

MyCODA: A Collaborative Knowledge Base Interface for the
Many-Criteria Optimization and Decision Analysis Research
Community.

Tiago Miguel Lopes Nunes

Master’s in Computer Engineering,

Supervisor:
PhD Vítor Manuel Basto Fernandes, Associate Professor with
Habilitation, Iscte-IUL

Co-supervisor:
PhD Michael Emmerich, Professor in Multiobjective Optimization,
University of Jyväskylä, Finland

October 2024

Department of Information Science and Technology

MyCODA: A Collaborative Knowledge Base Interface for the
Many-Criteria Optimization and Decision Analysis Research
Community.

Tiago Miguel Lopes Nunes

Master’s in Computer Engineering,

Supervisor:
PhD Vítor Manuel Basto Fernandes, Associate Professor with
Habilitation, Iscte-IUL

Co-supervisor:
PhD Michael Emmerich, Professor in Multiobjective Optimization,
University of Jyväskylä, Finland

October 2024

I dedicate this dissertation to my Parents, Professors, Colleagues, and Friends,

As well as to the Scientific Community, whom I seek to assist with this work.

 iii

Acknowledgements

I would like to express special thanks to my supervisor, Professor Vítor Basto Fernandes, for

his valuable guidance, constant support, and availability throughout the development of this

work. This acknowledgment also extends to my co-supervisor, Professor Michael Emmerich,

for his valuable feedback and support.

I am grateful to my parents, Felisberto and Maria João, to my grandmother Judite, to my

brother Daniel, and to the rest of my family, for the good example they have set for me, for the

high expectations they have for me, and for everything they do for me.

I also thank my colleagues who were part of my project groups, especially my colleague

Rodrigo Simões, with whom I spent many hours on online calls while we worked on our

dissertation projects to mutually motivate each other, and with whom I thoroughly enjoyed

collaborating throughout the Master's program.

I extend my thanks to ISCTE, for allowing me to host a server on a virtual machine within

the university's infrastructure, and for providing me with the resources necessary to further

develop my academic level.

I am also grateful to the company Bryj, where I worked for much of my Master's, and to all

my colleagues at the company, to whom I wish the greatest success.

Finally, I thank all my friends who accompany me in life, for the positive influence they

have on me.

 v

Abstract

The growth in scientific knowledge production brings challenges in its management. As in other

fields, in Multi-objective Optimization there are already incentives to use ontologies, within the

context of the semantic web, to organize, store, and share knowledge. However, the community

would benefit from an accessible way to consult knowledge and to contribute new content.

In this work, we develop a web-based knowledge management platform, named MyCODA.

This platform operates on an ontology defined in OWL, which contains relevant knowledge for

the domain of Many-Criteria Optimization and Decision Analysis. The platform allows users

to browse the ontology's taxonomy, search for existing terms, and contribute to its

improvement, aiming to make it simple and intuitive, so that even those unfamiliar with OWL

ontologies can use it effectively.

To promote the contribution of new knowledge by the community, a new tool developed

within the platform allows researchers to submit information about an article relevant to the

knowledge area and obtain a contextual analysis that facilitates the understanding of existing

knowledge. This offers researchers an intuitive and efficient way to introduce new

contributions.

Keywords: Knowledge Engineering; Scientific Knowledge Base; Ontology; Multi-objective

Optimization; Many-Criteria Optimization and Decision Analysis, OWL.

 vii

Resumo

O crescimento na produção de conhecimento científico traz desafios no âmbito da gestão do

mesmo. Assim como noutras áreas, na Otimização Multiobjectivo já existem incentivos de

utilização de ontologias, no contexto da web semântica, para organizar, armazenar e

compartilhar conhecimento. No entanto, a comunidade beneficiaria de uma forma acessível de

consultar o conhecimento e de contribuir com novo conteúdo.

Neste trabalho, é desenvolvida uma plataforma web de gestão do conhecimento,

denominada MyCODA. Esta plataforma, trabalha sobre uma ontologia definida em OWL, que

contem conhecimento relevante para o domínio de Otimização com Muitos Critérios e Análise

de Decisão. A plataforma permite navegar sobre a taxonomia da ontologia, pesquisar por termos

existentes e contribuir para o seu aprimoramento, procurando fazê-lo de forma simples e

intuitiva, para que possa ser utilizada efetivamente, mesmo por aqueles que não sejam

entendedores de ontologias OWL.

De forma a promover a contribuição de novo conhecimento pela comunidade, uma nova

ferramenta desenvolvida na plataforma dá a possibilidade a investigadores de submeterem

informações sobre um artigo que seja relevante na área do conhecimento, e obterem uma análise

contextual que facilita a compreensão do conhecimento existente, oferecendo aos

investigadores uma maneira intuitiva e eficiente de introduzir novas contribuições.

Palavras-chave: Engenharia do Conhecimento; Base de Conhecimento Científico; Ontologia;

Otimização Multiobjectivo; Otimização com Muitos Critérios e Análise de Decisão, OWL.

 ix

Index

Acknowledgements iii

Abstract v

Resumo vii

Index ix

List of Figures xi

Chapter 1. Introduction 1

1.1. Background and Motivation 1

1.2. Objectives 2

1.3. Research Questions 3

1.4. Contribution Goals 3

1.5. Methodology 3

1.6. Document Structure 5

Chapter 2. Literature Review 7

2.1. Ontology 7

2.2. Ontologies in Knowledge Management 8

2.3. Semantic Web 9

2.4. Ontologies in Multi-Objective Optimization 13

2.5. Ontology Management Platform 15

Chapter 3. Implementation Setup 17

3.1. Data source considerations 17

3.1.1. The PMOEA ontology 18

3.1.2. The OPTION ontology 18

3.1.3. The MOODY ontology 18

3.1.4. Conclusion: The MyCODA ontology, based on the PMOEA ontology 19

3.2. Ontology management API 19

3.3. Backend framework 20

3.4. Internal database 21

3.5. Frontend Framework 21

3.6. Version control 22

3.7. Deployment 22

Chapter 4. MyCODA Platform 25

4.1. Home tab 25

4.2. About tab 26

4.3. Browse tab 27

4.3.1. Ontology taxonomy tree view (left panel) 28

4.3.2. Ontology/Entity information (right panel) 29

4.4. Contribute tab 32

4.4.1. Contributing by creating a GitHub Issue 33

4.4.2. Contributing by submitting an article 34

4.4.2.1. Submitted Article section 35

4.4.2.2. Identified terms section 36

4.4.2.3. Contribute section 38

4.4.2.4. Finishing the contribution 42

4.5. Search bar 44

4.6. Curating contributions 44

4.6.1. Curation Process 44

4.6.2. Force ontology update 45

Chapter 5. Validation 47

5.1. Bi-weekly presentations and discussions 47

5.2. Validation tests 47

5.3. SUS feedback evaluation 47

5.4. Open ended feedback 49

Chapter 6. Conclusion 51

6.1. Conclusions 51

6.2. Ongoing/Future work 52

Bibliography 53

Attachments 57

 xi

List of Figures

Figure 1 – DSR Methodology Process Model (Peffers et al., 2006) 4

Figure 2 – Semantic Web Protocol Stack (Walker, 2011) 10

Figure 3 – View of PMOEA Ontology with Protégé Ontology Editor GUI (Basto-Fernandes

et al., 2023) 13

Figure 4 – MyCODA UML deployment diagram 22

Figure 5 – MyCODA Platform Home tab 26

Figure 6 – MyCODA Platform About tab 27

Figure 7 – MyCODA Platform Browse tab 28

Figure 8 – MyCODA Platform ontology taxonomy tree view (left panel) 28

Figure 9 – MyCODA Platform Ontology/Entity information (right panel) 30

Figure 10 – WebVOWL view of the MyCODA ontology 31

Figure 11 – MyCODA Platform entity information 31

Figure 12 – MyCODA Platform Contribute tab 33

Figure 13 – MyCODA GitHub Issue creation 33

Figure 14 – MyCODA Article Submission Form 34

Figure 15 – MyCODA submitted article section 35

Figure 16 – MyCODA entity preview 36

Figure 17 – MyCODA identified terms section 37

Figure 18 – MyCODA edit term view 38

Figure 19 – MyCODA contribute section 38

Figure 20 – MyCODA add new term popup 39

Figure 21 – MyCODA new term synonyms 39

Figure 22 – MyCODA new term synonym suggestions 40

Figure 23 – MyCODA add synonym to existing entity 40

Figure 24 – MyCODA new term description and type prompt 41

Figure 25 – MyCODA new term super class prompt 41

Figure 26 – MyCODA new individual information prompt 42

Figure 27 – MyCODA new property information prompt 42

Figure 28 – MyCODA contribution completion 43

Figure 29 – MyCODA feedback after contribution 43

Figure 30 – MyCODA search bar 44

Figure 31 – MyCODA curator reload ontology tool 45

Figure 32 – MyCODA full article contribution page 57

Figure 33 – MyCODA article submission form help tooltip 58

Figure 34 – MyCODA submitted article help tooltip 58

Figure 35 – MyCODA identified terms help tooltip 59

Figure 36 – MyCODA contribute help tooltip 59

Figure 37 – MyCODA article submission tutorial video 60

Figure 38 – System Usability Scale Survey 61

Figure 39 – Example of a GitHub issue generated from an article submission 62

 1

CHAPTER 1

Introduction

1.1. Background and Motivation
The rapid expansion of scientific knowledge and the growing number of research publications

create unprecedented opportunities for knowledge dissemination and development on a global

scale. However, this surge in information also brings significant challenges in knowledge

management. The volume of scientific data is often poorly organized and difficult to access,

which can lead to fragmentation and inconsistencies in how knowledge is categorized and

interpreted (Borgman, 2015). These challenges include divergent taxonomies, inconsistent

terminologies for similar concepts, and identical terms being used to refer to distinct ideas,

complicating efforts to harness and apply scientific knowledge effectively.

Knowledge management is the process or practice involved in the creation, acquisition,

capture, sharing, and utilization of knowledge, regardless of its location (Scarbrough et al.,

1999). The primary objective is to enhance learning and performance for both organizations

and individuals. Additionally, this approach plays a crucial role in extracting value from

expertise within a specific knowledge domain.

Capturing and sharing domain knowledge with both machines and humans can be achieved

using ontologies. Currently, ontologies are the most suitable method for formally representing

concepts within a specific domain and articulating the relationships that exist between them.

