

A Full Hate Speech Detection Pipeline: Leveraging ML, DL, and GPTs

Rodrigo Carvalheda Duarte da Fonseca Sarroeira

Master in Data Science

Supervisor:
Doctor Catarina Marques, Associate Professor, Iscte - University Institute of
Lisbon

Co-Supervisor:
Doctor Rita Guerra, Integrated Researcher, Iscte - University Institute of
Lisbon

September, 2024

Department of Quantitative Methods for Management and Economics
Department of Information Science and Technology

A Full Hate Speech Detection Pipeline: Leveraging ML, DL, and GPTs

Rodrigo Carvalheda Duarte da Fonseca Sarroeira

Master in Data Science

Supervisor:
Doctor Catarina Marques, Associate Professor, Iscte - University Institute of
Lisbon

Co-Supervisor:
Doctor Rita Guerra, Integrated Researcher, Iscte - University Institute of
Lisbon

September, 2024

A Full Hate Speech Detection Pipeline: Leveraging ML, DL, and GPTs i

Resumo

A proliferação da tecnologia e redes sociais levou a um aumento na incidência e variedade

de discurso de ódio, criando a necessidade de estratégias mais eficazes para a sua detecção

e mitigação. Neste trabalho, é desenvolvido um pipeline de deteção de discurso de ódio

aplicável a diversos casos. Modelos tradicionais de machine learning e modelos avançados

de deep learning são utilizados para classificar publicações em redes sociais como con-

tendo ódio ou não. O processo de treino de machine learning envolve o treino de várias

combinações de modelos e técnicas de vetorização, seguido por um rigoroso fine-tune com

o Optuna. O melhor modelo de machine learning foi o LightGBM, codificado com TF-

IDF de tamanho 10,000, alcançando uma accuracy de 0,816. São também exploradas

abordagens baseadas no BERT, obtendo melhores resultados, com o modelo RoBERTa

a atingir uma accuracy de 0,8392. Este trabalho contribui significativamente para a ex-

plicabilidade da classificação, frequentemente esquecida na detecção de discurso de ódio,

especialmente com black-box models. O pipeline proposto utiliza generative pre-trained

transformers (GPT) juntamente com prompt engineering para adicionar explicabilidade

ao processo de classificação. Modelos GPT foram ajustados para detectar o racional por

trás da decisão de classificação, destacando o conteúdo odioso no texto. O melhor modelo

GPT ajustado foi o GPT-4o Mini apresentando uma accuracy de 0,959 e um F1-Score

de 0,961. Foi desenvolvida uma aplicação web utilizando Django e React, compilando os

melhores modelos treinados durante o estudo, fornecendo aos utilizadores uma interface

gráfica amigável para interagir com o pipeline proposto, tornando o processo de detecção

mais acesśıvel e eficiente.

Palavras-chave: Detação de discurso de ódio, GPT, Machine Learning, Deep Learn-

ing, BERT, Prompt Engineering.

Códigos de classificação JEL: C45, C63.

A Full Hate Speech Detection Pipeline: Leveraging ML, DL, and GPTs ii

Abstract

The proliferation of technology and social media has led to an alarming increase in the

incidence and variety of hate speech, creating a need for more effective detection and

mitigation strategies. In this work we develop a comprehensive hate speech detection

pipeline applicable to various use-cases. A combination of traditional machine learning

and state-of-the-art deep learning models are employed to classify social media posts as

either hateful or non-hateful. The ML training process involved multiple model combi-

nations and word vectorization techniques, followed by rigorous fine-tuning with Optuna.

The best performing machine learning model was LightGBM encoded with TF-IDF of size

10 000, achieving an accuracy of 0.816. Advanced BERT-based approaches were explored,

yielding superior results, with RoBERTa reaching an accuracy of 0.8392. A significant

contribution of this work is the incorporation of explainability, often overlooked in hate

speech detection, particularly with black-box models. Our proposed pipeline leverages

the advances in generative pre-trained transformers along with prompt engineering to

add a layer of explainability to the classification process. GPT models were fine-tuned for

detecting the rational behind the classification decision, effectively highlighting the hate

content within the text. The best performing GPT fine-tuned model was GPT-4o Mini

with an accuracy of 0.959 and a F1-Score of 0.961. A web-based application using Django

and React was developed, compiling the best models trained in during the study. Provid-

ing users with a user-friendly graphical interface to interact with the proposed pipeline,

making the detection process more accessible and efficient.

Keywords: Hate Speech Detection, GPT, Machine Learning, Deep Learning, BERT,

Prompt Engineering

JEL Classification Codes: C45, C63.

A Full Hate Speech Detection Pipeline: Leveraging ML, DL, and GPTs iii

Glossary

• API: Application Programming Interface

• BERT: Bidirectional Encoder Representations from Transformers

• DL: Deep Learning

• DistilBERT: Distilled BERT

• GPT: Generative Pre-trained Transformer

• GloVe: Global Vectors for Word Representation

• GUI: Graphical User Interface

• JSON: JavaScript Object Notation

• JSONL: JSON Lines

• KNN: K-Nearest Neighbors

• LGBM: Light Gradient Boosting Machine

• LR: Logistic Regression

• ML: Machine Learning

• NB: Naive Bayes

• NLP: Natural Language Processing

• RoBERTa: Robustly Optimized BERT Pre-training Approach

• ROS: Random OverSampling

• TF-IDF: Term Frequency-Inverse Document Frequency

• TPE: Tree-structured Parzen Estimator

A Full Hate Speech Detection Pipeline: Leveraging ML, DL, and GPTs iv

Contents

1 Introduction . 1

2 Concepts . 3

2.1 Hate Speech . 3

2.2 Natural Language Processing . 3

2.3 Vectorization Methods . 5

2.4 Embeddings . 7

2.5 Machine Learning . 9

2.6 Deep Learning . 10

3 Models in Hate Speech Detection . 15

3.1 Machine Learning Models . 15

3.2 Deep Learning Models . 16

3.3 Generative Artificial Intelligence . 18

4 Methodology . 21

5 Data Processing Pipeline . 25

5.1 Source and Origin . 25

5.2 Data Cleaning . 26

5.3 Data Description . 27

5.4 Data Transformation . 29

6 Training Process . 31

6.1 Machine Learning . 31

6.2 Deep Learning . 32

6.3 Generative pre-trained transformer 33

7 Results . 35

7.1 Machine Learning . 35

7.2 Deep Learning . 39

A Full Hate Speech Detection Pipeline: Leveraging ML, DL, and GPTs v

7.3 Generative pre-trained transformer 42

8 HateFinder . 45

9 Conclusion . 47

List of Figures

1 Phases of the Cross Industry Standard Process for Data Mining 21

2 Word Clouds: Non-Hateful (left) and Hateful (right) sentences 27

3 Example document of the HateXplain dataset 28

4 GPT fine-tune input file structure . 30

5 Validation dataset file structure . 30

6 OpenAI fine-tune input line . 33

7 Average model performance by vectorization technique 35

8 Accuracy and feature importance of the LightGBM with TF-IDF fine-tuning. 38

9 Evolution of the training and evaluation loss function. 40

10 Metrics evolution for BERT-based models 41

11 GPT fine-tune performance metrics . 43

12 HateFinder Architecture . 46

List of Tables

1 Original dataset dimensions and class distribution. 27

2 Model performance with different vectorization techniques and sizes. 36

3 Performance Metrics for Various Models and Encodings 37

4 BERT performances and best hyperparameters 39

5 Best model performance on test set. 41

A Full Hate Speech Detection Pipeline: Leveraging ML, DL, and GPTs 1

1 Introduction

The rise of social media platforms has created a vast digital space where users can freely

share their thoughts and opinions with a global audience. This democratization of speech

enables valuable interactions, but also brings challenges, such as the proliferation of harm-

ful content. The open nature of these platforms can inadvertently foster environments

that are hostile to marginalized groups, leading to serious social, psychological, and behav-

ioral consequences, including mental health issues, hate crimes, and even physical violence

(Silva et al., 2021). In addition, online spaces have been shown to amplify problematic

behaviors such as disinhibition, lack of empathy, and moral disengagement, making it eas-

ier for users to engage in hate speech and other forms of harmful communication (Pluta

et al., 2023).

Given this evolving landscape, for effectively detecting online hate speech, the use

of advanced algorithms is required due to the large volumes of data generated in the

digital ecosystem. Given the diversity and complexity of this problem, the algorithms

must be robust in detecting underlining patterns in the data. In this study, three classes

of models, machine learning, deep learning, and generative pre-trained transformers are

employed with the goal of effectively detecting hateful content at a sentence and word

level.

Hate speech is highly dependent on its context and domain, and most studies focus on

developing the best solution for a very concise domain. To fight against this tendency, the

methodology employed in this work can be generalized to any hate speech text database.

During the data preparation and modeling phases, multiple combinations of techniques

are employed and combined, using Optuna, to ensure that the selected techniques are

optimized to the specific domain and characteristics of the data.

Another research gap lies in the lack of importance given the explainability of the

hate speech detection task. Detecting hate speech is not a straightforward task given its

diversity and fast proliferation, nevertheless, many studies have successfully introduced

robust pipelines that achieve very reasonable performance metrics (Hashmi et al., 2024;

Hartvigsen et al., 2022). Although the good performance of the models is a key metric

for their evaluation, this itself is not enough for their implementation in the real world.

Given the highly subjective, controversial, and ethical nature of hate speech, the imple-

mentation of hate speech detection models strongly depends on their explainability, or,

A Full Hate Speech Detection Pipeline: Leveraging ML, DL, and GPTs 2

in other words, the rationale behind the model prediction (Reichel, 2022). To solve this

issue, a subsequent layer of modeling is added, resorting to generative pre-trained mod-

els for explaining the rational behind the model’s decision, by highlighting the words or

expressions that influenced the decision. This is done by fine-tuning GPT models based

on a labeled dataset of hate speech rationals. By introducing this method, a higher and

more detailed level of explainability is obtained.

This study aims to develop a replicable pipeline for accurately detecting hate speech

while improving the explainability of the models used. To achieve this, the following key

research questions will be addressed:

1. What is the best combination of machine learning models and vectorization tech-

niques for effectively detecting hate speech at the sentence level?

2. How can we leverage the most of BERT-based models for hate speech detection?

3. How can generative pre-trained transformers be leveraged to improve model explain-

ability at a word level?

4. How can we deploy the models from this study in a user-friendly way using modern

web development frameworks?

A Full Hate Speech Detection Pipeline: Leveraging ML, DL, and GPTs 3

2 Concepts

In this chapter, key terms and definitions, essential for understanding hate speech de-

tection, are presented, focusing on natural language processing (NLP), machine learning,

and deep learning. These concepts form the foundation of the methods and technologies

used to identify and classify hate speech.

2.1 Hate Speech

There is not an unique agreed definition for hate speech (Assimakopoulos et al., 2017),

since the term can be analyzed from different perspectives and identities, such as phys-

iologists, academics, policymakers, and legal experts. The definition of this term can

sometimes be to vague and contradictory between authors (Brown, 2015). Nevertheless,

a commonly agreed general definition for hate speech refers to any communication, spo-

ken, written, or behavioral, that uses hurtful language against an individual or group due

to sensitive traits like religion, ethnicity, or gender (Hietanen and Eddebo, 2023).

Hate speech has been in the spotlight for some time now, especially given that its

expression reaches a considerably wider range of individuals when focusing on the digital

sphere (Alrehili, 2019). The impact extends globally, affecting law-abiding citizens uni-

versally and necessitating a concerted effort to address and curb this harmful behavior.

As online interactions continue to play a significant role in our daily lives, understand-

ing and combating hate speech is crucial to fostering a safer and more inclusive digital

environment for everyone.

Initiatives aimed at raising awareness and promoting respectful online discourse are

essential in mitigating the harmful effects of hate speech and fostering a more positive

online community. One of the approaches used for its mitigation is the legal path. The

European Commission is working to introduce hate speech as an ”area of crime” (COM-

MISSION, 2021).

2.2 Natural Language Processing

Natural Language Processing, often referred to as NLP, is a field within computer science

that focuses on the interaction between humans and computer languages (Khyani et al.,

A Full Hate Speech Detection Pipeline: Leveraging ML, DL, and GPTs 4

2021). It was introduced in 1940, during the Second World War, to automate the process

of translation between English and Russian. Natural Language Processing consists of a

group of tools, algorithms, and models that enable machines to easily understand human

language, being able to interpret, generate, and respond to it. NLP is a general concept

formed by various sub-areas. Text processing techniques, such as tokenization, vectoriza-

tion, and embeddings, are used to transform text into more efficient formats for storage,

analysis, and as input for machine learning models. Text generation and synthesis tech-

niques are fundamental applications of NLP; they are widely used in chat bots, tools for

summarizing text and translation between languages.

Tokenization

Tokenization is one of the key concepts in NLP. It consists in the process of splitting text

into smaller parts (tokens), easier for machines to understand. There are several methods

to generate tokens (Mielke et al., 2021). The main used approach splits the text into

individual words, which is specially efficient for languages with well defined words, like

English. Character tokenization consists of splitting the text at a character level. This

technique is useful in cases where the task at hand involves high granularity, for example

spelling correction. Subword tokenization is used to split the text into pieces greater or

equal to a character, but smaller than a full word. This method is especially effective

for languages that create words through a concatenation process, such as German. For

example, the word “sunshine” could be split into “sun” and “shine”. Tokenizing text

involves several decisions, such as handling compound words or contractions, use or not

use case sensitive methods, and the rules may vary according to the language Habert et al.

