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THE POSITIVITY OF THE NEURAL TANGENT KERNEL1
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3
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(2)CENTRO DE ANÁLISE MATEMÁTICA, GEOMETRIA E SISTEMAS DINÂMICOS, INSTITUTO SUPERIOR TÉCNICO, UNIVERSIDADE DE LISBOA,5

AV. ROVISCO PAIS 1, 1049-001 LISBOA, PORTUGAL6

Abstract. The Neural Tangent Kernel (NTK) has emerged as a fundamental concept in the study of

wide Neural Networks. In particular, it is known that the positivity of the NTK is directly related

to the memorization capacity of sufficiently wide networks, i.e., to the possibility of reaching zero

loss in training, via gradient descent. Here we will improve on previous works and obtain a sharp

result concerning the positivity of the NTK of feedforward networks of any depth. More precisely, we

will show that, for any non-polynomial activation function, the NTK is strictly positive definite. Our

results are based on a novel characterization of polynomial functions which is of independent interest.
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1. Introduction20

Recently, the increase in the size of deep neural networks (DNNs), both in the number of trainable21

parameters and the amount of training data resources, has been in step with the astonishing success22

of using DNNs in practical applications. This motivates the theoretical study of wide DNNs. In23

such context, the Neural Tangent Kernel (NTK) [13] as emerged as a fundamental concept. In24

particular, it is known that the ability of sufficiently wide neural networks to memorize a given25
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The Positivity of the NTK

training data set is related to the positivity of the NTK. More precisely, if the NTK is strictly positive26

definite then the quadratic loss will converge to zero, in the training via gradient descent, of an27

appropriately initialized and sufficiently wide feed-forward network (see for instance [11, 8],28

and references therein; we also refer to Section 1.1 of this paper for a sketch of what happens in29

the infinite width limit). The positivity of the NTK has also been related to the generalization30

performance of DNNs [7, 3, 9].31

Consequently, understating which conditions lead to this positivity becomes a fundamental32

problem in machine learning, and several works, that we will review later, have tackled this33

question providing relevant and interesting partial results. However, all of these results require34

nontrivial extra assumptions, either at the level of the training set, for instance by assuming that35

the data lies in the unit sphere, or at the level of the architecture, for instance by using a specific36

activation function, or both. The goal of the current paper is to obtain a sharp result in the context37

of feedforward networks which requires no such extra assumptions. In fact, we will show that for38

any depth and any non-polynomial activation function the corresponding (infinite width limit)39

NTK is strictly positive definite (see Section 1.2).40

Finally, the proofs we present here are self-contained and partially based on an interesting41

characterization of polynomial functions (see Section 3) which we were unable to locate in the42

literature and believe to have mathematical value in itself.43

One should note that the results of our paper deal with the idealized setting of infinite width44

networks and therefore might be of limited use. In this regard we recall that there are empiri-45

cal evidences that reveal that the finite and infinite networks have different performances [18].46

Nonetheless, the simplicity of the limiting case studied in this paper provides a compelling con-47

ceptual framework that can help us interpret and explain the performance of networks even in48

practical applications (see for instance [20])49

1.1. Feedforward Neural Networks and the Neural tangent kernel. Given L ∈ Z
+, define a

feedforward neural network with L − 1 hidden layers to be the function fθ = f
(L)
θ : Rn0 → R

nL

defined recursively by the relations

f
(1)
θ (x) =

1
√
n0

W (0)x+ βb(0) ,(1.1)

f
(ℓ+1)
θ (x) =

1
√
nℓ

W (ℓ)σ (f (ℓ)
θ (x)) + βb(ℓ) ,(1.2)

where the networks parameters θ correspond to the collection of all weight matrices W (ℓ) ∈Rnℓ+1×nℓ50

and bias vectors b(ℓ) ∈ Rnℓ+1 , σ : R→ R is an activation function, that operates entrywise when51

applied to vectors, and β ≥ 0 is a fixed/non-learnable parameter used to control the intensity of the52

bias.53

We will assume that our networks are initiated with iid parameters satisfying:54

(1.3) W ∼N (0,ρ2
W ) and b ∼N (0,ρ2

b ) ,55

with non-vanishing variances ρW and ρb .56
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The Positivity of the NTK

For µ = 1, . . . ,nL, let f (L)
θ,µ be the µ-component of the output function f

(L)
θ . It is well known [24, 17]

from the central limit theorem that, in the (sequential) limit n1, . . . ,nL−1→∞, i.e. when the number
of all hidden neurons goes to infinity, the nL components of the output function f

(L)
θ,µ : Rn0 → R

converge in law to independent centered Gaussian processes f
(L)
∞,µ : Rn0 → R with covariance

Σ̂(L) : Rn0 ×Rn0 →R , defined recursively by (compare with [27]):

Σ̂(1)(x,y) =
ρ2
W√
n0

x⊺y + βρ2
b ,(1.4)

Σ̂(ℓ+1)(x,y) = ρ2
W Ef ∼Σ̂(ℓ) [σ (f (x))σ (f (y))] + ρ2

b β
2 .(1.5)

A centered Gaussian Process f with covariance Σ will be denoted by f ∼ Σ. Thus, for any µ ∈57

{1, . . . ,nL} we have f
(L)
∞,µ ∼ Σ̂(L). In particular, for x,y ∈Rn0 ,58

(1.6)

 f
(L)
∞,µ(x)

f
(L)
∞,µ(y)

 ∼N
 0

0

 ,

 Σ̂(L)(x,x) Σ̂(L)(x,y)
Σ̂(L)(y,x) Σ̂(L)(y,y)

 .59

For a given neural network, defined as before, its Neural Tangent Kernel (NTK) is the matrix60

valued Kernel whose components Θ(L)
µν : Rn0 ×Rn0 →R are defined by61

(1.7) Θ
(L)
µν (x,y) =

∑
θ∈P

∂f
(L)
θ,µ

∂θ
(x)

∂f
(L)
θ,ν

∂θ
(y) ,62

with P = {W (ℓ)
ij ,b

(ℓ)
k | 0 ≤ ℓ ≤ L− 1, 1 ≤ i,k ≤ nℓ+1, 1 ≤ j ≤ nℓ} the set of all (learnable) parameters.63

The relevance of the NTK comes from the fact that it codifies the learning dynamics in output64

space, if the learning is carried out using gradient descent with a quadratic loss function. To65

make this statement clear we need to formulate a precise supervised learning setup. To do that66

consider that we are given a training set composed of training inputs {x1, · · · ,xN } and training67

labels {y1, · · · , yN }, with each xi ∈Rn0 and each yi ∈RnL . Then if we set our loss function to be the68

quadratic loss defined by69

(1.8) L(θ) =
1
2

N∑
j=1

∥fθ(xj )− yj∥2 ,70

our goal is to find parameters θ, and a corresponding neural network fθ, that minimize this loss. If71

we are given an initialization θ0 of our parameters, say sampled according to (1.3), and use gradient72

descent to determine a learning trajectory in parameter space, i.e., if we evolve the parameters73

according to the ode74

(1.9)
dθ(t)
dt

= −∇θL(θ(t)) ,75

with initial data θ(0) = θ0, then it isn’t hard to conclude [13, 8] that the learning dynamics76

t 7→ fθ(t)(xi), of the output of the neural network associated to the training input xi , satisfies the77
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The Positivity of the NTK

evolution equation78

(1.10)
d
dt

(
fθ(t),µ(xi)

