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Doctor José Miguel de Oliveira Monteiro Sales Dias, Full
Professor,
Iscte – Instituto Universitário de Lisboa

October, 2024





Department of Information Science and Technology

Federated Learning for mHealth: an exploration

Guilherme Santos Fernandes Carvalho

Master’s in Computer Science and Engineering

Supervisors:
Doctor Ana Maria de Almeida, Associate Professor,
Iscte – Instituto Universitário de Lisboa
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Resumo

A monitorização remota de pacientes emergiu como uma solução valiosa no contexto

da Covid-19, possibilitando serviços de saúde mais acesśıveis e abrangentes. Através

da recolha de dados fisiológicos e informações de saúde, a tecnologia mHealth pode ser

utilizada para acompanhar pacientes com doenças crónicas, detetar anomalias e prever

eventos de saúde. Esta dissertação teve como objetivo desenvolver uma aplicação de

mHealth baseada em Inteligência Artificial, denominada AIMHealth, que é capaz de su-

portar Aprendizagem Federada em tempo real, visando a deteção de anomalias rela-

cionadas à Covid-19 em dados de frequência card́ıaca em repouso. A implementação da

Aprendizagem Federada permite a monitorização de saúde descentralizada, garantindo a

privacidade dos dados dos utilizadores. Este trabalho explorou o uso de modelos autoen-

coder e testou várias estratégias para aprimorar a precisão na identificação de anomalias,

juntamente com adaptações para preparar a aplicação para uso no mundo real. O desen-

volvimento do AIMHealth representa tanto um avanço quanto um desafio na saúde digi-

tal, oferecendo uma abordagem promissora para o monitoramento remoto de pacientes e

a identificação de padrões de saúde relevantes.

Palavras-chave: Saúde Móvel, Aprendizagem Federada, Deteção de Anomalias, Covid-

19, Monitorização Remota de Pacientes, Inteligência Artificial
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Abstract

Remote monitoring has emerged as a valuable solution, particularly in the context of

Covid-19, by providing accessible healthcare services to a broader population. Through

the collection of physiological and health data, mHealth technology can monitor patients

with chronic illnesses, detect anomalies and predict health events. This dissertation aimed

to develop an AI-based mHealth application, AIMHealth, capable of supporting real-time

Federated Learning (FL) to detect Covid-19 anomalies in rest heart rate data. By im-

plementing FL, AIMHealth enables decentralized health monitoring while ensuring data

privacy. This study explored the use of autoencoder models and tested various strate-

gies to improve the accuracy of anomaly detection, alongside adaptations to prepare the

application for real-world use. The development of AIMHealth represents both an ad-

vancement and a challenge in digital health, offering a promising approach for remote

patient monitoring and the identification of relevant health patterns.

Keywords: Mobile Health, Federated Learning, Anomaly Detection, Covid-19, Remote

Patient Monitoring, Artificial Intelligence
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CHAPTER 1

Introduction

1.1. Context

The global pandemic triggered in 2019 by the virus SARS-COV 2 (COVID-19) and de-

clared by the World Health Organization on March 11, 2020 [1], has exposed inherent

weaknesses in health systems worldwide. From the lack of infrastructure to respond to

the increased need for care, to the scarcity of resources and inadequacy in responding

to emergencies [2]. Faced with the challenges of the pandemic, such as social distancing

and movement restrictions, it was important to optimize medical care by expanding dig-

ital medicine, telemedicine and mobile health (mHealth) applications, ensuring safe and

efficient healthcare delivery without exposing individuals to contagions [3].

The crisis has highlighted the immediate impacts on managing infectious diseases and

the need for more effective approaches to the prevention and management of chronic

conditions [4]. As the population ages, complex challenges arise, from the increase in

these chronic conditions to the growing pressure on health systems [5].

In this scenario, digital solutions can facilitate and optimize the response of individuals

and health systems, enabling remote diagnosis and monitoring. mHealth has emerged as

an accessible and effective solution for enhancing public health [6]. mHealth applications

have been evolving, providing health monitoring, promotion, awareness and supporting

decision-making [7].

As Internet of Things (IoT) technology advances, smartphones and wearables expand

the potential of digital health, making it possible to collect and continuously track vital

indicators such as respiration rate, heart rate, body temperature and blood oxygen sat-

uration. This technology provides real-time information about the user’s health because

these are the first signs that show the user may be ill [8]. Through remote monitoring

with mHealth applications, it is possible to promote health in a proactive, preventive

and personalized way, identifying potential problems early on and enabling more effective

interventions, reducing the need for urgent care and consequently reducing the number of

hospital admissions [9].

Advancements in Artificial Intelligence (AI) and Machine Learning (ML) facilitate

faster and more accurate diagnoses while enhancing the ability to predict diseases before

the appearance of symptoms. However, there is an urgent need to adopt distributed AI

approaches to enable scalable and privacy preserving intelligent healthcare applications

at the network’s edge [10].

In this scenario, implementing Federated Learning (FL) in mHealth applications guar-

antees greater privacy of user data, promoting a personalized approach to healthcare [10].
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FL is a decentralized machine learning approach in which models are trained locally on

user devices and only model updates, not raw data, are shared with a central server

[10]. This method ensures that sensitive health information remains on the user’s device,

improving data privacy and security. This approach not only enhances crisis response

capabilities but also establishes a framework for a health system that is centered around

the patient, adaptable to individual needs and focused on prevention. As healthcare man-

agement advances, it is crucial to investigate innovative solutions like FL to safeguard the

privacy and security of sensitive health information.

This dissertation aims to contribute to developing a mHealth application, AIMHealth,

enhanced by FL. The AIMHealth application is part of the AIMHealth Secure Platform

to be developed as part of the AIMHealth - Mobile Applications Based on AI for Public

Health Response project, funded by the Foundation for Science and Technology (FCT)

[11], coordinated by the Center for Research in Science, Technology and Architecture

(ISTAR-IUL), under grant number DSAIPA/AI/0122/2020.

1.2. Motivation

The motivation behind this research is the growing need for efficient and affordable solu-

tions for remote disease monitoring [12]. The proposed application, based on mHealth and

powered by FL, delivers real-time anomaly detection and personalized patient monitoring,

all while ensuring privacy and security.

By employing advanced ML algorithms, mHealth must be able to analyze health data

on an ongoing basis, identifying patterns that deviate from the norm and warning of

possible deviations. This personalized approach, combined with the privacy protected by

FL, not only anticipates specific patient needs but also promotes a rapid and preventive

response to changes in health indicators.

The focus on FL in the application’s proposal ensures the privacy of user data and

establishes a relationship of trust between technology and healthcare [13] ensuring data

confidentiality. The app paves the way for a safer and more collaborative partnership

between patients and healthcare professionals, promoting a patient-centred approach.

The collaborative framework of AIMHealth, involving institutions like ISTAR-IUL,

CIS-IUL and others brings together expertise from various fields to create a robust re-

sponse system for public health emergencies. This dissertation aims to contribute to the

AIMHealth project, which is being spearheaded by the Centro de Investigação em Ciências

da Informação, Tecnologias e Arquitetura (ISTAR-IUL) in collaboration with the Centro

de Investigação e de Intervenção Social (CIS-IUL), both part of Iscte – Instituto Univer-

sitário de Lisboa. Additionally, the project includes contributions from the Instituto de

Telecomunicações, the Associação para Investigação e Desenvolvimento da Faculdade de

Medicina da Universidade de Lisboa (AIDFM) and the Centro Cardiovascular da Univer-

sidade de Lisboa (CCUL).

The AIMHealth project amplifies the capabilities of mHealth applications by providing

a sophisticated, secure and user-centred platform demonstrating how technology can be
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utilized to improve public health outcomes, in a world where the frequency and impact of

health emergencies are increasing [14]. The integration of AI and blockchain technologies

within this project sets a new standard for privacy and security in health applications,

enabling more proactive and predictive health management strategies.

1.3. Objectives and Research questions

The main challenge resides in the limited availability of advanced mHealth applications

that are proficient in systematically collecting health data, facilitating continuous moni-

toring, providing accurate diagnoses and delivering personalized health services, all that

while ensuring the privacy and security of user data. In the current scenario, numerous

mHealth solutions struggle to effectively integrate these elements, leading to significant

gaps in healthcare monitoring and delivery.

FL presents a compelling solution to this challenge by allowing AI models to be trained

directly on users’ devices. This approach optimizes data collection efficiency while prior-

itizing privacy and confidentiality concerns.

Considering the challenges presented in the research, this dissertation aims to ad-

dress the issues raised by the design and implementation of an artificial intelligence-based

mHealth application - the AIMHealth app. This application intends to validate the inte-

gration of FL for the identification of anomalies in the user’s health through continuous

and personalized monitoring.

The main objectives of this dissertation are as follows:

• To design and implement an AI-driven mHealth application capable of integrating

Federated Learning for real-time health data processing while enhancing privacy

and security.

• To evaluate the ability of Federated Learning to identify patterns and anomalies

specifically associated with COVID-19 in users’ physiological data.

To achieve these objectives and guide the development of this dissertation, the follow-

ing research questions were defined:

RQ1: How can we optimally prepare the AIMHealth application to use Federated

Learning automatically?

RQ2: Can we identify patterns or anomalies in the user’s physiological data that allow

the detection of COVID-19 using Federated Learning within the context of the AIMHealth

app?

1.4. Document Structure

This thesis is structured into five chapters, summarized as follows:

(1) Introduction – This chapter introduces the context, motivation, objectives and

research questions of the dissertation.

3



(2) Literature Review – In this chapter, a comprehensive and systematic review

of the literature is presented, following the PRISMA methodology. This review

provides the theoretical foundation for the research.

(3) Development and Optimization of the AIMHealth Application – This

chapter addresses the first Research Question (RQ) by discussing the initial state

of the AIMHealth application and detailing the modifications made to prepare

the application to use FL automatically.

(4) Federated Learning an exploration – This chapter responds to the RQ2,

focusing on the implementation of FL techniques to identify patterns or anomalies

in the user’s physiological data that allow the detection of COVID-19

(5) Conclusions – The final chapter presents the conclusions drawn from the re-

search, discusses the limitations encountered and suggests directions for future

work.
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CHAPTER 2

Literature Review

This section will explore FL techniques and data processing in mHealth, exploring the

application of ML methods and real-time signal processing for analyzing medical data.

Techniques aimed at the early detection of anomalous patterns, such as changes in heart

rhythms, which can indicate potential health problems in users in mHealth environments,

will be discussed.

Additionally, will be explained the approach used to search for related work and get

into the requisite background knowledge essential for a comprehensive understanding of

the dissertation. Towards the conclusion of this section, I will provide a concise sum-

mary, highlighting the identified literature gaps and emphasizing how this dissertation

contributes to advancing the research field in mHealth, FL and anomaly detection.

2.1. Systematic Review

Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses

(PRISMA) methodology 1, the search for papers related to the dissertation had to be

carried out in several repositories. The repositories used were the IEEE Xplore Digital

Library2, Web of Science database3 and Scopus database4.

The searches were carried out using a specific keyword query, which was applied to

the titles and abstracts of articles within the repositories. This search was carried out in

October 2023 and refined to return only articles written in English and published between

2017 and 2023, either freely accessible for Portuguese Academia.

Google Scholar was also used as an auxiliary tool when necessary to find works that

complemented those found in the other repositories.

The search query used in the articles repositories is as follows:

(”Health” AND ”Federated Learning” AND (”Detection” OR ”phone”))

A total of 326 articles were obtained from the respective repositories. After eliminating

duplicates, a total of 216 articles were maintained. The next step was to screen the

title, abstracts, introduction and keywords to select the articles for further review. In

some cases, when the information was not considered sufficient to make a decision, the

conclusion or the complete document was read.

1PRISMA: http://www.prisma-statement.org/
2IEEE Xplore: https://ieeexplore.ieee.org/Xplore/home.jsp
3Web of Science: https://www.webofscience.com/wos/woscc/basic-search
4Scopus: https://www.scopus.com/home.uri?zone=header&origin=
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Following the PRISMA methodology, 31 documents were collected after the removal

of duplicates and screening titles, abstracts, introductions and keywords. The excluded

documents were not aligned with the context of the study.