(1998).

Lemmatization

Lemmatization is an NLP text preprocessing technique that groups several inflected forms

of a word together. This technique aims to reduce words to their base dictionary form,

also known as the lemma (Khyani et al., 2021). By grouping different inflected forms of

a word together, lemmatization ensures that variations like ”running”, ”ran”, and ”runs”

are all represented by a single form, ”run”. Processing words based on meaning not only

A Full Hate Speech Detection Pipeline: Leveraging ML, DL, and GPTs 5

helps machines understand text in a simpler way, but also decreases the overall vocab-

ulary size, reducing the dimensionality of the feature space. This simplification leads to

more efficient storage and computation, as well as potentially improving the performance

of machine learning algorithms by mitigating the sparsity of the feature matrix.

Stemming

Stemming is an NLP text preprocessing technique that aims to reduce words to their root

or base form, resorting to removing prefixes and suffixes. Unlike lemmatization, stemming

does not reduce a word to its root meaning; instead it uses algorithms to cut word endings

and other specific occurrences of characters (Khyani et al., 2021). Some words lose their

meaning during the stemming process. For instance, the word “better” is represented by

“bett”. Nevertheless, using stemming benefits from the dimensionality reduction and sim-

plification of the text, allowing a lower training cost in terms of computational resources.

2.3 Vectorization Methods

Vectorization methods are a set of techniques that aim to represent sequences of text,

such as sentences, through numerical vectors that can be understood and processed by

machine learning algorithms (Rani et al., 2022). These methods represent a crucial role in

Natural Language Processing by representing words, sentences or documents in a uniform

and numeric way (Rani et al., 2022). Several techniques have been developed over the

years. The following paragraphs will delve deeper into some of the most famous vector-

ization methods.

One Hot Encoding (OHE)

One Hot Encoding (OHE) is the most straightforward method to represent words in text

as numerical vectors (Rodŕıguez et al., 2018). It is commonly employed to convert cate-

gorical variables, such as words in a vocabulary, into numerical representations suitable

for machine learning algorithms (Seger, 2018). In the context of text, One Hot Encoding

represents each word by a binary vector, where each position represents a word in the

vocabulary. If a word is present in a sentence, its corresponding position in the vector is

A Full Hate Speech Detection Pipeline: Leveraging ML, DL, and GPTs 6

marked with 1; otherwise, it is marked with 0. While simple to understand, OHE becomes

inefficient for large vocabularies, resulting in very sparse vectors. Moreover, it does not

account for word positions within the text or possible relationships between words.

Bag of Words (BoW)

The Bag of Words (BoW) approach shares similarities with One Hot Encoding (OHE)

as both techniques disregard the positioning of words within the sentence (Qader et al.,

2019). BoW starts by creating a vector where each position represents a word. For each

word within the sentence, the related position in the vector is incremented by one. As

a result, the vector contains the frequencies of each word in the vocabulary within the

given sentence. While BoW captures more information than OHE by considering word

frequency, it still falls short in capturing context, structure, and order.

N-Grams

The N-Grams approach is a vectorization technique used to analyze and represent se-

quences of contiguous items, usually words or characters, within a text. To employ n-

grams it is necessary to split the text into tokens, that can be either words, characters,

subwords, etc. The second step consists of extracting the N consecutive tokens from the

text (Majumder et al., 2002). Finally, count the number of occurrences of each n-gram

within the text. If N=2 this technique is called bigram, and trigram if N=3. Unlike BoW

and OHE, n-grams are able to capture local context and dependencies between adjacent

words or characters, providing more contextual information. This technique also preserves

the order of words or characters within the text, allowing for the capture of sequential

patterns and relationships.

Term Frequency - Inverse Document Frequency (TF-IDF)

The TF-IDF approach is a mix of two different metrics (Salton et al., 1975). Term

Frequency (TF) measures the number of occurrences that a word has within a text. On

the other hand, the Inverse Term Frequency (IDF) measures the degree of importance of

a word given its presence in the corpus. This approach follows the philosophy that words

A Full Hate Speech Detection Pipeline: Leveraging ML, DL, and GPTs 7

that appear in many documents end up not being as important and differentiated as

less common words. Therefore, common words are considered less important, while rare

words are given special attention. TF-IDF is the product between TF and IDF, meaning

that this metric accounts for the frequency of the term within a specific sentence, while

capturing its general use across the full corpus.

TF-IDF(t, d) = TF(t, d) × IDF(t) (1)

where

TF(t, d) =
Number of occurrences of term t in document d

Total number of terms in document d

and

IDF(t) = log

(
1 + N

1 + DF(t)

)

2.4 Embeddings

Embeddings are representations of words, sentences, or entities as dense vectors in a con-

tinuous vector space (Gutiérrez and Keith, 2019). In Machine Learning (ML) and NLP

embeddings are widely used to capture semantic relationships between words. Embed-

dings are fundamental given that machines can not understand words as humans do,

therefore transforming words into vectors is a crucial task when working with text mod-

eling. Word embeddings, in particular, are learned representations of words mapped in a

vector space given its semantics. Words with similar semantics tend to be closer in the

vector space than words with diverging meanings (Stanford, 2024). Usually word embed-

dings are obtained through unsupervised algorithms trained on large corpora of text.

Word2Vec

Word2Vec is one of the most famous embeddings in NLP, it was developed by Tomáš

Mikolov in 2010. Later in 2013 it was published in two papers and patented by a team

of researchers at Google (Mikolov et al., 2013a,b). The structure behind Word2Vec is a

simple recurrent neural network with one hidden layer for language modeling. Word2Vec

takes a large corpus of text as input and produces a vectorial space, usually with hundreds

A Full Hate Speech Detection Pipeline: Leveraging ML, DL, and GPTs 8

of dimensions. Each word is represented by a vector within that space. Word2Vec consists

of two primary models: Continuous Bag of Words (CBoW) and Skip-Gram.

The input of the CBoW model consists of OHE vectors representing the context of

a target word. The context is created by analyzing the surrounding words of the target

throughout the corpus. The output layer consists of a vector of probability distribution

for each word within the embedding space. In the end, a softmax activation function is

used to transform the raw scores into probabilities. The goal of this model is to predict

the target word based on its context words.

Word2Vec with N-grams extends traditional Word2Vec models by considering se-

quences of N contiguous words as input. This approach allows for the capture of contex-

tual information and semantic relationships between words within the corpus. By training

neural networks to predict target words or N-grams based on their surrounding context

N-grams, Word2Vec with N-grams learns distributed representations of words and N-

grams in a continuous vector space. These embeddings encode semantic similarities and

relationships, enabling applications such as word similarity analysis, text classification,

language modeling, and information retrieval.

GloVe

GloVe is an embedding presented in 2014, by a team of Stanford researchers composed

of Jeffrey Pennington, Richard Socher, and Christopher D. Manning (Pennington et al.,

2014). Following the description of the official website (Stanford, 2024), GloVe is an unsu-

pervised learning algorithm that aims to represent words as vectors given their semantic

value. The main idea behind GloVe is to leverage the statistical information present in a

corpus to create a dense, continuous vector space where the relationships between words

are captured. The model is trained on non-zero entrances of a word-to-word co-occurrence

matrix. This matrix shows how frequently two words appear together in a given corpus.

For large corpus the creation of the matrix may be computationally expensive, but it is a

one-time effort.

The vectors generated by GloVe can serve as input to the Euclidean Distance to find

the closest set of words within the vector space. Furthermore, the vectors are built so

that they allow arithmetic operations between words.

A Full Hate Speech Detection Pipeline: Leveraging ML, DL, and GPTs 9

FastText

FastText is an embedding developed by Facebook Artificial Intelligence Research (FAIR)

in 2016 (Bojanowski et al., 2017). FastText extends the concept and application of tra-

ditional embeddings, such as Word2Vec, by incorporating subword information. By in-

troducing subwords into the model, FastText is able to effectively handle rare words,

misspellings, and morphological variations. The biggest difference relative to Word2Vec

is the input. While in Word2Vec each word is represented by a single vector, in Fast-

Text a word is represented by a bag of n vectors, each corresponding to a subword. For

example, the word “where” could be represented by ¡wh, whe, her, ere, re¿. FastText is

a highly effective algorithm in terms of computational power. In an article published in

2016 by Joulin et al. (2016), the authors say “We can train fastText on more than one

billion words in less than ten minutes using a standard multicore CPU, and classify half a

million sentences among 312K classes in less than a minute.”, thus showing the efficiency

of the training and prediction power.

2.5 Machine Learning

Supervised Learning

Supervised Learning is the most common approach in Machine Learning (ML). It consists

of training algorithms based on labeled training data to make predictions or decisions.

The term “supervised” means that the algorithm is guided through the training process

by analyzing the true label of the observations, thus allowing the model to learn relation-

ships between input features and the target labels. The goal of these class models is to

predict the label given the input data.

Unsupervised Learning

Unsupervised Learning is an approach of ML that focuses on training models to identify

patterns in unlabeled data. Unlike supervised learning, where the algorithms learn from

labeled data, unsupervised learning aims to find patterns in data lacking predefined la-

bels and outputs. This kind of ML is specially suitable for domains where getting labeled

data is highly difficult or expensive. There are different types of Unsupervised Learning

A Full Hate Speech Detection Pipeline: Leveraging ML, DL, and GPTs 10

problems. Clustering focuses in grouping observations in way that objects inside the same

group are more similar to each other than to those in other groups. Another application of

unsupervised learning is dimensionality reduction, which consists of the process of repre-

senting a dataset reducing the number of features, while conserving as mush information

as possible.

Semi-Supervised Learning

This concept is a combination of Supervised Learning and Unsupervised Learning. These

ML models are based on small amounts of labeled data and large amounts of unlabeled

data, taking advantage of both types of learning. Given a small amount of labeled exam-

ples, semi-supervised learning tries to improve learning accuracy in contrast to learning

solely on unlabeled data, while overcoming the difficulty of limited amounts of available

labeled data.

Grid Search

Grid search is a well-known technique used for hyperparameter optimization that involves

an exhaustive search through a specified subset of the hyperparameter space. However,

Grid search can be a very expensive process computationally, mainly with complex mod-

els, high-dimensional datasets, and large hyperparameter space. To address complexity

and efficiency problem, several alternative methods have been developed: random search,

gradient-based optimization, and Bayesian optimization. Among them, Optuna stands

out. Optuna is an open-source hyperparameter optimization framework to automate hy-

perparameter search release in 2019 by a team of researchers of the University of Fukuoka

(Akiba et al., 2019; Optuna, 2024a,c). Optuna comes with visualization capabilities to

understand the evolution of the study and the optimization of hyperparameters through

a dashboard available at (Optuna, 2024b).

2.6 Deep Learning

Deep learning is a subset of machine learning, that uses neural networks, structures with

multiple layers, to model complex patterns in data. The training of deep learning models

A Full Hate Speech Detection Pipeline: Leveraging ML, DL, and GPTs 11

follows an iterative process, where in each iteration (epoch), the goal is to optimize the

model’s parameters given a loss function, improving the results over the training history.

Neural Networks

Neural networks (NNs) form a class of models that try to somewhat mimic the proceedings

of the brain by using the architecture of the computer in an attempt to solve a specified

problem. Neurons, together with the connections between them, form a layered structure

in which the incoming data to the problems are given at one layer and emergent results

are issued at another.

In NLP, several neural network structures exist to solve different problems effectively.

Recurrent Neural Networks (RNNs) are designed for sequential data and, as a result,

allow the preservation of temporal data within the model. Variants like Long Short-

Term Memory (LSTM) networks incorporate memory cells that store information over

long periods (Hochreiter and Schmidhuber, 1997). Shortly after, Bidirectional LSTMs

(biLSTM) were introduced, this network process data in both forward and backward

directions to capture context from both past and future states (Schuster and Paliwal,

1997).

Gated Recurrent Units (GRUs) are simplified versions of LSTMs; The core idea is

to merge the forget and input gates into one update gate, making computation efficient

without a high cost in performance (Cho et al., 2014).

Convolutional Neural Networks (CNNs), originally designed for image processing,

have been adapted for use in NLP tasks by applying filters over input data to catch local

patterns, thereby learning good representations of text as a spatial hierarchy of features

(Ojo et al., 2022; LeCun et al., 1998).

Large Language Models

Large Language Models represent a special class of neural networks models, that heavily

rely on large corpus and significant computational resources towards yielding the best

performance in various NLP tasks. A pivotal innovation which gave birth to one of the

most important architectures, attention mechanism, was introduced in a paper entitled

”Attention is All You Need” (Vaswani et al., 2017). The concept of a transformer was

A Full Hate Speech Detection Pipeline: Leveraging ML, DL, and GPTs 12

included in this paper, which revolutionized the training of deep learning models. This

mechanism allows the model to include in its memory the importance of words in a sen-

tence to make contextual relations and improves the performance of tasks like translation,

summarizing, or question answering.