)
=

N∑
j=1

nL∑
ν=1

(
yj,ν − fθ(t),ν(xj )

)
Θ

(L)
µν |θ(t)(xi ,xj ) ,79

where yj,ν is the ν−component of the training label yj ∈RnL .80

A fundamental observation by [13], is that, under the initialization conditions (1.3), in the (se-81

quential) infinite width limit (i.e., as n1, . . . ,nL−1→∞) the NTK converges in law to a deterministic82

kernel. This result was significantly deepened in [27] [2]. The first of these references showed that83

the same holds if all the widths are sent to infinite at the same rate. Finally, the second reference [2]84

gives probabilistic bounds on the deviation of this limit in terms of min{n1, . . . ,nL}. Overall, we85

find that in such infinite width limits86

(1.11) Θ
(L)
µν →Θ

(L)
∞,µν = Θ

(L)
∞ δµν ,87

with the scalar kernel Θ(L)
∞ : Rn0 ×Rn0 →R defined recursively by

Θ
(1)
∞ (x,y) =

1
n0

x⊺y + β2 ,(1.12)

Θ
(ℓ+1)
∞ (x,y) = Θ

(ℓ)
∞ (x,y) Σ̇(ℓ+1)(x,y) +Σ(ℓ+1)(x,y) ,(1.13)

where, for ℓ ≥ 1,

Σ(ℓ+1)(x,y) = Ef ∼Σ̂(ℓ) [σ (f (x))σ (f (y))] + β2 ,(1.14)

Σ̇(ℓ+1)(x,y) = ρ2
WEf ∼Σ̂(ℓ) [σ̇ (f (x)) σ̇ (f (y))] .(1.15)

A particularly relevant consequence of this last result is that, in the infinite width limit, the88

learning dynamics, obtained from (1.10) by replacing Θ(L) by Θ
(L)
∞ , is linear, since the infinite89

width NTK is constant in parameter space. In particular, this reveals that if Θ(L)
∞ is strictly positive90

definite, then fθ(t),µ(xi)→ yi,µ, as t→∞, for all i ∈ {i, . . . ,N } and all µ ∈ {1, . . . ,nL}, which implies91

that the loss function converges to zero, a global minimum, during training. The neural network is92

therefore able to memorize the entire training set.93

1.2. Main results. Recall that a symmetric matrix P ∈RN×N is strictly positive definite provided94

that u⊺P u > 0 , for all u ∈RN \ {0}. Recall also the following:95

Definition 1. A symmetric function
K : Rn0 ×Rn0 →R

is a strictly positive definite Kernel provided that, for all choices of finite subsets of Rn0 , X = {x1, . . . ,xN }96

(thus without repeated elements), the matrix97

(1.16) KX :=
[
K(xi ,xj )

]
i,j∈{1,...,N }

,98

is strictly positive definite.99

We are now ready to state our main results.100
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The Positivity of the NTK

Theorem 1 (Positivity of the NTK for networks with biases). Consider an architecture with activated101

biases, i.e. β , 0, and a continuous, almost everywhere differentiable and non-polynomial activation102

function σ . Then, the NTK Θ
(L)
∞ is (in the sense of Definition 1) a strictly positive definite Kernel for all103

L ≥ 2.104

Remark 1. Notice that the previous result is sharp in the following sense. First, the NTK matrix clearly105

degenerates if we have repeated training inputs, so, in practice, our result does not make any spurious106

restrictions at the level of the data. Second, it is also known, see for instance [23, theorem 4.3] and107

compare with [13, Remark 5], that the minimum eigenvalue of an NTK matrix is zero if the activation108

function is polynomial and the data set is sufficiently large. Finally, the regularity assumption of almost109

everywhere differentiability is, in view of (1.15), required to have a well defined NTK.110

For the sake of completeness we will also establish a positivity result for the case with no biases111

(β = 0). This situation calls for extra work and stronger, yet still reasonable, assumptions about112

the training set. This further emphasizes the well-established relevance of including biases in our113

models.114

Theorem 2 (Positivity of the NTK for networks with no biases). Consider an architecture with115

deactivated biases (β = 0) and a continuous, almost everywhere differentiable and non-polynomial116

activation function σ . If the training inputs {x1, . . . ,xN } are all pairwise non-proportional, then, for all117

L ≥ 2, the matrix Θ
(L)
X =

[
Θ

(L)
∞ (xi ,xj )

]
i,j∈[N ]

is strictly positive definite.118

Remark 2. As it is well known, one of the main effects of adding bias terms corresponds, in essence, to119

adding a new dimension to the input space and embedding the inputs into the hyperplane xn0+1 = 1. This120

has the effect of turning distinct inputs, in the original Rn0 space, into non-proportional inputs in R
n0+1.121

Hopefully this sheds some light into the distinctions between the last two theorems.122

Remark 3. Our techniques can be adapted to prove that a more general statement handling networks123

whose activation functions change from layer to layer, as long as such activation functions satisfy the124

hypothesis of Theorems 1, 2. For 2 ≤ ℓ ≤N , let σℓ be the activation function being used on layer ℓ; changes125

in the activation functions from layer to layer will lead to modified inductive formulas in (1.13)–(1.15).126

These new formulas will have σ replaced by the σℓ being used in the corresponding layer. In section127

4, which contains the proof of our main theorems, this then corresponds to having a new formula for128

equation (4.2) and the rest of the proof follows suit.129

The proofs of the previous theorems are the subject of section 4 (see Corollaries 2 and 4 respec-130

tively). They partially rely on the following interesting characterization of polynomial functions131

which we take the opportunity to highlight here:132

Theorem 3. Let z = (zi)i∈[N ], w = (wi)i∈[N ] ∈RN be totally non-aligned, meaning that133

(1.17)

∣∣∣∣∣∣ zi wi

zj wj

∣∣∣∣∣∣ , 0 , for all i , j ,134
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The Positivity of the NTK

and let σ : R→R be continuous. If there exists u ∈RN \ {0}, such that135

(1.18)
N∑
i=1

ui σ (θ1zi +θ2wi) = 0 , for every (θ1,θ2) ∈R2 ,136

then σ is a polynomial.137

The previous result is an immediate consequence of Theorem 5 and Theorem 4, proven in the138