2.2. Related Work

In recent years, there has been a significant increase in the number of articles exploring

how FL works in various areas of healthcare, with the 216 articles obtained clearly il-

lustrating this trend, as shown in Figure 2.1. Among them, article [10] stands out for

offering a detailed survey on FL in healthcare which is relevant for understanding its

principles, limitations, advantages, implementation requirements in real-world scenarios

and respective applications.

Figure 2.1. Number of Federated Learning Articles Published Per Year

2.2.1. Federated Learning in Mental Health

The literature review highlights nine articles that focus on the application of FL in mental

health contexts. These studies provide valuable insights into how FL can be used in the

detection and monitoring of conditions such as depression, stress and loneliness. The

authors of [15] address the application of a FL framework in Mental Health Monitoring

Systems to safeguard user data privacy, reduce network usage and improve performance

through mobile applications.

Other approaches include the model proposed by the authors of [16] which monitors

depression in individuals by analyzing data collected from their keyboards while writing

on social networks. The authors of [17] also proposed a mHealth application to detect

depression using a smartphone, mentioning the stages and limitations of their solution.
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The authors of [18] propose a solution using multi-source mobile data, comparing the

results of using independent and identically distributed data and non-independent and

non-identically distributed data to detect depression.

Stress detection using wearable devices has been explored in several recent studies, as

highlighted in [19] which presents FL as a solution to privacy challenges in collecting and

training robust models, although it guarantees greater privacy, it got inferior results to

individual and centralized learning. Similarly, the authors of [20] used wearable devices to

monitor stress through heart data and achieved promising results in terms of privacy and

performance. The authors of [21] obtained positive accuracies when using classifications

of Electrodermal activity to detect stress, guaranteeing the privacy of the patient’s data.

Emotion detection has also been a subject of research, with the authors of [22] present-

ing a method that uses FL for real-time classification of emotional state from multimodal

data streams collected by wearable devices. Authors in [23] developed a model for de-

tecting loneliness using smartphone sensors, which despite improving privacy and showing

promising performance, concerning centralized learning has lower performance which may

be due to data heterogeneity.

2.2.2. Federated Learning in Cardiovascular and Neurological Health

An analysis of studies focusing on the use of FL in cardiovascular and neurological health

reveals significant advances. These articles explore how FL can be applied to the detec-

tion and monitoring of cardiac conditions, as well as in neurological contexts, offering a

promising vision for improving diagnoses and treatments.

The authors in [24] focus on the detection of cardiac arrhythmias using Electrocar-

diograms (ECG) on ultra-edge nodes using an Async-FL model, improving accuracy and

reducing network overhead compared to synchronous FL. In turn, the authors of [25]

and [26] detect anomalies in ECG, using Autoencoders and Explainable AI to explain

why the algorithm has detected a particular anomaly. The authors in [27] propose using

FL to train distributed ML models on local devices, aiming to detect heart disease in

real-time through multi-label classification, to continuously monitor patients’ vital signs

and predict possible adverse events.

In neurological contexts, the authors of [28] propose an FL framework for detecting

epileptic seizures on mobile devices using Deep Neural Networks to extract ECG features.

Additionally, researchers in [29] explore how FL can be utilized to monitor ”Freezing of

Gait” in real-time for patients with Parkinson’s disease.

2.2.3. Federated Learning in COVID-19

The literature has explored various strategies to address the COVID-19 pandemic through

FL, resulting in a wide variety of articles dedicated to this topic. For instance, the

article [30] provides a comprehensive review of FL approaches to COVID-19 detection,

highlighting the importance of preserving the security and privacy of patient data.
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The authors of the article [31] proposed FedLoss for detecting COVID-19 on mobile

devices. This approach effectively addresses class imbalance challenges by integrating

predictive losses, demonstrating increased efficiency, particularly in scenarios with limited

COVID-19 cases. In their study, factors such as breathing, coughing and voice were taken

into account during the disease identification process. In article [32], the authors proposed

the Genetic Clustered Federated Learning algorithm, which utilizes genetic algorithms for

COVID-19 detection. This algorithm aims to optimize hyperparameters in a personalized

way for different clusters of devices, using a federated approach.

In response to the pandemic’s mask-wearing mandates, a facial mask detection sys-

tem was developed as described in article [33]. This system utilizes a FL approach with

asynchronous weight updates, to improve data privacy and reduce the centralized compu-

tational load, achieving competitive results in terms of performance and communication

efficiency.

2.2.4. Federated Learning in Security and Privacy

The implementation of secure and intelligent healthcare systems has been explored in

several articles. Article [34] discusses various privacy-preserving techniques for these

FL-based systems, including differential privacy, incentive mechanisms, blockchain and

the use of digital twins. The authors in [35] present the implementation and evaluation

of FL and Differential Privacy techniques in mHealth systems, which when simulating

an external attack, the results indicated that the combination of these two significantly

reduces the attacker’s ability to infer users’ private information.

Articles [36] and [37] adopt blockchain technology and FL to improve the accuracy

of disease prediction and intrusion detection in an Internet of Medical Things (IoMT)

context.

Anomaly detection models for remote patient monitoring have been proposed by [38],

which use FL, Long Memory Recurrent Neural Networks and digital twins to improve effi-

ciency in anomaly detection. Additionally, the article [39] proposes an anomaly detection

system for the diabetes management system using FL to preserve patient privacy, with

experimental results showing effective detection of malicious events with low latency.

2.2.5. Other Federated Learning approaches

In addition to the approaches discussed above, there are other applications of FL, such

as the study referenced as [40] in the field of Human Activity Recognition. This research

emphasized aspects such as the strategic placement of sensors, improving the accuracy of

FL models and optimizing the use of bandwidth. Furthermore, in the field of fetal health

monitoring, the concept of Federated Data Quality was introduced in [41], with a focus

on ensuring data integrity in distributed monitoring environments.

The authors in [42] address device selection in FL systems with the dual objective

of maximizing the accuracy of the global model and minimizing energy consumption

in edge devices. The study introduces FedSens, a framework that incorporates a deep
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learning model based on extrinsic-intrinsic reinforcement. Additionally, the article [43]

details AsyncFedKD, a pioneering approach that integrates knowledge distillation with

asynchronous training, aimed at effective anomaly detection in FL systems.

Finally, article [44] investigates user assignment and resource management strategies

in Hierarchical FL in distributed environments. This study presents a thorough com-

parison of the performance of the proposed scheme, called the Efficient Assignment and

Resource Allocation Algorithm, highlighting its efficiencies in minimizing communication

overhead and improving model accuracy in a variety of scenarios and data sets.

2.2.6. Summary

This review has provided valuable insights into the application of FL and anomaly de-

tection within healthcare. Autoencoder models have proven to be highly effective in

capturing temporal patterns and optimizing training efficiency for anomaly detection.

Several strategies for FL were explored, establishing them as viable options for mHealth

applications. The data to be utilized for the detection of COVID-19 will be heart rate, as

supported by the findings in article [45], which confirms that heart rate can be effectively

used to detect anomalies associated with COVID-19. The study demonstrated that 63%

of COVID-19 cases could have been identified in real time before symptom onset through

a system based on significant elevations in Resting Heart Rate (RHR) relative to indi-

vidual baseline levels. These insights will guide the methodological approaches in Section

4.

Although several mobile healthcare applications employ FL to detect abnormal health

conditions, there is a lack of specific solutions for remote monitoring of patients with mul-

tiple health conditions in real-time. This gap highlights the need for a mobile application,

based on AI and FL, that not only efficiently manages the complexity of multiple health

conditions but also ensures the privacy and security of users’ data.
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CHAPTER 3

Development and Optimization of the AIMHealth Application

3.1. Introduction

This chapter addresses the RQ1. It provides a comprehensive overview of the AIMHealth

application’s current state, highlights the contributions made to enhance the user experi-

ence and discusses the necessary changes implemented to achieve the objectives.

3.2. Current Application Overview

The AIMHealth application was developed as a mobile solution for health monitoring

on Android, designed to collect and manage physiological data from users. Built using

the Flutter framework [46], the app offers a user-friendly interface for inputting and

monitoring health parameters. As shown in Figure 3.1, the screenshots provide a visual

representation of the application’s login page and the heart rate data collection process.

The AIMHealth app was designed to enable users to input both cardiac and respiratory

data, including voice, cough, heart rate and blood oxygen saturation, developed to support

COVID-19 patients. The app incorporated two key protocols for cardiac assessment: one

using camera-based photoplethysmography to measure heart rate and blood oxygen levels

over 30 seconds and another relying on data collected from a device for transmission of

similar physiological data. Additionally, two respiratory protocols were included, one

capturing a short audio clip of the patient’s cough and the other recording the patient’s

voice while saying ’33’, both aimed at evaluating respiratory function. All collected data

was securely stored to ensure patient privacy and data protection.

A significant contribution to the improvement of the AIMHealth application was made

by [47]. Focused on enhancing the user experience through a user-centered design ap-

proach, conducting in-depth user research, including interviews with potential users, to

understand their needs and challenges. Based on this, were developed user personas and

created both low and high-fidelity prototypes, resulting in a more accessible and intuitive

interface, particularly for older adults with chronic health conditions. Additionally, in-

troduced features like medication management and appointment scheduling, making the

app more functional and user-friendly.

As previously mentioned, the protocols within the application were all manual, requir-

ing users to input data themselves. This manual approach proved insufficient in achieving

one of the project’s primary objectives: the automatic identification of diseases, such as

COVID-19, through anomaly detection. While initially useful, manual data collection did

not meet the requirements for continuous and automated monitoring, which is essential

for the accurate and timely detection of real-time anomalies. The reliance on users to
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(a) Login page (b) Collecting heart rate data page

Figure 3.1. Screenshots of the AIMHealth app

manually input data compromised both the consistency and frequency of data collection,

placing an additional burden on the patient. This could lead to missing data and, ul-

timately, reduce the effectiveness and reliability of the system. Given these limitations,

it became necessary to enhance the application to enable automated monitoring without

the need for constant user intervention.

3.3. Enhancements for Automation

To achieve the goal of continuous monitoring, several changes needed to be implemented in

the AIMHealth application. The app required integration with wearable devices to collect

real-time data and the ability to run in the background to ensure continuous operation

and storage for the data collected from these devices. These modifications are detailed

below:

3.3.1. Integration with Wearable Devices

To enable the application to retrieve health data in real-time, a device capable of con-

tinuously monitoring health signals was needed. Wearable devices, such as smartwatches,

are ideal for this purpose because they are equipped with integrated sensors and allow
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for an automated collection of data like: heart rate and steps, without requiring manual

input from the user.

To integrate the wearable devices with the AIMHealth app, the Health library1 was

selected, as it simplifies the connection with Google Fit2, which was chosen for its platform

that supports a wide range of wearables and health tracking devices. Google Fit provides

a unified interface that simplifies the integration of diverse health data. This integration

allows the application to continuously and seamlessly retrieve health data from wearable

devices in the background. To ensure accurate data collection, communication between

the AIMHealth app and Google Fit was configured to automatically and precisely transfer

health data to the app without requiring user intervention.

To use this feature, users must grant permission for the app to access their Google

Fit data. Additionally, Google Fit itself requires permission from the phone’s health

application to access specific health metrics, ensuring a secure flow of data. Once these

permissions are granted, health data is automatically and accurately transferred from the

wearable devices to the application, without requiring any manual input from the user.

3.3.2. Background Monitoring

To implement background data collection, the Flutter Workmanager library3 was used

to ensure that the application continued to monitor the user’s health even when it was

not actively in use. This library allows for the execution of periodic and continuous tasks,

ensuring that monitoring remains uninterrupted, even when the application is running in

the background or the mobile device is in a resting state. Additionally, WorkManager

is responsible for collecting the most recent health data from wearable devices, ensuring

that the application always has up-to-date information for analysis.

However, WorkManager has a limitation where the minimum interval for background

requests is set at 15 minutes. While there are potential solutions to overcome this limi-

tation, it is not necessary at this stage because all available data within this 15-minute

interval will be collected and transmitted, ensuring that no data is lost. Given this con-

straint, the 15-minute interval was chosen as the smallest available option, which aligns

reasonably well with the dataset’s one-hour intervals used in the following section 4.3.

