc(T ) as shown in the following lemma. Before,
observe that when λ = qμq∗, for some unitary quaternion q, we have

(
Tλx

)
q =

Tμ(xq). In fact,

Tλx = xλ − T x = x(qμq∗) − T
(
x(qq∗)

)

= (xqμ)q∗ − T (xq)q∗ =
(
(xq)μ − T (xq)

)
q∗
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=
(
Tμ(xq)

)
q∗. (2)

Note that we cannot go further than this since Tμ is not right H−linear, only T is.

Lemma 5 Let T ∈ B(X). The sets σp(T ), σr (T ) and σc(T ) are axially symmetric. In
particular, σ(T ) is axially symmetric.

Proof We will prove this result by showing that when λ ∈ A, then any element of the
form μ = qλq∗, with unitary q ∈ H, is also in A, and therefore [λ] ⊆ A, where A is
one of the above spectra.

Let λ ∈ σp(T ). If x ∈ X \ {0} is such that Tλ(x) = 0, taking y = xq and using (2)
we have Tμ(y) = 0. Then μ ∈ σp(T ) and therefore σp(T ) is axially symmetric.

We nowprove that σr (T ) is axially symmetric. Let λ ∈ σr (T ). Note that λ /∈ σp(T ),
μ = qλq∗ and σp(T ) is axially symmetric, hence μ /∈ σp(T ). SinceHq∗ = H, using
(2) and taking y = xq we have

Ran(Tμ) = {Tμ(y) : y ∈ X} = {Tμ(xq) : xq ∈ X}
= {Tλ(x)q : xq ∈ X} = {Tλ(x)q : x ∈ Xq∗}
= {Tλ(x)q : x ∈ X} = {Tλ(x) : x ∈ X}q
=Ran(Tλ)q

Therefore, Ran(Tλ) �= X implies that Ran(Tλ)q = Ran(Tμ) �= X . So σr (T ) is axially
symmetric.

It remains to see that σc(T ) is axially symmetric. Let λ ∈ σc(T ). Then λ /∈ σp(T )∪
σr (T ), μ = qλq∗ and σp(T ) and σr (T ) are both axially symmetric, so μ /∈ σp(T ) ∪
σr (T ). Since Tλ is not bounded below then there is a sequence xn ∈ X such that
‖Tλxn‖ → 0. Take yn = xnq, with q ∈ H a unitary quaternion, such that λ = qμq∗,
then, again by (2), we have ‖Tμ(yn)‖ = ‖(Tλ(xn)

)
q‖ → 0. Then Tμ is not bounded

below and so σc(T ) is axially symmetric. ��
Before we prove our main theorem we note that the operators �λ(T ) and Tλ are

related by composition �λ(T ) = Tλ · Tλ∗ . In fact, for all x ∈ X , we have

Tλ · Tλ∗(x) = (Iλ − T ) · (Iλ∗ − T )(x) = (Iλ − T )(xλ∗ − T x)

= (xλ∗ − T x)λ − T (xλ∗ − T x) = x |λ|2 − (T x)λ − (T x)λ∗ + T 2(x)

= T 2(x) − (T x)(λ + λ∗) + |λ|2x = (
T 2 − 2Re(λ)T + |λ|2 I )x

= �λ(T )(x).

Likewise we can prove that Tλ∗ · Tλ = �λ(T ). Summing up we have:

Proposition 6 Let T ∈ B(X). Then

�λ(T ) = Tλ · Tλ∗ = Tλ∗ · Tλ.
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From this result it is easy to see that when Tλ is not invertible inBR(X),�λ(T ) is not
invertible inBR(X) and therefore not invertible inB(X), whichmeans σ(T ) ⊂ σS(T ).
We will prove that the converse also holds. This will need some extra work since
lemma 5 and proposition 6 only implies a slightly weaker result, if Tλ is invertible
in BR(X), �λ(T ) is invertible in BR(X). We can find not only that σS(T ) = σ(T ),
but stronger than that, that the point spectrum of T is the point S-spectrum of T , the
continuous spectrum is the continuous S-spectrum; and the residual spectrum is the
residual S-spectrum.

Theorem 7 Let T ∈ B(X). We have the following equalities

σp(T ) = σS,p(T ), σr (T ) = σS,r (T ) and σc(T ) = σS,c(T ).

