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—— Abstract

The use of external tips and applications to help with programming assignments, by novice program-
mers, is a double-edged sword, it can help by showing examples of problem-solving strategies, but it

can also prevent learning because recognizing a good solution is not the same skill as creating one. A
study was conducted during the 2" semester of 23/24 in the course of Object Oriented Programming
to help understand the impact of the programming aids in learning. The main questions that drove
this study were: Which type(s) of assistance do students use when learning to program? When /
where do they use it? Does it affect grades? Results, even though with a relatively small sample,
seem to indicate that students who used aids have a perception of improved learning when using
advice from Colleagues, Copilot-style tools, and Large Language Models. Results of correlating
average grades with the usage of tools suggest that experience in using these tools is key for its
successful use, but, contrary to students’ perceptions, learning gains are marginal in the end result.
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1 Introduction

The possibility of using programming aids in undergraduate courses has increased gradually,
but steadily, throughout the last decades, and recently was broadened with the introduction
of Large Language Models (LLM). From the onset of Integrated Development Environments
(IDEs), one of the available tools was the introduction of standard snippets with a hotkey,
the immediate syntax highlighting of errors, or the code advisors that tried to guess the
following tokens necessary to end a construct - some more successfully than others.

The use of these tools raises the question of whether students should be evaluated in their
programming skills with or without these aids and also if their evaluation should include
assessing their proficiency in using the available aids. On the one side, it is important to
teach students to create their own solutions, on the other hand, in their future jobs, they
will most certainly be able to use these and other tools to help in programming, and so it
seems logical that they gather experience in using them.
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The consequences reported seem to be: the change in the skills necessary to train a good
programmer and the increased productivity provided by these new tools [4]. It is no longer
necessary to be as meticulous and focused as before and to memorize syntax in such detail
since the development environment helps with that. Also, most current languages come with
extensive libraries that make algorithmic development a skill that current programmers use
less frequently than a few years ago.

Code completion tools have grown more and more accurate and are evolving into code
generators (as some “copilots” that have both functions integrated) [1], and Large Language
Models, have contributed to increasing the sense that most programming tasks (indeed, most
project development tasks) can be automated [9].

The main question, to which we will try to contribute, is whether these tools are beneficial
for students learning to program or if they indeed prevent learning.

The research questions are:

Q1: Which type(s) of assistance do students use when learning to program?

Q2: When / where do they use it?

Q3: Does it affect grades?

The paper contains a summarized Literature Review, a description of the experiments’
Methodology and context, followed by a Results section and the corresponding Discussion,
and ends with Conclusions and Future Work.

2 Literature Review

Studies regarding the use of programming aids in learning programming have been frequent
in the last few years and mostly tend to conclude that the impact of code generation tools
on novice programmers is significant [6]. Given the length of this work we were forced to
select a few of the most obviously related.

Burak et al. [11] assessed the code generation capabilities of several code-generating
tools using the benchmark HumanEval Dataset and evaluated the proposed code quality
metrics. This study reveals that current tools have very different capabilities, advocating an
advantage for Github Copilot.

Code completion tools assist programmers by suggesting completions for partially typed
code snippets. These tools can significantly improve programming efficiency and reduce
syntax errors for novice programmers. Studies such as [10] found that code completion
can enhance productivity and code quality by reducing the cognitive load associated with
remembering syntax and identifiers.

Kazemitabaar et al. [3] and Prather et al. [8] defend that code generators like OpenAl
Codex and Github Copilot can enhance code-authoring performance and completion rates.
Additionally, automated programming hints, such as next-step code hints with textual explan-
ations, have been found to improve immediate programming performance and learning [7].

Other authors advocate that the use of code completion and code generation tools on
novice programmers has significant pedagogical implications. Research by Lister et al. [5]
emphasizes the importance of incorporating these tools into programming education to
provide support for novices and enhance their learning experience. [2] analyses the impact
of LLM generated “worked examples,” concluding that students find them useful for their
learning.

Automated programming hints, particularly with textual explanations and self-explanation
prompts, significantly improve novice programmers’ immediate performance and learning
outcomes in similar subsequent tasks, according to [7]. This work reports that code hints with
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textual explanations significantly improved immediate programming performance. However,
these hints only improved performance in a subsequent post-test task with similar objectives
when they were combined with self-explanation prompts.