Ontologies not only establish a shared understanding of the structure of information but also

facilitate the sharing and reuse of knowledge (Scarbrough et al., 1999). By using an ontology,

a novice researcher or practitioner can easily explore details about an algorithm for a specific

application or identify potential future research topics. This significantly reduces the effort

required to acquire knowledge in a certain domain.

In the biomedical field, for example, ontologies have proven to be highly valuable for the

research community. Notable examples of successful implementations include the Gene

Ontology (Ashburner et al., 2000; The Gene Ontology Consortium et al., 2023), which

encompasses more than 40,000 terms and the Uberon ontology (Mungall et al., 2012), which

comprises over 25,000 terms. These ontologies have played a pivotal role in standardizing

terminology and facilitating knowledge sharing within the domain.

2

In the field of multi-objective optimization, we are beginning to observe the development

of various ontologies as well, such as the PMOEA ontology (Li et al., 2017), the OPTION

ontology (Kostovska et al., 2022) and the MOODY ontology (Aldana-Martín et al., 2024).

Since the concept of ontologies is still relatively new to the multi-objective optimization

community, it is essential to intensify our efforts to explore how we can maximize the utility of

this technology. By doing so, we can try to replicate the success it has achieved in other fields

where its impact is more pronounced, such as in the biomedical domain.

A key factor in the success of an ontology appears to be the availability of a platform that

allows for easy browsing and querying of the ontology, along with a clear framework for

contributing new terms. Notable examples include the AmiGO platform (Carbon et al., 2009)

for the Gene Ontology project and the OLS (Ontology Lookup Service) platform (Côté et al.,

2006, 2010), which hosts the Uberon ontology as well as other ontologies in the Open

Biomedical Ontology (OBO) format (Golbreich et al., 2007; Tirmizi et al., 2011).

In chapter 13 of ‘Many-Criteria Optimisation and Decision Analysis Book’ (Basto-

Fernandes et al., 2023), the concept of the MyCODA platform is presented. This platform aims

to enable users to easily access, learn about, and compare existing optimization methods, search

for appropriate methods for specific problems, share new scientific knowledge, identify

research gaps, promote collaboration among researchers in MACODA (Many Criteria

Optimization and Decision Analysis) and manage knowledge within the domain.

Feedback on the MyCODA platform proposal, provided by a considerable number of

respected researchers in MACODA during the Multi-Criteria Optimization and Decision

Analysis Workshop (Lorentz Center, University of Leiden, Netherlands, September 16-21,

2019), revealed the need, relevance, value, and potential use of this platform by the MACODA

research community, thereby motivating this master’s dissertation work.

The present dissertation details the process of developing MyCODA, a web-based

application to manage an ontology with knowledge in the domain of MACODA, to support the

scientific community, taking into consideration the main factors that make other ontologies

successful, to maximize the utility of this technology.

1.2. Objectives
The primary objective of this dissertation is to document the development of the MyCODA

platform and figure out what are the essential features that can enhance its utility for the

MACODA research community.

 3

Finally, to understand if the scientific community could benefit from the platform, we’ll

gather feedback from the MACODA researchers’ community.

1.3. Research Questions
Within the scope of the subject under study, the research questions that motivate the analysis

prepared are the following:

Q1: How can we maximize the utility of ontologies within the field of MACODA research?

Q2: Does the software proposal resulting from the MACODA Workshop in the University

of Leiden in 2019, and described in the book chapter (Basto-Fernandes et al., 2023), identify

all the MACODA research community knowledge management needs?

1.4. Contribution Goals
The following contributions of this dissertation are aligned with the former objectives:

Contribution 1: A web-based application designed for managing an ontology, facilitating

users in easily accessing, learning about, and comparing existing optimization methods. This

application allows users to search for suitable methods for specific problems, share new

scientific knowledge, identify research gaps, promote collaboration among researchers in

MACODA, and effectively manage knowledge within the domain.

Contribution 2: A framework and standards for contributing to the ontology with new

knowledge, curating proposed new knowledge, providing feedback, and taking part in the

community’ efforts for disseminating and aggregating useful knowledge within the MACODA

domain.

1.5. Methodology
To address the subject of this dissertation and attain the outlined objectives from the previous

chapters, the Design Science Research method (DSR) (Carstensen & Bernhard, 2019) was

adpted. This method facilitated an organized, guided, and efficient research process.

4

Given that challenges often arise from intricate and distinctive designs and considering that

Information Systems (IS) inherently consist of adaptable and flexible hardware, software, and

human interfaces, they demand contemporary, modern, and creative ideas (Hevner et al., 2004).

Therefore, DSR focuses on developing, designing, or “building” new artifacts, with evaluation

primarily centered around the results of design science, corresponding IS Design Theories, and

associated design artifacts. A comprehensive and rigorous approach to research is essential in

DSR, necessitating the evaluation of the artifact's utility, quality, and effectiveness using

appropriate evaluation methods. This aids in elucidating changes or improvements in the

system, people, or organizational behavior (Venable et al., 2016).

As described in (Peffers et al., 2006), the DSR methodology incorporates six activities in a

nominal sequence, which are presented in Figure 1.

Figure 1 – DSR Methodology Process Model (Peffers et al., 2006)

 5

1.6. Document Structure
The Introduction and Literature Review (Chapters 1 and 2) aim to provide a clear and detailed

understanding of the subject matter. These chapters define the dissertation's objectives,

introduce essential concepts related to the topic, highlight potential contributions to the field,

and outline the proposed methodology for achieving the stated goals. Together, they establish

a solid foundation for a comprehensive understanding of the context of this dissertation.

Following this, the Implementation Setup chapter (Chapter 3) provides a detailed

explanation of the decisions made in selecting the resources and technologies used in the

implementation of the platform.

Chapter 4 consists of an overview of the MyCODA platform, describing each feature in

detail, and providing an insightful discussion about the options chosen during development and

algorithms that were used to tackle the most difficult issues.

In the Validation chapter (Chapter 5), the methods used for validating the platform and its

features are described and justified.

The last chapter of this dissertation is the Conclusion (Chapter 6), which provides a concise

summary of the research findings, reflects on the achievement of the objectives, discusses the

broader implications of the work, and offers recommendations for future research and practical

applications. It also highlights the project's contributions to the field and addresses any

limitations encountered.

For the citations and references in this dissertation, the American Psychological

Association 7th edition style has been used. The guidelines for APA 7th edition can be found

at the official website of the American Psychological Association: https://apastyle.apa.org.

https://apastyle.apa.org/

6

 7

CHAPTER 2

Literature Review

This chapter aims to gather and analyze information pertinent to the dissertation topic, covering

topics such as ontologies and semantic web concepts in the context of knowledge representation

and management, and describing previous efforts in knowledge management within the scope

of MACODA research.

The chapter also highlights some examples of platforms that are currently being used, that

have been developed with the same objective of managing knowledge for the scientific

community, although in different scientific domains, such as the AmiGO platform (Carbon et

al., 2009), and the OLS platform (Côté et al., 2006, 2010), that aim to aid the biomedical

research community.

2.1. Ontology
Etymologically, ontology originates from Greek and essentially means “the study or theory of

being or that which is”. In simpler terms, ontology seeks to classify and explain entities.

In philosophy, ontology is defined as “the science of what is, of the kinds and structures of

objects, properties, events, processes, and relations in every area of reality” (Smith, 2004). Over

recent decades, ontologies have gained popularity in other fields such as Knowledge

Management, Artificial Intelligence, and the Semantic Web, driven by the necessity for a shared

and common understanding of domains.

In Computer Science, Gruber and Borst were pioneers in defining the concept of ontology

(Borst, 1997; Gruber, 1993). Subsequently, Studer et al. presented the most widely accepted

definition of ontology: “An ontology is a formal, explicit specification of a shared

conceptualization” (Studer et al., 1998). Here, “conceptualization” denotes an abstract model

of a knowledge domain representing concepts and their relationships. “Explicit specification”

implies that the model should be represented using a coherent, unambiguous, and structured

language. “Formal” suggests that the ontology should be interpretable by machines. “Shared”

indicates that knowledge represented in an ontology should establish a common and agreed-

upon vocabulary in each domain, enabling sharing across individuals and application systems.

 8

Ontologies delineate the semantics of a knowledge domain by delineating concepts (or

classes) representing existing 'entities' and their interrelationships, properties associated with

each concept, constraints on concepts or properties, and axioms. An instance of a class is

referred to as an individual.

The process of constructing an ontology is intricate and varied approaches exist to guide

ontology development. A general framework proposed for the ontology-building process is

provided by Noy (N. Noy & Mcguinness, 2001):

1. Determine the domain and scope of the ontology.

2. Consider reusing existing ontologies.

3. Enumerate important terms in the ontology.

4. Define the classes and the class hierarchy (taxonomy).

5. Define object properties.

6. Define data properties.

7. Create individuals.

The semantic structure offered by ontologies diverges from the organization of information

provided by relational and XML databases. Ontologies establish an objective specification of

domain information by embodying a consensus on the concepts and relationships that

characterize the expression of knowledge within that domain.

By furnishing a formal and hierarchically structured representation of a knowledge domain

with universally accepted definitions, ontologies mitigate misunderstandings and

miscommunications while enabling reasoning.

Through the adoption of a shared underlying vocabulary, ontologies facilitate

interoperability among computer agents, enabling them to comprehend incoming requests and

furnish the requisite knowledge in return.

Additionally, their semantic structure streamlines the process of precise knowledge

indexing and retrieval. A shared comprehension of a domain among individuals and application

systems promotes knowledge sharing and reuse, not only within communities of experts but

also among new learners. In this study, an ontology serves as the primary mechanism for

representing and disseminating domain knowledge of interest.

2.2. Ontologies in Knowledge Management
An ontology plays a crucial role in knowledge management by facilitating the representation

of knowledge. It accomplishes this by offering a shared vocabulary for a specific domain of

 9

interest. Through explicit knowledge representation, an ontology presents information in a

format understandable by machines, enabling reasoning based on a defined set of facts and rules

within the domain.

The advantages of employing an ontology for knowledge management in the MACODA

domain are readily apparent. An ontology is particularly well-suited for organizing and

processing vast amounts of information, offering the necessary capabilities to structure the

scientific knowledge generated in this field systematically.

A significant portion of the MACODA knowledge domain can be effectively represented

using formal logics, specifically predicate logics, supported by OWL ontologies knowledge

representation standards. For instance, consider the following excerpt from the PMOEA

ontology, which depicts a fragment of the PMOEA taxonomy (hierarchy of classes/subclasses)

using the "isA" type of relation, along with the "canSolve" type of relation to indicate which

algorithms can effectively address specific optimization problems:

• JobShop isA SchedulingProblem,

• FlowShop isA JobShop,

• NSGA-II canSolve JobShop.