BERT

BERT, standing for Bidirectional Encoder Representations from Transformers, is a lan-

guage model introduced by Google (Devlin, 2018). BERT was designed to understand

words given their preceding and succeeding content, by analyzing text in a bidirectional

way. BERT is a generalist model that can perform a large number of NLP tasks. Fur-

thermore, BERT can easily be fine-tuned for domain specific tasks presenting high per-

formance across many domains. BERT is based on the attention mechanism described

above to weight the importance of words in the text. Multiple approaches of BERT have

been developed after its release. For instance, DistilBERT was developed with the goal of

making BERT a lighter model, suited for real word prediction. As the article published

by Sanh et al. (2020) explains, DistilBERT retains 97% of BERT’s knowledge, while being

60% faster and using 40% fewer parameters. RoBERTa was a engineering improvement

compared to BERT, it maintains BERT’s base architecture, but carefully measures the

impact of many key hyperparameters and training data size (Liu et al., 2019). Moreover,

RoBERTa was trained on a widely larger dataset. ALBERT was introduced with the

same goal as DistilBERT, improve the scalability of BERT (Lan et al., 2020). ALBERT

does so by sharing parameters across layers, reducing memory usage, and reduces the

number of trained tasks. This model proved to perform as well as BERT, while being

more efficient.

Generative Pre-trained Transformers

Generative Pre-trained Transformers (GPT) series represent a groundbreaking pivot in

NLP. This new class of models, developed by OpenAI in 2018, are trained in two distinct

phases. The model starts by learning on diverse corpus of unlabeled text, followed by a

discriminate fine-tune at specific tasks, using labeled data (Radford, 2018). There has

been a great adoption of GPT models and these keep evolving at a very fast rate. GPT-2

A Full Hate Speech Detection Pipeline: Leveraging ML, DL, and GPTs 13

introduced larger models with up to 1.5 billion parameters, enhancing text generation

quality and performance (Radford et al., 2019). GPT-3, with its 175 billion parameters,

marked a significant leap, demonstrating advanced capabilities in few-shot learning and

context understanding (Brown, 2020). The latest model, GPT-4, is able to interpret both

images and text outperforming humans in multiple academic and professional tasks (Ope-

nAI et al., 2024).

Prompt Engineering

Prompt engineering is an important approach in the best utilization of large language

models. It involves crafting and fine-tuning inputs to lead the model towards desired

responses. This may range from simple prompt formulation to sophisticated techniques

using particular instructions, examples, or even chaining prompts together (Gao, 2023).

The quality of the prompt directly impacts the relevance, coherence, and accuracy of

the model’s response. In actual implementation, prompt engineering serves to fine-tune

the model’s behavior for specific applications, whether that be content generation, data

extraction, or task automation. This can often involve iterative testing and adjustment

because the output of the model may be sensitive to slight changes in wording or context.

A Full Hate Speech Detection Pipeline: Leveraging ML, DL, and GPTs 14

A Full Hate Speech Detection Pipeline: Leveraging ML, DL, and GPTs 15

3 Models in Hate Speech Detection

In this chapter, works that utilize machine learning (ML), deep learning (DL), and gen-

erative AI (GenAI) for the task of hate speech detection are analyzed. We focus on the

different models employed in this domain, analyzing their performance and highlighting

the most effective combinations of techniques.

3.1 Machine Learning Models

The work published by Shawkat (2023) compares different Machine Learning models in

combination with different text representation methods, sampling methods, on three

datasets. The sampling method that presents best results is the oversampling. The

model with best performance on the oversampled datasets is the Random Forest (RF)

allied with n-grams, reaching values rounding 0.96 on both accuracy and F1-score. For

the original datasets and the undersampled datasets, Support Vector Machines (SVM)

and Naive Bayes (NB) associated with Term Frequency Inverse Document Frequency

(TF-IDF) present the best results, with accuracies ranging between 0.82 and 0.91.

Aljarah et al. (2021) present an innovative machine learning-based approach proposed

to tackle the issue of cyber hate speech within the Arabic context on Twitter. The

dataset, obtained through the Twitter streaming API, underwent thorough processing

and was integrated into various machine learning algorithms, including Support Vector

Machines (SVM), Naive Bayes (NB), Decision Trees (DT), and Random Forest (RF),

utilizing Python and the Spyder development framework. Notably, the Random Forest

classifier demonstrated superior performance compared to the other classifiers. Upon

analyzing the most influential features associated with hate tweets, key contributors were

identified as racism, emigrant-related terms, and mentions of the word ”God”.

A study published by Adoum Sanoussi et al. (2022) uses data gathered from popular

Facebook pages counting to 14,000 comments. These comments were carefully classified

into four distinct categories: hate, offense, insult, and neutral. To ensure the credibility

of the data, authors applied advanced Natural Language Processing techniques (NLP)

in the cleaning process. In addition, three different word embedding methods, namely

Word2Vec, Doc2Vec, and FastText, were incorporated. In the final stage of the research,

four Machine Learning approaches were employed for effective classification: Logistic Re-

gression (LR), Support Vector Machine (SVM), Random Forest (RF), and K-Nearest

A Full Hate Speech Detection Pipeline: Leveraging ML, DL, and GPTs 16

Neighbours (KNN). The results indicated that utilizing FastText features as input pro-

vided the most successful configuration.

A recent study published by Saifullah et al. (2024), leverages semi-supervised ensem-

ble techniques to fight against the cost of labeling hate speech data. Text annotation is a

vital aspect of natural language processing, but manual annotation can be limited by sub-

jectivity and inefficiency. To address these concerns, this study presents an automated

approach to annotation using a variety of machine learning techniques. The approach

focuses on an ensemble algorithm that combines meta-learning and meta-vectorization

techniques, incorporating semi-supervised learning to identify hate speech. The ensem-

ble is composed of diverse machine learning algorithms, such as Support Vector Machine

(SVM), Decision Tree (DT), K-Nearest Neighbors (KNN), and Naive Bayes (NB), and

utilizes advanced text extraction methods like Word2Vec and TF-IDF. Empirical vali-

dation was conducted on a dataset of 13,169 Indonesian YouTube comments, utilizing a

Stemming approach and integrating data from Sastrawi and an additional 2,245 words.

In a departure from the conventional 80% labeling approach, the proposed model employs

semi-supervised learning with only 5%, 10%, and 20% labeled data. This unique hybrid

learning paradigm allows the model to generalize and accurately predict with limited

annotated data. The experimental results showcase the remarkable performance of the

KNN-Word2Vec model, achieving an accuracy of 96.9% with just 5% labeled data and a

0.9 threshold. SVM and DT also demonstrate accuracy surpassing 90% in multiple sce-

narios, underscoring the robustness of the proposed methodology in detecting hate speech

within Indonesian YouTube comments.

Text related tasks have been a big research area in past years, therefore a multitude of

techniques have been studied. Traditional Machine Learning models have been surpassed

by Deep Learning approaches (Shawkat, 2023; Shibly et al., 2021; Fernando et al., 2022;

Shibly et al., 2022).

3.2 Deep Learning Models

Given this scenario we now analyze works that compare different Deep Learning models.

A paper published by Paul and Bora (2021) compares the performances of Long Short

Term Memory (LSTM) and Bidirectional Long Short Term Memory models (BiLSTM) at

the hate speech detection task. This class of models was designed to identify patterns on

A Full Hate Speech Detection Pipeline: Leveraging ML, DL, and GPTs 17

sequential data, such as time series or text. The results show that both models perform

well, LSTM outperforms BiLSTM in accuracy, precision, and F1-score, while BiLSTM

presented a better recall. A study performed on a dataset of 9316 arabic language com-

ments, compares 4 neuronal network models: Convolutional Neural Networks (CNN),

Gated Recurrent Units (GRU), Hybrid Model (CNN + GRU), and Bidirectional Encoder

Representation from Transformers (BERT) (Alshalan and Al-Khalifa, 2020). The experi-

mental outcomes in both the dataset under consideration and an external dataset revealed

that the CNN model exhibited superior performance, achieving an F1-score of 0.79 and

an area under the receiver operating characteristic curve (AUROC) of 0.89.

A study focused on the comparison of ML and DL models to detect hate speech against

women shows that the best performing model was a transformer based model with CNN

and MLP combined (Hasan et al., 2022). The study also shows that a combination of TF-

IDF, MLP, SVM, and XGB also produces strong classification metrics. The two machine

learning models (SVM and RF) were outperformed by the deep learning approaches,

showing, once again, their better overall performance in hate speech detection.

Alatawi et al. (2021) uses two DL models to detect hate speech related to white-

supremacy. Both bidirectional Long Short-Term Memory (BiLSTM) and Bidirectional

Encoder Representations from Transformers (BERT), are evaluated, achieving F1-scores

of 0.75 and 0.80, respectively, on a combined, balanced dataset from Twitter and a Storm-

front forum. This study indicates that BERT models tend to perform better than BiL-

STM.

Lately, the dominant approach in text related tasks has been the application of trans-

formers. A study by Mutanga et al. (2020) compares baseline deep learning models using

transformers for detecting hate speech. The authors use a database of 24783 labeled com-

ments to compare the model’s classification performances, DistilBERT presented the best

result, with an accuracy of 0.92 and a precision of 0.75, outperforming BERT, RoBERTa,

XLNet, and LSTM with attention mechanisms.

A study by Toktarova et al. (2023) compares several Machine Learning and Deep

Learning approaches on three databases containing hate speech, offensive speech, and cy-

berbullying. From the three DL models, CNN presented the worst performance. LSTM

and BiLSTM behaved similarly in terms of prediction metrics, nevertheless BiLSTM out-

performed LSTM on all datasets. Although the ML models were outperformed by DL in

all datasets, the author concludes that different classifiers - Näıve Bayes, KNN, and SVM

A Full Hate Speech Detection Pipeline: Leveraging ML, DL, and GPTs 18

- are effective for spotting hate speech. They use features from text data such as Bag of

Words, TF-IDF, or word embeddings. Additionally, deep learning methods like LSTM,

BiLSTM, and CNN are explored for their skill in understanding complex text patterns

and relationships. This exploration results in better classification performance by better

understanding the complexity of language, improving the identification of hate speech.

A wide range of articles employs BERT like models and study their performances on

different databases, associated with other DL models, multi or mono language BERT’s,

with and without fine-tuning. Multiple studies show that using BERT, as an embedding

or fine-tuned BERT, for classification tasks has shown to be the most efficient approach in

Hate Speech detection across multiple research works (Mozafari et al., 2020,?; Dowlagar

and Mamidi, 2021; Lavergne et al., 2020).

3.3 Generative Artificial Intelligence

The newly generative artificial intelligence (GenAI) models have proved to be efficient in

many different tasks. The costs associated with using these models for language tasks

is high when it comes to scalability, this problem associated with the recency of these

models results in little available literature. Nevertheless, recent research has used GenAI

in different parts of the Hate Speech detection process. The greatest problem when it

comes to training models to identify Hate Speech is the few labeled data available, and

the bias that these datasets present, given the human labeling process. The following

studies resort to GenAI to solve this problem, by generating Hate related text databases.

The study by Hartvigsen et al. (2022) addresses issues in toxic language detection

systems, highlighting their tendency to inaccurately flag text mentioning minority groups

and struggle with implicitly toxic language. To mitigate this, researchers introduce Tox-

iGen, a large-scale dataset featuring 274k statements about 13 minority groups. They

employ a prompting framework and an adversarial classifier-in-the-loop method to gener-

ate subtle toxic and benign text using a pre-trained language model. Human evaluation

shows difficulty in distinguishing machine-generated text from human-written content,

with 94.5% of toxic examples labeled as hate speech. Fine-tuning a toxicity classifier on

ToxiGen substantially enhances its performance on human-written data. This research

demonstrates ToxiGen’s potential in combating machine-generated toxicity and improving

classifier accuracy on challenging subsets.

A Full Hate Speech Detection Pipeline: Leveraging ML, DL, and GPTs 19

Wullach et al. (2020) focuses on enhancing hate speech detection through deep learning

and large-scale data generation is commendable. By acknowledging the criticality of this

issue in social media, the study addresses the limitations of existing methods, particularly

their struggle with generalizing to new hate speech sequences. Introducing a dataset

containing one million hate and nonhate sequences, generated via a deep generative model,

is a significant step forward. The utilization of this extensive dataset to train a well-

established deep learning detector showcases promising improvements across multiple hate

speech datasets.

This approach highlights the potential of larger and more diverse data in refining deep

learning models, crucial for their adaptability beyond specific datasets. Lastly, the study

by Cao and Lee (2020) presents an innovative approach, HateGAN, addressing the chal-

lenge of imbalanced datasets in online hate speech detection. The reliance on supervised

learning methods often leads to poor performance due to imbalances in labeled datasets.

HateGAN, a deep generative reinforcement learning model, offers a solution by augment-

ing existing datasets with generated hateful tweets. The study conducts extensive experi-

ments augmenting two prevalent hate speech detection datasets with HateGAN-generated

tweets. Results demonstrate consistent improvements in hate speech class detection across

various classifiers and datasets. Notably, an average 5% enhancement in hate class F1

scores is observed among state-of-the-art hate speech classifiers. The paper further sup-

plements its findings with case studies validating the diversity, coherence, and relevance

of HateGAN-generated hate speech.