Should future implementations require more frequent data collection, this setting will

need to be revised to ensure the system continues to capture data effectively.

3.3.3. Storage of Health Data

The security and privacy of users’ health data were considered during the development

of new features, although it is important to note that this implementation was part of

a limited proof-of-concept. Basic symmetric encryption techniques were implemented

following the retrieval of data from Google Fit. However, given the proof-of-concept

nature of the project, these security measures were not intended for long-term use in a

1Health library: https://pub.dev/packages/health
2Google Fit: https://www.google.com/fit/
3Flutter Workmanager library: https://pub.dev/packages/workmanager
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production environment and should be regarded as preliminary steps toward more robust

data protection.

For managing user authentication and storing data securely, Appwrite4 was employed.

This platform facilitated basic encryption and storage management, ensuring a certain

level of privacy and data integrity. However, the data collected during this proof-of-

concept was not stored permanently and will not be used beyond the scope of the project.

Future iterations of the application will require more advanced encryption standards, full

compliance with General Data Protection Regulation (GDPR) requirements, and more

rigorous privacy protections to ensure that health data is adequately safeguarded in a

real-world environment.

3.4. Impact of Implemented Changes

The implemented changes made the AIMHealth application transition from a manual

data entry system to an automated real-time health monitoring app. The integration of

wearable devices and incorporating libraries such as Health Connect and WorkManager

have enabled continuous data collection without the need for active user involvement.

This transformation has reduced the burden on users, as they no longer need to manually

input health data, which not only improves the user quality of experience but also ensures

a more consistent and accurate data flow for analysis.

These enhancements establish a fundamental basis for the integration of FL. By au-

tomating the collection of physiological data from wearable devices, AIMHealth can con-

tinuously gather and process large volumes of decentralized health data. This data can be

used to train distributed ML models without needing to share sensitive information, mak-

ing the application well-prepared to use FL for real-time anomaly detection and health

condition monitoring.

4Appwrite: https://appwrite.io
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CHAPTER 4

Federated Learning an exploration

4.1. Introduction

To address the initial RQ2, the original plan was to conduct tests with real participants

using the AIMHealth app. This approach would allow for real-world insights into the

application’s functionality by capturing live user data and directly implementing the FL

model within its environment. It would allow for in-depth observation of how users

interact with the system, monitoring their physiological data in real time and uncovering

potential challenges in data collection and processing that may only happen in a live

scenario. However, achieving this presented three major issues. First, it proved difficult

to recruit a sufficient number of participants who owned a smartwatch to collect the

necessary data. Second, even among those who could participate, there was no warranty

that they would contractCOVID-19 or another illness during the testing period, which

posed a significant issue for anomaly detection tests. Third, the application is not yet

fully compliant with security standards, thus it does not ensure the needed safeguards to

comply with the GDPR. Because of the last two issues that stand out as severe limitations,

it was decided to perform a FL simulation instead. The Stanford dataset was used as a

practical solution to address the test scenario to respond to RQ2 and progress without

the constraints of participant recruitment, the timing of COVID-19 infections and the

incomplete security infrastructure of the application.

This chapter will outline the steps involved in implementing and testing the FL models

within the AIMHealth app to address RQ2. The chapter is organized as illustrated in the

flowchart 4.1, where

• Dataset: Describes the dataset used for the experiments.

• Data Preprocessing: Outline the steps for preparing the dataset: extract resting

heart rates, apply data smoothing techniques, assign labels, normalize the data and

develop time series sequences.

• Models: Introduces the Long Short-Term Memory (LSTM) and Convolutional Au-

toencoder models used for anomaly detection.

• Methodology: Explores the FL approach, covering anomaly detection, threshold

calculation, the implementation of FL and potential improvements to enhance the

model’s performance.

• Results: Provides a comprehensive analysis and discussion of the results, including

evaluation of loss functions, performance of autoencoder models, anomaly detection,

threshold methods and challenges like overfitting, subset to train data and clustering.
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Additionally, it compares these findings with those of centralized and individualized

learning models and seeks to identify patterns in anomaly detection.

Figure 4.1. Flowchart illustrating the steps to address RQ2.

4.2. Dataset

The dataset chosen for this study is sourced from the Stanford COVID-19 Wearable Study

- Phase 2 [48], from now on referred to as the Stanford dataset. The dataset has data

collected from various wearable devices, such as FitBit and Apple Watch. It offers a range

of metrics, including heart rate, steps taken per minute, symptom onset dates, COVID-19

test dates and other relevant health information. These metrics provide sufficient data

for the main objective of this study, which is to identify anomalies that could suggest the

presence of COVID-19 through variations in resting heart rate.

In total, the Stanford dataset comprises 2124 data points, including data from healthy

participants who have not contracted any diseases, as well as 84 individuals diagnosed

with COVID-19. Although the dataset contains a broad spectrum of information, this

study will focus specifically on three datasets for each participant.

The first dataset maps heart rate measurements to specific dates to track the partici-

pants’ heart rate trends over time. The second dataset pairs the dates with the number

of steps to calculate the RHR. The third dataset provides information on symptom onset

dates along with COVID-19 test results, which can help identify potential health anom-

alies.

A more detailed analysis of the dataset reveals that data from FitBit devices contain

significantly more daily heart rate measurements, with an average of 9950 measurements
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per day, compared to non-FitBit devices, which have an average of 380 measurements

per day. This discrepancy is evident from the differences in measurement density, as

illustrated in 4.2, which shows that a participant with a non-FitBit device has a lower

measurement density compared to 4.3, a participant using a FitBit device.

Figure 4.2. Heart rate data of Participant P320539 was recorded using a
non-FitBit device.

Figure 4.3. Heart Rate of Participant P839431 was recorded using a fitbit
device.

The distribution of days with and without measurements for each participant is shown

in 4.4. This figure illustrates the presence of gaps in the data, where several days lack

measurements. Together, these subsets (days with and without measurements) define the
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Figure 4.4. Distribution of days with and without heart rate measure-
ments

full measurement period for each participant, which spans an average of 164 days, less

than six months. These gaps are particularly evident in cases like that of Participant

P885171, who shows periods of sparse measurements, as illustrated in 4.5.

Figure 4.5. Heart Rate of Participant P885171.

Another conducted analysis focused on the number of measurements per day. It was

observed that there were several days where the number of measurements fell below 50%

of the participant’s daily average. In some cases, the measurements decreased to less
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than 15% of the typical daily values for certain participants. This indicates significant

inconsistencies in data collection on those days.

To ensure rigorous data anonymization, participants have been assigned unique nu-

meric identifiers and all the dates in the dataset are fictitious. This approach guarantees

that the data cannot be traced back to individual participants.

4.3. Data preprocessing

To ensure the data’s quality and suitability for ML applications a comprehensive pre-

processing process was applied. In this section, two different datasets from the Stanford

COVID-19 Wearable Study - Phase 2 will be created.

The two datasets consist of time series data of RHR, which will be analyzed to identify

anomalies and patterns associated with COVID-19. The difference between the datasets

is that the first dataset, referred to as the Covid dataset, includes only participants who

tested positive for COVID-19, while the second dataset, referred to as the Healthy dataset,

includes the same participants as the first dataset, along with an equal number of healthy

individuals. These balanced samples allow for a more accurate comparative analysis,

providing a closer approximation to a real-world scenario to explore differences in heart

rate patterns between infected and non-infected individuals.

The subsequent subsections will detail the specific steps taken during the data pro-

cessing phase, as seen in Figure 4.6.

Figure 4.6. Data processing for resting heart rate analysis. Adapted from
SSLTools1.

4.3.1. Resting Heart Rate Extraction

In order to effectively identify potential anomalies that may be associated with the pres-

ence of COVID-19, the analytical process initiates with a comprehensive examination

1SSLTools: https://otavioon.github.io/ssl_tools/tutorials.html
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of heart rate and step count data collected from participants. This information is sys-

tematically organized into two datasets: one dataset records the date along with the

corresponding heart rate for each individual, while the other dataset documents the date

alongside the step count for each participant.

These two datasets are then combined to create a new dataset that includes the date

and the RHR, calculated based on periods when the participant remained inactive. To

determine when a participant’s heart rate can be classified as resting, the parameter

min minutes rest is used. This parameter indicates that a participant’s heart rate will be

classified as resting if they remain inactive, with a step count of zero, for a continuous

period of min minutes rest minutes.

The min minutes rest value has been established at 12 minutes, based on physiological

research indicating that a continuous rest duration of at least 10 minutes is generally

sufficient for the heart rate to stabilize at a resting state, as demonstrated in study [49].

4.3.2. Data Smoothing

After extracting the resting heart rate, a data smoothing process is applied to enhance the

quality of the data for further analysis. The main goal of applying smoothing techniques

is to reduce noise in the RHR data, as this noise can hide significant patterns and trends

that are essential for accurate anomaly detection. Smoothing helps to minimize minor

variations caused by external factors or measurement errors that do not reflect meaningful

changes in the user’s condition. By reducing these unwanted fluctuations, the underlying

trends become more evident, ensuring that long-term patterns are more visible.

This process utilizes two parameters: smooth window sample, which defines the num-

ber of samples used for smoothing the data and sample rate, which determines the fre-

quency at which the data is resampled. The smoothing process applies a moving aver-

age filter to the data using the window size specified by smooth window sample. After

smoothing, the data is downsampled according to the defined sampling rate, producing a

new data frame that includes the date, time, and RHR at the desired intervals. In this

study, a smooth window sample of 400 was selected and the data was resampled at an

interval of one hour, resulting in a sample rate of 1 hour.

4.3.3. Adding Labels

In this subsection, labels were assigned to the data frame in order to categorize the data

according to various periods in relation to the onset of symptoms.

For participants who have contracted COVID-19, the parameter baseline days defines

the number of days before symptom onset that will be considered as the baseline period

is 21 days. A new column called ”baseline” is added to the data frame, marking entries

as True for dates that fall within the designated baseline period and False otherwise.

This period reflects the participant’s usual state before the onset of any symptoms. If

a participant does not have sufficient data before symptom onset to meet the training

requirement of at least 20 time series data points, their data is excluded from the analysis.
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Additionally, participants without available symptom onset dates were also removed from

the study, as it was not possible to establish a reference point for the baseline and anomaly

period. These issues affected certain participants, making it impossible to use their data

in the training process. Consequently, their data was excluded from the study.

The before onset and after onset parameters define the number of days before and

after symptom onset, respectively, that will be considered as the anomalous period, the

chosen period was 7 days before and 21 days after symptom onset, based on findings from

previous research [45]. A new column called ”anomaly” is added, indicating True if the

date falls within this abnormal period to identify possible deviations from the baseline

that might indicate the presence of COVID-19 and False otherwise.

In addition to these columns, a new column is included, which provides a descriptive

label for the condition of the user on that specific date:

• normal: The date falls outside the anomalous period, specifically more than 7 days

before symptom onset, representing the participant’s healthy condition.

• before onset: The date is within the 7 days leading up to symptom onset, consid-

ered part of the anomalous period.

• onset: The exact day symptoms begin.

• after onset: The date falls within the period from symptom onset up to 21 days

after, during which the participant is still considered in an anomalous period.

• recovered: The date falls after the 21 days following symptom onset, indicating

that the participant is expected to have returned to normal health conditions.

For participants who did not contract COVID-19, the labelling process takes on a

different approach. In this case, there are no anomalies present, so all data points are

classified as normal. The dataset for these individuals is divided, with 70% of the data

used as baseline data for training and 30% set for testing purposes.

4.3.4. Data Normalization

Once the labels have been applied, the data is normalized using the Z-normalization

technique for standardizing the heart rate data, facilitating meaningful comparisons across

various periods and participants. The formula for Z-normalization is as follows:

Z =
x− µ

σ
Where x represents the individual heart rate measurement, µ symbolizes the mean of

the heart rate values during the baseline period and σ represents the standard deviation

of the heart rate measurements during the same period. It is important to emphasize that

both the mean and standard deviation are calculated solely based on the data from the

baseline period. These baseline values are then applied to normalize the entire dataset,

including periods before and after symptom onset.