This structured representation allows for clear delineation of relationships between entities,

facilitating effective knowledge organization and retrieval within the MACODA domain.

Furthermore, we have the capability to incorporate our own specific knowledge into the

knowledge base. For instance, we could assert that ‘mySchedulingProblem isA

FlowShopProblem’. By leveraging OWL ontologies for knowledge representation, we not only

could query and retrieve explicit knowledge stored in the knowledge base (e.g., a query such as

‘what are the algorithms that can solve JobShop?’ would yield NSGA-II algorithm), but also

benefit from the inference capabilities based on formal logics performed on the entire

knowledge base by the querying engine. For example, a query such as ‘what are the algorithms

that can solve mySchedulingProblem?’ would include NSGA-II algorithm, because

mySchedulingProblem is a specific case of JobShop, and NSGA-II can solve JobShop. This

demonstrates the power of leveraging ontologies for knowledge management and inference in

the MACODA domain.

2.3. Semantic Web
Knowledge representation through OWL ontologies fosters a standardized and open portrayal

of knowledge on a global scale, particularly within the World Wide Web ecosystem. A suite of

 10

standards established by the World Wide Web Consortium (W3C), which includes the OWL

(Web Ontology Language) standard (Antoniou & Harmelen, 2003), constitutes what is

recognized as the Semantic Web or Web of Knowledge (Berners-Lee, 2002), contrasting with

the Web of HTML (HyperText Markup Language) Content.

According to Berners-Lee et al., the Semantic Web is defined as ‘an extension of the current

web in which information is given well-defined meaning, better enabling computers and people

to work in cooperation’ (Berners-Lee, 2002). Essentially, the Semantic Web, also known as

Web 3.0, offers a collection of standards and technologies that empower computers to

comprehend and manipulate data in a manner akin to humans. It emphasizes connecting pieces

of information within documents or applications, rather than the documents or applications

themselves—placing emphasis on semantics rather than the structure of the data.

The Semantic Web relies on a set of standards outlined by the World Wide Web Consortium

(W3C) to formally represent metadata. These technologies establish a common framework for

sharing information across diverse applications and systems, facilitating the collection,

structuring, and retrieval of data in a cohesive manner.

The architecture of the Semantic Web is depicted in Figure 2.

Figure 2 – Semantic Web Protocol Stack (Walker, 2011)

The lower layer standards of the Semantic Web Protocol Stack facilitate resource

identification and basic forms of data representation. This includes the use of URI/IRI (Uniform

Resource Identifier/Internationalized Resource Identifier) to identify OWL ontologies, classes,

properties, etc., and the XML (Extensible Markup Language) family of standards to define

lexical and syntactical structures and annotations of OWL ontologies.

 11

On the other hand, the upper layer standards enable the representation of more abstract

concepts and relations, allowing for the modeling of the knowledge domain of interest. This

involves representing knowledge domain relations and semantics, accomplished through

standards such as RDF (Resource Description Framework) and the OWL (Web Ontology

Language) family of standards. Query languages for both data and knowledge representation

layers are also defined and available in the Semantic Web standards stack, with SPARQL

(SPARQL Protocol and RDF Query Language) (Angles & Gutierrez, 2008) and SQWRL

(Semantic Query-enhanced Web Rule Language) (O’Connor & Das, 2009) being examples of

a query languages.

In this work, our focus lies on OWL (Web Ontology Language), a knowledge

representation language for ontologies. OWL encompasses three sub-languages: OWL Full,

OWL Description Logic (DL), and OWL Lite (Antoniou & Harmelen, 2003). OWL DL is

particularly suitable for our purposes due to its balanced trade-off between language

expressiveness and formal logic reasoning features. For the sake of brevity and clarity, we will

not delve into the specifics of the differences between the OWL sub-languages. Some of the

relevant features of OWL DL for our work include:

• It enables the setting of cardinality restrictions to limit the number of distinct values

a property may possess. This capability is useful for expressing constraints such as

an algorithm can solve one or more types of optimization problems, an algorithm

may have one or more authors, or an algorithm has only one creation year.

• It provides the ability to declare two classes as disjoint. This feature allows for the

expression of concepts such as optimization problems being either combinatorial or

continuous, without overlap.

• OWL allows for the definition of classes as logical combinations (intersections,

complements, or unions) of other classes. This allows for the creation of complex

class structures that accurately represent the relationships between different

concepts.

• OWL defines various properties such as functional, reflexive, symmetric, inverse,

and transitive properties. For example, it can express that the relation isExtensionOf

is transitive, meaning that if algorithm X is an extension of algorithm Y, and

algorithm Y is an extension of algorithm Z, then algorithm Z can be inferred as an

extension of algorithm X. This capability enables inference and querying engines

to process and reason about relationships between entities accurately.

 12

OWL serves as an ontology language for the Semantic Web with formally defined meaning,

enabling the use of a reasoner for maintaining a consistent and correct hierarchy of classes, as

well as for formal logic inference and ontology querying.

Ontologies, represented as OWL documents, can be published on the Web and may refer

to or be referred from other OWL ontologies, facilitating richer integration, sharing, and reuse

of data.

In 2009, the W3C announced a new version of OWL, named OWL 2 (Grau et al., 2008, p.

2). OWL 2 retains a very similar structure to OWL but introduces new features, including

increased expressive power for properties, extended support for datatypes, simple meta

modelling capabilities, extended annotation capabilities, and keys. Additionally, it introduced

three new profiles: OWL 2 EL, OWL 2 QL, and OWL 2 RL. OWL 2 EL is useful in applications

employing large-scale ontologies. OWL 2 QL targets applications that handle very large

volumes of instance data, where query answering is of paramount importance. OWL 2 RL is

designed for applications requiring scalable reasoning without sacrificing too much expressive

power.

An OWL ontology consists of classes, individuals, and properties. Classes can have

subclasses that represent more specific concepts than their superclass. The hierarchy of classes

establishes the taxonomy adopted in the ontology. Individuals represent instances of classes

within the domain of interest. Properties are categorized into two types: object properties and

data properties. Object properties are binary relations used to relate classes or individuals, while

data properties associate classes or individuals with primitive data types (e.g., integer, string,

boolean).

Several environments and tools are available for constructing ontologies, including

OntoStudio (Weiten, 2009), Protégé (Gennari et al., 2003; Tudorache et al., 2013) and NeOn

Toolkit (Erdmann & Waterfeld, 2012). Among these, Protégé has emerged as the most popular

and widely used Semantic Web ontology editor, owing to the increasing adoption of OWL

(Musen, 2015).

Protégé desktop (Gennari et al., 2003) is a free, open-source, Java-based ontology editor

and framework designed for building both simple and complex ontology-based applications. It

boasts a robust community comprising academic, government, and corporate users who

leverage Protégé to develop knowledge-based solutions across diverse domains such as

biomedicine, e-commerce, and organizational modeling. Protégé fully adheres to the latest

OWL specifications and offers support for collaborative ontology editing, as well as annotation

of ontology components and changes.

 13

The Protégé editor screenshot provided in Figure 3 showcases a segment of the PMOEA

ontology. It offers a glimpse into the Graphical User Interface (GUI) of the Protégé editor,

featuring three panels: the MACODA taxonomy (left panel), instances of MACODA classes

(middle panel), and relationships among MACODA domain concepts (right panel). Knowledge

engineers can utilize the Protégé ontology editor for visualizing, comprehending, and

modifying the PMOEA ontology, with assistance and input from domain experts (e.g.,

researchers/experts in the domain) who may lack knowledge engineering or semantic web

standards expertise.

WebProtégé (Tudorache et al., 2013) is a lightweight ontology editor and knowledge

acquisition tool for the Web, built on the Protégé infrastructure. It is accessible from any web

browser, offering extensive support for ontology collaboration and featuring a highly

customizable and pluggable user interface adaptable to users of varying expertise levels. Both

Protégé and WebProtégé are employed in the present work for ontology design and editing.

Figure 3 – View of PMOEA Ontology with Protégé Ontology Editor GUI (Basto-Fernandes et al.,

2023)

2.4. Ontologies in Multi-Objective Optimization
Although it is still in an early phase, there are a few ontologies that have been built related to

the scientific research field of Multi-Objective Optimization, which are relevant to the work

being developed in this dissertation.

 14

The Preference-based Multi-Objective Evolutionary Algorithms (PMOEA) Ontology (Li

et al., 2017) is a structured framework designed to facilitate the organization of knowledge

within the domain of preference-based multi-objective evolutionary algorithms. The ontology

captures the key concepts, relationships, and attributes relevant to this area, aiming to enable

users to understand and utilize these algorithms more effectively. This ontology lacks a

framework to contribute and an easy way to access and browse the knowledge.

OPTION (Kostovska et al., 2022), is an ontology specifically developed to formalize

knowledge around the benchmarking of optimization algorithms, with an emphasis on the

formal representation of data related to performance metrics and problem landscape

characteristics. It provides a comprehensive framework that describes key aspects of the

benchmarking process and core entities involved, including optimization algorithms,

benchmark problems, and evaluation measures. OPTION can be accessed and browsed via

BioPortal (N. F. Noy et al., 2009), an ontology management platform supporting principled

ontologies in biomedical science and clinical care. It includes its own framework for community

contributions, allowing users to submit performance data from the BBOB benchmark suite

within the COCO environment (Elhara et al., 2019).

MOODY (Multi-Objective Optimization ontologY) (Aldana-Martín et al., 2024) is an

ontology developed to formalize multi-objective evolutionary algorithms, including their

parameters, multi-objective continuous problems with search space landscape characteristics,

and the quality indicators used to evaluate algorithm performance. MOODY does not provide

a framework to contribute with new knowledge and provides a minimal way to directly browse

the knowledge, via a static generated page, available in https://jfaldanam-phd.gitlab.io/moody/.

It is clear that ontologies within the Multi-Objective Optimization research field are lacking

an ontology management platform designed specifically for the domain, in order to enhance

their usefulness and maintainability. The current solutions for browsing, visualizing and

querying the ontology are inexistent or lacking in functionality, in the case of the PMOEA and

MOODY ontologies, or they are fit into a platform designed for a different domain, which is

the case of the OPTION ontology. These ontologies also lack an easy framework for

contributing to the knowledge base, except for the OPTION ontology, which has a very specific

framework for contributing, which fundamentally would not fit in our use case for an ontology

for the MACODA research domain.

https://jfaldanam-phd.gitlab.io/moody/

 15

2.5. Ontology Management Platform
Ontology management platforms are software tools designed to facilitate the visualization,

editing and maintenance of ontologies. These platforms provide functionalities for organizing,

managing, and updating knowledge bases, ensuring consistency and enabling effective use of

ontologies. Several ontology management platforms are widely used, each serving specific

purposes and domains.