Section 3.139

1.3. Related Work. In their original work, [13] already discussed the issue studied in the current140

paper and proved that, under the additional hypothesis that the training data lies in the unit sphere,141

the Neural Tangent Kernel (NTK) is strictly positive definite for Lipschitz activation functions. [10]142

made a further interesting contribution in the case where there are no biases. They found that if143

the activation function is analytic but non-polynomial and no two data points are parallel, then144

the minimum eigenvalue of an appropriate Gram matrix is positive; this, in particular, provides a145

positivity result for the NTK, under the described restrictions. As mentioned above we generalize146

this result by withdrawing these and other restrictions.147

Later [1] worked with the specific case of ReLu activation functions, but were able to drop the148

very restrictive hypothesis that the data points all lie in the unit sphere. Instead, they provide a149

result showing that for ReLu activation functions, the minimum eigenvalue of the NTK is “large"150

under the assumption that the data is δ-separated (meaning that no two data points are very close).151

In a related work, [23] conducted a study on one hidden layer neural nets where only the input152

layer is trained. They made the assumption that the data points are on the unit sphere and satisfy a153

specific δ-separation condition. Their results are applicable to large networks where the number154

of neurons m increases with the number of data points. Moreover, if the activation function is155

polynomial the minimal eigenvalue of the NTK vanishes for large enough data sets, as illustrated156

in theorem 4.3 of the same reference. This shows that our conditions, at the level of the activation157

function, are also necessary so that our results are sharp.158

There are a number of other works which investigate these problems and come to interesting159

partial results. They all have some intersection with the above mentioned results, but given their160

relevance we shall briefly mention some of these below.161

In [16] it is shown that the NTK is strictly positive definite for a two-layered neural net with162

ReLU activation. Later, [19] extended this result to multilayered nets, but maintained the ReLU163

activation restriction. [21] proves a lower bound on the first eigenvalue of the NTK assuming σ has164

polynomial growth and the training data lies on a sphere. [6] found a lower bound on the smallest165

eigenvalue of the empirical NTK for finite deep neural networks, where at least one hidden layer166

is large, with the number of neurons growing linearly with amount of data. They also require a167

Lipschitz activation function with Lipschitz derivative. Related results can also be found in [4] and168

references therein.169

Moreover, [5] provides a proof of the global convergence of gradient flow in training neural170

networks in an appropriate limit, using the control of the smallest eigenvalue of the NTK. There171

the activation function is second-order differentiable, with bounded first and second derivatives,172

and the input data is drawn independently from a normal distribution N (0, Id), with the outputs173
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being B2-sub-Gaussian. This setup provides a controlled probabilistic framework for their results.174

[15] established new lower and upper bounds on the smallest eigenvalue of the NTK for spherical175

data with ReLU activation. [26] derived a lower bound for the smallest eigenvalue of the empirical176

NTK in the two-layer case. The activation function is Lipschitz and piecewise linear, or twice177

differentiable with a bounded second derivative. Furthermore, σ is centered and normalized with178

respect to N (0,1). They work in the ultra-wide regime, where each data point is close to unit179

norm, and all data points are approximately orthogonal. Using the same assumptions, [25] proved180

the sharp limits of the smallest and largest eigenvalues of the CK matrix, which is one of the181

components of the NTK.182

Other interesting and relevant works which study the positivity of the NTK and/or its eigenvalues183

include [28, 12, 22].184

1.4. Paper overview. This work is organized as follows: In Section 2 we consider, as a warm-up,185

the particular case of a one hidden layer network with a sufficiently smooth activation function;186

this provides an accessible introduction to the subject that allows to clarify some of the basic187

ideas behind the proof of the general case. Our main results are based on a novel characterization188

of polynomials which is fairly easy to establish in the smooth case considered in Section 2 but189

requires a lot more effort in the continuous category; this work is carried out in Section 3. Finally,190

in Section 4, we use the results of the previous section to establish the (strict) positive definiteness191

of the NTK in the general case of a neural network of any depth, with a continuous and almost192

everywhere differentiable activation function.193

2. The Positivity of the NTK I: warm-up with an instructive special case194

It might be instructive to first consider the simplest of cases: a one hidden layer network L = 2,195

with one-dimensional inputs n0 = 1 and one-dimensional outputs n2 = 1. This will allow us to196

clarify part of the strategy employed in the proof of the general case that will be presented in197

section 4; nonetheless, the more impatient reader can skip the present section.198

In this special case we do not even need to use the recurrence relation (1.12)-(1.13), since we can199

compute the NTK directly from its definition (1.7). In order to do that it is convenient to introduce200

the perceptron random variable201

(2.1) p(x) = W (1)σ (W (0)x+ b(0)) ,202

with parameters θ ∈ {W (0),b(0),W (1)} satisfying (1.3), and the kernel random variable203

(2.2) Kθ(x,y) :=
∑

θ∈{W (0),b(0),W (1)}

∂p

∂θ
(x)

∂p

∂θ
(y) .204

Using perceptrons the networks under analysis in this section are functions f (2)
θ : R→R that can205

be written as206

(2.3) f
(2)
θ (x) =

1
√
n1

n1∑
k=1

pk(x) + β b(1) ,207

7
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where n1 is the number of neurons in the hidden layer and where each perceptron has iid parameters
θk ∈ Pk = {W (0)

k ,b
(0)
k ,W

(1)
k } and b(1) that satisfy (1.3). Moreover the corresponding NTK (1.7), which

in this case is a scalar, satisfies

Θ(2)(x,y) =
1
n1

n1∑
k=1

∑
θk∈Pk

∂pk(x)
∂θk

∂pk(y)
∂θk

+
∂f

(2)
θ (x)

∂b(1)

∂f
(2)
θ (y)

∂b(1)

=
1
n1

n1∑
k=1

Kθk
(x,y) + β2 .

In the limit n1→∞, the Law of Large Numbers guarantees that it converges a.s. to

Θ
(2)
∞ (x,y) = Eθ [Kθ(x,y)] + β2 .(2.4)

If we denote the gradient of p, with respect to θ, at x ∈R, by

∇θp(x)⊺ =
[

∂p

∂W (0)
(x) ,

∂p

∂b(0)
(x) ,

∂p

∂W (1)
(x)

]
=
[
xW (1)σ̇ (W (0)x+ b(0)) , W (1)σ̇ (W (0)x+ b(0)) , σ (W (0)x+ b(0))

]
,(2.5)

we see that Kθ(x,y) = ∇θp(y)⊺∇θp(x). Then the Gram matrix (Kθ)X , defined over the training set
X = {x1, . . . ,xN }, is

(Kθ)X :=
[
Kθ(xi ,xj )

]
i,j∈[n]

=∇θp(X)⊺∇θp(X) ,

where we used the 3×N matrix ∇θp(X) given by208

(2.6) ∇θp(X) =
(
∇θp(x1) ∇θp(x2) · · · ∇θp(xN )

)
.209

The (infinite width) NTK matrix over X is defined by Θ
(2)
X :=

[
Θ

(2)
∞ (xi ,xj )