The purpose of applying Z-normalization is to standardize the data, allowing the heart

rate values to be compared on the same scale. By normalizing the data relative to the
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baseline period, the model can more effectively detect deviations or anomalies that may

indicate the presence of COVID-19.

4.3.5. Time Series Sequence Development

The final step in the data preparation process is the development of time series sequences.

This process involves reorganizing the data by grouping consecutive rows and transform-

ing them into columns, effectively creating new temporal features. The primary input

parameters for this step are window size and overlap, which determines the length of each

sequence and the extent of overlap between consecutive sequences.

For instance, when utilizing a dataset containing 100 samples, with a window size of

10 and an overlap of 0, the resulting process will generate 10 sequences, each containing

10 samples (10 rows with 10 columns). Within each sequence, the samples are represented

as sequentially numbered columns, such as RHR-0, RHR-1, ..., RHR-9. The first sequence

comprises the first 10 samples, the second sequence comprises the next 10 samples, and

so on.

In this study, a window size of 16 and an overlap of 8 were chosen. This configuration

indicates that each sequence encompasses 16 samples, but subsequent sequences start 8

samples after the previous one, resulting in a 50% overlap. This overlapping strategy

enhances the model’s ability to capture temporal dependencies in the data.

A consideration in this process is the preservation of label integrity, sequences drawn

from anomaly periods are kept distinct from those drawn from non-anomaly periods to

ensure that sequences marked as anomalous contain only data points from the anomaly

period, preventing any mixing of labels that could confound the model’s learning process.

4.3.6. Participants Files

After completing the preprocessing phase, visual representations of participants data will

be examined. Each participant has an associated data frame with a unique participant id

to identify each individual.

Figure 4.7 illustrates the resting heart rate of participant 723961, who was diagnosed

with COVID-19, along with the respective labels assigned during the preprocessing phase.

The following figure 4.8 shows the data of participant 741238, a healthy individual

who did not contract COVID-19, with the corresponding labels assigned during the pre-

processing phase.

4.4. Models

This study aims to assess two models for detecting anomalies in time series data: LSTM

and Convolutional Autoencoders, to determine the most suitable approach. By comparing

these distinct models, the goal is to uncover the most effective method for identifying

anomalies in this scenario.
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Figure 4.7. Resting Heart Rate of Participant 723961 with assigned la-
bels.

Figure 4.8. Resting Heart Rate of Participant 741238 with assigned la-
bels.

4.4.1. LSTM Autoencoder

The motivation behind selecting the LSTM Autoencoder is based on its ability to identify

long-term dependencies in time series data for effective anomaly detection [50]. The

autoencoder learns to reconstruct normal sequences, so any deviation from this pattern

results in higher reconstruction errors, indicating potential anomalies. The architecture

of the model can be viewed in Annex A.

4.4.2. Convolutional Autoencoder

The Convolutional Autoencoder was chosen due to its enhanced capacity for capturing

local temporal dependencies within time series data [51]. Convolutional layers excel at

capturing features from short-term patterns, significantly improving the ability to detect

anomalies within localized sections of a time series. The architecture of the model can be

viewed in Annex A.
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4.5. Methodology

After acquiring the datasets and establishing the architecture of the models, the next

step was the implementation of FL to train the models across distributed data sources.

A visual representation of FL is provided in Figure 4.9.

Figure 4.9. Diagram of a Federated Learning. Adapted from wikipedia2.

The goal was to explore various FL strategies to identify the most effective approach

for anomaly detection in time series data, specifically focusing on resting heart rate data.

The initial experiments utilized two distinct FL strategies: the Adaptive Federated

Optimization using Adam (FedAdam) and the Federated Averaging strategy (FedAvg).

The Adam optimizer is an adaptive learning rate optimization algorithm that adjusts the

learning rate for each parameter individually. In contrast, FedAvg focuses on aggregating

the gradients computed locally by each client through averaging, thereby creating a global

model update that reflects the contributions of all clients involved.

Anomaly detection in this context was performed by calculating the reconstruction

error using two primary loss functions: Mean Absolute Error (MAE) and Mean Squared

Error (MSE). These loss functions measured the difference between the model’s output

and the actual input data, allowing the identification of anomalies. To determine whether

a particular data point was classified as an anomaly, several threshold calculation methods

were applied, including standard deviation, percentile based and variance based thresh-

olds, which helped establish boundaries for anomaly classification.

To further improve the model’s performance, three additional approaches were imple-

mented:

2wikipedia: https://en.wikipedia.org/wiki/Federated_learning
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(1) Overfitting Approach: The model was fine-tuned on each participant’s local

data to personalize the detection of anomalies, aiming to capture subtle individual

patterns that may enhance sensitivity to deviations.

(2) Clustering Approach: Participants were grouped based on similarities in heart

rate data, allowing the model to specialize within each cluster and potentially

improve the accuracy of anomaly detection.

(3) Top-20 Participants Approach: The model was trained on the top 20 par-

ticipants with the best individual performance, aiming to leverage their more

reliable patterns to create a generalized model that performs effectively across

the entire dataset.

These additional methods were explored as potential avenues to enhance the model’s

performance, with the goal of evaluating whether they could improve anomaly detection

in distributed time series data.

4.5.1. Federated Learning Implementation

The FL process was implemented using the Flower framework3, which facilitated the

simulation of distributed learning across multiple clients. Each client represents a unique

subset of the data, mimicking a real-world scenario where data is decentralized. The

Flower framework was instrumental in coordinating communication between clients and

managing the global model updates, allowing for effective scaling across distributed data

sources.

Algorithm 1 illustrates a simplified pseudo-code representation of the overall FL pro-

cess using the FedAvg strategy4

Algorithm 1 Flower Federated Averaging (FedAvg)
Input: Global model M , number of clients nclients, number of rounds R, epochs per client E

Output: Final global model M

1: Initialize: Server initializes global model M
2: for each round r ∈ [1, R] do
3: Server broadcasts global model M to all clients
4: for each client i ∈ [1, nclients] in parallel do
5: Client i receives global model M from server
6: Client i trains local model Mi on its own data Di for E epochs
7: Client i computes updated local weights Wi

8: Client i sends updated weights Wi to the server
9: end for
10: Server aggregates the local weights to update the global model:

M ← 1

nclients

nclients∑
i=1

Wi

11: end for
12: Return: Final global model M

3Flower framework: https://flower.ai/
4Flower FedAvg:https://flower.ai/docs/framework/ref-api/flwr.server.strategy.FedAvg.
html
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The FedAdam strategy5 is employed to enhance the server-side aggregation by using

the Adam optimizer, which updates the global model based on the gradients computed by

the clients. This approach allows the model to incorporate the client-provided gradients in

the optimization process. The corresponding pseudo-code for the FedAdam aggregation

function is shown in Algorithm 2.

Algorithm 2 Flower Federated Adam (FedAdam)
Input: Number of clients nclients, gradients Gi, learning rate η, momentum parameters β1, β2

and epsilon ϵ
Output: Final global model M

1: Initialize optimizer parameters: mt = 0, vt = 0
2: for each round r ∈ [1, R] do
3: for each client i ∈ [1, nclients] in parallel do
4: Client i computes local gradients Gi

5: Client i sends gradients Gi to the server
6: end for
7: Server updates the optimizer states:

mt = β1 ·mt + (1− β1) ·
1

nclients

nclients∑
i=1

Gi; vt = β2 · vt + (1− β2) ·
1

nclients

nclients∑
i=1

G2
i

8: Compute bias-corrected moment estimates: m̂t =
mt

1−βt
1
; v̂t =

vt
1−βt

2

9: Update global model: M ←M − η · m̂t√
v̂t+ϵ

10: end for
11: Return: Final global model M

In the FL strategies, including FedAdam, the algorithm runs over 10 training rounds.

During each round, all available clients participate in the training process, performing

local updates on their respective data and sending their model updates to the server.

The server aggregates these updates to refine the global model, simulating the FL process

orchestrated by the Flower framework. The models used were LSTM and Convolutional

Autoencoders, as detailed in Section 4.4.

4.5.2. Anomaly Detection and Threshold Calculation

Anomaly detection conducted in this study was based on the reconstruction error, with

two primary loss functions being utilized: MAE and MSE. These loss functions measure

the difference between the model’s output and the actual input data, allowing for the

identification of anomalies. The MAE calculates the mean of the absolute differences

between the predicted and actual values, making it more robust to outliers. In contrast,

the MSE computes the mean of the squared differences, which penalizes larger errors more

significantly, making it more sensitive to significant deviations.

Several threshold calculation methods were tested to determine whether a particular

data point was an anomaly. These methods define how the loss distribution is used to

set a boundary for classifying anomalies. After calculating the reconstruction error, it is

5Flower FedAdam:https://flower.ai/docs/framework/ref-api/flwr.server.strategy.FedAdam.
html
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compared against a predetermined threshold. Should the error exceed this threshold, the

data point is deemed anomalous. The threshold approaches implemented are described

below:

4.5.2.1. Standard Deviation Threshold

This method calculates the threshold as one Standard Deviation (STD) above the

mean of the loss distribution. Any reconstruction error exceeding this threshold is con-

sidered an anomaly. This approach assumes that most reconstruction errors are normally

distributed around the mean and any significant deviation beyond one STD can be clas-

sified as anomalous.

4.5.2.2. Percentile Threshold

In this method, the threshold is set as a specific percentile of the loss distribution. This

approach is useful for controlling the proportion of data points classified as anomalies.

The percentile value determines the sensitivity of the anomaly detection higher percentiles

result in fewer anomalies being detected, while lower percentiles increase sensitivity. In

this study, the 75th percentile was selected to maintain a balance between detecting

enough anomalies and reducing false positives.

4.5.2.3. Variance Threshold

This approach uses the variance of the loss distribution to determine the threshold.

The threshold is set as the mean plus a multiple of the variance, where the factor is

set to one by default. A higher factor results in a more permissive threshold, meaning

fewer points will be classified as anomalies, while a lower factor makes the threshold more

restrictive, identifying more anomalies.

4.5.3. Possible Improvements to Federated Learning

This section explores three techniques that could potentially enhance FL in this con-

text: the use of overfitting, implementing clustering strategies and selecting the top 20

participants to optimize model training.

Overfitting Approach

Overfitting was introduced to explore whether a higher degree of personalization could

improve the model’s performance in detecting anomalies. After training the global model

using federated data, an additional fine-tuning phase was performed for each participant

individually. This fine-tuning consisted of training the model on each participant’s local

data for 10 epochs. The objective was to personalize the model for each participant,

capturing unique patterns in their physiological data that may be essential for identifying

deviations from their typical behavior.

This approach is based on the hypothesis that minor overfitting to local data could

increase the model’s sensitivity to individual variations, thereby potentially improving

its ability to detect anomalies. This method was compared to a standard global model

trained without overfitting to evaluate whether this individualized fine-tuning provided

significant advantages in anomaly detection. The results of this comparative analysis
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aimed to determine whether the enhanced sensitivity to personal data indeed translated

into improved detection performance.

Clustering Approach

The second approach involved clustering participants based on similarities in their

physiological data, particularly heart rate patterns. The hypothesis was that grouping

participants with similar data characteristics could lead to more specialized models, po-

tentially improving overall performance compared to a single global model trained on the

entire dataset.

Clustering was conducted using the K-Means algorithm with the Dynamic Time Warp-

ing metric, which is particularly effective for time series data. By clustering clients with

comparable heart rate rhythms, the model could be adapted to specific subgroups, po-

tentially enhancing its capacity to detect anomalies within those clusters. The reasoning

behind this approach is that by ensuring more homogeneous data within each cluster, the

model can identify more significant patterns, resulting in enhanced accuracy in anomaly

detection. Figures 4.10 and 4.11 illustrate the clusters for the Covid dataset and the

healthy dataset with K=2, respectively.

Figure 4.10. Covid dataset clusters representation, K=2.

Additionally, clustering with K=3 was performed, as shown in Figures 4.10 and 4.13.

This difference from K=2 to K=3 was explored to assess whether increasing the number of

clusters would capture more detailed subgroup patterns in the data, potentially enhancing

the model’s ability to detect anomalies by accounting for more nuanced variations in heart

rate patterns. It is possible to observe that both data values are significantly different

between both principal components. However, while the clustering was based on heart rate

patterns, the specific features extracted and used to form the clusters were not explicitly

defined, as the process was highly data-driven.