In Life Sciences (LS), ontologies and knowledge management platforms have been

especially prevalent and useful (Panzarella et al., 2023). Examples successful ontology

management platforms are the AmiGO platform (Carbon et al., 2009), to manage the GO

ontology (The Gene Ontology Consortium et al., 2023), the OLS (Côté et al., 2006, 2010)

platform, which currently works with 267 ontologies, and the BioPortal (N. F. Noy et al., 2009),

which currently includes 1171 ontologies.

Looking at the existing ontologies and management platforms, we have extracted which we

conclude to be the main factors for the success of ontologies:

• Contributions:

o Allow contributions to the ontology.

o Clearly explain how to contribute to the ontology, have a documented

framework with step-by-step instructions.

o Make the contribution process easy for both contributors and curators.

• Visualization:

o Allowing accessing the ontology data via a web-based platform with easy

readability.

o Show the data in various ways: Trees, Graphs, Tables.

o Allow searching of terms, and querying based on rules defined by the ontology.

• Maintainability:

o Make the most of integration with existing tools, such as GitHub Issues.

o Work in synchrony with existing ontologies.

o Use academic-standard tools.

 16

Given this information, during the first phase of the DSR methodology, the problem

identification and motivation phase, it was decided that it would be beneficial to develop the

MyCODA Platform to manage the knowledge related to the MACODA research domain, taking

ideas from the AmiGO, OLS and BioPortal platforms, and adding functionality based on the

research and the feedback gathered from the evaluation after demonstrations, according to the

DSR methodology. These functionalities would include:

• Browsing the ontology, taking inspiration from the OLS platform.

• Searching terms in the ontology, which is well implemented in AmiGO, OLS and

BioPortal.

• Contributing to the knowledge base via GitHub Issues, which is the framework

provided for most of the ontologies and platforms described previously.

• Contributing from an article submission, where the user could submit an article related

to the research domain, and the platform would provide context on what terms

contained in the article’s title, abstract and keywords would be already in the knowledge

base, suggest new additions, including the article itself, and provide an easy way to

propose changes to the ontology. This is an innovative idea, which was introduced

during one of the bi-weekly demonstrations meetings. The searching of existing terms

from text functionality was inspired from the Annotator feature from BioPortal, where

the user can get annotations for biomedical text with classes from the ontologies in the

library, which is available in https://bioportal.bioontology.org/annotator.

https://bioportal.bioontology.org/annotator

 17

CHAPTER 3

Implementation Setup

To ensure maximum accessibility and encourage broad engagement within the research

community, the MyCODA platform was developed as a responsive, lightweight web

application that can be accessed across a range of devices and operating systems. A key goal

was to provide a seamless, user-friendly experience that would lower barriers to entry for all

users, including those who may be less familiar with ontology-based systems.

Developing a web application involves numerous design decisions that influence both the

user experience and the platform's overall performance. Careful consideration was given to the

choice of programming framework, balancing flexibility with performance efficiency to meet

the needs of an academic user base. Additionally, the application’s infrastructure was designed

to support scalability, ensuring that the platform can accommodate an increasing volume of

contributions as it gains wider adoption in the MACODA community.

This chapter presents and discusses several aspects of the implemented solution, detailing

our rationale for selecting specific tools, the underlying architectural framework, and how these

choices serve the objectives of accessibility, usability, and robustness. By grounding these

design decisions in both technical requirements and user-centered principles, the platform is

positioned to maximize its impact as a knowledge management resource.

3.1. Data source considerations
A platform for managing a knowledge base requires data sources to serve as repositories for

structured information. Such data sources should ideally support both efficient data retrieval

and effective organization.

Ontologies, as highlighted in the literature, are particularly suited to this purpose because

they offer a formal, structured approach to representing complex domains.

Selecting relevant ontologies or integrating existing ones provides a solid foundation for

the platform, enabling it to serve as a reliable resource for the research community.

In the context of establishing a knowledge base for the MACODA domain, the following

existing ontologies were evaluated as potential foundational resources for the knowledge

managed by the platform.

 18

3.1.1. The PMOEA ontology

The PMOEA Ontology (Li et al., 2017) has been used as the sole data source of the first

prototype of the MyCODA platform described in chapter 13 of ‘Many-Criteria Optimization

and Decision Analysis Book’ (Basto-Fernandes et al., 2023).

This is a great choice to be a data source for the platform, because the data is structured in

a simple, concise and standardized way, the knowledge it contains is very relevant to the

MACODA research domain, and there is not yet a framework for contributing to this knowledge

base, nor is there a platform to browse or query the knowledge.

3.1.2. The OPTION ontology

OPTION (Kostovska et al., 2022) is not an ideal data source for this platform due to its complex

base structure, which adheres to the Open Biological and Biomedical Ontology Foundry

principles—standards primarily designed for the biological sciences.

Additionally, OPTION can already be accessed and browsed via BioPortal, an ontology

management platform supporting principled ontologies in biomedical science and clinical care.

It also includes its own framework for community contributions, allowing users to submit

performance data from the BBOB benchmark suite within the COCO environment.

3.1.3. The MOODY ontology

MOODY (Aldana-Martín et al., 2024) could be a strong candidate as a data source for the

platform, given the high relevance of its content to the MACODA research domain and the

current lack of a framework for contributing to this knowledge base.

However, using MOODY presents a few challenges. Firstly, MOODY contains numerous

terms that duplicate those found in the PMOEA ontology, and mapping terms across both

ontologies, although useful, is beyond the scope of this dissertation.

Additionally, MOODY incorporates links to the DMOP ontology (Keet et al., 2015), a large

and more complex ontology structured around DOLCE (Descriptive Ontology for Linguistic

and Cognitive Engineering) (Borgo et al., 2022).

This complexity poses a disadvantage for this use case, as it complicates the platform

design by introducing entities outside of an ontology directly editable by MACODA knowledge

curators, which limits the usability of the platform’s contribution tools.

Furthermore, when navigating the knowledge base, it would be necessary to address the

additional challenge of filtering out information irrelevant to the MACODA domain, originated

from linked ontologies.

 19

3.1.4. Conclusion: The MyCODA ontology, based on the PMOEA ontology

After careful consideration, it was determined that the best approach would be to create an

ontology derived from the knowledge in the PMOEA ontology, the MyCODA ontology, with

modifications to optimize its use within the platform and within the MACODA research

domain.

This tailored ontology aims to specifically address the needs of the MACODA research

community.

These modifications include:

• The addition of the concept of Synonym (IRI ending in #altLabel), an annotation

property which is used to provide alternative labels to an entity.

• The renaming of labels to adhere with naming conventions principles described by

Schober (Schober et al., 2007), such as replacing camel case with separators–in this

case, spaces (“ ”), and replacing abbreviated labels and acronyms with explicit

names, adding these abbreviations as synonyms instead.

• The addition of the Article class, with added properties has keyword, has author,

and has doi.

In future work, the platform may be adapted to work with other data sources, depending on

the context for which it will be used.

3.2. Ontology management API
In designing an ontology management solution for the MACODA platform, multiple ontology

management APIs were evaluated to determine the best fit for handling ontology storage and

querying functionalities.

1. Apache Jena: a popular Java-based framework that provides extensive support for

managing RDF data and ontologies. It includes a suite of tools for creating, querying,

and updating ontologies through SPARQL.

 20

2. OWL API: A Java API specifically designed for creating, manipulating, and reasoning

over OWL ontologies (Horridge & Bechhofer, 2011). The OWL API also integrates

well with various reasoners–e.g., HermiT (Shearer et al., 2008) and Pellet (Sirin et al.,

2007)–, allowing for powerful inference capabilities to deduce new relationships within

the knowledge base. The SWRLAPI (O’Connor et al., 2008), a Java library designed

for querying the knowledge within an ontology using SQWRL, is dependent on the

OWL API, as they are both components of the Protégé Project.

3. Neo4j: Neo4j is a powerful graph database that is well-suited for handling ontological

data with highly interconnected structures. Unlike traditional RDF or OWL ontologies,

Neo4j’s property graph model allows for the representation of complex relationships

and supports highly performant, real-time queries through the Cypher query language.

Although Neo4j is not natively based on OWL or RDF standards, it offers flexibility

for modelling ontologies as graph structures, with tools available for importing RDF

data.

According to the literature, working directly with OWL and SQWRL, rather than with RDF

and SPARQL alone, provides a more expressive and specialized framework for ontology

management. OWL (Web Ontology Language) enables richer semantic representation,

supporting complex relationships and logical constructs that are essential for defining detailed

domain-specific knowledge structures. SQWRL complements OWL by enabling powerful

querying capabilities that go beyond SPARQL’s traditional capabilities with RDF. Therefore,

for our use case, it is preferred to use the OWL API instead over the Jena API for managing the

ontology, in conjunction with the SQWRL API for querying the ontology.

Neo4j would also be a good option, as it provides a more complete suite for graph

management applications and supports scalable performance optimization. However, using the

OWL API and SQWRL API is more straightforward for this use case, as it relies solely on

artifacts of academic works, rather than on commercial products and ecosystems.

3.3. Backend framework
Given this decision of using OWL API, which is a Java API, for the purpose of ease of

integration, it would make sense for the backend server for the web application to be developed

in a JVM-based programming language.

 21

Existing JVM-based web server frameworks include Spring Framework (Spring, 2024),

Micronaut (Micronaut Foundation, 2024), Ktor–a Kotlin Framework– (JetBrains, 2024), and

many more.

Ktor offers a modern and straightforward API that emphasizes clarity, and utilizing Kotlin

instead of Java enables developers to achieve the same results with significantly less code. This

combined with the fact that the main developer of this platform has more professional

experience with the Kotlin programming language, and with the Ktor framework, than with

other JVM-based web server frameworks, is the reason that the platform’s backend is written

with this framework and programming language.

The backend server employs the Representational State Transfer (REST) protocol, an

architectural style based on HTTP introduced by Roy Fielding (Fielding, 2000). REST is widely

used for designing networked applications, particularly web services, and it establishes a

standardized approach for different systems to communicate and exchange data over the

internet. This protocol is centered on the concept of resources, where each component is treated

as a resource accessible through a common interface that utilizes standard HTTP methods.