]
i,j∈[n]

and, in view of (2.4),

the two matrices are related by

Θ
(2)
X = Eθ [(Kθ)X] + β2ee⊺ ,(2.7)

where e := [1 · · ·1]⊺ ∈RN . Now, given u ∈RN we have

u⊺Θ
(2)
X u = Eθ [u⊺∇θp(X)⊺∇θp(X)u] + β2u⊺ee⊺u

= Eθ

[(
∇θp(X)u

)⊺
∇θp(X)u

]
+ β2(u⊺e)2

= Eθ

[∥∥∥∇θp(X)u
∥∥∥2

]
+ β2(u⊺e)2 ≥ 0 ,(2.8)

which shows that Θ(2)
X is positive semi-definite.210

Moreover, we can use the previous observations to achieve our main goal for this section by
showing that, under slightly stronger assumptions, Θ(2)

X is, in fact, strictly positive definite. To
do that we will only need to assume that there are no repeated elements in the training set and
that the activation function σ is continuous, non-polynomial and almost everywhere differentiable
with respect to the Lebesgue measure. Under such conditions, assume there exists u , 0 such
that u⊺Θ

(2)
X u = 0, i.e., that the NTK matrix is not strictly positive definite. From (2.8) we see

8
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that this can only happen if βu⊺e = 0 and ∇θp(X)u = 0, for almost every θ, as measured by the
parameter initialization. However, since the third component of the gradient is continuous and our
parameters are sampled from probability measures with full support, we conclude that

N∑
i=1

uiσ (W (0)xi + b(0)) = 0 , for all (W (0),b(0)) ∈R2 .

It follows from Theorem 3 that this condition implies that σ must be a polynomial, in contra-211

diction with our assumptions. The proof of this theorem assuming only the continuity of σ is212

rather involved and will be postponed to Section 3. For now, in coherence with the pedagogical213

spirit of this section, we will content ourselves with a simple proof that holds for the case of an214

activation function which is CN−1. Note, however, that this is insufficient for many application in215

deep learning, where one uses activation functions which fail to be differentiable at some points;216

the ReLu being the prime example. Let u , 0 satisfy (1.18). If u has any vanishing components217

these can be discarded from (1.18), so we can assume, without loss of generality, that all ui , 0.218

Therefore we are allowed to rewrite (1.18) in the following form219

(2.9) σ (θ1zN +θ2wN ) =
N−1∑
i=1

u
(1)
i σ (θ1zi +θ2wi) ,220

where all u(1)
i := ui/uN , 0. Now we differentiate (2.9) with respect to θ1 and with respect to θ2 in221

order to obtain222

zN σ̇ (θ1zN +θ2wN ) =
N−1∑
i=1

u
(1)
i zi σ̇ (θ1zi +θ2wi) ,(2.10)223

wN σ̇ (θ1zN +θ2wN ) =
N−1∑
i=1

u
(1)
i wi σ̇ (θ1zi +θ2wi).(2.11)224

Then, we multiply equations 2.10 and 2.11 by wN and zN respectively and subtract them to derive225

N−1∑
i=1

(zNwi −wN zi)u
(1)
i σ̇ (θ1zi +θ2wi) = 0 .226

Since (zNwN−1 −wN zN−1)u(1)
N−1 , 0, we have227

σ̇ (θ1zN−1 +θ2wN−1) =
N−2∑
i=1

u
(2)
i σ̇ (θ1zi +θ2wi) ,228

where

u
(2)
i := −

(zNwi −wN zi)u
(1)
i

(zNwN−1 −wN zN−1)u(1)
N−1

, 0.

Once again we differentiate with respect to θ1 and θ2 and equate the results to obtain229

N−2∑
i=1

(zN−1wi −wN−1zi)u
(2)
i σ̈ (θ1zi +θ2wi) = 0 .230

9
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Under the assumed conditions we can keep on repeating this process until we arrive at231

(z2w1 −w2z1)u(N−1)
i σ (N−1)(θ1z1 +θ2w1) = 0 .232

Since the last equality holds for all (θ1,θ2) ∈R2 we conclude that σ (N−1) ≡ 0 which implies that σ233

is a polynomial.234

3. Two characterizations of polynomial functions.235

In the previous section we proved Theorem 3, in the simple case when σ is CN−1, by showing that,236

in such case, the conditions of the theorem implied that σ (N−1) ≡ 0, from which one immediately237

concludes that σ must be a polynomial. In this section, we will show how to extend this result to238

the case when σ is only continuous. For that we clearly need different techniques. Basically we will239

rely in the analysis of σ ’s finite differences and show that, under the conditions of the theorem, all240

finite differences of order N − 1 vanish. Remarkably this also implies that σ is a polynomial.241

More precisely, in theorem 5 we will show that, under the conditions of Theorem 3, we must have242

∆N−1
h σ (x) = 0, for all x and h, and in Theorem 4 that if a continuous function σ satisfies this relation243

then σ must be a polynomial. We believe that this last result is already known, unfortunately we244

were unable to find it explicitly in the literature. The article [14] contains a related result which245

implies Theorem 4. Nonetheless, we present a complete proof here.246

For a given function f : R→R let its finite differences be given by247

(3.1) (∆hf )(x) = f (x+ h)− f (x) .248

Note that each finite difference ∆h is a linear operator on the space of functionsMBMap(R,R),249

∆h :M→M.250

The finite differences of second order with increments h = (h1,h2) are defined by(
∆2
hf

)
(x) =

(
∆h2

(
∆h1

f
))

(x)

=
(
∆h1

f
)
(x+ h2)−

(
∆h1

f
)
(x)

=
(
f (x+ h2 + h1)− f (x+ h2)

)
−
(
f (x+ h1)− f (x)

)
.

Note that ∆h1
and ∆h2

commute, that is ∆h1

(
∆h2

f
)

= ∆h2

(
∆h1

f
)
. Proceeding inductively we have251

that252

∆n+1
(h,hn+1)f (x) = ∆hn+1

(
∆n
hf

)
(x) =

(
∆n
hf

)
(x+ hn+1)−

(
∆n
hf

)
(x).253

When h = (h, . . . ,h) we have ∆n
h = ∆n

h.254

Theorem 4. Let f : R→R be a continuous function that, for a given n ∈N, satisfies ∆n
hf (x) = 0, for all255

h and x. Then f is a polynomial of order at most n− 1.256

Proof. First we will prove the following restricted version of the result: if f : R→R is such that, for257

a given n ∈N, we have ∆n
hf (x) = 0, for all x > 0 and h > 0, then f |

R
+ is a polynomial of order n− 1.258

We will do so by induction on n:259

The case n = 1 is obvious; ∆hf (x) = 0, that is f (x + h) = f (x), for any x,h > 0, is the same as260

f (y) = f (x), for any y > x > 0. In other words, f is constant in R
+.261
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Now assume the result holds for n and that ∆n+1
h f (x) = 0, for all x,h > 0. Consider the function

p : R → R, defined by p(x) =
f (x)− f (0)

x
, when x > 0, and p(x) = 0, for x ≤ 0. Note that since

xp(x) = f (x)− f (0), for any x ≥ 0, we have 0 = ∆n+1
h (f (x)− f (0)) = ∆n+1

h (xp(x)), for all x,h > 0. Then,
by the particular case of Leibniz rule provided by the upcoming identity (3.7) we get (for x,h > 0)