Further increases in K were not considered, as visual inspection of the clusters revealed

no significant improvement in the separation between groups beyond k=3.
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Figure 4.11. Healthy dataset clusters representation, K=2.

Figure 4.12. Covid dataset clusters representation, K=3

Figure 4.13. Healthy dataset clusters representation, K=3
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Top 20 Participants Approach

The third approach focused on selecting the top 20 participants based on their in-

dividual performance during training. The goal was to assess whether using this high

performing subset could lead to a generalized model that performs better across the en-

tire dataset. The hypothesis posits that these top performers could more accurately reflect

the underlying patterns in the data, resulting in a more robust and resilient global model.

The training of the model on the top 20 selected participants was subsequently tested

on the entire dataset to evaluate its effectiveness. The rationale was that participants who

exhibited better individual performance during training might contribute more reliable

and meaningful patterns, enhancing the model’s anomaly detection capabilities when

applied to all participants. This method aimed to improve the model’s generalization

ability, making it more adaptable and resilient beyond the high-performing subset.

4.6. Results

This section presents and analyzes the results obtained in identifying anomalies related

to COVID-19 using resting heart rate data. In total, predictions were made across 192

distinct scenarios, distributed between two datasets (Covid and Healthy). The analysis

explored deeply into two FL strategies, FedAvg and FedAdam, while also examining the

performance of two distinct loss functions: MAE and MSE. Additionally, three meth-

ods for determining anomaly thresholds were analyzed: 1STD, Percentile and Variance

Threshold. Both LSTM and Convolutional autoencoder models were employed, carefully

examining variations that addressed both overfitting and non overfitting scenarios. Fur-

thermore, the clustering method and the examination of the top 20 participants were

implemented across all these scenarios, restricted to the FedAvg strategy. To facilitate a

clearer interpretation of the results, the analysis will focus primarily on the Covid dataset,

while a distinct section will be dedicated to comparing the two datasets. The analysis

follows a systematic structure to compare each approach in a stepwise manner:

(1) Federated Learning Strategy: A comparison of two FL strategies, FedAvg

and FedAdam, to explore their impact on anomaly detection performance.

(2) Loss Functions: Evaluation of MAE and MSE, focusing on how each loss func-

tion influences sensitivity in detecting anomalies through threshold comparisons.

(3) Models Autoencoders: An assessment of two autoencoder architectures, LSTM

and Convolutional, to identify which model better reconstructs time series data

and effectively detects anomalies.

(4) Anomaly Threshold Methods: This analysis compares different threshold

methods, including Threshold1STD, Percentile Threshold and Variance Thresh-

old to evaluate how threshold selection influences anomaly detection outcomes.

(5) Overfitting in Model Training: This analysis examines the effect of overfitting

on model performance. The performance of models subjected to overfitting is
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compared to those trained without overfitting, too determine the implications of

this technique.

(6) Clustering in Model Training: The use of clustering is explored to determine

whether training models based on clusters of participants with similar character-

istics improves overall performance compared to using a single global model.

(7) Top 20 Participants in Model Training: This analysis focuses on the top 20

participants with the most accurate predictions to evaluate whether training on

this subset enhances the model’s performance for all participants.

(8) Comparison Between the Two Datasets: A comparative analysis is con-

ducted to examine how the Covid and Healthy datasets differ in terms of anomaly

detection performance in healthy and unhealthy participants.

(9) Federated Learning vs Centralized and Individualized Learning: The

results of the FL models are compared with those of centralized and individualized

models. This comparison highlights the advantages and disadvantages of FL in

relation to centralized and individualized approaches.

(10) Identification of Patterns in Anomaly Detection: This section tries to

identify patterns in anomaly detection, examining whether consistent trends can

be found across participants.

In this study, the following evaluation metrics were used to assess the performance

of the models: recall, precision, balanced accuracy and specificity. Each metric provides

valuable insights into different aspects of model performance, particularly in dealing with

the imbalanced nature of the datasets. Below is a brief explanation of each metric and its

corresponding formula, where TP stands for true positives, TN represents true negatives,

FP denotes false positives, and FN refers to false negatives.

• Recall: Recall measures the ability of the model to correctly identify positive cases.

It is the ratio of true positives to the sum of true positives and false negatives.

Recall =
TP

TP + FN

• Precision: Precision measures the proportion of true positive predictions among

all positive predictions made by the model. It evaluates the ability of the model to

avoid false positives.

Precision =
TP

TP + FP
• Balanced Accuracy: Balanced accuracy is the average of sensitivity and specificity

and it is particularly useful for evaluating imbalanced datasets, as it considers both

classes equally.

Balanced Accuracy =
1

2

(
TP

TP + FN
+

TN

TN+ FP

)
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• Specificity: Specificity measures the proportion of correctly identified negative

cases. It is the ratio of true negatives to the sum of true negatives and false positives.

Specificity =
TN

TN + FP

To statistically validate the performance differences across the various approaches, the

Wilcoxon signed-rank test [52] was chosen for comparing paired results. This test was

selected due to its suitability for paired data where normality is not assumed, making it

appropriate for assessing differences in metrics across model configurations and learning

strategies. In this context, the p-value derived from the Wilcoxon test indicates statisti-

cal significance: a p-value above 0.05 suggests no significant difference, implying results

may be due to chance, while a p-value of 0.05 or below indicates statistically significant

differences, suggesting the observed variations are meaningful. Balanced accuracy was pri-

oritized as the primary metric in this analysis, given its utility for assessing performance

in imbalanced datasets.

4.6.1. Federated Learning Strategy

Figure 4.14. Balanced Accuracy Comparison of FedAvg and FedAdam
on the Covid Dataset Using Convolutional Model and MSE Loss Function
with Percentile and 1STD Thresholds.

In this section, a comparison is made between two different FL strategies: FedAvg and

FedAdam. Both strategies were evaluated across a comprehensive set of conditions: two

models (LSTM and Convolutional), two loss functions (MAE and MSE) and the three
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threshold methods. This evaluation resulted in a total of 12 outcomes for each strategy,

providing an understanding of their performance across different scenarios.

Figure 4.14 provides an illustrative comparison between the FedAvg and FedAdam

strategies on the Covid dataset, utilizing the convolutional model, MSE loss function and

two threshold methods: Percentile Threshold and 1STD Threshold. As shown in the

figure, both strategies display very similar performance under identical conditions. Due

to this similarity, a comprehensive table with the mean relevant metrics for all outcomes

under each strategy is presented in Table 4.1.

Strategy Balanced Accuracy Recall Precision Specificity
FedAdam 0.527588 0.278973 0.152640 0.776203
FedAvg 0.523890 0.287031 0.147107 0.760748

Table 4.1. Mean Performance Metrics Comparison for FedAvg and
FedAdam Strategies.

The results indicate that FedAvg and FedAdam exhibit similar performance across

all evaluated metrics, suggesting that, for this particular application, the simpler FedAvg

approach may be preferable due to its ease of implementation and lack of significant trade-

offs in performance. Consequently, in scenarios where efficiency is a priority, FedAvg may

be the optimal choice, especially when computational simplicity and resource optimization

are necessary.

4.6.2. Loss Functions

The next step involved comparing two loss functions widely used in anomaly detection

problems: MAE and MSE. This comparison was conducted in the Covid dataset, imple-

menting FedAvg as the FL strategy, for both LSTM and Convolutional models, across

the three threshold methods.

Figure 4.15 presents an illustrative comparison between MSE and MAE loss functions,

showing their performance on the Covid dataset using the Percentile and 1STD threshold

methods, with the convolutional model and the FedAvg strategy. As observed in the

figure, it is not clear to visually discern which loss function performs better under this

scenario. Therefore, Table 4.2 provides an overview of the mean relevant metrics for all

outcomes associated with each loss function for a clearer analysis.

Loss function Balanced Accuracy Recall Precision Specificity
MAE 0.525683 0.268226 0.146883 0.783139
MSE 0.526296 0.252847 0.150381 0.799744

Table 4.2. Mean Performance Metrics Comparison for MAE and MSE
Loss Functions.

Figure 4.15 and Table 4.2 do not reveal substantial differences in performance between

the MAE and MSE loss functions. Minor mean metric variations suggest a nearly identical
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Figure 4.15. Balanced Accuracy Comparison of MAE and MSE Loss
Functions on the Covid Dataset Using Convolutional Model, FedAvg Strat-
egy, with Percentile and 1STD Thresholds.

performance across both loss functions, consistent with theoretical expectations given

their closely related mathematical properties.

Given these minimal differences, it can be concluded that both loss functions perform

similarly in this scenario. To streamline the analysis, only the MSE will be used in subse-

quent evaluations, facilitating comparisons across other parameters without compromising

model effectiveness.

4.6.3. Models Autoencoders

The next phase involves conducting a comparative analysis between the two models em-

ployed in this study: LSTM and Convolutional Autoencoders. This comparison is con-

ducted in the Covid dataset, using FedAvg as the FL strategy and MSE loss function

across the three threshold methods.

Figure 4.16 illustrates the comparison between LSTM and Convolutional Autoencoder

models, demonstrating their performance on the Covid dataset. This comparison evalu-

ates both models using two threshold methods: Percentile Threshold and 1STD Thresh-

old, under the FedAvg strategy and MSE loss function. As shown in the graph, the

Convolutional model outperforms the LSTM model in terms of balanced accuracy. Table

4.3 offers a detailed overview of the mean relevant metrics for all outcomes associated

with each model, facilitating a clearer and more comprehensive analysis.
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Figure 4.16. Balanced Accuracy Comparison of LSTM and Convolutional
Models on the Covid Dataset Using FedAvg Strategy, MSE Loss Function,
with Percentile and 1STD Thresholds.

Model Balanced Accuracy Recall Precision Specificity
LSTM 0.500586 0.261907 0.124098 0.739265
Convolutional 0.547194 0.312155 0.170116 0.782232

Table 4.3. Mean Performance Metrics Comparison for LSTM and Con-
volutional models

As shown in Figure 4.16, the Convolutional model demonstrates a clear advantage in

performance when compared to the LSTM model. This is further supported by Table 4.3,

which presents the performance metrics across all tested approaches, with the Convolu-

tional model consistently outperforming the LSTM model across all evaluated metrics.

Additionally, the Wilcoxon test results (p-value: 0.0008) confirm that this performance

difference is statistically significant, indicating that the Convolutional model’s superior

results are unlikely due to random variation.

Another factor in the evaluation is the execution time required to train both models.

The training times recorded in seconds for both models on the Covid and Healthy datasets

are presented below in Table 4.4:

The results indicate that the Convolutional model consistently achieves shorter train-

ing times and higher performance metrics across all datasets and FL strategies. This

makes the Convolutional model especially well suited for this particular scenario.
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Dataset LSTM (s) Convolutional (s)
Covid FedAvg 1419.41 787.93
Covid FedAdam 2827.76 666.91
Healthy FedAvg 2155.89 2038.52
Healthy FedAdam 4181.12 1448.00

Table 4.4. Training Times for LSTM and Convolutional Models Across
Different Datasets.

4.6.4. Anomaly Threshold Methods

This subsection presents a comparative analysis of three threshold methods: thresh-

old1STD, Percentile threshold and Variance threshold. This comparison was conducted

in the Covid dataset, using FedAvg as the FL strategy, MSE loss function and a convo-

lutional model. The following results were observed.

Figure 4.17. Balanced Accuracy Comparison of 1STD, Percentile and
Variance Threshold Methods on the Covid Dataset Using the Convolutional
Model, FedAvg Strategy and MSE Loss Function.

Figure 4.17 illustrates the comparison between Threshold Methods: 1STD, Percentile

and Variance, demonstrating their performance on the Covid dataset, using the convolu-

tional model, under the FedAvg strategy and MSE loss function. As shown in the graph,

it is difficult to visually distinguish the differences between the three threshold methods

in terms of balanced accuracy. For a clearer and more comprehensive analysis, Table 4.5

provides an overview of the mean relevant metrics for all outcomes under each threshold.
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Threshold Balanced Accuracy Recall Precision Specificity
1STD 0.549748 0.242503 0.18701 0.856993
Percentile 0.545166 0.363288 0.158159 0.727044
Variance 0.547404 0.251614 0.182354 0.843195

Table 4.5. Mean Performance Metrics Comparison for Threshold Meth-
ods.