3.4. Internal database
The platform requires an internal database within the server, which stores:

1. Users' sensitive information used for communication purposes, such as e-mails from

contributors, which should not be added to the ontology.

2. Any data submitted to the platform, which may be used for the purpose of debugging

and improving the functionalities.

3. Feedback from users, such as answers to surveys and open suggestions for

improvements.

The database framework used for this project is MySQL (Oracle Corporation, 2024),

because of its ease to setup using a Docker Image (Docker Inc., 2024), and its high popularity.

Therefore, the corresponding driver is used by the platform, the MySQL Connector-J, a JDBC–

Java Database Connectivity– driver for connecting JVM applications to MySQL databases.

3.5. Frontend Framework
In selecting a frontend framework for this dissertation project, we opted for Vite (Vite Core

Team, 2024) and Vue.js (Vue.js Core Team, 2024) due to their complementary strengths and

modern features that enhance development efficiency and user experience.

 22

Vite is a build tool that significantly optimizes the development process. It leverages native

ECMAScript modules, which allows for instantaneous server start and hot module replacement

(HMR) during development, providing a smoother experience compared to traditional bundlers.

This focus on performance and simplicity makes it particularly appealing for projects that

prioritize quick iterations and responsiveness.

Vue.js is a progressive JavaScript (JS) framework known for its ease of integration and

flexibility. Its component-based architecture facilitates the development of reusable UI

components, which enhances maintainability and scalability. The documentation for Vue.js is

widely praised for being comprehensive and beginner-friendly, making it accessible to

developers at all skill levels.

3.6. Version control
Git was chosen as the version control software. GitHub complemented Git by providing cloud-

hosted storage, making the codebase accessible across devices and safeguarded against data

loss. Each commit was clearly documented with messages that specified changes, contributing

to an organized project history that facilitated debugging and tracking.

Together, Git and GitHub allowed for efficient development, high code quality, and

resilient project management, creating an environment that streamlined the project's

progression and maintained a high standard of organization and reliability.

3.7. Deployment
Deployment of the service is handled by SIIC, ISCTE’s Information and Communication

Infrastructure Services. The service is currently available via the link https://mycoda.iscte-

iul.pt.

Figure 4 – MyCODA UML deployment diagram

https://mycoda.iscte-iul.pt/
https://mycoda.iscte-iul.pt/

 23

Figure 4 represents the deployment diagram describing the architecture of the MyCODA

software components. The MyCODA ontology component is where the knowledge base is

stored, which comprises of an OWL file, stored in the MyCODA GitHub repository. GitHub

Issues are a native GitHub feature, which will be used to document proposals of changes to the

ontology or to the platform and track the development of these changes.

The MyCODA backend server is powered by the Ktor engine and is deployed in a Linux

Virtual Machine (VM), hosted on the ISCTE infrastructure. The Ktor application connects to

the internal database directly using the MySQL Connector-J driver. This internal database is

powered by the MySQL engine, and it is also hosted in the backend server machine. As

described in section 3.4, this database’s primary function is to store user information and SUS

form and feedback submissions. The server communicates with the GitHub repository via the

GitHub REST API and via basic HTTP requests to fetch the required data. At startup, the server

downloads the ontology file from the GitHub repository, so any information retrieved from the

knowledge base is based on this copy. However, to keep the platform up to date with the latest

ontology hosted in the repository, the platform is restarted daily, and a tool is provided for

curators to manually trigger the ontology download by the server. This is described in more

detail in the section 4.6.2.

The users’ main interactions with the system are via the MyCODA website, the platform

that is built using Vite and Vue.js frontend development technologies, exported to static files

(e.g. HTML, CSS, JS files) which are served by the MyCODA backend server, and downloaded

by the internet browser on the user’s system. As the user interacts with the platform, requests

are made to the server using a REST API provided by the Ktor server, to communicate with the

MyCODA services, including fetching information from the ontology, storing data in the

internal database, and generating GitHub Issues from contributions.

https://github.com/macodaclub/MyCODA

 24

 25

CHAPTER 4

MyCODA Platform

The final artifact resulting from this dissertation work, the MyCODA platform, comprises of

multiple components, divided visually into tabs.

Following is a comprehensive view of each of these tabs, the tools and functionalities they

contain, and instructions on how they are designed to work.

4.1. Home tab
The home tab is the default view of the platform. This page contains a summary about the

project and its mission, to give some brief context to its users.

The content of the home page is static, rendering HTML generated from a Markdown file

located in the MyCODA GitHub repository, with the intention of making it easier to edit.

Therefore, apart from the anchor links, this page does not provide any interactive

functionalities, as it is meant solely to display general information to the user.

This page also contains a reference to the very relevant Many-Criteria Optimisation and

Decision Analysis Book, published as a result from the MACODA initiative, launched in

September 2019 in the context of the MACODA Workshop, organized by the Lorentz Center

at the Leiden Institute of Advanced Computer Science (LIACS), University of Leiden.

The home page is displayed in Figure 5.

https://github.com/macodaclub/MyCODA

 26

Figure 5 – MyCODA Platform Home tab

4.2. About tab
The about tab, like the home tab, is a simple static page, rendering HTML generated from a

Markdown file located in the GitHub repository.

This page, displayed in Figure 6, contains useful contact information, links to educational

resources relevant to the context of the platform and the MACODA domain, as well as a list of

events that are related to the domain.

https://github.com/macodaclub/MyCODA

 27

Figure 6 – MyCODA Platform About tab

4.3. Browse tab
The browse tab, displayed in Figure 7, contains a tool to navigate the ontology taxonomy. This

tool consists of two panels positioned side by side.

Most of design of this functionality was inspired from the OLS platform, with some minor

different design decisions. For example, while an entity is selected, in this platform it is possible

to expand the hierarchy of specific siblings one by one, using the “…” buttons, while in the

OLS platform the user would only have the options to have all siblings collapsed or all the

siblings expanded. Expanding all siblings is often a very demanding task, which results in the

user having to wait a long time for the action of expanding to take place, even if they only

needed to expand a single sibling.

 28

Figure 7 – MyCODA Platform Browse tab

4.3.1. Ontology taxonomy tree view (left panel)

The left panel, displayed in Figure 8, shows the ontology taxonomy tree view. Inside this panel,

we can find the following components:

Figure 8 – MyCODA Platform ontology taxonomy tree view (left panel)

 29

The left panel displays the title of the ontology taxonomy tree view, or the name of the

ontology, which is MyCODA Ontology. Clicking on this title resets the view to its default state,

which is a list of the ontology classes without any entity selected or expanded, and it shows the

ontology information on the right panel.

On the right of the title is a button for each general type of entity–classes, properties and

individuals–, followed by the number of existing entities of that type in the ontology between

parentheses. Clicking on one of these buttons selects the entity type filter applied to the

taxonomy tree view.

Under the title and entity type buttons, lies the taxonomy tree view, which displays a list of

entities corresponding to the entity type selected from the entity type buttons. By default, it only

lists top-level entities. These are classes without a superclass, properties that are not sub-

properties, and any individuals. In this list, an entity is represented by a label, which is either

its label annotation property, or the end of its corresponding IRI, after the ‘#’ character. If the

entity has any subclasses or sub properties, its label is followed by the number of nested

subclasses or sub properties, between parentheses. Clicking on an entity label selects that entity,

showing only that entity highlighted in orange and its ancestors in the taxonomy tree, and

displaying detailed entity information in the right panel. Additionally, each tree level shows a

button with text “…”, which when clicked displays all the sibling entities within that tree level.

Entities that have subclasses or sub properties have a button on their left with a caret symbol

which when clicked expands their children within the tree, showing direct subclasses or sub

properties.

4.3.2. Ontology/Entity information (right panel)

The right panel displays information either about the ontology or about the selected entity. In

this panel, any entity that is referenced may be clicked, which selects that entity and updates

both panels accordingly.

If no entity is selected, the ontology information is displayed in this panel, which is

presented in Figure 9.

 30

Figure 9 – MyCODA Platform Ontology/Entity information (right panel)

At the top of this panel a static label is displayed, indicating that the data in this panel refers

to the ontology information.

Below the label, the ontology annotation properties are presented, which consist of pairs of

property label on top and property value on the bottom. Currently, the only ontology annotation

property is the Ontology IRI, but other annotation properties may be added in the future, such

as the Version IRI and the Author(s).

At the end of this panel, a button View graph is displayed. Clicking this button opens the

WebVOWL view of the ontology in a new tab, navigating to https://service.tib.eu/webvowl/ -

iri=https://raw.githubusercontent.com/macodaclub/MyCODA/refs/heads/main/ontologies/Ma

CODA.owl, providing a graph visualization tool for OWL ontologies, as displayed in Figure

10. This visualization is probably too complex for the average user of the platform that does

not have much expertise in the field of ontologies. However, it is useful to have this

functionality available for those users that have enough experience with ontologies, and that

may want to see the ontology from a broader perspective.

 31

Figure 10 – WebVOWL view of the MyCODA ontology

Clicking on the View OWL File button this button shows the raw contents of the OWL file

that describes de ontology, which is in the GitHub repository.

When an entity is selected the right panel will show information about the selected entity,

as can be seen in Figure 11.

Figure 11 – MyCODA Platform entity information

https://github.com/macodaclub/MyCODA

 32

At the top of this panel, a label is displayed, which specifies the type of entity, for example,

“Individual Information”. On the right of the label, there is a button to Copy IRI. Clicking this

button copies the IRI of the entity to the clipboard.

The description field corresponds to the owl:comment annotation property of the entity. If

the entity does not contain this annotation property, the description is not displayed.

If the entity has any annotation properties, such as synonyms, a table is displayed with all

the annotation properties’ labels and respective values. If the entity is a property, its domain

and range are displayed. The domain corresponds to the type of individual that this property

may be applied to, and the range corresponds to the type of value this property can take. If the

entity is an individual, its type is specified, and below a list of properties assigned to this

individual is displayed, paired with the value(s) of each property.

Performing a HTTP GET request to the IRI of an entity belonging to the MyCODA

ontology navigates the user to the Browse tab of the MyCODA platform, with the respective

entity selected.

4.4. Contribute tab
The contribute tab, displayed in Figure 12, relays instructions on how to contribute to the

ontology, giving the options of contributing using a tool designed to enrich the ontology from

an article, or proposing specific changes to the ontology by creating a GitHub Issue.

 33

Figure 12 – MyCODA Platform Contribute tab

4.4.1. Contributing by creating a GitHub Issue

Clicking on the Create a GitHub Issue button leads the user to the GitHub Issues page of the

project’s GitHub repository, where they can choose between starting from a Bug report or

Feature request template, or opening a blank issue. This page is displayed in Figure 13. The

maintainers of the repository are notified when a new issue is created and may resolve the issue

at their convenience.