GenAI can also be used for classification tasks, as the following studies show. A

study by Wang and Chang (2022) explores zero-shot prompt-based toxicity detection

using generative methods, sidestepping explicit instructions to language models. Trials

encompass varied prompt engineering approaches, showcasing strengths in toxicity de-

tection across three social media datasets. The research emphasizes the efficacy of this

generative classification, touching on self-diagnosis and ethical considerations in detecting

subtle undesirable content from text.

Li et al. (2024) resort to ChatGPT to identify Hate, Offensive, and Toxic (HOT)

content in text. The authors study the influence of prompt engineering in the model’s

performance, and the stability of the outputs. The results show that the initial prompt

has a strong impact on the output. The first prompt presents accuracies of 0.76, 0.77, 0.63

for Hate, Offensive, Toxic, respectively. The outputs demonstrate that ChatGPT presents

A Full Hate Speech Detection Pipeline: Leveraging ML, DL, and GPTs 20

an impressive precision value, well above 0.90, for observations that do not contain HOT

content. For observations containing HOT content the precision value drops drastically.

The second prompt used by the authors shows impressive results. The accuracies increase

to 0.87, 0.82, and 0.75, for HOT, respectively. The precision levels also increase for

observations containing HOT content. Furthermore, the authors develop an experience,

asking chatGPT to classify the same comments several times. The outputs served as

input to the Krippendorff’s metric, showing agreement values greater than 90%.

A team of Brazilian researchers employed chatGPT to classify Portuguese Hate Speech

text (Oliveira et al., 2023). The authors compare the performance of ChatGPT turbo 3.5

model with BERTimabu, a BERT based model for Portuguese language. Once again the

results show that the initial prompt has a preponderant influence over the output of the

model. ChatGPT with prompt 1 outperformed BERTimabu in terms of F1-score for the

Hate class, while prompt 2 outperformed BERTimbau in predicting the noHate class.

A Full Hate Speech Detection Pipeline: Leveraging ML, DL, and GPTs 21

4 Methodology

The development of data mining projects is a creative process that can fallow a multi-

tude of structures, meaning that the reason for success or failure is harder to determine,

due to lack of methodology. To solve this issue the Cross Industry Standard Process for

Data Mining (CRISP-DM) was introduced by Wirth and Hipp (2000). The current work

is structured accordingly to the 6 predefined phases of CRISP-DM: (1) Business Under-

standing, (2) Data Understanding, (3) Data Preparation, (4) Modelling, (5) Evaluation,

(6) Deployment (Figure 1). Each phase is explained bellow.

Figure 1: Phases of the Cross Industry Standard Process for Data Mining

The first phase, Business Understanding, is focused on understanding the problem

at hand, its background and context, available resources, terminology, constraints, risks,

contingencies, costs, and benefits. To asses the dimensions components of this project,

the background, context, and terminology are presented in the first and second sections

of the current work, ”Introduction” and ”Concepts”. On the third section, a literature

review is carried out to understand the technology and resources already available for

hate speech detection.

A Full Hate Speech Detection Pipeline: Leveraging ML, DL, and GPTs 22

The Data Understanding is the second phase of CRISP-DM and is reflected in sec-

tion ”Data Processing Pipeline” of the current work. This phase is divided into smaller

sub phases: (1) Initial Data Collection, (2) Data description, (3) Data exploration, and

(4) Quality Assessment. Throughout this phase, the data collection process is described;

Furthermore, key information regarding the dataset is presented, allowing for a better

understanding of the case study.

The third phase of the employed methodology regards to Data Preparation. Se-

lecting, cleaning, integrating, and transforming data are key general steps in every data

mining project. Few are the models that can deal with real world information without

any kind of transformation. In the case of text classification models, the data should be

processed resorting natural language processing (NLP) techniques. In the data prepara-

tion process, the text is first tokenized, followed by the application of text regularization

techniques. Furthermore, sentences were converted from vectors of text tokens to nu-

meric arrays, resorting to vectorization and embedding techniques. In this study the data

is encoded using the Term Frequency-inverse Document Frequency (TF-IDF) vectoriza-

tion method and three state of the art embedding techniques: FastText, Word2Vec, and

GloVe. For each technique, three datasets were created, differing in the dimension of the

vectors. Vector dimensions ranging from 100 to 10,000 were utilized to assess their impact

on performance.

Phase four, Modelling, is responsible for the selection, training, and optimization

of models. Both machine learning (ML) and deep learning (DL) models were trained

to assess their performance in terms of accuracy in detecting hate speech and resource

consumption.

The selected Machine Learning models to perform this study were: (1) Logistic Regres-

sion (LR); (2) XGBoost; (3) LighGBM (LightGBM); (4) K-Nearest Neighbours (KNN);

(5) Näıve Bayes (NB). These models will be trained using different embedding techniques,

dimensions, and hyperparameters. This study leverages Optuna (Akiba et al., 2019), a

hyperparameter optimization framework, to efficiently search within the parameter space

resorting to Bayesian optimization.

Following, a transfer learning approach is employed by leveraging pre-trained BERT-

based models, including: (1) DistilBERT; (2) RoBERT; (3) alBERT. Each models un-

A Full Hate Speech Detection Pipeline: Leveraging ML, DL, and GPTs 23

dergoes a fine-tuning process with the goal of adjusting its weights for the hate speech

detection task. The fine-tuning process is conducted over 10 epochs for each model, incor-

porating techniques such as weight decay, learning rate scheduling, and label smoothing

to mitigate overfitting and enhance generalization.

Finally, Generative Pre-Trained Transformer (GPT) models were employed with the

goal of identifying the starting and ending indexes of hate content within a sentence. The

interaction with these models was made possible by using OpenAI’s API, providing a

user friendly way to programmatically interact with the models. A fine-tuning process

was carried out for the GPT-3.5 Turbo and GPT-4o Mini.

The Evaluation phase is presented in the ”Results” section. Several metrics were

employed to measure the performance of the classification models: Accuracy, Recall, Pre-

cision, F1-Score, and AUC-ROC. A discussion of the performance of the machine learning

models in combination with the the vectorization or embedding models used is presented.

A similar evaluation was carried out for the deep learning models. The performance of

the GPT models was evaluated and compared, stating the importance of fine-tuning this

class of models. A general discussion of the results is presented at the end of the section,

pointing out strengths and weaknesses of the proposed algorithms.

The final phase, Deployment, aims to make the developed solution available for

general use, following state-of-the-art technologies. Python based frameworks for web

development, django (DjangoProject, 2024) and django-rest-framework (DjangoREST-

Framework, 2024), were employed to develop the back-end of the application. The API

implements a POST method that allows users to invoke the specific models on demand,

following a software-as-a-service (SaaS) approach. The user is able to make a POST re-

quest sending a sentence or list of sentences and select a model to classify the sentences

as hateful or non-hateful. The API also implements a GET method allowing users to

download the models for later use in their own projects.

To make the solution available for a greater audience, a React (React, 2024) front-end

application is implemented, allowing interaction with the trained models in an interactive

way, through a graphical user interface (GUI). The front-end is used to structure the

requests, sending them to the back-end, and displaying the responses in a user friendly

way.

A Full Hate Speech Detection Pipeline: Leveraging ML, DL, and GPTs 24

A Full Hate Speech Detection Pipeline: Leveraging ML, DL, and GPTs 25

5 Data Processing Pipeline

5.1 Source and Origin

Hate Speech Classification

This thesis employs a dataset by Mody et al. (2023) that aims at identifying hate speech

in social media through text analysis. It comprises all sorts of content: emojis and

emoticons, hashtags, slang, contractions, and many others, thus suitable for finding all

modern variants of hate speech. Each of them is marked as either hateful or non-hateful;

Such labeling, or categorization, is extremely useful when a machine learning algorithm

is being trained, for the purpose of addressing toxic speech online, on the Internet.

The authors gathered the dataset from various platforms, such as Kaggle and GitHub,

and afterwards applied a rigorous cleaning process. This involves expanding contracted

words and emoticons to make all the text samples in this dataset consistent. As much as it

is possible for this dataset to be bias-free, it is generally neutral; proper names of specific

people and organizations have been avoided where necessary to prevent the harming or

endangerment of persons or for ethical issues. Thus, it is an appropriate and effective one

for various types of research and in practice.

The dataset was retrieved form Kaggle (2023). The repository includes two data sets,

a basic dataset and a augmented one through oversampling. In this work we focus on the

basic dataset.

Hate Speech Detection

HateXplain is a benchmark dataset, curated by Mathew et al. (2020), designed for ex-

plainable hate speech detection, particularly in the context of social media. It comprises

more than 20,000 samples such as posts annotated as hate, or offensive, or normal, with

additional tags showing the target groups of users and the rationale behind the categori-

sation. It also contains human-annotated explanations of which portion of the text is

relevant to the labeling decision. That is why it is useful not only for training hate speech

classification models, but also for indicating the location of hate speech in the text.

A Full Hate Speech Detection Pipeline: Leveraging ML, DL, and GPTs 26

5.2 Data Cleaning

Hate Speech Classification

The cleaning of the social media dataset began with the first two steps entailing data

preparation and preprocessing. First, the loading of the dataset was done, followed by

the cleaning of the erroneous labels for use. The dataset had an initial 440,899 entries.

Afterwards, the labels were corrected and converted into integers so that all the data

would be in correct format before moving into the next cleaning steps.

The first step of cleaning was removing the observations that are not of interest.

The count was then 440,423 entries after removing rows with missing texts. Accordingly,

duplicate entries by text content should be removed, and it goes down to 417,560 entries.

It was performed to search for phrases with URLs; in this conditions no sentences were

found.

The second phases consisted of changing specific text elements without removing

observations. This included anonymizing the usernames by replacing them with a place-

holder ’@user’, convergence of user-related tags, text normalization by putting it into

lower case, removal of certain terms like ’rt’, irrelevant punctuation removal, and removal

of stop words. After those changes, empty and duplicated sentences were removed once

more from the dataset, reducing it to 407,963 entries following cleanup.

The last stage of the cleaning processes regarded the tokenization and lemmatization

techniques. These techniques further reduced the dataset to 407,548 entries because some

duplicated values were generated. The final analysis conducted on cleaned data showed

a label distribution with 81.79% non-hateful entries and 18.21% of hateful entries.

Hate Speech Detection

The HateXplain dataset is structured in JSON file composed of 20,148 documents, each

relative to a post. The first cleaning step involved ensuring that all the documents were

labelled as hateful. Since each post is labeled by multiple annotators, only those unan-

imously labeled as hateful were retained, reducing the dataset size to 2,960 documents.

The second step involved replicating this process for the rationales, ensuring that they

were only included if every index was unanimously labeled. After these two cleaning steps,

the dataset was further reduced to 627 observations. These processes were implemented

to enhance the quality and reliability of the data.

A Full Hate Speech Detection Pipeline: Leveraging ML, DL, and GPTs 27

5.3 Data Description

Hate Speech Classification

Table 1 reflects the dimensions and class distribution of the dataset after the cleaning pro-

cess described above. The dataset is composed of 407,548 sentences, containing 121,588

unique words, reflecting the richness and variability of the language used in social media

communications. On average, a sentence is composed of 21 words. The classes are con-

siderably unbalanced, almost in a 1 to 4 ratio, where non-hateful represent 82% of the

data, while hateful observations have a relative frequency of 18%.

Class Absolute Relative

Non-Hateful 333343 81.8%

Hateful 74205 18.2%

Total 407548 100%

Table 1: Original dataset dimensions and class distribution.

Figure 2 shows two word clouds corresponding to the non-hateful (left) and hateful

classes (right), respectively. These representations provide an immediate intuitive under-

standing of the most frequent words occurring in each class.

Figure 2: Word Clouds: Non-Hateful (left) and Hateful (right) sentences

A Full Hate Speech Detection Pipeline: Leveraging ML, DL, and GPTs 28

Hate Speech Detection

The HateXplain dataset is distinctive in its ability to provide insights into hate speech

across three dimensions: the type of hate speech, its intended target and the reasons

behind the labeling decision. The dataset is structured as a JSON file, as illustrated in

Figure 3, where each document represents a post and contains the following key fields:

• Post ID: A unique identifier for each post.

• Post Tokens: The tokenized version of the post’s text.

• Label: The type of speech identified by the annotators, categorized as ”hateful,”

”offensive,” or ”normal”.

• Target: The group or individual targeted by the hate speech or offensive content.

• Rationales: A binary mask representing the rationale behind each annotator’s

decision, indicating which words influenced the labeling of the post as hateful or

offensive.

Figure 3: Example document of the HateXplain dataset

A Full Hate Speech Detection Pipeline: Leveraging ML, DL, and GPTs 29

5.4 Data Transformation

Hate Speech Classification

The data transformation phase aims to prepare the dataset for modeling, ensuring the

integrity and neutrality of the data throughout the process. Table 1 shows that the

target classes are unbalanced. Past studies have shown that resampling methods play an

important role when working with text classification datasets (Liu, 2004).

In this thesis, the goal is to train models to accurately identify hate speech in text.

A balanced dataset is key to correctly interpret results without bias. Several strategies

exist to handle class distribution imbalance, such as Random Oversampling, Synthetic

Minority Over-sampling Technique, Adaptive Synthetic, and Random Undersampling.