As shown in Table 4.5, the 1STD threshold method demonstrates a slight advantage

in balanced accuracy, precision and specificity compared to the other methods. The Per-

centile method, however, exhibits higher recall, indicating greater sensitivity in detecting

positive cases, which can be beneficial for anomaly detection contexts. The Variance

method, meanwhile, has slightly lower values than 1STD in terms of balanced accuracy,

precision and specificity.

Due to the minimal performance differences between the 1STD and Variance thresh-

olds, the analysis centered on comparing the 1STD and Percentile methods. A Wilcoxon

test was conducted to assess the statistical significance of their differences, with a p-

value of 0.1167, indicating that variations between the two methods are not statistically

significant.

Given the study’s emphasis on anomaly detection, the Percentile threshold will be

used in subsequent analyses for its slight recall advantage.

4.6.5. Overfitting in Model Training

The investigation into the overfitting strategy aimed to assess whether fine-tuning the

global model on each user’s data could lead to improved anomaly detection performance.

The expectation was that personalizing the model for each user would improve its ability

to identify anomalies by more effectively capturing unique user specific patterns.

As illustrated in Figure 4.18, the application of the FedAvg strategy on the Covid

dataset, using the MSE loss function and convolutional model with Percentile and 1STD

Threshold Methods, did not produce any performance improvements with overfitting.

The results were virtually identical from those obtained in the absence of overfitting.

Despite the additional fine-tuning process, which involved 10 epochs, the performance

metrics remained unchanged. This suggests that the global model had already sufficiently

generalized to account for individual variations or that the fine-tuning process did not add

meaningful adjustments to capture the unique patterns of each user.

These results appeared unusual as they produced identical values across all metrics.

Upon further investigation, it was discovered that there were minor variations in model

behavior, including slight adjustments in threshold selection and loss values, but the

overall values remained similar. For example, the value of the threshold difference between

the overfitted and non overfitted approaches was less than 0.001. This minimal difference

explains why the anomaly predictions were identical, leading to the same performance

metrics across both approaches.

37



Figure 4.18. Comparison of Convolutional Model Performance With and
Without Overfitting on the Covid Dataset Using FedAvg Strategy, MSE
Loss, with Percentile and 1STD Threshold Methods.

The identical predictions of anomalies and the matching results across all metrics

suggest that the overfitting process did not contribute significantly to the model’s ability

to detect anomalies.

Given that the convolutional model showed no notable differences, the next phase

involved assessing the overfitting strategy using the LSTM model to determine if similar

patterns occurred. Figure 4.19 showcases the results derived from the Covid dataset using

the FedAvg strategy, the MSE loss function and the Percentile threshold method with

the LSTM model.

The results reveal a slight improvement when overfitting is applied. The LSTM model

benefits more from the overfitting process, as the difference is noticeable in this case.

This improvement is consistent across other performance metrics, as further illustrated in

Table 4.6.

Overfitting Balanced Accuracy Recall Precision Specificity
TRUE 0.518291 0.29447 0.134687 0.742112
FALSE 0.502032 0.260968 0.124514 0.743096

Table 4.6. Mean Performance Metrics Comparison With and Without
Overfitting.
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Figure 4.19. Comparison of LSTM Model Performance With and With-
out Overfitting on the Covid Dataset Using FedAvg Strategy, MSE Loss
and Percentile Threshold.

The hypothesis that overfitting could improve model performance by capturing user

specific patterns was partially supported by the results. For the convolutional model, no

improvement was observed when overfitting was applied. Both the overfitted and non

overfitted models had nearly identical performance metrics, suggesting that the global

model was already generalized enough to account for individual variations, or that the

10 epochs of fine-tuning did not provide significant additional adjustments. This implies

that overfitting may not be effective for this type of model, where further personalization

did not lead to any discernible gains.

In contrast, applying the overfitting strategy to the LSTM model appeared to yield im-

provements across most evaluated metrics, suggesting that personalizing the global model

allowed it to better capture user-specific patterns, potentially enhancing its anomaly de-

tection capabilities. However, the Wilcoxon test results (p-value: 0.4654) indicate that

these performance differences between the overfitted and non-overfitted LSTM models

are not statistically significant. Therefore, while the metrics suggest some enhancement,

the absence of statistical significance implies that the observed improvements may not be

reliably superior. This outcome suggests that, although overfitting can align the LSTM

model more closely with user-specific patterns, it does not result in a statistically mean-

ingful improvement in model performance.
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4.6.6. Clustering in Model Training

The clustering strategy was designed to explore whether grouping users with similar char-

acteristics could improve the model’s performance by allowing it to learn from more ho-

mogeneous subsets of data. The hypothesis was that models tailored to specific clusters

would be better at detecting anomalies than a single global model.

Figure 4.20. Comparison of Convolutional Model Balanced Accuracy
With and Without Clustering on the Covid Dataset Using FedAvg Strat-
egy, MSE Loss and Percentile Threshold. Clustering was applied with K =
2 and K = 3.

Figure 4.20 shows that, for the Covid dataset using the FedAvg strategy, the MSE

loss function, the convolutional model and the Percentile threshold, no improvement was

observed when clustering approaches were applied. The results appeared identical to

those without clustering. While there were subtle variations in model behavior like in the

overfitting approach to the convolutional model, such as slight differences in the selection

of thresholds and minor adjustments in loss values, these did not translate into mean-

ingful improvements in the overall performance metrics. Even when analyzed alongside

the graphical representations, no significant differences were observed between the clus-

tered and non clustered approaches, reinforcing that clustering had minimal impact on

convolutional model performance in this context.

Since no significant differences were observed with the convolutional model, the next

step was to test the clustering approach with the LSTM model to determine if a similar

pattern happened. In the overfitting approach, some differences were noticeable when
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using the LSTM model, suggesting potential benefits. The results, shown in Figure 4.21

for the Covid dataset using the FedAvg strategy, MSE loss function, LSTM model and

Percentile threshold, indicate a slight improvement when clustering is applied. Specifically,

N=3 clusters outperformed N=2 clusters, with both showing better results compared to

the non clustered approach. This improvement is consistent across several performance

metrics, as further detailed in Table 4.7.

Figure 4.21. Comparison of LSTM Model Balanced Accuracy With and
Without Clustering on the Covid Dataset Using FedAvg Strategy, MSE
Loss and Percentile Threshold. Clustering was applied with K = 2 and K
= 3.

Clusters Balanced Accuracy Recall Precision Specificity
N3 0.511462 0.279994 0.128742 0.742930
N2 0.506158 0.271080 0.125682 0.741236
FALSE 0.502032 0.260968 0.124514 0.743096

Table 4.7. Mean Performance Metrics Comparison with clustered and
non-clustered approaches.

The clustering approach was intended to group participants based on the similarity

of their heart rate patterns, with the hypothesis that this would lead to more specific

models and better overall results. However, the results from the convolutional model

showed no significant improvements, as the clustered and non clustered approaches had

nearly identical performance across all metrics.
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When the LSTMmodel was evaluated with the clustering approach, slight performance

improvements were observed, with N=3 clusters outperforming N=2 clusters. This sug-

gests that the LSTM model may be more responsive to clustering strategies, benefiting

from subgroup-specific tuning that leverages participants with similar physiological char-

acteristics. However, Wilcoxon signed-rank test results indicate that these improvements

are not statistically significant: comparing the non-clustered model to N=3 yielded a

p-value of 0.5844 and to N=2 yielded a p-value of 0.3132. Although modest, these find-

ings imply that clustering may provide a slight advantage for LSTM models in anomaly

detection tasks, yet this effect should be interpreted with caution given the statistical

results.

4.6.7. Using Top 20 Participants in Model Training

In this section, the top 20 participants were selected based on their balanced accuracy

performance on the Covid dataset. The selection process utilized the Percentile Threshold

method, the MSE loss function and the FedAvg strategy. This subset of participants

was then used to train a convolutional model with the same characteristics, which was

subsequently tested on the entire dataset.

The thinking behind this strategy was that participants with the highest performance

could provide more consistent and reliable patterns, potentially leading to a model that

generalizes better across the full dataset. The hypothesis was that by focusing on these

top performers, the model might capture more robust patterns, thereby enhancing the

detection of anomalies when applied to all participants.

As shown in Figure 4.22, can be observed the performance of the top 20 participants

subset compared to the full dataset, trained using the FedAvg strategy, the Percentile

threshold, the MSE loss function and the convolutional model. The results are similar,

with no significant changes observed between the two approaches.

Since no significant changes were observed in the comparison between the two ap-

proaches for the convolutional model, the same approaches were applied using the LSTM

model. In Figure 4.23, we can observe the balanced accuracy performance of the LSTM

model with two thresholds: 1STD and Percentile, using the MSE loss function and the

FedAvg strategy for the Covid dataset. It appears that the model trained on the top

20 participants subset shows slightly better performance. However, the differences are

subtle and hard to discern from the graph alone. Therefore, all relevant mean metrics are

presented in Table 4.8 for a more comprehensive comparison, revealing a slight improve-

ment in most metrics when comparing the model trained on the top 20 participants to

the model trained on the full dataset.

This suggests that training the model on a carefully selected subset of high-performing

participants may capture more consistent patterns, resulting in better anomaly detection

across the dataset. While the improvement is modest, it indicates that focusing on specific,

well-performing data points could potentially lead to enhanced model performance.
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Figure 4.22. Comparison of Balanced Accuracy Between Top 20 Partici-
pants and Full Dataset Using Convolutional Model, FedAvg Strategy, MSE
loss function and Percentile Threshold.

Model Balanced Accuracy Recall Precision Specificity
Percentil 0.502032 0.260968 0.124514 0.743096
Percentil 20 0.508584 0.277594 0.130263 0.739574
1STD 0.508236 0.144630 0.131841 0.871842
1STD 20 0.511916 0.149083 0.138832 0.874748

Table 4.8. Comparison of Mean Performance Metrics for Percentile and
1STD Thresholds Using Top 20 Participants vs. Full Dataset

This suggests that training the model on a carefully selected subset of high-performing

participants may capture more consistent patterns, resulting in better anomaly detection

across the dataset. While the improvement is modest, it indicates that focusing on specific,

high-performing data points could potentially lead to enhanced model performance. To

validate this difference, a Wilcoxon signed-rank test was conducted, yielding a p-value

of 0.143, indicating that the observed improvement is not statistically significant. This

suggests that while there may be a slight benefit to using top-performing participants,

the effect should be interpreted with caution.

4.6.8. Federated Learning vs Centralized and Individualized Learning

This section aims to compare the best performing FL approach with both the centralized

and individualized learning approaches. In the individualized approach, each model is
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Figure 4.23. Comparison of Balanced Accuracy Between Top 20 Partic-
ipants and Full Dataset Using LSTM Model, FedAvg Strategy, MSE loss
function and Percentile Threshold.

trained exclusively on a single participant’s data and tested on that same participant.

This allows the model to focus on participant specific patterns, potentially capturing

nuances unique to each individual. In the centralized approach, all participant data is

pooled together to train a single global model, which is then tested on all participants,

allowing the model to generalize across the entire dataset.

In Figure 4.24, the federated model using the FedAvg strategy, convolutional model,

1STD Threshold and MSE loss function is compared both the individualized and cen-

tralized models, which also use the convolutional model, 1STD Threshold and MSE loss

function. Both approaches were applied to the Covid dataset and as can be observed

the results are quite similar, with no significant difference in performance between the

three approaches. The balanced accuracy, along with other relevant metrics, remained

relatively unchanged across the two approaches, suggesting that the generalized model

trained using FL did not substantially outperform or underperform the individualized

models trained in a centralized manner.