This is a native feature provided by GitHub, and it is the way that most ontologies have

available as the means of contributing to the knowledge base, although different templates are

built. As more issues are created, we may update the existing or create new templates, as per

the demand of our users.

Figure 13 – MyCODA GitHub Issue creation

 34

4.4.2. Contributing by submitting an article

From the contribution page, clicking on the Submit an article button leads the user to the article

submission form, displayed in Figure 14, the first step of the tool designed to help contribute to

the ontology from an article.

Along each step of the contribution, the user may click on the circular button with a question

mark (‘?’) to find brief instructions on how to proceed, displayed in Figure 33, Figure 34, Figure

35 and Figure 36, accompanied by a video tutorial showcasing how to use the tool, displayed

in Figure 37.

Figure 14 – MyCODA Article Submission Form

In this form, the user is prompted to add information about the article, as well as an e-mail

address. To continue, they also required to check the box, consenting to the storage of their

contact and article information, contacting them regarding their contribution. Checking this

box, they consent to the addition of the title, keywords, authors, reference and DOI to the

Knowledge Base.

 35

After submitting the article, the user is lead to the next step, where existing terms/entities

are identified, and using this information, they can add new terms or edit existing ones, to

contribute to the Knowledge Base.

This page, displayed in Figure 32, consists of three sections, which are described below.

4.4.2.1. Submitted Article section

Any terms identified in the article that already exist in the knowledge base are highlighted in

orange in this section, displayed in Figure 15.

Figure 15 – MyCODA submitted article section

The searching of existing terms from text functionality was inspired from the Annotator

feature from BioPortal, where the user can get annotations for biomedical text with classes from

the ontologies in the library, which is available in https://bioportal.bioontology.org/annotator.

https://bioportal.bioontology.org/annotator

 36

This feature works by splitting the texts in words, taking all combinations of grouped words

and matching these strings with properties of entities stored in the ontology. These properties

are label (owl:label), synonyms (altLabel), partial IRI (the ending of the IRI, after the “#”

character), description (owl:comment), lenient label (the label disregarding any special

characters) and lenient description (the description disregarding any special characters). If

multiple entities are matched in an overlapping segment of the text, then the entity is chosen

based on a priority setting. The entity that matches the group with the highest number of words

takes the highest priority. After this calculation, if there is still a draw in priority, then the entity

is chosen based on which property of the entity was matched, in which the priority follows the

order by which these properties were previously described, label having the highest priority and

lenient description having the lowest priority. There may be some cases where this algorithm

will not work correctly. For this reason, the submissions are all recorded in the internal database,

so we may check then for debugging purposes based on the feedback provided by the users. A

more robust algorithm could later be incorporated into this feature, for example, a Natural

Language Processing model, to detect the entities referenced in the text.

The user can then gather information about the current knowledge by clicking on any

identified terms, which opens the Entity Preview popup, displayed in Figure 16, where they can

navigate the same interface found in the Browse tab.

Figure 16 – MyCODA entity preview

The user can use these resources to understand how the knowledge around their topics is

structured, and what information is missing.

4.4.2.2. Identified terms section

This section, displayed in Figure 17, contains a table that shows known terms referenced in the

article, as well as terms the user has added or edited.

 37

Figure 17 – MyCODA identified terms section

Added terms are preceded by a badge indicating that term is new. Clicking new terms opens

the popup to edit the term, while clicking on existing terms opens the Entity Preview popup.

Using the buttons in the Actions column, the user can edit or browse existing terms, and

they can edit or remove added terms.

After the article is submitted, a new term is created automatically, an individual of type

Article. The label of this term is the title of the article, and the keywords, authors, reference and

DOI provided in the form are added as properties of the individual.

Clicking on Edit on this term opens the popup presented in Figure 18, displaying

information about the newly added article, and allowing the user to edit any information.

 38

Figure 18 – MyCODA edit term view

4.4.2.3. Contribute section

The contribute section, displayed in Figure 19, consists of a button to add a new term, and a

text box to select and edit an existing term.

Figure 19 – MyCODA contribute section

 39

Clicking in the Add a new term button opens the popup, displayed in Figure 20, asking

information about the new term to introduce.

Figure 20 – MyCODA add new term popup

Firstly, the user is prompted to provide the label of the new term. They may also click the

equal sign (‘=’) button to expand a table which enables them to add multiple synonyms for the

term. This prompt is displayed in Figure 21.

Figure 21 – MyCODA new term synonyms

After a label is provided, a search for suggested synonyms of the term being added is

executed, presented in Figure 22, with the goal of avoiding the creation of duplicate terms.

 40

Figure 22 – MyCODA new term synonym suggestions

The terms suggested are found based on whether the new term label is close enough to an

existing term’s label or to existing synonyms, comparing using a hamming distance algorithm

(with a hamming distance threshold of half of the length of the string provided), whether the

label matches the initials of an existing term’s label (to find acronyms in the ontology that could

apply to the string provided), or whether an existing term’s label matches the initials of the new

term label (to find entities in the ontology that could be associated to an acronym provided).

The user may also click on the “Select Synonym…” button to manually input the existing

term which this term would be a duplicate of.

After selecting an existing term from this suggestion box, the user is prompted to confirm

whether they want to add the label provided as a synonym of the existing term. This prompt is

displayed in Figure 23.

Figure 23 – MyCODA add synonym to existing entity

If the user accepts the prompt, they are redirected to the edit view of the existing term, with

a new synonym added, corresponding to the label of the new term that was being added.

Otherwise, if the user chooses to continue adding the new term, they are prompted to

describe the term and select the type of the term, as displayed in Figure 24.

 41

Figure 24 – MyCODA new term description and type prompt

 The description is equivalent to the owl:comment annotation property of the resulting

entity.

The type of term is one of the following:

• Class: A category of things.

• Individual: An instance of a certain class.

• Property: An attribute, or characteristic of something.

After the user provides the type, a new set of questions will follow.

If the term is a class, the user is asked to specify if the class has any super class, as displayed

in Figure 25.

Figure 25 – MyCODA new term super class prompt

If the term is an individual, the user is asked to specify which class the individual belongs

to, and which properties they want to assign to the individual, as displayed in Figure 26.

 42

Figure 26 – MyCODA new individual information prompt

If the term is a property, the user is asked to specify which type of individuals may have

this property, and which type is the value of the property, as displayed in Figure 27.

Figure 27 – MyCODA new property information prompt

After the user provides enough information and adds the term, the new term is added to the

identified terms table and may be edited or removed at any point.

4.4.2.4. Finishing the contribution

Once the user decides that they have concluded their contribution, and they consent to the

storage and sharing of all the information provided above, with the understanding that it will

be publicly accessible in the MyCODA Knowledge Base, they may submit the contribution,

where they are presented with the text displayed in Figure 28.

 43

Figure 28 – MyCODA contribution completion

At this step, a GitHub issue is generated, listing all the additions and editions of entities

proposed, and a button is displayed, linking the user to the resulting issue. An example of a

GitHub issue resulting from an article submission is displayed in Figure 39.

The user is informed that the issue will be reviewed by the curators at their convenience.

Finally, a survey is displayed, where the user is asked to provide feedback, and answer the

10 questions from the System Usability Scale, with options ranging from 1 to 5. Answering this

survey is optional. This is displayed in Figure 29 (feedback with SUS form collapsed) and

Figure 38 (SUS form expanded).

Figure 29 – MyCODA feedback after contribution

 44

4.5. Search bar
The platform provides a search functionality, displayed in Figure 30, where the user can search

for a term, by label or synonym. The results are a combination of entities with labels starting

with the query string first, and entities with labels or synonyms containing the query string last.

Figure 30 – MyCODA search bar

Clicking on a result navigates the user to the Browse tab, with the corresponding entity

selected.

4.6. Curating contributions
Contributions are ontology changes proposed and logged in the repository’s GitHub issues.

These changes need to be curated by assigned curators, which should typically be domain

experts, before they are applied to the ontology.

Curators are automatically notified whenever a new contribution is submitted and may

curate contributions at their convenience.

4.6.1. Curation Process

Curating contributions is a simple process which typically consists of:

1. looking through the specified details of the proposed change described in the

corresponding GitHub issue,

2. loading into the Protégé editor the OWL ontology file available here,

3. applying changes using the editor and saving changes to the file,

4. commiting and pushing the changes to the MyCODA GitHub repository.

https://github.com/macodaclub/MyCODA/blob/main/ontologies/MaCODA.owl
https://github.com/macodaclub/MyCODA

 45

4.6.2. Force ontology update

The MyCODA server service restarts daily at 4 a.m., which is defined in the systemd timer

configuration here. Upon restarting, the server fetches the latest ontology in the repository, and

the platform is updated accordingly.

However, the curators may want to update the platform immediately to reflect a new

version of the ontology that was pushed to the repository. In this case, they may access the

curator page, located at https://mycoda.iscte-iul.pt/curator, displayed in Figure 31, where they

can force a live reload of the ontology, by providing a password that is distributed to curators.

This password is stored securely on the server, using the SHA-256 hashing algorithm with a salt

string.

Figure 31 – MyCODA curator reload ontology tool

https://github.com/macodaclub/MyCODA/blob/main/scripts/daily-server-restart.timer
https://mycoda.iscte-iul.pt/curator

 46

 47

CHAPTER 5

Validation
This chapter describes the methods prepared to evaluate the effectiveness of the platform and

to validate the implemented solution.

5.1. Bi-weekly presentations and discussions
Every two weeks, a meeting took place to present the current state of the platform, and to get

feedback from the domain expert Professor Michael Emmerich, a Professor in Multi-Objective

Optimization Faculty of Information Technology University of Jyväskylä Finland, organizer of

the MACODA workshop, and co-supervisor of this dissertation. This corresponds to the

demonstration phase in the DSR methodology.

This recurrent feedback shaped the development of the platform, and served to validate the

functionalities and solutions with a respected member of the MACODA community.

5.2. Validation tests
Validation tests are designed to ensure that the platform meets the needs and requirements of

its users. Validation tests answer the question, "Are we building the right product?", focusing

on how well the product aligns with end-user expectations and intended purpose rather than just

checking for functional correctness.

With this end, a questionnaire is present at the end of a contribution submission. This

questionnaire consists of a System Usability Scale survey, and an open-ended feedback text

box. The answering of this survey is optional.