0 = ∆n+1
h

(
xp(x)

)
= x∆n+1

h p(x) + (n+ 1)h∆n
hp(x+ h)

= x
(
∆n
hp(x+ h)−∆n

hp(x)
)

+ (n+ 1)h∆n
hp(x+ h)

=
(
x+ (n+ 1)h

)
∆n
hp(x+ h)− x∆n

hp(x) ,

therefore, for x,h > 0,262

(3.2)
(
x+ (n+ 1)h

)
∆n
hp(x+ h) = x∆n

hp(x) .263

Unfortunately we cannot evaluate the previous identity directly on x = 0. However, if we recall the264

well known general identity265

(3.3) ∆n
hg(x) =

n∑
k=0

(−1)n−k
(
n
k

)
g(x+ kh) ,266

and the definition of p, we get, for x,h > 0,267

(3.4) x∆n
hp(x) =

n∑
k=0

(−1)n−k
(
n
k

)
x
f (x+ kh)− f (0)

x+ kh
,268

which converges to zero, when x → 0. Therefore, it follows from (3.2) and the continuity of p,269

in R
+, that ∆n

hp(h) = 0, for h > 0. Considering x = (k − 1)h in (3.2), for k ≥ 2, we conclude that270

(n− k)h∆n
hp(kh) = (k − 1)h∆n

hp((k − 1)h). Inductively we determine that ∆n
hp(kh) = 0, for all k ∈N.271

We have thus concluded that272

∆n
hp(x) = 0, for all x > 0 and all h ∈

{x
k

: k ∈N
}
.273

Additionally, when h = x/k, it also holds that h = (x+ jh)/(k + j), implying that274

(3.5) ∆n
hp(x+ jh) = 0, for all x > 0 , all h ∈

{x
k

: k ∈N
}

and all j ∈N0 .275

Moreover, given m ∈N, using (3.5) and the upcoming identity (3.6) we conclude that ∆n
mhp(x) = 0,276

provided h = x/k and m,k ∈N, i.e.,277

∆n
hp(x) = 0, for for all x > 0 and h ∈ {xQ : Q ∈Q∩R+},278

where Q denotes the rational numbers. By continuity of p, in R
+, we finally know that279

∆n
hp(x) = 0, for all x,h > 0 .280

By the induction hypothesis, when restricted to R
+, p is a polynomial of order n− 1 and, therefore,

there exists a polynomial q : R→R, of order n, such that

f (x) = q(x) , for all x > 0 .

11
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If we now apply the general identity (3.3), to f , at the point x = −h/2, with h > 0, and take into
consideration that, for k ∈N0, −h/2 + kh < 0⇔ k = 0, we get

∆n+1
h f (−h/2) =

n+1∑
k=0

(−1)n+1−k
(
n+ 1
k

)
f (−h/2 + kh)

=f (−h/2) +
n+1∑
k=1

(−1)n+1−k
(
n+ 1
k

)
q(−h/2 + kh)

=f (−h/2)− q(−h/2) +
n+1∑
k=0

(−1)n+1−k
(
n+ 1
k

)
q(−h/2 + kh)

=f (−h/2)− q(−h/2) +∆n+1
h q(−h/2) .

Since, for all x, ∆n+1
h f (x) = 0 by hypothesis, and ∆n+1

h q(x) = 0, because q is a polynomial of order n,281

we conclude that f (−h/2) = q(−h/2), for all h > 0. By continuity f = q, in the real line. □282

In the proof of the previous theorem we relied on:283

Lemma 1. Let n,k ∈N. There exist real coefficients {a(n)
j }j∈[k] such that, for any function p : R→R, the284

following identity holds285

(3.6) ∆n
khp(y) =

n(k−1)∑
j=0

a
(n)
j ∆n

hp(y + jh) .286

Proof. If n = 1,287

∆khp(y) = p(y + kh)− p(y) =
k−1∑
j=0

p
(
y + (j + 1)h

)
− p(y + jh) =

k−1∑
j=0

∆hp(y + jh).288

In this case a
(1)
j = 1, for j = 1, . . . , k − 1. Assuming the result for n we will prove it for n+ 1.289

∆n+1
kh p(y) = ∆kh

∆n
khp(y)

 = ∆kh

n(k−1)∑
j=0

a
(n)
j ∆n

hp(y + jh)

 =
n(k−1)∑
j=0

a
(n)
j ∆kh

(
∆n
hp(y + jh)

)
290

Now, using the result for n = 1, that is ∆khp(y) =
∑k−1

i=0 ∆hp(y + ih), we get291

∆n+1
kh p(y) =

n(k−1)∑
j=0

a
(n)
j

k−1∑
i=0

∆
(n+1)
h p(y + jh+ ih)

=
(n+1)(k−1)∑

m=0

 ∑
i+j=m

0≤i≤k−1
0≤j≤n(k−1)

a
(n)
j

 ∆(k+1)
h p(y +mh)

=
(n+1)(k−1)∑

m=0

a
(n+1)
m ∆

(k+1)
h p(y +mh) ,
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where the second equality arises from the change of variables (i, j) 7→ (m = i + j, j), and the last292

corresponds to the recursive definition of the coefficients a(n+1)
m . □293

In the proof of the last theorem we also used the following special case of the well known Leinbiz294

rule for finite difference, the proof of which we present here for the sake of completeness.295

Lemma 2. For any function g : R→R ,296

(3.7) ∆n+1
h

(
xg(x)

)
= x∆n+1

h

(
g(x)

)
+ (n+ 1)h∆n

h

(
g(x+ h)

)
.297

Proof. For n = 0,

∆h

(
xg(x)

)
= (x+ h)g(x+ h)− xg(x) = x∆h

(
g(x)

)
+ hg(x+ h).

Assume the identity is valid for n. Then

∆n+1
h

(
xg(x)

)
= ∆n

h

(
∆h

(
xg(x)

))
= ∆n

h

(
(x+ h)g(x+ h)

)
−∆n

h

(
xg(x)

)
=

(
(x+ h)∆n

hg(x+ h) + (nh)∆n−1
h g(x+ 2h)

)
−
(
x∆n

hg(x) + (nh)∆n−1
h g(x+ h)

)
= x∆n+1

h g(x) + h∆n
hg(x+ h) + (nh)∆n

hg(x+ h)

= x∆n+1
h g(x) + (n+ 1)h∆n

hg(x+ h) .