Since no significant improvement was observed with the convolutional model, a com-

parison was conducted using the LSTM model to examine whether similar patterns would

emerge. For this analysis, the federated model was configured with the FedAvg strategy,

LSTM model, 1STD threshold and MSE loss function and then compared to both the

individualized and centralized models with identical configurations.
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Figure 4.24. Comparison of Balanced Accuracy Among Federated, Cen-
tralized and Individualized Learning Approaches Using Convolutional
Model, 1STD Threshold and MSE Loss Function.

In Figure 4.25, the balanced accuracy performance of the federated, centralized and

individualized learning approaches is displayed, using the LSTM model along with the

1STD threshold and MSE loss function. As illustrated, the individualized model demon-

strates superior performance in comparison to both the federated and centralized models,

suggesting that it may be more effective in capturing participant-specific patterns and

anomalies.

For a more comprehensive evaluation, Table 4.9 presents the mean performance metrics

across the federated, centralized and individualized approaches. Consistently across all

metrics, the individualized approach displays a performance gain, which suggests that

training a model on a single participant’s data may better capture unique individual

characteristics and improve the model’s accuracy in detecting anomalies.

Approach Balanced Accuracy Recall Precision Specificity
Federated 0.5082 0.1446 0.1318 0.8718
Central 0.5135 0.1761 0.1268 0.8510

Individual 0.5343 0.1609 0.2489 0.9076

Table 4.9. Comparison of Mean Performance Metrics for Federated, Cen-
tral and Individual approaches

45



Figure 4.25. Comparison of Balanced Accuracy Among Federated, Cen-
tralized and Individualized Learning Approaches Using LSTMModel, 1STD
Threshold and MSE Loss Function

The comparison between FL, centralized learning and individualized Learning revealed

that, for the convolutional model, no significant performance differences were observed

between the three approaches. However, when using the LSTM model, the individualized

Learning approach demonstrated improvements in performance metrics, as seen in Table

4.9. This suggests that individualized learning, when applied to the LSTM model, may

better capture participant specific patterns, leading to improved anomaly detection.

To statistically assess the significance of these differences, Wilcoxon signed-rank tests

were conducted. The comparison between the federated and individualized approaches

yielded a p-value of 0.0002, indicating a statistically significant advantage for the individ-

ualized approach. Additionally, comparing the individualized and centralized approaches

resulted in a p-value of 0.00007, further confirming the statistical significance of the indi-

vidualized approach. Meanwhile, the comparison between the federated and centralized

approaches returned a p-value of 0.2504, suggesting minimal statistical differences between

these two methods.

These findings suggest that individualized learning offers clear benefits for captur-

ing unique participant patterns. However, the similar performance levels and statistical

results between the federated and centralized approaches highlight the value of FL, espe-

cially in applications where data privacy and decentralized data processing are prioritized.
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4.6.9. Comparison Between the Two Datasets

The analysis thus far has focused on variations within the Covid dataset. However, in

real-world applications, healthy data would typically be far more prevalent than data from

individuals with COVID-19. Consequently, it is essential to evaluate model performance

under conditions that more closely align with such real-world distributions. In Figure 4.26,

a comparison between the two datasets is presented in terms of balanced accuracy, utilizing

the FedAvg strategy, MSE loss function and convolutional model with two threshold

methods: 1STD and Percentile. Balanced accuracy was selected for this comparison, as

recall cannot be calculated when there are no anomalies present in the healthy dataset.

The results indicate that balanced accuracy is consistently higher for the Healthy dataset

than for the Covid dataset, which may reflect the inherently more predictable nature of

healthy data or the model’s greater proficiency in identifying anomalies within unhealthy

data or a combination of these factors.

Figure 4.26. Balanced Accuracy Comparison Across Healthy and Covid
Datasets Using the Convolutional Model, FedAvg Strategy, MSE Loss Func-
tion, with 1STD and Percentile Thresholds.

To further investigate whether the improved performance in the Healthy dataset is

due to the inclusion of more accurately classified healthy data or by the effect of training

on an expanded dataset (incorporating healthy participants), has improved the model’s

performance for unhealthy participants, a focused comparison was conducted. Specifi-

cally, only the unhealthy participants from the Healthy dataset were isolated and directly

compared with those from the Covid dataset. As illustrated in Figure 4.27, this analysis
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was performed using the FedAvg strategy, MSE loss function and convolutional model

across two threshold methods: 1STD and Percentile. Results reveal that performance

metrics for unhealthy participants in the Healthy dataset closely align with those in the

Covid dataset. This indicates that the primary performance improvement comes from the

inclusion of healthy data, which the model finds easier to classify. Additionally, it was

observed that the 1STD threshold outperforms the Percentile threshold in the Healthy

dataset.

Figure 4.27. Balanced Accuracy Comparison for Unhealthy Participants
in Healthy and Covid Datasets Using Convolutional Model, FedAvg Strat-
egy, MSE Loss Function, with 1STD and Percentile Thresholds.

The findings were somewhat unexpected, as it was initially hypothesized that the

model’s performance in detecting COVID-19 anomalies might either improve with the

introduction of additional healthy data, providing more baselines for detecting patterns

or deteriorate due to potential over-generalization. However, no significant changes were

observed. Further investigation revealed that while different thresholds were applied to

individual participants, the variations were negligible (in most cases less than 0.001),

leading to nearly identical results between the two datasets. This suggests that the

increased volume of healthy data did not substantially influence the model’s ability to

detect anomalies in unhealthy individuals.

Despite the lack of improvement, there was also no decline in performance with the

larger dataset. This indicates that in a real-world scenario, where healthy data is more
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prevalent, the model can maintain consistent performance without being negatively af-

fected by the increase in healthy data. The absence of personalization, which was initially

thought to be a limiting factor, did not appear to significantly hinder the model’s ability

to generalize effectively.

Since no significant differences were observed when using the convolutional model to

compare the performance across the two datasets, the LSTM model was employed to

explore whether distinct patterns might emerge. Figure 4.28 presents four models, two

trained on the Healthy dataset and two on the Covid dataset, all using the LSTM model,

the MSE loss function, the FedAvg strategy and two threshold methods: Percentile and

1STD. The results indicate that the Healthy dataset achieves better balanced accuracy

compared to the Covid dataset, with the 1STD threshold outperforming the Percentile

threshold, similar to findings with the convolutional model.

Figure 4.28. Balanced Accuracy Comparison Across Healthy and Covid
Datasets Using the LSTM Model, FedAvg Strategy, MSE Loss Function,
with 1STD and Percentile Thresholds.

To assess whether the performance would remain consistent for the unhealthy data

across the two datasets, Figure 4.29 presents the same four models applied to the un-

healthy data. Although some differences can be observed between the models trained on

the Covid and Healthy datasets, the overall mean performance metrics appears similar.

As further detailed in Table 4.10, the average results are nearly identical, suggesting that

the generalization from the Healthy dataset did not significantly affect the model’s ability

to detect anomalies in the unhealthy data.
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Figure 4.29. Balanced Accuracy Comparison for Unhealthy Participants
in Healthy and Covid Datasets Using LSTM Model, FedAvg Strategy, MSE
Loss Function, with 1STD and Percentile Thresholds.

Model Balanced Accuracy Recall Precision Specificity
Percentile Covid 0.502032 0.260968 0.124514 0.743096
Percentile Healthy 0.502489 0.258773 0.124319 0.746204
1STD Covid 0.508236 0.144630 0.131841 0.871842
1STD Healthy 0.505050 0.139433 0.121735 0.870668

Table 4.10. Comparison of Mean Performance Metrics for the unhealthy
data in the Covid and Healthy datasets

Both models exhibited higher balanced accuracy on the Healthy dataset compared to

the Covid dataset, likely due to an enhanced capacity for generalization when trained

with healthy data. The results across both datasets suggest that the inclusion of healthy

data did not negatively affect the model’s anomaly detection capability. Although it was

initially hypothesized that an increase in healthy data might either strengthen or weaken

detection performance, the model demonstrated stable outcomes across varied scenarios,

indicating an absence of over-generalization tendencies.

4.6.10. Identification of Patterns in Anomaly Detection

Following the analysis of the models and the examination of the results, additional efforts

were directed towards identifying patterns in anomaly detection to better distinguish

COVID-19. Given that the initial results did not meet expectations, the goal of this section
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is to explore potential patterns that could improve the accuracy of identifying COVID-19

related anomalies. To address this, two hypotheses were formulated and tested:

(1) The first hypothesis proposes that a participant should only be flagged as hav-

ing COVID-19 if the model detects a sequence of consecutive anomalies over N

consecutive time series points.

(2) The second hypothesis suggests that within a sliding window of 10 anomaly

predictions, at least N of those predictions must indicate an anomaly for COVID-

19 to be flagged.

As indicated in the previous analysis, the Covid and Healthy datasets exhibited sim-

ilar patterns when comparing the unhealthy data from both sources. Consequently, the

Healthy dataset will be used for further analysis, allowing examination across both healthy

and unhealthy data segments within the same dataset.

To rigorously test the formulated hypotheses, various values of N were selected. For the

first hypothesis, which requires a sequence of consecutive anomalies to predict a COVID-

19 event, values of N = 6, N = 7 and N = 8 were tested. For the second hypothesis, which

requires at least N anomalies within a sliding window of 10 predictions for a COVID-19

flag, the same values of N were assessed.

For clarity in the analysis, the following labels were defined to evaluate these hypothe-

ses in the graphs:

• True Covid: The model detected COVID-19 for a participant across N time

series, with all detections accurately corresponding to a true period of anomalous

behavior. This confirms the prediction as accurate, with detections occurring

exclusively during the anomalous period.

• Covid: The model detected COVID-19 for a participant across N time series,

with a mix of correct and incorrect anomaly classifications. This indicates a

pattern of covid detections across both anomalous and non-anomalous periods.

• False Nomal Covid: The model incorrectly flagged COVID-19 across N time

series within a period classified as normal, where no actual anomalous behav-

ior was present, resulting in an incorrect classification of the anomaly for the

participant.

• False Recovered Covid: The model flagged COVID-19 across N time series

during a period classified as recovered, leading to an incorrect classification of

the anomaly for the participant.

• Healthy: The model did not detect any COVID-19 related anomaly across N

time series, indicating that the data represented a healthy participant in a non-

anomalous state.

To assess these hypotheses, the FedAvg model was applied to the Healthy dataset,

using the 1STD threshold, convolutional model and MSE loss function. Figures 4.30 and

4.33 present the classification counts for unhealthy and healthy data, respectively, both

considering the hypotheses and labels defined earlier.
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Figure 4.30. Classification counts for unhealthy data using the convolu-
tional model, FedAvg strategy, MSE loss function and 1STD threshold.

In Figure 4.30, it is evident that the model faces challenges in accurately identify-

ing true COVID-19 patterns. While some data points are correctly flagged as related to

COVID-19, a significant portion of the predictions are wrong, reducing the overall relia-

bility of the model. Although the model can classify instances as COVID-19, it struggles

with temporal precision, often identifying anomalies in periods that are not directly linked

to the onset of COVID-19.

For the first hypothesis, which relies on consecutive anomaly sequences, the best value

for N was found to be N=7. This value resulted in only 10 instances being classified as

healthy in the unhealthy dataset, while 8 instances were correctly identified as COVID-

19. This indicates that the number of healthy classifications within the unhealthy data

is relatively small, which is promising. However, the model’s inconsistency in pinpointing

the exact onset of COVID-19 remains a concern. Although the model correctly identified

27 + 8 instances of COVID-19, in 27 of those cases, it also predicted COVID-19 during

unrelated periods, thereby reducing its precision. This over classification suggests that

the model is overly sensitive to any deviations in the data, potentially mistaking normal

fluctuations for signs of infection.

When evaluating the second hypothesis, which employs a sliding window approach, the

results were similarly inconclusive. The sliding window method did not offer a significant

improvement in the detection of COVID-19 patterns. The optimal value for N in this

hypothesis was found to be N=8, where 2 + 27 instances of COVID-19 were correctly
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classified and only 2 of these were not identified in other parts of the dataset. This

indicates that the sliding window approach also suffers from false positives, with the model

continuing to detect anomalies in regions outside the expected periods. Additionally, 16

instances were incorrectly classified as healthy.