Generally, it has been noticed that Random Oversampling (ROS) happens to be one

of the finest techniques (Rathpisey and Adji, 2019; HENG, 2020; Putra and Nurjanah,

2020). However, though ROS will improve the overall performance of the models, the

same is achieved only by replicating the minority class and results may be improved only

partially. Another downside of ROS is that it possibly distorts the real distribution of

vocabulary across documents.

In this study, we resort to the Random Undersampling technique. This approach was

chosen to preserve the original vocabulary distribution while reducing the dataset size,

enabling the application of more word vectorization techniques, model variations, and

hyper-parameter combinations.

Hateful content is the minority class with a absolute frequency of 74,205. Therefore,

after applying the Random Undersampling, the dataset was reduced to 148,410 observa-

tions. Following, the dataset was split into training (80%) and testing (20%) sets, with

dimensions of 118,728 and 29,682, respectively. The next step involved converting the text

into numeric arrays using four vectorization techniques: Word2Vec, FastText, GloVe, and

TF-IDF. The first three methods are embeddings, requiring a training phase to generate

word representations. We chose to experiment with different vectorization methods and

sizes, ranging between 300 and 10000 parameters, alongside various models to identify

the most effective approach for hate speech detection. The embeddings were trained for

vector sizes of 300, 500 and 1,000 parameters, while TF-IDF was calculated for sizes 3,000,

5,000, 1,0000. Transfer learning was intentionally avoided to focus on understanding the

performance of each vectorization technique using only the dataset at hand, ensuring that

A Full Hate Speech Detection Pipeline: Leveraging ML, DL, and GPTs 30

our findings are tailored specifically to this problem.

Hate Speech Detection

As shown by Figure 3, each database document contains the post tokens along with a list of

binary arrays, that represent the rational behind the labelling decision of the annotators.

These rationals are used in the data preparation phase. Each post token is uppercased if

the corresponding index in the rational array is equal to 1. By implementing this method

to the post tokens it is possible to reduce the dimensionality of the data, by merging

the post tokens and the rational arrays into one single string. Following, the dataset

was split into two samples, train and test, with a 80% / 20% division ratio, respectively.

As Figure 4 shows, the documents of the train sample were structured according to the

openAI’s fine-tuning API documentation (OpenAI, 2024). Each document is composed

of a list of messages, each with a specific purpose in the fine-tuning process. This process

will be explained in greater detail in the Training Process section. The test sample

follows a standard structure, as Figure 5 shows. The ”input” field holds the lowercase

sentence, while the ”output” field contains the uppercased sentence generated based on

the rationals.

Figure 4: GPT fine-tune input file structure

Figure 5: Validation dataset file structure

A Full Hate Speech Detection Pipeline: Leveraging ML, DL, and GPTs 31

6 Training Process

6.1 Machine Learning

Raw Models

This phase aims to find the best performing combination of machine learning models and

vectorization techniques for hate speech detection. In the data transformation phase, a

total of 12 datasets were encoded following distinct techniques. Five machine learning

models, Logistic Regression, Light Gradient Boosting Machine, Extreme Gradient Boost-

ing, Naive Bayes, and K-Nearest Neighbours, were trained on the previously generated

datasets, counting to a total of 60 combinations. The first training process consisted on,

for each combination, training the model using its default parameters, ensuring a fair

comparison between results. To measure the overall performance of the trained models

the accuracy metric was taken into consideration.

Hyperparametrization

For the hyperparameter optimization phase, Optuna, a powerful framework for hyper-

parameter search, was employed to fine-tune the best performing model and encoding

combinations, selected based on accuracy. Each combination underwent 100 trials to

explore a wide range of hyperparameter settings, with the goal of maximizing model

performance.

The optimization process utilized the Tree-structured Parzen Estimator (TPE) sam-

pler, known for its efficiency in navigating complex search spaces, and was further refined

with a Hyperband pruner, which dynamically stops underperforming trials to focus com-

putational resources on more promising candidates. This approach ensured a thorough

and efficient search for the optimal hyperparameters. The tuning process was parallelized

across four jobs to speed up the search, ensuring a comprehensive exploration of hyper-

parameters while improving computational efficiency.

A Full Hate Speech Detection Pipeline: Leveraging ML, DL, and GPTs 32

6.2 Deep Learning

The deep learning training process utilizes transfer learning across four BERT-based mod-

els: DistilBERT, HateBERT, BERT, and RoBERTa. The same methodology is consis-

tently applied to each of these models to ensure uniformity in training and evaluation.

The first step involves performing Optuna studies to fine-tune four key hyperparam-

eters: batch size, weight decay, learning rate, and dropout rate. Given the high dimen-

sionality of the data, using the entire dataset would be computationally prohibitive. As

a solution, each study uses a balanced dataset of 2,000 observations, split into 90% for

training and 10% for validation. To further improve the model efficiency the maximum

token length is set to 64, this choice reduced the dataset size by 3.2%. Padding and

truncation are applied to ensure consistent input sequence lengths. Additionally, gradi-

ent accumulation is set to 4, effectively increasing the batch size and stabilizing gradient

updates during training.

Each trial runs five epochs during which the model undergoes an evaluation step

against the validation set, tracking key metrics like accuracy, precision, recall, and F1-

score, which are logged for subsequent analysis. The training process is carried out using

the AdamW optimizer, a variant of the standard Adam optimizer, that includes regu-

larization techniques such as weight decay to prevent overfitting. The optimizer cosine

scheduler is introduced, with a dropout rate of 0.2 was defined to further reduce the

overfitting chances. This strategy automatically adjusts the learning rate using a cosine

function during the fine-tune, gradually lowering it to ensure smooth convergence without

sudden drops. Finally, a warm-up period of 10% of the steps is introduced, allowing the

model to start learning with smaller, safer updates before ramping up to full learning

capacity.

The outputs of the hyperparameter optimization will be used to train the BERT-

based models on the full dataset over 10 epochs. Throughout the training process, model

evaluation occurs 50 times, ensuring frequent performance monitoring. At the end of

training, the model’s best checkpoint is selected for final testing against the test set.

This entire process is executed on a MacBook Pro equipped with Apple M3 Pro chip

and MPS (Metal Performance Shaders) or GPU acceleration, significantly reducing the

training time.

A Full Hate Speech Detection Pipeline: Leveraging ML, DL, and GPTs 33

6.3 Generative pre-trained transformer

OpenAI offers a selection of pre-trained models that can be invoked for various use-cases.

Furthermore, OpenAI’s API allows users to pragmatically fine-tune their models, thereby

improving their performance at specific tasks. The training process focuses on fine-tuning

the two latest models released by OpenAI, gpt-3.5-turbo-1106 (November, 2023) and gpt-

4o-mini (July, 2024).

Given that OpenAI abstracts the fine-tuning process itself, the only control the user

has is in defining the parameters, such as the number of epochs, learning rate, batch

size, and most importantly, the input file. This file is structured as a JSONL (JSON

Lines) format, where each line represents a separate training example. This means that

the definition of the prompts is of extreme importance to the good performance of the

fine-tuning task. Figure 6 shows an example of a JSONL row.

Figure 6: OpenAI fine-tune input line

A Full Hate Speech Detection Pipeline: Leveraging ML, DL, and GPTs 34

As figure 6 shows, a fine-tune input line is composed of three types of messages. The

”system” message aims to specify the role of the system in this specific task. This prompt

should be concise and clear. The ”user” message represents the prompt that the model will

receive from the user. This prompt can be larger, but must be well organized and clear.

The example presented above divides the task into simpler sub-tasks, while specifying a

tip for the model, as well as a disclaimer note. Finally, the ”assistant” message instructs

GPT on the expected output. In this case, the model should only return the sentence

with the hate content capitalized.

OpenAI has strict ethical policies regarding offensive and hateful content. It does not

allow fine-tuned models to generate specific types of content. Therefore, before starting

the fine-tuning task, the input file is submitted to a validation process. Initially, when

passing the full training dataset, composed of 501 observations, the model would block

the fine-tuning process. After several attempts, we found that passing a smaller number

of observations (e.g., 10) reduced the chances of the model rejecting the input file. To

solve this ethical constraint, the following process was implemented:

1. Initial Sampling: Begin by selecting a random sample of 10 observations from the

training set.

2. Upload and Fine-Tune: Upload this sample to OpenAI and initiate a fine-tuning

job on the chosen model.

3. Save the Model: Once the fine-tuning job is complete, save the output model.

This model will be the basis for the next fine-tuning iteration.

4. Repeat Process: Generate a new random sample of 10 observations, and start a

new fine-tuning job using the previously fine-tuned model as the input.

5. Stopping Criteria: Stop when all the data in the initial set was inputted to the

model, or when a pre-defined number of iterations was reached.

A Full Hate Speech Detection Pipeline: Leveraging ML, DL, and GPTs 35

7 Results

This section compiles the results of the training processes for machine learning, deep

learning, and generative pre-trained transformers. The outcomes for each category are

presented separately in their respective subsections and are then compared and discussed

at the end of this section.

7.1 Machine Learning

The bar chart in Figure 7 illustrates the performance of the machine learning models

combined with four vectorization techniques. The value of each bar represents the average

accuracy obtained across different vector dimensions. The models were trained using their

default parameters. This way it is possible to address the true impact of the vectorization

techniques in the context of hate speech.

Figure 7: Average model performance by vectorization technique

Naive Bayes generally underperforms all the other models across the various vec-

torization techniques, only with TF-IDF it outperforms K-Nearest Neighbours, reaching

and accuracy of 72.5%. On the other hand, K-Nearest Neighbours reaches its highest

accuracy score when combined with Word2Vec, obtaining an accuracy of 77%. The re-

maining three models, LightGBM, XgBoost, and Logistic Regression, present accuracy

values greater than 76% independently of the technique. LightGBM and XgBoost perform

A Full Hate Speech Detection Pipeline: Leveraging ML, DL, and GPTs 36

similarly in terms of accuracy. LightGBM outperforms XgBoost when combined with

FastText and TF-IDF, while XgBoost outperforms LightGBM when allied with GloVe

and Word2Vec. Logistic Regression underperforms the tree based models when combined

with embeddings. Nevertheless, Logistic Regression combined with TF-IDF reached the

highest recorded accuracy, surpassing the 80% mark. On average, the best-performing

model is XGBoost, with an accuracy of 78.8%. The most effective encoding method is

Word2Vec, which achieved an average accuracy of 79.0%.

Table 2 compiles the best 10 combinations, specifying the model and encoding type

and size, as well as the accuracy obtained on the test set. The highest score was obtained

by combining TF-IDF with a vector dimension 10,000 and Logistic Regression, reaching

an accuracy of 80.84%. The second and third best combinations were obtained by combin-

ing Word2Vec with XgBoost (79.38%) and LightGBM (79.25%), respectively. Word2Vec,

GloVe, and FastText were trained with dimensions of 300, 500, and 1000. By analyzing

the top 10 results, it possible to draw several conclusions regarding the vector dimensions:

TF-IDF improves its performance with an higher number of dimensions; Word2Vec em-

bedding performs better with higher dimensions; GloVe and FastText embeddings tend

to perform better with 500 or 300 dimensions.

Model Encoding Dimension Accuracy

Logistic Regression TF-IDF 1,000 0.8084

XGBoost Word2Vec 1,000 0.7938

LightGBM Word2Vec 1,000 0.7925

XGBoost GloVe 500 0.7915

LightGBM GloVe 300 0.7882

LightGBM TF-IDF 10,000 0.7875

LightGBM FastText 500 0.7865

XGBoost FastText 500 0.7861

XGBoost TF-IDF 10,000 0.7847

Logistic Regression GloVe 1,000 0.7835

Table 2: Model performance with different vectorization techniques and sizes.

A Full Hate Speech Detection Pipeline: Leveraging ML, DL, and GPTs 37

For each of the models in Table 2, a study was created based on a large hyperparam-

eter grid, each study was composed of 100 trials. Table 3 presents performance metrics

for the best fine-tuning trial.