□298

For our next result we will also need a simple version of the chain rule for finite differences. To
state it, we need to recall that given g : R2→ R we can define the variations with respect to the
second variable by

∆hg

∆y
(x,y) := g(x,y + h)− g(x,y) .

It is then easy to see that, given f : R → R and α,β ∈ R, we can apply this to the function299

g(x,y) = f (αx+ βy) yielding300

(3.8)
∆h

∆y
[f (αx+ βy)] =

(
∆βhf

)
(αx+ βy) .301

We now have all we need to state and prove the final result of this section:302

Theorem 5. Let z = (zi) and w = (wi) be totally non-aligned, meaning that303

(3.9)

∣∣∣∣∣∣ zi wi

zj wj

∣∣∣∣∣∣ , 0 , for all i , j ,304

and let σ : R→R be continuous. If there exists u ∈RN , with all components non-vanishing, such that305

(3.10)
N∑
i=1

ui σ (θ1zi +θ2wi) = 0 , for every (θ1,θ2) ∈R2 ,306

then ∆N−1
h σ (x) = 0, for all x ∈R and all h ∈RN−1.307

Proof. The totally non-aligned condition implies, in particular, that no more than one zi can vanish.308

Therefore, by rearranging the indices, we can guarantee that zi , 0, for all i ∈ [N − 1]. Then, since309
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u1 , 0, we rewrite (3.10) as310

(3.11) σ (θ1z1 +θ2w1) =
N∑
i=2

u
(1)
i σ (θ1zi +θ2wi) , for every (θ1,θ2) ∈R2 ,311

where u
(1)
i := −ui/u1 , 0.312

Next we consider the change of variables, (θ1,θ2) 7→ (x1, y1), defined by313

(3.12)

 x1 = z1θ1 +w1θ2

y1 = θ2 ,
314

which is clearly a bijection since z1 , 0. In the new variables we have

θ1zi +θ2wi =
zi
z1

(θ1z1 +θ2w1) +
(
wi −

ziw1

z1

)
θ2 = αi

1x1 + βi1y1 ,

where
αi

1 :=
zi
z1

and βi1 :=
z1wi − ziw1

z1
.

Applying these to (3.11) gives315

(3.13) σ (x1) =
N∑
i=2

u
(1)
i σ (αi

1x1 + βi1y1) , for all (x1, y1) ∈R2 .316

It turns out that by taking variations with respect to the second variable we can iterate this317

process. In fact, we will now prove that, for all 0 ≤ k ≤N −2 and all non-vanishing hi , i ∈ [N −1],318

the following recursive identity holds:319

(3.14)
(
∆k
hk+1
k

σ
)

(xk+1) =
N∑

i=k+2

u
(k+1)
i

(
∆k
hi
k
σ
)

(αi
k+1xk+1 + βik+1yk+1) , for all (xk+1, yk+1) ∈R2 ,320

where the coefficients are determined by321

(3.15) u
(k+1)
i = −u(k)

i /u
(k)
k+1 , 0 ,322

323

(3.16) αi
j =

zi
zj

and βij =
zjwi − ziwj

zj
,324

the change of variables is defined by325

(3.17)

 xk+1 = αk+1
k xk + βk+1

k yk
yk+1 = yk ,

326

and the increment vectors are set according to327

(3.18) hik =
(
βikhk ,β

i
k−1hk−1, . . . ,β

i
1h1

)
.328

Notice that all components of hik are non-vanishing.329

The proof follows by induction: The k = 0 case corresponds to (3.13). So let us assume that330

the identity holds for 0 ≤ k ≤N − 3. Then, by taking variations of (3.14) with respect to yk+1 and331
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increment h = hk+1 , 0, we can use the chain rule (3.8) to obtain332

(3.19) 0 =
N∑

i=k+2

u
(k+1)
i

(
∆k+1
hi
k+1

σ
)

(αi
k+1xk+1 + βik+1yk+1) , for all (xk+1, yk+1) ∈R2 ,333

where hik+1 = (βik+1hk+1,h
i
k), which can be rewritten as334

(3.20)
(
∆k+1
hk+2
k+1

σ
)

(αk+2
k+1xk+1 + βk+2

k+1yk+1) =
N∑

i=k+3

u
(k+2)
i

(
∆k+1
hi
k
σ
)

(αi
k+1xk+1 + βik+1yk+1) ,335

with u
(k+2)
i = −u(k+1)

i /u
(k+1)
k+2 , 0.336

Following the iterative procedure, consider the change of variables (xk+1, yk+1) 7→ (xk+2, yk+2)337

defined by338

(3.21)

 xk+2 = αk+2
k+1xk+1 + βk+2

k+1yk+1

yk+2 = yk+1 ,
339

and observe that it is a bijection, since k + 2 ≤N − 1 implies that zk+2 , 0⇔ αk+2
k+1 , 0. In these new

variables

αi
k+1xk+1 + βik+1yk+1 =

αi
k+1

αk+2
k+1

(
αk+2
k+1xk+1 + βk+2

k+1yk+1

)
+

βik+1 − β
k+2
k+1

αi
k+1

αk+2
k+1

yk+1

= αi
k+2xk+2 + βik+2yk+2 ,

with the last identity requiring some algebraic manipulations to be established. So we see that, in340

the new variables, (3.20) becomes341

(3.22)
(
∆k+1
hk+2
k+1

σ
)

(xk+2) =
N∑

i=k+3

u
(k+2)
i

(
∆k+1
hi
k
σ
)

(αi
k+2xk+2 + βik+2yk+2) , for all (xk+2, yk+2) ∈R2 ,342

as desired. This closes the induction proof that establishes the validity of (3.14) for all 0 ≤ k ≤N −2.343

By choosing k = N − 2 in that identity we obtain344

(3.23)
(
∆N−2
hN−1
N−2

σ
)

(xN−1) = u
(N )
N

(
∆N−2
hN
N−2

σ
)

(αN
N−1xN−1 + βNN−1yN−1) , for all (xN−1, yN−1) ∈R2 .345

Finally, if we take variations of the last equation with respect to yN−1 and increment h = hN−1 , 0,346

and recall that u(N )
N , 0, we arrive at347

(3.24) 0 =
(
∆N−1
hN
N−1

σ
)

(αN
N−1xN−1 + βNN−1yN−1) , for all (xN−1, yN−1) ∈R2 ,348

where hNN−1 = (βNN−1hN−1,h
N
N−2). Since, in view of (3.9), all βij , with i , j, are non-vanishing we349

conclude that
(
∆N−1
h σ

)
(x) = 0, for all x ∈R and all h ∈RN−1. □350

Theorem 3 is now a direct consequence of the main results of this section, namely Theorem 5351

and Theorem 4.352
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4. The Positivity of the NTK II: the general case353

After establishing the necessary technical results of the previous section, we now return to the354

study of the sign of the NTK. More precisely, in this section we will consider general networks (1.1)355