5.3. SUS feedback evaluation
The System Usability Scale (SUS) (Brooke, 1995) is a widely used tool for assessing the

usability of systems and interfaces through a standardized questionnaire. Developed by John

Brooke in 1986, SUS comprises 10 items rated on a five-point Likert scale, between ‘Strongly

disagree’ (equivaling 1 point) and ‘Strongly agree’ (equivaling 5 points), generating a single

usability score between 0 and 100 that reflects the overall user experience. This score can be

calculated by taking the sum of points from all the answers and multiplying the result by 2.5.

Each item alternates between positive and negative statements, and respondents’ answers are

converted into scores to indicate the ease or difficulty of using the system in question.

 48

SUS is notable for its versatility and effectiveness across various domains, as it can assess

everything from software applications to websites and even hardware. Research has

consistently supported the reliability of SUS as a measure of usability, showing its ability to

produce consistent results that correlate well with user satisfaction metrics (Sauro & Lewis,

2011). Furthermore, SUS has been validated in multiple settings as an efficient tool for both

early-stage and summative usability testing, making it highly adaptable to iterative design

processes (Bangor, Kortum, & Miller, 2008).

In practice, SUS scores are frequently interpreted using average benchmarks and grading

scales to contextualize the user experience. Studies suggest that a score above 68 is generally

considered above average (Bangor et al., 2009).

Following are the 10 statements asked to rate from 1 (‘Strongly disagree’) to 5 (‘Strongly

agree’) in this survey:

1. I think that I would like to use this system frequently.

2. I found the system unnecessarily complex.

3. I thought the system was easy to use.

4. I think that I would need the support of a technical person to be able to use this system.

5. I found the various functions in this system were well integrated.

6. I thought there was too much inconsistency in this system.

7. I would imagine that most people would learn to use this system very quickly.

8. I found the system very cumbersome to use.

9. I felt very confident using the system.

10. I needed to learn a lot of things before I could get going with this system.

Answers to the SUS form are saved in the server’s MySQL database, linked to the

information provided in the first step of the contribution process (described in section 4.4.2),

and to the GitHub issue link resulting from the contribution. These answers are at no point

stored in the ontology.

So far, only two answers to the SUS form have been submitted, so it’s not yet possible to

gather any conclusions from this. However, the feedback form and SUS framework are present

and ready on the platform, as displayed in Figure 38, and we expect to get a significant number

of answers once we start getting a meaningful number of contributions to the knowledge base.

This is more thoroughly expressed in the section 6.2 of the dissertation (Ongoing/Future work).

 49

5.4. Open ended feedback
Unlike fixed-response questionnaires, open-ended feedback allows participants to articulate

their thoughts in their own words, capturing the nuances of user sentiment and unmet needs that

may not emerge in closed-question formats (Nielsen, 1994).

Studies suggest that open-ended responses are crucial for understanding contextual factors

influencing user behavior, such as specific frustrations or unexpected positive aspects, and can

reveal themes that are essential for iterative design processes (Kujala, 2003). This feedback

often complements quantitative metrics by providing richer context, especially in areas where

user emotions, preferences, and frustrations require interpretation beyond numerical scores

(Patton, 2014).

Open-ended feedback may be provided using the text box labeled “Provide Your Feedback”

at the final step of a contribution submission–in which case the feedback is saved in the server’s

MySQL database, and linked to the contribution–, or via e-mail to macodaclub@gmail.com.

mailto:macodaclub@gmail.com

 50

 51

CHAPTER 6

Conclusion

6.1. Conclusions
This dissertation presents the development of the MyCODA platform, a web-based application

to manage an ontology with knowledge in the domain of MACODA, to support the scientific

community, taking into consideration the main factors that make other ontologies successful,

to maximize the utility of this technology. For this purpose, two research questions are

proposed, Q1 and Q2.

Regarding Q1, “How can we maximize the utility of ontologies within the field of

MACODA research?”, we delve into the existing literature, and we look at existing solutions

that have been considerably successful in being adopted by the respective scientific

communities, such as the Uberon ontology–integrated in the OLS platform– and the Gene

Ontology–supported by the AmiGO platform. We conclude that the existence of a platform to

support the community and to make it easier to visualize and leverage the ontology is essential.

Another key factor for the success of a community-driven knowledge base is the existence of a

clear framework for contribution and maintenance of the ontology.

Regarding Q2, “Does the software proposal resulting from the MACODA Workshop in the

University of Leiden in 2019, and described in the book chapter (Basto-Fernandes et al., 2023),

identify all the MACODA research community knowledge management needs?”, we conclude

that this software has great potential in aiding the research community, though the aim in

developing specific functionalities has shifted in accordance to the literature review and

feedback provided. For example, the focus on user registration and on the creation of a forum

has lessened, in favor of tackling what are considered more important factors in the success of

the platform and the ontology behind it, such as the refinement of a visualization and navigation

system to easily browse the ontology, and the creation of a framework and tools to contribute

to the knowledge base, and curate the resulting contributions.

The outputs produced from the work undertaken are the MyCODA platform artifact,

available at https://mycoda.iscte-iul.pt/ and this dissertation document, which provides a

thorough description of the platform and its development process, and a framework for

contributing and maintaining the MyCODA platform and the MyCODA ontology.

https://mycoda.iscte-iul.pt/

 52

6.2. Ongoing/Future work
The artifact has recently been deployed in the ISCTE infrastructure, on the 25th of October

2024.

Professor Michael Emmerich has been submitting articles to the contribution tool, and this

effort is planned to continue. So far, four articles have been submitted, and over thirty entity

additions or changes have been proposed resulting from the usage of this tool. These can be

found here.

The following action planned is to communicate this with the organizers of the EMO 2025

conference, and potentially ask for authors of papers submitted to the conference, related to the

MACODA research domain, to use the contribution tool developed in the MyCODA platform

to propose the addition of new knowledge into the ontology. Authors may provide useful

feedback, and the usage statistics may be analyzed to better assess the validity and effectiveness

of the platform, as well as to prepare it for further improvements.

Another component of this platform aimed for future work is the Query tab, where the user

may perform queries to the Knowledge Base, using SQWRL. This feature idea is presented in

the chapter 13 of ‘Many-Criteria Optimisation and Decision Analysis Book’, and an iteration

of this feature was developed in the accompanying prototype artifact.

https://github.com/macodaclub/MyCODA/issues?q=is%3Aissue+is%3Aopen+created%3A%3C2024-11-01
https://www.emo2025.org/index.html
https://www.emo2025.org/index.html

 53

Bibliography

Aldana-Martín, J. F., Roldán-García, M. del M., Nebro, A. J., & Aldana-Montes, J. F. (2024). MOODY: An

ontology-driven framework for standardizing multi-objective evolutionary algorithms. Information Sciences,

661, 120184. https://doi.org/10.1016/j.ins.2024.120184

Angles, R., & Gutierrez, C. (2008). The Expressive Power of SPARQL. Em A. Sheth, S. Staab, M. Dean, M.

Paolucci, D. Maynard, T. Finin, & K. Thirunarayan (Eds.), The Semantic Web—ISWC 2008 (pp. 114–129).

Springer. https://doi.org/10.1007/978-3-540-88564-1_8

Antoniou, G., & Harmelen, F. (2003). Web ontology language: OWL. Handbook on Ontologies.

https://doi.org/10.1007/978-3-540-92673-3_4

Ashburner, M., Ball, C. A., Blake, J. A., Botstein, D., Butler, H., Cherry, J. M., Davis, A. P., Dolinski, K., Dwight,

S. S., Eppig, J. T., Harris, M. A., Hill, D. P., Issel-Tarver, L., Kasarskis, A., Lewis, S., Matese, J. C.,

Richardson, J. E., Ringwald, M., Rubin, G. M., & Sherlock, G. (2000). Gene Ontology: Tool for the

unification of biology. Nature Genetics, 25(1), 25–29. https://doi.org/10.1038/75556

Bangor, A., Kortum, P., & Miller, J. (2009). Determining What Individual SUS Scores Mean: Adding an Adjective

Rating Scale. J. Usability Stud., 4, 114–123.

Basto-Fernandes, V., Salvador, D., Yevseyeva, I., & Emmerich, M. (2023). Many-Criteria Optimisation and

Decision Analysis Ontology and Knowledge Management. Em D. Brockhoff, M. Emmerich, B. Naujoks, &

R. Purshouse (Eds.), Many-Criteria Optimization and Decision Analysis: State-of-the-Art, Present

Challenges, and Future Perspectives (pp. 337–354). Springer International Publishing.

https://doi.org/10.1007/978-3-031-25263-1_13

Berners-Lee, T. (2002). The Semantic Web: A New Form of Web Content that is Meaningful to Computers Will

Unleash a Revolution of New Possibilities. Scientific American.

Borgman, C. L. (2015). Big Data, Little Data, No Data: Scholarship in the Networked World. The MIT Press.

https://doi.org/10.7551/mitpress/9963.001.0001

Borgo, S., Ferrario, R., Gangemi, A., Guarino, N., Masolo, C., Porello, D., Sanfilippo, E. M., & Vieu, L. (2022).

DOLCE: A Descriptive Ontology for Linguistic and Cognitive Engineering. Applied Ontology, 17(1), 45–69.

https://doi.org/10.3233/AO-210259

Brooke, J. (1995). SUS: A quick and dirty usability scale. Usability Eval. Ind., 189.

Carbon, S., Ireland, A., Mungall, C. J., Shu, S., Marshall, B., Lewis, S., the AmiGO Hub, & the Web Presence

Working Group. (2009). AmiGO: Online access to ontology and annotation data. Bioinformatics, 25(2), 288–

289. https://doi.org/10.1093/bioinformatics/btn615

Carstensen, A.-K., & Bernhard, J. (2019). Design science research – a powerful tool for improving methods in

engineering education research. European Journal of Engineering Education, 44(1–2), 85–102.

https://doi.org/10.1080/03043797.2018.1498459

Côté, R., Jones, P., Apweiler, R., & Hermjakob, H. (2006). The ONTOLOGY lookup service, a lightweight cross-

platform tool for controlled vocabulary queries. BMC bioinformatics, 7, 97. https://doi.org/10.1186/1471-

2105-7-97

 54

Côté, R., Reisinger, F., Martens, L., Barsnes, H., Vizcaino, J. A., & Hermjakob, H. (2010). The Ontology Lookup

Service: Bigger and better. Nucleic Acids Research, 38(Web Server issue), W155-160.

https://doi.org/10.1093/nar/gkq331

Docker Inc. (2024). Docker (Versão 24.0) [Software]. Docker Inc. https://www.docker.com

Elhara, O., Varelas, K., Nguyen, D., Tusar, T., Brockhoff, D., Hansen, N., & Auger, A. (2019). COCO: The Large

Scale Black-Box Optimization Benchmarking (bbob-largescale) Test Suite (No. arXiv:1903.06396). arXiv.

https://doi.org/10.48550/arXiv.1903.06396

Erdmann, M., & Waterfeld, W. (2012). Overview of the NeOn Toolkit. Em M. C. Suárez-Figueroa, A. Gómez-

Pérez, E. Motta, & A. Gangemi (Eds.), Ontology Engineering in a Networked World (pp. 281–301). Springer.

https://doi.org/10.1007/978-3-642-24794-1_13

Fielding, R. T. (2000). Architectural Styles and the Design of Network-based Software Architectures. Chapter 2:

Network-Based Application Architectures, University of California, Irvine.