Code generation and completion tools automate the process of writing code. These
tools can help novice programmers as they provide scaffolding and reduce the complexity
of programming tasks. But, do code generation and completion tools (programming aids)
enhance novice programmers’ understanding of code structure and promote learning by
allowing them to focus on problem-solving rather than syntax details? How do different
advising strategies compare? Those are the questions we will be trying to shed some light on
in the following sections.

3 Methodology

To contribute to answering the questions posed in the previous sections, we have prepared
an experiment during the Object Oriented Programming (OOP) course in the first semester
of 23/24 (sep-23 to dec-23). In this course, students are evaluated in class by the exercises
they complete once a week in 8 of the 12 laboratories (30%), by a mid-term test (20%, a
grade of less than 7.5/20 would result in immediate Fail in the course), and a final project
with presentation and discussion (50%). Exercises and the project can be done individually
or in pairs. At the beginning of the course, students were told that they could use whatever
tools available to do the exercises as long as they could explain every single line of the
code they delivered for evaluation, except in the mid-term test, an individual test, where
no aids were allowed. During exercise evaluation and project discussion, students were
frequently asked to explain and change the solutions presented so that their knowledge of
what they were delivering was tested. Situations, where there were doubts concerning the
students’ understanding of the solution they presented, were extremely rare (2 detected cases
in approximately 8 exercises x 278 students).

The students selected for this study are from three different graduation programs: Com-
puter Science and Engineering (LEI), Computer Science and Management (LIGE), and
Computer Science and Telecommunications (LETT). The first two have day and night-shifts.
Night-shifts are termed “-PL” (pds-laboral): LEI-PL and LIGE-PL and are usually frequen-
ted by working-students. All students have a previous similar background in terms of the
programming courses offered in the three programs. All programs have Introduction to
Programming (one semester, 6 ECTS, mandatory course, approval is required to enroll for
OOP) and an Algorithms and Data Structures course (one semester, 6 ECTS). Students
enrolled in LEI have a significantly higher entrance grade.

An inquiry on the aids used was done after the grades were published to ensure that fear
of influencing the grade would not be a factor. Still, the response was lower than expected
(92/298 students responded, roughly 1/3 of the students enrolled in OOP).

The inquiry (originally in Portuguese, the native language of nearly all of these students)
was composed of an introduction and 9 questions (the text in English of the introduction of
the inquiry is in annex). The questions were the following:

1. What is your student number (optional)?
2. What is your age group? 18-23, 24-35, >35
3. Have you ever used (before OOP) tools / strategies to support learning programming

(see examples in the next question)? Yes/No

4. If you answered “Yes” to the previous question, which ones? (multiple answer possible)
Direct advice from colleagues, family or friends
Paid tutor or mentoring
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= Developer communities and online forums (StackOverflow, W3Schools... )

- Eclipse auto-complete (or other development environment integrated tools - IDE)

- External applications or plugins based on Copilot (on GitHub, InteliJ, PyCharm, ... )

= Large Language Models, i.e. artificial intelligence technologies for conversation (Chat-
GPT, Bard, ... )

= Other

5. Have you used any programming support tools / strategies this year in the OOP course?
- No
= Only in exercises
= Only in project
= In project and exercises

6. If you answered yes to the previous question, which ones? (options equal to question 4,
multiple answer possible)

7. Which ones did you find most effective in helping to find appropriate / correct solutions?
from 1 (least effective) to 5 (most effective). (options equal to question 4, but reply in
[1..5] for each)

8. In your opinion, has the use of these tools improved your learning of programming?
Yes/No/Don’t know/Didn’t use

9. If you used them, which ones did you find most useful in helping you to learn OOP? from
1 (least useful) to 5 (most useful). (options equal to question 7)

Of the 92 responses to the inquiry (out of a universe of 298 students), 44 of those have
valid student identifications (question #1, inserted voluntarily), and are relatable to the
students’ courses and grades.

The part of the students that inserted an id is (naturally) biased towards more successful
students, the course had a 81% success-rate but only one of the 44 responders that inserted
an id did not pass the course (2% of the sample).

The age group of responders (question #2) was 90.2% 18-25, and 91% (84/92) claimed
to have used previously some of the learning aids mentioned in the inquiry (question #3),
the same number, 91%, are convinced that using these tools improved their learning ability
(question #8). Only 2% (2) are convinced of the contrary.