– in terms of activation function, and the number of inputs, outputs and hidden layers – and we will356

show that, under very general assumptions, the (infinite width limit) NTK, Θ(L)
∞ , is strictly positive357

definite, for all L ≥ 2 (at least one hidden layer). This will be achieved by studying the positive358

definiteness of various symmetric matrices related to the recurrence formulas (1.12)-(1.13).359

Given a symmetric function K : Rn0 ×Rn0 → R, and a training set X = {x1, . . . ,xN } ⊂ R
n0 , we360

define its matrix over X by361

(4.1) KX =
[
Kij := K(xi ,xj )

]
i,j∈[N ]

,362

where we use the notation [N ] = {1, . . . ,N }. Furthermore, to clarify our terminology, recall that the363

symmetric matrix KX is strictly positive definite when u⊺KXu > 0, for all u ∈RN \ {0}.364

Inspired by the recurrence structure in both (1.4), (1.5) and (1.12), (1.13), we consider two Kernel365

matrices over X related by the identity366

(4.2) K
(2)
ij = Ef ∼K (1)

[
σ
(
f (xi)

)
σ
(
f (xj )

)]
+ β2 .367

In the following, given f : Rn0 → R, we will write Y = f (X) = [f (x1) · · ·f (xN )]⊺ ∈ RN and, as368

before, we will also use the notation e := [1 · · ·1]⊺ ∈RN . Recall that the notation ∼ K (1), introduced369

after (1.6), is a shorthand for a centered Gaussian Process with covariance function K (1). Analo-370

gously, ∼ K
(1)
X refers to the centered normal distribution with covariance matrix K

(1)
X . So, when371

f ∼ K (1) then f (X) ∼ K
(1)
X . We are assuming K

(1)
X is positive semi-definite.372

We see that, for i, j ∈ [N ], the (i, j) entry of K (2)
X is given by (4.2), and so we can write it as

K
(2)
X = E

f (X)∼K (1)
X

σ(
f (X)

)
σ
(
f (X)⊺

)+ β2e e⊺

= E
Y∼K (1)

X

σ (Y )σ (Y )⊺
)

+ β2e e⊺
)

= E
Y∼K (1)

X

[σ (Y ) β e
]σ (Y )⊺

β e⊺

 ,
where σ

(
f (X)

)
and σ (Y ) are N × 1 matrices defined by373

σ
(
f (X)

)
=

[
σ (f (x1)) · · ·σ (f (xN ))

]⊺
and σ (Y ) =

[
σ (y1) · · ·σ (yN )

]⊺
.374
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Now, given u ∈RN , we have

u⊺K
(2)
X u = E

Y∼K (1)
X

u⊺ [σ (Y ) β e
]σ (Y )⊺

β e⊺

u
= E

Y∼K (1)
X

[u⊺σ (Y ) βu⊺e
]σ (Y )⊺u

β e⊺u


= E

Y∼K (1)
X

(∥∥∥∥ [σ (Y )⊺u , β e⊺u]
∥∥∥∥2)

.(4.3)

We conclude that u⊺K (2)
X u ≥ 0, that is, K (1)

X positive semi-definite implies that K (2)
X is also positive375

semi-definite. As already observed in [13], it turns out that we can easily strengthen this relation:376

Proposition 1 (Induction step). Assume that the activation function σ is continuous and not a constant.377

If K (1)
X is strictly positive definite, then K

(2)
X , defined by (4.2), is also strictly positive definite.378

Proof. Assume that under the prescribed assumptions K (2)
X is not strictly positive definite. Then379

there exists u ∈ R
N \ {0} such that u⊺K

(2)
X u = 0. In view of (4.3) this implies that σ

(
Y
)⊺
u = 0,380

N (0,K (1)
X )-almost everywhere, but since K

(1)
X is, by assumption, strictly positive definite, the381

corresponding Gaussian measure has full support in R
N and, by continuity, we must have382

(4.4) σ
(
y
)⊺
u = 0 , for all y ∈RN .383

By rearranging the components of u we can assume that uN , 0. Then, the last identity, applied to a384

vector of the form y = (0, . . . ,0,x), x ∈R, would imply that σ (x) = −σ (0)
∑N−1

i=1
ui
uN

, i.e., σ is a constant.385

Since this contradicts our assumptions we conclude that K (2)
X is strictly positive definite. □386

While Proposition 1 offers the necessary induction step to propagate the favorable sign to the387

matrices Σ̂(ℓ+1)
X and Σ

(ℓ+1)
X , it is insufficient to assert that these matrices are strictly positive definite.388

Since Σ̂
(1)
X typically does not exhibit this property. Nonetheless, we will now show that under389

suitable and relatively mild conditions related to the training set and activation function, the390

desired positivity for Σ̂(2)
X and Σ

(2)
X emerges from the recurrence relations (1.5) and (1.14).391

4.1. Networks with biases. We will first deal with the case with biases (β , 0). Our strategy,392

inspired by the special case studied in Section 2, will be to steer towards Theorem 3 to obtain the393

desired conclusion.394

Theorem 6. Assume that the training inputs xi are all distinct, and that the activation function σ is395

continuous and non-polynomial. If396

(4.5) K (1)(x,y) = α2x⊺y + β2 ,397

with αβ , 0, then K
(2)
X , as defined by (4.2) is strictly positive definite.398

Proof. As in the proof of Proposition 1, if K (2)
X is not strictly positive definite, then there exists a399

non-vanishing u ∈RN such that σ
(
Y
)⊺
u = 0,N (0,K (1)

X )-almost everywhere. Let X also denote the400
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matrix whose columns are the training inputs. Then, for X̃ =
[
αX⊺ β e

]
we can write401

K
(1)
X = α2X⊺X + β2e e⊺ =

[
αX⊺ β e

]αX

β e⊺

 = X̃X̃⊺ .402

Let rank(X̃) = r ≥ 1 and X̃(r) be a r × (n0 + 1) matrix containing r linearly independent rows of X̃.403

We assume without loss of generality that X̃(r) consists of the first r rows of X̃. Then, there exists an404

N × r matrix B such that405

(4.6) X̃ = BX̃(r) .406

The distribution, over R
N , of Y = (Y1 . . . ,Yr , . . . ,YN ) ∼ N (0,K (1)

X ), in general, has a degenerated407

covariance, however the distribution over the first r components Y(r) := (Y1, . . . ,Yr ) ∼N (0, X̃(r)X̃
⊺
(r))408

has a non degenerated covariance matrix and409

Cov(BY(r)) = BCov(Y(r))B
⊺ = BX̃(r)X̃

⊺
(r)B
⊺ = X̃X̃⊺ = K

(1)
X .410

Thus the fact that there exists u ∈RN \{0} such that σ
(
Y
)⊺
u = 0, forN (0,K (1)

X )-almost every Y ∈RN ,411

is equivalent to σ
(
BY(r)