Proof If λ ∈ σS,p(T ), then �λ(T )x = 0 for some x ∈ X \ {0}. Taking y = Tλ∗(x)
and using proposition 6, we have Tλy = 0. Either λ ∈ σp(T ), and we are done, or
Tλ∗(x) = y = 0, in which case λ∗ ∈ σp(T ). Since σp(T ) is axially symmetric, λ ∈
σp(T ). We conclude that σS,p(T ) ⊆ σp(T ). For the converse inclusion, if Tλ(x) = 0
for some x ∈ X \ {0}, using proposition 6, it follows that �λ(T )x = 0 for some
x ∈ X \ {0}, that is, λ ∈ σS,p(T ).

Let us now prove that σr (T ) = σS,r (T ). Since Ran(Tλ · Tλ∗) ⊆ Ran(Tλ) �= X
we have σr (T ) ⊆ σS,r (T ). To prove the converse inclusion, we will use the contra-
positive: Ran(Tλ) = X implies Ran(�λ(T )) = X . From (2) we have Tλ(x)q =
Tλ∗(xq), where λ∗ = q∗λq, with q unitary. Since Tλ∗(· q) ∈ BR(X) with x �→
Tλ∗(xq), we have that

X = Xq = Ran(Tλ) q = Ran(Tλ) q = Ran(Tλ∗
( · q)

) = Ran(Tλ∗).

It follows that Ran(Tλ) = X implies Ran(Tλ∗) = X (and vice-versa). So assume that
Ran(Tλ) = Ran(Tλ∗) = X . To prove that Ran(�λ(T )) = X we will find that, for any
x ∈ X , there is a sequence xn ∈ X such that �λ(T )(xn) = Tλ∗ · Tλ(xn)

n−→ x . Since
the range of Tλ∗ is dense there is a sequence yn ∈ X such that Tλ∗(yn)

n−→ x ; and since

Ran(Tλ) is also dense, for each n there is a sequence yn,k such that Tλ(yn,k)
k−→ yn .

For any ε > 0, let N ∈ N be such that ‖Tλ∗(yn) − x‖ < ε, when n ≥ N . For any of
these n pick k(n) ∈ N satisfying ‖Tλ(yn,k(n)) − yn‖ < ε. Then,

‖Tλ∗ · Tλ(yn,k(n)) − x‖ ≤ ‖Tλ∗ · Tλ(yn,k(n)) − Tλ∗(yn)‖ + ‖Tλ∗(yn) − x‖
≤ ‖Tλ∗‖‖Tλ(yn,k(n)) − yn‖ + ‖Tλ∗(yn) − x‖
≤ (‖Tλ∗‖ + 1)ε.

Hence we have a sequence xn = yn,k(n) such that �λ(T )(xn)
n−→ x , thus x ∈

Ran(�λ(T )).
Finally, we will see that σc(T ) = σS,c(T ). Assume λ ∈ σc(T ), then Tλ is not

boundedbelowand there is a sequenceof unitary vectors xn ∈ X such thatTλ(xn) → 0.
By continuity of Tλ∗ , we have �λ(T )(xn) = Tλ∗ · Tλ(xn) → 0, i.e., λ ∈ σS,c(T ).
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On the other hand, if λ ∈ σS,c(T ), there is a sequence of unitary vectors xn such that
�λ(T )(xn) = Tλ · Tλ∗(xn) → 0. Then either lim inf ‖Tλ∗(xn)‖ → 0, in which case
lemma 5 implies that λ ∈ σc(T ), or �:= lim inf ‖Tλ∗(xn)‖ > 0. We can take a subse-
quence xnk of xn where ‖Tλ∗(xnk )‖ ≥ �. For simplicity we denote such subsequence
by xn . Let yn = Tλ∗(xn)/‖Tλ∗(xn)‖. Clearly,

‖Tλyn‖ = ‖Tλ · Tλ∗(xn)‖
‖Tλ∗(xn)‖ = ‖�λ(T )(xn)‖

‖Tλ∗(xn)‖ ≤ ‖�λ(T )(xn)‖
�

→ 0,

and so λ ∈ σc(T ). ��
The main result of the paper is now a direct consequence of theorem 7.

Theorem 8 Let T ∈ B(X), then σ(T ) = σS(T ).
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