Concerning the questions of having used aids in OOP and for what purpose (question
#4), only a minority claims not to have used (14/92) (table 3).

# students with id [ # students

- I

LEI

LETI
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» I
— =

LEI-PL
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Figure 1 Number of students that responded with id and the number of students enrolled from
each program.

The courses of the 44 identifiable students are: LIGE — 10/85, LETT — 9/58, LEI — 13/72,
LEI-PL - 7/36, LIGE-PL — 5/47. The denominator represents the total number of students
in each program enrolled in OOP. Between 10% and 20% of the population for each course
responded and with a valid an id (figure 1).
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4 Results

All types of aid seem to have been used less during OOP than previously (questions #4
and #6), according to the responses of the 92 students (figure 2). Large Language Models
(LLMs), Colleagues and Communities are the most admittedly used, in that order, followed
by Auto-complete. Use of Copilot is low and Tutoring is residual (only one student in this
sample admitted to have paid tutoring for OOP). Also, a low usage of Other (non-specified)
resources. Tutoring and Other will not be considered in most of the remaining analysis due
to lack of support.

Mumber of students claiming te have used each type of aid | Used previously @ Used in 0OP
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Figure 2 Histogram of declarations of the types of aid used before and during OOP.

The perceived utilities to help find solutions and learning (tables 1 and 2, questions #7
and #9, respectively) tend to be better for those that used each tool than for those that did
not (with the exception of the utility of using Copilot to solve problems).

Favoured tools (both to find good solutions — Table 1 — and to help in the learning process
— Table 2) — are unclear, although Colleagues have a slight advantage for solving problems, in
the groups of students that actually use these tools. Also, in the group of users of the tools,
Copilot, Colleagues, and LLMs seem to be perceived as more helpful for learning.

Students did not seem to make a difference between finding the solutions and learning
with the most favoured tools. Correlations (Pearson) between votes in these categories
in questions #7 and #9 are: 0.87 for Colleagues, 0.82 for Copilot, 0.73 for Communities
and 0.73 for LLMs. The use of Auto-complete has the lowest correlation (0.59) between
the perceived value for learning and for finding solutions. Other correlations (between 33
numerical variables) have no highlights apart from the obvious correlations between previous
use and use in OOP of the same tools and grades of different evaluations. The variables
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Table 1 Perceived utility for solving problems from those that used each tool vs those that didn’t.

Type of aid Used Didn’t use

Colleagues 3.98 +/- 0.84 | 3.14 +/- 1.09
Communities | 3.66 +/- 0.76 | 3.57 +/- 1.03
Auto-complete | 3.66 +/- 0.93 | 3.20 +/- 1.21
Copilot 3.29 +/- 1.37 | 4.00 1/- 1.41
LLMs 359 /- 1.02 | 3.60 1/- 0.89

Table 2 Perceived utility for learning OOP from those that used each tool vs those that didn’t.

Type of aid Used Didn’t use

Colleagues 4.05 +/- 0.82 | 2.82 +/- 1.22
Communities | 3.54 +/- 0.92 | 3.47 +/- 0.76
Auto-complete | 3.47 +/- 1.07 | 2.72 +/- 1.19
Copilot 413 +/- 1.13 | 2.29 +/- 1.20
LLMs 3.94 +/-0.79 | 2.91 +/- 1.45

correlated were the previous use of aids, the use in OOP, the types of tools used in each case,
the score for effectiveness in helping to solve problems, as well as learning effectiveness and
grades for each assessment.

Table 3 Counts per type of usage.

When aid was used #count | #count students with id
No 14 6

Only in exercises 9 5

Only in final project 26 15

Exercises and final project | 43 18

As for the relation between the type and frequency of aid usage with grades (Tables 3
and 4), results are unclear. The best average grade in Ezercises, but also in the Test (recall,
without aids) is from students that have admittedly used aids, but only during exercises
(even though this is a relatively small sample, 5 students). What stands out in these figures
is that students who admit to having used aids only in the final project have lower average
grades in all evaluations. This is an observation with reasonable support: 15/44. Average
grades of students that allegedly used No aids are the best in Project and second-best in
other evaluations.

The relationship between the type of aid used and the grades (Table 5, focusing on the
classes that have a reasonable number of samples, >10) appears to indicate that the type
of aid used is not relevant showing only a slight decay in the average Test grades (the only
evaluation where aids are not allowed) of students that use advice from Colleagues even
though they have good grades in exercises.