Gennari, J. H., Musen, M. A., Fergerson, R. W., Grosso, W. E., Crubézy, M., Eriksson, H., Noy, N. F., & Tu, S.

W. (2003). The evolution of Protégé: An environment for knowledge-based systems development.

International Journal of Human-Computer Studies, 58(1), 89–123. https://doi.org/10.1016/S1071-

5819(02)00127-1

Golbreich, C., Horridge, M., Horrocks, I., Motik, B., & Shearer, R. (2007). OBO and OWL: Leveraging Semantic

Web Technologies for the Life Sciences. Em K. Aberer, K.-S. Choi, N. Noy, D. Allemang, K.-I. Lee, L.

Nixon, J. Golbeck, P. Mika, D. Maynard, R. Mizoguchi, G. Schreiber, & P. Cudré-Mauroux (Eds.), The

Semantic Web (pp. 169–182). Springer. https://doi.org/10.1007/978-3-540-76298-0_13

Grau, B. C., Horrocks, I., Motik, B., Parsia, B., Patel-Schneider, P., & Sattler, U. (2008). OWL 2: The next step

for OWL. Journal of Web Semantics, 6(4), 309–322. https://doi.org/10.1016/j.websem.2008.05.001

Hevner, A., R, A., March, S., T, S., Park, Park, J., Ram, & Sudha. (2004). Design Science in Information Systems

Research. Management Information Systems Quarterly, 28, 75.

Horridge, M., & Bechhofer, S. (2011). The OWL API: A Java API for OWL ontologies. Semantic Web, 2(1), 11–

21. https://doi.org/10.3233/SW-2011-0025

Keet, C. M., Ławrynowicz, A., d’Amato, C., Kalousis, A., Nguyen, P., Palma, R., Stevens, R., & Hilario, M.

(2015). The Data Mining OPtimization Ontology. Journal of Web Semantics, 32, 43–53.

https://doi.org/10.1016/j.websem.2015.01.001

Kostovska, A., Vermetten, D., Doerr, C., Džeroski, S., Panov, P., & Eftimov, T. (2022). OPTION: OPTImization

Algorithm Benchmarking ONtology (No. arXiv:2211.11332). arXiv.

https://doi.org/10.48550/arXiv.2211.11332

Kujala, S. (2003). User involvement: A review of the benefits and challenges. Behaviour & Information

Technology, 22(1), 1–16. https://doi.org/10.1080/01449290301782

Li, L., Yevseyeva, I., Basto-Fernandes, V., Trautmann, H., Jing, N., & Emmerich, M. (2017). Building and Using

an Ontology of Preference-Based Multiobjective Evolutionary Algorithms. Em H. Trautmann, G. Rudolph,

K. Klamroth, O. Schütze, M. Wiecek, Y. Jin, & C. Grimme (Eds.), Evolutionary Multi-Criterion Optimization

(pp. 406–421). Springer International Publishing. https://doi.org/10.1007/978-3-319-54157-0_28

Micronaut Foundation. (2024). Micronaut (Versão 4.7.3) [Software]. Micronaut Foundation. https://micronaut.io

 55

Mungall, C. J., Torniai, C., Gkoutos, G. V., Lewis, S. E., & Haendel, M. A. (2012). Uberon, an integrative multi-

species anatomy ontology. Genome Biology, 13(1), R5. https://doi.org/10.1186/gb-2012-13-1-r5

Musen, M. A. (2015). The Protégé Project: A Look Back and a Look Forward. AI matters, 1(4), 4–12.

https://doi.org/10.1145/2757001.2757003

Nielsen, J. (1994). Usability Engineering. Morgan Kaufmann.

Noy, N. F., Shah, N. H., Whetzel, P. L., Dai, B., Dorf, M., Griffith, N., Jonquet, C., Rubin, D. L., Storey, M.-A.,

Chute, C. G., & Musen, M. A. (2009). BioPortal: Ontologies and integrated data resources at the click of a

mouse. Nucleic Acids Research, 37(Web Server issue), W170–W173. https://doi.org/10.1093/nar/gkp440

Noy, N., & Mcguinness, D. (2001). Ontology Development 101: A Guide to Creating Your First Ontology.

Knowledge Systems Laboratory, 32.

O’Connor, M., & Das, A. (2009, janeiro 1). SQWRL: A query language for OWL.

O’Connor, M., Shankar, R., Musen, M., Das, A., & Nyulas, C. (2008). The SWRLAPI: A Development

Environment for Working with SWRL Rules.

Oracle Corporation. (2024). MySQL (Versão 8.0) [Software]. Oracle Corporation. https://www.mysql.com

Panzarella, G., Veltri, P., & Alcaro, S. (2023). Using ontologies for life science text-based resource organization.

Artificial Intelligence in the Life Sciences, 3, 100059. https://doi.org/10.1016/j.ailsci.2023.100059

Patton, M. Q. (2014). Qualitative Research & Evaluation Methods: Integrating Theory and Practice. SAGE

Publications.

Peffers, K., Tuunanen, T., Gengler, C., & Rossi, M. (2006). The design science research process: A model for

producing and presenting information systems research. Proceedings Design Research Information Systems

and Technology DESRIST’06, 24.

Scarbrough, H., Swan, J., & Preston, J. (1999). Knowledge Management: A Literature Review. Institute of

Personnel and Development.

Schober, D., Kusnierczyk, W., Lewis, S., Lomax, J., Mungall, C., Rocca-Serra, P., & Sansone, S.-A. (2007, janeiro

1). Towards naming conventions for use in controlled vocabulary and ontology engineering. ISMB/ECCB

Special Interest Group (SIG) Meeting Program Materials, Bio-Ontologies SIG Workshop Vienna, Austria.

Shearer, R., Motik, B., & Horrocks, I. (2008). HermiT: A Highly-Efficient OWL Reasoner. OWL: Experiences and

Directions. https://www.semanticscholar.org/paper/HermiT%3A-A-Highly-Efficient-OWL-Reasoner-

Shearer-Motik/96286cb50a109e50fad743570184ea1fa55f2ba9

Sirin, E., Parsia, B., Grau, B. C., Kalyanpur, A., & Katz, Y. (2007). Pellet: A practical OWL-DL reasoner. Journal

of Web Semantics, 5(2), 51–53. https://doi.org/10.1016/j.websem.2007.03.004

Smith, B. (2004). Ontology. Em The Blackwell Guide to the Philosophy of Computing and Information (pp. 153–

166). John Wiley & Sons, Ltd. https://doi.org/10.1002/9780470757017.ch11

Spring. (2024). Spring Framework (Versão 6.2) [Software]. VMware. https://spring.io/projects/spring-boot

Studer, R., Benjamins, V. R., & Fensel, D. (1998). Knowledge engineering: Principles and methods. Data &

Knowledge Engineering, 25(1), 161–197. https://doi.org/10.1016/S0169-023X(97)00056-6

The Gene Ontology Consortium, Aleksander, S. A., Balhoff, J., Carbon, S., Cherry, J. M., Drabkin, H. J., Ebert,

D., Feuermann, M., Gaudet, P., Harris, N. L., Hill, D. P., Lee, R., Mi, H., Moxon, S., Mungall, C. J.,

Muruganugan, A., Mushayahama, T., Sternberg, P. W., Thomas, P. D., … Westerfield, M. (2023). The Gene

Ontology knowledgebase in 2023. Genetics, 224(1), iyad031. https://doi.org/10.1093/genetics/iyad031

 56

Tirmizi, S. H., Aitken, S., Moreira, D. A., Mungall, C., Sequeda, J., Shah, N. H., & Miranker, D. P. (2011).

Mapping between the OBO and OWL ontology languages. Journal of Biomedical Semantics, 2(Suppl 1), S3.

https://doi.org/10.1186/2041-1480-2-S1-S3

Tudorache, T., Nyulas, C., Noy, N. F., & Musen, M. A. (2013). WebProtégé: A Collaborative Ontology Editor

and Knowledge Acquisition Tool for the Web. Semantic web, 4(1), 89–99. https://doi.org/10.3233/SW-2012-

0057

Venable, J., Pries-Heje, J., & Baskerville, R. (2016). FEDS: A Framework for Evaluation in Design Science

Research. European Journal of Information Systems, 25(1), 77–89. https://doi.org/10.1057/ejis.2014.36

Vite Core Team. (2024). Vite (Versão 4.1) [Software]. Vite. https://vitejs.dev

Vue.js Core Team. (2024). Vue.js (Versão 3.3) [Software]. Vue.js. https://vuejs.org

Walker, A. (2011). A Wiki for Business Rules in Open Vocabulary, Executable English. Computing Research

Repository - CORR.

Weiten, M. (2009). OntoSTUDIO® as a Ontology Engineering Environment. Em J. Davies, M. Grobelnik, & D.

Mladenić (Eds.), Semantic Knowledge Management: Integrating Ontology Management, Knowledge

Discovery, and Human Language Technologies (pp. 51–60). Springer. https://doi.org/10.1007/978-3-540-

88845-1_5

Yang, S.-Y. (2009). OntoPortal: An ontology-supported portal architecture with linguistically enhanced and

focused crawler technologies. Expert Systems with Applications, 36(6), 10148–10157.

https://doi.org/10.1016/j.eswa.2009.01.004

 57

Attachments

Figure 32 – MyCODA full article contribution page

 58

Figure 33 – MyCODA article submission form help tooltip

Figure 34 – MyCODA submitted article help tooltip

 59

Figure 35 – MyCODA identified terms help tooltip

Figure 36 – MyCODA contribute help tooltip

 60

Figure 37 – MyCODA article submission tutorial video

 61

Figure 38 – System Usability Scale Survey

 62

Figure 39 – Example of a GitHub issue generated from an article submission