Model Encoding Size Accuracy Precision Recall F1-Score

Logistic Regression TF-IDF 10,000 0.8086 0.8092 0.8086 0.8089

XGBoost Word2Vec 1,000 0.8071 0.8451 0.7858 0.8144

LightGBM Word2Vec 1,000 0.8032 0.8378 0.7839 0.8100

XGBoost GloVe 500 0.8112 0.8402 0.7946 0.8167

LightGBM GloVe 300 0.8113 0.8431 0.7930 0.8173

LightGBM TF-IDF 10,000 0.8160 0.8103 0.8201 0.8152

LightGBM FastText 500 0.7989 0.8362 0.7785 0.8063

XGBoost FastText 500 0.8006 0.8399 0.7791 0.8084

XGBoost TF-IDF 10,000 0.8160 0.8099 0.8203 0.8151

Logistic Regression GloVe 1,000 0.7834 0.7786 0.7866 0.7826

Table 3: Performance Metrics for Various Models and Encodings

LightGBM and XGBoost with TF-IDF (dimension 10,000) emerged as the top per-

formers, both achieving accuracies of 0.8160. These results represent a significant improve-

ment over their base performances, improving almost 3% in both cases. By taking into

consideration the F1-scores of these two models, we conclude that LightGBM with TF-

IDF (10,000) was the best performing fine-tuned model. Following, LightGBM alongside

with GloVe (dimension 300) achieved an accuracy score of 0.8113 as well as presented the

highest F1-Score (0.8173). XGBoost models demonstrated a more pronounced response

to fine-tuning. Specifically, XGBoost with GloVe (dimension 500) and XGBoost with

TF-IDF (dimension 10,000) showed notable increases in accuracy, rising from 0.7915 and

0.7847 in Table 2 to 0.8112 and 0.8160 in Table 3. Further examination of performance

metrics, including precision, recall, and F1-Score, reveals that fine-tuning also contributed

to improvements in these areas. For instance, LightGBM with TF-IDF (dimension 10,000)

not only achieved the highest accuracy but also exhibited balanced performance across

precision (0.8103), recall (0.8201), and F1-Score (0.8152). Conversely, Logistic Regression

did not perform as well compared to other models. Despite being fine-tuned, Logistic Re-

A Full Hate Speech Detection Pipeline: Leveraging ML, DL, and GPTs 38

gression with GloVe (dimension 1,000) achieved an accuracy of 0.7834, which is lower than

the other models evaluated. Additionally, Logistic Regression with TF-IDF (dimension

10,000) had a modest accuracy increase from 0.8084 to 0.8086, demonstrating that it did

not see significant improvements. Overall, the results from Table 3 highlight that mod-

els utilizing LightGBM and XGBoost, particularly with TF-IDF and GloVe encodings,

exhibited the most substantial gains in performance following fine-tuning.

Figure 8 presents both the accuracy evolution over the trials and parameter impor-

tance for the best performing model. From the line chart on the left it is observable how

the different combinations of parameters impact the model’s performance. Furthermore,

the chart reflects how Optuna deals with unpromising trials. Most local lows are followed

by an intense increase in accuracy, meaning that the study restores the model parameters

to avoid decreasing the objective function. The bar chart on the right reflects the impor-

tance of the parameters during the fine-tuning. The parameters that presented highest

importance were:

1. Learning Rate: The learning rate is a hyperparameter that controls the size of the

steps the model takes to minimize the loss function during training.

2. Min Data in Leaf : This parameter defines the minimum number of data points

required in a leaf node for a split to be considered, preventing overfitting by ensuring

each leaf contains a sufficient number of observations.

3. Min Gain to Split: It sets the minimum reduction in the loss function required

for a split to be made, ensuring that only significant splits are performed to improve

the model.

Figure 8: Accuracy and feature importance of the LightGBM with TF-IDF fine-tuning.

A Full Hate Speech Detection Pipeline: Leveraging ML, DL, and GPTs 39

7.2 Deep Learning

Optuna was employed to optimize the hyperparameters for each BERT model. Due to

high dimensionality of the data and complexity of the models, conducting a study on the

entire dataset was not feasible. Therefore, each trial was conducted on 2,000 observations.

For each BERT model, an Optuna study with 50 trials was implemented focusing on opti-

mizing the learning rate, batch size, weight decay and dropout rate. The best performing

hyperparameters for each model are presented in table 4.

Model Accuracy Batch Size Learning Rate Weight Decay Dropout Rate

BERT 0.8400 16 0.0002044 0.0467 0.1340

DistilBERT 0.8550 64 0.0004005 0.0838 0.2474

RoBERTa 0.8200 16 0.0000583 0.0176 0.1711

hateBERT 0.8600 32 0.0001790 0.0832 0.2228

Table 4: BERT performances and best hyperparameters

HateBERT achieved the highest accuracy (0.86) during the Optuna study, followed

closely by DistilBERT (0.855). BERT outperformed RoBERTa, which was expected since

RoBERTa, being a larger model, requires a longer training process to reach its full poten-

tial. The combinations presented in Table 4 provide a solid understanding of the optimal

parameters for model training. However, it is important to note that these hyperparam-

eters were derived from training on a subset of 2,000 observations, so their performance

may not generalize as well when applied to the full dataset.

Despite this, the initial training of the BERT-based models on the full dataset was

conducted using the parameters from the Optuna study. The results, however, did not

meet expectations. To address this, a new strategy was implemented. Instead of using

the previously identified “best” hyperparameter combinations, we analyzed the distribu-

tions of the hyperparameters and manually fine-tuned the combinations. This iterative

approach led to significant improvements in the model’s metrics.

The results below were produced using this refined strategy, where hyperparameters

were selected based on their distributions and adjusted iteratively.

When selecting the best model, it is essential to evaluate not only the performance

A Full Hate Speech Detection Pipeline: Leveraging ML, DL, and GPTs 40

metrics but also the evolution of the training and validation loss functions. This helps to

better understand whether the model is overfitting or underfitting. Figure 9 illustrates

the progression of the training and validation loss throughout the training process.

Figure 9: Evolution of the training and evaluation loss function.

The training results of the BERT base uncased clearly show a lack of convergence, both

the training and evaluation loss functions point that there was a problem in the training

process of this model. Following, DistilBERT uncased shows a converging training loss,

but a diverging evaluation loss, pointing to a high degree of overfitting, especially after the

30th evaluation step. RoBERTa is clearly the model that shows more robustness against

overfitting, finishing with a evaluation loss bellow the 0.4 mark. HateBERT shows a

certain degree of overfitting after the 20th evaluation step, nevertheless, the evaluation

loss does not increase significantly throughout the training process like observed in both

BERT base uncased and DistilBERT uncased.

To further analyze the performance of the BERT models, Figure 10 shows the evo-

lution of the accuracy, f1-score, precision and recall. The model that achieved the best

checkpoint was HateBERT on evaluation step 30, with an accuracy of 0.846 and the re-

maining metrics all above the 0.845 level. Nevertheless, as seen in Figure 9, this model fell

into overfitting, not being able to generalize the parameters for unseen data. On the other

hand, RoBERTa presented a much more robust evaluation loss, that is also reflected on

A Full Hate Speech Detection Pipeline: Leveraging ML, DL, and GPTs 41

Figure 10, where we see that it improves its metrics until step 30 and then stabilizes them,

instead of dropping the performance, as seen in other models. Both BERT-base uncased

and DistilBERT-base uncased show similar metric evolutions. These models start with

the highest baseline metrics on step 1, explainable by the fewer parameters that constitute

the model. DistilBERT underperfomrs the remaining models for most part of the training

process, while BERT presents the best results until step 20. After step 30 both model

suffer a decrease in performance and converge to an accuracy value of 0.83.

Figure 10: Metrics evolution for BERT-based models

From each model the best checkpoint was saved and used to predict on the full test

set. Table 5 presents this final results. Once more RoBERTa shows a higher robustness

towards generalization; In presence of the full test data, it proved to be the best model,

achieving an accuracy of almost 0.84. The remaining BERT models all presented reduction

in performance when confronted with high volumes of unseen data.

Model Accuracy F1-Score Precision Recall

BERT 0.8307 0.8300 0.8357 0.8306

DistilBERT 0.8288 0.8286 0.8307 0.8287

RoBERTa 0.8392 0.8391 0.8400 0.8392

hateBERT 0.8327 0.8325 0.8337 0.8327

Table 5: Best model performance on test set.

A Full Hate Speech Detection Pipeline: Leveraging ML, DL, and GPTs 42

7.3 Generative pre-trained transformer

The generative pre-trained transformer models were used to detect hateful content within

sentences. This task involves multiple classification tasks, where the model classifies each

word as hateful or non-hateful. The final output is the aggregation of these predictions.

The following metrics were used to measure the performance of the models:

1. Average Accuracy: The accuracy is calculated by dividing the number of accu-

rately classified words by the total number of words within the sentence. This metric

is calculated for each observation on the test set. At the end, the average accuracy

ratio of the model is calculated.

2. Average Precision: The precision metric provides insight into the model’s ability

to avoid classifying false positives. In this context, a false positive is a non-hateful

word classified as hateful.

3. Average Recall: The recall metric, also known as sensitivity, measures the robust-

ness of the model in identifying all the relevant instances, by counting the proportion

of false negatives. A false negative is a hateful word classified as non-hateful.

4. Average F1-Score: The F1-Score is the harmonic mean of precision and recall,

balancing both metrics to provide a single measure of a model’s accuracy on a

dataset.

Figure 11 presents four line charts containing the metrics evolution during the fine-

tune iteration process. The charts contain the accuracy, precision, recall, and F1-score

values for both GPT-4o Mini and GPT-3.5 Turbo base models and evolution across fine-

tuning process.

The horizontal dashed lines mark the performance of the base models, with no fine-tune

applied. Base GPT-4o Mini clearly outperforms base GPT-3.5 Turbo on all four metrics,

presenting accuracy values of 92.02% and 68.89%, respectively. Nevertheless, GPT-3.5

Turbo outperforms GPT-4o Mini when focusing on the improve of performance during

the fine-tuning, after a single iteration GPT-3.5 improves its accuracy by 16.83%. while

GPT-4o sees an improve of only 1.53%. The highest accuracy value for GPT-4o Mini is

obtained on the sixth iteration, where it achieves its maximum value of 95.99%. As for

GPT 3.5 Turbo, the highest accuracy is obtained on the fourth iteration, presenting a

A Full Hate Speech Detection Pipeline: Leveraging ML, DL, and GPTs 43

score of 94.88%.

The precision metric evaluates the model’s accuracy in correctly identifying true posi-

tives while minimizing false positives. Both GPT-4o and GPT-3.5 demonstrate very high

precision, with 98.52% and 97.90%, respectively. The recall metric measures the model’s

ability to correctly identify all true positives, minimizing false negatives. This was the

only metric that did not generally improve during the fine-tuning. GPT-4o Mini never

reaches its base recall value (96.77%), while GPT-3.5 Turbo is only able to improve its

base recall (90.69%) in iteration seven, by 1.40%.

The F1-score is a key metric in this scenario given that it is the harmonic mean of

precision and recall, providing a balanced measure that considers both false positives and

false negatives. It is visible that the trade-off between the increase in precision and the

decrease in recall is positive for both models. GPT-4o Mini presents a maximum F1-score

of 96.10%, while GPT-3.5 Turbo reaches a percentage of 93.76%.

Overall, both models present a solid increase in performance across the fine-tuning

process. This analysis concludes that even with a reduction in recall, the fine-tuned mod-

els present a better performance compared to the base models, especially when considering

GPT-3.5 Turbo.

Figure 11: GPT fine-tune performance metrics

A Full Hate Speech Detection Pipeline: Leveraging ML, DL, and GPTs 44

A Full Hate Speech Detection Pipeline: Leveraging ML, DL, and GPTs 45

8 HateFinder

In this phase the development of the HateFinder web application is explained. HateFinder

allows users to directly interact with the developed models, through an User Graphical

Interface (GUI) or Application Programming Interface (API).

Back-end

The back-end was developed using the most robust web-development framework in the

python ecosystem, Django. This framework supports both front-end and back-end de-

velopment. For the current use-case, django is only used to build the HateFinder API,

resorting to the django-rest-framework package. The API is composed of two GET meth-

ods and two POST methods.

The GET methods are important to list the model available for use. The GET method

”/list-combinations” returns a list of strings specifying the names of the combined models

available for use. The second GET method, ”/list-embeddings” returns a list of strings

specifying the names of the embeddings used to encoded the data. Both the combined

models and the embedding parameters can be downloaded for later use.

The first POST method, ”/detect”, allows users to send a list of strings and specify

the name of the model used for the classification of the text. Once the selected model

classifies the sentences, those classified as ”hateful” are passed to a fine-tuned GPT-4o

Mini model. The GPT model receives the sentence within the prompt (Figure 6) and

returns a boolean array with each index corresponding to a word within the sentence.

The second POST method, ”/download”, enables downloading the model parameters,

both from the embedding and classifiers models, allowing users to apply this model in

other use-cases.

Front-end

React is a widely known Typescript framework for front-end development. It was used

to create a GUI that users to interact with the trained models in an abstracted and user-

friendly way. This web based application receives two input variables: the text to be

classified and the model name. These two input fields are then passed to the HateFinder

API, which provides two possible types of responses:

1. Hateful: The response is a boolean array where each element corresponds to a word

A Full Hate Speech Detection Pipeline: Leveraging ML, DL, and GPTs 46

in the input. A ‘true‘ value indicates a hateful word, while a ‘false‘ value indicates a

non-hateful word. React utilizes this hate mask to dynamically apply Tailwind CSS

classes, highlighting hateful words by enclosing them in a red box.

2. Non-hateful: The response is an empty array, indicating that no hateful content

was detected.

System Architecture

Figure 12 presents a diagram of the HateFinder architecture. The flow starts with a user

input, specifying a text to be classified and the model name to classify it. The front-end

passes these variables in the body of the POST ”/detect” method. The API encodes the

input text using the correct embedding given the model selected by the user. The encoded

vector serves as input to the selected classifier model. If the model does not detect hateful

content, an empty array is sent has response. If the model classifies the text as hateful,

the input text is passed to a fine-tuned instance of GPT-4o Mini. The API returns a

binary hate mask that is used by react to redirect hateful words to Hatebase’s website.