)⊺
u = 0, forN (0, X̃(r)X̃

⊺
(r))-almost every Y(r) ∈Rr . An advantage of the last412

formulation is that the corresponding measure has full support in R
r so, by continuity, we conclude413

that414

(4.7) σ
(
By

)⊺
u = 0 , for all y ∈Rr .415

To proceed we will need the following416

Lemma 3. Assume that B is an N × r matrix with no repeated rows. Then there exists y, ∈Rr such that417

z, = By, is a vector in R
N with pairwise distinct entries.418

Proof. Let y,(x) = (1,x, . . . ,xr−1), for x ∈ R. Then z,(x) := By,(x) is a vector whose entries are419

polynomials pi(x) =
∑

j Bijx
j−1, i ∈ [N ], which (as polynomials) are pairwise distinct since the rows420

of B are also pairwise distinct.421

Now consider the set I , of real numbers where at least two of the polynomials coincide, and the
sets Iij , corresponding to the solutions of pi(x) = pj(x), for a specific pair of indices i , j. Clearly
I ⊂ ∪i,jIij , and therefore

#I ≤
∑
i,j

#Iij ≤
(
N
2

)
× (r − 1) < #R .

In conclusion, we can choose x ∈R such that all the entries of z,(x) = (p1(x), . . . ,pN (x)) are pairwise422

distinct, and we are done. □423

Now, since X has no repeated elements, B has no repeated rows. Then, for any given (θ1,θ2), let424

y = θ1y
, +θ2β e, with y, as in the previous lemma, for which By = θ1z

, +θ2β e. In such case the425

equality (4.7) becomes
∑N

i=1uiσ (θ1zi +θ2β) = 0, for all (θ1,θ2) ∈ R2, with the zi pairwise distinct426

and β , 0. But since a vector z, ∈ RN with all entries pairwise distinct is, in the sense of (1.17),427

totally non-aligned with the bias vector e = (1, . . . ,1), we can apply Theorem 3 to conclude that σ428

must be a polynomial. This contradicts our assumptions, therefore K
(2)
X must be strictly positive429

definite. □430
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An immediate consequence of the preceding result is that Σ̂
(2)
X and Σ

(2)
X are strictly positive431

definite. The induction provided by Proposition 1 then leads to the following conclusion.432

Corollary 1. Under the conditions of Theorem 6, and for all ℓ ≥ 2, Σ̂(ℓ)
X and Σ

(ℓ)
X , defined by (1.4), (1.5)433

and (1.14), are strictly positive definite.434

We are now ready to achieve our main goal for this section, which is the proof of Theorem 1435

which for convenience we restate here as follows:436

Corollary 2 (Theorem 1). Under the conditions of Theorem 6, and for σ continuous and differentiable437

almost everywhere, the matrix Θ
(ℓ)
X is strictly positive definite, for all ℓ ≥ 2.438

Proof. We start by noticing that, if we assume that σ is differentiable almost everywhere, a com-439

putation similar to the one used for equation (4.3), shows that Σ̇
(ℓ)
X = [Σ̇(ℓ)(xi ,xj)]i,j∈{1,...,N } is440

positive semi-definite, for all ℓ ≥ 2. On the other hand Θ
(1)
X as defined in remark 1 is pos-441

itive semi-definite. We recall that due to the Schur product theorem, the Hadamard prod-442

uct of two positive semi-definite matrices remains positive semi-definite. Thus, the matrix443

Θ
(1)
X ⊙ Σ̇

(2)
X =

[
Θ

(1)
∞ (xi ,xj)Σ̇

(2)
∞ (xi ,xj)

]
i,j∈[N ]

is positive semi-definite. Since the sum of a strictly444

positive definite matrix with a positive semi-definite matrix gives rise to a strictly positive definite445

matrix, we can conclude that Θ(2)
X = Θ

(1)
X ⊙ Σ̇

(2)
X +Σ

(2)
X is strictly positive definite. The statement then446

follows from the recurrence (1.13) and Corollary 1. □447

4.2. Networks with no biases. We can also deal with the case with no biases, i.e., β = 0, but this448

case requires more effort and stronger (although still mild) assumptions on the training set; another449

reason in favor of the well known importance of including biases in our models.450

Theorem 7. Assume that the training inputs are all pairwise non-proportional and that the activation451

function σ is continuous and non-polynomial. If K (1)(x,y) = α2x⊺y, with α , 0, then K
(2)
X , as defined452

by (4.2) is strictly positive definite.453

Proof. Just as in the proof of Theorem 6 we can construct a ranked r matrix X̃(r) and a matrix B454

such that (4.6) holds, but now, with the removal of the biases column from X̃ ∈RN×n0 . Although455

we do not have the helpful bias column, our assumptions on the training set guarantee that the456

rows of B are pairwise non-proportional which allows to prove the following:457

Lemma 4. Assume the rows of B are all pairwise non-proportional, then there exists y1, y2 ∈ Rr , such458

that the RN vectors z = By1 and w = By2 are totally non-aligned, meaning that (1.17) holds.459

Proof. As before, consider the polynomials defined by pi(x) =
∑

j Bijx
j−1, which (as polynomials)460

are pairwise non-proportional, in view of the assumptions on B. Now choose x1 such that w = (wi :=461

pi(x1))i∈[N ] has all non zero entries and consider the polynomials qi = pi/wi which (as polynomials)462

are distinct, since the pi are pairwise non-proportional. We then see that463

(4.8)

∣∣∣∣∣∣ pi(x2) wi

pj(x2) wj

∣∣∣∣∣∣ = wjpi(x2)−wipj(x2) , 0⇔ qi(x2) , qj(x2) .464

So we can construct the desired z by setting zi = pi(x2), where x2 is such that all qi(x2) are distinct.465

□466
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Given (θ1,θ2), let y = θ1y1 +θ2y2, with the yi as in the previous lemma. Then, By = θ1z+θ2w and467

the equality (4.7) becomes
∑N

i=1uiσ (θ1zi +θ2wi) = 0, for all (θ1,θ2) ∈R2, with z = (zi) and w = (wi)468

totally non-aligned. In view of Theorem 3 σ must be a polynomial. Once more, this contradicts our469

assumptions, therefore K
(2)
X must be strictly positive definite. □470

An immediate consequence of Proposition 1 and the previous result is the following471

Corollary 3. Under the conditions of Theorem 7, for all ℓ ≥ 2, Σ̂(ℓ)
X and Σ

(ℓ)
X , defined by (1.4), (1.5),472

and (1.14), with β = 0, are strictly positive definite.473

Finally, as in the case in which β , 0, we are now ready to conclude that:474

Corollary 4 (Theorem 2). Under the conditions of Theorem 7, assume moreover that σ is differentiable475

almost everywhere and β = 0. Then, Θ(ℓ)
X is strictly positive definite, for all ℓ ≥ 2.476
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