If the Test results measure the true value for learning of the different types of aid, then
Communities and LLMs seem to hold some learning value even though standard deviations
are relatively high.
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Table 4 Average grades per type of usage. Grades in [0..20].

Type of aid Exercises Test Project
No 19.27 +/- 1.15 | 15.11 +/- 3.40 | 16.97 +/- 2.08
Only in exercises 19.75 +/- 0.56 | 16.34 +/- 3.42 | 16.80 +/- 2.39
Only in final project 17.16 +/- 4.45 | 14.45 +/- 3.55 | 15.07 +/- 3.90
Exercises and final project | 19.03 +/- 1.59 | 15.09 +/- 4.92 | 16.47 +/- 2.61
Table 5 Average grades per type of aid used and Standard Deviations.
Type of aid Exercises Test Project
Colleagues 18.79 +/- 1.57 | 14.42 +/- 4.68 | 16.09 +/- 2.56
Communities 18.35 +/- 3.10 | 15.86 +/- 4.43 | 16.52 +/- 2.69
Auto-complete | 17.83 +/- 3.62 | 15.09 +/- 5.06 | 16.26 +/- 2.57
LLMs 18.02 +/- 3.52 | 15.77 +/- 3.66 | 16.03 +/- 3.45

5 Discussion

The experience of the teaching staff during this year was particularly rewarding given the
reduction of retained students to < 20%. The new evaluation method (based on exercises,
evaluated nearly every week) is likely to have contributed to this success.

Even though we explicitly mentioned the subject at the beginning of the semester, the
use of tools external to the IDE (Communities, Copilot, or ChatGPT) was seldom seen in
class, where most students still seem to prefer asking colleagues or the teacher. Likely most
of the aids were used during class preparation or individual work.

Apart from very few exceptions, students seemed to be quite familiar with the produced
code, both in the exercises and in the final project.

The majority of the results point to a marginal difference between using aids regularly
(in exercises or always) and not using any, with a slight advantage for those who used aids
(the majority) even in evaluations where aids are not allowed.

Students, that used aids only in the final project, had slightly lower scores in all evaluations.
The hypothesis, based on this, but that we cannot confirm with the current experiment,
is that experience plays a key role in the efficient use of these tools, as in many other
technological tools.

Analyzing the differences between the votes for “tools to find good solutions” and “tools
that help learning,” the differences, although small, show a tendency to consider Communities
and Auto-complete as tools that are more useful to “find good solutions” than to “help
learning,” and Large Language Models the reverse.

Still, the only clue to events, that seem actually to affect grades negatively, is the use of
advice from Colleagues that seems to have a positive effect during exercises but a negative
effect during the Test. This may be related to the fact that being able to explain a solution
is a different skill from actually being able to produce that solution.

Nevertheless, some of the automatic aids seem to affect the ability to generate solutions
less than advice from Colleagues even though the latter should often imply the need to code
the solution themselves.
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6

Conclusions and Future Work

Data limitations beyond those that were expected (low participation of students) limit our

conclusions, still, we believe this account presents a valid contribution to add to many others.

In this paper, we describe an experiment that took place in the 23/24 edition of the

Object Oriented Programming course. In this experiment, we have explicitly liberated the
use of any programming aids with the sole demand that students should (at all times) be
able to explain what they were doing.

This experiment aimed at understanding which are the most usual tools used as program-

ming aids by novice students (Q1), when / where students apply them (Q2), and how this
affects their grades (Q3). The main conclusions based on the analysis of this data are the
following:
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A Inquiry

With this survey, we want to study the impact of using automatic learning support tools
in programming. Since the introduction of tools such as ChatGPT, the use of program-
ming support tools has been discussed, although they have long been used in development
environments, they have taken on a different proportion.

It is arguable that their use can benefit or hinder learning. That’s why we set out to
study their impact. This survey has only been sent out now, after the grades have been
published so that there is no doubt about the possibility of this survey influencing the grades.
We can also guarantee that nothing will be published that would allow participants to be
identified, so I ask everyone to be as honest and thorough as possible in answering all the
questions.

This survey should take no more than 5 minutes to complete.

If you have any questions about this survey, please contact: luis.nunes@iscte-iul.pt

— Place for the 9 questions of the Inquiry already presented on pages 3 and 4.
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