Figure 12: HateFinder Architecture

A Full Hate Speech Detection Pipeline: Leveraging ML, DL, and GPTs 47

9 Conclusion

In this thesis a wide range of knowledge, techniques and models were employed to develop

a pipeline for effectively detecting hate speech at a sentence and word level. Multiple fam-

ilies of models were trained, starting by the traditional machine learning family, passing

through the complex neural networks of deep learning, and finally arriving at the lat-

est class of models, the generative pre-trained transformers. This study confirms what

the literature had already proved, BERT based models present a clear boost in perfor-

mance as compared to classic machine learning models (Hasan et al., 2022; Mozafari et al.,

2020,?; Dowlagar and Mamidi, 2021; Lavergne et al., 2020). Nevertheless, machine learn-

ing models play an important role in production environments given their much higher

computation efficiency. Even though deep learning models are the clear choice when it

comes to model performance metrics, these are often not used in production because they

lack explainability. As a solution, in this thesis we presented a innovative way of bringing

explainability to the table leveraging GPT. To effectively point out the key findings of

this study we end it by answering to the questions formed at the very beginning.

What is the best combination of machine learning models and vectorization

techniques for effectively detecting hate speech at a sentence level?

The best combination of model, vectorization techniques and hyperparameters will always

depend on the data. Therefore the focus should not be on what the best combination

might be, but how to find this combination. In this thesis we successfully developed a

machine learning pipeline leveraging Optuna to find the best combination of model and

vectorization techniques. These pipeline can easily be generalized to different datasets

and use greater variety of models. For our specific dataset the best performing technique

was obtained by combining LightGBM with TF-IDF of size 10,000, achieving an accuracy

of 0.816 and a F1-score of 0.815. XGBoost with TF-IDF of size 10,000 and LightGBM

with GloVe of size 300 also presented high accuracy values, 0.816 and 0.811, respectively.

Comparing the results obtained in this thesis with the literature is not feasible, given

that the results are highly dependant on the dataset. Therefore, we use the work of Ka-

terina (2024) for comparison purposes. Although the dataset is the same, the author uses

the oversampled version; As shown in the literature, using oversampled datasets results in

a general increase of the performance metrics. Nevertheless, by using the undersampled

A Full Hate Speech Detection Pipeline: Leveraging ML, DL, and GPTs 48

dataset we were able to increase the metric performance. Katerinas’s best performing ma-

chine leaning model was obtained by combining TF-IDF with logistic regression, achieving

an accuracy of 0.77. Our best performing model was able to successfully surpass this level

by 0.046.

How can we leverage the most of BERT-based models for hate speech detec-

tion?

BERT models are computationally expensive to train, making it challenging to find and

optimize their hyperparameters. To address this limitation, the training was split into two

phases. The first phase involved conducting Optuna studies on subsamples of the original

data, allowing for the exploration of hyperparameter distributions. The second phase

leveraged the insights gained from the first to effectively select viable hyperparameters.

This approach reduces computational costs while delivering high-quality results. During

the training process, HateBERT seemed the most promising model, presenting the highest

performance. Despite this, during the training, RoBERTa presented itself as the most

robust model against overfitting. This tendency was later proved when all the model

were tested on the full test data and RoBERTa outperformed HateBERT by achieving an

accuracy of 0.8392 and a F1-score of 0.8391.

Katerina (2024) trains BERT-base uncased on the oversampled dataset and achieves

a 0.83 accuracy score. Our BERT-base uncased model achieves the same result using the

undersampled dataset. Furthermore, by introducing RoBERTa and hateBERT we were

able to increase the accuracy by 0.01.

A second work performed on the same oversampled dataset achieves an accuracy score

of 0.80 using RoBERTa (WHATS2000, 2024). This shows that the hyperparameters

found during out Optuna study add a positive impact on the RoBERTa training process,

improving the accuracy score by 0.04.

How can generative pre-trained transformers be leveraged to improve model

explainability at a word level?

The highlight of the current work lies on the strategy created to bring explainability to the

hate speech detection task. This task is most of the times performed at a sentence level

generating a single output, either true or false. The fine-tuned generative pre-trained

transformers were able to give a label to each word in the sentence, returning a much

A Full Hate Speech Detection Pipeline: Leveraging ML, DL, and GPTs 49

more complex and interpretative output. These models were fine-tuned to understand

the rational behind the annotators decision at a word level. The ethical terms of OpenAI

were a challenge during the fine-tuning of the models, but we found a solution by build-

ing an iterative fine-tuning architecture. The results obtained in this phase show that

GPT-4o Mini outperforms GPT-3.5 Turbo in all metrics. Nevertheless, the fine-tuning

evolution shows that GPT-3.5 Turbo is much more adaptable than GPT-4o Mini. The

best fine-tuning iteration obtained the ambitious accuracy value of 0.959 and a F1-score

of 0.961. No other studies applying this methodology on the same dataset were found,

therefore not allowing for direct comparison of results.

How can we deploy the models from this study in a user-friendly way using

modern web development frameworks?

As a final step of this thesis, a web based application was developed to allow both pro-

gramming and non-programming users. For the programming users the back-end created

with django-rest-framework allows for calling the models via API, thus enabling their use

in other projects and different applications. For the non-programming user a simple and

clean GUI was developed resorting to React framework. This interface allows a user to

load a sentence and get an output relative to the hate within the sentence at a word level.

The continuous evolution of generative pre-trained transformers will allow for further

exploring the field of explainability in hate speech classification tasks. For fully leveraging

the benefits of GPTs to the hate speech detection area, it is important that OpenAI allows

researchers to access models with lower ethical restrictions.

For future work we want to optimize and generalize the developed code to create

a hate speech detection framework that can easily be applied to different projects and

datasets for enhancing the performance of the hate speech detection and classification

tasks. Furthermore, carrying out the Optuna studies more trials with higher volumes of

data would lead to better hyperparameter combinations both for machine learning and

deep learning models.

A Full Hate Speech Detection Pipeline: Leveraging ML, DL, and GPTs 50

Bibliography

Adoum Sanoussi, M. S., Xiaohua, C., Agordzo, G. K., Guindo, M. L., Al Omari, A. M.,

and Issa, B. M. (2022). Detection of hate speech texts using machine learning algorithm.

In 2022 IEEE 12th Annual Computing and Communication Workshop and Conference

(CCWC), pages 0266–0273.

Akiba, T., Sano, S., Yanase, T., Ohta, T., and Koyama, M. (2019). Optuna: A next-

generation hyperparameter optimization framework. In Proceedings of the 25th ACM

SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD ’19,

page 2623–2631, New York, NY, USA. Association for Computing Machinery.

Alatawi, H. S., Alhothali, A. M., and Moria, K. M. (2021). Detecting white supremacist

hate speech using domain specific word embedding with deep learning and bert. IEEE

Access, 9:106363–106374.

Aljarah, I., Habib, M., Hijazi, N., Faris, H., Qaddoura, R., Hammo, B., Abushariah, M.,

and Alfawareh, M. (2021). Intelligent detection of hate speech in arabic social network:

A machine learning approach. Journal of information science, 47(4):483–501.

Alrehili, A. (2019). Automatic hate speech detection on social media: A brief survey. In

2019 IEEE/ACS 16th International Conference on Computer Systems and Applications

(AICCSA), pages 1–6.

Alshalan, R. and Al-Khalifa, H. (2020). A deep learning approach for automatic hate

speech detection in the saudi twittersphere. Applied Sciences, 10(23):8614.

Assimakopoulos, S., Baider, F. H., and Millar, S. (2017). Online hate speech in the

European Union: a discourse-analytic perspective. Springer Nature.

Bojanowski, P., Grave, E., Joulin, A., and Mikolov, T. (2017). Enriching word vectors

A Full Hate Speech Detection Pipeline: Leveraging ML, DL, and GPTs 51

with subword information. Transactions of the association for computational linguistics,

5:135–146.

Brown, A. (2015). Hate speech law: A philosophical examination. Taylor & Francis.

Brown, T. B. (2020). Language models are few-shot learners. arXiv preprint

arXiv:2005.14165.

Cao, R. and Lee, R. K.-W. (2020). Hategan: Adversarial generative-based data augmen-

tation for hate speech detection. In Proceedings of the 28th International Conference

on Computational Linguistics, pages 6327–6338.

Cho, K., van Merrienboer, B., Gülçehre, Ç., Bougares, F., Schwenk, H., and Bengio,

Y. (2014). Learning phrase representations using RNN encoder-decoder for statistical

machine translation. CoRR, abs/1406.1078.

COMMISSION, E. (2021). Com(2021) 777 final. communication from the commission

to the european parliament and the council. a more inclusive and protective europe:

extending the list of eu crimes to hate speech and hate crime.

Devlin, J. (2018). Bert: Pre-training of deep bidirectional transformers for language

understanding. arXiv preprint arXiv:1810.04805.

DjangoProject (2024). Django: The web framework for perfectionists with deadlines.

https://www.djangoproject.com/ [Accessed: (2024-05-26)].

DjangoRESTFramework (2024). Django rest framework. https://www.

django-rest-framework.org/ [Accessed: (2024-05-26)].

Dowlagar, S. and Mamidi, R. (2021). Hasocone@ fire-hasoc2020: Using bert and multi-

lingual bert models for hate speech detection. arXiv preprint arXiv:2101.09007.

Fernando, W., Weerasinghe, R., and Bandara, E. (2022). Sinhala hate speech detection

in social media using machine learning and deep learning. In 2022 22nd International

Conference on Advances in ICT for Emerging Regions (ICTer), pages 166–171. IEEE.

Gao, A. (2023). Prompt engineering for large language models. Available at SSRN

4504303.

A Full Hate Speech Detection Pipeline: Leveraging ML, DL, and GPTs 52

Gutiérrez, L. and Keith, B. (2019). A systematic literature review on word embeddings.

In Trends and Applications in Software Engineering: Proceedings of the 7th Interna-

tional Conference on Software Process Improvement (CIMPS 2018) 7, pages 132–141.

Springer.

Habert, B., Adda, G., Adda-Decker, M., de Mareüil, P. B., Ferrari, S., Ferret, O., Illouz,

G., and Paraubeck, P. (1998). Towards tokenization evaluation. In Lrec, pages 427–432.

Hartvigsen, T., Gabriel, S., Palangi, H., Sap, M., Ray, D., and Kamar, E. (2022). Toxi-

gen: A large-scale machine-generated dataset for adversarial and implicit hate speech

detection. arXiv preprint arXiv:2203.09509.

Hasan, A., Sharma, T., Khan, A., and Hasan Ali Al-Abyadh, M. (2022). [retracted]

analysing hate speech against migrants and women through tweets using ensembled

deep learning model. Computational Intelligence and Neuroscience, 2022(1):8153791.

Hashmi, E., Yildirim Yayilgan, S., Hameed, I. A., Mudassar Yamin, M., Ullah, M., and

Abomhara, M. (2024). Enhancing multilingual hate speech detection: From language-

specific insights to cross-linguistic integration. IEEE Access, 12:121507–121537.

HENG, R. (2020). HANDLING IMBALANCE PROBLEM IN HATE SPEECH CLASSI-

FICATION USING SAMPLING-BASED METHODS. PhD thesis, Universitas Gadjah

Mada.

Hietanen, M. and Eddebo, J. (2023). Towards a definition of hate speech—with a focus

on online contexts. Journal of communication Inquiry, 47(4):440–458.

Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural computation,

9(8):1735–1780.

Joulin, A., Grave, E., Bojanowski, P., and Mikolov, T. (2016). Bag of tricks for efficient

text classification. arXiv preprint arXiv:1607.01759.

Kaggle (2023). A curated hate speech detection dataset. https://www.kaggle.

com/datasets/waalbannyantudre/hate-speech-detection-curated-dataset [Ac-

cessed: 2024-05-10].

Katerina (2024). Hate speech detection from td-idf to

A Full Hate Speech Detection Pipeline: Leveraging ML, DL, and GPTs 53

transformers. https://www.kaggle.com/code/abramova/

hate-speech-detection-from-tf-idf-to-transformers [Accessed: 2024-05-10].

Khyani, D., Siddhartha, B., Niveditha, N., and Divya, B. (2021). An interpretation of

lemmatization and stemming in natural language processing. Journal of University of

Shanghai for Science and Technology, 22(10):350–357.

Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P., and Soricut, R. (2020). Albert:

A lite bert for self-supervised learning of language representations.

Lavergne, E., Saini, R., Kovács, G., and Murphy, K. (2020). Thenorth@ haspeede 2:

Bert-based language model fine-tuning for italian hate speech detection. Proceedings of

the Seventh Evaluation Campaign of Natural Language Processing and Speech Tools for

Italian (EVALITA 2020), 2765:142–147.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning

applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324.

Li, L., Fan, L., Atreja, S., and Hemphill, L. (2024). “hot” chatgpt: The promise of chatgpt

in detecting and discriminating hateful, offensive, and toxic comments on social media.

ACM Transactions on the Web, 18(2):1–36.

Liu, A. Y.-c. (2004). The effect of oversampling and undersampling on classifying imbal-

anced text datasets.

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M., Zettlemoyer,

L., and Stoyanov, V. (2019). Roberta: A robustly optimized bert pretraining approach.