For a visual representation of how a participant is flagged as COVID-19 positive,

Figure 4.31 illustrates an example of a True Covid participant. In this case, while the

participant exhibits some isolated anomalies outside the COVID onset period, the required

N anomalies on both hypotheses were only met within the actual onset period. As a result,

the participant was flagged as COVID-positive only within the onset phase, meeting the

criteria set by both hypotheses and reinforcing the model’s alignment with the expected

classification during the infection period.

Figure 4.31. Detection of COVID-positive status within the correct onset
period, label as a True Covid participant.

For another representation, Figure 4.32 illustrates a case where the model’s classifi-

cation was less accurate. Unlike the previous example, where the COVID-positive status

was flagged solely within the correct onset period, this participant was flagged as COVID-

positive both within the correct timeframe and incorrectly during the recovery phase. This

outcome reflects the model’s tendency to detect anomalies outside the primary infection

window, indicating a potential over-sensitivity to normal fluctuations in RHR data, lead-

ing to misclassifications beyond the expected period.

In Figure 4.33, it is evident that the model performs better at recognizing healthy data.

A larger proportion of healthy data points is accurately classified under both hypotheses,

demonstrating the model’s greater proficiency in detecting healthy patterns compared to

identifying COVID-19 anomalies. Of the 76 healthy participants in the Healthy dataset,

58 were accurately detected as healthy using the first hypothesis with N=7, resulting in

an accuracy rate of approximately 76%. Under the second hypothesis with N=8, 61 par-

ticipants were correctly identified as healthy, yielding an accuracy rate of approximately

80%.
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Figure 4.32. Detection of COVID-positive status within and outside the
primary onset period, labeled as a COVID participant.

Figure 4.33. Classification counts for healthy data using the convolu-
tional model, FedAvg strategy, MSE loss function and 1STD threshold.

The model shows stronger accuracy in identifying healthy data but struggles with

precision in detecting COVID-19 related anomalies, often misclassifying periods before or

after the actual infection as anomalous. In the Healthy dataset, accuracy rates for healthy

classification reached approximately 76% and 80% under the two hypotheses, highlighting

the model’s proficiency with healthy participants. However, in the unhealthy participants,

while some true COVID-19 instances were correctly identified, a considerable number of
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false positives emerged, indicating the model’s over-sensitivity to typical physiological

fluctuations. This misalignment suggests that refining the model’s temporal specificity

and adjusting sensitivity thresholds could reduce false positives, ultimately enhancing its

reliability in real-world anomaly detection scenarios.
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CHAPTER 5

Conclusions

5.1. Discussion and Conclusions

This dissertation explored the integration of FL into the AIMHealth application, focusing

on enhancing anomaly detection capabilities and possibly identifying patterns in physio-

logical data for the detection of COVID-19. The study was guided by two main research

questions:

(1) RQ1: How can we optimally prepare the AIMHealth application to use Federated

Learning automatically?

(2) RQ2: Can we identify patterns or anomalies in the user’s physiological data that

allow the detection of COVID-19 using Federated Learning within the context of

the AIMHealth app?

RQ1 was addressed by optimizing the AIMHealth application to support FL. The steps

included the integration of wearable devices for continuous health monitoring, focusing on

heart rate and step data collection via the Google Fit platform. These integrations allowed

for decentralized data processing directly on user devices, enabling FL while ensuring data

privacy. AIMHealth was configured to automate data collection and facilitate background

processing without the need for constant user intervention, a feature needed for real-time

health monitoring. This means that AIMHealth is now capable of seamlessly integrating

FL into its architecture, making it well prepared for future real-time deployments.

RQ2 aimed to investigate whether patterns or anomalies related to COVID-19 could

be effectively detected using FL. To address this, multiple models and techniques were

applied. However, none of the approaches yielded notably strong results. The findings

indicate that anomaly detection based solely on heart rate data did not achieve high

accuracy for identifying COVID-19, suggesting that heart rate alone may be insufficient

as a reliable metric for COVID-19 anomaly detection. This highlights the potential need

to integrate additional physiological metrics for enhanced accuracy in future studies.

The model selection had the greatest impact on performance, with the convolutional

autoencoder outperforming the LSTM model in terms of training time and overall effi-

ciency, establishing it as the preferred model for this study. In contrast, choices in FL

strategies, loss functions and thresholds had minimal effect on overall performance. Ad-

ditionally, techniques such as overfitting, clustering and selecting the top 20 participants,

though applied to enhance performance, yielded minimal improvements for the convolu-

tional model, likely due to overfitting, data quality issues, or other factors limiting further

performance gains.
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For the LSTM model, while it was outperformed by the convolutional model, it did

show improvements when personalization techniques like overfitting and clustering were

applied. These enhancements suggest that the LSTM model may have a stronger capacity

for capturing participant-specific patterns. Nevertheless, according to the Wilcoxon test,

these improvements were not statistically significant. Despite these slight gains, the LSTM

model did not surpass the overall performance metrics achieved by the convolutional

model.

An analysis of the LSTM model revealed that individualized learning statistically

outperformed both centralized and federated approaches, as confirmed by the Wilcoxon

test. This suggests that individual models may capture participant-specific patterns more

effectively, thereby enhancing anomaly detection accuracy. However, no statistically sig-

nificant difference was observed between centralized and FL, indicating that, while cen-

tralized learning may offer a slight advantage over FL, the improvement is not statistically

relevant. In contrast, for the convolutional model, no significant performance differences

were found across centralized, individualized and federated approaches.

The analysis demonstrated limited success in identifying clear patterns for effective

COVID-19 detection. Neither hypothesis provided robust results in accurately diagnosing

the disease. While the model achieved over 75% accuracy in classifying healthy data,

its precision in detecting COVID-19-related anomalies was less effective. The model

frequently flagged periods around infection as anomalous, indicating an over-sensitivity

to normal physiological variations. To address this, enhancing the model’s temporal

precision and incorporating adaptive sensitivity thresholds may reduce false positives,

thereby improving reliability in real-world anomaly detection. Adapting thresholds to

each participant’s unique data profile and adjusting for individual fluctuations over time

could help the model better differentiate between true anomalies and routine physiological

changes, ultimately minimizing misclassifications.

The findings for RQ2 indicate that, although FL did not achieve high precision in

detecting COVID-19 anomalies and patterns in heart rate data, its performance was

comparable to that of centralized learning approaches. FL did not produce substantial

improvements over centralized learning, nor did it perform notably worse. These results

suggest that, for COVID-19 anomaly detection, FL may serve as a viable alternative to

centralized learning, particularly when privacy, scalability and data decentralization are

prioritized.

In conclusion, this dissertation explored the integration of FL in the AIMHealth ap-

plication, enhancing its potential for privacy-preserving COVID-19 anomaly detection in

resting heart rate data. While FL showed comparable performance to centralized learning,

heart rate data alone proved insufficient for accurate COVID-19 detection. The study’s

findings underscore the need for a multimodal approach and further model refinement to

improve reliability in real-world health monitoring scenarios.
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5.2. Limitations

The dissertation encountered several limitations, primarily related to security standards,

data availability and quality. The application’s current security protocols were insufficient

for large-scale deployment, especially regarding sensitive health data, making it non-

compliant with regulations such as GDPR. This limitation prevented direct data collection

from the app, as real-world testing could not proceed without addressing these security

needs. Additionally, limited participant availability and the need for wearable devices

posed further challenges. Consequently, an alternative dataset with wearable-derived

data was used. Although this dataset provided a variety of metrics, including heart

rate and steps, it contained substantial missing values that required imputation during

preprocessing. While necessary to create a functional dataset, these adjustments likely

introduced noise, potentially impacting the model’s accuracy and limiting its ability to

detect subtle COVID-19 patterns.

5.3. Future Work

In the future, efforts will focus on enhancing both the AIMHealth application and the

FL approach to improve its applicability for real-world health monitoring and anomaly

detection. Since heart rate data alone has shown limitations in detecting COVID-19

accurately, incorporating a multimodal health monitoring system that includes additional

metrics, such as oxygen saturation, respiratory rate and body temperature, could improve

detection accuracy by providing a more comprehensive view of users’ health, potentially

increasing sensitivity to COVID-19 anomalies.

To complement these improvements, further advances in FL are needed. Refining

techniques such as adaptive thresholding that adjusts both between participants and over

time for individual users could enhance anomaly detection, especially in complex, imbal-

anced datasets. Additionally, creating or sourcing a more robust dataset with minimal

missing values and more balanced samples would help optimize model performance and

enable more precise anomaly detection across diverse user profiles.

Preparing the AIMHealth application for real-world deployment will also require im-

plementing FL in a real-time environment to validate simulation results. Expanding the

app’s functionality to support a broader range of health metrics will enable more compre-

hensive monitoring. Finally, ensuring robust data security, including updated encryption

standards and GDPR compliance, is essential to protect user data as the application

scales.
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Annex A

1 import keras

2 import numpy as np

3 import tensorflow as tf

4

5 def lstm_autoencoder(input_shape =(16, 1), learning_rate =0.001):

6 model = keras.Sequential ()

7 model.add(keras.layers.RepeatVector(n=input_shape [0]))

8 model.add(keras.layers.LSTM(units =64, return_sequences=True))

9 model.add(keras.layers.LSTM(units =128, return_sequences=True)

)

10 model.add(keras.layers.TimeDistributed(keras.layers.Dense(

units=input_shape [1])))

11 model.compile(loss=tf.losses.MeanSquaredError (),

12 optimizer=tf.optimizers.Adam(learning_rate=learning_rate),

13 metrics =[tf.metrics.MeanSquaredError ()])

14 model.add(

15 keras.layers.TimeDistributed(keras.layers.Dense(units=

input_shape [1]))

16 )

17 model.compile(

18 loss=tf.losses.MeanSquaredError (),

19 optimizer=tf.optimizers.Adam(learning_rate=learning_rate)

,

20 metrics =[tf.metrics.MeanSquaredError ()],

21 )

22 return model

23

24 def convolutional_autoencoder(input_shape =(16, 1), learning_rate

=0.001):

25 model = keras.Sequential ()

26

27 # Encoder

28 model.add(keras.Input(shape=input_shape))

29 model.add(keras.layers.Conv1D(filters =64, kernel_size =3,

activation="relu", padding="same"))

30 model.add(keras.layers.MaxPooling1D(pool_size =2,
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31 padding="same"))

32 model.add(keras.layers.Conv1D(filters =32, kernel_size =3,

activation="relu", padding="same"))

33 model.add(keras.layers.MaxPooling1D(pool_size =2,

34 padding="same"))

35

36 # Decoder

37 model.add(keras.layers.Conv1D(filters =32, kernel_size =3,

activation="relu",

38 padding="same"))

39 model.add(keras.layers.UpSampling1D(size =2))

40 model.add(keras.layers.Conv1D(filters =64, kernel_size =3,

activation="relu",

41 padding="same"))

42 model.add(keras.layers.UpSampling1D(size =2))

43 model.add(keras.layers.Conv1D(filters=1, kernel_size =3,

activation="sigmoid",

44 padding="same"))

45

46 # Compile model

47 model.compile(

48 loss=tf.losses.MeanSquaredError (),

49 optimizer=tf.optimizers.Adam(learning_rate=learning_rate)

,

50 metrics =[tf.metrics.MeanSquaredError ()],

51 )

52

53 return model

54

55 class MAE:

56 def generate_loss(self , inputs , outputs):

57 losses = np.mean(np.abs(outputs - inputs), axis=(1, 2))

58 return losses

59

60 class MSE:

61 def generate_loss(self , inputs , outputs):

62 losses = np.mean((outputs -inputs)**2, axis=(1, 2))

63 return losses

64

65 class Threshold1STD:

66 def calculate_threshold(self , losses):

67 value_mean = np.mean(losses)

68 value_std = np.std(losses)

66



69 value = value_mean + value_std

70 return value

71

72 class PercentileThreshold:

73 def __init__(self , percentile =75):

74 self.percentile = percentile

75

76 def calculate_threshold(self , losses):

77 return np.percentile(losses , self.percentile)

78

79 class VarianceThreshold:

80 def __init__(self , factor =1.0):

81 self.factor = factor

82

83 def calculate_threshold(self , losses):

84 value_mean = np.mean(losses)

85 value_var = np.var(losses)

86 return value_mean + self.factor * value_var
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