Majumder, P., Mitra, M., and Chaudhuri, B. (2002). N-gram: a language independent

approach to ir and nlp. In International conference on universal knowledge and language,

volume 2.

Mathew, B., Saha, P., Yimam, S. M., Biemann, C., Goyal, P., and Mukherjee, A.

(2020). Hatexplain: A benchmark dataset for explainable hate speech detection. CoRR,

abs/2012.10289.

Mielke, S. J., Alyafeai, Z., Salesky, E., Raffel, C., Dey, M., Gallé, M., Raja, A., Si, C.,

Lee, W. Y., Sagot, B., et al. (2021). Between words and characters: A brief history of

open-vocabulary modeling and tokenization in nlp. arXiv preprint arXiv:2112.10508.

A Full Hate Speech Detection Pipeline: Leveraging ML, DL, and GPTs 54

Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013a). Efficient estimation of word

representations in vector space. arXiv preprint arXiv:1301.3781.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and Dean, J. (2013b). Distributed

representations of words and phrases and their compositionality. Advances in neural

information processing systems, 26.

Mody, D., Huang, Y., and de Oliveira, T. E. A. (2023). A curated dataset for hate speech

detection on social media text. Data in Brief, 46:108832.

Mozafari, M., Farahbakhsh, R., and Crespi, N. (2020). A bert-based transfer learning

approach for hate speech detection in online social media. In Complex Networks and

Their Applications VIII: Volume 1 Proceedings of the Eighth International Conference

on Complex Networks and Their Applications, pages 928–940. Springer. Presented at

the Eighth International Conference on Complex Networks and Their Applications.

Mutanga, R. T., Naicker, N., and Olugbara, O. O. (2020). Hate speech detection in twitter

using transformer methods. International Journal of Advanced Computer Science and

Applications, 11(9).

Ojo, O. E., Hoang, T. T., Gelbukh, A., Calvo, H., Sidorov, G., and Adebanji, O. O. (2022).

Automatic hate speech detection using cnn model and word embedding. Computación

y Sistemas, 26(2).

Oliveira, A. S., Cecote, T. C., Silva, P. H., Gertrudes, J. C., Freitas, V. L., and Luz, E. J.

(2023). How good is chatgpt for detecting hate speech in portuguese? In Anais do

XIV Simpósio Brasileiro de Tecnologia da Informação e da Linguagem Humana, pages

94–103. SBC.

OpenAI (2024). Fine-tuning - openai api. https://platform.openai.com/docs/

guides/fine-tuning [Accessed: 2024-08-18].

OpenAI, Achiam, J., Adler, S., Agarwal, S., Ahmad, L., Akkaya, I., Aleman, F. L.,

Almeida, D., Altenschmidt, J., Altman, S., Anadkat, S., Avila, R., Babuschkin, I., Bal-

aji, S., Balcom, V., Baltescu, P., Bao, H., Bavarian, M., Belgum, J., Bello, I., Berdine,

J., Bernadett-Shapiro, G., Berner, C., Bogdonoff, L., Boiko, O., Boyd, M., Brakman,

A.-L., Brockman, G., Brooks, T., Brundage, M., Button, K., Cai, T., Campbell, R.,

Cann, A., Carey, B., Carlson, C., Carmichael, R., Chan, B., Chang, C., Chantzis, F.,

A Full Hate Speech Detection Pipeline: Leveraging ML, DL, and GPTs 55

Chen, D., Chen, S., Chen, R., Chen, J., Chen, M., Chess, B., Cho, C., Chu, C., Chung,

H. W., Cummings, D., Currier, J., Dai, Y., Decareaux, C., Degry, T., Deutsch, N.,

Deville, D., Dhar, A., Dohan, D., Dowling, S., Dunning, S., Ecoffet, A., Eleti, A.,

Eloundou, T., Farhi, D., Fedus, L., Felix, N., Fishman, S. P., Forte, J., Fulford, I.,

Gao, L., Georges, E., Gibson, C., Goel, V., Gogineni, T., Goh, G., Gontijo-Lopes, R.,

Gordon, J., Grafstein, M., Gray, S., Greene, R., Gross, J., Gu, S. S., Guo, Y., Hallacy,

C., Han, J., Harris, J., He, Y., Heaton, M., Heidecke, J., Hesse, C., Hickey, A., Hickey,

W., Hoeschele, P., Houghton, B., Hsu, K., Hu, S., Hu, X., Huizinga, J., Jain, S., Jain,

S., Jang, J., Jiang, A., Jiang, R., Jin, H., Jin, D., Jomoto, S., Jonn, B., Jun, H., Kaftan,

T., Lukasz Kaiser, Kamali, A., Kanitscheider, I., Keskar, N. S., Khan, T., Kilpatrick,

L., Kim, J. W., Kim, C., Kim, Y., Kirchner, J. H., Kiros, J., Knight, M., Kokotajlo, D.,

 Lukasz Kondraciuk, Kondrich, A., Konstantinidis, A., Kosic, K., Krueger, G., Kuo, V.,

Lampe, M., Lan, I., Lee, T., Leike, J., Leung, J., Levy, D., Li, C. M., Lim, R., Lin, M.,

Lin, S., Litwin, M., Lopez, T., Lowe, R., Lue, P., Makanju, A., Malfacini, K., Manning,

S., Markov, T., Markovski, Y., Martin, B., Mayer, K., Mayne, A., McGrew, B., McK-

inney, S. M., McLeavey, C., McMillan, P., McNeil, J., Medina, D., Mehta, A., Menick,

J., Metz, L., Mishchenko, A., Mishkin, P., Monaco, V., Morikawa, E., Mossing, D., Mu,

T., Murati, M., Murk, O., Mély, D., Nair, A., Nakano, R., Nayak, R., Neelakantan, A.,

Ngo, R., Noh, H., Ouyang, L., O’Keefe, C., Pachocki, J., Paino, A., Palermo, J., Pantu-

liano, A., Parascandolo, G., Parish, J., Parparita, E., Passos, A., Pavlov, M., Peng, A.,

Perelman, A., de Avila Belbute Peres, F., Petrov, M., de Oliveira Pinto, H. P., Michael,

Pokorny, Pokrass, M., Pong, V. H., Powell, T., Power, A., Power, B., Proehl, E., Puri,

R., Radford, A., Rae, J., Ramesh, A., Raymond, C., Real, F., Rimbach, K., Ross, C.,

Rotsted, B., Roussez, H., Ryder, N., Saltarelli, M., Sanders, T., Santurkar, S., Sastry,

G., Schmidt, H., Schnurr, D., Schulman, J., Selsam, D., Sheppard, K., Sherbakov, T.,

Shieh, J., Shoker, S., Shyam, P., Sidor, S., Sigler, E., Simens, M., Sitkin, J., Slama, K.,

Sohl, I., Sokolowsky, B., Song, Y., Staudacher, N., Such, F. P., Summers, N., Sutskever,

I., Tang, J., Tezak, N., Thompson, M. B., Tillet, P., Tootoonchian, A., Tseng, E., Tug-

gle, P., Turley, N., Tworek, J., Uribe, J. F. C., Vallone, A., Vijayvergiya, A., Voss, C.,

Wainwright, C., Wang, J. J., Wang, A., Wang, B., Ward, J., Wei, J., Weinmann, C.,

Welihinda, A., Welinder, P., Weng, J., Weng, L., Wiethoff, M., Willner, D., Winter, C.,

Wolrich, S., Wong, H., Workman, L., Wu, S., Wu, J., Wu, M., Xiao, K., Xu, T., Yoo,

S., Yu, K., Yuan, Q., Zaremba, W., Zellers, R., Zhang, C., Zhang, M., Zhao, S., Zheng,

A Full Hate Speech Detection Pipeline: Leveraging ML, DL, and GPTs 56

T., Zhuang, J., Zhuk, W., and Zoph, B. (2024). Gpt-4 technical report.

Optuna (2024a). Optuna. https://optuna.org/ [Accessed: (2024-05-26)].

Optuna (2024b). Optuna dashboard github. https://github.com/optuna/

optuna-dashboard [Accessed: (2024-05-26)].

Optuna (2024c). Optuna github. https://github.com/optuna/optuna [Accessed:

(2024-05-26)].

Paul, C. and Bora, P. (2021). Detecting hate speech using deep learning techniques.

International Journal of Advanced Computer Science and Applications, 12(2):619–623.

Pennington, J., Socher, R., and Manning, C. (2014). GloVe: Global vectors for word

representation. In Moschitti, A., Pang, B., and Daelemans, W., editors, Proceedings of

the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP),

pages 1532–1543, Doha, Qatar. Association for Computational Linguistics.

Pluta, A., Mazurek, J., Wojciechowski, J., Wolak, T., Soral, W., and Bilewicz, M. (2023).

Exposure to hate speech deteriorates neurocognitive mechanisms of the ability to un-

derstand others’ pain. Scientific Reports, 13(1):4127.

Putra, I. G. M. and Nurjanah, D. (2020). Hate speech detection in indonesian language

instagram. In 2020 International Conference on Advanced Computer Science and In-

formation Systems (ICACSIS), pages 413–420. IEEE.

Qader, W. A., Ameen, M. M., and Ahmed, B. I. (2019). An overview of bag of words;

importance, implementation, applications, and challenges. In 2019 international engi-

neering conference (IEC), pages 200–204. IEEE.

Radford, A. (2018). Improving language understanding by generative pre-training.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I., et al. (2019). Lan-

guage models are unsupervised multitask learners. OpenAI blog, 1(8):9.

Rani, D., Kumar, R., and Chauhan, N. (2022). Study and comparision of vectoriza-

tion techniques used in text classification. In 2022 13th International Conference on

Computing Communication and Networking Technologies (ICCCNT), pages 1–6. IEEE.

A Full Hate Speech Detection Pipeline: Leveraging ML, DL, and GPTs 57

Rathpisey, H. and Adji, T. B. (2019). Handling imbalance issue in hate speech classifica-

tion using sampling-based methods. In 2019 5th International Conference on Science

in Information Technology (ICSITech), pages 193–198. IEEE.

React (2024). React. https://react.dev/ [Accessed: (2024-06-10)].

Reichel, M. (2022). Explainability in Hate Speech Detection. PhD thesis, Technische

Universität Wien.

Rodŕıguez, P., Bautista, M. A., Gonzalez, J., and Escalera, S. (2018). Beyond one-hot

encoding: Lower dimensional target embedding. Image and Vision Computing, 75:21–

31.

Saifullah, S., Dreżewski, R., Dwiyanto, F. A., Aribowo, A. S., Fauziah, Y., and Cahyana,

N. H. (2024). Automated text annotation using a semi-supervised approach with meta

vectorizer and machine learning algorithms for hate speech detection. Applied Sciences,

14(3):1078.

Salton, G., Wong, A., and Yang, C.-S. (1975). A vector space model for automatic

indexing. Communications of the ACM, 18(11):613–620.

Sanh, V., Debut, L., Chaumond, J., and Wolf, T. (2020). Distilbert, a distilled version of

bert: smaller, faster, cheaper and lighter.

Schuster, M. and Paliwal, K. (1997). Bidirectional recurrent neural networks. Signal

Processing, IEEE Transactions on, 45:2673 – 2681.

Seger, C. (2018). An investigation of categorical variable encoding techniques in machine

learning: binary versus one-hot and feature hashing.

Shawkat, N. (2023). Evaluation of different machine learning, deep learning and text

processing techniques for hate speech detection.

Shibly, A., Sharma, U., and Naleer, H. (2022). Performance Comparison of Machine

Learning and Deep Learning Algorithms in Detecting Online Hate Speech, pages 695–

706.

Shibly, F., Sharma, U., and Naleer, H. (2021). Detection of online hate speech in sinhala

text using machine and deep learning algorithms: A comparative study.

A Full Hate Speech Detection Pipeline: Leveraging ML, DL, and GPTs 58

Silva, L., Mondal, M., Correa, D., Benevenuto, F., and Weber, I. (2021). Analyzing the

targets of hate in online social media. Proceedings of the International AAAI Conference

on Web and Social Media, 10(1):687–690.

Stanford, U. (2024). Glove: Global vectors for word representation. https://nlp.

stanford.edu/projects/glove/ [Accessed: (2024-05-26)].

Toktarova, A., Syrlybay, D., Myrzakhmetova, B., Anuarbekova, G., Rakhimbayeva, G.,

Zhylanbaeva, B., Suieuova, N., and Kerimbekov, M. (2023). Hate speech detection

in social networks using machine learning and deep learning methods. International

Journal of Advanced Computer Science and Applications, 14(5).

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L.,

and Polosukhin, I. (2017). Attention is all you need. CoRR, abs/1706.03762.

Wang, Y.-S. and Chang, Y. (2022). Toxicity detection with generative prompt-based

inference. arXiv preprint arXiv:2205.12390.

WHATS2000(2024). [roberta]lm − bff(manually)textclassification. [Accessed: 2024-05-

10].

Wirth, R. and Hipp, J. (2000). Crisp-dm: Towards a standard process model for data

mining. In Proceedings of the 4th international conference on the practical applications

of knowledge discovery and data mining, volume 1, pages 29–39. Manchester.

Wullach, T., Adler, A., and Minkov, E. (2020). Towards hate speech detection at large

via deep generative modeling. IEEE Internet Computing, 25(2):48–57.

